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ABSTRACT: Effective masses are calculated for a large variety of perovskites of
the form ABX3 differing in chemical composition (A= Na, Li, Cs; B = Pb, Sn; X=
Cl, Br, I) and crystal structure. In addition, the effects of some defects and dopants
are assessed. We show that the effective masses are highly correlated with the
energies of the valence-band maximum, conduction-band minimum, and band gap.
Using the k·p theory for the bottom of the conduction band and a tight-binding
model for the top of the valence band, this trend can be rationalized in terms of the
orbital overlap between halide and metal (B cation). Most of the compounds
studied in this work are good charge-carrier transporters, where the effective masses
of the Pb compounds (0 < mh* < me* < 1) are systematically larger than those of the
Sn-based compounds (0 < mh* ≈ me* < 0.5). The effective masses show anisotropies depending on the crystal symmetry of the
perovskite, whether orthorhombic, tetragonal, or cubic, with the highest anisotropy for the tetragonal phase (ca. 40%). In general,
the effective masses of the perovskites remain low for intrinsic or extrinsic defects, apart from some notable exceptions. Whereas
some dopants, such as Zn(II), flatten the conduction-band edges (me* = 1.7m0) and introduce deep defect states, vacancies, more
specifically Pb2+ vacancies, make the valence-band edge more shallow (mh* = 0.9m0). From a device-performance point of view,
introducing modifications that increase the orbital overlap [e.g., more cubic structures, larger halides, smaller (larger) monovalent
cations in cubic (tetragonal/orthorhombic) structures] decreases the band gap and, with it, effective masses of the charge carriers.

■ INTRODUCTION

Twenty years after their first discovery as possible transistors,1

halide organic/inorganic perovskites (HOPs) with the
composition ABX3 (A = organic or inorganic monovalent
cation, B = bivalent cation, X = halide) have attracted a great
deal of attention because of their breakthrough performance in
third-generation solar cells.2−4 Efficiencies as high as 22.1%5

have recently been reported for perovskite solar cells, and
future efficiency increases up to 30%, close to the Shockley−
Queisser limit, seem feasible.6 Perovskites owe their superb
performance to their high open-circuit voltages (Voc ≈ 1 V for
iodide perovskites and up to ∼1.5 V for bromide perov-
skites),7,8 long charge-carrier lifetime (>15 μs),9,10 and low
nonradiative carrier recombination rates (ca. 8 × 10−12 cm3

s−1).11 The appropriate band gap of ∼1.65 eV makes the classic
methylammonium lead iodide perovskite (CH3NH3PbI3) an
excellent light harvester and, performance-wise, puts it in the
class of highly efficient materials for thin-film solar cells, at a
level comparable to that of CdTe and copper indium gallium
(di)selenide (CIGS).
Hand in hand with experimental studies, computational

investigations have been undertaken to shed light on the origin

of the unique electronic properties of halide perovskites. Using
density functional theory (DFT), the effects of halide and
cation variations on the optical band gap and band structure
have been investigated, along with the effects of temperature,
the influence of crystal defects, steric effects, and the possible
role of the perovskite/TiO2 interface.6,12−17 Because of a
fortuitous cancellation of spin−orbit and many-body effects,
standard DFT calculations within the generalized gradient
approximation (GGA) are able to predict the band gaps of lead
halide perovskites in close agreement with experimental
measurements. The energetics (i.e., the relative energy
differences between various phases) are also well described at
the GGA level.18 Even more relevant to the present work, using
GW as a reference, Umari et al. showed that spin−orbit
coupling (SOC) is crucial to the accurate determination of the
band structures of halide perovskites and that DFT + SOC can
provide an adequate description of band dispersion close to the
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valence-band maximum (VBM) and conduction-band mini-
mum (CBM).19

In our previous work,16 we demonstrated how one can
rationalize and predict the effects of variations in chemical
composition and symmetry on the VBM and CBM energies of
halide perovskites through their effects on two key parameters,
the overlap between metal and halide orbitals and the effective
charge of the divalent cation, determining the energy of these
orbitals. In this work, we delve deeper into another equally
important property of HOPs that affects the charge-carrier-
transport characteristics: the hole and electron effective masses.
It is worth stressing that charge-carrier transport is also affected
by the scattering of charge carriers by phonons, which is not
discussed here.
In the field of semiconductors, the semiclassical model of

electron dynamics, in which electrons and holes are assigned
effective masses, mh and me, respectively, has been very
successful.20 Retaining much of the simplicity of free-electron
models, an effective-mass picture provides semiquantitative
predictions for one of the terms determining the efficiency of
charge-carrier transport. Recently, this model was applied to
some HOP systems by different groups.21−31 In these works,
the authors computed effective masses of single halide
perovskite systems22−24,29 or compared the masses of a limited
number of systems differing in the type of monovalent27,30,31 or
divalent26,28 cation or halide.21,25 Despite the diversity of the
applied approaches for calculating the effective masses, all of the
reported values (except for a few abnormal and inappropriate
values that we discuss in the Theory section) unanimously
agree that the effective masses of both electrons and holes are
in the range of good carrier transporters, in accordance with the
experimental measurements of carrier mobility.32,33 The
physical/chemical origin of this property, however, has
remained an open question. In this work, we calculate mh
and me for a wide range of Sn- and Pb-based perovskites that
differ in the chemical nature of the monovalent cation (Na, Li,
Cs, and some organic molecular ions), the halide (I, Br, and
Cl), and the crystal symmetry (cubic, tetragonal, and
orthorhombic). Indeed, the broad range of systems investigated
here made it possible to better understand the dependence of
the effective masses on the chemical and physical properties of
halide perovskites.
The fact that we consider all-inorganic halide perovskites

might appear to be in conflict with the trend of focusing on
hybrid organic−inorganic systems. The reason for our choice is
manifold. Hybrid perovskites, in particular, CH3NH3PbI3, have
a limited stability, which has been attributed to the
decomposition of methylammonium promoted by humidity.34

Thus, researchers are trying to replace or limit the content of
organic cations by developing all-inorganic or mixed organic/
inorganic-cation halide perovskites. For example, recently, it
was shown that α-CsPbI3 quantum dots are stable in ambient
air,35 and this or similar materials are candidates for addressing
the problem of the stability of hybrid perovskites. Other
authors have also reported the synthesis of CsPbI3 perov-
skites.36,37 Indeed, the general interest in mixed cation and/or
halide perovskites, which have shown high efficiency and
enhanced stability thanks to the replacement of methylammo-
nium and/or formamidinium by inorganic cations and iodine
by bromine,18,38 and the addition of small monovalent cations39

calls for the investigation of a broad set of systems. Moreover,
the research in recent years has shown that halide perovskites
have potential technological applications beyond photovoltaics

(e.g., lasing, light-emitting diodes, photodetection), for which
optical properties different from those needed for solar cells are
sought. Thus, other systems, such as CsPbBr3, are of great
interest. Finally, a technical question concerns the modeling of
rotationally highly mobile methylammonium (and formamidi-
nium) ion in static first-principles calculations. Experiments and
simulations (see, e.g., refs 40−44) have shown that the
residence time of methylammonium in metastable orientation
states is on the picosecond time scale. Thus, a single
configuration of methylammonium-based halide perovskites is
not representative of the state of the system. Previous
computational works13,42 showed that the electronic structures
of the VBM and CBM, which determine the effective masses,
are related to the monovalent cations through the effects of this
ion on the BX3

− 3D network. In this work, we use Cs-based
perovskites, in particular, CsPbI3, also to mimic the average
structure of CH3NH3PbI3. We note that, in simulations, 3D
perovskite CsPbI3 is metastable and has a band gap similar to
that of CH3NH3PbI3.

16 It is worth mentioning that analogous
approaches have been employed in other works (see, e.g., ref
45; also, the analogies between CH3NH3

+ and Cs+ are briefly
discussed in ref 46).
Anticipating our results, we found that, consistent with tight-

binding and k·p theories,47 effective masses are strongly
correlated with the B/ns−X/mp orbital overlap and band
gap.16 Thus, one can tune the electron and hole effective
masses by acting on those parameters affecting the orbital
overlap. We also investigate the effects of intrinsic (vacancies)
and extrinsic (doping) defects on the effective masses. We
found that, although doping might be beneficial in view of
increasing the concentration of free charge carriers, it turns out
that, for example, Zn(II) doping can have some detrimental
effects on carrier transport in some cases.

■ THEORY
In the semiclassical theory of transport,48 the effective masses of
holes (mh) and electrons (me) control the response of these
particles to an electric field. Thus, mh and me, together with the
scattering of charge carriers by phonons, are two key quantities
determining the transport properties of charge carriers in
perovskites. In 3D crystal systems, the effective mass tensors of
holes and electrons, namely, M̂h and M̂e, respectively, are
related to the Hessian matrix of the energy at the VBM or
CBM: M̂h/e = (ℏ2/2)ϵĥ/e″−1, where ϵ″̂ is the Hessian matrix of
elements ϵî,j″ = ∂

2ϵ(k)/∂ki∂kj, ϵ is the energy of the frontier
orbitals of the valence and conduction bands, and (·)−1 denotes
an inverse matrix. Effective masses are more conveniently
computed and analyzed in the reference frame of the
eigenvectors of the Hessian matrix. In this framework, M̂h/e is
a diagonal matrix of elements mα = ℏ2/(2ϵα″), where ϵα″ is one of
the eigenvalues of the Hessian matrix. Indeed, mh/e,α is the
effective mass for hole/electron transport along the direction of
the corresponding eigenvector.
In this work, effective masses are obtained according to the

following algorithm: First, the Hessian matrix is computed from
a parabolic fitting of the energy of the frontier orbitals of the
valence and conduction bands at a set of k-points around k0, the
k-point corresponding to the VBM or CBM: ϵ(k) = ϵ(k0) +
1/2(k − k0)

Tϵ″̂(k − k0) [where (·)T denotes the transpose of
the vector]. In particular, we use a 3 × 3 × 3 grid of k-points
with a spacing of Δk. The suitable value for Δk is discussed
below. Second, the Hessian matrix is diagonalized to yield the
principal axes of charge-carrier transport (eigenvectors) and
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their corresponding eigenvalues. Finally, from the eigenvalues
of the Hessian matrix the effective masses along these
eigenvectors are obtained, as discussed in the previous
paragraph. We note that we focus on a specific sub-band
around its maximum/minimum, that is, a band of same band
index n, and not on the curvature of the overall valence or
conduction band. Thus, we are able to determine the hole/
electron effective masses also when the maximum/minimum is
split because of SOC in locally polarized domains, which has
been shown to be present in some halide perovskites (see, e.g.,
refs 49 and 50).
The above procedure requires suitable values for Δk = |k −

k0|. To tune and validate this parameter, we focus on the largely
studied MAPbI3 system (MA = CH3NH3

+).21,23,24,32 In Table
1, we report the average values of the effective masses for three

different values of Δk: |a ⃗|/100, |a ⃗|/400, and |a ⃗|/800, where |a ⃗| is
the length of a reciprocal lattice vector. Thus, although the
spacing of the k-point grid is the same in all directions for cubic
structures, it differs between the axial and equatorial directions
for tetragonal systems and changes in all three directions for
orthorhombic structures. The suitable value of Δk depends on
how broad the energy dispersion curve is around k0: Broader
curves are best fitted with coarser grids, and narrower curves
require smoother grids. In fact, if the grid spans a space that is
too wide, the second-order approximation to the energy is

insufficient. On the contrary, if the space spanned is too
narrow, then the change in the energy from the maximum of
the valence band (minimum of the conduction band) is
negligible, and the error in the estimation of the Hessian, and
therefore in the effective masses, is large. The suitability of a
value of Δk is measured by the coefficient of determination R2

of the parabolic approximation of the dispersion curve k0,
which, typically, must be ≥0.9. Table 1 shows that the effects of
the grid spacing on the estimation of the masses can be quite
dramatic, with hole and electron masses reaching values as high
as 18.7m0 and as low as 0.03m0, respectively (where m0 is the
electron rest mass).
The present analysis suggests that a possible explanation for

the anomalous data reported in refs 25 and 51 for
orthorhombic MAPbI3 (me = 11.979m0) and MASnCl3 (me =
13.19m0) might be due to an improper calculation procedure.
On the contrary, the results reported in Table 1 for Δk = |a ⃗|/
400 (i.e., at the maximum value of R2) are in good agreement
with experimental32 and previous theoretical19,23 results. It
must be remarked that other explanations are also possible, for
example, the lack of SOC in the calculations of refs 25 and 51.
However, in our simulations, which we performed with and
without SOC, we never observed a change of approximately 2
orders of magnitude associated with spin−orbit effects.
Before closing this section, it is worth mentioning that other

authors have used a different approach to avoid the problem of
determining a suitable value for Δk. Brivio et al.30 described the
energy dispersion curve close to k0 by combining the usual
second-order expansion with an additional k-dependent
function. Fitting the energy dispersion curve near k0 along
one specific direction in reciprocal space with this more
elaborate function, they obtained k-dependent effective masses
that, in the limit of k → k0, are consistent with those presented
in this work. R2 in the table is the coefficient of determination
of the sub-band energy distribution for mh* (left) and me*
(right).

■ COMPUTATIONAL SETUP

GGA−DFT in the Perdew−Burke−Ernzerhof (PBE) formula-
tion52 is used to optimize the atomic configuration and lattice

Table 1. Average Hole and Electron Masses, m̅h and m̅e,
Respectively, for MAPbI3 Using the Appropriate Grid
Spacing Δk′, Together with Two Inappropriate (Too Small
and Too Large) Grid Spacing Values, Δk and Δk″,
Respectively, Resulting in Abnormal Values for the Effective
Masses

m̅h m̅e R2

Δk = |a⃗|/100 0.05 0.35 0.67, 0.87
Δk′ = |a ⃗|/400 0.19 0.32 0.93, 0.9a

Δk″ = |a⃗|/800 18.66 0.03 0.80, 0.71
aΔk′ gives the best R2 values, showing the significance of the grid
spacing on the fitting procedure.

Figure 1. (Left) Transverse and (right) longitudinal principal axes of hole transport (arrow) for the tetragonal systems. Also for cubic and
orthorhombic systems, the principal axes are oriented along the B−B directions. The gray polygons in the figure represent BX6

4− units.
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parameters of all structures. Calculations are performed using
the pw.x code of the Quantum Espresso package.53 Ultrasoft
pseudopotentials are used to describe the interaction between
the (semi)valence electrons and the nuclei and core electrons
for all of the atoms. The Kohn−Sham orbitals and the total
electronic density are expanded in a plane-wave basis with
energy cutoffs of 40 and 280 Ry, respectively. The Brillouin
zone is sampled with a 3 × 3 × 3 or 4 × 4 × 4 Monkhorst−
Pack k-point grid54 for cubic and tetragonal/orthorhombic
structures, with supercells containing eight and four stoichio-
metric units, respectively. These values were chosen by
checking the convergence of the total energy (∼1 × 10−3

Ry/atom), band gap (0.01 eV), and atomic forces (∼1 × 10−4

Ry/au).
GGA−SOC calculations were performed on the perovskite

systems to compute their band structures. The effective masses
of holes and electrons were obtained by performing a quadratic
fit of the 3D band structure at k0, the k-point corresponding to
the VBM and CBM. This required the calculation of the
energies of frontier states of the valence and conduction bands
on a 3 × 3 × 3 grid of k-points centered at k0 [see Figure S1 in
the Supporting Information (SI)]. The suitable number of grid
points and grid spacing, Δk, were carefully chosen and tested
system by system. The quadratic least-squares fit of the
dispersion of the valence and conduction bands at k0 was
performed using the “lsqcurvefit” function of MATLAB 7.12.55

All of the fits present a value of the norm of the residual lower

than 1.5 × 10−9 eV, indicating a rather accurate parabolic
approximation of the valence and conduction bands.

■ RESULTS AND DISCUSSION
We first focus on the analysis of the results for defect-free Cs+/
Na+/Li+ lead and tin perovskite of I−/Br−/Cl−. All of these
systems present low hole and electron effective masses close to
the supercell Γ point, with minimum values per system ranging
from ∼0.1m0 to ∼0.6m0. The fact that the VBM and CBM
occur near the Γ point is due to the supercell used in the
present work: this point folds back at the proper k0 point for
the unit cell of the given symmetry, for example, the R point for
cubic systems.
The principal axes of transport, that is, the eigenvectors of

the effective mass tensor, are oriented along the B−B directions
(see Figure 1). These directions are all equivalent in the case of
cubic systems, and thus, charge-carrier transport is isotropic
(i.e., the masses along the three directions are the same). In the
case of tetragonal systems, there are two degenerate principal
axes of transport in the equatorial plane and one along the
tetragonal axis. Finally, in orthorhombic systems, the three
principal axes of transport, and the corresponding effective
masses, are all different.
The dependence of the minimum hole and electron masses

on the chemical composition (monovalent cation and halide
within lead and tin perovskites) and crystal structure presents
interesting trends. For a given chemical composition, the

Figure 2. (Left) Frontier orbital energies and (right) gaps versus minimum effective mass for Sn-based compounds ASnX3, A = Li, Na, and Cs
(shown with diamonds, squares, and asterisks, respectively) and X = Cl, Br, and I (shown in green, red, and blue, respectively) for different crystal
structures.

Figure 3. (Left) Frontier orbital energies and (right) gaps versus minimum effective mass for Pb-based compounds APbX3, A = Li, Na, and Cs
(shown with diamonds, squares, and asterisks, respectively) and X = Cl, Br, and I (shown in green, red, and blue, respectively) for different crystal
structures.
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effective masses increase along the series cubic → tetragonal →
orthorhombic. If one considers the dependence on halides,
keeping the types of mono- and bivalent cations and the crystal
structure fixed, the masses grow along the sequence I− → Br−

→ Cl−. The dependence on the type of monovalent cation is
more complex and varies as a function of the crystal symmetry.
For cubic systems, the masses grow along the sequence Li+ →
Na+ → Cs+, that is, they grow with the cation size. In tetragonal
and orthorhombic systems, the masses grow in the opposite
order: Cs+ → Na+ → Li+.
An analogous dependence on the chemical and physical

characteristics of the halide perovskites has been observed for
the VBM and CBM energies.16 This suggests a strong
correlation between the minimum hole and electron masses
(mh* and me*) and the energy levels of the frontier orbitals of
the valence and conduction bands. This correlation is shown in
Figures 2 and 3 for lead and tin perovskites, respectively. In the
panels on the left of these figures, the masses of holes and
electrons as function of ΔEVBM and ΔECBM are reported, where
ΔE = E − Emin and Emin is the minimum of the VBM or CBM
among all of the systems considered. We remark that, in these
and the following figures, the effective masses of holes are
reported with a negative sign, so that the masses of both
carriers can be plotted on the same chart. One can observe that
the trend is almost linear with ΔE: the masses grow with the
value of this parameter. Because EVBM and ECBM exhibit
opposite trends with the composition and crystal symmetry
(i.e., they concur in the widening or shrinking of the band gap
Eg = ECBM − EVBM), mh* and me* have a linear trend with the
band gap as well.
The correlation between the hole and electron effective

masses and the band gap in the direction observed in this work
is consistent with the predictions of both the tight-binding
(TB) and k·p theories.47 Nevertheless, halide perovskite have
some unconventional features that make the relationship
between the properties of the material and its composition
and structure less obvious and intuitive. As explained in ref 16,
the VBM has a (antibonding) covalent character; thus, TB is
well suited for interpreting the properties of this band. On the
contrary, the CBM has a much less covalent character, and k·p
theory works better in describing this case. This suggests that a
single theory will not be adequate for interpreting the
computational results and linking them to the characteristics
of the material, and one has to treat the cases separately.

Concerning mh*, the dependence of the effective mass on the
energy of the corresponding band can be explained as follows:
Within TB, the curvature of the VBM grows with the overlap
OVBM between the atomic orbitals contributing to the band
(the s orbitals of Sn/Pb and the p orbitals of X atoms
i n t h e p r e s e n t c a s e ) . [ N o t e t h a t

= ∑ ∑ *
∈ − ∈ −O c cRe( )i m j m i j ijVBM X p B s VBM, VBM, , w h e r e

∫= Φ* Φr r rd ( ) ( )ij i j and cVBM,i and cVBM,j are the contribu-
tions of atomic orbitals i and j, respectively, to the VBM.] In
practice, the higher the overlap and the higher the curvature of
the band, the lower associated effective mass (see Figure 4). At
the same time, the orbital overlap also determines the energy of
the VBM, which explains the correlation between mh* and EVBM
(Figures 2 and 3).
Concerning me*, as mentioned above, k·p theory is more

suitable for explaining the computational results relative to the
conduction band and, thus, the electron effective masses. k·p
theory is a perturbative approach to the calculation of the
energy of the band at a k point in the neighborhood of the
CBM

∑= + ℏ + ℏ | ·⟨ | | ⟩|

−
E E

k
m m

u u

E E

k p

2k k
l

k
l

k

k k
l

CB CB
2 2 2

2

CB 2

CB0

0 0

0 0 (1)

For the sake of simplicity, we report here the form without
SOC. Nevertheless, this form is sufficient to explain the
dependence of me* on the composition and crystal structure of
the material. me* is related to the second-order perturbative
term, that is, it depends on the transition moment integral, ⟨uk0

l |
p|uk0

CB⟩, and the energy difference between the CB at k0 and the

other bands at the same point, Ek0
CB − Ek0

m. In practice, relevant
contributions to Ek

CB come from bands of suitable symmetry (⟨
uk0
l |p|uk0

CB⟩ ≠ 0) that are close in energy to the CBM (small Ek0
CB

− Ek0
m). Because the transition moment integral vanishes for

most of the conduction bands (see Tables S1 and S2 in the SI),
in the present case, the major contribution comes from the
VBM. Thus, me* depends on the band gap and, as we showed in
ref 16, this is correlated to OVBM.
In summary, modifications of the chemical composition and

crystal structure are effective ways of controlling the orbital
overlap and, through it, mh* and me*. For example, cubic
perovskites, with linear B−X−B bonds, have maximum overlap,

Figure 4. Antibonding overlap of the VBM orbitals OVBM versus the minimum hole effective masses mh* for (left) tin-based and (right) lead-based

compounds. = ∑ ∑ *
∈ − ∈ −O c cRe( )i m j m i j ijVBM X p B s VBM, VBM, , where ∫= Φ* Φr r rd ( ) ( )ij i j is the overlap between pairs of X and B atomic orbitals

and cj and ci are projection coefficients of the crystal orbitals onto the atomic orbitals.
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and as a consequence, they have lower masses with respect to
the tetragonal and orthorhombic structures. The effect of
halides is associated with the ratio between their ionic and
covalent radii. The first contributes to the determination of the
lattice size, and the second contributes to the orbital overlap
(for a fixed interatomic distance). This ratio increases along the
sequence I− → Br− → Cl− and, thus, mh* and me* both decrease
along the sequence. Finally, monovalent cations have a different
effect depending on whether they are in cubic or tilted
structures (tetragonal, orthorhombic). In the first case, they
affect only the lattice size. Thus, smaller ions result in larger
overlap and smaller effective masses. In tilted structures, on the
contrary, the ionic size of the monovalent cation has twice the
effect of affecting the lattice size and the linearity of B−X−B
bonds, with the latter effect dominating the overlap. Thus, in
tetragonal and orthorhombic structures, smaller monovalent
cations reduce the overlap and increase mh* and me*.
Effects of Hydrogen Bonding. Organic cations can act as

hydrogen-bond donors, engaging in hydrogen bonds with
halide ions, possibly distorting the BX3 framework. An example
of this effect occurs in NH4PbI3, in which the cubic structure is
significantly distorted. This results in a significant change in the
band structure, with the CBM moving toward the center of the

line connecting the R and Γ high-symmetry points of the
reciprocal lattice (see Figure 5e,c). The distortion of the crystal
structure results in a significant reduction of the orbital
overlap,16 which, as expected, induces the flattening of the
VBM with respect to the case of a much weaker hydrogen-bond
donor, such as PH4PbI3 (Figure 5f,d). This results in an
increase in the effective masses by an order of magnitude in
going from PH4PbI3 to NH4PbI3 (yet smaller than 1.5m0).
It must be noted that the computational setup described in

the corresponding section, which is analogous to the one used
in the vast majority of recent literature in the field,46 does not
take into account van der Waals (vdW) interactions, which
might be important in perovskites,56 especially for systems
involving hydrogen bonding. Indeed, the relevance of vdW
interactions in halide perovskites has been debated in the
literature, with authors suggesting that related corrections
compensate for other limitations of GGA−DFT46 or call for a
more physically sound justification of the relevance of
dispersion forces in this class of systems.57 Here, we take the
pragmatic approach of testing the effects of vdW interactions
for hydrogen-bonding systems (NH4PbI3 and PH4PbI3). We
optimized the atomic structure, including the periodic cell, and
computed the band structure with three empirical (DFT-D258)

Figure 5. Effects of hydrogen bonding on the effective masses. The distortion caused by hydrogen bonding widens the gap.
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and nonlocal (vdW-DF59 and vdW-DF260) methods that take
dispersion interactions into account. In Figure S7 in the SI, we
report the band structures of the VBM and CBM of NH4PbI3
and PH4PbI3 obtained by the various methods. We found
relatively small effects on the structural characteristics of
PH4PbI3, with a change in the lattice parameters of ≤1% and a
variation in the hole/electron effective masses of ≤0.02m0. For
NH4PbI3, the change in the structural characteristics was again
small, with a variation in the lattice parameters of <2%. The
variation in me* was also small, of the same order of magnitude
as that observed for PH4PbI3. In contrast, the position of the
VBM and its dispersion changed significantly. In particular, the
curvature of the VBM was further reduced, and mh* increased to
∼1.5m0, reinforcing our conclusion that strong hydrogen
bonding can increase the hole effective mass and, thus, decrease
the performance of the material.
Effects of Dopants and Defects. The results discussed in

the previous section concern perfect halide perovskite
structures. However, materials used in devices contain
(intrinsic) defects, especially in the case of perovskites
produced by liquid processing; charged vacancy defects are
estimated to exceed 0.4% at room temperature.61 Moreover, the
addition of dopants results in the formation of extrinsic defects.
Defects can affect charge-carrier masses in many ways. For
example, they can introduce deep trap states that favor
recombination and reduce the carrier lifetime. However, it
has been shown that the most common intrinsic defects do not
introduce these types of states in halide perovskites (see, e.g.,
refs 27, 62, and 63), resulting in a very low concentration of
carrier traps.64 Less investigated are the effects of defects on the
valence and conduction bands and, therefore, on the effective
masses. In the following discussion, we consider the effects of
Cs, Pb, and I vancancies and Zn and Sr doping on the effective
masses of CsSnI3.
The presence of defects breaks the translational symmetry of

ideal crystals. Nevertheless, first-principles calculations based on
periodic systems have been shown to work well in
investigations of the electronic structure of these types of
systems.64,65 Thus, the effects of defects on effective masses
have been studied using the same approach as described in the
Theory section.
A final remark is necessary before proceeding with presenting

our results. It is known that the GGA−DFT approach
employed in this and most other computational works on
defects in halide perovkites23,62,66 has potential shortcomings.67

However, the long lifetimes of carriers in halide perovskites
suggest that intrinsic defects do not introduce deep states, and
the present simulation setup is expected to encounter fewer
severe problems in this case. Indeed, in the absence of defects,
SOC−GGA−DFT calculations give effective masses in

quantitative agreement with SOC−Hybrid−DFT68 and
SOC−GW19 calculations and experimental data.32 More
recently, GGA−PBE calculations were employed to successfully
interpret experimental data on the annihilation of Frenkel
defects in CH3NH3PbI3.

69 Finally, in his work on defects in
CH3NH3PbI3, Du

23 remarked that “PBE calculations [inclusive
of SOC] provide sufficiently accurate results on forces (near
equilibrium), structures, and band dispersion”. These literature
data make us confident that our setup is adequate for describing
the (qualitative) effects of defects on the crystal band structure.
Anticipating our results, we remark that VCs′ and VI

• vacancies
have minimal effects on the effective masses. On the contrary,
VPb″ , ZnSn× , and SrSr

× significantly increase mh* and me*.
Effects of Dopants: CsSnxD1−xI3, D = Zn(II), Sr(II). As a first

scenario for doping, we substituted Sn with Zn and Sr at an 8:1
ratio. Both of these dopants widen the band gap (by 0.7 and 0.3
eV for Zn and Sr, respectively) and split some degenerate states
by breaking the symmetry (point X in Figure S3 in the SI).
Whereas the main features of the band structure of the parent
compound, CsSnI3, are preserved in the Sr-doped system, the
band structure of the Zn-doped system changes drastically. Zinc
doping creates an empty additional localized level within the
band gap (n-like doping) and considerably changes the shape of
the CBM. This new level is composed of Sn p and I s orbitals,
along with a small contribution of Zn p orbitals. Being localized,
this state does not contribute to the carrier transport.
The substitutional dopants Zn and Sr affect the electronic

structures of the VBM and CBM. For instance, the presence of
Zn suppresses the orbital contribution of the neighboring
iodide ions, an effect that can be seen in the reduction of the
electron density in the vicinity of Zn(II) (Figure 6). Despite
this effect, the curvature of the VB at its maximum is large for
both dopants, with average hole effective masses of ∼0.05m0.
For electron carriers, in contrast to strontium doping, Zn
doping significanly affects the curvature of the CBM, giving rise
to higher effective electron masses, me* = 1.7m0.

Vacancy Defects (Cs, Pb, axial, and equatorial I) in CsPbI3.
Early studies on the defect physics of halide perovskites showed
that, despite their possible abundance,61 the dominant intrinsic
defects create only shallow levels that are not too detrimental
for the transport properties in this class of materials62 (see ref
70 for an exhaustive review on the physics and chemistry of
defects in perovskites). However, the effects of simple point
defects, namely, vacancies, on the valence and conduction
bands of halide perovskites have not been considered. Here, we
focus on CsPbI3 as a prototypical system for investigating this
phenomenon.
The band structures of tetragonal CsPbI3 with different

vacancies, namely, VCs′ , VPb″ , and VI
• (equatorial and axial),

suggest that the effective masses of holes and electrons have a

Figure 6. Effects of Zn(II) dopant on the orbitals of the band edges.
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low sensitivity to vacancies (Figure S5 in the SI). Except for an
expected splitting of degenerate states (because of the broken
symmetry), only Pb vacancies seem to have a non-negligible
effect on the masses (mostly on mh*). Pb vacancies flatten the
VBM, resulting in relatively heavy holes: mh* = 0.9m0. This
result might seem surprising, considering that Pb makes a
relatively small contribution to this orbital. Indeed, the present
results suggest that the electronic structure of perovskites is
more complex than expected and reported in the literature. The
sizable increase in mh* is due to direct and indirect effects of VPb″ .
Lead vacancies reduce the contribution of the s Pb atomic
orbital of the vacant atom to the VBM. This, in turn, affects the
contribution of equatorial iodide p orbitals to the same band
(Figure 7). This combined effect results in a significant decrease

of the overlap and a corresponding increase of the hole mass
according to the same mechanism as discussed for defect-free
systems.
To validate our calculations and confirm that our conclusions

were not affected by significant finite-size effects, we repeated
our calculations with a 2 × 2 simulation box, containing as
many as 159 atoms. Effective masses computed for these larger
systems showed negligible differences from those computed for
the original systems.

■ SUMMARY

We performed first-principles calculations on a large set of
halide perovskites with the aim of calculating their holes and
electrons effective masses. Effective masses are strongly
correlated with the energies of the VBM, CBM, and band
gap. This can be explained by means of the TB and k·p theories
for the valence and conduction bands, respectively. We also
investigated the effects of intrinsic and extrinsic defects on the
effective masses. Substitutional Zn2+ adds a localized state in the
gap and flattens the band edges, especially the CB edge,
resulting in higher effective masses. Pb2+ vacancies reduce the
antibonding atomic orbital overlap, resulting in a reduction of
the curvature of the VB and an increase of the hole mass. The
other defects have minor effects on the effective masses.
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Lundqvist, B. I. Van der Waals Density Functional for General
Geometries. Phys. Rev. Lett. 2004, 92, 246401.
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