
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Automatic resource specification generation for resource selection in large-scale distributed
environments

Permalink
https://escholarship.org/uc/item/9br8b837

Author
Huang, Richard Yu-Hua

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9br8b837
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Automatic Resource Specification Generation for Resource
Selection in Large-Scale Distributed Environments

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Richard Yu-Hua Huang

Committee in charge:

 Professor Andrew A. Chien, Chair
 Professor Francine Berman

Professor Henri Casanova
Professor Rene Cruz
Professor Jeanne Ferrante

 Professor Tara Javidi

2007

Copyright

Richard Yu-Hua Huang, 2007

All rights reserved.

The Dissertation of Richard Yu-Hua Huang is approved, and it

is acceptable in quality and form for publication on microfilm.

__

__

__

__

__

__
 Chair

University of California, San Diego

2007

iii

For my parents and brother, who made this possible.

iv

TABLE OF CONTENTS

Signature Page ... iii

Dedication .. iv

Table of Contents.. v

List of Figures .. xi

List of Tables .. xv

Acknowledgements... xvii

Vita... xix

Abstract .. xxi

I ... 1Introduction

I.1 Motivation... 2

I.2 Thesis and Approach... 4

I.3 Contributions... 6

I.4 Organization.. 8

II .. 9Background

II.1 History of Large Scale Distributed Environments.. 10

II.2 Executing applications in LSDE... 13

II.2.1 Resource Discovery .. 14

II.2.2 Resource Selection.. 14

II.2.3 Resource Binding.. 15

II.2.4 Applications Scheduling ... 16

II.2.5 Application Launching.. 17

v

II.2.6 Application Monitoring .. 17

II.3 Middleware for LSDEs: the Globus Alliance... 18

II.3.1 Resource Discovery .. 19

II.3.2 Resource Selection.. 19

II.3.3 Resource Binding.. 19

II.3.4 Application Scheduling... 20

II.3.5 Application Launching.. 20

II.3.6 Application Monitoring .. 20

II.3.7 Security ... 21

II.4 Systems for Resource Selection in LSDEs ... 21

II.4.1 Virtual Grid Execution System... 22

II.4.2 Condor... 24

II.4.3 SWORD .. 27

II.5 Motivation... 30

III Models and Methodology ... 32

III.1 Application Model .. 34

III.1.1 Directed Acyclic Graph .. 34

III.1.2 Task Performance Models .. 39

III.2 Resource Model .. 40

III.2.1 Compute Resource Model... 40

III.2.2 Network Model ... 43

III.2.3 Resource Management Model .. 44

III.3 Application Scheduling Approaches on LSDEs ... 46

vi

III.4 Methodology and Roadmap.. 48

III.4.1 Simulation of LSDEs .. 48

III.4.2 Computing Environment... 49

III.4.3 Roadmap ... 49

IV Resource Selection and Application .. 54Scheduling

IV.1 Application Scheduling in LSDEs .. 55

IV.1.1 Challenges of Scheduling in LSDEs... 55

IV.1.2 Current Scheduling Approaches ... 56

IV.1.3 Resource Selection.. 57

IV.2 Experimental Approach .. 57

IV.2.1 Real Application - Montage.. 58

IV.2.2 Random DAGs.. 60

IV.2.3 Scheduling Heuristics ... 61

IV.2.4 Resources .. 62

IV.3 Results... 64

IV.3.1 Montage Results.. 64

IV.3.2 Random DAGs.. 67

IV.4 Conclusion .. 73

IV.5 Acknowledgement .. 75

V Deriving Best Resource Collection Specification.. 76

V.1 Best Resource Collection Specifications .. 78

V.2 Deriving Best RC Size .. 81

V.2.1 Relevant DAG characteristics... 82

vii

V.2.2 Best RC Size ... 84

V.2.3 Observation Set... 88

V.2.4 Model Formulation ... 89

V.3 Predictive Model Validation ... 94

V.3.1 Heuristic to Derive Actual Optimal RC Size.. 94

V.3.2 Validation with Randomly Generated DAGs ... 95

V.3.3 Comparison with Current Practice.. 102

V.3.4 Validate with Real Applications ... 104

V.4 Impact of Clock Rate Heterogeneity... 106

V.4.1 Impact on Performance and Cost of Predictive Model........................... 107

V.4.2 Impact on Optimal RC Size and Application Turn-Around Time.......... 109

V.5 Impact of Network Heterogeneity .. 112

V.6 Scheduling Heuristics ... 112

V.6.1 Sensitivity Studies for Different Heuristics .. 115

V.7 Effects of Scheduling and Computational Clock Rate Ratios 117

V.7.1 Identifying DAGs Affected by Varying SCR... 117

V.7.2 Modifying RC Size Predictions .. 122

V.8 Conclusion .. 124

V.9 Acknowledgement .. 126

VI Deriving the Best Scheduling Heuristic ... 127

VI.1 Observation Set of DAG Configurations.. 129

VI.2 Identifying Trends from Observation Set ... 129

VI.3 Heuristic Prediction Model Construction ... 133

viii

VI.4 Model Validation .. 135

VI.5 Summary ... 141

VII Resource Specification Prediction in Practice... 143

VII.1 Resource Specification Generator... 145

VII.1.1 Example Application: Montage .. 147

VII.2 Condor... 149

VII.2.1 Converting to Condor ClassAds ... 149

VII.3 SWORD .. 151

VII.3.1 Converting to SWORD XML ... 152

VII.4 The Virtual Grid Execution System.. 153

VII.4.1 Converting to vgDL .. 153

VII.5 Alternative Resource Specification Generation.. 154

VII.5.1 Experimental Setup... 154

VII.5.2 Experimental Results .. 156

VII.5.3 Generating Alternative Resource Specifications 157

VII.6 Summary ... 160

VIII Conclusion ... 161

VIII.1 Dissertation Contributions .. 162

VIII.2 Future Directions .. 164

VIII.2.1 Homogeneous Network Connectivity... 164

VIII.2.2 Using Shared Resources ... 165

VIII.2.3 Other Factors in Determining Application Performance 166

VIII.2.4 Available and Accurate Performance Models 166

ix

VIII.2.5 Identifying Optimal DAG size.. 167

References... 168

x

LIST OF FIGURES

Figure I-1: A missing link exists between applications and resource selection systems.... 3

Figure I-2: Three part solution for a resource specification generator 6

Figure II-1: Example vgDL resource collection specification.. 24

Figure II-2: A Gangmatch ClassAd request.. 26

Figure II-3: Workstation Advertisement... 27

Figure II-4: Sample SWORD XML query.. 29

Figure III-1: Overview of running application on LSDEs.. 32

Figure III-2: Example DAG.. 39

Figure III-3: Historical data for registered ROCKS clusters .. 41

Figure IV-1: A small Montage workflow ... 59

Figure IV-2: Modified Critical Path (MCP) Algorithm.. 61

Figure IV-3: Simple Greedy Algorithm.. 62

Figure IV-4: vgDL used for the Montage workflow .. 63

Figure IV-5: Running Montage Workflow with actual communication costs 65

Figure IV-6: Running Montage workflow with equal communication and computation

costs... 65

Figure IV-7: Ratio of Montage makespan compared to running MCP on universe while

varying CCR ... 66

Figure IV-8: Ratio of Montage makespan compared to running MCP on universe while

varying CCR ... 67

xi

Figure IV-9: Varying DAG sizes for random DAGs.. 68

Figure IV-10: Varying CCR for random DAGs ... 69

Figure IV-11: Varying parallelism for random DAGs ... 70

Figure IV-12: Varying density for random DAGs.. 71

Figure IV-13: Varying regularity for random DAGs.. 72

Figure IV-14: Varying mean computational costs for random DAGs.............................. 73

Figure V-1: Resource Specification Predictor .. 77

Figure V-2: Application turn-around time as function of RC size for DAG with size 1000,

CCR of 0.01, and parallelism of 0.6 for various regularity values 85

Figure V-3: Application turn-around time as function of RC size for DAG with size 5000,

CCR of 0.01, and parallelism of 0.7 for various regularity values 86

Figure V-4: Log2 of knee values when DAG size = 5000 and CCR = 0.01 90

Figure V-5: Knee values as function of DAG size with fixed CCR at 0.01 and fixed

parallelism at 0.7 for various regularity values... 93

Figure V-6: Knee values as function of CCR with for DAGs with size 5000 and fixed

regularity at 0.01 for various parallelism values... 93

Figure V-7: Utility vs. DAG size for various threshold values 101

Figure V-8: Performance degradation as function of clock rate heterogeneity for various

DAG sizes ... 107

Figure V-9: Relative cost as function of clock rate heterogeneity for various DAG sizes

... 108

Figure V-10: Change of optimal RC size as function of clock rate heterogeneity 110

xii

Figure V-11: Change in optimal turn-around time as function of clock rate heterogeneity

... 110

Figure V-12: Pseudo-code for the Modified Critical Path (MCP) Heuristic 113

Figure V-13: Pseudo-code for the Dynamic Level Scheduling (DLS) Heuristic 114

Figure V-14: Pseudo-code for the FCA Heuristic .. 114

Figure V-15: Pseudo-code for the FCFS Heuristic... 115

Figure V-16: Performance degradation for different heuristics and resource conditions116

Figure V-17: Relative costs of using different heuristics over different resource

conditions.. 116

Figure V-18: Example plot of predicted RC size change due to varying SCR for small

DAGs .. 119

Figure V-19: Example plot of predicted RC size change due to varying SCR and

parallelism for larger DAGs in homogeneous resource environment 120

Figure V-20: Example plot of predicted RC size change due to varying SCR and CCR for

larger DAGs in homogeneous resource environment... 120

Figure V-21: Example plot of predicted RC size change due to varying SCR and

parallelism for larger DAGs in heterogeneous resource environment................ 121

Figure V-22: Example plot of predicted RC size change due to varying SCR and CCR for

larger DAGs in heterogeneous resource environment .. 121

Figure V-23: Formulas predicting changes in predicted RC sizes as functions of SCR for

DAGs with size 5000, parallelism of 0.9, with homogeneous resources 123

Figure V-24: Formulas predicting changes in predicted RC sizes as functions of SCR for

DAGs with size 5000, parallelism of 0.9, with resource heterogeneity of 0.3 ... 124

xiii

Figure VI-1: Optimal application turn-around time for different heuristics as function of

DAG size... 134

Figure VI-2: Surface plot for deciding when to use MCP and when to use FCA 135

Figure VI-3: Overview of Resource Specification Predictor.. 136

Figure VI-4: Breakdown of validation results .. 139

Figure VI-5: Mean performance degradation from best possible application turn-around

time ... 140

Figure VII-1: Generating resource specifications from heuristic prediction and size

prediction models.. 143

Figure VII-2: A small Montage workflow.. 148

Figure VII-3: ClassAd generated by the resource specification generator to run the

Montage DAG... 151

Figure VII-4: XML query generated by the resource specification generator to run the

Montage DAG... 153

Figure VII-5: vgDL generated by the resource specification generator to run the Montage

DAG.. 154

Figure VII-6: Application turn-around time as a function of computational clock rates and

RC sizes .. 157

Figure VII-7: Relative RC size threshold for moving from 3.5GHz RCs to 3.0GHz RCs

for DAGs with size 5000 and homogeneous resources 159

xiv

LIST OF TABLES

Table IV-1: Scheduling schemes in Grid environments ... 58

Table IV-2: Runtime and number of tasks at various levels of a Montage workflow...... 59

Table IV-3: DAG characteristics and corresponding values for random DAG generation

... 60

Table V-1: Relevant DAG characteristic and sample values.. 89

Table V-2: Knee values for DAGs with size 5000 and CCR of 0.01 89

Table V-3: Heuristic for deriving actual optimal RC size .. 95

Table V-4: DAG characteristic values for validation suite... 96

Table V-5: Validation Results when using Predictive Model .. 99

Table V-6: Experiment showing effects of varying DAG size....................................... 100

Table V-7: Results using DAG width as the RC size ... 103

Table V-8: Number of tasks in each level for two Montage DAGs 105

Table V-9: Applying predictive model to Montage DAGs .. 106

Table VI-1: DAG characteristics used for the observation set to derive a model for

heuristic prediction.. 129

Table VI-2: Application Turn-around times for DAG size 100 131

Table VI-3: Performance degradation using 0.3 instead of 0 for resource heterogeneity

... 132

Table VI-4: Points chosen to validate the heuristic prediction model 137

Table VI-5: Possible outcome of validation results .. 138

xv

Table VII-1: Number of tasks at various levels of a Montage workflow 148

Table VII-2: Experimental setup values for determining alternative resource

specifications... 155

xvi

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Andrew A. Chien for his

continuous support and encouragements over the past four years and for his advice and insights

on different research problems. I am also most grateful for my co-advisor, Professor Henri

Casanova, who is always there for me every step of the way, whether discussing minute details of

my experiments or collaborating on conference papers.

I also would like to thank Professor Francine Berman, Professor Jeanne Ferrante,

Professor Rene Cruz, and Professor Tara Javidi for agreeing to serve on my doctoral committee

and providing helpful feedback on my dissertation.

I am also grateful for everyone in the Concurrent Systems Architecture Group (CSAG) at

UCSD. I want to thank those who were there before me and provided guidance for my doctoral

work: Luis Rivera, Xin Liu, Ju Wang, Huaxia Xia, and Ryan Wu. I thank those who worked

together with me on the Virtual Grid Application Development Software (VGrADS) project:

Yang-Suk Kee, Kenneth Yocum, Jerry Chou, and Dionysios Logothetis. I also learned much from

my fellow CSAG members Nut Taesombut, Justin Burke, Eric Weigle, Ryo Sugihara, Han-Suk

Kim, and Jing Zhu. I also want to thank the CSAG staff members for their help over the years:

Patricia Bladh, Alex Olugbile, Troy Chuang, Adam Brust, and Jenine Combs.

I was fortunate to have the opportunity to collaborate with many wonderful individuals

on the VGrADS project from other institutions including Professor Ken Kennedy, Professor

Keith Cooper, and Chuck Koelbel from Rice University; Professor Carl Kesselman from the

USC/ISI; Professor Rich Wolski from the UCSB; Professor Dan Reed from the UNC; Professor

Jack Dongarra from the University of Tennessee.

I would like to thank everyone who has helped me during my years of graduate studies at

the University of California, San Diego.

xvii

I would like to thank Steven Lee for near daily chats on sports and running a startup. I

would like to thank Lastly, I would like to thank Winnie Lee for keeping me company when I am

not from doing research and making sure that I get my proper nutrients.

Chapter IV, in part, has been published as “Using Virtual Grids to Simplify Application

Scheduling” by Richard Huang, Henri Casanova, and Andrew A. Chien in the proceedings of the

IEEE International Parallel & Distributed Processing Symposium (IPDPS 2006). The dissertation

author was the primary investigator and author of this paper.

Chapter V, in part, has been published as “Generating Grid Resource Requirement

Specifications” by Richard Huang, Henri Casanova, and Andrew A. Chien in the proceedings of

the IEEE International Symposium on High Performance Distributed Computing (HPDC 2007).

The dissertation author was the primary investigator and author of this paper.

Chapter V, in part, has been submitted for publication and will appear as “Automatic

Resource Specification Generation for Resource Selection” by Richard Huang, Henri Casanova,

and Andrew A. Chien in the proceedings of the ACM/IEEE International Conference on High

Performance Networking and Computing (SC 2007). The dissertation author was the primary

investigator and author of this paper.

xviii

VITA

1997 Bachelor of Science,
Biology,
Massachusetts Institute of Technology

1998 Bachelor of Science,

Electrical Engineering and Computer Science,
Massachusetts Institute of Technology

2005 Master of Science,
Computer Science,
University of California, San Diego

2007 Doctor of Philosophy,
Computer Science,
University of California, San Diego

PUBLICATIONS

Richard Huang, Henri Casanova, and Andrew A. Chien. Automatic Resource
Specification Generation for Resource Selection., ACM/IEEE International
Conference on High Performance Networking and Computing (SC 2007).

Richard Huang, Henri Casanova, and Andrew A. Chien. Generating Grid Resource
Requirement Specifications, IEEE International Symposium on High Performance
Distributed Computing (HPDC 2007).

Dionysios Logothetis, Kenneth G. Yocum, Richard Huang and Andrew A. Chien.
Failure-Resilient Expectations for Federated Systems. UCSD Technical Report
CS2006-0865 (2006).

Richard Huang, Henri Casanova, and Andrew A. Chien. Using Virtual Grids to
Simplify Application Scheduling, IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2006).

Yang-Suk Kee, Dionysios Logothetis, Richard Huang, Henri Casanova, and Andrew
A. Chien. Efficient Resource Description and High Quality Selection for Virtual

xix

Grids, In Proceedings of the IEEE Conference on Cluster Computing and the Grid
(CCGrid 2005).

Richard Huang. Scheduling Compute Intensive Applications in Volatile, Shared
Resource (Grid) Environments. Master's thesis, University of California, San Diego,
2005.

Andrew A. Chien, Henri Casanova, Yang-Suk Kee, Richard Huang. The Virtual Grid
Descriptive Language: vgDL. UCSD Technical Report CS2005-0817 (2005).

Nut Taesombut, Richard Huang, Venkat Rangan. A Secure Multimedia System in
Emerging Wirless Home Networks. Communications and Multimedia Security 2003:
76-88.

FIELD OF STUDY

Major Field: Computer Science

Studies in Large-Scale, High Performance Distributed Computing
Professor Andrew A. Chien, University of California, San Diego

xx

ABSTRACT OF THE DISSERTATION

Automatic Resource Specification Generation for Resource Selection

in Large-Scale Distributed Environments

by

Richard Yu-Hua Huang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Andrew A. Chien, Chair

With an increasing number of available resources in large-scale distributed environments,

a key challenge is resource selection. First, we show why explicit resource selection is necessary

to optimize application performance. Using both a simple and a more sophisticated scheduling

heuristic, and for both a real application and a spectrum of randomly generated applications, we

show that explicitly pre-selecting resources before running the scheduling heuristic always

improved application performance.

With several middleware systems providing resource selection services, a user is still

faced with a difficult question: “What should I ask for?” Since most users end up using naïve and

suboptimal resource specifications, we propose an automated way to answer this question. We

present an automated resource specification generator that given a workflow application (DAG-

structured) generates an appropriate resource specification, including number of resources, the

range of clock rates among the resources, and network connectivity. Our automatic resource

specification generator is composed of a size prediction model, a scheduling heuristic prediction

model, and a resource specification generator.

xxi

Our size prediction model employs application structure information as well as an

optional utility function that trades off cost and performance. With extensive simulation

experiments for different types of applications, resource conditions, and scheduling heuristics, we

show that our model leads consistently to close to optimal application performance and often

reduces resource usage. Further, we construct a model that predicts the optimal scheduling

heuristic that can be used in conjunction with the size prediction model. Lastly, we show how our

resource specification generator can be used in practice to generate resource specifications

for three real-world resource selection systems and offer alternative resource specifications when

the best resource request cannot be fulfilled.

xxii

I

INTRODUCTION

A clear trend in parallel computing over the recent years is the steady growth of the

number of deployed clusters and of the sizes of the clusters. Advances in hardware and

manufacturing allow cost-effective commodity clusters to be affordably deployed. In 1996, the

National High Performance Cluster Computing Software Exchange (NHSE) [1] reviewed (in [2])

more than twenty Cluster Management Software (CMS) packages, some of which have become

commercial products. The increasing availability of cluster management software and vendor

options also contributes to the growth of deployed clusters.

Along with the growth of cluster computing and equally important to the growth of

distributed computing, are advances in networking technology. The requirement for moving data

across machine boundaries fueled networking research starting with the US Gigabit testbed

program in 1990 to [3] to provide data rates on the order of 1Gbps to the endpoints of networks.

More recently, networking advances in fiber optics have allowed networking bandwidth to reach

10-40 Gbps. High speed connections among increasing number of clusters across administrative

domains and institutions help foster the establishment of large-scale distributed environments

(LSDEs).

The emergence of LSDEs is at the same time fueled by advances in hardware (computing

clusters and networking routers and fibers) and by demands from the scientific community.

During the 1980s, multi-disciplinary teams started collaborating on Grand Challenge problems,

key problems in science and engineering that require enormous amount of compute power. With

the growing need to share data and resources across geographically diverse regions, we have

1

2

witnessed the establishment of more and more LSDEs as institutions are willing to share their

resources in a collaborative effort. Notable examples of deployed LSDEs today include TeraGrid

[4], OpenScienceGrid [5], Grid3 (formerly Grid2003) [6], and Grid5000 [7].

The establishment of LSDEs also brings new challenges. New software is required to

execute applications across LSDEs. Before applications can run on compute resources in LSDEs,

appropriate resources must be discovered, selected, and bound. When the application is running,

monitoring software is required to monitor both the application and the set of resources on which

the application is executing. Fortunately, these challenges are shared by all wishing to execute

applications across LSDEs. Collectively, the infrastructure necessary to facilitate executing

applications in LSDEs is known as middleware infrastructure. The Globus Alliance [8] was

founded by a community of users and developers who both demanded and built the middleware

infrastructure.

I.1 Motivation

One important challenge in executing applications across LSDEs is selecting the

appropriate set of resources on which to execute different components of the application. This

topic has been widely studied [9-19] and implemented in practice. Resource selection systems

range from bilateral matching process [9] to constraint-solving systems [12, 13, 15, 20]. Others

employ relational databases [16, 17] to organize the resources and apply nondeterministic queries

[18] or other optimizations such as scoping or approximate queries [19] for faster searches.

Any resource selection system can, under different scenarios, return a good and even

optimal set of resources given the appropriate inputs. Indeed, resource selection systems are

developed so that given a resource specification, they can quickly find a set of resources that

matches the resource specification well. Therefore, application developers (or users) can choose

whichever resource specification best fit their application and expect resource selection systems

3

to satisfy this specification whenever possible. The problem is that it is not clear on what basis

this choice would be made. The question of what the “best” resource specification, that is the

specification that will ultimately lead to best application performance as perceived by the user, is

elusive at best. Oftentimes, scientists or application developers can specify exactly the minimum

requirements for memory and perhaps processor types but they do not know precisely or cannot

even give a good estimate of the number of resources that would be optimal for their applications

or the amount of resource heterogeneity their application could tolerate and or take advantage.

The key problem is that none of the systems that we are aware of can provide a good

estimate for the number of resources that would be ideal for the application, or provide any

guidance for the appropriate amount of heterogeneity among the resources that could optimize

application performance. Further, none of these resource selection systems take into account the

scheduling algorithms that might be employed once the resources have been acquired.

Figure I-1: A missing link exists between applications and resource selection systems

We believe there exists a missing link (illustrated by Figure I-1), between the available

resource selection systems and LSDE users. To further illustrate this missing link, we make the

following key observations:

• Application developers are experts in their domain but cannot always be counted on to

provide accurate guidance for the types of resources that can lead to optimal application

performance.

4

• Resource selection systems can often return a set of resources that closely matches what

the application or user specify, but they do not provide guidance on what resource

specification the application should provide in the first place.

• Resource selection systems are oblivious to the scheduling heuristics that are used for

application execution. This is because the interdependence between application

characteristics, resource configuration characteristics, and scheduling heuristics is

extremely complex and not well understood.

Because of the difficulty in choosing a resource specification for an application, the

commonly used practice consists of requesting the largest number of individual hosts that could

be possibly used in concurrently by the application. Unfortunately, although intuitively

unsatisfying, this practice is often vastly sub-optimal in terms of both application performance

and cost, as we will demonstrate. Furthermore, the problem of choosing a resource specification

is complicated because the best choice may depend on the scheduling heuristic used for

scheduling the application. In general, the best resource specification for a given application

depends on which scheduling heuristic is used.

I.2 Thesis and Approach

In this dissertation, we prove the following thesis statement:

Automatic resource specification generation is necessary and feasible to

optimize large-scale distributed environment application performance in

a cost-effective manner.

We prove this statement by first examining whether explicit resource selection is

necessary and conducive to optimizing application performance. We compare application

5

performance for both explicit and implicit resource selection. For explicit resource selection, a

resource selection system explicitly selects a subset of the resource universe, followed by a

scheduling heuristic employed to schedule the application. For implicit resource selection, a

scheduling heuristic is employed on the whole resource universe to schedule the application. For

explicit resource selection, we also compare two different types of resource abstractions used by

resource selection systems.

After we show that explicit resource selection is necessary to optimize application

performance, we develop a solution for automatic resource specification generation. This solution

consists of three components, illustrated by Figure I-2. First, we formulate an empirical model

based on application characteristics to predict the best resource size given an application and a

scheduling heuristic (denoted by ‘Size Prediction Model’ in the figure). We allow the flexibility

of a utility function for applications or users to trade off application performance for cost.

Second, we formulate an empirical model to predict the best scheduling heuristic for a given

application (denoted by ‘Heuristic Prediction Model’ in the figure). Specifying a scheduling

heuristic in conjunction with using the best set of resources to execute applications is necessary to

optimize application performance. Third, we combine these two empirical models, along with our

observations and assumptions about the resource environments to automatically generate resource

specifications for different resource selection systems (denoted by ‘Resource Specification

Generator’ in the figure).

6

Figure I-2: Three part solution for a resource specification generator

I.3 Contributions

While much research efforts focused on resource selection, we are not aware of any work

providing guidance for generating resource specifications. One of the goals of any resource

selection system is to improve/optimize application performance; yet a major component in

determining application performance, the resource specification, is left to educated guesses at

best. Another major component in determining application performance, the scheduling heuristic,

7

is also left largely ignored by resource selection systems. Providing automatic resource

specification generation serves two purposes: it removes the guesswork from users and with the

appropriate resource specifications can optimize application performance.

Our contributions in this dissertation are as follows:

• We show that pre-selecting resources prior to running the scheduling heuristic always

improved application performance, sometimes by several orders of magnitude.

• We show that when one pre-selects an appropriate set of resources, a simplistic

scheduling heuristic can be employed to achieve similar to better performance than

using a more sophisticated scheduling heuristic.

• We construct an empirical resource collection size prediction model based on

relevant application characteristics. In extensive simulation over a wide range of

application configurations, we show that our prediction model consistently allowed

application to achieve performance within a few percent of optimal. When applied to

a real application, we show that our prediction model leads to almost optimal

performance.

• We construct an empirical scheduling heuristic prediction model to be used in

conjunction with the resource collection size prediction model. We validated that

using both of our prediction models achieved application performance very close to

the optimal application performance.

• We incorporated both of our prediction models into a resource specification generator

that generates the resource specifications for three different resource selection

systems: the Virtual Grid Execution System, Condor, and SWORD. We analyzed the

syntax and translated the output of our two prediction models into each of the three

resource selection languages.

8

• We provide an algorithm for generating alternative resource specification if the

original generated optimal resource specification cannot be fulfilled by a resource

selection system.

I.4 Organization

This dissertation is organized as follows. In Chapter II, we discuss the background and

motivation of this work by presenting some of the requirements and solutions for running

applications on LSDEs. In Chapter III, we present our resource models, application models, and

scheduling models for our experiments; we also provide a roadmap for our approach. In Chapter

IV, we investigate why explicit resource selection is necessary to optimize application

performance. In Chapter V, we formulate an empirical model to predict the best resource

collection size (given input application). We validate that our model works for different resource

conditions, scheduling heuristics, and assumptions. In Chapter VI, we formulate a model to

predict the best scheduling heuristic given an input application. We validate that our model works

in conjunction with the size prediction model. In Chapter VII, we present our automatic resource

specification generator that takes the output of prior two models and generate resource

specifications for three different resource selection systems. Additionally, we construct a heuristic

that allows us to generate alternative resource specifications. We summarize our contributions

and highlight directions for future work in Chapter VIII.

II

BACKGROUND

In this chapter, we provide background information on the requirements and solutions for

executing applications in large-scale distributed environments. In Section II.1, we present a brief

history of how the computational demands of applications forced the evolution from single

processor computing to distributed computing on large scale distribute environments. We

describe the necessary software and hardware developments, including the middleware

infrastructure that provides the fundamental mechanisms for executing applications in distributed

environments. We present the six steps necessary to execute applications on such environments in

Section II.2, detailing the major challenges involved in each step and the typical solutions. In

Section II.3, we present the Globus Alliance, a community formed to share the knowledge of the

middleware infrastructure and the various middleware components. The collective software

developed by members of the Globus Alliance is known as the Globus Toolkit. Executing

applications involves more than the middleware infrastructure, so higher-level systems were

developed to address issues not solved within the middleware infrastructure. We describe three

systems that address the resource selection issue in Section II.4. Although these systems provide

users and applications with the critical ability to select resources given arbitrary resource

requirement specifications, generating appropriate such specification is still a challenging

problem. We describe this problem in detail in Section II.5, as it is the main motivation for our

work.

9

10

II.1 History of Large Scale Distributed Environments

Computing began as computation done on a single processor. Given increasing demands

in computing power, around the 1980s, a single processor was no longer sufficient. As

application demands outgrew the advances in processor speeds, it was necessary to build

machines with multiple processors. These machines could share memory and increased the

throughput of computation. Thus, computer scientists focused their efforts on algorithms,

programs, and architectures that allowed applications to run simultaneously on more than one

processor. Parallel computing refers to simultaneously executing the same task on multiple

processors in order to compute a result faster. As computing demands grew, it was difficult to

scale such machines to large number of processors. This provided the impetus for going across

machine boundaries and building distributed-memory machines by connecting individual

machines with a network. This was only possible with advances in networking technology.

With computation distributed across distributed machines, programming became more

difficult than programming for a single machine. To alleviate these difficulties, message-passing

libraries such as Parallel Virtual Machine (PVM) and Message Passing Interface (MPI), as well

as entire languages such as High Performance Fortran (HPF) were developed to support

communications for parallel applications executing on multiple machines[21]. Often, these

machines are connected by fast local area networks in one physical location. Collectively, these

machines are known as a cluster and individually these machines are then known as nodes.

Clusters are typically much more cost-effective than single shared-memory machines with

comparable speed or reliability and are the most popular forms of distributed-memory parallel

computing platforms today. With dropping hardware prices, commodity clusters can be built with

increasingly cheaper commodity computers. Open-source cluster management tools such as

ROCKS [22, 23] makes it increasingly straightforward to deploy powerful Linux clusters. At the

11

writing of this dissertation, 1153 ROCKS clusters are registered totaling 51,935 CPUs. Clusters

have become the basic building blocks for distributed environments.

By distributed computing we refer to a computation that is distributed across different

clusters, with the added implication that the clusters are some geographical distance apart. Large

scale distributed environments (LSDEs) are distributed environments with large number of

computing resources, i.e., large numbers of (large) clusters. Often, the resources within the

computing environments are heterogeneous with respect to each other and in many cases can be

composed of heterogeneous resources at one geographical location. Heterogeneity can refer to

differences in operating systems, clock rates, memory, or any other characteristic of physical

nodes.

The usefulness and the necessity of distributed computing environments became apparent

during the 1980s, when multi-disciplinary teams of researchers started working on so-called

Grand Challenge problems, which are key problems in science and engineering that require

enormous amount of compute power. Such collaborative work necessitates the use of a large-

scale computational infrastructure to achieve new scientific discoveries [24]. The

interdisciplinary research teams often comprised of researchers from geographically distinct

locations, thus requiring remote data transfers and coordinations. This requirement to move or use

data from other sites fueled research starting with the US Gigabit testbed program in 1990 [3] to

provide data rates on the order of 1Gbps to the endpoints of networks. More recently, projects

such as OptIPuter [25] are using optical fibers to create “supernetworks” that are on the orders of

10-40Gbs. With higher bandwidth and the need for researchers in geographically distinct

locations to collaborate on different projects, we have witnessed the establishment of more and

more LSDEs as institutions are willing to share their resources in a collaborative effort. Notable

examples of LSDEs include TeraGrid [4], OpenScienceGrid [5], Grid3 (formerly Grid2003) [6],

Grid5000 [7].

12

Scientific applications deployed in LSDEs are typically compute intensive, that is

requiring lots of computational resources, or data intensive, that is processing large amount of

experimental data, with many applications falling in both categories. Specific domains that can

benefit tremendously from LSDEs span most areas of science and engineering with well-known

examples including physics, astronomy, climatology, or seismology. GriPhyN (Grid Physics

Network) [26] is a good example of a scientific community (in this case, physicists) requiring

LSDEs to enable Petabyte-scale data intensive science. A community of thousands of scientists

distributed globally requires access to raw data as well as computationally intensive analyses of

datasets that will grow from the 100 Terabytes to the 100 Petabyte scale in the next decade,

according to current projections. The computing and storage requirements are distributed, and the

data collections and analysis/visualization are distributed. This distributed nature of the data

stems from the fact that data is captured from scientific instruments (particle accelerators,

microscopes, or telescopes). Due to advances in computing and networking, scientific

communities like GriPhyN can come together to share datasets and computing resources at a

global scale.

Although LSDEs provide resources to execute applications at unprecedented scale, the

logistics of application execution are complex, e.g., due to resource being in different

administrative domains and under different access policies, due to resources being heterogeneous,

and due to complex application requirements. To address this complexity, one needs a software

infrastructure that provides the necessary basic mechanisms. This infrastructure is commonly

termed middleware. More specifically, the middleware infrastructure provide the following

functionalities: discovering locations of available resources, selecting the appropriate set of

resources, acquire (bind) the resources on behalf of the application, scheduling and launching

application components on different resources, as well as monitoring the progress of application

components and the availability of resources.

13

The Globus Alliance [8] was founded by a community of users and developers who both

needed and built middleware to allow applications to execute across machine and administrative

domain boundaries. This collective effort resulted in the Globus Toolkit, where ongoing open

source middleware development helps deploy applications in LSDEs.

LSDEs are becoming increasingly prevalent as a critical means for scientists to achieve

new advances in their respective fields. Nevertheless, many challenges remain for LSDEs to

deliver their true potential, especially as scale continues to increase. Many of these challenges

represent opportunities for computer scientists to contribute novel systems and algorithmic ideas

for helping other scientists to execute their applications on LSDEs a way that is both convenient

and efficient.

II.2 Executing applications in LSDE

One big advantage of LSDEs is that scientists can share data and have access to more

resources than available at a single institution, whether computing or other instruments. In order

to take advantage of LSDEs, scientists must be able to execute their application in a convenient

and efficient manner. Executing an application in an LSDE today typically entails 6 steps, which

have been extensively studied, both in practice (middleware) and in theory. These six steps are:

1. Resource Discovery

2. Resource Selection

3. Resource Binding

4. Application Scheduling

5. Application Launching

6. Application Monitoring

We describe all six steps below, highlighting challenges at hand and current solutions.

14

II.2.1 Resource Discovery

When one shares computing resources with a few close collaborators, it is very easy to

keep track of where and what resources are available. However, when hundreds and thousands of

scientists join in the collective sharing of resources, it becomes a challenge to know which

resources are available and where each resource resides. Resource discovery refers to the task of

identifying the resources that are available in an LSDE. Before using a resource to execute an

application, it is necessary to know the location and identity of said resource. Typically, this

problem is solved by the implementation of an indexing service. Whenever a resource joins the

LSDE, it needs to contact the indexing service to announce its existence. Conversely, the

indexing service then can be contacted by potential resource users and inform these users of the

existence of the resource. Some examples include the Globus Monitoring and Discovery Services

(MDS) [27] and the Internet Scout Project [28]. The Globus MDS is a suite of web services that

allows users to discover available resources considered part of a Virtual Organization (which can

be considered an LSDE). The Internet Scout Project allows groups or organizations to share their

knowledge and resources via the World Wide Web.

II.2.2 Resource Selection

As with resource discovery, when the number of sites increases to hundreds or thousands

and the number of resources available at each site is one or two orders of magnitude more,

choosing the appropriate resources on which to execute an application becomes a challenge.

Resource selection refers to choosing a set of resources from the resource universe (i.e. an LSDE)

to execute an application. Much research [9-13] has gone into resource selection. Resource

selection systems range from the bilateral matching process called matchmaking [9] in Condor

[14], to added economic elements in SWORD [15, 20] where resources are allocated based on

15

auctions, to constraint-solving systems such as RedLine [12, 13] where resources are selected

based on the constraints of the resource characteristics. Others employ relational databases (such

as the vgES system [16, 17] of the VGrADS project [29]) to organize the resources and apply

nondeterministic queries [18] or other optimizations such as scoping or approximate queries [19]

for faster searches.

All these systems define a resource description language by which users and applications

can describe their resource requirements. Some resource description languages include ranking

function by which one can specify that particular resource characteristics are favored. For

example, inside a descriptive language, an application or user could describe a resource collection

containing between 10 and 20 Xeon processors, while tolerating clock rate ranging from 2GHz to

3GHz. A ranking function might be defined in a view to favoring the faster resources, i.e.,

resources with higher clock rates.

II.2.3 Resource Binding

After an application consults a resource selector and the resource selector returns a

desired set of resources, the application needs to “bind” the resource in order to execute

components of the application on them. Resource binding refers to establishing application

presence on a computing resource. Usually binding involves the application (or an agent for the

application) negotiating with a local resource manager, either a human being or the more likely

case of a service running on the computing resource. To complete binding, the local resource

manager must agree for the application to execute tasks on the resources.

The biggest challenge here is the heterogeneity in local resource managers and the

different resource management policies. Some resource managers might grant applications

dedicated use of the resources immediately, or they might require the application to wait in a

queue, or they might have an advance reservation system where the application can request slots

16

of time to execute their components. The solutions to such challenges typically involve interfaces

to various types of resource managers and resource management policies. An example solution is

the Globus Resource Allocation and Management (GRAM) [30] service that provides a single

interface for requesting and using remote resources for the execution of application components.

GRAM interfaces with various local resource management systems including schedulers, queuing

systems, and reservation systems but provide one unified interface to all applications.

II.2.4 Applications Scheduling

Scheduling algorithms have been well studied since it was first formulated in the 1950s.

However, LSDEs have only come into existence in recent years. Consequently, many researchers

have been actively adapting existing algorithms or developing novel algorithms for application

executing in LSDEs. One major constraint for scheduling algorithms when applied to application

executing on LSDE is their execution time. The general scheduling problem is NP-complete.

Since scheduling algorithm requiring exponential execution times cannot be used in practice, one

typically develops heuristics that have polynomial complexity. For instance, many heuristics are

available for the DAG-scheduling problem [31-34], which is arguably among the most general

scheduling problems. However, because of the scale of LSDEs, even scheduling heuristics with

polynomial complexity can take an unreasonable amount of time to compute a schedule.

Therefore, a challenging tradeoff arises. Indeed, what mattes to the user in the end is the

application turn-around time, which include both the execution time of the scheduling heuristic

and the execution time of the application using the schedule. Therefore, using an effective but

perhaps long running scheduling heuristic may result in longer turn-around time, making

choosing the best scheduling heuristic to use very challenging.

17

II.2.5 Application Launching

Launching applications requires staging of executables and data, and starting of the

application processes. In current solutions starting application processes is often combined with

the Resource Binding process described above. Typical solutions to file staging involve protocols

designed to transfer files efficiently to various distributed hosts. An example solution is GridFTP

[35], a secure, reliable, data transfer protocol optimized for LSDEs.

II.2.6 Application Monitoring

Once the application has been launched and is executing on the different remote

resources, it can be beneficial to monitor the application or the resources to ascertain the

application progress. Two possibilities exist for application monitoring:

1. The application implements a built-in status monitoring capability and can report

on its own progress directly.

2. The middleware infrastructure provides such monitoring capabilities.

Along with application monitoring, it may be necessary to monitor the resources instead

because of resource overload or failure, both of which are unrelated to the application. In such a

scenario, it would be beneficial for the application to migrate the work elsewhere to improve

application performance. Resource monitoring is particularly relevant when resources are not

dedicated.

The main challenge of monitoring resources on a LSDE is the large volume of resource

data that needs to be collected and processed. Another challenging issue is determining the

frequency of data collection. While collecting resource data very frequently can lead to more

timely information, it also increases the volume of data that is collected and that needs to be

processed. Data collection also impacts the load on any resource and more frequent data

18

collection means heavier load on the resource. Collecting data also means that data needs to be

sent elsewhere to tally aggregate data. Frequent data collection would also mean bandwidth

consumption by the monitoring software.

Another major challenge is to identify whether the application is behaving as expected.

The problem arises because the application may not be utilizing any particular resource at all

times. It is extremely difficult for a resource monitor to gauge when the application is not

executing on a resource because it has finished its processing or because it is waiting for some

other resource to send data needed for its processing. These two cases would be normal behavior

whereas a faulty behavior would arise when the application is not executing because of software

faults on the resource, overloading on the resource, or some other permission problems on the

resource. Identifying what is expected behavior and what is faulty behavior remains a challenge.

A monitoring system would need input from the application or user to define what is expected

behavior and what is unexpected behavior.

As part of the Grid Application Development Software Project (GrADS) [36], Autopilot

[37, 38] is a real-time adaptive control infrastructure which provides a flexible set of performance

sensors, decision procedures, and policy actuators to realize adaptive control of applications and

resource management policies. Autopilot assesses application progress using performance

contracts. When a violation is detected, Autopilot works with other components of the GrADS

environment to maintain reasonable application performance under current operating conditions.

The Globus Toolkit also provide a monitoring component as part of the Globus Monitoring and

Discovery System (MDS) [39, 40].

II.3 Middleware for LSDEs: the Globus Alliance

The Globus Alliance was formed to address the development of middleware to enable

sharing of computing power, databases, instruments, and other online tools securely across

19

corporate, institutional, and geographic boundaries without sacrificing local autonomy [8]. The

collective software developed by the members of the Globus Alliance is referred to as the Globus

Toolkit [41, 42], an open source software toolkit comprising many of the middleware capabilities

necessary for LSDEs. The Globus Alliance was formed when scientists across different

disciplines realized that generalized solutions (middleware) for their needs were necessary to

avoid having to repeat building similar software components. We give more details about how the

Globus toolkit address, or fail to address, the six steps involved with executing an application on

an LSDE.

II.3.1 Resource Discovery

With respect to resource discovery and resource monitor, Globus provides the Monitoring

and Discovery System (MDS) [39, 40] as part of the Globus Toolkit Information Services. For

resource discovery, MDS4 provides an index service which collects and publishes aggregated

information about information sources. Users and applications can query the indexing service to

discover the locations of desired resources as well as the availability (based on load) of the

resources.

II.3.2 Resource Selection

The Globus Toolkit does not provide any components for resource selection. Instead,

higher level systems such as vgES interface with other Globus Toolkit components to provide the

resource selection functionality.

II.3.3 Resource Binding

The Globus Grid Resource Allocation and Management Service (GRAM) was created to

solve one of the most fundamental requirements of executing applications on LSDE, namely,

20

applications negotiating with underlying resource managers for use of computing resources.

GRAM itself is not a scheduler. It is an interface to different scheduling components such as PBS

or LSF for remote job submission and control. It solves both the resource binding problem and

launching the application by providing two-way file staging – bringing needed input files and

takes out the application output files. It provides remote I/O redirection, job status monitoring,

and job signaling (start, stop, kill, etc.). After the release of Globus Toolkit 4.0, GRAM is based

on Web services interfaces.

II.3.4 Application Scheduling

The Globus Toolkit does not provide any scheduling heuristics. Instead, applications

must provide their own schedulers or rely on a higher level system such as vgES that interfaces

with other Globus Toolkit components to provide the application scheduling functionality.

II.3.5 Application Launching

Related to resource binding, the Globus Toolkit component GRAM interfaces with

different scheduling components such as PBS or LSF for remote job submission and control. It

solves both the resource binding problem and launching the application by providing two-way

file staging – uploading necessary input files and downloading produced output files.

II.3.6 Application Monitoring

The Globus MDS4 provides application monitoring (in addition to providing resource

discovery). For monitoring, MDS4 interfaces with various information sources such as cluster

monitors like Ganglia [43, 44] or Hawkeye [45], or services like GRAM, RFT, RLS, or queuing

systems like PBS (Portable Batch System) [46] or LSF (Load Sharing Facility) [47], translating

21

their diverse schemas into appropriate XML schemas based on standards such as the GLUE

schema [48] whenever possible. The XML files then can be parsed to extract useful information.

II.3.7 Security

Although not a specific part of the 6 steps necessary to run applications in LSDE, the

Globus Toolkit provides the Grid Security Infrastructure (GSI) to address security needs. The

three major points GSI cover are the need for secure communications between hosts in an LSDE,

the need to support security across organizational boundaries, and the need to support a single

sign-on for a single user within a LSDE, including delegating authority for multiple resources

and/or sites. A GSI utility generates a private key and certificate that is valid for a few hours.

Each certificate also contains the identity of a Certificate Authority (CA) that certifies that both

the public key and the identity belong to the subject. Mutual authentication can happen when both

parties trust the CAs that sign each other’s certificate.

II.4 Systems for Resource Selection in LSDEs

While the Globus Toolkit provided a fair number of middleware components to facilitate

running applications in LSDEs, the idea of the Toolkit is to provide basic mechanisms that

everyone can share and use. Choosing a subset of resources in a LSDE to run applications, or

resource selection,cannot be solved via a simple mechanism but is in fact a challenging research

problem. Fortunately, resource selection has been widely studied [9-19] and software solutions

are implemented in practice. In this section, we examine three middleware systems that

implement resource selection, as well as discuss the inputs to these systems.

22

II.4.1 Virtual Grid Execution System

The Virtual Grid Execution System (vgES) [16, 17] was designed and prototyped as part

of the Virtual Grid Application Development Software Project (VGrADS) [29]. The VGrADS

project was built on and informed by a four year effort to build development tools for adaptive

grid applications, the Grid Application Development Software Project (GrADS) [36]. The vgES

architecture was built on the key insight from GrADS that application participation is required to

effectively manage performance in a LSDE.

The main contribution of VGrADS is the notion of a Virtual Grid (VG), a high-level,

hierarchical abstraction of the resource collection that is needed and used by an application. This

abstraction provides a clean separation of concerns between applications and the complexity of

the underlying middleware infrastructure and the heterogeneity of the underlying physical

resources. The application specifies its resource needs using a high level language, the Virtual

Grid Descriptive Language (vgDL), and vgES finds and allocates the appropriate resources on the

behalf of the application.

Resource selection plays a major role in determining the architecture of vgES because of

the end goal of producing a virtual grid based on the user written vgDL specifications. Within

vgES, the main component for resource selection is called the vgFAB (the “finder and binder”).

The vgFAB performs integrated resource selection and binding which enables optimized resource

choices in a high load resource environment. The vgFAB parses the input vgDL and performs the

resource selection via queries to a relational database populated with resource information that is

updated by a vgAgent component. The vgAgent component interfaces with middleware such as

the Globus MDS or Ganglia to discover resources and populate the database with current

dynamic resource information such as the load for other components to process the data. The

resultant tuples of resources are sorted by a ranking function which the user or application can

23

specify via the input vgDL. The vgFAB then binds the resources by interacting with autonomous

resource managers through the underlying Globus GRAM. After the resources have been bound,

a virtual grid is returned as the output of vgES.

The vgES also provides a vgLaunch component which launches the application on the

bound virtual grid according to scripts provided by applications. After the application is launched,

a monitoring component called the virtual grid monitor (vgMON) monitors the virtual grid based

on default expectations regarding the resources in the virtual grid. Users may specify additional

expectations through a higher level language, the Expectation Definition Language (EDL) [49].

II.4.1.1 Input to vgES: vgDL

The input to vgES is a resource specification written in a high-level resource description

language, the Virtual Grid Description Language (vgDL). The vgDL incorporated the RedLine

[13] BNF for resource attribute constraints. The salient point of vgDL is the capability for

applications to specify hierarchical resource aggregates and qualitative notions of network

proximity between these aggregates. The three resource aggregates are distinguished by

homogeneity and network connectivity:

1. LooseBag - a collection of heterogeneous nodes with possibly poor connectivity

2. TightBag - a collection of heterogeneous nodes with good connectivity;

3. Cluster - a set of well-connected nodes with identical (or nearly so) individual

resource attributes.

The notion of “good” is defined in term of a network latency threshold. The implicit

assumption is a positive correlation between low latency and high bandwidth. For instance, in

vgDL, an application can request a Cluster of between 32 and 64 Opteron processors with clock

rate higher than 2Ghz and more than 1GB of RAM that is “close” to a TightBag of 32 to 128

processors that have clock rates higher than 1Ghz. Figure II-1 shows the syntax of such a vgDL

24

specification. The tenet of the VGrADS project is that such simple and qualitative specifications

fit the need of most applications in practice.

VG =
{
 ClusterOf(nodes) [32:64]
 {
 nodes = [(Processor == Opteron) && (Clock>=2000) && (Memory >=
1024]
 }
 close
 TightBagOf(nodes2) [32:128]
 {
 nodes2 = [(Clock >=1000)]
 }
}

Figure II-1: Example vgDL resource collection specification

II.4.2 Condor

Condor [14] is a high throughput computing system developed at the University of

Wisconsin to run applications on LSDEs. The focus is workload management for compute-

intensive jobs. In addition to job queuing mechanisms, Condor also provides scheduling policies,

priority schemes, resource monitoring, and resource management. Condor was originally

designed to harness wasted computing cycles on idle workstations. When a machine is idle for

some period of time, Condor tags the machine as available. Tasks from other users may be

migrated to machines tagged as available and executed there as long as there are not keyboard or

mouse inputs. Periodically, tasks are checkpointed and when the owner of the machine reclaims

the workstation, checkpointed tasks are migrated off the machine and finished elsewhere.

To achieve the highest throughput possible, Condor provides two important functions.

First, it makes available idle machines and thus limit wasted computing cycles. Second, it

expands the resources available to users, by functioning in a distributed environment. Today, in

addition to harnessing idle personal workstations, Condor allows the addition of clusters to the

25

list of resources. These new resources are often dedicated to tasks. Condor manages the newer

resources in the same way that it managed the old workstations.

II.4.2.1 Input to Condor: ClassAds

In the Condor system, a bilateral matching process called matchmaking [9] is used for

resource discovery and resource selection. Using Classified Advertisements (ClassAd’s), both

resource providers and requesters post “ads” for advertising resource availability or resource

needs, respectively. A matchmaker (or a central clearinghouse) then attempts to match the ads

from the resource providers and requesters. The drawback of bilateral matchmaking is that each

resource requester is limited to one resource, precluding the possibility of more advanced

resource management capabilities, such as resource co-allocation.

An extension to Matchmaking is Gangmatching [10], which supports a multilateral

matching of a gang (or a group) of ClassAds. Specifically, it provides a new ability to relate and

evaluate the properties of multiple candidate ClassAds through arbitrary constraint defined on

candidate individuals or groups. The multilateral matching model allows multiple resources to be

collectively matched with the needs of a single job, thus enabling resource co-allocation.

Gangmatching extends Matchmaking’s bilateral constraints by replacing a single bilateral

match imperative (defined in a ClassAd’s requirement attribute) with a list of required bilateral

matches (defined in a new attributed, called port). A port attribute defines the number of and

characteristics of the matching candidate ClassAds for its associated ClassAd to be satisfied. Each

port defines Labels that name the candidate bound to that port. To validly match a gang of

ClassAds, all their ports must be bound with compatible ports (i.e., no conflict between them) of

some other ClassAds in a group. For example, in a Gangmatch request, one can create a port

specifying an Opteron Linux machine and another port specifying an Intel Linux machine while

ranking both according to a function of CPU Flops and memory. Figure II-2 illustrate such a

26

request. In order for the matchmaker to match machines to the request, the machines must satisfy

the constraints specified under each port.

Figure II-2: A Gangmatch ClassAd request

[Type = “Job”;
 // some common attributes
 Owner = “somedude”;
 QDate = ‘ Mon Oct 30 12:23:45 2006 (PST) -08:00’;
 Cmd = “run_simulation”;
 Ports = {
 [// request first machine
 Label = cpu;
 ImageSize = 100M;
 Rank = cpu.KFlops/1E3 + cpu.Memory/32;
 Constraint = cpu.Type ==”Machine” &&
 cpu.Arch == “OPTERON” &&
 cpu.OpSys == “LINUX”
],
 [// request second machine
 Label = cpu;
 ImageSize = 100M;
 Rank = cpu.MFlops/1E3 + cpu.Memory/32;
 Constraint = cpu.Type ==”Machine” &&
 cpu.Arch == “INTEL” &&
 cpu.OpSys == “LINUX”
]
 }
]

A machine ClassAd is fairly straightforward as it advertises some static as well as

dynamic attributes for the machine. For example, a machine could be idle for more than 15

minutes with a low load average and be available for claim. Figure II-3 shows an advertisement

for such a workstation.

27

Figure II-3: Workstation Advertisement

[Type = “Machine”;
 Activity = “Idle”;
 KeybrdIdle = ‘00:22:35’;
 Disk = 200 G;
 Memory = 1000 M;
 State = “Unclaimed”;
 LoadAvg = 0.04345;
 Mips = 104;
 Arch = “INTEL”;
 OpSys = “LINUX”;
 MFlops = “

 Ports = {
 [// request first machine
 Label = requester;
 Rank = 1/requester.ImageSize;
 Constraint = requester.Type ==”Job” &&
 requester.Owner == “valid_user” &&
 LoadAvg < 0.3 &&
 KeybrdIdle> ’00:15’
]
 }
]

II.4.3 SWORD

SWORD [15] is a scalable resource discovery service for wide-area distributed systems.

The focus of SWORD is the set of resources on which users can deploy services (as opposed to

executing a short-lived application). Thus, SWORD runs on Internet-scale infrastructure

machines (such as the nodes of the PlanetLab [50] testbed). SWORD collects both static and

dynamic resource information and selects resources based on user defined criteria. These criteria

may be per-node (e.g. free memory, free disk space) or inter-node (e.g. inter-node latency).

Resource specifications center on the notion of groups that capture equivalent classes of

nodes with similar characteristics. Users can describe the desired resources as a topology of

interconnected groups with required intra-group, inter-group, and per-node characteristics.

Additionally, users may specify a range of required and desired values of per-node and inter-node

resource measurements, with varying level of penalties (costs) for selecting nodes that are within

28

the required range but outside the desired range. SWORD endeavors to locate the lowest cost

resource configuration while meeting user requirements.

SWORD is designed with two usage scenarios. One scenario is the “best-effort”

environment such as the PlanetLab. In such a scenario, SWORD simply returns a list of resources

matching the description of the input query. Another scenario is one where SWORD is used in

conjunction with a resource allocation or admission control mechanism. The resource allocation

mechanism might be able to arbitrate the start, duration, and cost of usage for any of the

resources. Currently, the deployment of SWORD has been in the “best-effort” environment of

PlanetLab [50], with expectations to integrate with resource allocation tools such as SHARP [51]

or SNAP[52] to support arbitrated usage scenarios.

II.4.3.1 Input to SWORD: XML file

SWORD takes two forms of input: Condor ClassAds and the SWORD query language. A

SWORD query takes the form of an XML document with three sections. The first section

describes the (optional) resource consumption constraints the user places on evaluating the query.

In this section, the user can specify the desired trade-off between the “quality” of node selection

for amount of network resource consumption in evaluating the distributed query and limit the

running time of the optimization step in which candidate nodes are culled to a final approximately

optimal set. For example, in Figure II-4, the user is allowing at most 30 nodes to be visited in

processing the distributed query and at most 100 seconds of running time for optimization.

The second section of the SWORD query specifies the constraints on single-node and

inter-node attributes of desired groups. The single node attributes are similar to those of vgDL

and ClassAds. They can be static attributes such as operating system or dynamic attributes such

as availability. Additionally, inter-node attributes such as pair-wise latency or bandwidth can be

specified. One interesting aspect of the SWORD group is the attribute

29

‘network_coordinate_center’, which describes where the group should be located. Examples of

such centers include broad locations such as North America or Europe.

The third section of the SWORD query specifies pair-wise constraints between individual

members of different groups. For example, in Figure II-4, there must be at least one node in each

group such that the latency between that node and at least one node in the other group is less than

100ms. The assumption here is that users have an idea of general inter-node measurements and

thus can impose such constraints.

<request>
 <dist_query_budget>30</dist_quer_budget>
 <optimizer_budget>100</optimizer_budget>
 <group>
 <name>Cluster_NA</name>
 <num_machines>5</num_machines>
 <cpu_load>0.5, 0.1, 0.1, 0.0, 0.0</cpu_load>
 <free_mem>256.0, 512.0, MAX, MAX, 100.0</free_mem>
 <free_disk>500.0, 1000.0, MAX, MAX, 5.0</free_disk>
 <latency>0.0, 0.0, 10.0, 20.0, 0.5</latency>
 <os>
 <value>Linux, 0.0</value>
 </os>
 <network_coordinate_center>
 <value>North_America, 0.0</value>
 </network_coordinate_center>
 </group>
 <group>
 <name>Cluster_Europe</name>
 <num_machines>5</num_machines>
 <cpu_load>0.5, 0.1, 0.1, 0.0, 0.0</cpu_load>
 <free_mem>256.0, 512.0, MAX, MAX, 100.0</free_mem>
 <free_disk>500.0, 1000.0, MAX, MAX, 5.0</free_disk>
 <latency>0.0, 0.0, 10.0, 20.0, 0.5</latency>
 <os>
 <value>Linux, 0.0</value>
 </os>
 <network_coordinate_center>
 <value>Europe, 0.0</value>
 </network_coordinate_center>
 </group>
 <constraint>
 <group_names>Cluster_NA Cluster_Europe</group_names>
 <latency>0.0, 0.0, 50.0, 100.0, 0.5</latency>
 </constraint>
</request>

Figure II-4: Sample SWORD XML query

30

If the Condor ClassAd system is suitable for requesting a handful of distinct machines,

the SWORD system is suitable for requesting groups of machines with similar characteristics.

Furthermore, the intra- and inter-group network constraints allow users to clearly specify the

desired network connectivity between groups of machines. The drawback seems to be long

running selection times when analyzing different network constraints to determine the suitability

of different machines in forming the “groups”. Users also have the option of trading off the

“quality” of their resource selection and by limiting the running time of the optimization step in

which candidate nodes are culled to a final approximately optimal set. The drawback here is the

difficulty any new user would face in choosing the appropriate tradeoff values that would return a

sufficiently high quality set of resources.

II.5 Motivation

The resource selection capability in systems such as vgES, Condor, or SWORD require

that a specification be provided that describes the number of types of resources desired by the

user or application. Oftentimes, scientists or application developers can specify exactly the

minimum requirements for memory and perhaps processor types but they do not know precisely

or cannot even give a good estimate of the number of resources that would be optimal for their

applications or the amount of resource heterogeneity their application could tolerate and or take

advantage.

Any resource selection system can, under different scenarios, return a good and even

optimal set of resources given the appropriate inputs. The key problem is that none of the three

systems (or any other systems that we are aware of) can provide a good estimate for the number

of resources that would be ideal for the application, or provide any guidance for the appropriate

amount of heterogeneity among the resources that could optimize application performance.

31

Further, none of these resource selection systems take into account the scheduling algorithms that

might be employed once the resources have been acquired.

We believe there is a missing link, or a gap, between the available resource selection

systems and LSDE users. To illustrate this gape, we make the following key observations:

• Application developers are experts in their domain but cannot always be counted on to

provide accurate guidance for the types of resources that can lead to optimal application

performance.

• Resource selection systems can often return a set of resources that closely matches what

the application or user specify, but they do not provide guidance on what resource

specification the application should provide in the first place.

Resource selection systems are oblivious to the scheduling heuristics that are used for

application execution. This is because the interdependence between application characteristics,

resource configuration characteristics, and scheduling heuristics is extremely complex and not

well understood.

Motivated by the points above, our goal in this work is two-fold:

1. Predict the best scheduling heuristic to use given an input application (while

optimizing application or trading off performance for cost).

2. Generate best resource specification given best scheduling heuristic and the input

application. The resource specification can optimize for application performance or

some function of tradeoff between performance and cost.

III

MODELS AND METHODOLOGY

Figure III-1: Overview of running application on LSDEs

In this chapter, we develop models for the LSDE components that are involved when

running applications and relevant to our work in this dissertation. These components and some of

their interactions are depicted in Figure III-1. At the bottom of the figure are the physical

resources that comprise the computing environment available to run applications. These resources

may include compute devices, storage devices, network devices, as well as scientific instruments

32

33

and visualization devices. In this work, we only focus on the compute and network devices.

LSDE resources are heterogeneous with regards to software, hardware, and access policies. A

middleware infrastructure is used to hide and manage this heterogeneity, at least partially. In

chapter II, we have discussed the functionalities provided by currently deployed middleware in

today’s LSDEs.

The application, depicted in the top left corner of Figure III-1, is comprised of potentially

many compute tasks with different resource requirements. These tasks may also need to access

and exchange significant amounts of application data. Our depiction of the application is

purposely in the shape of a generic directed acyclic graph, which is the application model we

consider in this dissertation.

In the top right corner of the figure is the application scheduler, which is responsible for

mapping application tasks and data to resources, and which might be implemented entirely or

partially in the application. The application can inform the scheduler about its characteristics, and

the scheduler can use the middleware infrastructure to discover necessary resource information.

Either the application or the application scheduler needs to specify the desired set of resources to

the resource selection system [9-19], which then selects and acquires the desired set of resources

from the resource universe. Note that we depict the scheduler as overlapping with the

middleware. This is because all or part of the scheduler’s functionalities could be implemented as

part of a middleware infrastructure, which will be discussed further in this chapter.

Our goal in this chapter is twofold. First, we define realistic models for some of the

LSDE components highlighted above. Section III.1 defines a generic and popular application

model; Section III.2 defined a model for the underlying physical resources and for the way in

which they are managed; and Section III.3 defines the scheduler-middleware interaction model.

Second, based on these models, we present our methodology and identify the roadmap of our

investigation to answer the questions and challenges discussed in Chapter II.

34

III.1 Application Model

A popular model for which scheduling heuristics have been developed is the “task graph”

model, by which an application is represented as a weighted Directed Acyclic Graph (DAG). In

this dissertation, we use the DAG application model. We do not consider data-parallel

applications where one task can be separated into many sub-tasks which can be executed in

parallel, and typically synchronously, on a cluster. Indeed, this problem can be intrinsically

reduced to finding the most appropriate cluster. We also do not consider mixed-parallel

applications, where each node in the DAG is a data-parallel task. For future work, we can expand

the results of this dissertation to mixed-parallel applications by generating resource specifications

requiring clusters instead of hosts for each node in the DAG.

III.1.1 Directed Acyclic Graph

The DAG application model is particularly relevant for scientific workflows [53]. The last

few years have seen active development and deployment of many such workflows in various

domains such as physics [54, 55], image processing [56], and astronomy [57]. These workflows

require considerable amounts of computing power and are loosely coupled parallel applications.

Therefore, it is natural to explore the possibility of executing them on LSDEs [58].

Formally, we define a DAG as (V,E) where V = {v1, v2, …, vn}is a set of nodes and E =

{e1, e2, …, em}is a set of edges. A node in the DAG represents a task in the “task graph”. A task

is a set of indivisible executables or instructions that must be executed on one processor. We

assume that tasks run on processors to completion without preemption. The computational costs

for each task is denoted by wv(vi), in units of seconds on a reference CPU. Although the study of

unrelated processors can be interesting, for the purpose of this work, we consider only uniform

processors. This corresponds to “uniform” and “unrelated” processors as described in [59]. Others

35

[60] refer to the matrix of task/hosts execution times as “consistent” or “inconsistent”. In our

experiments, we consider uniform processors where the task/hosts execution times are consistent.

This corresponds to the case in which all processors are of the same type, but differ in clock rates.

Thus all tasks would run faster on a faster CPU and slower on a slower one, and we make the

assumption that the ratio of each task’s execution time on a CPU is directly proportional to its

clock rate.

Each node can have multiple inputs, that is multiple edges pointing to it. An edge in the

DAG represents the cost of sending intermediate files from one node to another. The

communication costs for each edge ek is denoted by we(ek), also in units of seconds as we

calculate we(ek) by dividing file size by a reference bandwidth of 10Gbps. We choose 10Gbps as

this represent an upper bound on the achievable bandwidth that might be available at different

research institutions or LSDEs today, as on the TeraGrid [4]. Each directed edge ek represents

dependency between two tasks and implies that if vi → vj, then vi is the parent (denoted by p(ek))

and vj is the child (denoted by c(ek)). Also, vj cannot start to execute until vi has completed and has

sent its data to vj. A task can start to execute only when all of its parents are done processing and

have transferred all the required files to the physical host running the task. We denote the set of

all vertices comprising the parents for a node vi as P(vi) and the set of all vertices comprising the

children of a node vi as as C(vi). A node without any parents is called an entry node and a node

without any child nodes is called an exit node. The makespan of the application is calculated by

taking the difference between the start time of the earliest entry node and the end time of the

latest exit node.

We define the following DAG characteristics which can play important roles in

determining how to schedule the tasks in the DAG:

1. Dag size (n)

2. Dag height (h), or number of levels

36

3. Average number of tasks per level (τ)

4. Communication-to-computation ration (CCR)

5. Parallelism (α)

6. Density (δ)

7. Regularity (β)

8. Mean computational cost (ω)

The DAG size refers to the number of tasks in the DAG. It is defined above as n. A level

of a node, denoted by level(vi), is defined as the length of the longest path from an entry node to

node vi. Here, we consider the length of the longest path to be the sum of all the nodes along the

path. For example, all entry nodes are level 0; any children of entry level nodes is level 1; and any

grandchildren of entry nodes is level 2. Note that nodes in the same level cannot have any

dependencies among themselves and thus can theoretically be processed in parallel. We define

height of the DAG (h), as the longest path from an entry node to an exit node, in number of

nodes. It also refers to the number of levels in the DAG. We denote the set of all levels L ={l1, l2,

…, lh}where l1 contains the first entry node and lh contains the last exit node. We define the

function size(lk) to denote the number of tasks in level k. We define the average number of tasks

per level to be τ, where τ = n/h.

The Communication-to-Computation Ratio (CCR) refers to the average ratio of work

done transferring intermediate files between tasks and the actual processing of tasks on any given

host or processor. Thus, CCR is defined as the average of the cost of each edge ek divided by the

weight of each pe(ek) for all ek ∈ E (both are in units of seconds):

1

()1
(())

m
e k

k v e k

w eCCR
m w p e=

= ∑

37

The parallelism (α) parameter is derived from the number of tasks per level in the graph.

Intuitively, we want to equate low α with low parallelism and high α with high parallelism so that

when the number of tasks per level is 1 (in the case of a chain), α is 0 and when the number of

tasks per level is equal to the DAG size (and there is only 1 level in the DAG), α is 1. We define

parallelism as:

log()
log()n

τα =

where τ is the number of tasks per level and n is the DAG size.

The DAG density (δ) characterizes the number of dependencies for each task. A density

value of 0.5 would mean that each task depends on 50% of the tasks in the previous level. A

density value of 1 would mean that each task depends on 100% of the tasks in the previous level.

We define density as the average percentage of tasks in the previous level with which each task in

the current level has a dependency:

1

| Prev() |1
(() 1

n
i

i i

v
n size level v

δ
=

=
)−∑

where by convention we assume that size(-1) = 1 (for root nodes).

The DAG regularity (β) characterizes the regularity of the number of tasks at each level

in the DAG. It quantifies the distribution of the number of tasks per level in the DAG. We allow

for values between 0 and 1. A regularity value of 1 would mean that all levels have the same

number of tasks. The lower the regularity value the higher the variance in the number of tasks per

level. We define regularity as:

1, ,max | () |
1 i k isize l τ

β
τ

= −
= − …

where τ is the average number of tasks per level.

38

The mean computational cost refers to the mean task runtimes for the tasks in the DAG.

Mean computational cost =
1

1 n

i
i

v
n =
∑

III.1.1.1 Example DAG

We constructed an example DAG in Figure III-2 to illustrate the different DAG

characteristics. This simple DAG has 8 nodes, so the DAG size or n is 8. The number of levels is

4, so h = 4 and L = {l0, l1, l2, l3} where size(l0) = 2, size(l1) = 3, size(l2) = 2, and size(l3) = 1. Note

that v5 belongs in level 1 because it only has one dependency and that dependency comes from an

entry node; v7 belongs in level 2 because the longest path from an entry node is two, either the

path composing of v1 and v4, or v2 and v4. The average number of tasks per level is τ = 8/4 = 2.

The
1 5 5 3 3 3 4 4 4 5 5 3 0.386.

11 10 10 12 12 12 8 12 12 10 10 9
CCR ⎛ ⎞= + + + + + + + + + + =⎜ ⎟

⎝ ⎠

The parallelism
log() log(2) 1 0.333.
log() log(8) 3n

τα = = = =

The density
1 1 2 1 2 1 3 0.667.
6 2 2 2 3 3 3

δ ⎛ ⎞= + + + + + =⎜ ⎟
⎝ ⎠

The regularity
(3 2)1 0

2
β −
= − = .5.

The mean computational cost is ()1 810 12 8 12 9 10 10 9 10.
8 8

+ + + + + + + = =
0

39

Figure III-2: Example DAG

III.1.2 Task Performance Models

The DAG characteristics defined above can only be computed with information about the

application, namely, runtimes and data sizes. The results in this dissertation rely on such

knowledge (sometimes referred to as task performance models). For some applications, this data

is freely available. For instance, this is the case for the Montage application [61] because all tasks

in Montage DAGs are operations that have been executed many times and researchers running

Montage have constructed performance models. These models provide an accurate prediction of

task execution time given a specification of the compute resource used. For other applications, the

40

task performance model might not be so readily available. However, in several instances,

predictions are possible. For instance, predictive models are developed in [62]. When no

information about the application is available, then scheduling is in some sense straightforward

because there cannot be any sophisticated logic to choose one task over another task to run on a

given resource. In this case, one typically resorts to some type of greedy scheduling algorithm.

III.2 Resource Model

Application tasks are executed on compute resources and application data are transferred

using networking resources. We resort to using synthetic resources to simulate LSDEs for two

reasons. First, we are interested in running experiments on very large scale distributed

environments, larger than any such existing LSDE. Although these systems are not deployed

today, they will in the near term future and we wish for our experiments to evaluate how our

work will apply to these future systems. Second, even if these systems were already deployed

today, running experiments on them would be expensive, time consuming, and most likely non-

repeatable. Therefore, we resort to synthetic compute resource generators to simulate compute

resources and topology generators to simulate network topologies. For full discourse on our use

of simulation, please refer to Section III.4.1.

We formulate a compute resource model in section III.2.1 and a network model in section

III.2.2. While models for physical resource are important, we also present a model for resource

management in Section III.2.3.

III.2.1 Compute Resource Model

The trend we observe in recent years is one of steady growth for the number of clusters

and number of CPUs. With dropping hardware prices for commodity computers, with several

cluster vendors, and with the availability of open-source cluster management tools such as

41

ROCKS [22, 23], it is increasingly affordable and straightforward to purchase/deploy powerful

Linux clusters. Figure III-3 shows the historical data for registered ROCKS clusters since its

inception in 2003. The number of registered ROCKS clusters has increased by a factor of nine in

just three years. Based on the recent trend, we model compute resources in an LSDE as thousands

of clusters, with each cluster having as few as one or two processors and as many as thousands of

processors.

Registered ROCKS clusters

0

100

200

300

400

500

600

700

800

900

1000

Aug
., 2

003

Oct.
, 2

003

Dec.,
 20

03

Feb
.,2

00
4

Apr.
,20

04

Ju
n.,

 20
04

Aug
., 2

004

Oct.
,20

04

Dec.,
 20

04

Feb
,20

05

Mar,
20

05

Ju
n.,

200
5

Aug
., 2

005

Oct.
, 2

005

Dec.,
 20

05

Feb
., 2

00
6

Apr,
 20

06

Ju
ne

,20
06

cl

us
te

rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C

PU
s

clusters
CPUs

Figure III-3: Historical data for registered ROCKS clusters

To generate compute resources for our LSDE, we can reuse resource generators

developed by other researchers in previous work [63, 64]. We need to decide which

models/generators are more realistic for our LSDEs. Our requirements for choosing a compute

resource generator include one that:

1. Provides realistic breakdowns of different clock speeds. For our work, we are ignoring

the effects of heterogeneous processor architecture. The effects of heterogeneous

processor architectures, while interesting, does not fundamentally change our results.

42

2. Generates resources structured as multiple cluster. Clusters are becoming more prevalent

and are the most common high performance computing platforms today. Therefore we

wish to generate multi-cluster LSDE synthetic platform configurations.

3. Realistically captures future technology trends, since we are interested in exploring the

behavior of future LSDEs.

Kee, Casanova, and Chien [64] constructed a synthetic compute resource generator using

statistical models for currently deployed resources and using the estimates for modeling

characteristics of future LSDEs. One big advantage of using this compute resource generator is

the flexibility in choosing the number of synthetic clusters and the ability to predict the

composition of the clusters based on the desired year. The compute resource generator constructs

a model for the computing resources in an LSDE by listing the different clusters in order with

different characteristics for each cluster, such as the number of hosts and processors in the cluster,

as well as the clock speed and the memory for each host in the cluster.

Other compute resource generators such as GridG [63] first generate a network topology,

and then annotate network nodes with resources. GridG annotates nodes according to user

supplied rules and empirical resource information. The rules capture potentially realistic

correlations between number of processors, clock speed, memory size, and disk size and also

operating system concentration within a local area network. However, such generators focus on

the procedure of compute resource synthesis without evaluating the accuracy of their rules; thus

the generated synthetic compute resources may or may not be representative of real world

LSDEs. Another drawback is the lack of future forecast, which we deem important for larger

LSDEs.

For our experiments, we choose Kee, Casanova, and Chien’s compute resource generator

because it fulfilled all of our requirements. The one drawback of this synthetic compute resource

generator is the lack of topology or network connectivity between the clusters. Because of this,

43

we have a separate network model to model the topology of the LSDE and we merge the two

models by mapping the nodes from our network model with the clusters generated by our

synthetic compute resource generator.

III.2.2 Network Model

The field of realistic internet topology modeling, while not new, has no clear state-of-the-

art or agreed upon model as the de facto method. The first network topology generator to become

widely used was developed by Waxman [65] and it was based on probabilistic link creations

between nodes. Later research on topology generators emphasized hierarchical structures, most

notably Tiers [66]. A seminal paper in 1999 [67] brought to light the fact that degree distribution

of router-level and AS-level Internet graphs exhibits power laws. GridG, as discussed in the

previous section, is an extension of Tiers based on the power laws.

More recently proposed topology generators such as Inet [68] and BRITE [69] focus on

the degrees of links between nodes instead of hierarchical structures. Even today, the debate goes

on as to whether it is more important to follow the power laws for the node degree distribution or

to model the Internet at a macroscopic level with the hierarchical structures.

For our experiments, we decided to use BRITE. Although it focuses on the power laws at

the node level, it does include the option to create hierarchical structures at the macroscopic

levels. BRITE assigns specific capacities to links based on current technologies. For example,

router links could be OC3, OC12, OC48, 1Gb, or 10BaseT.

One thing BRITE (or any other topology generator) lacks is the modeling of contention

on the links. Modeling the link contention is outside the scopes of this work, so we allow the

bandwidth as specified by BRITE to be representative of bandwidth between the nodes. In reality

at any given point in time, the bandwidth for any links might be somewhat smaller due to sharing

and contention. Another factor in our decision is projects such as OptIPuter [25] which are

44

exploring protocols and application using optical fibers and very high bandwidth among nodes.

We believe that the bandwidth as currently modeled by BRITE can be easily achieved in the near

future even with link contention. Since for our experiments we are only interested in the

communication-to-computation (CCR) ratio, we use a reference bandwidth to calculate the ratio

and a contended link would imply a smaller reference bandwidth, but nevertheless a reference

bandwidth. Therefore, higher or lower network contentions can be simulated by picking different

ranges of the CCR value.

Although BRITE also assigns network latency between links, we ignore this latency in

calculating the CCR because the latency is on the orders of milliseconds, negligible when both

communication and computation are at least in the order of seconds. We acknowledge the fact

network round-trip times, and thus network latencies, impact achievable bandwidth when using

the TCP protocols. But again our use of a reference value for the bandwidth and our varying the

CCR parameter allow us to explore a spectrum of relevant scenarios in our experiments.

III.2.3 Resource Management Model

Aside from how we model the physical resources, we need to consider resource

management policies. One question is the cost of resources. Some systems such as the Grid

Architecture for Computational Economy [70] considers resource economy; most other systems

do not have resource economy as part of their motivation or goals. Typically, resource selection

systems are more concerned with returning a set of resources quickly, or returning high quality

resources, or both. The cost of obtaining a resource is typically considered as an additional

constraint on the resource, and thus systems are not typically design to specifically consider

resource economy.

In this dissertation, we are interested in the best way to produce the best application turn-

around time, while also considering the cost of resource utilization. Application turn-around time

45

is the sum of the scheduler execution time and the application makespan (execution time of the

application). We see two issues affecting our work regarding resource economy:

1. Paying for more resources as a possible way to speed up application turn-around time.

The problem with this approach is that using more resource also increases the running

time of the scheduler, thus increasing to the application turn-around time. Thus, using

more resources does not always produce faster application turn-around time.

2. Request highly heterogeneous resources as a cost saving way to run applications. We

investigate conditions for optimal application turn-around time by taking into

consideration resource heterogeneity. Our work allows those with budgetary concerns to

achieve the best application turn-around time given a certain level of heterogeneity

among the resources (in the case that they can save money by using more heterogeneous

resources).

Another issue with different resource managers is the idea of resource binding. Each

administrative domain within a LSDE may have different resource managers, ranging from

popular batch queue systems to those with advanced reservations to dedicated private resources.

We do not address the issue of resource binding in this work. Instead, we make the assumption

that the underlying Grid middleware can interact with each resource manager and bind the

resources. From the point of view of each scheduling algorithm, the resources are either bound or

not bound.

Although the Grid middleware can make repeated attempts to find resources when

appropriate and available resources are found, one possible concern arises when the resource

selection system cannot find available resources given the input resource specification. In this

situation, the application or application user may need to degrade the resource specification so

that the resource selection system can find available resources. We address this issue in Chapter

VII.

46

For the purposes of this study, we assume that applications have dedicated access to

bound resources. For time sharing resources, we can model the resource as available for only

certain time slots and unavailable for the remaining slots. During the free slots, we assume that

applications can gain dedicated access to the resource. For space sharing resources, we model the

resource as being a fixed fraction of the capabilities of the actual resource. For example, for a

processor with clock rate of 3.0 GHz that is being space shared by five virtual processors, we can

model each virtual processor as having clock rate of 0.6GHz and any application using that

virtual processor has dedicated access to the 0.6GHz processor. Examples of virtualization

systems that enable the virtual processor concept, such as Xen [71] and ModelNet [72].

Additionally, we assume that task execution is non-preemptive on any given compute resource.

III.3 Application Scheduling Approaches on LSDEs

Along with an application model and a resource model, we need an application scheduler

to assign tasks from the application to the compute resources. The application scheduler interacts

with both the application and the resources. Applications provide the scheduler with relevant

information regarding the DAG to execute. Depending on the scheduling heuristic employed,

some or all of the application information may or may not be used. For example, a greedy

scheduling heuristic may assign tasks to the first available resource without considering the cost

of application data transfer.

After obtaining application information, the application scheduler can query the

underlying middleware infrastructure to obtain information about the resources, such as resource

availability and characteristics (e.g., clock rate). With both application and resource information,

the scheduler can intelligently assign tasks to the resources by employing some type of

scheduling heuristic.

47

The scheduler has two choices for selecting resources: implicit or explicit resource

selection. With implicit resource selection, the scheduler uses a scheduling heuristic considering

all LSDE resources to assign tasks from the application. It is implicit resource selection because

the scheduling heuristic decides which resource is best for every single task and the scheduler

merely selects and binds the resource assigned by the scheduling heuristic. The advantage of

using implicit resource selection is that the scheduler can choose the best resource to execute each

task and thus the application is likely to achieve as good performance as can be expected from the

scheduling heuristic.

With explicit resource selection, the scheduler first narrows the scope of the LSDE to a

smaller subset. The scheduler has the options of any number of resource selectors such as the

vgES [16, 17] from VGrADS, Condor Matchmaker [9, 10], or SWORD [15] to execute the first

step of resource selection. After the resource selection step, the scheduler employs a scheduling

heuristic much similar to the scenario with the implicit resource selection.

With implicit resource selection, the majority of the resources are not used. With explicit

resource selection, the scheduler can eliminate a lot of the resources unlikely to be assigned by

the scheduling heuristic. The advantage is that the scheduling heuristic to assign tasks from the

application can run much faster with a smaller resource set. The tradeoff is clear: potentially

faster application makespan for implicit resource selection vs. potentially faster scheduling time

for explicit resource selection. We aim to answer the interesting question of whether a resource

selection step is necessary and/or preferred. We also aim to provide guidance for the resource

selection step leading to the best application performance.

With or without explicit resource selection, the major component of the scheduler is the

scheduling heuristic. For this study, we are interested in exploring a range of scheduling

heuristics and how they affect application performance. We use a range of scheduling heuristics

that reflect what is used in practice and also different representative classes of heuristics based on

48

how each heuristic treats the critical path of the applications. More details of each scheduling

heuristic are discussed in Section V.6.

III.4 Methodology and Roadmap

In this section, we describe the methodology and the roadmap for running our

experiments, as well as raise interesting questions we hope to answer with our experiments. We

discuss our use our simulation for LSDEs in Section III.4.1 and describe the computing

environment we use for running our experiments in Section III.4.2. In Section III.4.3, we describe

the roadmap for running the experiments in this dissertation.

III.4.1 Simulation of LSDEs

In order for experimental results to be valid, the results need to be repeatable. When

running experiments on real-world platforms where resources are often shared, it becomes

extremely difficult to reproduce the exact same settings, thus results are often non-repeatable.

Further, in any real-world platforms, different administrative domains have different fixed

configurations and thus limit the range of possible experiments. Because the real-world platforms

are in production, any experiments requiring modifications to the configurations would not be

possible and any experiments would possibly disrupt users and perhaps cost money. Also,

monetary issues arise because experiments can take a long time to run and monetary budgets may

be limited. Lastly, there are few platforms today of the scale which we study in this work. We are

interested in solutions that not only work today, but will work tomorrow when the platforms are

larger.

Therefore, many researchers in the LSDE computing discipline resort to simulation for

their experiments. Using simulations to artificially create large scale environments allow us to

efficiently experiment with various types of resource heterogeneity in a repeatable manner.

49

Although we use simulated resource environments, we schedule applications using actual

scheduling algorithms and instantiated based on real applications with performance models of

task runtimes.

III.4.2 Computing Environment

As discussed in Section III.2.1 and Section III.2.2, we use a compute resource generator

and a network topology generator to generate our LSDE. After we construct our LSDEs, we run

different scheduling heuristics for our experiments. These scheduling heuristics are run on

clusters from the Concurrent Systems and Architecture Group as well as the FWGrid Project,

both at the University of California, San Diego. For our experiments, we use only machines with

dual Intel Xeon processors with 2.80GHz clock rates running linux; thus the scheduling time

reflect scheduling heuristics running on a 2.80GHz processor. Although our results reflect

specifically clock rates of 2.80GHz, the general principles found in our results are applicable for

faster clock rates, as one would simply adjust for the clock rate differences. In Section V.7, we

study the impact of varying this reference clock rate of 2.80 GHz.

III.4.3 Roadmap

Here we present how we organize the experiments for this dissertation. The rest of the

dissertation focuses on answering these two broad questions:

1. What is the best set of resources to use given an application and a scheduling heuristic?

2. How do we bridge the gap between applications and resource selection systems?

We decompose and refine these two broad questions as four more specific ones as

follows:

Q1. What is the relationship between resource selection and application scheduling? (Chapter

IV)

50

Q2. What is the best resource collection to use for best application performance? (Chapter

V)

Q3. What is the best scheduling heuristic to use in conjunction with the best resource

collection for best application performance? (Chapter VI)

Q4. How do we generate the best resource specification given the best heuristic and the best

resource collection? (Chapter VII)

III.4.3.1 Role of Resource Selection

In Chapter IV, we answer Q1. Q1 can be expanded into two parts:

• How do we optimize application performance by resource selection?

• How can we simplify application scheduling by resource selection?

Addressing the first part of Q1, we want to determine whether explicit resource selection

improves application performance by comparing three methods of resource selection:

• Implicit resource selection

• Explicit resource selection using naïve resource abstraction

• Explicit resource selection using more sophisticated resource abstraction

We use application performance from implicit resource selection as the baseline. Explicit

resource selection is beneficial if applications achieve better performance than when using

implicit resource selection. Explicit resource selection can be further broken down into resource

selection using naïve resource abstraction or using more sophisticated resource abstraction. The

naïve resource abstraction could be something such as “fastest CPUs”. If such a strategy always

produces good performance, then no further sophisticated resource abstraction would be needed.

However, applications have communication costs in addition to computational costs, so querying

for the fastest CPUs may not always produce the best application performance. We need to

51

determine scenarios under which naïve resource abstractions would work and scenarios under

which more sophisticated resource abstractions would work better.

Addressing the second part of Q1, we want to determine the type of resource abstraction

used for resource selection that may simplify application scheduling. We want to compare using

naïve and more sophisticated resource abstractions to determine whether using a more

sophisticated resource abstraction can lead to simpler scheduling heuristics, without sacrificing

application performance. Our hypothesis is that it may be possible that simpler scheduling

heuristics can be used to achieve good application performance when given the appropriate

resource collection. In fact, it may be possible that using simpler scheduling heuristic can lead to

better application performance as long as the appropriate resource collection is used. Based on the

results of Chapter IV, we formulate a plan in Chapter V-VII to generate the appropriate resource

specification for explicit resource selection.

III.4.3.2 Best Resource Collection

In Chapter V, we address Q2. We construct an empirical model to predict the best

resource collection size given an input application and a reference scheduling heuristic. We

construct the prediction model systematically by the following steps:

1. Define the specifications for best resource collections.

2. Determine relevant application characteristics (from the set of characteristics defined in

Section III.1.1) that influence the best resource collection.

3. Using the relevant application characteristics, construct a model to predict the best

resource collection size assuming homogeneous resources.

4. Verify that application performance using specification predicted by our model matches

closely with the optimal application performance using a reference scheduling heuristic.

52

We verify using arbitrarily generated application DAGs and DAGs instantiated based on

real applications.

5. Expand the prediction model to include heterogeneous resources.

6. Conduct sensitivity analysis on our empirical model for different scheduling heuristics.

7. Conduct experiments determining the effect of using reference clock rates for the

scheduler and for computational hosts.

Once we can predict the best resource collection size, the next step is to determine the

best heuristic to use given an input DAG. With the best scheduling heuristic and the best size,

along with analysis for clock rate heterogeneity, we can generate the best resource specifications

for different resource selection frameworks.

III.4.3.3 Best Scheduling Heuristic

We address Q3 in Chapter VI. Application performance depends not only on the physical

resource characteristics, but also on the scheduling heuristic. In Chapter V, we construct a

prediction model to predict the best resource collection size given an input DAG and an input

scheduling heuristic. In Chapter VI, we construct a predictive model to predict the best

scheduling heuristic given an input DAG that we can use in conjunction with the prediction

model from Chapter V. We choose different scheduling heuristics ranging from ones commonly

used in practice to more sophisticated heuristics. All experiments in Chapter V (except for the

sensitivity analysis) use the MCP scheduling heuristic, a relatively fast scheduling heuristic that

also considers communication costs.

The most important goal in Chapter VI is to provide a comparison and recommendation

for the best combination of scheduling heuristic and resource collection given any DAG

application. Different users or applications may be constrained by the complexity of scheduling

heuristic or by how much resource heterogeneity the application can tolerate. By addressing the

53

needs and constraints of each user or application, we hope to identify the best scheduling heuristic

that can be used in conjunction with the best resource collection specification leading to the best

application performance for each user or application.

A secondary goal is to answer the question of whether using appropriate resource

collections can allow applications to employ simpler scheduling heuristics while achieving as

good (if not better) performance. We view this as an important goal because it would enable

application developers to focus their efforts on developing applications and resort to simpler

scheduling heuristics to achieve similar application performance. We identify scenarios under

which simple scheduling heuristics is preferred for better application performance.

III.4.3.4 Generating Resource Specification

We address Q4 in Chapter VII. Our overall goal is to bridge the gap between applications

and resource selection systems. In Chapters V and VI, we construct models to predict the best

resource collection to use in conjunction with the best scheduling heuristic. In Chapter VII, we

combine the outputs from these models and some of our assumptions about the resource

environment to automatically generate resource specifications for different resource selection

systems.

IV

RESOURCE SELECTION AND

APPLICATION SCHEDULING

In this chapter, we examine the role of resource selection in optimizing application

performance. Resource selection is the process of finding the best set of resources to run an

application. Fundamentally, resource selection is a part of scheduling. An application scheduler

typically aims both at finding the best possible resources (resource selection), and ordering the

execution of tasks on these resources.

Given the goal of minimizing application turn-around time, one possible improvement is

through minimizing the scheduling time. A major portion of the scheduling time is due to

resource selection. Any scheduling heuristic whose running time is a function of the size of the

resource universe will take longer to run with an increasingly larger resource universe. By

reducing the size of the resource universe, the scheduling time will also be reduced. Thus, one

possibility to reduce overall application turn-around time is to explicitly reduce the number of

resources given to the scheduling heuristic.

In this chapter, our goals are to answer the following questions about the role of explicit

resource selection:

1. Is explicit resource selection beneficial? (Does is lead to faster application turn-around

time?)

2. What types of resource abstractions are required/necessary to perform explicit resource

selection?

a. Can we naively reduce the size of the resource universe?

54

55

b. Are more sophisticated resource abstractions required?

3. How do resource abstractions affect the complexity of scheduling heuristics?

a. Can we simplify scheduling when we give the scheduler an appropriate set of

resources to work with?

b. Under what conditions is such a simplification possible?

IV.1 Application Scheduling in LSDEs

Users of scientific applications, and in particular of scientific workflows, are increasingly

faced with situations in which they have to select appropriate compute resources among a large

number of potential resources distributed over the wide-area. This is due to two factors. First,

with dropping hardware prices for commodity computers, with several cluster vendors, and with

the availability of open-source cluster management tools such as ROCKS [22, 23], it is

increasingly affordable and straightforward to purchase/deploy powerful Linux clusters.

Therefore, an increasing number of users have access to an increasing number of clusters.

Second, the development of the grid middleware infrastructure such as Globus [8] makes it

straightforward for users to access a wide collection of resources uniformly and securely.

Additionally, with projects exploring optical networks and providing high bandwidth among

many clusters [25], there is a trend towards resource-rich environments with good network

connectivity in which users can access many clusters in many institutions concurrently.

Workflow applications can benefit from such environments because they are often loosely

coupled and can utilize resources at multiple sites concurrently and efficiently.

IV.1.1 Challenges of Scheduling in LSDEs

With the explosion in the number of computing resources, one important challenge for

scheduling workflows is scalability of the scheduling algorithm itself. Even when of polynomial

56

complexity, DAG scheduling heuristics may become impractical when considering large numbers

of individual resources. More importantly perhaps, existing heuristics require information about

individual resources and about their distances from each other over the network. Collecting and

processing reasonably up-to-date such information may itself not be scalable. There is therefore a

trade-off between the time spent computing a schedule (perhaps prohibitively high for a

sophisticated heuristics, but low for a simple one) and the time spent executing it (arguably low

for a sophisticated heuristic, but probably high for a simple one).

IV.1.2 Current Scheduling Approaches

As seen in [73], DAG scheduling heuristics that calculate and account for the “critical

path” of the DAG are often the most effective. The critical path is essentially the longest path in

the DAG (in terms of node and edge weights), and is thus a lower bound on the overall makespan.

These heuristics attempt to lower this lower bound in the hope of lowering the makespan.

In practice however, for the purpose of scheduling grid workflows, these heuristics are

not used. For instance, the Pegasus grid workflow framework [74, 75] implements only the

simplistic random, round-robin, or min-min [76] heuristics for scheduling workflows of the

Montage astronomy application [57, 77].

There are several reasons for the lack of acceptance of more sophisticated scheduling

algorithms. First, these algorithms are more complicated to implement. Second, they often require

more information about the application and/or the resources, which may be difficult to obtain

scalably. Third, there has been no clear demonstration that they would improve application turn-

around time in practice (i.e., achieve a good trade-off between the time to compute a schedule and

the time to execute it).

In this chapter, we are interested in answering the question of whether simpler scheduling

heuristics can be employed to achieve good application performance. One of our goals is to show

57

that although the use of sophisticated algorithms may be worthwhile, simplistic algorithms can

achieve comparable or even better application turn-around time in many relevant cases, provided

that resources are preselected appropriately.

IV.1.3 Resource Selection

Much research [9-13] has gone into resource selection without considering the impact on

scheduling heuristics and the impact on application performance. Typically, the goals of resource

selectors are to match the needs of the application with available resources by selecting the set of

resources that best meet resource requirement specifications. While lacking any evidence, all

known resource selectors make the assumption that the application (or user using the application)

can supply the appropriate resource specifications to best optimize the application performance.

We address the issue of generating the resource specifications that best meet each application in

Chapters V-VII. In this chapter, we address the issue of whether explicitly selecting resources can

indeed improve application performance.

IV.2 Experimental Approach

Our goals are to determine whether explicit resource selection is beneficial for

application performance and whether more sophisticated resource abstractions are necessary

(instead of using naïve resource abstractions) for better application performance. We perform the

following experiments. We use DAGs from a real-world grid workflow application, Montage

[77], as well as randomly generated DAGs to better understand the impact of DAG characteristics

on our results. We consider a computing platform generated by a resource generator [64]

(discussed in detail in Section III.2) that instantiates synthetic large-scale computing

environments that are representative of current technology.

58

Using simulation we execute two different scheduling algorithms: a naïve greedy

heuristic (which we call “simple”) and a popular DAG scheduling heuristic (which we call

“complex”). We execute these algorithms in three modes:

1. On the whole “resource universe” without pre-selection of resources.

2. Only on some pre-selected “top” fraction of the resources sorted by clock rate.

3. Only on pre-selected resources that have been obtained as part of a more sophisticated

resource abstraction.

In Section II.4, we discuss three systems for resource selection in LSDEs. For this

experiment, we use the Virtual Grid Execution System (vgES) [16, 17] to compose a Virtual Grid

(VG) as our sophisticated resource abstraction. We obtain the VG by querying a vgES prototype,

which has stored resource information corresponding to our synthetic computing environment.

For the “top hosts”, we also use vgES to return the fastest fraction of the resource universe.

Therefore, we conduct 6 different types of experiments, as summarized in Table IV-1. We

provide details on all the above in the following sections.

Table IV-1: Scheduling schemes in Grid environments
Scheduling
Heuristic

Resources

Complex Universe
Complex Top Hosts
Complex VG
Simple Universe
Simple Top Hosts
Simple VG

IV.2.1 Real Application - Montage

Montage is an astronomy application that creates a mosaic image of a portion of the sky

on demand. Figure IV-1 shows the structure of a small Montage workflow. All tasks on level k

have a parent task on level k-1. The top-level tasks (level 1) are not dependent on any other tasks.

59

Figure IV-1: A small Montage workflow

Table IV-2: Runtime and number of tasks at various levels of a Montage workflow
Level Task name Task purpose Number of

Tasks
Runtime
(in seconds)

1 mProject Re-projection of images 892 8.2
2 mDiffFit Calculating difference in

images
2633 2

3 mConcatFit Fitting images to common
plane

1 68

4 mBgModel Modeling background 1 56
5 mBackground Background correction 892 1
6 mImgtbl Adding images to get final

mosaic
25 6

7 mAdd Registering the mosaic 25 40

For our experiments, we consider a 4469-task Montage workflow used to create a five

square degree mosaic of the sky centered at the M16 region of the sky. The M16 [78], also known

as the Eagle Nebula in the constellation Serpens, is one of the most famous and easily recognized

space objects. Table IV-2 shows the average runtimes of Montage tasks on a 1.5Ghz host as

reported in [61]. We are interested in seeing how communication might affect scheduling.

Therefore, for each Montage workflow, we vary the communication-to-computation ratio (CCR).

We test ratios of 0.1, 0.5, 1.0, 2.0, and 10.0. A ratio of 1 implies equal amount of computation

and communication. For each task, we calculate the size of its output file based on the

computational cost, the CCR, and the maximum bandwidth in the network, which in our case is

60

10Gbps. For example, for a CCR of 1, we derive the appropriate file size such that the

communication cost would be the same as the computational cost (e.g. 8.2 seconds for the level 1

task in Montage). In this case, the files size would be 152MB, as it would take 8.2 seconds to

transfer this on the fastest link in our synthetic platform.

IV.2.2 Random DAGs

We also generate a collection of random DAGs, defined by the following characteristics.

For each random graph, we vary its size, its mean computation cost (using a 1.5Ghz host as the

reference), its communication-to-computation ratio (CCR), its parallelism, its density, its

regularity, and its mean task computational cost. The parallelism characterizes the width of the

DAG; density characterizes the number of edges; regularity determines the variance in the

number of tasks at each level. (See Section III.1.1 for the full definitions of these DAG

characteristics.) Table IV-3 summarizes the different characteristic and their corresponding

values for the random DAGs we generate. While generating random DAGs, and so as to keep the

number of DAG configurations tractable, we vary a single characteristic and set all other

characteristics to the default values shown in the table.

Table IV-3: DAG characteristics and corresponding values for random DAG generation
DAG Characteristic Values Default Value

DAG size (tasks) 44, 447, 4469, 8938 4469

CCR 0.1,0.2,1,2,10 1

Parallelism 0.1,0.2,0.5,0.8,1 0.5

Density 0.1,0.2,0.5,0.8,1 0.5

Regularity 0.1,0.2,0.5,0.8,1 0.5

Mean comp cost 1,5,40,100 40

61

IV.2.3 Scheduling Heuristics

Among all the DAG scheduling algorithms surveyed and evaluated in [73] we choose the

popular MCP (Modified Critical Path) heuristic [31] for the experiments in this chapter, as it is

competitive according the results in [73]. MCP is our “complex” scheduling algorithm. The

pseudo code for MCP is shown in Figure IV-2.

For our “simple” scheduling algorithm we use a greedy scheduling algorithm that assigns

each task to a random available host as soon as the task’s dependencies have cleared. The

corresponding pseudo code is shown in Figure IV-3.

We expect that running a more complex scheduling algorithm such as MCP on the

resource universe would produce the best makespan by taking into consideration all the resources.

We hope that appropriate resource pre-selection would allow a simple scheduling algorithm to

achieve better trade-off between the time to compute a schedule and the time to execute the

schedule, thereby leading to better turn-around time.

F

CP = length of the longest path (in terms of node weights
 and edge weights) from the root node to the end
 node, including both these nodes
For each non-root node Ni in the DAG
 BLi = length of the longest path (in terms of node
 weights and edge weights) from node Ni to the
 end node, including both these nodes
 ALAPi = CP – BLi
End For
For each node Ni
 Li = list of the ALAP values of node Ni and all its
 descendents, in ascending order
End For
Sort all Li lists in lexicographical order and
Re-Order the nodes according to this order
For each node Ni
 Schedule Ni on the host that would complete its
 execution soonest
End For

igure IV-2: Modified Critical Path (MCP) Algorithm

62

IV.2.4 Resources

We are inte

Section III.4.1, we u

generator described b

When schedu

of the hosts and use

runtimes (which are f

IV.2.4.1 Naïve Reso

To test whet

naïve resource abstra

number or fraction o

choose the fastest 2

Montage DAG is 26

parallelism would b

widest part to a distin

IV.2.4.2 Sophistica

In general, o

cluster will lead to t
While there are still some tasks to schedule
 For each node Ni whose predecessors, if any,
 have already been scheduled
 Schedule Ni on the host that would start its execution
 soonest
 End For
End While

Figure IV-3: Simple Greedy Algorithm

rested in scheduling applications in LSDEs. For the reasons discussed in

se simulation of a synthetic resource pool. We use the synthetic resource

y Section III.2 to generate 1000 clusters for a total of 33,667 hosts.

ling and simulating the execution of workflows we ignore the architectures

 only clock rates to determine task runtimes. We scale the reference task

or a 1.5GHz host) to account for lower or higher clock rates.

urce Abstraction

her more sophisticated resource abstractions are needed, we experiment with

ctions. A simple naïve resource abstraction is “top hosts” denoting a certain

f the fastest nodes available when the nodes are sorted by clock rates. We

633 hosts as the resource set returned by vgES. The widest part of the

33 tasks and choosing the same number of hosts ensures that maximum

e possible when the scheduling heuristic assigns each of the tasks in the

ct host.

ted Resource Abstraction

ne can expect that using an unlimited number of the fastest machines in a

he lowest application makespans. Unfortunately, the number of nodes in a

63

cluster is limited. In fact, the fastest clusters might not always be the biggest clusters.

Furthermore, it may be best to use multiple clusters provided they are not too “far” from each

other.

The above is exactly the sort of trade-offs that make scheduling difficult. For our

experiments, we use the sophisticated Virtual Grid (VG) resource abstraction provided by the

Virtual Grid Execution System. The VG abstraction allows users the luxury of asking for a

TightBag (that is sets of heterogeneous hosts that are “close”), with a parameter to determine

what “close” means. The vgES will identify such a TightBag quickly, even in large-scale

environments [17]. Our approach focuses on finding an appropriate TightBag for a given DAG.

For instance, for the Montage workflow described in Table IV-2, we can write the vgDL

specification shown in Figure IV-4, which asks for a TightBag containing between 500 and 2633

hosts, where hosts have clock rates higher than 3Ghz. We choose 2633 as the upper bound on the

number of hosts in the VG as this represents the widest portion of the Montage DAG, using the

same rationale as in Section IV.2.4.1. The [rank = Nodes] statement just means that a larger

TightBag is preferable. (Section II.4.1.1 discusses vgDL in more detail.) When the resource

platform does not contain the number of resources we want (2633) for a TightBag, we can specify

the willingness to accept fewer resources (in this case as few as 500). In our synthetic resource

environment such a request happens to returns a VG containing 924 hosts.

VG = TightBagOf(nodes) [500:2633]
[rank = Nodes] {
 nodes = [(Clock>=3000)]
}

Figure IV-4: vgDL used for the Montage workflow

64

IV.3 Results

The main results from our experiments is that explicit resource selection is always

preferable to allowing the scheduling heuristic to implicitly select resources. This is especially

true when using a simple naïve greedy scheduling heuristic that does not select the best resource

to execute a task. When a more sophisticated resource abstraction was used, the simple greedy

scheduling heuristic was able to achieve better application turn-around time than the more

sophisticated MCP scheduling heuristic in some cases. We discuss below specific results for

Montage and randomly generated DAGs. We compute a lower bound on application makespan by

assuming all tasks run on hosts as fast as the fastest available host and that all data transfers take

place on network links as fast as the fastest network link available.

IV.3.1 Montage Results

Figure IV-5 and Figure IV-6 show results for the Montage workflow using the MCP and

the simple greedy scheduling heuristic. Results include the time to compute the schedule, the

application makespan resulting from the schedule, the time to obtain a VG when applicable, and

the total application turn-around time including all of the above.

The results in Figure IV-5 are for the actual Montage communication costs. The

intermediate files generated by different stages ranged from 300 bytes to 4 megabytes, so

communication costs were relatively low. The conclusion from these results is that running the

greedy heuristic on a VG achieves the best application turn-around time overall (within 8% of the

ideal lower bound), if not the best makespan. The best makespan is achieved when running MCP

on the whole resource universe, but this makespan comes with a prohibitive scheduling cost.

Running on Top Hosts (fastest hosts) gives good performance (if not best) because

communication costs are low. Interestingly, running the greedy algorithm on the whole resource

65

universe still outperforms running MCP on the whole universe in spite of poor makespan since

the time to compute the MCP schedule is so high.

0

50

100

150

200

250

300

350

A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e
(s

)

MCP
Universe

MCP Top
Hosts

MCP VG Greedy
Universe

Greedy Top
Hosts

Greedy VG

VGCreation
scheduler runtime

makespan

Figure IV-5: Running Montage Workflow with actual communication costs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e
(s

)

MCP
Universe

MCP Top
Hosts

MCP VG Greedy
Universe

Greedy Top
Hosts

Greedy VG

VGCreation
scheduler runtime
makespan

Figure IV-6: Running Montage workflow with equal communication and computation costs

Figure IV-6 shows similar results for a CCR value of 1, which is balanced

communication and computation cost. Here, it is not enough to simply schedule tasks on the

fastest machines as communication costs matter, and the benefits of using a VG are plain.

Surprisingly, running the greedy algorithm on a VG produces a better makespan than running

MCP on the resource universe. This is because MCP is merely a heuristic with no guarantees. It

66

makes greedy decisions based on the relations between tasks and the critical path, disregarding

possibly harmful effects due to task dependencies. More sophisticated scheduling algorithms may

or may not lead to better makespans in our experimental setting. At any rate, using a simple

greedy scheduling algorithm is as effective once resources have been pre-selected.

IV.3.1.1 Varying CCR

Figure IV-7 shows the ratio of Montage makespans as compared to running MCP on the

universe, for increasing CCRs. One striking result is that when the CCR is increased, either

algorithm running on the VG can construct schedules with much shorter makespans than the

schedule MCP can construct on the whole resource universe.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n

M
ak

es
pa

n

MCP Universe MCP Top Hosts
MCP VG Greedy VG

Figure IV-7: Ratio of Montage makespan compared to running MCP on universe while

varying CCR

67

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n

T
ur

n-
A

ro
un

d
T

im
e

MCP Universe MCP Top Hosts MCP VG

Greedy Universe Greedy Top Hosts Greedy VG

Figure IV-8: Ratio of Montage makespan compared to running MCP on universe while

varying CCR

For most CCRs, when using the VG, no differences exist between using the greedy

algorithm and MCP. Only when the CCR is very high do we notice a slight improvement in

performance when MCP is used. The makespan for the greedy algorithm running on either the

top hosts or the universe were 6 to 23 times longer than the MCP on universe makespan. We

contend that this such high CCR values are not likely for most workflow applications intended to

run on LSDEs.

We show Figure IV-8 to highlight the definite advantage of using a more sophisticated

resource abstraction (VG in this case). When taking the scheduling time into consideration, using

either algorithm running on the VG achieves application turn-around time less than 30% of the

turn-around time needed to run MCP on the universe.

IV.3.2 Random DAGs

We generate random DAGs according to the characteristics in Table IV-3. When varying

a single characteristic all other characteristics take the default values shown in the table. In some

cases the application turn-around time for running the greedy heuristic on the resource universe

68

were so large that we left them out of the figures. Each data point is averaged over 10 distinct

instances of random DAGs. The coefficients of variation for these samples were all within 3%,

except for the case of running MCP on the universe, which ranged from 1% to 73%.

IV.3.2.1 Varying DAG size

As we vary the DAG sizes, we needed to vary the corresponding vgDLs to create

different VGs for each DAG size (that is larger VGs for larger DAG widths). Expectedly, the

scheduling time for running MCP increases as the DAG sizes increased. However, because of the

relative small sizes of the VGs compared to the universe, this increase was only marginal. The

bulk of the application turn-around time when using MCP on the whole resource universe is due

to the application makespan. We also observed no significant makespan differences between

running the MCP scheduling heuristic on VG and running the greedy scheduling heuristic on VG.

Figure IV-9 shows the ratios of the application turn-around times compared to running the greedy

heuristic on VG. For bigger DAGs, one can see that there is little difference between running the

greedy heuristic and running the MCP heuristic on VG in terms of turn-around time. For smaller

DAGs, because of smaller turn-around time, the difference between using the MCP heuristic and

using the greedy heuristic on the VG is magnified.

0

1

2

3

4

5

6

7

44 447 4469 44690

DAG Size

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e

MCP Universe

MCP VG

Greedy VG

Figure IV-9: Varying DAG sizes for random DAGs

69

IV.3.2.2 Varying CCR

As with Montage, we wanted to investigate whether the greedy on VG approach would

tolerate high-communication scenarios. Figure IV-10 shows that running the greedy on VG is

within only 4% of results for running the MCP on VG for all CCR values. The performance of

running the greedy on the universe was between 16 and 62 times the application turn-around time

for running the greedy on VG.

0

1

2

3

4

5

6

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure IV-10: Varying CCR for random DAGs

IV.3.2.3 Varying Parallelism

When the parallelism of a DAG (as defined in Section III.1.1) is 0, then the DAG is just a

chain of tasks where each task depends on the previous task. Scheduling consists of finding the

fastest host. When the parallelism is 1, all of the tasks can be run in parallel and scheduling

consists of finding the fastest N hosts for each of the N tasks in the DAG.

Figure IV-11 shows results for varying DAG parallelisms. We see that at parallelism of

0.5 or higher, running the greedy heuristic on the VG has comparable performance to running the

MCP heuristic on the VG. For parallelism of 0.8, running the greedy heuristic is actually

preferable to running MCP due to MCP taking more time to compute the schedule because of the

70

increased number of tasks at each level. However, we see the limitation of using the VG as a

means for good performance when the parallelism is below 0.5. (A value of 0.5 implies that the

number of tasks per stage is equivalent to the square root of the total number of tasks in the

DAG.)

0

1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.5 0.8 1

Parallelism

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure IV-11: Varying parallelism for random DAGs

The poorer performance while running the greedy heuristic for less parallel DAGs is due

to increased communication costs, or rather, the lack of opportune communications savings.

Whereas MCP actively seeks to minimize communication costs by calculating the tradeoff

between scheduling two tasks on the same host sequentially, which would lead to longer

computational time but zero communication costs, the greedy algorithm would greedily schedule

the two tasks on separate hosts whenever the second host becomes available. Of course, note that

a minor modification of our greedy algorithm could alleviate this deficiency (e.g., always try to

reuse a host that has been used before). Nevertheless, while the implication of Figure IV-11 is

that when workflows are not highly parallel our approach is not effective, it is reasonable to

expect that many applications will in fact have parallelism higher than 0.5 and thus not mandate

anything more sophisticated than our greedy heuristic.

71

IV.3.2.4 Varying Density

The density of a DAG determines the number of dependencies among the tasks. A

density of 0.5 means that each task depends on 50% of the tasks in the previous level. Here again

we found that scheduling on a VG greatly outperforms scheduling on the whole universe of

resources. The application turn-around time for running the MCP heuristic on the universe is 3 to

15 times larger than running the greedy heuristic on a VG, depending on the density of the DAG.

Figure IV-12 shows that running the MCP heuristic on a VG outperforms running the greedy

heuristic on a VG in most cases. For densities higher than 0.5 the difference is below 4%, but it is

up to 15% for a density of 0.1.

MCP was able to achieve better application performance as the number of dependencies

decreased because it was able to schedule some of the tasks on the same hosts as their parents,

particularly tasks that have one parent task. As the number of dependencies decreases, unlike the

greedy heuristic, MCP can increasingly optimize the communication costs.

0.75

0.8

0.85

0.9

0.95

1

1.05

0.1 0.2 0.5 0.8 1

Density

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e

MCP VG

Greedy VG

Figure IV-12: Varying density for random DAGs

72

IV.3.2.5 Varying Regularity

Regularity quantifies the distribution of the number of tasks per level in the DAG. A

regularity of 1 means that all levels have the same number of tasks. The lower the granularity the

higher the variance in the numbers of tasks per level. Here again, using a VG is preferable to

using the whole resource universe. Figure IV-13 shows that with the appropriate VG, running a

greedy heuristic can create a schedule with makespans more than ten times shorter than running

the MCP scheduling heuristic on the universe when the DAG is highly irregular. Performance is

more than fifty times better (not shown) when compared to greedy running on the whole universe

of resources. We see that for any regularity type, the greedy algorithm running on the VG

performs within 3% of MCP running on the VG.

0

1

2

3

4

5

6

0.1 0.2 0.5 0.8 1

Regularity

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure IV-13: Varying regularity for random DAGs

IV.3.2.6 Varying Mean Computational Cost

The mean computational cost refers to the mean execution times for the tasks in the

DAG. Varying the mean computational cost makes very little difference between running the

greedy heuristic or running the MCP heuristic on the VG, as seen in Figure IV-14. For any mean

73

computational cost, the greedy algorithm running on the VG performs within 4% of MCP running

on the VG. Here again, using a VG greatly outperforms using the whole resource universe.

0

1

2

3

4

5

6

7

1 5 40 100

Mean Computational Cost

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure IV-14: Varying mean computational costs for random DAGs

IV.4 Conclusion

Our number one goal in this chapter was to determine whether explicit resource selection

is beneficial to application performance. Using both a simplistic greedy scheduling heuristic and a

more sophisticated MCP scheduling heuristic, we have shown that for both the Montage

application and a spectrum of randomly generated DAGs, explicitly pre-selecting resources

before running the scheduling heuristic on the subset of the resource universe always improved

application performance, sometimes by several orders of magnitude. This held true with both

types of resource abstractions we used – the simplistic “top hosts” and also the VG from vgES.

Our second goal was to determine whether (and under what conditions) more

sophisticated resource abstractions such as the VG is necessary. We found that the naïve resource

abstraction, which does not account for networking information, does not perform as well when

communication costs are not insignificant. For an application such as Montage where the

74

communication costs are minimal, using the naïve resource abstraction led to similar application

performance results as using more sophisticated resource abstractions.

Our third goal was to determine how resource abstractions affect the complexity of the

scheduling heuristics. We found that using a sophisticated resource abstraction such as the VG

enabled a simple greedy scheduling heuristic to achieve better application turn-around time than a

more sophisticated scheduling heuristic (MCP) for the Montage application and some of the

randomly generated DAGs. In almost all of the scenarios we tested, the greedy heuristic running

on the VG performs within 4% of the MCP heuristic running on the VG. The only limitations we

found for using the greedy heuristic on the VG occurs when the DAG is very sparse, either due to

low parallelism or low number of dependencies among the tasks.

What we have shown is that under most conditions, when one explicitly selects an

appropriate resource collection (such as a VG), a simplistic scheduling heuristic can be employed

to achieve similar to better performance than using a more sophisticated scheduling heuristic.

What is not clear is how to compose such an appropriate resource collection. In terms of the

vgES, what is not clear is how to generate the vgDL so that the vgES can return a VG. In our

experiments, we generated the vgDL based purely on the width of the DAG, while allowing the

vgES flexibility in the returned resulting VG by specifying a range of desired nodes in the VG.

Our next step (in Chapters V) is to determine the optimal point (or range) in the size of the

resource collection, as well as the various characteristics of the optimal resource collection, so

that we can compose good resource collection specifications for resource selection frameworks in

existence today [14-17, 20] as well as future ones. We will see that in fact, in spite of the

seemingly good results obtained in this chapter with a simple resource collection specification,

much better performance can be achieved by constructing more intelligent specifications.

75

IV.5 Acknowledgement

Chapter IV, in part, has been published as “Using Virtual Grids to Simplify Application

Scheduling” by Richard Huang, Henri Casanova, and Andrew A. Chien in the proceedings of the

IEEE International Parallel & Distributed Processing Symposium (IPDPS 2006). The dissertation

author was the primary investigator and author of this paper.

V

DERIVING BEST RESOURCE

COLLECTION SPECIFICATION

A resource collection (RC) is a set of computing hosts on which the users can execute

their applications. The choice of a resource collection affects application performance as well as

the choice of a scheduling heuristic. When the RC contains faster or more hosts, applications are

more likely to run faster than if the RC contains slower or fewer hosts. When the RC is

homogeneous with respect to clock rates and with respect to the network connectivity among the

hosts, a simpler scheduling heuristic is likely to achieve good application performance when

compared to using a more sophisticated scheduling heuristic. Therefore, using appropriate

resource collections to run applications has two main advantages:

1. Achieve good application performance.

2. Allow simpler scheduling heuristics to achieve good application performance.

While the benefits of using appropriate resource collections are clear from Chapter IV,

what is not clear is how to compose such collections in resource-rich large-scale distributed

environments. Most application developers focus on optimizing their application or providing

better user interfaces. Most developers of resource selection services (for middleware or resource

management software) focus on faster resource selection heuristics and optimizing some metric

of goodness for resource collections. The missing link between applications and resource

selection services is that the application users or the application itself need to specify or provide

guidance to the resource selection services to define the type of resource collection the resource

selection service should return to the application. We are not aware of any work that

76

77

quantitatively analyzes the properties of a good resource collection nor are we aware of any work

that provides guidance for applications to request resource collections from resource selection

services.

Figure V-1: Resource Specification Predictor

Our vision, depicted in Figure V-1, is that of a resource specification prediction model

that takes as input the target DAG and an optional utility function that the user can specify to

trade off high performance for low cost. The output is a resource specification that the user can

use as the input to different resource selection systems to acquire the best set of resources for

their particular application. The prediction model is composed of two parts: the heuristic

prediction model determines which scheduling heuristic should be employed to optimize

application turn-around time; and the size prediction model which predicts the best RC size based

on application (DAG) characteristics, the optional utility function, and the predicted scheduling

78

heuristic. In this chapter, we focus on the size prediction model. We address the heuristic

prediction model in Chapter VI.

In Section V.1, we define what constitutes the best resource collection specification with

regards to good application performance. In Section V.2, we derive an empirical model to predict

the best RC size for RCs with homogeneous clock rates and homogeneous network connectivity

among the hosts. We validate the accuracy of our predictive model using randomly generated

DAGs and DAGs from real applications in Section V.3. Then, we examine the impact of clock

rate heterogeneity within the RC in Section V.4 and the impact of network heterogeneity among

the hosts in Section V.5. We use a reference scheduling heuristic, the Modified Critical Path

(MCP) [31] in the first five sections of this chapter and address the effects of using different

scheduling heuristics in Section 0. We discuss how to choose the most appropriate scheduling

heuristics in Chapter VI. In Section V.7, we investigate the effects of varying the reference

scheduling and computational clock rate ratios. In Section V.8, we summarize the results of this

chapter.

V.1 Best Resource Collection Specifications

RCs can vary by size, clock rate heterogeneity within the RC, and networking

heterogeneity among hosts in the RC. A larger sized RC implies more host choices for a

scheduling heuristics to assign tasks in a DAG, and more possibilities for tasks to be executed in

parallel. The tradeoff is that most sophisticated scheduling heuristics take longer to run with

larger sized RCs, along with possible cost/penalty for unused hosts. Greater heterogeneity in host

clock rates within the RC implies faster (and slower) hosts within the RC. More sophisticated

scheduling heuristics running on RCs with greater clock rate heterogeneity could improve

application performance by scheduling tasks to execute on faster hosts. Similar logic applies to

greater network heterogeneity among hosts in the RC as more sophisticated scheduling heuristics

79

can better reduce communication costs by scheduling tasks on hosts with higher bandwidth

connections. The question is: For a given DAG, what is the best resource collection specification?

We define the best resource collection specification in terms of application performance.

Recall that the metric we use for application performance is application turn-around time, which

is the sum of scheduling time and application makespan. The scheduling time is the execution

time for the scheduling heuristic. For this work, we run the scheduling heuristics on a 2.80 GHz

Intel Xeon CPU. The application makespan refers to the time between the start of the first task to

execute and the completion time of the last task to complete.

We define the best resource collection specification (RCS) as the description for a RC

that minimizes the application turn-around time for a given DAG and a given scheduling

heuristic. To derive the best RCS, we specify RCs by three characteristics:

1. size

2. clock rate heterogeneity within RC

3. network connectivity heterogeneity among hosts in RC

Varying any or all of these characteristics can impact the scheduling time and the

makespan of an application. Most of the currently developed resource selection services allow

users to specify each of these three characteristics. By varying these characteristics, we introduce

tradeoffs in the application performance. For example:

1. Increasing RC size

• Potentially increases scheduling time for scheduling heuristics whose running

time depends on the number of hosts in the RC.

• No effect on scheduling time for simpler scheduling heuristics whose running

time is independent of the number of hosts in the RC.

80

• Potentially decreases makespan because more hosts can allow more potential

parallelism among tasks. More hosts also allow more sophisticated scheduling

heuristics more (and potentially better) choices to assign each task in the DAG.

2. Increasing clock rate heterogeneity within RC

• Potentially increases scheduling time and scheduling complexity. For

sophisticated scheduling heuristics that consider the earliest finishing time for a

task on each host in the RC, increasing the clock rate heterogeneity would also

increase the scheduling time. With no clock rate heterogeneity within the RC, a

simpler heuristic choosing the earliest available host would be sufficient.

• Decreases makespan for sophisticated scheduling heuristics that use clock rate

information as well as resource availability information (such as MCP). Faster

(and available) hosts can be used to execute tasks, which decreases the

makespan.

• Potentially increases makespan for simpler scheduling heuristics (such as First-

Come-First-Serve (FCFS) or random) that do not use clock rate information. The

scheduling heuristic might choose slower hosts that increase the makespan.

3. Increasing network connectivity heterogeneity among hosts in RC

• Potentially increases scheduling time for more sophisticated scheduling heuristics

that evaluate costs of transmitting intermediate files. Instead of considering only

computational costs of the tasks in a homogeneous network, scheduling

heuristics need to evaluate tradeoffs between executing the child task on the same

host as the parent task or transmitting an intermediate file to another host and

executing the child task there.

• Potentially decreases makespan for more sophisticated scheduling heuristics that

evaluate costs of transmitting intermediate files.

81

• Potentially increases makespan for simpler scheduling heuristics that do not

evaluate costs of transmitting intermediate files.

The optimal RC size for each DAG might differ according to the scheduling heuristic,

different clock rate heterogeneity within the RC, and different network heterogeneity among

hosts in the RC. Because of the tradeoffs listed above, it is difficult to compose an optimal RC for

any given DAG. Our goal this chapter is to derive an empirical model that predicts the best RC

size. Because of the difficulties in the tradeoffs for the three RC characteristics due to the choice

of scheduling heuristic, we use a reference scheduling heuristic in the first five sections of this

chapter – Modified Critical Path [31] and examine the effects of using different scheduling

heuristics in Section 0.

V.2 Deriving Best RC Size

Our first goal is to predict the number of resources that should be requested in the best

resource specification, i.e., the RC size. To predict RC size in this section we assume

homogeneous resources, with homogeneous bandwidth, and we use the reference scheduling

heuristic, MCP. In Section V.4 and Section 0, we evaluate the sensitivity of our predictive model

to resource heterogeneity and to different scheduling heuristics, respectively.

Our strategy for formulating an empirical prediction model of RC size is as follows:

1. Determine relevant DAG characteristics that are likely to impact the choice of resources

for running an application (Section V.2.1).

2. Define what the best RC size should be (Section V.2.2).

3. Execute scheduling heuristic on an observation set of DAG configurations while varying

the relevant DAG characteristics (Section V.2.3).

4. Derive a model from the observation set results that predicts the best RC size (Section

V.2.4).

82

After we construct the empirical model that predicts the best RC size, we validate that our

model leads to accurate predictions with workloads of randomly generated DAGs and DAGs

from real applications in Section V.3.

V.2.1 Relevant DAG characteristics

We listed different DAG characteristics in Section III.1.1. Our goal here is to determine a

subset of thse DAG characteristics that are relevant for constructing a model to predict the best

RC size. We can separate DAG characteristics into those that have obvious effects on the choice

of RC size, those that can be subsumed by other DAG characteristics, and those that most likely

do not affect the choice of RC size.

The DAG characteristics that have obvious effects on the choice of RC size are:

1. DAG size – It is very clear that size is a factor. A bigger DAG would often benefit from a

bigger RC and a smaller DAG would not need as big a RC. For a bigger DAG, a bigger RC

would allow more DAG tasks to be parallelized, leading to a shorter makespan and shorter

application turn-around time.

2. Communication-to-computation ratio – We know that with higher communication costs, a

good scheduling heuristic would schedule tasks to run on the same host rather than incur

higher communication costs that would lengthen the application makespan. Thus, a DAG

with higher CCR would not benefit from a larger RC (because scheduling tasks on more hosts

would lengthen the makespan with the additional communication costs to each additional

host added to the RC). The combination of high CCR, naïve scheduling heuristics, and a

bigger RC would lead to longer makespan (and application turn-around time) because using

more compute hosts in the bigger RC also means higher communication costs.

Correspondingly, a DAG with a smaller CCR would benefit from a larger RC as more

83

compute hosts can be utilized without incurring too much excess communication costs.

Having a sufficiently large RC would lead to makespan minimization (depending on the

scheduling heuristic) which possibly leads to faster application turn-around time.

3. Parallelism – Recall from Section III.1.1 the definition of parallelism:
log()
log()n

τα = , where τ

is the average number of tasks per level and n is the DAG size. Clearly, a DAG with higher

parallelism would benefit from a bigger RC to maximize its parallelism during execution,

leading to shorter application makespans. Correspondingly, a DAG with lower parallelism

can maximize parallelism with a smaller RC.

4. Regularity – Recall from Section III.1.1 the definition of regularity:

1, ,max | () |
1 i k isize l τ

β
τ

= −
= − … . Regularity reflects how the number of tasks per level

varies from level to level. Along with parallelism, regularity determines the DAG width:

parallelism determines the mean number of tasks per level while regularity determines

dispersal from that mean. A DAG with higher irregularity (thus lower regularity) is more

likely to have a larger DAG width, which is a larger maximum number of tasks in any level.

A larger DAG width would necessarily require a bigger RC to maximize parallelism to

minimize application makespan. Conversely, a DAG with a high degree of regularity can

maximize parallelism (and minimize application makespan) with a smaller RC.

The DAG characteristics already subsumed by other DAG characteristics are:

1. DAG height or number of levels – DAG height is a function of DAG size and the average

number of tasks per level. Thus, DAG height is subsumed by the DAG size and the average

number of tasks per level.

84

2. Average number of tasks per level – This information is subsumed in the parallelism. The

more highly parallel the DAG, the larger the average number of tasks per level.

The DAG characteristics that most likely do not affect the choice of RC size are:

1. Density – It is unclear whether tasks having more dependencies would impact the choice of

RC size. A DAG with low density might have tasks with single dependencies. For example,

say task ni depends only on nj. A sophisticated scheduling heuristic could merge tasks nj and

nj into one task nij. Such reduction of the DAG is in essence reducing the DAG size while

increasing the mean computational cost. It is unclear how one can generalize this DAG

reduction to apply to all DAGs.

2. Mean computational cost – It is unclear how the mean computational cost would affect the

best RC size. With all else being equal (and in particular the CCR), two DAGs that differ

only in the mean computational cost would likely require the same RC size.

From our discussions above, we decide to construct our model based on the following

relevant characteristics: DAG size, CCR, parallelism, and regularity. DAG height and the average

number of tasks in the DAG are subsumed by the four relevant DAG characteristics, so we can

leave them out of the model. Because it is unclear whether density or the mean computational

cost can affect RC choices, we are also leaving them out of our model construction. From our

results, we will see that the model we construct is accurate even without taking into account these

two characteristics.

V.2.2 Best RC Size

Earlier, we have defined the best RCS as the description of an RC that minimizes the

application turn-around time. Of the three characteristics we can specify for an RCS, we focus on

85

the first characteristic in this section – RC size. We fix the other characteristics by considering

homogeneous clock rates within the RC and homogeneous network connectivity among the hosts

in the RC. Thus, we want to construct a model that predicts the best RC size, which is the RC size

that leads to the minimal application turn-around time.

Size = 1000, CCR = 0.01, Alpha =0.6

600

610

620

630

640

650

660

670

680

690

700

0 20 40 60 80 100 120

RC size

A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e
(s

)

regularity 0.01
regularity 0.1
regularity 0.3
regularity 0.5
regularity 0.8
regularity 1

Figure V-2: Application turn-around time as function of RC size for DAG with size 1000,

CCR of 0.01, and parallelism of 0.6 for various regularity values

To illustrate the notion of the best RC size, we show Figure V-2 as an example. Figure

V-2 shows the application turn-around time as a function of the RC size for DAGs of size 1000,

CCR of 0.01 and parallelism (α) of 0.6. Each of the points in the figure represent the average

application turn-around time for ten distinct instances of DAGs with the same DAG

characteristics. Using the same ten DAGs, we schedule the tasks on resource collections of

increasing size. Each point on the plot represents the turn-around time as the result of using a

particular RC size. Each of the lines represents DAGs with different regularity values. As we can

see from the figure, increasing the RC size improves application turn-around time up to a certain

86

point. Beyond a certain threshold, the best application turn-around time can be achieved by a

range of RC sizes.

DAG size = 5000, CCR = 0.01, Alpha = 0.7

550

570

590

610

630

650

670

690

0 100 200 300 400 500 600 700 800

RC size

A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e
(s

)

regularity 0.01
regularity 0.1
regularity 0.3
regularity 0.5
regularity 0.8
regularity 1.0

Figure V-3: Application turn-around time as function of RC size for DAG with size 5000,

CCR of 0.01, and parallelism of 0.7 for various regularity values

In Figure V-3, we show the results of a very similar experiment as the results from Figure

V-2. This time, the results are from the averages of running the scheduling heuristics over ten

different distinct DAGs with size of 5000, CCR of 0.01, and parallelism (α) of 0.7. We want to

show that for some other DAGs such as the ones used for the results shown in Figure V-3, the

range of RC sizes where the best application turn-around time can be achieved is quite small (or it

could be a single RC size). As we can see from Figure V-3, beyond a certain RC size, the

application turn-around time actually increases with more hosts in the RC. The increase in

application turn-around time is entirely due to increased scheduling time. Beyond a certain RC

size, the application makespan remains the same yet the scheduling time slowly increases because

the running time of MCP is a polynomial function in the number of hosts in the RC. This result in

the increased application turn-around time with increasing RC size beyond the best RC size. For

87

other scheduling heuristics where the running time is a higher order polynomial function in the

number of hosts in the RC as compared to MCP, the increase in the scheduling time could be

much steeper than MCP and consequently the range of RC sizes where the best application turn-

around time can be achieved would be very small, and likely occurring at exactly one size.

As the two figures illustrate, two scenarios exist for best RC sizes:

1. A range of RC sizes where the application turn-around time is minimized (as shown in Figure

V-2). This is because for a small range of RC sizes, the variance among the execution time

for the scheduling heuristic is negligible (within milliseconds).

2. A single RC size where the application turn-around time is minimized (as shown in Figure

V-3). This is because the best application makespan achievable by the scheduling heuristic is

achieved at a certain RC size, and an increase in RC size only adds to the scheduling time.

To have a unifying definition for both of these scenarios, we define the best RC size as

the smallest RC size such that a bigger RC size would improve turnaround time by less than a

threshold of 0.1%. We call this value the “knee” value. We define the application turn-around

time as having achieved the best performance when increasing the RC size does not improve

performance by more than 0.1%. It is necessary to pick a threshold value slightly greater than 0%

because of the experimental nature of the process used to determine the application turn-around

times. By choosing 0.1% as the threshold, we are ensuring that the knee is not the result of

experimental fluctuations in running the scheduling heuristics. Had we used 0% as the threshold

for the best application turn-around time, the knee may have been artificially inflated to a higher

value when the scheduling heuristic ran faster (by milliseconds) for a slightly bigger RC size.

88

V.2.3 Observation Set

To construct a predictive model for best RC size given arbitrary DAGs, we need to

examine how the best RC size varies as a function of the various relevant DAG characteristics.

We can then formulate a function that includes each relevant DAG characteristic to predict the

best RC size. Our strategy is to use arbitrary DAGs as an observation set and derive a function

that follows closely with what we observe from the DAGS in the observation set.

For our observation set we choose our sample values at as evenly-spaced intervals as

possible for each of the relevant DAG characteristics. We choose DAG sizes ranging from 100

tasks to 10,000 tasks as this represents the range of the interesting DAGs scientists run today. For

CCR, we want to cover an interesting range where the DAG is not dominated by either

communication or computation; we choose a range between 0.01 and 1.0. With extreme

communication intensive applications (CCR much greater than 1), a RC with a single host can

eliminate all the communication costs. When the computational costs is more than one hundred

times the communication cost (as is the case when CCR is below 0.01), the communication costs

becomes negligible and we can use the value of 0.01 for CCR to predict the RC for any smaller

CCR.

When parallelism is low, the average number of tasks per level becomes small and a

small RC would be sufficient to achieve good performance. Similarly, when the Parallelism is 1,

all the tasks can be parallelized and the best RC size would be equal to the DAG size. Thus, we

choose the range of parallelism between 0.3 and 0.9. For regularity, we choose a range of values

ranging from 1.0 to 0.01. A regularity value of 1.0 means that the DAG is perfectly regular (all

levels have the same number of tasks). A regularity value of 0.01 implies that the maximum

dispersal from the average number of tasks per level is 99%. Thus we are examining DAGs with

89

number of tasks at any given level ranging from 1% to 199% of the average number of tasks per

level. The DAG characteristic values are summarized in Table V-1.

To determine best RC sizes for sample DAGs, we schedule DAGs onto varying RC sizes.

We generate arbitrary DAG configurations, corresponding to the cross-product of the relevant

DAG characteristic listed in Table V-1 for a total of 1260 configurations. For each configuration,

we instantiate ten distinct DAGs; thus we have a total of 12,600 DAGs. Our results reflect the

average of the ten sample DAGs for each of the 1260 DAG configurations. Then we use our

reference scheduling heuristic, MCP, to schedule randomly generated DAGs onto the RCs,

calculating the application turn-around time in each case.

Table V-1: Relevant DAG characteristic and sample values

DAG Characteristic Values
DAG size (# of tasks) 100,500,1000,5000,10000
CCR 0.01, 0.1, 0.3, 0.5, 0.8, 1.0
Parallelism (α) 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9
Regularity (β) 0.01, 0.1, 0.3, 0.5, 0.8, 1.0

V.2.4 Model Formulation

Table V-2: Knee values for DAGs with size 5000 and CCR of 0.01
α\β 0.01 0.1 0.3 0.5 0.8 1.0
0.3 34 32 22 18 14 14
0.4 52 36 28 24 22 20
0.5 80 62 58 50 56 42
0.6 136 140 128 112 94 128
0.7 328 312 280 248 212 196
0.8 464 456 448 448 448 432
0.9 496 496 440 440 432 392

After we determine the knee for the observation set of DAGs, we need to formulate a

model based on four variables (representing each of the four relevant DAG characteristics).

Because of the difficulty of dealing with four variables at once, we can further simplify the

formulation by first considering DAGs of a fixed size and fixed CCR; thus first we consider

90

parallelism (α) and regularity (β). For example, Table V-2 below shows the RC knee values for

DAGs with size 5000 and CCR of 0.01.

From our results, we notice the trend of an exponential increase in knee values as a

function of α. Our hypothesis is that for a given DAG size and CCR, the knee can be predicted by

the following formula:

Knee = 2(aα + bβ + c)

In the formula, α refers to the parallelism, β refers to the regularity, with unknowns a, b,

and c to be determined. Figure V-4 plots the logarithm of the knee values of the various

parallelism and regularity values for DAGs of size 5000 and CCR of 0.01. For all combination of

DAG sizes and CCR values, we observe very similar planar shapes. It turns out that a planar fit to

the data can be done in all cases with mean relative error of at most 16% for a DAG size of 5000.

0.01 0.1 0.3 0.5 0.8 1
0.3

0.4

0.5
0.6

0.7
0.8

0.9

0

1

2

3

4

5

6

7

8

9

lo
g

2
of

 k
ne

e

regularity (beta)

parallelism (alpha)

DAG size =5000, CCR = 0.01

8-9
7-8
6-7
5-6
4-5
3-4
2-3
1-2
0-1

Figure V-4: Log2 of knee values when DAG size = 5000 and CCR = 0.01

91

Because of the planar shapes of the surface plots, one can use linear regression by fitting

a plane through the different logarithm of knee values. By applying the logarithm function to both

sides of the equation, we have 42 equations of the form:

2log ()knee a b cα β= + +

For all equations i = {1, 2, …, 42},

Let zi = experimental values for log2(kneei).

Let xi = αi.

Let yi = βi.

We can minimize the mean squared error of the 42 equations by taking the partial derivatives to

the equation:

42
2

1
(())i i i

i
z ax by c

=

− + +∑

This results in the following three equations:

42 42 42 42
2

1 1 1 1
i i i i

i i i i
ax bx y cx z x

= = = =

+ + =∑ ∑ ∑ ∑ i i

i

42 42 42 42

2

1 1 1 1
i i i i i i

i i i i

ax y by cy z y
= = = =

+ + =∑ ∑ ∑ ∑

42 42 42

1 1 1
42i i

i i i
ax by c z

= = =

+ + ∗ =∑ ∑ ∑

We obtain a 3x3 linear system which can be easily solved for the 3 unknowns. We can

solve for the three unknowns a, b, and c by rearranging the equations in the following matrix

form:

92

42 42 42 42
2

1 1 1 1
42 42 42 42

2

1 1 1 1
42 42 42

1 1 1
42

i i i i i
i i i i

i i i i i i
i i i i

i i i
i i i

a ix x y x z x

x y y y b z y

x y zc

= = = =

= = = =

= = =

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

By solving for a, b, and c, we have constructed a model that can predict the best RC size given a

fixed DAG size and a fixed CCR value.

The last remaining step is to reconcile the two remaining application characteristics:

DAG size and CCR. We show a representative plot of varying knee values as a function of DAG

sizes in Figure V-5 for DAGs with fixed CCR of 0.01 and fixed parallelism at 0.7 for different

regularity values. Other CCR and parallelism values show similar trends. We also show a

representative plot of varying knee values as a function of CCR in Figure V-6 with fixed DAG

size of 5000 and fixed regularity at 0.01. Again, other DAG sizes and other regularity values

show similar trends. Unfortunately, although these curves at first glance look logarithmic and

exponential, it is difficult to find a simple model with a good fit. Therefore we resort to an

empirical approximation based on interpolation between experimental data points on these

curves. We hypothesize that linear interpolations based on the two closest sample points provide

sufficiently good results. We interpolate in both axis when both DAG size and CCR value fall

between two sample values.

93

CCR0.01, Parallelism = 0.7

0
50

100
150
200
250
300
350
400
450

0 2000 4000 6000 8000 10000 12000
DAG size

K
ne

e
 V

al
ue

s

regular it y 0.01 regular it y 0.1

regular it y 0.3 regular it y 0.5

regular it y 0.8 regular it y 1

Figure V-5: Knee values as function of DAG size with fixed CCR at 0.01 and fixed

parallelism at 0.7 for various regularity values

Regularity 0.01

0
100
200
300
400
500
600
700
800

0 0.5 1
CCR

K
ne

e
va

lu
es

parallelism 0.3 parallelism 0.4
parallelism 0.5 parallelism 0.6
parallelism 0.7 parallelism 0.8
parallelism 0.9

Figure V-6: Knee values as function of CCR with for DAGs with size 5000 and fixed

regularity at 0.01 for various parallelism values

94

V.3 Predictive Model Validation

After constructing a predictive model to estimate the best RC size, we need to validate

the accuracy of the model. We use two workloads to validate our predictive model for best RC

sizes:

• Randomly generated DAGs

• DAGs from real applications

For each workload, we validate our prediction model by comparing the application turn-

around time achieved using the predicted RC size and the actual optimal RC size (approximated

by a time-consuming algorithm described in Section V.3.1). Further, we compare the application

performance achieved when using our model to that achieved with the current practice of using

maximum parallelism as the RC size.

V.3.1 Heuristic to Derive Actual Optimal RC Size

One way to derive the actual optimal RC size is by brute force. However, since we are

interested in testing our prediction model over a wide variety of DAG characteristics (over 10,000

DAGs with varying characteristics for each DAG size), using a brute force method to derive each

actual optimal RC size would take many CPU years to complete. Instead, we use a (still time-

consuming) heuristic to derive the actual optimal RC size.

Our heuristic uses the predicted RC size as the starting point. From the predicted RC size

we create RC sizes that vary from the predicted RC size by 10%-50% in 10% intervals in both

directions (bigger and smaller RC sizes). Then we try RC sizes that are 2 times, 2.5 times, and 3

times the predicted RC sizes. Lastly, we try geometrically decreasing RC sizes by a factor of 2,

starting with the predicted RC size and ending when the new RC size reaches 1. The RC sizes

used by our heuristic are listed in Table V-3, along with 2 examples of predicted RC sizes, one at

95

100 and one at 300. In Table V-3, x is the predicted best RC size. Note that this heuristic requires

knowledge of the best RC size a priori and still requires many CPU hours to compute the optimal

RC size for larger DAGs; thus, one would not be able to employ this heuristic to derive the

optimal RC size unless there is a good starting guess and even in such a scenario, many CPU

hours would be needed to derive the optimal RC size.

Table V-3: Heuristic for deriving actual optimal RC size
Test Values
for RC size

Example 1 Example 2

x 100 300
x ± 0.1x 110,90 330,270
x ± 0.2x 120,80 360,240
x ± 0.3x 130,70 390,210
x ± 0.4x 140,60 420,180
x ± 0.5x 150,50 450,150
2x 200 600
2.5x 250 750
3x 300 900
Repeated ½
function

50,25,13,7,4,2,1 150,75,38,19,10,5,3,2,1

RC sizes
attempted

1,2,4,7,13,25,50,60,70,80,90,100,
110,120,130,140,150,200,250,300

1,2,3,5,10,19,38,75,150,180,210,
240,270,300,330,360,390,420,450,
600,750,900

V.3.2 Validation with Randomly Generated DAGs

First we validate our model with a workload of randomly generated DAGs. To have a

thorough testing of our predictive model for RC sizes, we test all of the 1260 DAG configurations

composing our observation set as well as the 840 DAG configurations containing the midpoint of

the two DAG characteristics for which our model computes the best RC. For each DAG

configuration, we generate ten distinct random DAGs. We summarize the values we choose for

our validation suite in Table V-4. We expect the application turn-around time using predicted RC

sizes from the observation set DAG configurations to be the closest match to the application turn-

around time achievable using the actual optimal RC size. When we use the midpoint between two

96

observation set DAG characteristic values, we expect bigger loss of application performance

because of the use of linear interpolation between two sample points as an approximation.

Table V-4: DAG characteristic values for validation suite
DAG characteristics Observation set DAG

characteristic values
Midpoint between two
observation set DAG
characteristic values

DAG Size 100, 500, 1000, 5000, 10,000 300, 750, 3000, 7500
CCR 0.01, 0.1, 0.3, 0.5, 0.8, 1.0 0.05, 0.2, 0.4, 0.65, 0.9
Parallelism 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
regularity 0.01, 0.1, 0.3, 0.5, 0.8, 1.0 0.01, 0.1, 0.3, 0.5, 0.8, 1.0
Total Number of
Configurations

1260 840

V.3.2.1 Performance and Cost Metrics

We use three metrics to measure the accuracy of our predictive model. The first metric is

the average predicted size difference. This metric tells us the normalized distance between the

model-predicted RC size and the heuristic-derived optimal RC size. If our model can accurately

predict the optimal RC size, then the average predicted size difference would be small.

The second, and perhaps the most important metric, is the average performance

degradation. This metric measures the degradation of application turn-around when using the RC

configuration predicted by our model compared against using the (approximated) optimal RC

configuration. Ultimately, users of this predictive model would be most interested in achieving

the best application turn-around time and this metric allows us to quantify the performance

degradation.

The third metric is one of cost. While the application turn-around time is a common

metric, defining a metric for cost is more difficult. Rather than coming up with an arbitrary

metric, we chose to use the same one as an existing production system that charges users

consistently: Amazon’s Elastic Cloud [79]. In this system, each “instance”, that is a (virtual)

1.7GHz x86 processor machine, is $0.10 per hour. We simply scale this cost by our simulated

resources clock rates and compute total cost for application executions. We use a “relative cost”

97

metric. The relative cost is the cost when using the predicted size versus the cost of using the size

for optimal application turn-around time. A positive value for relative cost indicates the

prediction model predicted a size greater than the size for the optimal application turn-around

time and thus costing more than using the size for optimal application turn-around time. A

negative value corresponds to a smaller size and thus a cheaper execution.

V.3.2.2 Validation Results for Randomly Generated DAGs

Our results (summarized in Table V-5) show that our predictive model performs quite

well over the range of DAG characteristics we tested. The top part of the table shows results for

DAGs with DAG size values identical to DAG sizes in the observation set. The bottom part of the

table shows results for DAGs with DAG sizes corresponding to midpoint between observation set

DAG sizes. The left part of the table shows results for DAGs with CCR values corresponding to

observation set CCR values, whereas the right side of the table shows results for DAGs with CCR

values corresponding to exactly midpoint between observation set CCR values. Before our

experiments, we expect that the results DAGs with characteristics corresponding to our

observation set should have the highest performance, and results from for DAGs with

characteristics corresponding to midpoint between observation set values would have worse

performance. Thus, we expect the top left quadrant in Table V-5 to have the best performance and

the lower right quadrant in Table V-5 to have the worst performance.

For the average predicted size difference, our results showed that in all DAG

configurations tested, our predictive model predicted a RC size that is on average between 9%-

15% from the optimal RC size.

For performance degradation, our results showed that for the observation set DAG sizes

and observation set CCR values, the performance degrades as the DAG size increases, ranging

from 0.18% (for the smallest DAGs) to 1.82% (for the biggest DAGs) performance degradation.

98

When the model is applied to DAG sizes that are exactly midpoints between two observation set

DAG sizes, the performance is slightly worse, but even in the worst case is only 1.93%.

For the results from interpolating CCR values, we had expected performance degradation

similar to the degradation experienced by the model when interpolating between DAG sizes;

however, we observed the opposite. With all other DAG characteristics being equal, we observed

better performance with the interpolated CCR values rather than the observation set CCR values.

Across different DAG sizes (for both observation set DAG sizes and interpolated DAG sizes), the

average application performance degradation resulting from using interpolated CCR values were

approximately half of the performance degradation from using the observation set CCR values!

A closer look at individual DAGs revealed that the predictive model underestimates the

best RC size for DAGs requiring more hosts to achieve maximum parallelism (and better

performance). These DAGs have lower CCR values and higher parallelism (α) values. The higher

parallelism values would lead to a DAG with bigger DAG width and consequently more hosts

would be preferable to achieving maximum parallelism. The lower CCR values for these DAGs

implies that using more hosts does not hurt the application makespan as much because the

communication costs are minimal. From Figure V-6, we see that linear interpolation between two

observation set CCR values actually predicts a bigger RC size than if we had fit a smooth curve

between all the observation set points. The end result is that the error we had expected from linear

interpolation overcompensates for the RC size underestimation of our model for DAGs requiring

bigger RC sizes, leading to better application turn-around time (lower degradation) compared to

the observation set CCR values. Note that these results could suggest an ad hoc improvement to

our model. Indeed, one could artificially increase the predicted RC size for DAGs with low CCR

and high parallelism values.

In terms of cost, we observed that for all of the DAG configurations we tested our

predictive model yields a negative relative cost. The negative numbers implies that our predictive

99

model is on average underestimating the optimal RC size and therefore providing “savings” over

using the optimal RC configuration.

During the process of constructing the predictive model, we observed that for DAGs with

higher CCR and lower parallelism values (regardless of the range of regularity values we tested),

the best application turn-around time can be achieved by using 1 host only. Adding additional

hosts to the resource collection simply increased the application turn-around time. This is

expected as the cost of file transfer outweighs the benefit of adding additional hosts to the

resource collection. For that reason, we have excluded DAGs with high CCR and low parallelism

values from the construction of our model and have thus also excluded these DAGs from our

validation results. For the vast majority of the excluded DAG configurations, using a resource

collection of size 1 would have produced the best result. We listed a column in Table V-5 to

reflect the number of DAG configurations within the range of our predictive model.

Table V-5: Validation Results when using Predictive Model
DAG
Size

Observation Set CCR Midpoint CCR

Obsv.
Set
DAG
Sizes

Average
Predict
Size
Diff.

Average
Perf.
Degrad.

Relative
Cost

DAG
Config.
Within
Range of
Model

Average
Predict
Size
Diff.

Average
Perf.
Degrad.

Relative
Cost

DAG
Config.
Within
Range of
Model

100 9.59% 0.18% -6.75% 144/252 11.04% 0.16% -3.66% 120/210
500 11.49% 0.22% -5.29% 198/252 11.11% 0.13% -0.81% 156/210
1000 9.62% 0.32% -4.32% 204/252 10.10% 0.13% 2.34% 162/210
5000 13.27% 0.77% -4.72% 222/252 10.65% 0.34% -0.40% 180/210
10,000 14.53% 1.82% -2.94% 230/252 12.56% 0.86% -6.97% 188/210
Mid-
point
DAG
Sizes

300 13.41% 0.34% -11.31% 144/252 10.89% 0.19% -6.76% 120/210
750 11.85% 0.29% -5.59% 198/252 9.42% 0.14% -0.42% 156/210
3000 14.97% 1.08% -9.98% 204/252 11.95% 0.50% -4.48% 162/210
7500 16.71% 1.93% -5.28% 144/252 12.69% 0.98% -1.12% 120/210

100

From Table V-5, we see that the experiments with DAG configurations containing

observation set DAG sizes preserved application performance better than midpoint DAG sizes.

The natural questions to ask are:

• Does the midpoint DAG size value represent the worst case scenario for using our size

prediction model?

• Does varying DAG sizes between two observation set DAG sizes result in a smooth

curve between the two expected lower observation set application performance

degradations?

Table V-6 shows the effects on application performance for various DAG sizes at 1000

task intervals from size 1000 to size 5000, two sample points in our model. We see that the

midpoint DAG size does represent the worst performance and the performance degradations from

the other two DAG sizes falls in range between the best performance degradation of the

observation set DAG sizes of 1000 and 5000 and the midpoint DAG size of 3000. One interesting

note is that the performance degradation for DAG size 2000 is much closer to the worst observed

case of DAG size 3000 rather than being midway between the performance degradation of DAG

size 1000 and DAG size 3000. Thus, we might expect that performance degradations for any

DAG size would be at least as great as the larger degradation of the two observation set values

(on which the interpolation is based).

Table V-6: Experiment showing effects of varying DAG size
 Observation Set CCR Midpoint CCR
Varying
sizes

Average
Predict
Size
Diff.

Average
Perf.
Degr.

Relative
Cost

DAG
Config.
Within
Range
of
Model

Average
Predict
Size
Diff.

Average
Perf.
Degr.

Relative
Cost

DAG
Config.
Within
Range
of
Model

1000 9.62% 0.32% -4.32% 204/252 10.10% 0.13% 2.34% 162/210
2000 15.19% 0.99% -10.47% 204/252 11.80% 0.47% -5.60% 162/210
3000 14.97% 1.08% -9.98% 204/252 11.95% 0.50% -4.48% 162/210
4000 13.44% 0.87% -7.85% 204/252 10.90% 0.41% -2.06% 162/210
5000 13.27% 0.77% -4.72% 222/252 10.65% 0.34% -0.40% 180/210

101

V.3.2.3 Performance-Cost Tradeoff

So far we have only presented results about optimizing turnaround time. However,

different users may have different notions of utility and different economic constraints. We

enhance our model by allowing the user to specify simple notions of utility for trading off

performance for lowering cost. We accomplish this by generating predicted sizes based on

various thresholds for defining the knee values. Previously, we only used a threshold of 0.1%.

Now our model also uses thresholds of 0.5%, 1.0%, 2.0%, 5.0%, and 10.0%.

Utility Function Combining
Performance Degradation and Cost

-0.25

-0.15

-0.05

0.05

0.15

0.25

0.35

0 2000 4000 6000 8000 10000 12000

DAG Size

Ut
ili

ty

threshold 0.1 threshold 0.5
threshold 1.0 threshold 2.0
threshold 5.0 threshold 10.0

Figure V-7: Utility vs. DAG size for various threshold values

As an example, a user may wish to trade off a 1% decrease in performance for a 10%

decrease in cost. Figure V-7 shows the utility for different thresholds. With the 1% / 10% utility

above, our prediction model would use a threshold value of 2.0% as the curve minimizes the

combination of degradation and cost. Alternatively, users can input the budget for running the

102

application and our model can choose the threshold corresponding to the best performance

degradation while staying within budget.

V.3.3 Comparison with Current Practice

Aside from comparing with the optimal application performance achievable by an

optimally sized RC, another way to assess the quality of our predictive model is to compare it

with the performance of current practice. The natural and current practice of predicting the

optimal RC size for any given DAG is to use the DAG width as the RC size. The DAG width

represents the maximum number of tasks that could be executed at any given point in time; thus,

using the DAG width as the RC size ensures that every task in the widest level of the DAG could

be executed in parallel (assuming the scheduler is intelligent enough to assign tasks in the widest

level of the DAG to different hosts if it is at all possible).

Conversely, the DAG width represents an upper bound on the optimal size of the RC. At

no point during the execution of the DAG would the application require more hosts than the

number of tasks in the widest level of the DAG. However, it is conceivable that not all tasks in

the widest level of the DAG are ready to be executed at the exact same time. Thus, it might be

possible that some tasks in the widest level of the DAG finish executing before some other tasks

in that level. In this scenario, the optimal number of hosts in the RC would be lower than the

DAG width.

For each of the ten instances of random DAGs generated for each of the DAG

configurations listed in Table V-5 that are within range of our predictive model, we also

calculated the application turn-around time for resource collections based on the DAG width. We

take the average over the ten instances for the relative difference between the optimal RC size and

the DAG width and also the relative difference between the optimal application turn-around time

103

and the application turn-around time achieved by using the DAG width as the RC size. Table V-7

summarizes our results.

Table V-7: Results using DAG width as the RC size
DAG Size Observation Set CCR Midpoint CCR
Observatio
n Set DAG
Sizes

Average
Predicted
Size
Difference

Average
App-turn-
around
Time
Difference

Relative
Cost

Average
Predicted
Size
Difference

Average
App-turn-
around
Time
Difference

Relative
Cost

100 96.17% 0.50% 144.84% 130.70% 0.33% 209.16%
500 249.00% 0.20% 425.70% 285.22% 0.10% 437.26%
1000 470.17% 0.45% 562.94% 487.07% 0.36% 586.82%
5000 644.47% 22.66% 998.10% 694.20% 22.45% 1007.88%
10,000 883.53% 130.93% 3360.89% 855.57% 133.21% 3417.52%
Midpoint
DAG Sizes

300 166.68% 0.30% 219.20% 216.75% 0.15% 307.62%
750 415.19% 0.26% 503.04% 442.17% 0.18% 528.00%
3000 636.84% 6.80% 759.76% 657.60% 6.60% 782.24%
7500 493.50% 81.22% 1429.82% 429.03% 73.31% 1212.23%

The first prominent numbers that provide stark contrast to the numbers for our prediction

model are the relative costs. Using the DAG width as the RC size incurs enormous costs. As the

DAG size increases, the relative costs of the current practice of using the DAG width to choose

the RC size grows to be 10 times more expensive for a 5000-task DAG. The predicted size

difference confirms that using the DAG width as the basis of the RC size is grossly

overestimating the necessary size of the RC to achieve optimal performance.

As one can expect, for smaller DAGs, the performance degradation is not very noticeable

and is very comparable to the performance degradation suffered when using our predictive model.

The main reason is that the application makespan achieved is equal to the application makespan

achievable for an optimal sized RC when both are using the MCP scheduling heuristic. The only

difference in performance degradation is in the scheduling time. While the application

performance is similar, the average predicted size difference is an order of magnitude greater

when using the DAG width as the predictive model to predict the RC size.

104

When the DAG sizes are bigger, the bigger RC sizes predicted by using the DAG width

are contributing to longer scheduling times, thus contributing to worse performance when the

DAG size is larger than 1000. The application turn-around time worsens at least by polynomial

factors (and possibly exponentially) for DAG sizes greater than 1000.

In summary, our predictive model can achieve equal or better (or much better for larger

DAGs) application performance when compared to the current practice of using the DAG width

as the RC size while achieving such performance at a fraction of the costs of such practice.

V.3.4 Validate with Real Applications

In addition to validating our predictive model with randomly generated DAGs, we also

validate the usefulness of our predictive model by applying it to DAGs from real applications.

Some applications that are computationally intensive, such as EMAN [80], do not require use of

our predictive model. For those applications, choosing the DAG width as the RC size would yield

the best application turn-around time. For other applications such as DAGs from the Southern

California Earthquake Center (SCEC) [81], our predictive model is also unnecessary due to the

specific structure of the applications. For example, the SCEC DAGs are composed of parallel

chains. For such DAGs, the optimal size would equal the number of chains in the DAG. Below,

we validate our predictive model with applications that would benefit from such a predictive

model and compare the application turn-around time using the predicted RC size from our model

and using the DAG width as the RC size.

V.3.4.1 Validate with Montage

Recall from IV.2.1 that Montage is an astronomy application that creates a mosaic image

of a portion of the sky on demand. The size of the Montage DAG corresponds to the size of the

mosaic. We test two Montage sizes – 1629 tasks and 4469 tasks. The 1629-tasks DAG

105

corresponds to a three square degree mosaic and the 4469-tasks DAG corresponds to a five

square degree mosaic. Table V-8 summarizes the number of tasks in each level for the two

Montage DAGs.

Table V-8: Number of tasks in each level for two Montage DAGs
Level Task Name Number of

Tasks (1629)
Number of
Tasks (4469)

1 mProject 334 892
2 mDiffFit 935 2633
3 mConcatFit 1 1
4 mBgModel 1 1
5 mBackground 334 892
6 mImgtbl 12 25
7 mAdd 12 25

Montage DAGs are different from our observation set of DAG configurations in two ways:

1. Low regularity: Recall that DAG configurations in our observation set have regularity

values between 0 and 1. Both of these Montage DAGs have negative regularity numbers.

(Our predictive model accepts negative numbers of regularity values.)

2. Low CCR values: Montage DAGs have small intermediate files ranging from 200 bytes

to 8 Mbytes. We choose a low CCR value of 0.01 for the two DAGs.

Table V-9 summarizes the results of applying our predictive model to the Montage

DAGs. Recall from Section V.2.2 that we used a threshold of 0.1% as the “knee” value to

determine the best RC size. Here, we vary the threshold from 0.1% to 10%. The performance

degradation is the difference in application turn-around time from the optimal application turn-

around time. One might reasonably expect that the varying degrees of threshold would

correspond to the degree of performance degradation. Thus, a 1% threshold might lead to an

application performance degradation of 1%. As we can see from Table V-9, that is not the case.

Our prediction model predicted sizes suffered less performance degradation than the thresholds

would indicate. For a user with a simple utility function to minimize the sum of performance

106

degradation and relative cost, the 10% threshold would be the choice for these two Montage

DAGs.

For these Montage DAGs, using the DAG width as the RC size (the naïve model) can

have similar application turn-around time as using a RC size predicted by our model. However,

the relative cost of using the DAG width as the RC size are 89.08% and 195.9% for the 1629-task

DAG and 4469-task DAG, respectively.

Table V-9: Applying predictive model to Montage DAGs
 1629-task DAG 4469-task DAG
 Predictiveve Model Current Practice Predictive Model Current Practice
thresh
old

Perf.
Degrad.

Relative
Cost

Perf.
Degrad.

Relative
Cost

Perf.
Degrad.

Relative
Cost

Perf.
Degrad.

Relative
Cost

0.1% 0.08% 11.20% 0.00% 89.08% 0.00% 0.00% 6.53% 195.9%
0.5% 0.04% 7.52% - - 0.00% -2.40% - -
1% 0.01% 0.62% - - 0.00% -4.03% - -
2% 0.89% -13.38% - - 1.35% -21.21% - -
5% 0.75% -30.80% - - 1.81% -30.41% - -
10% 4.18% -48.22% - - 4.67% -50.98% - -

V.4 Impact of Clock Rate Heterogeneity

In this section, we address the impact of clock rate heterogeneity within the RC. Clock

rate heterogeneity is important from the perspectives of both the application and the resource

selection system. Some applications may be able to tolerate more clock rate heterogeneity among

the resources in the RC while other users or applications may be economically constrained and

higher clock rate heterogeneity among resources could potentially be cheaper to obtain. For most

resource selection systems, specifying resource heterogeneity (or specifying a range of clock

rates) allows potentially more resources to be considered and more resources to be returned to the

application. When a resource selection system cannot fulfill a request for a given resource

specification, modifying the specification so that it allows for more resource heterogeneity is

common solution. Indeed, with more heterogeneity allowed the resource selection system has

more choices.

107

In this section, we are interested in how the clock rate heterogeneity impacts:

• performance and cost of our predictive model,

• optimal RC size and application turn-around time

V.4.1 Impact on Performance and Cost of Predictive Model

The main issue with introducing clock rate heterogeneity is the question of how our

predictive model would be affected. Recall that in Section V.2.4 we formulated a predictive

model for resources with homogeneous clock rates. We apply the same methods in formulating

predictive models for different clock rate heterogeneity. First, we define clock rate heterogeneity

as the coefficient of variance of the host clock rate for the resources among the resources in the

RC. For this work, we use clock rate heterogeneity values of 0, 0.01, 0.05, 0.1, 0.2, and 0.3. We

maintain a constant mean clock rate in our experiments.

Performance Degradation as Function of
Clock Rate Heterogeneity

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 0.1 0.2 0.3 0.4

Coefficient of Variance for Clock Rates

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

100
300
500
750
1000
3000
5000
7500
10000

Figure V-8: Performance degradation as function of clock rate heterogeneity for various

DAG sizes

108

Figure V-8 shows the degradation from best turnaround time versus clock rate

heterogeneity for DAG configurations with observation set CCR values only (recall that these

performed worse). Each of these points represents the average degradation of 252 DAG

configurations (we use ten distinct DAG instantiations for each configuration). Each line

represents different DAG sizes. We see that higher coefficient of variance among the clock rates

did not affect the application turn-around times by using RC configurations predicted by our

model. We observed that as the DAG sizes increase, the difference in predicted RC sizes from

optimal decreases for larger clock rate heterogeneity. This suggests that it is feasible to increase

the DAG size and increase the clock rate heterogeneity without suffering higher performance

degradation.

Relative Cost as Function of
Clock Rate Heterogeneity

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Coefficient of Variance for Clock Rates

Re
la

tiv
e

C
os

t

100 300 500
750 1000 3000
5000 7500 10000

Figure V-9: Relative cost as function of clock rate heterogeneity for various DAG sizes

Figure V-9 shows the relative cost of using our model (line representing different DAG

sizes) as a function for clock rate heterogeneity. Again, each point represents the average

degradation of 252 DAG configurations (and 2520 total instantiation of DAGs). We see that for

109

all DAG sizes, as the coefficient of variance increases for clock rates, the costs for the resources

decreases. The conclusion from Figure V-8 and Figure V-9 is that our model still leads to

performance close to optimal at reduced costs even as heterogeneity increases.

V.4.2 Impact on Optimal RC Size and Application Turn-Around Time

Throughout our experiments, we maintain constant average clock rate when we consider

various resource heterogeneity. Thus, when we increase the clock rate heterogeneity, we are

adding some faster hosts, along with some slower hosts (to maintain the same average clock rate).

With the introduction of clock rate heterogeneity into resource collections, we are interested in

answering the following:

• How does the optimal RC size change as a function of the clock rate heterogeneity? Does

having some faster hosts allow the scheduler to utilize fewer hosts (thus lowering the

optimal RC size)?

• How does the optimal application turn-around time change as a function of the clock rate?

Intuitively, one can assume a scheduler that considers clock rates can achieve faster

application makespan (and thus faster application turn-around time) with the introduction

of faster hosts into the RC.

110

Change of Optimal RC Size
as Function of Clock Rate Heterogeneity

0%

50%

100%

150%

200%

250%

300%

350%

0 0.05 0.1 0.15 0.2 0.25 0.3

Coefficient of Variance for Clock Rates

C
ha

ng
e

in
 O

pt
im

al
 R

C
 S

iz
e

100 300
500 750
1000 3000
5000

Figure V-10: Change of optimal RC size as function of clock rate heterogeneity

Change in Optimal Application Turn-Around Time
as Function of Clock Rate Heterogeneity

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

0 0.05 0.1 0.15 0.2 0.25 0.3

Coefficient of Variance for Clock Rates

C
ha

ng
e

in
 O

pt
im

al
 A

pp
. T

ur
n-

A
ro

un
d

Ti
m

e

100 300
500 750
1000 3000
5000

Figure V-11: Change in optimal turn-around time as function of clock rate heterogeneity

Figure V-10 shows the change in optimal RC size for DAGs with varying sizes as a

function of resource heterogeneity. The baseline for comparison is the optimal RC size for a

homogeneous resource environment. Figure V-11 shows the change in optimal application turn-

111

around time for different DAG sizes as a function of resource heterogeneity. The baseline for

comparison is the optimal application turn-around time for a homogeneous resource environment.

Each of the points in Figure V-10 and Figure V-11 represents the average degradation of 252

DAG configurations (we use ten distinct DAG instantiations for each configuration). Each line

represents different DAG sizes.

From Figure V-10 and Figure V-11, we see the effects of clock rate heterogeneity on both

optimal RC size and optimal application turn-around time as roughly linear for the range of DAG

sizes in our experiments. From Figure V-10, we see the trend that as the DAG sizes increases, the

relative change in optimal RC size decreases. With increased clock rate heterogeneity, increasing

the RC size means that there are more faster hosts in the RC. For smaller DAGs, fewer faster

hosts are sufficient for faster application makespan. Because the RC size is small to begin with,

by doubling or tripling the RC size, the scheduling time is not significantly impacted while the

makespan can be made faster. For bigger DAGs, doubling or tripling the RC size impacts the

scheduling time and offsets the faster application makespan achievable by the presence of faster

hosts in the RC. Thus for bigger DAGs, the optimal RC size does not change as much compared

to smaller DAGs for increased clock rate heterogeneity.

From Figure V-11 we see faster application turn-around time for increased clock rate

heterogeneity due to the presence of faster hosts in the RC. Because smaller DAGs do not incur

as much scheduling penalty, by increasing the RC size, we are able to achieve faster application

turn-around times for smaller DAGs for increasingly heterogeneous resource collections.

Although increasing the resource heterogeneity increased the number of faster hosts and decrease

the overall application turn-around time, the impact on bigger DAGs is less than the impact on

smaller DAGs. This is most likely because more fast hosts are required to improve the overall

performance of bigger DAGs.

112

From Figure V-8, Figure V-9, and Figure V-11, we draw the conclusion that by using our

prediction model, for applications capable of tolerating clock rate heterogeneity (most workflow

applications are), users can achieve better application performance at cheaper costs than when

using homogeneous resources.

V.5 Impact of Network Heterogeneity

With projects such as OptIPuter [25] researching higher bandwidth, we believe that

higher bandwidth will be prevalent in the short- and medium-term future. Further, we believe that

connections between research institutions (where our target scientific applications are likely to be

deployed) will be the first to achieve higher bandwidth and the heterogeneity among the different

links should be low. We have already mentioned that network latency does not have much impact

on the execution of loosely synchronous applications such as workflows. Furthermore, our model

already accounts for two orders of magnitude in CCR values. Therefore, we feel that a study of

network bandwidth heterogeneity is not critical and we do not address this issue in this

dissertationImpact of Using Different Scheduling Heuristics

All of the results from the previous sections have assumed a reference scheduling

heuristic, MCP. We are also interested in seeing whether our model can be applied to other types

of scheduling heuristics. Because of the time-consuming nature of running comprehensive

experiments on all of the different heuristics, we perform a sensitivity analysis on a subset of the

DAG configurations.

V.6 Scheduling Heuristics

We apply the same method for constructing the predictive model described in Section

V.2.4 for MCP to construct models for three other scheduling heuristics. We choose the DLS

113

(Dynamic Level Scheduling) algorithm [82], as both MCP and DLS are popular and competitive

according the results in [73]. We then use two other simpler heuristics: Fastest Compute-host

Available (FCA) and First-Come-First-Serve (FCFS).

The MCP heuristic operates by first sorting the tasks in the DAG according to their

ALAP (As-Late-As-Possible) values (also known as t-levels). The ALAP values are computed by

first computing the length of the critical path, which is the length of the longest path, and

subtracting the b-level (bottom-level) of the task from it. The b-level of a task ni is the longest

path from ni to an exit task in the DAG (including both ni and the exit task). The length of the

path includes both computation and communication costs. We use the reference computation cost

for each task for this calculation and a reference communication cost for each necessary file

transfer between the host executing the predecessor of ni and the host executing ni. After sorting

the tasks in ascending order of ALAP, the MCP heuristic assigns tasks on the static list one by

one such that a task is scheduled on a processor that allows the earliest start time. Figure V-12

shows the pseudo-code for the MCP heuristic.

accord
CP = length of the longest path (in terms of node weights and edge weights)
 from the root node to the end node, including both these nodes
For each non-root node Ni in the DAG

BLi = length of the longest path (in terms of node weights and edge weights)
from node Ni to the end node, including both these nodes

 ALAPi = CP – BLi
End For
For each node Ni
 Li = list of the ALAP values of node Ni and all its descendents, in ascending order
End For
Sort all Li lists in lexicographical order and
Re-Order the nodes according to this order
For each node Ni

 Schedule Ni on the host that would complete its execution soonest

Figure V-12: Pseudo-code for the Modified Critical Path (MCP) Heuristic

The DLS heuristic operates similarly to the MCP heuristic, with the exception of sorting

ing to an attribute called the dynamic level (DL) instead of the t-level. The DL is the

114

difference between the static level (SL) of a task and its earliest start time on a processor. The SL

level of a task is the length of the longest path from task ni to an exit node where the length of the

path includes the computational costs and excludes the communication costs. Figure V-13 shows

the pseudo-code for the DLS heuristic.

Figure V-13: Pseudo-code for the Dynamic Level Scheduling (DLS) Heuristic

For each non-root node Ni in the DAG
SLi = length of the longest path (in terms of node weights only)

from node Ni to the end node, including both these nodes
TLi = length of the longest path (in terms of node weights only)

from the root to node Ni, including both these nodes
 DLi = SLi – TLi
End For
For each node Ni
 Li = list of the DL values of node Ni and all its descendents, in ascending order
End For
Sort all Li lists in lexicographical order and
Re-Order the nodes according to this order
For each node Ni
 Schedule Ni on the host that would complete its execution soonest
End For

The FCA (Fastest Compute-host Available) heuristic operates by keeping a sorted queue

(sorted according to clock rate) of available compute hosts. Whenever all of the predecessors of a

task ni have finished executing (ni is then considered a ready task), FCA assigns ni to the first host

in the queue. This heuristic does not consider communication costs, but is very fast to execute.

Figure V-14 shows the pseudo-code for the FCA heuristic.

While there are still some tasks to schedule
 For each node Ni whose predecessors, if any, have already been scheduled
 Schedule Ni on the fastest host that would start its execution soonest
 End For
End While

Figure V-14: Pseudo-code for the FCA Heuristic

The last heuristic is FCFS, which is the simplest heuristic. FCFS operates by assigning

any ready tasks randomly to any available compute host in the resource collection. It does not

115

consider communication or computational costs, but is very fast to execute. Figure V-15 shows

the pseudo-code for the FCFS heuristic.

While there are still some tasks to schedule
 For each node Ni whose predecessors, if any, have already been scheduled
 Schedule Ni on the host that would start its execution soonest
 End For
End While

Figure V-15: Pseudo-code for the FCFS Heuristic

V.6.1 Sensitivity Studies for Different Heuristics

We perform experiments with DAG configurations with CCR values of 0.01 and 1.0,

parallelism values of 0.4 and 0.8 and keep regularity constant at 0.5 (because regularity impacts

our model the least). For each DAG configuration, we create ten distinct DAG instantiations with

the same DAG characteristics.

We present Figure V-16 and Figure V-17 as the worst-case scenarios for our predictive

model (a single DAG configuration with parallelism value of 0.8 and CCR value of 0.01) for

different scheduling heuristics under different resource conditions. Each of the points represents

the average of the ten DAG instantiations.

Figure V-16 shows the performance degradation for different heuristics. The two more

complex heuristics, MCP and DLS, maintain application turn-around times within 3% of the

approximated best times for different clock rate heterogeneity. The two simpler heuristics, FCA

and FCFS suffer more variability across the different clock rate heterogeneity. In the worst case

for all heuristics, FCA suffers performance degradation of less than 7.3% for resource

heterogeneity between 0.1 and 0.2.

Figure V-17 shows the relative costs of each heuristic over different clock rate

heterogeneity. As with performance degradation, MCP and DLS maintained stable cost savings at

around 40% for most of the range of clock rate heterogeneity. FCA suffers the most performance

116

degradation but yielded the most cost savings at around 65% for the range of clock rate

heterogeneity. As expected, the FCFS heuristic is more random and performance degradation

increases with higher heterogeneity among the resources and costs are more unpredictable.

Performance Degradation for Different Heuristic
vs. Clock Rate Heterogeneity

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Coefficient of Variance for Clock Rates

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

MCP

DLS

FCA

FCFS

Figure V-16: Performance degradation for different heuristics and resource conditions

Relative Cost of Using Different Heuristics vs.
Clock Rate Heterogeneity

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Coefficient of Variance for Clock Rates

C
os

t R
el

at
iv

e
to

 U
si

ng
 O

pt
im

al

S
iz

e

MCP DLS

FCA FCFS

Figure V-17: Relative costs of using different heuristics over different resource conditions

117

Our results indicate that our RC size prediction model is robust and can be applied across

different levels of resource heterogeneity and for different scheduling heuristics. For all of our

sample space, any heuristic running in RCs with any resource heterogeneity achieved application

performance within 7.3% of approximated best performance. Additionally, using our prediction

model consistently provided cost savings ranging from 40% for the more sophisticated MCP and

DLS to 65% for FCA for broad range of resource heterogeneity.

V.7 Effects of Scheduling and Computational Clock Rate Ratios

One possible concern about the applicability of our resource specification predictor is our

usage of reference clock rates for both the scheduling clock rate and the average computational

clock rate within the resource collection during the construction of the size prediction model.

Indeed, it is clear that our predicted RC size could be inaccurate for different scheduling and/pr

computational clock rates. One option is to simply re-construct our predictive model for the clock

rates at hand, which is straightforward if perhaps time-consuming.

An alternative to re-constructing the size prediction models is to examine the effects of varying

the scheduling-to-computational clock rate ratio (SCR). We have two goals for this section:

1. Identify what DAGs would be affected by changing the SCR.

2. Derive formulas predicting the best RC size for DAG affected by changing the SCR.

V.7.1 Identifying DAGs Affected by Varying SCR

Throughout our experiments, we used reference scheduling clock rate of 2.8GHz and

reference computational clock rate of 3.5 GHz. Our strategy for identifying the DAGs affected by

varying the SCR is to re-compute the predicted RC size for all the DAGs in our observation set,

while varying the SCR. We choose SCR value of 0.1, 0.5 1.0, 2.0, 5.0, and 10.0 to represent the

118

range of possible scheduling CPU-to computational CPU-ratios. At the extremes, either the

scheduling or the computational CPU could be faster or slower by a factor of 10. Our

observations from the RC size prediction re-computations are the following:

1. For scheduling heuristics where the scheduling time is negligible, as in the case of

heuristics FCA and FCFS, changing the SCR does not affect the knee values at all. Thus

for all SCR, our size prediction work for FCA and FCFS.

2. For more complex scheduling heuristics MCP and DLS, the changes to the knee values

due to varying SCR are very similar, so we show only the results for MCP hereafter, but

they can be applied to scenarios where DLS is employed.

3. For smaller DAGs (size 1000 and smaller), varying the SCR does not change the

predicted RC sizes in most cases, except for when the parallelism is high (when

parallelism = 0.9). This makes sense because DAGs with higher parallelism have larger

optimal RC sizes. Figure V-18 shows an example plot of predicted size change due to

varying SCR for small DAGs over a range of parallelism and SCR values. It is for DAGs

of size 1000, CCR of 0.01 and regularity of 0.5. The z-axis show the change in predicted

RC size relative to the SCR value of 1. This plot is for a CCR value of of 0.01, but the

plots for all the CCR values show very similar trends. For smaller DAGs, when the

scheduling CPU is significantly slower than the average computational CPU, then the

predicted RC size is decreased to minimize the application turn-around time. (A smaller

RC size implies faster scheduling time.)

119

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

1

5

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

%
 c

ha
ng

e
fr

om
 1

:1
 S

CR

Parallelism (alpha)

SCR

MCP, DAG size 1000, CCR = 0.01

0.00%-10.00%

-10.00%-0.00%

-20.00%--10.00%

-30.00%--20.00%

-40.00%--30.00%

Figure V-18: Example plot of predicted RC size change due to varying SCR for

small DAGs

For bigger DAGs and homogeneous resources, only the highly parallel DAGs are

affected by changing the SCR. Figure V-19 shows an example plot of larger DAGs for

homogeneous resources. It is for DAGs with size 5000, CCR of 0.01, and regularity of 0.5. The

DAGs mostly affected are the ones with parallelism of 0.9 and to a lesser extent parallelism of

0.8. Different CCR values show similar shapes as the plot in Figure V-19. In Figure V-20, we

show a similar plot by fixing the parallelism to 0.9 and varying the CCR. We see that DAGs with

lower CCR values are affected more than the DAGs with higher CCR values. This is expected as

with the lower CCR values DAGs have larger optimal RC sizes. By varying the SCR, we expect

the impact to be greater for DAGs with bigger RC sizes.

120

0.3
0.4

0.5
0.6

0.7 0.8
0.9

0.1
0.5

1
2

5
10

-90.00%

-60.00%

-30.00%

0.00%

30.00%

60.00%

90.00%

120.00%

%
 c

ha
ng

e
fr

om
 1

:1
 S

C
R

Parallelism (alpha)SCR

Homogeneous Resources, DAG size = 5000,
CCR = 0.01

90.00%-120.00%

60.00%-90.00%

30.00%-60.00%

0.00%-30.00%

-30.00%-0.00%

-60.00%--30.00%

-90.00%--60.00%

Figure V-19: Example plot of predicted RC size change due to varying SCR and

parallelism for larger DAGs in homogeneous resource environment

0.10.512510

0.01

0.3

0.8

-75.00%

-50.00%

-25.00%

0.00%

25.00%

50.00%

75.00%

100.00%

%
 c

ha
ng

e
fr

om
 1

:1
 S

C
R

SCR
CCR

Homogeneous Resouces, DAG size 5000,
Parallelism = 0.9 75.00%-100.00%

50.00%-75.00%

25.00%-50.00%

0.00%-25.00%

-25.00%-0.00%

-50.00%--25.00%

-75.00%--50.00%

Figure V-20: Example plot of predicted RC size change due to varying SCR and

CCR for larger DAGs in homogeneous resource environment

121

0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

1

5

-90.00%
-60.00%
-30.00%
0.00%
30.00%
60.00%
90.00%
120.00%
150.00%

180.00%

%
 c

ha
ng

e
fro

m
 1

:1
 S

CR

parallelism (alpha)

SCR

Heterogeneity = 0.3, DAG size 5000, CCR = 0.3

150.00%-180.00%

120.00%-150.00%

90.00%-120.00%

60.00%-90.00%

30.00%-60.00%

0.00%-30.00%

-30.00%-0.00%

-60.00%--30.00%

-90.00%--60.00%

Figure V-21: Example plot of predicted RC size change due to varying SCR and

parallelism for larger DAGs in heterogeneous resource environment

0.10.512510

0.01

0.5
-90.00%

-60.00%

-30.00%

0.00%

30.00%

60.00%

90.00%

120.00%

%
 c

ha
ng

e
fro

m
 1

:1
 S

CR

SCR
CCR

Heterogeneity = 0.3, DAG size 5000, Parallelism = 0.9

90.00%-120.00%

60.00%-90.00%

30.00%-60.00%

0.00%-30.00%

-30.00%-0.00%

-60.00%--30.00%

-90.00%--60.00%

Figure V-22: Example plot of predicted RC size change due to varying SCR and

CCR for larger DAGs in heterogeneous resource environment

122

As we increase the resource heterogeneity, we observe more DAGs affected by the SCR.

Figure V-21 shows an example plot of predicted RC size change due to varying SCR and

parallelism for DAGs with size 5000, CCR of 0.3, regularity of 0.5, and resource heterogeneity of

0.3. For DAGs with other CCR values, we see similar trends. Figure V-22 shows a similar plot by

fixing the parallelism to 0.9 and varying the CCR. Again, we see that DAGs with lower CCR

values are affected more than the DAGs with higher CCR value.

From our observations, we draw the conclusions that smaller DAGs are not particularly

affected by SCR. Larger DAGs are affected when they exhibit high parallelism and low CCR.

With increasing resource heterogeneity, the range of affected parallelism and CCR increases. For

example, for homogeneous resources, DAGs of size 5000 are affected only for parallelism values

of 0.9 and to a smaller extent, 0.8. With resource heterogeneity of 0.3, the affected parallelism

extends to 0.6.

V.7.2 Modifying RC Size Predictions

Although there is nothing fundamentally wrong with the re-construction of the size

prediction model based on new scheduling CPU speed or new mean computational CPU speed, in

this section, we explore another way to modify the predicted RC size based on the reference

scheduling and CPU speeds for various scheduling-to-computational CPU speed ratios. From the

previous section, we can identify the DAGs where a modification is necessary. The remaining

step is to derive formulas to predict new RC sizes based on SCR and the size prediction model

derived earlier in this chapter. From Figure V-20 and Figure V-22, we can fit logarithmic

regression lines to predict the changes in predicted RC size as a function of SCR. Figure V-23

and Figure V-24 show logarithmic formulas to predict changes in predicted RC size as functions

of SCR for homogeneous resources and resource heterogeneity of 0.3, respectively. Both figures

are for DAGs with sizes of 5000, parallelism of 0.9 and regularity of 0.5. The different lines

123

represent different CCR values. As we can see, the lower the CCR values, the bigger the changes

to predicted RC sizes based on changes to SCR. Note that the R squared values for all of the fits

are greater than 0.9, indicating decent fits.

From these two plots (and others like them), we can derive formulas to modify the

predicted RC size as a function of the scheduling-to-computational clock rate ratios. The high R

squared values suggest that the adjusted predicted size would be close to the optimal RC size for

the varying SCR. We draw the conclusion that our RC size prediction model can be applied over

arbitrary scheduling and computational clock rate ratios.

Homogeneous Resouces, DAG size 5000,
Parallelism = 0.9

y = 0.3944Ln(x) + 0.0737
R2 = 0.9362 y = 0.2064Ln(x) + 0.0002

R2 = 0.9438

y = 0.15Ln(x) - 0.0715
R2 = 0.9407

-100.00%

-75.00%

-50.00%

-25.00%

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

0 2 4 6 8 10 12

SCR

%
 c

ha
ng

e
fro

m
 1

:1
 S

C
R

0.01

0.1

0.3

0.5

0.8

1

Log. (0.01)

Log. (0.1)

Log. (0.3)

Figure V-23: Formulas predicting changes in predicted RC sizes as functions of SCR for

DAGs with size 5000, parallelism of 0.9, with homogeneous resources

124

Heterogeneity = 0.3, DAG size 5000, Parallelism = 0.9

y = 0.3914Ln(x) + 0.1217
R2 = 0.9618

y = 0.3054Ln(x) + 0.0247
R2 = 0.9745

y = 0.15Ln(x) - 0.0705
R2 = 0.9041

y = 0.1161Ln(x) - 0.0554
R2 = 0.9013

-100.00%

-75.00%

-50.00%

-25.00%

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

0 2 4 6 8 10 12

SCR

%
 c

ha
ng

e
fr

om
 1

:1
 S

C
R

0.01
0.1
0.3
0.5
0.8
1
Log. (0.01)
Log. (0.1)
Log. (0.3)
Log. (0.5)

Figure V-24: Formulas predicting changes in predicted RC sizes as functions of SCR for

DAGs with size 5000, parallelism of 0.9, with resource heterogeneity of 0.3

V.8 Conclusion

In this chapter, we have provided part of the missing link between applications and

resource selection systems. We have constructed a prediction model based on relevant application

characteristics, in our case scientific workflows, to output the best resource specification to

optimize application performance (or some other utility that the user may specify). In this chapter,

we focused solely on the component of the prediction model that predicts the best number of

resources to use (given a scheduling heuristic) in resource requirement specifications sent to a

resource selection service, while considering performance and cost tradeoffs. In extensive

simulation over a wide range of workflow configurations, we showed that our prediction model

consistently allowed workflows to achieve performance within a few percent of optimal. When

applied to a real application, we showed that our prediction model lead to almost optimal

performance. Furthermore, when comparing the usage of our prediction model with current

125

practice, we have found that using our model is far more cost effective while achieving better

performance.

Our above validation was done for a set of homogeneous resources and a reference

scheduling heuristic. A sensitivity analysis was required to show that our model can maintain

accuracy over different resource heterogeneity and over different scheduling heuristics.

Reproducing comprehensive experiments over all ranges of resource heterogeneity and all

scheduling heuristics such as we did for running MCP over homogeneous resources would have

been extremely time-consuming and near impossible. Instead, we sampled the resource

heterogeneity space and chose four scheduling heuristics as a sensitivity analysis. We found that

our model can be applied to different scheduling heuristics over resources with different levels of

resource heterogeneity and different scheduling heuristics.

While we have validated the accuracy of our RC size predictor for different scheduling

heuristics over different resource heterogeneity, we use a reference clock rate for the scheduler

and an average CPU speed for resource collections. We investigated the effects of using different

reference scheduling-to-computational clock rate ratios (SCR) and found that smaller DAGs are

not particular affected by the SCR. Larger DAGs are affected when they exhibit higher

parallelism and lower CCR. The ranges of affected parallelism and CCR are extended with

increasing resource heterogeneity. Although our techniques for deriving the size prediction model

can be employed to fully re-construct new prediction models based on a new scheduler CPU or a

different average computational CPU, we also derived formulas to show how our predicted RC

sizes can be adjusted to reflect newer SCR. Many of the formulas are based on logarithmic fits

with R squared values greater than 0.9.

While this chapter focused on predicting the best size for a resource collection given the

workflow application and a desired scheduling heuristic, a natural next step is to suggest to the

application user the best scheduling heuristic in conjunction with the best resource specification

126

to provide the optimal application turn-around time at the lower cost. In the next chapter (Chapter

VI), we use similar techniques as those employed in this chapter to construct a heuristic

prediction model that predicts the best heuristic to use given the input workflow application. In

Chapter VII, we combine the heuristic prediction model and the size prediction model and add a

third component called the resource specification generator to automatically generate resource

specifications for different resource selection systems.

V.9 Acknowledgement

Chapter V, in part, has been published as “Generating Grid Resource Requirement

Specifications” by Richard Huang, Henri Casanova, and Andrew A. Chien in the proceedings of

the IEEE International Symposium on High Performance Distributed Computing (HPDC 2007).

The dissertation author was the primary investigator and author of this paper.

Chapter V, in part, has been submitted for publication and will appear as “Automatic

Resource Specification Generation for Resource Selection” by Richard Huang, Henri Casanova,

and Andrew A. Chien in the proceedings of the ACM/IEEE International Conference on High

Performance Networking and Computing (SC 2007). The dissertation author was the primary

investigator and author of this paper.

VI

DERIVING THE BEST SCHEDULING HEURISTIC

Application performance depends not only on the physical resource characteristics, but

also on the scheduling heuristic used to assign application tasks to resources. Recognizing the

need for both the best set of resources, but also the best scheduling heuristic to optimize

application performance, our vision of automatically generating resource specifications is

composed of two models: one that predicts the best RC size and one that predicts the best

scheduling heuristic for a given application. In Chapter V, we formulated an empirical model that

predicts the best RC size given a scheduling heuristic along with the application and an optional

utility function trading off application performance and cost. In this chapter, we focus on

formulating a model that predicts the best scheduling heuristic given an application and additional

performance-cost tradeoff constraints.

A single scheduling heuristic is not likely to yield best application performance for all

resource collections because of the following:

1. Resource collections can vary in size. As the RC size increases, more complex

scheduling heuristics that considers all the possible resources in the RC will take longer

to run. Longer scheduling time contributes to longer application turn-around time.

2. Resource collections can vary in the heterogeneity of clock rates among the resources in

the RC. More complex scheduling heuristics that consider task execution time on each

resource can take advantage of faster resources and potentially reduce the application

makespan. Reducing the application makespan contributes to shorter application turn-

around time.

127

128

The problem we address in this chapter is how to formulate a model to predict the best

scheduling heuristic for a given application. The input to the model is the application itself, with

optional utility function. As seen from the two points above, application performance depends on

the resources on which the scheduling heuristics are assigning tasks. Thus, we define the problem

as formulating an empirical model to predict the best heuristic assuming that the best set of

resources are used for each heuristic (e.g., by using a combination of the RC size predictor from

Chapter V and accounting for resource heterogeneity).

Our proposed approach (similar to our construction of the RC size predictor in the previous

chapter) is as follows:

1. Construct an observation set of DAG configurations spanning relevant DAG

characteristics.

2. For each scheduling heuristics (MCP, DLS, FCA, and FCFS), run experiments over all

the DAG configurations and over different types of resource environments to determine

the best possible application performance for each (DAG configuration, heuristic) pair.

3. For each DAG configuration, compare the best possible application performance from

each of the four scheduling heuristics (they will have different optimal resource

collection sizes).

4. From the observation set of DAG configurations, delineate regions where one heuristic

work better than other heuristics.

5. Construct a prediction model for all DAG configurations based on the above delineated

regions.

6. Validate this model.

129

VI.1 Observation Set of DAG Configurations

We simulate different scheduling heuristics over an observation set of DAG

configurations in an attempt to formulate a model to predict the best scheduling heuristic given

any arbitrary DAG. We hope to derive trends from the results of our simulation to form our

prediction model. Similar to how we choose the observation set for predicting the RC size (in the

previous chapter), we choose our sample values at as evenly-spaced intervals as possible for each

of the relevant DAG parameters. We choose DAG sizes ranging from 100 tasks to 10,000 tasks as

this represents the range of the interesting DAGs scientists run today. For both CCR and

parallelism, we maintain the same observation set DAG characteristic values as before: ranging

from 0.01 to 1.0 for CCR and 0.3 to 0.9 for parallelism. For regularity, we choose a value of 0.5.

From our experiences with the RC size predictor, changes in regularity did not affect the

application makespan significantly and thus we do not expect that two DAGs with identical

characteristics except for regularity would require two different scheduling heuristics to achieve

their respective best application turn-around time. Table VI-1 summarizes the values we choose

for each of the DAG characteristics in the observation set.

Table VI-1: DAG characteristics used for the observation set to derive a model for heuristic
prediction

DAG Characteristic Values
DAG size (# of tasks) 100,500,1000,5000,10000
CCR 0.01, 0.1, 0.3, 0.5, 0.8, 1.0
Parallelism (α) 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9
Regularity (β) 0.5

VI.2 Identifying Trends from Observation Set

We simulate four scheduling heuristics (MCP, DLS, FCA, and FCFS, which are

described in V.6) scheduling each of the 710 DAG configurations (generated by the combination

of the different DAG characteristics listed in Table VI-1) over resource collections of various

130

sizes and various resource heterogeneity. For each DAG configuration, we randomly generate ten

distinct DAG instances (similar to how we generate the observation set of DAGs for the RC size

predictor). For each (DAG configuration, heuristic) pair we determine the best possible

application performance over different resource collection sizes and over different resource

heterogeneity (using coefficient of variance values of 0, 0.01, 0.05, 0.1, 0.2, and 0.3) within the

resource collection.

The trends we observed were the following:

1. We can eliminate FCFS from the heuristic prediction model. For DAG size 500 or

greater, the optimal application turn-around time is achieved by MCP, DLS, or FCA, but

never FCFS. Even in DAG configurations of size 100 where FCFS had the best

application performance, the relative improvement in performance over other scheduling

heuristics is less than 0.1%. We can thus leave FCFS out of any heuristic prediction

model as other scheduling heuristic can achieve application performance that is no worse

than 0.1% in all cases.

Table VI-2 lists all of the best application turn-around times (denoted as “best time”) for

the four scheduling heuristics for DAG configurations in the observation set with CCR

values of 0.8 and 1.0 and parallelism between 0.3 and 0.9. For each scheduling heuristic,

we list the best application turn-around time for that particular DAG configuration and

the resource heterogeneity which enabled that best time. Additionally, for each DAG

configuration, we list the best overall scheduling heuristic and the resource heterogeneity

which enabled that best time.

We see that all four scheduling heuristics have very comparable performance in the cases

where zero resource heterogeneity leads to the best application performance (i.e., CCR

131

0.8, parallelism from 0.4 to 0.8 and CCR 0.9, parallelism from 0.4 to 0.7). In some cases,

using FCFS leads to the best application performance, but the performance gain is less

than 1 second (less than 0.01%) over the other scheduling heuristics. Thus we can

eliminate FCFS from the model because for cases where using FCFS leads to best

performance, another scheduling heuristic can be used to achieve very comparable

performance.

Table VI-2: Application Turn-around times for DAG size 100
 MCP DLS FCA FCFS Overall Best
C
C
R

Parall
elism
(α)

Best
time
(s)

Res
Het

Best
time
(s)

Res
Het

Best
time
(s)

ResH
et

Best
time
(s)

Res
Het

Heuris
tic

Res.
Het.

0.8 0.3 1303 0.3 1217 0.3 1691 0 1691 0 DLS 0.3
 0.4 1707 0 1707 0 1707 0 1707 0 FCA 0
 0.5 1705 0 1705 0 1705 0 1705 0 FCFS 0
 0.6 1713 0 1713 0 1713 0 1713 0 FCA 0
 0.7 1711 0 1711 0 1711 0 1711 0 FCA 0
 0.8 1528 0.3 1518 0.3 1691 0.3 1707 0 DLS 0.3
 0.9 1176 0.3 1178 0.3 1240 0.3 1260 0 MCP 0.3
1.0 0.3 1505 0.3 1398 0.3 1691 0 1691 0 DLS 0.3
 0.4 1707 0 1707 0 1707 0 1707 0 FCA 0
 0.5 1705 0 1705 0 1705 0 1705 0 FCFS 0
 0.6 1713 0 1713 0 1713 0 1713 0 FCFS 0
 0.7 1711 0 1711 0 1711 0 1711 0 FCFS 0
 0.8 1707 0 1707 0 1707 0 1707 0 FCFS 0
 0.9 1457 0.3 1460 0.3 1535 0.3 1556 0 MCP 0.3

2. Given our experimental methodology, higher resource heterogeneity leads to lower

application makespan. For any DAG sized 500 or greater, the optimal application

performance can be achieved with the highest resource heterogeneity in our experiments

(0.3). This is due to the presence of faster machines in the resource collection. Recall that

in all resource collections, we maintain a constant mean clock rate, so higher resource

heterogeneity means some faster machines and some slower machines. Three of the

scheduling heuristics (MCP, DLS, and FCA) considers the clock rate of the machines

when scheduling, thus faster machines led to better application performance. Only for

DAGs of size 100 does there exist some DAG configurations for which homogeneous

132

resources enabled better application performance. In Table VI-3, we show the application

performance degradation using MCP and DLS in a resource collection with a resource

heterogeneity level of 0.3 instead of using FCA or FCFS in a homogeneous resource

environment. Out of the 710 DAG configurations we tested, these 9 configurations are

the only ones for which using a more heterogeneous resource collection did not improve

application performance. In the worst case, the performance degradation is still under

20% for these 1.3% (9 out of 710) DAG configurations for which using a homogeneous

resource collection is better. Thus, we proceed with the assumption that given constant

mean clock rate, higher resource heterogeneity leads to better application performance.

Table VI-3: Performance degradation using 0.3 instead of 0 for resource heterogeneity
CCR Parallelism MCP DLS
0.8 0.4 18.9% 10.1%
 0.5 16.0% 19.0%
 0.6 16.0% 19.0%
 0.7 16.1% 18.0%
1.0 0.4 18.9% 18.7%
 0.5 16.0% 19.0%
 0.6 16.0% 19.0%
 0.7 16.1% 19.1%
 0.8 8.7% 9.2%

3. Using FCA optimizes application performance only for bigger DAGs with lower CCR

and/or higher parallelism. Intuitively, one would expect this trend as FCA is most likely

to perform better for DAGs with higher computational costs and for highly parallelized

DAGs because FCA assigns tasks to the fastest compute resources available. A low CCR

means less communication and thus FCA can be expected to perform better. In terms of

parallelism, a DAG that has 100% parallel tasks would perform best by simply assigning

each task to the fastest compute resource available. Using MCP or DLS would degrade

application performance because of the extra scheduling costs.

133

4. For all DAGs sized 1000 or smaller, either MCP or DLS led to best performance. For

smaller DAGs, the better application makespan achieved by the more complex MCP and

DLS more than offset any of the scheduling costs.

5. Similar performance between MCP and DLS. Across all DAG configurations and

different resource heterogeneity, we observe that MCP and DLS in almost all cases

performed within 5% of each other. Other than similarity in performance, there is no

discernible pattern for conditions under which one heuristic would perform better than

the other. For example, at CCR 0.3 and parallelism of 0.6, MCP outperforms DLS for all

tested DAG sizes except for 100. Yet when we change the parallelism to 0.7, DLS

outperforms MCP when the DAG size is 500 but for no other DAG size.

VI.3 Heuristic Prediction Model Construction

Based on the trends we observed, the problem of predicting the best heuristic reduces to

one of deciding when to use one of MCP or DLS and when to use FCA. We choose to use only

MCP over DLS because for 85% of the DAG configurations with sizes 5000 or 10,000, MCP

performed better. For smaller DAGs, that percentage decreases to less than 50% (DLS performed

better more than half the time). However, even when DLS outperforms MCP, the overall turn-

around time achieved by MCP is still within 5% of DLS. Thus, our problem further reduces to

one of deciding when to use MCP and when to use FCA.

We know that for DAG size 5000 or 10,000, FCA performs better for DAGs with low

CCR and high parallelism, but when the DAG size is 1000, MCP performs better. Thus, we draw

the conclusion that there exists a DAG size between 5000 and 10,000 where using MCP or FCA

would lead to the same performance. In order to determine the threshold (in terms of DAG size)

where MCP ceases to produce the best application turn-around time and instead FCA produces

the best application performance, we resort to linear interpolation to predict application turn-

134

around times between two observation set points. For example, Figure VI-1shows the linear

interpolation between points in the observation set of DAG configurations for DAGs with CCR of

0.3 and parallelism of 0.9. The different lines represent the optimal turn-around times achieved by

the different scheduling heuristics. From Figure VI-1 and many other plots of varying CCR and

parallelism values, we observe that for smaller DAGs, MCP perform better and for bigger DAGs,

FCA perform better. In all the plots, we define the threshold as the intersection between the MCP

line and the FCA line. In Figure VI-1, the DAG size threshold is 1700. For CCR of 0.3 and

parallelism of 0.9, at DAG size of around 1700, we would expect the MCP and FCA would have

similar performance and when DAGs are much bigger than 1700, we would expect that FCA

would have the best performance.

Optim al Turn-Around Tim e for
CCR 0.3, paralle lism 0.9

450
500
550
600
650
700
750
800
850

0 1000 2000 3000 4000 5000

DAG size

O
pt

im
al

 T
ur

n-
A

ro
un

d
Ti

m
e

(s
)

FCFS FCA

DLS MCP

Figure VI-1: Optimal application turn-around time for different heuristics as function of

DAG size

We can finish the construction of our prediction model by deriving the thresholds of all

(CCR, parallelism) pairs. We can then interpolate between the different (CCR, parallelism) pairs

for any arbitrary DAG that falls outside the observation set of DAG configurations. Figure VI-2

shows the surface plot of the threshold values of all (CCR, parallelism) pairs. Any input DAG

above the surface should use FCA to optimize application performance and any DAG below the

surface should use MCP as the scheduling heuristic to optimize performance. Because our

135

observation set of DAG configurations include only DAGs with sizes up to 10,000, the threshold

values above 10,000 in Figure VI-2 is the intersection of extrapolation of the MCP and FCA lines

using size 5000 and size 10,000 points.

0.5 0.6 0.7 0.8 0.9
CCR 0.01

CCR 0.1

CCR 0.3

CCR 0.5

CCR 0.8
CCR 1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

D
AG

 s
iz

e

parallelism

FCA Threshold vs. M CP

16000-18000

14000-16000

12000-14000

10000-12000

8000-10000

6000-8000

4000-6000

2000-4000

0-2000

Figure VI-2: Surface plot for deciding when to use MCP and when to use FCA

VI.4 Model Validation

Our main goal for the heuristic predictor is for it to complete our broad vision for our

automatic resource specification predictor, as seen in Figure VI-3. The heuristic predictor takes as

input a DAG and an optional utility function and outputs the best scheduling heuristic for the size

predictor (discussed in Chapter V). Now that we have formulated the heuristic predictor in

136

Section VI.3, we need to validate the accuracy of the model. Further, we validate the usefulness

of the combination of the heuristic prediction model and the size prediction model as a whole.

Figure VI-3: Overview of Resource Specification Predictor

Our strategy for validating the prediction model is as follows:

1. We choose a set of 16 points on the surface of the plot in Figure VI-2. For each of the

points on the surface, we choose 3 points above and three points below the surface 1%,

10%, and 20% away from the surface for a total of 96 points. Because our size prediction

model is limited to predicting RC sizes for DAGs of at most 10,000 tasks, we are limited

to choosing points that are below the 10,000 DAG size limit so we can validate the

overall application performance of both the heuristic prediction model and the size

prediction model. We choose CCR and parallelism values evenly spaced apart to cover

all portions of the surface plot below the 10,000 size limit. Table VI-4 lists all the points

we choose from the surface as well as the 96 points we choose for validation. These

137

points represent the DAG sizes with the corresponding parallelism and CCR values and a

regularity value of 0.5. For points above the surface, the heuristic predictor predicts using

FCA as the best scheduling heuristics and for points below the surface, the heuristics

predictor predicts using MCP as the best scheduling heuristic.

 Table VI-4: Points chosen to validate the heuristic prediction model
Above surface Below surface parallelism CCR Surface

DAG
size

1% 10% 20% 1% 10% 20%

0.8 0.01 1389 1403 1528 1667 1375 1250 1111
0.8 0.1 2052 2073 2257 2462 2031 1847 1642
0.8 0.3 3157 3189 3473 3788 3125 2841 2526
0.8 0.5 3964 4004 4360 4757 3924 3568 3171
0.8 0.8 4626 4672 5089 5551 4580 4163 3701
0.8 1.0 4890 4939 5379 5868 4841 4401 3912
0.9 0.01 1156 1168 1272 1387 1144 1040 925
0.9 0.1 1333 1346 1466 1600 1320 1200 1066
0.9 0.3 1700 1717 1870 2040 1683 1530 1360
0.9 0.5 2006 2026 2207 2407 1986 1805 1605
0.9 0.8 2606 2632 2867 3127 2580 2345 2085
0.9 1.0 2864 2893 3150 3437 2835 2578 2291
0.7 0.01 2300 2323 2530 2760 2277 2070 1840
0.6 0.01 3140 3171 3454 3768 3109 2826 2512
0.5 0.01 4172 4214 4589 5006 4130 3755 3338
0.7 0.1 4055 4096 4461 4866 4014 3650 3244

2. After we choose the set of points to test, we input the different DAG configurations into

the RC size prediction model to obtain the best RC size. We use resource heterogeneity

of 0.3 for all of these points. Each of these 96 points will have different RC sizes.

3. We run FCA for all the DAG configurations above the surface (from Table VI-4) and

MCP on all the DAG configurations below the surface (from Table VI-4) on the RC size

returned by the size predictor. From this we obtain the application turn-around time for

the DAG configurations using both of our prediction models.

4. Using a semi-brute force method, for each of the 96 DAG configurations, we determine

the best turn-around time for all the scheduling heuristics in our experiments.

Our results are obtained by first running the heuristic prediction model and then running

the RC size prediction model and can fall into one of four categories, summarized by Table VI-5.

138

We define the heuristic model as having predicted accurately when the predicted heuristic (in

conjunction with using the best RC size determined by the semi-brute force method) achieves

best performance; when another heuristic (in conjunction with using the best RC size determined

by semi-brute force method) achieves the best performance, then we define the heuristic model as

having predicted incorrectly.

Since we have a RC size prediction model, we can use it instead of the semi-brute force

approach to predict the best RC size. When the heuristic prediction model accurately predicts the

right heuristic, the RC size prediction model can have one of two possible outcomes:

1. The RC size prediction model accurately predicts the RC size, therefore enabling the

predicted heuristic to achieve the best performance on the predicted RC size.

2. The RC size prediction model predicts the RC size inaccurately, thereby allowing another

heuristic to achieve better performance (also with a predicted RC size for the other

heuristic).

Given that we use the RC size prediction model in conjunction with the heuristic

prediction model, when the heuristic prediction model predicts inaccurately, one of the following

two outcomes is possible:

1. The predicted heuristic achieves best performance using the predicted RC size. This is

only possible because the RC size prediction model predicted inaccurately the best RC

size for the best possible heuristic.

2. Another heuristic achieves better performance using the RC size predicted by the RC

prediction model.

Table VI-5: Possible outcome of validation results
Heuristic Model predicts accurately
AND Coupled with Size Prediction Model
leads to best performance

Heuristic Model predicts inaccurately
But Coupled with Size Model leads to best
performance

Heuristic Model predicts accurately
But another heuristic performed better
coupled with the Size Prediction Model

Heuristic Model predicts inaccurately
AND another heuristic performed better
coupled with the Size Prediction Model

139

Figure VI-4 shows the breakdown of the four scenarios listed in Table VI-5. We see that

for 69.57% of the DAG configurations, the heuristic predictor was accurate in predicting the best

heuristic for the given DAG configuration. For 36.96% of the DAG configurations, even though

the heuristic prediction model accurately predicted the heuristic that can achieve the best

performance, errors from the RC size prediction model allowed another heuristic to achieve better

performance. For 55.43% of the DAG configurations, the combination of both the heuristic

prediction model and the RC size prediction model enabled the application to achieve the best

turn-around time. Only for 7.61% of the DAG configurations did the heuristic model predict the

wrong heuristic and the combination of the two prediction models do not yield the best

application performance.

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

best performance

another heuristic better
w/size predictor

best performance

another heuristic better
w/size predictor

rig
ht

 h
eu

ris
tic

 o
ve

ra
ll

w
ro

ng
 h

eu
ris

tic
 o

ve
ra

ll

Figure VI-4: Breakdown of validation results

140

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%
M

ea
n

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

20% 10% 1% -1% -10% -20%

Distance from FCA-MCP surface plot

Mean Performance Degradation

error from using best heuristic

error from best performance

Figure VI-5: Mean performance degradation from best possible application turn-around

time

While it is important to see the breakdown in percentage of DAG configurations for

which the combined prediction models succeeds or not, it is equally important to examine the

effects of the errors resulting from mispredictions of the models. Figure VI-5 shows the mean

performance degradation from the best possible application turn-around time. The lighter bars

represent the error in predicting the best heuristic. This represents the amount of performance lost

because the prediction model chose the wrong heuristic. We see that the prediction model

correctly identifies MCP as the best scheduling heuristic for all DAG configurations below the

surface of the FCA-MCP plot. The darker bar represents the mean combined error of both of the

prediction models. We see that for all of the DAG configurations we tested, using both of our

prediction models achieved application turn-around time that is less than 4% from the optimal

141

turn-around time, approximately half of the performance degradation can be attributed to each of

the prediction models.

VI.5 Summary

Application performance depends on both physical resource characteristics as well as the

scheduling heuristic. In Chapter V, we constructed an empirical prediction model to predict the

best RC size. We also examined the robustness of the RC size predictor for different resource

heterogeneity and different scheduling heuristic. However, either the application or the user

would still need to specify the scheduling heuristic. In this chapter, we construct a prediction

model to suggest to the application/user the best scheduling heuristic given the application. We

take an empirical approach similar to Chapter V by using an observation set of DAG

configurations spanning different relevant DAG characteristics. By running the four scheduling

heuristics on the observation set of DAG configurations, we can compare the best possible

application performance from each of the four scheduling heuristics and delineate regions in the

DAG configuration space where one heuristic work better than other heuristics.

From our results, we concluded that we can remove FCFS from the heuristic prediction

model because in all cases FCA can perform better or no worse than FCFS. We saw that using

FCA optimizes application performance only for bigger DAGs with lower CCR and/or higher

parallelism. For smaller DAGs or DAGs with higher CCR and/or lower parallelism, using MCP

or DLS led to best application performance.

Constructing our heuristic prediction model consists of deciding when to use MCP/DLS

and when to use FCA. Based on the trends we observed, we choose to use only MCP over DLS

because for 85% of the DAG configurations with sizes 5000 or 10,000, MCP performed better.

Even when DLS outperforms MCP, the overall turn-around time achieved by MCP is still within

5% of DLS. We finish the construction of our prediction model by deciding when to use MCP

142

and when to use FCA. We use linear interpolation to predict the application turn-around times

between two observation set points. We observe MCP performing better for smaller DAGs and

FCA performing better for bigger DAGs. From the linear interpolation, we can determine the

threshold where MCP ceases to have better performance than FCA as the DAG size is increased.

We finish the construction of our model by deriving the thresholds of all (CCR, parallelism)

pairs.

We validated both the heuristic prediction model and the size prediction model from

Chapter V. We see that for 69.57% of the DAG configurations, the heuristic predictor was

accurate in predicting the best heuristic for the given DAG configuration. For 36.96% of the

DAG configurations, even though the heuristic prediction model accurately predicted the

heuristic that can achieve the best performance, errors from the RC size prediction model allowed

another heuristic to achieve better performance. For 55.43% of the DAG configurations, the

combination of both the heuristic prediction model and the RC size prediction model enabled the

application to achieve the best turn-around time. Only for 7.61% of the DAG configurations did

the heuristic model predict the wrong heuristic and the combination of the two prediction models

do not yield the best application performance. We see that for all of the DAG configurations we

tested, on average, using both of our prediction models achieved application turn-around time that

is less than 4% from the optimal turn-around time, approximately half of the performance

degradation (as compared to the optimal turn-around time) can be attributed to each of the

prediction models.

VII

RESOURCE SPECIFICATION PREDICTION

IN PRACTICE

Figure VII-1: Generating resource specifications from heuristic prediction and size
prediction models

143

144

The overarching goal of the work in this dissertation is to bridge the gap between

workflow applications and resource selection systems. We address the question of how an

application (or application user) can request the best set of resources with the notion of a resource

specification predictor. Our resource specification predictor is composed of a resource collection

size predictor, which is developed in Chapter V, and a heuristic predictor, which is developed in

Chapter VI. In this chapter, we address how to use the resource specification predictor in practice

by adding a component to generate resource specifications.

Figure VII-1 depicts our vision for generating resource specifications for three resource

selection systems. Workflow applications characteristics, along with optional designation of

resource heterogeneity and execution requirements are sent to the heuristic prediction model. The

optional designation of resource heterogeneity allows the application to specify the level of

heterogeneity the application can tolerate. By default, the resource specification predictor

assumes applications can tolerate the highest level of resource heterogeneity. The optional

execution requirements may include operating system requirements or memory requirements

necessary to execute the application. The optional execution requirements are not used by the

heuristic prediction model or by the size prediction model but passed to the resource specification

generator.

The heuristic model determines the best heuristic for the given DAG and the given

resource heterogeneity and passes its inputs along with the best heuristic to the size prediction

model. The size prediction model determines the best RC size for the input DAG, the input

resource heterogeneity, and the input scheduling heuristic. It outputs the best RC size, along with

the resource heterogeneity, to the resource specification generator. The resource specification

generator generates a generic resource specification based on the RC size, the resource

heterogeneity, as well as the reference mean clock rate of the resource collection and the

assumptions about the network connectivity. The resource specification generator maps the

145

generic resource specifications to the specific resource specifications of the target resource

selection system.

In Section VII.1, we describe the general strategy for a mapping between the output of

our resource specification predictor and a generic resource specification language. In Sections

VII.2-VII.4, we show the mapping between the generic resource specification language described

in Section VII.1 and actual resource specification languages employed by Condor (Section VII.2),

SWORD (Section VII.3), and the Virtual Grid Execution System (vgES) (Section VII.4). In

Section VII.5, we discuss how our resource specification generator can generate alternative

resource specifications when the initial best resource specifications cannot be fulfilled by the

resource selection system. In Section VII.6, we summarize how our resource specification

predictor can be used in practice.

VII.1 Resource Specification Generator

The resource specification generator is composed of two parts: 1) mapping inputs into

generic resource specifications and 2) mapping the generic resource specification into specific

resource specifications for any resource selection system. We describe the latter in Sections

VII.2-VII.4. In this section, we describe the former by first describing the inputs to the resource

specification generator, then describing our generic resource specification, followed by describing

the mapping from the input to the generic resource specification.

The resource specification generator takes its input from the size prediction model. The

input consists of two parts: the RC size, and the resource heterogeneity. The default resource

heterogeneity is coefficient of variance of 0.3. Before generating specific resource specifications,

we consider a generic resource specification describing the ideal set of resources. A resource

specification is composed of two major components: compute nodes and network connectivity

among the compute nodes. Compute nodes can be either described individually or as a set sharing

146

similar characteristics. Our resource specification generator is designed for arbitrary applications;

thus we do not generate distinct specifications for individual compute nodes. Instead, we focus on

the resource collection as a whole and a single specification for the desired characteristics in

compute nodes. To summarize, a generic resource specification for compute resources is

composed of the following:

1. Size of the resource collection. This information is provided by the size predictor.

2. CPU requirements. We generate CPU requirements from our reference CPU and the

resource heterogeneity. For the default resource heterogeneity, we translate the CPU

speed requirement to be a range of 30% on both sides of 3.5GHz, for a range between

2.45GHz and 4.55GHz. We can further simplify the requirement by removing the upper

bound of 4.55GHz and simply use 2.45GHz as the minimum CPU requirement. This

bound could be further lowered when the resource selection system cannot select a set of

resources with this bound. See Section VII.5 for a full discussion.

3. CPU load. Since we make our assumption of dedicated resources, we require the load to

be 0.

4. All other resource characteristic (such as memory, architecture, processor type, etc.). We

can use the execution requirements passed in by the application. If no requirements are

passed in, we do not consider other resource characteristics. If a resource selection

system requires other resource characteristics, we arbitrarily assign the required values,

while maintaining the same types (e.g., processor architecture) across all resources.

Because no network connectivity information is provided to the resource specification

generator, we depend on our assumptions regarding the network to generate the necessary

resource specifications. Recall that in Chapter V, we assumed a resource environment with high

bandwidth (justified by existing deployment and ongoing researchfor increasing and deploying

higher bandwidth). Such a high network connectivity environment is likely to exist across

147

research institutions where our target scientific workflows are likely to be deployed. In our

experiments, we use a reference bandwidth of 10Gbps, but we can change this depending on the

CCR of the DAG. Since our observation set in construction of the size prediction model has a

range of 100 for CCR, the reference bandwidth can be changed by factors of up to 100; thus, we

can adjust the reference bandwidth down to 100Mbps if necessary. If we know a priori the

bandwidth conditions of the resource environment, we can adjust the network connectivity

specifications accordingly. Assuming high bandwidths are available, we use our reference

bandwidth of 10Gbps. Since latency is negligible, we use an arbitrary value of 100ms. We also

require that the network is fully connected as we do not consider partially (or fully) fragmented

networks in our models. To summarize, a generic resource specification for network connectivity

is composed of the following:

1. Bandwidth. By default, we set this to 10Gbps, but this is a tunable parameter that can be

adjusted according to the resource environment.

2. Latency. By default, we set this to 100ms. For scientific workflows, this value is

negligible; however, some resource selection systems require specific values for

latencies, so we use a default value.

3. Connectivity among compute nodes. By default, we require a fully connected network.

We have this specification for any resource selection specification requiring detailed

connection information between compute nodes.

VII.1.1 Example Application: Montage

To demonstrate the generation of resource specifications from applications, we use the

Montage application. Recall from IV.2.1 that Montage is an astronomy application that creates a

mosaic image of a portion of the sky on demand. Figure VII-2 shows a small Montage workflow.

All Montage workflows are similarly structured and are composed of seven levels. The size of the

148

Montage DAG corresponds to the size of the mosaic. Table VII-1 shows the runtime and the

number of tasks at various levels for a Montage workflow with 4469 tasks.

Figure VII-2: A small Montage workflow

Table VII-1: Number of tasks at various levels of a Montage workflow
Level Task name Number of

Tasks
1 mProject 892
2 mDiffFit 2633
3 mConcatFit 1
4 mBgModel 1
5 mBackground 892
6 mImgtbl 25
7 mAdd 25

When this 4469-task Montage DAG is passed to the resource specification predictor,

along with specifying that the the MCP scheduling heuristic is used and without specifying any

resource heterogeneity, the RC size predictor uses the default resource heterogeneity of 0.3 and

predicts a RC size of 599. This information is passed to the resource specification generator,

which generates the following generic resource specification:

Resources:

1. RC size: 599

2. CPU > 2.45

149

3. load = 0

Network Connectivity

1. bandwidth = 10Gbps

2. latency = 100ms

3. connectivity = mesh

The above generic resource specification is then translated into specific resource

specification languages. We consider three specifications languages in the following sections.

VII.2 Condor

Recall from II.4.2, that Condor [14] is a high throughput computing system that focuses

on workload management for compute-intensive jobs. Applications or users can request resources

by specifying their requests in a high level language called ClassAds.

VII.2.1 Converting to Condor ClassAds

ClassAds require users to specify a list of bilateral requirements called ports. A port

attribute defines the number of and characteristics of the matching candidate ClassAds for its

associated ClassAd to be satisfied. Each port defines Labels that name the candidate bound to that

port. To validly match a gang of ClassAds, all their ports must be bound with compatible ports

(i.e., with no conflict between them) of some other ClassAds in a group.

The strength of ports representing separate resources lies in the flexibility and

expressiveness of the ClassAd system in describing distinct resources for each port, each with

possibly different requirements. This system works well when a handful of distinct resources are

required; however, when the number of resources desired reaches hundreds or thousands, it

becomes cumbersome to specify a port for each machine, given that many machines can share the

150

same exact specifications. Another potential weakness in the ClassAd system is the lack of ability

to specify relationships between compute nodes. One rationale is that the target applications are

compute intensive; therefore network connectivity is not a big issue. A second rationale is the

assumption that all of the resources within a Condor pool are within close proximity and most

likely within some acceptable limits for bandwidth and latency.

The strategy for converting from the generic resource specification generated by our

resource specification generator is straightforward. Because of the lack of network specifications,

we need to focus solely on the resource component. In a ClassAd, we create a number of ports

equal to the RC size predicted by the size predictor. All ports have identical syntax. For each port,

we need to specify a label of “cpu” to correspond to the desire for a CPU. We indicate preference

for faster CPUs by using the keyword “Rank” and indicate constraint on the speed of the CPU by

the keyword “Constraint”. Figure VII-3 shows the ClassAd generated by the resource

specification generator to run the 4469-task Montage from Section VII.1.1. The resource

specification generator specifies a single architecture and operating system for all compute nodes

to eliminate discrepancies in the task execution times from their performance models due to

different architecture or operating system.

151

[Type = “Job”;
 Owner = “Montage user”;
 QDate = ‘ Mon May 30 12:24:56 2007 (PST) -08:00’;
 Ports = {
 [// request first machine
 Label = cpu;
 Rank = cpu.Speed;
 Constraint = cpu.Type ==”Machine” &&
 cpu.Arch == “OPTERON” &&
 cpu.OpSys == “LINUX” &&
 cpu.Speed > “2.45GHz”
],
 [// request second machine
 Label = cpu;
 Rank = cpu.Speed;

Constraint = cpu.Type ==”Machine” &&
 cpu.Arch == “OPTERON” &&
 cpu.OpSys == “LINUX”
 cpu.Speed > “2.45GHz”
]
 …
 [// request 599th machine
 Label = cpu;
 Rank = cpu.Speed;
 Constraint = cpu.Type ==”Machine” &&
 cpu.Arch == “OPTERON” &&
 cpu.OpSys == “LINUX”
 cpu.Speed > “2.45GHz”
]
 }
]

Figure VII-3: ClassAd generated by the resource specification generator to run the

Montage DAG

VII.3 SWORD

Recall from II.4.3, that SWORD [15, 20] is a scalable resource discovery service for

wide-area distributed systems. The focus of SWORD is the set of resources on which users can

deploy services (as opposed to executing a short-lived application). Thus, SWORD runs on

Internet-scale infrastructure machines (such as the nodes of the PlanetLab [50] testbed). SWORD

takes two forms of input: Condor ClassAds and the SWORD query language. We focus on

generating queries that use the SWORD query language. The generation of Condor ClassAds is

addressed in the previous section.

152

VII.3.1 Converting to SWORD XML

To be compatible with SWORD, our resource specification generator can generate the

Condor ClassAd described in Section VII.2.1; however, that specification lacks the network

connectivity information and we can express this information in a SWORD XML. Since we

cannot request an arbitrary number of groups without any further insight into the input

application, our strategy is to request one group, which ensures best performance regardless of

whether the application can be executed over multiple groups. Conveniently, SWORD XML

allows the specification of the number of machines in the group. Using the 4469-task Montage

from Section VII.1.1, the resource specification generator uses 599 for this value. We specify the

required CPU speed by denoting the low and high end of the speed in brackets (e.g., [2.45,

MAX]). The value “MAX“ is used to denote the maximum speed in the system. Based our on

assumption of dedicated machines, we require the load to be less than 0.02, in case of some

routine processes running on any particular machine that is using 1% of the CPU. Similar to the

required CPU speed, we denote the required all pairs latency and bandwidth to match our

assumptions about the resource environment. Because the resource consumption constraints the

user places on evaluating the query (i.e., the first section of the XML query) is optional, the

resource specification generator leaves it out of the SWORD XML query. Also, because we

require only one group, we leave out the third section of the SWORD XML query, which

describes the inter-group constraints. Figure VII-4 shows the SWORD XML query generated by

our resource specification generator. We show the modified XML format for clarity.

153

Figure VII-4: XML query generated by the resource specification generator to run the

Montage DAG

Group RC
NumMachines 599
Required CPU_speed [2.45, MAX]
Required Load [0.0, 0.02]
Preferred Load [0.0, 0.0] penalty 100.0
Required AllPairs Latency [0.0, 100.0] (ms)
Required AllPairs Bandwidth [10.0, MAX]

(Gb/s)

VII.4 The Virtual Grid Execution System

Recall from II.4.1 that the Virtual Grid Execution System (vgES) [16, 17] was designed

and prototyped as part of the Virtual Grid Application Development Software Project (VGrADS)

[29]. The main contribution of VGrADS is the notion of a Virtual Grid (VG), a high-level,

hierarchical abstraction of the resource collection that is needed and used by an application.

Resource selection plays a major role in determining the architecture of vgES because of the end

goal of producing a virtual grid based on the user written vgDL.

VII.4.1 Converting to vgDL

The input to vgES is a resource specification written in a high-level resource description

language, the Virtual Grid Description Language (vgDL). The salient point from vgDL is the

resource aggregate TightBag, which is a collection of heterogeneous nodes with good

connectivity. The strategy for the resource specification generator in generating vgDLs is

straightforward. First we verify that the default latency value for the TightBag threshold is set to

100ms. This ensures the network connectivity portion of the generic resource specification is

satisfied. Given this, requesting a resource collection can be done by simply requesting a

TightBag. Using the 4469-task Montage from Section VII.1.1, the resource specification

154

generator generates a vgDL for a TightBag of 599 nodes, where each node has the requirement of

CPU speed greater than 2.45GHz and a load of 0.

VG =
{
 TightBagOf(nodes) [599:599]
 {

Nodes = [(Clock > 2400) && (Load == 0)]
 }
}

Figure VII-5: vgDL generated by the resource specification generator to run the Montage
DAG

VII.5 Alternative Resource Specification Generation

When our resource specification generator is used in practice, one interesting question

arises: What if the resource selection system cannot fulfill the resources specified by the resource

specification? In this section, we modify our resource specification generator to offer alternative

resource specifications when the initial best resource specification request cannot be fulfilled.

When a resource request cannot be fulfilled, one of two courses of action is possible: 1)

request fewer resources or 2) request slower resources. We do not consider requesting faster

resources because presumably, the original request already included requesting the fastest

resources possible. It is clear that generating alternative resource specifications by strictly

requesting fewer resources or strictly requesting slower resources will not yield the optimal

application performance. The problem of generating alternative resource specifications reduces to

one of determining when to request fewer resources and when to request slower resources.

VII.5.1 Experimental Setup

Our approach to determining when to request fewer resources and when to request slower

resources (similar to the approach in V.2) is to take an observation set of DAG configurations and

155

observe how the application turn-around time varies as a function of the computational clock rate

and a function of RC size. From the application turn-around times generated by the observation

set of DAG configurations, we hope to determine when requesting fewer resources is preferable

to requesting slower resources (and vice versa). In general, we compose our observation set of

DAG configurations by choosing combinations of DAG characteristics that would result in a

bigger optimal RC size. Our reasoning is that bigger RC sizes predicted by our size prediction

model would be more likely lead to resource specifications that cannot be fulfilled by a resource

selection system. Table VII-2 summarizes the experimental setup values for the different DAG

characteristics as well as resource heterogeneity and the different computational clock rates. We

use the reference scheduling heuristic MCP for this set of experiments.

Table VII-2: Experimental setup values for determining alternative resource specifications
DAG characteristics Values
Size 1000, 5000
CCR 0.01, 0.1, 0.5, 1.0
Parallelism (α) 0.7, 0.8, 0.9
Regularity (β) 0.5
Resource Heterogeneity 0.0, 0.3
Computational clock rate (GHz) 2.0, 2.5, 3.0, 3.5

We choose DAG sizes of 1000 and 5000 because bigger DAGs require bigger optimal

RC sizes, thus increasing the likelihood of requiring alternative resource specifications. For CCR

values, we sample a subset of our original observation set of CCR values. For the parallelism

value, we choose values of 0.7, 0.8, and 0.9 as DAGs with higher parallelism requires bigger RC

sizes. For regularity values, we choose only one value of 0.5 based on our experiences in Chapter

V that regularity values does not affect the choice of RC sizes as much as other DAG

characteristics. For the resource heterogeneity, we choose the two extremes of 0.0 and 0.3 as we

are interested to see how heterogeneous resources would affect the choice of alternative resource

specifications. Finally, we choose three other computational clock rates of 2.0GHz, 2.5GHz, and

156

3.0GHz in addition to our reference computational clock rate of 3.5GHz because they represent

regular discrete intervals in computational clock rates.

VII.5.2 Experimental Results

We observed similar plots for all our experiments as shown in Figure VII-6. Figure VII-6

shows the application turn-around time as functions of the computational clock rates and

decreasing RC sizes for DAGs with size of 5000, CCR of 0.01, parallelism of 0.8, and resource

heterogeneity of 0.

From Figure VII-6, we observed that the application turn-around time for a band of

smaller RC sizes for a faster computational clock rate can be achieved by a band of larger RC

sizes for a slower computational clock rate. For example, in Figure VII-6, an RC of 264-280

3.5GHz hosts has application turn-around times of 429.58s-442.75s. This is similar to the

application turn-around time achieved by 384-512 3.0GHz hosts, which achieved application

turn-around times of 432.97s-444.64s. If the resource selection system cannot find 264 hosts with

3.5GHz to compose the RC, then it would be possible to achieve similar performance by utilizing

a larger number of smaller hosts. Note that the best application turn-around achievable by a RC of

the faster 3.5GHz hosts cannot be achieved by any number of slower 3.0GHz hosts because the

application turn-around time at the knee value for 3.5GHz RCs is better than the application turn-

around time at the knee value for 3.0GHz RCs.

157

168

188

240

280

336

448

472
2 2.5 3 3.5

375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750
775
800

ap
pl

ic
at

io
n

tu
rn

-a
ro

un
d

tim
e

(s
)

RC size

clock rate

DAG size = 5000, CCR = 0.01, alpha = 0.8, rvar = 0.0 775-800

750-775

725-750

700-725

675-700

650-675

625-650

600-625

575-600

550-575

525-550

500-525

475-500

450-475

425-450

400-425

375-400

Figure VII-6: Application turn-around time as a function of computational clock rates and

RC sizes

VII.5.3 Generating Alternative Resource Specifications

We make a key observation that for RCs with slower computational rates, the best RC

size is typically the same of slightly bigger than for faster computational rates. From Figure VII-6

(and others like it), we also make the observation it is preferable to use fewer hosts than the

optimal RC size at the 3.5GHz clock rate than to use the optimally sized RC at the 3.0GHz (or

slower) clock rate. At a certain threshold, using hosts at the slower clock rate becomes preferable

than using fewer hosts at the faster clock rate.

Our goal in Section VII.5 is to determine when to request fewer resources and when to

request slower resources. Based on our observations, it seems clear that requesting fewer

158

resources at the faster computational clock rate is preferable until a certain threshold is reached, at

which point using the best RC size at the slower computational clock rate would be equivalent.

Our next step is to determine the thresholds and determine whether any patterns exist for

different DAG sizes, CCR values, and parallelism (α) values. Figure VII-7 shows the relative

threshold value for moving from an RC composed of 3.5GHz hosts to an RC composed of

3.0GHz hosts. The different lines represent different parallelism (α) values. We observe that

requesting RCs composed of 3.0GHz hosts can match the performance of using RCs composed of

3.5GHz hosts when the RC size is decreased to 70% of the best RC size as predicted by our size

prediction model for DAGs with size 5000, parallelism value of 0.9, and CCR value of 0.01. As

the CCR value is increased, the optimal RC size is decreased, thus increasing the importance of

each host in the RC. Correspondingly, we observe from Figure VII-7 that the threshold moving

from 3.5GHz hosts to 3.0GHz hosts decreases as the CCR is increased. We observe very similar

threshold values going from 3.0GHz to 2.5GHz RCs and also similar threshold trends when we

increase the resource heterogeneity to 0.3. When we change the DAG size, we also observe

similar trends.

159

DAG size = 5000, rvar = 0.0

0%
10%
20%
30%
40%
50%
60%
70%
80%

0 0.5 1

CCR

th
re

sh
ol

d
to

 lo
w

er
 c

lo
ck

 r
at

e
le

ve
l

0.7
0.8
0.9

Figure VII-7: Relative RC size threshold for moving from 3.5GHz RCs to 3.0GHz RCs for

DAGs with size 5000 and homogeneous resources

From Section V.2, we have an empirical model to predict the best RC size. Based on

Figure VII-7 and others like it, we have an empirical model of generating alternative resource

specifications. The heuristic we use is to look up the (DAG size, CCR) pair and determine the

threshold when fewer resources should be used and when (more) slower resources should be

used. For example, given a DAG of size 5000, CCR of 0.01 and parallelism of 0.9 and our size

prediction model predicted an optimal size of 100, our resource specification generator would

first generate a resource specification requesting between 70 and 100 (greater than or equal to

3.5GHz) hosts, while expressing a preference for more hosts. If that request cannot be fulfilled,

then the next alternative request would be simply lowering the threshold for computational clock

rate to 3.0GHz. The alternative request would still be requesting between 70 and 100 hosts, this

time the constraint on clock rate would be 3.0GHz or greater, again expressing the preference for

more hosts. In this fashion, we can lower the computational threshold in discrete steps, while

160

expressing a preference for RC size closer to the best RC size at each discrete computational

clock rate.

VII.6 Summary

In this chapter, we showed how our resource predictor can be used in practice. First, we

showed how the input workflow application can be processed by the heuristic predictor and the

size predictor to generate the input to the resource specification generator. Then we showed how

the resource generator can generate generic resource specifications based on the inputs it receives.

At the last step, we show how the resource specification generator maps the generic resource

specification into input languages of three different resource selection systems: Condor ClassAds,

SWORD XML query, and vgES vgDL. We use a 4469-task Montage as an example application

to show how each component of our resource specification predictor function to generate the

respective inputs to the three resource selection systems.

With the resource specification generator in place, a natural question that arises is the

question of what happens when the resource specification cannot be fulfilled by the resource

selection system. The question reduces to one of when to request fewer resources and when to

request slower resources. To answer this question, we compose a heuristic based on the

application performance as a function of both the RC size and the computational clock rate. Our

heuristic in effect traverses the resource size space and the computational clock rate space in a

zigzag manner to ensure the best application performance given available resource constraints.

VIII

CONCLUSION

Over the recent years, the number of deployed clusters and the sizes of these clusters

have grown due to dropping hardware costs and increasing availability of cluster management

software. The emergence of large-scale distributed environments (LSDEs) is at the same time

fueled by advances in hardware (computing clusters and networking routers and fibers) and by

demands from the scientific community. With the growing need to share data and resources

across geographically diverse regions, we have witnessed the establishment of more and more

LSDEs as institutions are willing to share their resources in a collaborative effort.

The establishment of LSDEs brings new capabilities but also new challenges for

executing applications. One important challenge is selecting the appropriate set of resources on

which to execute different application components. This topic has been widely studied [9-19] and

implemented in practice. The key observation that motivates the work in this dissertation is that

there is a missing link between resource selection systems and applications. Resource selection

systems are designed to return quickly and as closely a match to a resource specification

whenever possible. However, most application users are interested in optimizing application

performance. The missing link is that the application user has no sound basis for building the

resource specification, that is the one that would return a set of resources that would in turn lead

to best application performance. The question of what the “best” resource specification, that is the

specification that will ultimately lead to best application performance as perceived by the user, is

elusive at best.

161

162

In this dissertation we set out to prove the thesis statement that automatic resource

specification generation is necessary and feasible to optimize LSDE application performance in a

cost-effective manner. Further, we recognize that application performance is also dependent on

the scheduling heuristic. Thus, we also want to provide guidance for the best scheduling heuristic

in addition to the automatic resource specification generation.

VIII.1 Dissertation Contributions

The first question we addressed in this dissertation is how resource selection affects

application scheduling. Resource selection is a part of scheduling, whether implicit or explicit.

Using both a simplistic greedy scheduling heuristic and the more sophisticated MCP scheduling

heuristic, we have shown that for both the Montage application and a spectrum of randomly

generated DAGs, explicitly pre-selecting resources before running the scheduling heuristic on a

subset of the resource universe always improved application performance, sometimes by several

orders of magnitude. This held true when using either a naïve or a more sophisticated resource

abstraction for resource selection.

We have shown that under most conditions, when one explicitly selects an appropriate

resource collection, a simplistic scheduling heuristic can be employed to achieve similar to better

performance than using a more sophisticated scheduling heuristic. A natural question was to ask

how to compose such an appropriate resource collection. Our solution was an empirical model

based on relevant application characteristics to predict the appropriate resource collection for any

application. First, we constructed a model that predicts the best size for a homogeneous

architecture resource collection. This model is based on an input scheduling heuristic and a utility

function to tradeoff performance and cost. In extensive simulation over a wide range of workflow

configurations, we showed that our prediction model consistently allowed workflows to achieve

performance within a few percent of optimal. When applied to a real application, we showed that

163

our prediction model leads to almost optimal performance. Furthermore, when comparing the

usage of our prediction model with current and typical practice of using the maximum application

parallelism as the resource collection size, we found that using our model is far more cost

effective while achieving better performance. We then performed a sensitivity analysis of our

model by using different resource heterogeneity and different scheduling heuristics. We found

that our model can be applied to different scheduling heuristics over resources with different

heterogeneity. Finally, we investigated the effects of using different reference scheduler to

computational clock rate ratios. Although our techniques for deriving the size prediction model

can be employed to re-construct new prediction models based on a new scheduler clock rate or a

different average computational clock rate, we also derived formulas to show how our predicted

RC sizes can be modified to reflect arbitrary scheduler or computational clock rates.

The natural next step was to suggest to the application user the best scheduling heuristic

in conjunction with the best resource specification to provide the optimal application turn-around

time at the optimal cost. We constructed another empirical model to predict the best scheduling

heuristic based on an input application and utility function. For all of the randomly generated

workflow applications we tested, we found that using both of our prediction models achieved

application turn-around time that is very close to the optimal turn-around time, approximately

half of the performance degradation can be attributed to each of the prediction models.

Finally, we incorporated our two prediction models into an automatic resource

specification generator. With the outputs of the two empirical models, our resource specification

generator automatically generated resource specifications for three resource selection systems: the

Virtual Grid Execution System, Condor, and SWORD. We analyzed the syntax and translated the

outputs of our empirical models into each of the three resource selection languages. Our last

contribution was an analysis of the scenarios under which our generated resource specifications

does not return any resources from the resource selection systems. We answer the question of

164

when to request fewer resources and when to request slower resources when the original best

resource specification cannot be fulfilled. We construct a heuristic that zigzags the resource size

space and the computational clock rate space to ensure the best application performance given

available resource constraints.

VIII.2 Future Directions

In this dissertation, we have made the following simplifying assumptions in constructing

our resource specification generator:

i. Homogeneous network connectivity.

ii. Using dedicated resources.

iii. Application performance strictly as a function of the scheduling time and the

application makespan.

iv. Available and accurate performance models for each of the tasks in the

workflows.

v. DAGs of a certain size (i.e., between 100 and 10,000 tasks).

In future work we could explore ways for relaxing some of these assumptions.

VIII.2.1 Homogeneous Network Connectivity

One assumption we made is the homogeneous and high network connectivity among the

compute resources. Although our range of CCR values in our prediction models allows the

prediction model can maintain accuracy over lower connectivity networks, one interesting area to

address is the heterogeneity in network connectivity. We expect that it is possible to construct

similar empirical prediction models for highly heterogeneous networks. The main challenge

would be to accurately model such a network. Currently, we are not aware of any de facto

modeling of highly heterogeneous networks.

165

One potential interesting implication in delineating optimal network connectivity is the

added constraints on the resource selection systems. For systems such as VGES where the

network connectivity is treated as a binary value of high or low bandwidth (as implied by the

latency values), it might not be possible to express quantitively the optimal network connectivity.

For systems such as Condor where network connectivity is not expressible even in binary form,

deriving the optimal network connectivity would not have added benefits. However, for systems

such as SWORD where users (or the automatic resource specification generator) can specify the

exact network requirements, potentially application performance can be improved, at the expense

of added complexity stemming from trading off time spent searching for the optimal set of

resources with the desired network connectivity and the benefits of having as close as possible to

such a set of resources with optimal network connectivity.

VIII.2.2 Using Shared Resources

Another assumption that can be relaxed is the dedicated use of resources in executing

applications. Due to increasing number of clusters along with increasing sizes for clusters,

dedicated usage of compute resources should be prevalent; however, there remains compute

resources which are shared. The best solution for optimizing application performance in a shared

resource environment is to have a good application monitor and application tasks that can be

migrated to other resources when any single resource becomes too overloaded. In the context of

our prediction models, there exist two possibilities for the application. The first possibility is that

the application has checkpointing or migrating capabilities for individual tasks. Either the

application or the grid middleware needs to provide the appropriate monitoring software to detect

when a particular task needs to be migrated due to overloading on a particular compute resource.

In such a case, the adjustment to our empirical model in predicting the RC size would be

proportional to how often any task would require migration. The adjusted best RC size would be

166

a size where everytime a task needs to migrate from a compute resource, another compute

resource would be available and either lightly or not loaded. The second possibility is that the

application does not have checkpointing or migrating capabilities. In such a case, the appropriate

research direction is investigating a heuristic that can predict when and how often a particular

resource may become overloaded. The strategy in optimizing application performance is to use

this heuristic as part of the scheduling heuristic and avoid scheduling tasks on resources that are

likely to become overloaded.

VIII.2.3 Other Factors in Determining Application Performance

In this dissertation, we have defined the application performance strictly as the sum of the

scheduling time and the application makespan. However, other factors may be contributing to the

overall application turn-around time. For example, the time required for staging each task on a

compute host may not be negligible. Additionally, time spent initializing and authenticating

permissions for one single task on different compute resources may not be negligible and may be

in fact heterogeneous. An interesting research direction would be to model these non-negligible

task staging/authentication times into the overall application turn-around time. The empirical

models constructed in this dissertation can be adjusted to take into account these additional

factors in the application performance.

VIII.2.4 Available and Accurate Performance Models

In this dissertation, we make the assumption that for any given application, an associated

performance model is provided. For scientific workflows where each tasks has been executed

many times, this assumption is realistic. However, for some other applications, performance

models for each of the tasks may not be readily available. One interesting area of study is to

predict task runtimes without the benefit of executing the task first.

167

Another assumption we make is the accuracy of the performance models. With any

performance model, one can reasonably expect some variance from the predicted task runtime.

One interesting research direction is to investigate the effects of the task runtime variance on the

empirical prediction models in this dissertation.

VIII.2.5 Identifying Optimal DAG size

Another area of potentially interesting research is one of identifying the optimal DAG

size relative to scheduling costs. The Montage workflow has tasks that are the results of unrolling

some loops in a bigger “task”. The loops in Montage are unrolled in an attempt to maximize

parallelism. In this dissertation, we treat the results of the complete unrolling of loops as one

DAG. Yet different sized DAGs are affected by scheduling costs in different ways. It may be

possible to divide any bigger “task” of an application into an optimally sized DAG with regards

to scheduling costs.

If it is possible for applications to be arbitrarily divisible into variable sized DAGs, it

would be interesting to find an optimal size where parallelism can be maximized and the costs of

running the scheduling algorithm can be minimized. One related scheduling heuristic is Dominant

Sequence Clustering (DSC) Algorithm [83]. DSC works by merging (“cluster”) tasks to optimize

communication costs. However, the end result of running DSC is a series of clusters, each of

which should be executed on one physical host. Instead of merging tasks, we are interested in

expanding tasks such that parallelism can be maximized without incurring excessive scheduling

costs.

REFERENCES

1. National HPCC Software Exchange: http://www.nhse.org/index.htm.

2. Cluster Management Software Review: http://nhse.cs.rice.edu/NHSEreview/CMS/.

3. CNRI, Corporation for National Research Initiatives, Gigabit Initiative Final Report,
December 1996, http://www.cnri.reston.va.us/gigafr/index.html.

4. TeraGrid. http://www.teragrid.org/.

5. Open Science Grid: http://www.opensciencegrid.org/.

6. Grid3: http://www.ivdgl.org/grid2003/.

7. Grid5000: https://www.grid5000.fr/.

8. Globus http://www.globus.org.

9. Raman, R., M. Livny, and M. Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. in Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing. 1998. Chicago,
IL.

10. Raman, R., M. Livny, and M. Solomon. Policy Driven Heterogeneous Resource Co-
Allocation with Gangmatching. in Proceedings of the Twelfth IEEE International
Symposium on High-Performance Distributed Computing. 2003. Seattle, WA.

11. Coleman, N., et al., Distributed Policy Management and Comprehension with Classified
Advertisements. 2003, University of Wisconsin-Madison Computer Sciences Technical
Report #1481.

12. Liu, C., et al. Design and Evaluation of a Resource Selection Framework for Grid
Applications. in Proceedings of the 11th IEEE International Symposium on High-
Performance Distributed Computing. 2002. Edinburgh, Scotland.

13. Liu, C. and I. Foster, A Constraint Language Approach to Grid Resource Selection. 2003,
University of Chicago Department of Computer Science Technical Report (TR-2003-07).

168

http://www.nhse.org/index.htm
http://nhse.cs.rice.edu/NHSEreview/CMS/
http://www.cnri.reston.va.us/gigafr/index.html
http://www.teragrid.org/
http://www.opensciencegrid.org/
http://www.ivdgl.org/grid2003/
http://www.grid5000.fr/
http://www.globus.org/

169

14. Litzkow, M., M. Livny, and M. Mutka. Condor -- A Hunter of Idle Workstations. in
Proceedings of the 8th International Conference of Distributed Computing Systems.
1988.

15. Oppenheimer, D., et al., Scalable Wide-Area Resource Discovery. 2004, UC Berkeley
Technical Report UCB//CSD-04-1334.

16. Chien, A., et al., The Virtual Grid Description Language: vgDL. 2004, UCSD Technical
Report CS2005-0817.

17. Kee, Y.-S., et al. Efficient Resource Description and High Quality Selection for Virtual
Grids. in Proceedings of the IEEE Conference on Cluster Computing and the Grid. 2005.

18. Dinda, P. and D. Lu. Nondeterministic Queries in a Relational Grid Information Service.
in Proceedings of the Supercomputing Conference. 2003.

19. Lu, D., P. Dinda, and J. Skicewicz. Scoped and Approximate Queries in a Relational
Grid Information Service. in Proceedings of the 4th International Workshop on Grid
Computing. 2003.

20. Oppenheimer, D., et al. Design and Implementation Tradeoffs for Wide-Area Resource
Discovery. in Proceeding of the 14th IEEE Symposium on High Performance Distributed
Computing (HPDC-14). 2005.

21. Dongarra, J., et al., eds. The Sourcebook of Parallel Computing. 2002, Morgan
Kaufmann Publishers: San Francisco.

22. http://rocks.npaci.edu/Rocks/.

23. Papadopoulos, P., M. Katz, and G. Bruno. NPACI Rocks: Tools and Techniques for
Easily Deploying Manageable Linux Clusters. in In the Proceedings of the IEEE
International Conference on Cluster Computing. 2001.

24. Berman, F., G. Fox, and T. Hey, eds. Grid Computing: Making the Global Infrastructure
a Reality. 2002, Wiley.

25. OptIPuter project. http://www.optiputer.net/.

26. http://www.griphyn.org.

27. Globus Monitoring and Discovery System (MDS). http://www-
unix.globus.org/toolkit/mds/.

28. Internet Scout Project, http://scout.cs.wisc.edu/scout.

29. The Virtual Grid Application Development Software Project, http://vgrads.rice.edu.

30. GRAM: http://www.globus.org/toolkit/docs/3.2/gram/ws/.

http://rocks.npaci.edu/Rocks/
http://www.optiputer.net/
http://www.griphyn.org/
http://www-unix.globus.org/toolkit/mds/
http://www-unix.globus.org/toolkit/mds/
http://scout.cs.wisc.edu/scout
http://vgrads.rice.edu/
http://www.globus.org/toolkit/docs/3.2/gram/ws/

170

31. Wu, M.-Y. and D.D. Gajski, Hypertool: A Programming Aid for Message-Passing
Systems. IEEE Transactions on Parallel and Distributed Systems, 1990. 1(3): p. 330-343.

32. Kwok, Y.-K. and I. Ahmad, Dynamic Critical-Path Scheduling: An Effective Technique
for Allocating Task Graphs to Mutiprocessors. IEEE Transactions on Parallel and
Distributed Systems, 1996. 7: p. 506-521.

33. El-Rewini, H. and T.G. Lewis, Scheduling Parallel Program Tasks onto Arbitrary Target
Machines. Journal of Parallel and Distributed Computing, 1990. 9: p. 138-153.

34. Braun, T., et al., A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of
Parallel and Distributed Computing, 2001. 61: p. 810-837.

35. GridFTP: http://www.globus.org/grid_software/data/gridftp.php.

36. Berman, F., et al., The GrADS Project: Software Support for High-Level Grid
Application Development. International Journal of High Performance Computing
Applications, 2001. 15(4): p. 327-344.

37. Cooper, K., et al. New Grid Scheduling and Rescheduling Methods in the GrADS Project.
in Workshop for Next Generation Software. 2004. Santa Fe, NM.

38. Ribler, R.L., H. Simitci, and D. Reed, The Autopilot performance-directed adaptive
control system. Future Generation Computer Systems, 2001. 18(1): p. 175-187.

39. Schopf, J., et al., Monitoring and Discovery in a Web Services Framework: Functionality
and Performance of the Globus Toolkit's MDS4. 2005, Argonne National Laboratory.

40. http://www.globus.org/toolkit/mds/.

41. Foster, I. Globus Toolkit Version 4: Software for Service-Oriented Systems. in IFIP
International Conference on Network and Parallel Computing. 2005: Springer-Verlag
LNCS 3779.

42. Foster, I. and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 1997. 11(2): p. 115-128.

43. Massie, M.L., B. Chun, and D. Culler, The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. Parallel Computing, 2004. 30(7).

44. Sacerdoti, F., et al. Wide Area Cluster Monitoring with Ganglia. in In Proceedings of the
IEEE Cluster 2003. 2003.

45. http://www.cs.wisc.edu/condor/hawkeye/.

46. http://www.openpbs.org/about.html.

47. http://www.platform.com/Products/Platform.LSF.Family/.

http://www.globus.org/grid_software/data/gridftp.php
http://www.globus.org/toolkit/mds/
http://www.cs.wisc.edu/condor/hawkeye/
http://www.openpbs.org/about.html
http://www.platform.com/Products/Platform.LSF.Family/

171

48. http://glueschema.forge.cnaf.infn.it/.

49. Logothetis, D., et al., Failure-Resilient Expectations for Federated Systems. 2006, UCSD
Technical Report CS2006-0865.

50. PlanetLab: https://www.planet-lab.org/.

51. Fu, Y., et al. SHARP: An Architecture for Secure Resource Peering. in Proceeding of the
Sumposium on Operating Systems Principles (SOSP). 2003.

52. Czajkowski, K., et al., SNAP: A Protocol for Negotiating Service Level Agreements and
Coordinating Resource Management in Distributed Systems. Lecture Notes in Computer
Science, 2002(2537): p. 153-183.

53. http://www.extreme.indiana.edu/swf-survey/.

54. Barish, B. and R. Weiss, Ligo and detection of gravitational waves. Physics Today, 1999.
52(10).

55. Deelman, E., et al. GriPhyN and LIGO, building a virtual data grid for gravitational
wave scientists. in Proceedings of the IEEE High Performance Distributed Computing.
2002.

56. Hastings, S., et al. Image Processing on the Grid: a Toolkit for Building Grid-enabled
Image Processing Applications. in Proceedings of the International Symposium on
Cluster Computing and the Grid. 2003.

57. Berriman, G.B., et al. Montage: a Grid Enabled Engine for Delivering Custom Science-
Grade Image Mosaics on Demand. in Proceedings of the SPIE Conference on
Astronomical Telescopes and Instrumentation. 2004.

58. Foster, I. and C. Kesselman, eds. Computational Grids: Blueprint for a New Computing
Infrastructure. 2nd ed. 2003, M Kaufman Publishers, Inc.

59. Graham, R.L., et al., Optimization and approximation in deterministic sequencing and
scheduling: A survey. Ann. Discrete Math, 1979. 5: p. 287-326.

60. Ali, S., et al., Modeling Task Execution Time Behavior in Heterogeneous Computing
Systems. Special Tamkang University 50th Anniversay Issue, 2000. 3(3): p. 195-207.

61. Singh, G., C. Kesselman, and E. Deelman, Optimizing Grid-Based Workflow Execution.
2005, University of Southern California 05-851 PDF.

62. Marin, G. and J. Mellor-Crummey. Cross Architecture Performance Predictions for
Scientific Applications Using Parameterized Models. in Proceedings of the joint ACM
SIGMETRICS-Performance 2004 Conference on Measurement and Modeling of
Computer Systems. 2004.

63. Lu, D. and P. Dinda. Synthesizing Realistic Computational Grids. in In the Proceedings
of Supercomputing 2003. 2003.

http://glueschema.forge.cnaf.infn.it/
http://www.planet-lab.org/
http://www.extreme.indiana.edu/swf-survey/

172

64. Kee, Y.-S., H. Casanova, and A. Chien. Realistic Modeling and Synthesis of Resources
for Computational Grids. in Proceedings of the ACM Conference on High Performance
Networking and Computing. 2004.

65. Waxman, B.M., Routing of Multipoint Connections. IEEE Journal of Selected Areas in
Communications, 1988. 6(9): p. 1617-1622.

66. Doar, M.B. A Better Model for Generating Test Networks. in Proceedings of IEEE
Global Telecommunications Conference (GLOBECOM). 1996.

67. Faloutsos, M., P. Faloutsos, and C. Faloutsos. On Power-Law Relationships of the
Internet Topology. in Proceedings of the ACM SIGCOMM. 1999.

68. Jin, C., Q. Chen, and S. Jamin, Inet: Internet Topology Generator. 2000, Technical
Report CSE-TR443-00, Department of EECS, University of Michigan.

69. Medina, A., et al. BRITE: An Approach to Universal Topology Generation. in
Proceedings of MASCOTS '01. 2001.

70. Buyya, R., D. Abramson, and J. Giddy. An Economy Driven Resource Management
Architecture for Global Computational Power Grids. in In the Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications. 2000.

71. Xen Virtual Machine: http://www.cl.cam.ac.uk/research/srg/netos/xen/.

72. Vahdat, A., et al. Scalibility and Accuracy in a Large-Scale Network Emulator. in
Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI). 2002.

73. Kwok, Y.-K. and I. Ahmad, Benchmarking and Comparison of the Task Graph
Scheduling Algorithms. Journal of Parallel and Distributed Computing, 1999. 59(3): p.
381-422.

74. Deelman, E., et al. Pegasus: Mapping Scientific Workflows onto the Grid. in Across
Grids Conference 2004. 2004. Nicosia, Cyprus.

75. Deelman, E., et al., Pegasus: a Framework for Mapping Complex Scientific Workflows
onto Distributed Systems. Submitted to Scientific Programming, 2005.

76. Ibarra, O.H. and C.E. Kim, Heuristic Algorithms for Scheduling Independent Tasks on
Nonidentical Processors. Journal of the ACM, 1977. 24(2): p. 280-289.

77. Jacob, J.C., et al. The Montage Architecture for Grid-Enabled Science Processing of
Large, Distributed Datasets. in Proceedings of the Earth Science Technology Conference
(ESTC). 2004.

78. Eagle Nebula Wiki: http://en.wikipedia.org/wiki/Eagle_Nebula.

79. Amazon Elastic Cloud: www.amazon.com/ec2.

http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://en.wikipedia.org/wiki/Eagle_Nebula
http://www.amazon.com/ec2

173

80. EMAN, http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc.

81. Southern California Earthquake Center. http://www.scec.org/.

82. Shih, G.C. and E.A. Lee, A Compile-Time Scheduling Heuristic for Interconection-
Constrained Heterogeneous Processor Architectures. IEEE Transactions on Parallel and
Distributed Systems, 1993. 4(2): p. 75-87.

83. Yang, T. and A. Gerasoulis, DSC: Scheduling Parallel Tasks on an Unbounded Number
of Processors. 1994, Rutgers Technical Report TRCS94-12: New Brunswick, NJ.

http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc
http://www.scec.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

