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Civil structures undergo progressive deterioration due to ageing under the effects of 

environmental conditions. This deterioration has become a worldwide concern. In addition, 

natural and man-made hazards such as earthquakes, hurricanes, and explosions can also cause 

structural damages or exacerbate existing damage. Vibration-based structural damage 

identification and health monitoring has been the subject of significant research in structural 

engineering over the past decade.  

The research work presented in this dissertation consists of: (1) a comparative study of 

output-only system identification techniques as applied to the Alfred Zampa Memorial Bridge 

based on dynamic field test data, through which the performance of different output-only 

system identification methods applied to the bridge vibration data and corresponding to 



 

xviii

different excitation sources is investigated; (2) development of a simulation framework for 

wind-induced ambient vibration response of Vincent Thomas Bridge using a detailed three-

dimensional finite element model of the bridge and a state-of-the-art stochastic wind 

excitation model, which provides a validated framework to study the effects of realistic 

damage scenarios in long-span cable-supported bridges on their identified modal parameters; 

(3) damage identification of a full-scale seven-story reinforced concrete building slice tested 

on the UCSD-NEES shake table using a sensitivity-based finite element model updating 

strategy based on the modal parameters identified from ambient vibration data; (4) 

development and implementation of a state-of-the-art long-term continuous monitoring system 

on the Voigt Bridge Testbed, which will serve as a live laboratory for structural health 

monitoring technologies; (5) development of an automated system identification procedure for 

extracting modal parameters of the Voigt Bridge as a function of time; and (6) investigation of 

the environmental effects on the identified modal parameters of the Voigt Bridge and 

objective criterion for damage detection under varying environmental conditions. 

The research work presented and the results obtained in this dissertation contribute 

significantly to the development of robust and reliable vibration-based structural health 

monitoring systems for large and complex real-world structures.  



1 

Chapter 1 

Introduction 

1.1 Introduction of Vibration-Based Structural Damage Identification and Health 

Monitoring 

Civil structures undergo progressive deterioration due to ageing under the effects of 

environmental conditions. This deterioration has become a worldwide concern. In the United 

States, over 50% of all bridges were built before the 1940’s and approximately 27.5% of these 

structures are structurally deficient (Stalling et al., 2000; Fraser, 2006; Yan, 2006). In addition, 

natural and man-made hazards such as earthquakes, hurricanes, and explosions could also 

cause structural damages or exacerbate the existing damage.  

As a traditional method, visual inspection has been widely applied for damage 

detection. However, this method has some inherent drawbacks: (1) Only the observable 

damage can be detected by visual inspection. It is very difficult (if not impossible) to detect 

some hidden damages inside a structure. However, these hidden damages may cause sudden 

collapse of the structure. (2) Structural condition assessment is based on subjective criteria by 

using the visual inspection method. For a structure, different inspectors could make different 

judgments as to the extent and significance of damage. (3) The visual inspection is a very time 

inefficient and expensive method. The depth visual inspection carried out on the Brooklyn 

Bridge in New York consumed three months of time at a cost of over one-million dollars 

(Aktan et al., 2001; Fraser, 2006). (4) It is impossible to perform continuous monitoring of a 
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structure using the visual inspection method. Even though the inspection can be repeated over 

a period, it is possible that some serious damages could happen between two inspections.  

Thus the vibration-based structural damage identification and health monitoring has 

been the subject of significant research in structural engineering in recent years (Doebling et 

al., 1996; Farrar and Jauregui, 1998; Sohn et al., 2003; Guan, 2006). The basic premise of 

vibration-based structural damage identification is that changes in structural characteristics 

such as mass, stiffness, and energy dissipation mechanisms, will influence the vibration 

response of structures. Therefore, changes in structural dynamic properties / modal properties 

(i.e., natural frequencies, damping ratios, mode shapes, and quantities derived thereof) are 

often used as damage indicators in damage identification of civil structures. In order to 

identify structural damage / deterioration at an early stage and to enable maintenance and 

repair works at the initial damage phase, to maximize the lifespan of the structure at minimum 

life-cycle costs, while guaranteeing structural safety and reliability, it is necessary to perform 

long-term continuous health monitoring of the structure during its service life. With recent 

development in the PC-data based data acquisition systems, wireless technologies, and the 

broadband data transmission, there is the potential to acquire different types of data such as 

acceleration response measurements and environmental condition measurements from a large 

number of channels and stream the data in real-time or near real-time over the Internet to 

various remote locations (Fraser, 2006; Guan, 2006). Long-term continuous health monitoring 

of a structure makes it possible not only to allow for the early identification of possible 

damages existing in the structure using real-time data to ensure structural and operational 

safety, but also to (1) evaluate the health condition of the structure shortly after a major 

catastrophic event such as earthquake, hurricane, and terrorism attack; and (2) study the 
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effects of varying environmental conditions such as temperature and humidity on the modal 

properties. 

In this chapter, the vibration-based damage identification techniques are first reviewed. 

Then the objectives and scope of this research are addressed. Finally the organization of this 

dissertation is presented. 

1.2 Literature Review of Vibration-Based Structural Damage Identification 

Salawu (1997) presented a review on the use of natural frequency changes for damage 

detection. It is however challenging if not impossible to localize the detected damage (e.g., to 

obtain spatial information on the damage) from changes in natural frequencies only. Pandey et 

al. (1991) introduced the concept of mode shape curvature for damage localization. In their 

study, both a cantilever and a simply supported beam model were used to demonstrate the 

effectiveness of using changes in modal curvature as damage indicator to detect and localize 

damage. As an extension of this work, Abdel Wahab and De Roeck (1999) introduced the 

concept of curvature damage factor, which was defined as the average of difference in modal 

curvature through overall modes. In their study, a simply supported and a continuous beam 

model containing damaged parts at different locations were used to demonstrate the presented 

method. It was found that the modal curvature of lower vibration modes was in general more 

accurate than those of the higher vibration modes and when more than one fault existed in the 

structure, it was not possible to localize damages in all locations from the modal curvature of 

only one vibration mode. The technique proposed in their study was further applied to a real 

structure, namely Bridge Z24. It should be noted that the mode shape curvatures are sensitive 

to damage, but the differentiation process enhances the experimental errors inherent in mode 

shapes, yielding a large statistical uncertainty. To overcome this difficulty, Ho and Ewins 
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(2000) proposed changes in the mode shape slope squared as damage indicating features. To 

compute the derivative of the mode shape, a local polynomial was fit through every four 

consecutive measurement points and the resulting polynomial was differentiated. They noted 

that this way of computing mode shape derivatives was subjected to smaller variations than 

those with a finite difference approximation, which is typically used to calculate the 

derivatives. 

As another mode shape based damage indicator, Pandey and Biswas (1994) proposed 

the use of changes in the dynamically measured flexibility matrix to detect and localize 

damage. They showed that the flexibility matrix of a structure can be easily and accurately 

estimated from a few low frequency vibration modes of the structure. Toksoy and Aktan (1994) 

performed modal testing on a continuous three-span reinforced concrete slab bridge which 

was loaded up to failure. The authors reported that the location and severity of the damage 

could be reliably identified by using natural frequencies, modal damping ratios and mode 

shapes. Better damage identification results were obtained by using the modal flexibility 

matrix. Catbas et al. (1997) performed damage identification of a three-span continuous steel 

stringer bridge. The removal of bearing plates was successfully localized by using the modal 

flexibility of the bridge. The amount of damage was estimated by evaluating measured 

deflections of truck loading tests. Zhao and DeWolf (1999) presented a sensitivity study to 

determine the best candidates of damage signatures for the purpose of health monitoring of 

bridges. They reviewed and analyzed different diagnostic parameters, including natural 

frequencies, mode shapes, and modal flexibility. The comparison approach was based on a 

perturbation coefficient in the stiffness matrix determined from a finite element model. A 

spring-mass system with five degrees of freedom was used to demonstrate the application of 

the sensitivity analysis. The results presented in their study indicated that the modal flexibility 
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was more likely to indicate damage than either the natural frequencies or mode shapes 

separately. Recently, Bernal and Gunes (2002; 2004) have incorporated changes in modal 

flexibility matrices (or flexibility proportional matrices) into the damage locating vector 

technique to localize damage. 

Methods based on changes in identified modal properties to detect and localize 

damage in structures have also been further developed for the purpose of damage 

quantification (i.e., estimation of the extent of damage). Among these methods are (1) damage 

index methods, (2) the direct stiffness calculation method, (3) elemental modal strain energy 

methods, and (4) sensitivity-based finite element model updating methods.  

1.2.1 Damage Index Methods 

The damage index method was developed by Stubbs et al. (1992, 1995; Kim and 

Stubbs 1995; and Stubbs and Kim 1996) to identify the damage in structures using a ratio of 

strain energy in discrete structural element before and after the damage. Mode shapes 

measured before and after damage are required in this method but they do not need to be mass 

normalized. Considering a linear, undamaged structure, its ith modal stiffness can be expressed 

as 

m T
i i iK =Φ KΦ  (1.1) 

where iΦ  = ith  mode shape vector and K = system stiffness matrix. The superscript T 

represents the transpose of the mode shape vector. The contribution of the jth  member to the ith 

modal stiffness is given by  

m T
ij i j iK =Φ K Φ  (1.2) 

where jK  = contribution of the jth  member to the system stiffness. The fraction of modal 

energy of the ith mode and the jth  member (also called modal sensitivity) is defined as  
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/m m
ij ij iF K K=  (1.3) 

Similarly, the fraction of modal energy of a damaged structure can be defined as 

* * */m m
ij ij iF K K=  (1.4) 

in which the superscript * represents that those quantities are derived from the damaged 

structure and  

* * * * * * * *;     m T m T
i i i ij i j iK K= =Φ K Φ Φ K Φ  (1.5) 

The contributions of the jth  member to the system stiffness jK  and *
jK  can be rewritten as  

* *
0 0;     j j j j j jE E= =K K K K  (1.6) 

where the scalars jE  and *
jE  = parameters representing material stiffness properties related to 

the undamaged and damaged structure, respectively. The matrix 0jK  contains only the 

geometric quantities, which is assumed to be the same between the undamaged and damaged 

structure.  

Under the assumption that the modal sensitivities for the ith mode and the jth  member 

are the same for both undamaged and damaged structure states, the following equation can be 

derived  

* * */ ( ) /( ) 1m m m m
ij ij ij i ij iF F K K K K= =  (1.7) 

Substituting equations (1.1), (1.2), (1.5), and (1.6) into equation (1.7), a damage index jβ  for 

the jth member can be derived as  

* * *
0

* * *
0

m T m
j ij i i j i i

j m T m
i ij i i j i i

E K K
E K K

γ
β

γ
= = =

Φ K Φ
Φ K Φ

 (1.8) 

where  
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* * *
0 0;     Φ K Φ Φ K ΦT T

ij i j i ij i j iγ γ= =  (1.9) 

In order to avoid the numerical problems when the denominator of equation (1.8) becomes 

near zeros (e.g., the jth member is at or near a node of the ith mode) the equation (1.7) is 

rewritten by adding unity to both the numerator and the denominator, 

* * * *( 1) /( 1) [( ) ]/[( ) ] 1m m m m m m
ij ij ij i i ij i iF F K K K K K K+ + = + + =  (1.10) 

Similarly substituting equations (1.1), (1.2), (1.5), and (1.6) into equation (1.10), the 

damage index jβ  can be estimated by 

* * * * * *
0 01 1

* *
0 01 1

( ) ( )

( ) ( )

NE NEm T T m
ij ij i i j i i k i ik k

j NE NEm T T m
ij ij i i j i i k i ik k

K K

K K

γ γ
β

γ γ
= =

= =

+ +
≈ =

+ +

∑ ∑
∑ ∑

Φ K Φ Φ K Φ

Φ K Φ Φ K Φ
 (1.11) 

in which NE = number of elements. It should be noted that the stiffness of undamaged and 

damaged structure are both assumed to be approximately uniform in deriving above equation. 

In the case that several measured modes (NM) are available to localize a potential damage, the 

equation (1.11) can be rewritten as  

* * * * * *
0 01 1 1 1

* *
0 01 1 1 1

( ) ( )

( ) ( )

NM NE NM NEm T T m
ij ij i i j i i k i ii k i k

j NM NE NM NEm T T m
ij ij i i j i i k i ii k i k

K K

K K

γ γ
β

γ γ
= = = =

= = = =

+ +
≈ =

+ +

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

Φ K Φ Φ K Φ

Φ K Φ Φ K Φ
 (1.12) 

Assuming that the collection of damage indices jβ  represents a sample population of 

a normally distributed random variable β  (i.e., the damage index jβ  associated with each 

member is treated as a realization of the random variable β ), a normalized damage indicator 

is defined as  

( ) /j jz ββ β σ= −  (1.13) 

where β , βσ  = mean value and standard deviation of β . Then the damage location can be 

identified by setting a damage threshold value based on the hypothesis testing theory.  
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Once damage is localized at the jth  member, the severity of damage can be estimated 

as  

* 11 1 1j j j j
j

j j j j

dE E dE E
E E E

α
β

+
= = − = − = −  (1.14) 

in which jα  = severity estimator, representing the fractional change in the stiffness of the jth  

member, which can be obtained as  

*
0 01 1

* * * *
0 01 1

( )
1

( )

NM NET T m
i j i i k i ii k

j NM NET T m
i j i i k i ii k

K

K
α = =

= =

+
= −

+

∑ ∑
∑ ∑

Φ K Φ Φ K Φ

Φ K Φ Φ K Φ
 (1.15) 

The value of jα is bounded between 0 and -1. The case that 0jα =  indicates no damage 

occurred, while 1jα =−  indicates total loss of the stiffness for that element. 

Stubbs and Kim (1996) applied this method to a finite element model of two-span 

continuous beam, where the fraction of modal strain energy for an Euler-Bernouli beam model 

[(i.e., the equivalent expression for the right-hand side of equation (1.3)] of element k and 

mode i between two locations ( kx , ∆k kx x+ ) was expressed as  

2

2

0

{ ( )}

{ ( )}

k k

k

x x
m z ixij

ij Lm
i

z i

EI x dxK
F

K EI x dx

φ

φ

+∆
′′

= =
′′

∫

∫
 (1.16) 

where E = elastic modulus and zI  = second moment of moment area about the z axis. The 

method was shown to be able to localize damage with reasonable accuracy (locations of the 

false-positive predictions were always adjacent to the real damaged element). However, the 

severity estimation using this method was not very satisfactory.  

Cornwell et al. (1999a) extended the damage index method based on equation (1.8) to 

plate-like structures that are characterized by two-dimensional curvature. For a two 
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dimensional (2D) plate structure, the modal strain energy associate with the ith mode is defined 

as  

2 2 2 2 2
2 2

2 2 2 2[( ) ( ) 2 2(1 ) ]
2

m i i i i i
i A

DU dxdy
x y x y x y
φ φ φ φ φ

ν ν
∂ ∂ ∂ ∂ ∂

= + + + −
∂ ∂ ∂ ∂ ∂ ∂∫∫  (1.17) 

where A = area of the plate surface; D = flexural rigidity of the plate, 3 2/12(1 )D Eh v= − , E, 

h, and v  = elastic modulus, thickness, and Poisson ratio of the plates, respectively. Similarly, 

the modal strain energy for the jth sub-region is derived as  

2 2 2 2 2
2 2

2 2 2 2[( ) ( ) 2 2(1 ) ]
2 j

jm i i i i i
ij A

D
U dxdy

x y x y x y
φ φ φ φ φ

ν ν
∂ ∂ ∂ ∂ ∂

= + + + −
∂ ∂ ∂ ∂ ∂ ∂∫∫  (1.18) 

Following the assumptions * * */ /m m m m
ij ij i ij ij iF U U F U U= = = and 3 2/12(1 )D Eh v= − is 

essentially constant over the area of the plate for both undamaged and damaged modes, the 

damage index for the jth sub-region can be derived  

*
1

*

1

NM
ijj i

j NM
j iji

fD
D f

β =

=

= =∑
∑

 (1.19) 

where  

2 2 2 2 2
2 2

2 2 2 2

2 2 2 2 2
2 2

2 2 2 2

[( ) ( ) 2 2(1 ) ]

[( ) ( ) 2 2(1 ) ]

j

i i i i i

A

ij
i i i i i

A

dxdy
x y x y x yf

dxdy
x y x y x y

φ φ φ φ φ
ν ν

φ φ φ φ φ
ν ν

∂ ∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ ∂ ∂

∫∫

∫∫
 (1.20) 

Once again, a normalized damage index can be defined using equation (1.13) based on the 

collection of damage indices jβ  for localization of damage.  

Duffey et al. (2001) extended the damage index method based on equation (1.8) to be 

applicable to structures undergoing vibrations predominantly in axial or torsional modes. The 

damage index for the case of axial vibration was derived as 
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1

1

* *
2 2

*
2 2

( ) / ( )( )
( ) ( ) / ( )

k

k k

k

k k

a L
i i

a aj
j a L

i ij
a a

d ddx dxEA dx dx
d dEA dx dx
dx dx

ψ ψ

β
ψ ψ

+

+
= =

∫ ∫

∫ ∫
 (1.21) 

where EA = axial rigidity; iψ  = ith axial mode shape; 1k ka x a +≤ ≤  = interval of the jth region 

along the span of length L. An analogous damage index for the case of torsional vibration was 

derived as 

1

1

* *
2 2

*
2 2

( ) / ( )( )
( ) ( ) / ( )

k

k k

k

k k

a L
i i

a aj
j a L

i ij
a a

d ddx dxGJ dx dx
d dGJ dx dx
dx dx

ϑ ϑ

β
ϑ ϑ

+

+
= =

∫ ∫

∫ ∫
 (1.22) 

where GJ = torsional rigidity; iϑ = ith torsional mode shape. In their studies, the method was 

compared to the flexibility-change method presented by Pandey and Biswas (1994). Two 

methods were applied to both simulated and experimental spring-mass systems undergoing 

axial response. Both the flexibility-change method and the damage index method were 

successful in detecting and localizing damaged elements for 10-percent reductions in element 

stiffnesses in a simulated spring-mass system. However, the flexibility change method 

requires the mass-normalized mode shapes and natural frequencies whereas the damage index 

method requires only arbitrary normalized mode shapes. For the experimental damage cases, 

the damage index method performed well to detect and localize the damage. However, results 

were not favorable with the flexibility-change method. Based on the cases presented, it was 

found that results using this method were somehow unreliable, depending strongly on damage 

location, damage level, and number of modes included. 

Kim and Stubbs (2002) presented an improved version of their previous work on the 

damage index methods (Kim and Stubbs, 1995, 1996) to overcome the limits of the existing 

damage index algorithms. It is assumed that the structure is damaged at a single location, thus 
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(1 )
m m
ij i i i i
m m
i i i i i

dK dK d dM d
K K M

λ λ
λ λ

= = + +  (1.23) 

where m
ijdK  = change of the jth element modal stiffness; iλ , iM , m

iK  = ith eigenvalue, ith modal 

mass, and ith modal stiffness of the undamaged structure, respectively; idλ , idM m
idK  = 

change in the ith eigenvalue, change in the ith modal mass, and change in the ith modal stiffness, 

respectively. Following the definition of equations (1.2), (1.5), and (1.14) 

* * ( )m m m
ij ij ij ij j j ij jdK K K E dE Eγ γ= − = + −  (1.24) 

where 0
T

ij i j iγ =Φ K Φ  and * * * *
0

T
ij i j iγ =Φ K Φ . Dividing both sides of equation (1.24) by m

iK  

and assuming that the structure has uniform stiffness in the undamaged state [i.e., 

0
m T T
i i i j i iK E= =Φ KΦ Φ K Φ  follow the concept introduced in equation (1.6)], the following 

expression can be obtained  

*

*

/j j ij i
m
ij ijj j j
m
i i

E E
dKE E dE
K

γ γ

γ
γ

= =
+

+

 
(1.25) 

where 0
T

i i iγ =Φ K Φ . Substituting equation (1.23) into the above equation, the damage index 

jβ  can be derived as (NM measured vibration modes are involved) 

*
1

*

1
{ [ (1 )] }

NM
ijj i

j NM i i ij
i iji

i i i

E
d dM dE

M

γ
β

λ λ
γ γ

λ λ

=

=

= =
+ + +

∑
∑

 (1.26) 

Consequently, the severity of damage can be estimated as  

1/ 1j jα β= −  (1.27) 

The updated version of the damage index algorithm based on equation (1.26) and 

algorithms based on equations (1.8) and (1.12) were evaluated by predicting damage location 
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and severity estimation in a numerical model of a two-span continuous beam (Kim and Stubbs, 

2002). The equivalent expression for ijγ , *
ijγ , and iγ  in the damage index equations 

[equations (1.8), (1.12),and (1.26)] were computed as 

2{ ( )}
k k

k

x x

ij ix
x dxγ φ

+∆
′′= ∫  (1.28) 

* * 2{ ( )}
k k

k

x x

ij x
x dxγ φ

+∆
′′= ∫  (1.29) 

2

0
{ ( )}

L

i i x dxγ φ′′= ∫  (1.30) 

where locations kx  and ∆k kx x+  = two nodal locations of an element j for the beam model; L 

= length of the beam model. The following relationships between the algorithms and their 

accuracy in damage prediction were obtained. First, the use of damage index algorithm based 

on equation (1.8) for the damage prediction exercises resulted in (1) relatively small Type I 

error (false detection of true damage locations); (2) small localization error; (3) relatively high 

Type II error (prediction of locations that are not damaged); and (4) high severity estimation 

error. It consistently overestimated severities of damage. Second, the use of damage index 

algorithm based on equation (1.12) resulted in no error related to damage localization but high 

severity estimation error. It consistently underestimated severities of damage. Finally, the use 

of improved damage index algorithm based on equation (1.26) resulted in no error related to 

damage localization and very small severity estimation error.  

1.2.2 Direct Stiffness Calculation Method  

The direct stiffness calculation technique was developed by Maeck and De Roeck 

(1999; Maeck et al., 2000) to predict the damage location and severity from measured modal 

displacement derivatives for a free-free set-up experimental reinforced concrete beam. The 
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advantage of this method is that no numerical model is needed to obtain the dynamic stiffness 

distribution for statically determined systems. As for hyperstatic systems, the reaction forces 

and internal forces are depended on the stiffness of the structure. It was pointed out that an 

iterative procedure is needed to find the stiffness distribution of the structure. The method 

makes use of the basic relation that the dynamic bending stiffness EI at each section is equal to 

the bending moment M in that section divided by the corresponding curvature (i.e., second 

derivative of the bending mode shape bφ ) 

2

2

b

MEI
d

dx
φ

=  (1.31) 

In the same manner, the dynamic torsion stiffness GJ in each section can be calculated from 

torsional moment T in that section and the corresponding torsion rate (or torsion angle per unit 

length, i.e., first derivative of torsional mode shape tφ ) 

t

TGJ
d

dx
φ

=  (1.32) 

In order to apply equations (1.31) and (1.32) for damage detection and localization, the modal 

internal forces (i.e., M and T) and the modal curvature as well as the torsional angle per unit 

length need to be calculated.  

The eigenvalue problem of an undamped system can be written as 

2
m m mω=KΦ MΦ  (1.33) 

in which K = stiffness matrix; M = analytical mass matrix; mω  = mth measured circular 

eigenfrequency; and mΦ  = mth measured mode shape. The above equation can be seen as a 

pseudo-static system: for each mode internal (section) forces are due to the inertial load 

2
m mω MΦ . In such way, the mass distribution of the system has to be assumed known. In 
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addition, when this method was applied for the damage identification (Maeck and De Roeck, 

1999; Maeck et al., 2000), a lumped mass matrix was used in equation (1.33), which is 

acceptable in the case that measurement mesh is rather dense. For the mth bending mode, mΦ  

in equation (1.33) can be replaced by b
mΦ , i.e. the modal deflections that are directly available 

from measurements. In the calculation of the modal internal forces, the contribution of 

rotational inertia turned out to be negligible for the lower modes when a reasonably dense 

measurement grid is used. For the mth torsional modes, mΦ  in equation (1.33) can be replaced 

by t
mΦ , i.e. the rotation angles which are normally not directly measured. However, from the 

modal deflections at two different points of the same cross section of the beam, the torsion 

angles are directly obtained. If in equation (1.33), mΦ  contains only the modal displacements 

at the measurement points, one obtains a discrete pattern of the inertia load. A correction can 

be made by linearly interpolating the measurements and obtaining in this way a distributed 

load. Once the inertial loads are obtained from the measured mode shapes and rotation angles, 

the modal internal forces can be derived based on the internal force equilibrium assuming that 

the beam is only subjected to the inertial loads 

1 2
1 1 1( ) ( )( )

i

i

x
b

i i i i i m m ix
M M V x x A x x x dxω ρ φ

+

+ + += + − − −∫  (1.34) 

1 2
1 ( )

i

i

x
b

i i m mx
V V A x dxω ρ φ

+

+ = −∫  (1.35) 

1 2
1 ( )

i

i

x
t

i i m a mx
T T i x dxω φ

+

+ = −∫  (1.36) 

where iM , iV , iT  = modal bending moment, modal shear forces and modal torsional moment 

respectively; ρ , A , and ai  = density, cross area and polar moment of inertia of the structure, 

respectively. In the recursive formula shown in equations (1.34), (1.35), and (1.36), the values 

of 0M , 0V , 0T  are zero for the special case of free-free set-up beam.  
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The next step in deriving the dynamic bending and torsion stiffness consists of the 

calculation of curvatures along the beam for the bending modes and torsion rates for the 

torsional modes. Direct calculation of the first and second derivatives from measured mode 

shapes using the central difference approximation, results in oscillating and inaccurate values. 

Two smoothing procedures accounting for the inherent inaccuracies of the measured mode 

shapes can be applied (Maeck and De Roeck,1999), namely global smoothing procedure and 

Mindlin smoothing method, a weighted residual penalty-based technique. 

It should be noted that even though the damage identification results using this 

method showed generally good agreement with observations from the experiment (Maeck and 

De Roeck, 1999; Maeck et al., 2000). The method appeared to suffer from numerical 

difficulties when the modal curvature is close to zero. In this case, the approximation for the 

stiffness is no longer accurate. In addition, the method was only shown to work for the 

statically determinate structure and it was not explained explicitly how such a method could 

be applied to the statically indeterminate structure. 

1.2.3 Element Modal Strain Energy Methods 

Shi et al. (1998; 2000) proposed a method of using change of modal strain energy in 

each structural element before and after occurrence of damage to localize and quantify the 

damage. The damage is assumed to affect only the stiffness matrix of the system. When 

damage occurs in a structure, the stiffness matrix dK , the ith modal eigenvalue d
iλ , and the ith 

mode shape d
iΦ  of the damaged system can be expressed as  

1 1
  (-1 0)L L

d j j j ji i
α α

= =
= + ∆ = + ≤ ≤∑ ∑K K K K K  (1.37) 

d i iλ λ λ= +∆  (1.38) 
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d
i i i= +∆Φ Φ Φ  (1.39) 

where the damage in an element is expressed as a fractional change of the element stiffness 

matrix; the superscript d indicates the damage case; jα  = coefficient defining a fractional 

reduction of the jth element stiffness matrix; and L = total number of the elements in the 

system.  

The element modal strain energy method (Shi et al. 1998; 2000) can be divided into 

two steps: first, the damage is localized using the change of element modal strain energy, and 

then the severity of damage at potential damage locations is determined using an iterative 

procedure. The element modal strain energy is defined as the product of the elemental stiffness 

matrix and the second power of the mode shape component. For the jth element and the ith 

mode, the modal strain energy before and after the occurrence of damage is defined as 

T
ij i j iMSE =Φ K Φ  (1.40) 

Td d d
ij i j iMSE =Φ K Φ  (1.41) 

where ijMSE , d
ijMSE  = undamaged and damaged modal strain energy of the jth element for the 

ith mode; iΦ  d
iΦ  = ith mode shape of undamaged and damaged structure, respectively; jK  = 

element stiffness of the jth element. Because the damage elements are not known, the 

undamaged element stiffness matrix jK  is used instead of the damaged one in equation (1.41). 

In this method, the modal strain energy change ratio, is defined for damage localization (Shi et 

al., 1998) 

d
ij ij

ij
ij

MSE MSE
MSECR

MSE

−
=  (1.42) 

in which i, j = mode number and element number, respectively. Shi et al. (1998; 2000) 

claimed that the modal strain energy change of a damaged element is larger that that of any 
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other undamaged element. Elements which are linked with the damaged one have smaller 

values of modal strain energy change. If an element is far away from the damage element, the 

modal strain energy change of this element will be much smaller. Therefore, the modal strain 

energy change ratio could be a meaningful indicator for damage localization. 

The modal strain energy change of the jth element for the ith mode could be obtained 

from the experimental mode shape as  

Td d T
ij i j i i j iMSEC = −Φ K Φ Φ K Φ  (1.43) 

Substituting equation (1.39) into equation (1.43) and neglecting second-order terms, the modal 

strain energy change ijMSEC  can be expressed in terms of the small changes in the 

experimental mode shapes i∆Φ  

2 T
ij i j iMSEC = ∆Φ K Φ  (1.44) 

For a small perturbation in an un-damped dynamic system, the equation of motion can be 

described as  

[( ) ( ) ]( ) 0i i i iλ λ+∆ − +∆ +∆ =K K Μ Φ Φ  (1.45) 

The equation (1.45) can be rewritten as neglecting the second-order terms 

( )i i i i iλ λ− ∆ =∆ −∆K Μ Φ ΜΦ KΦ  (1.46) 

The term i∆Φ  can be expressed as a linear combination of mode shapes of the original 

system 

1

n
i ik kk

d
=

∆ =∑Φ Φ  (1.47) 

in which ikd  = scalar factors; and n = total number of modes of the original system. Inserting 

equation (1.47) into equation (1.46), and after some manipulation, ikd  can be obtained 



 18

  ( )
T
r i

ik
r i

d r i
λ λ
∆

=− ≠
−

Φ KΦ  (1.48) 

For the case of r i= , it is easy to know that 0rrd = . Substituting equations (1.48), (1.47) into 

equation (1.44) and neglecting higher-order terms, the modal strain energy change can be 

expressed as  

1
2 ( )   ( )

T
nT r i

ij i j rr
r i

MSEC r i
λ λ=

∆
= − ≠

−∑ Φ KΦΦ K Φ  (1.49) 

Substituting equation (1.37) into above equation, the modal strain energy change can be 

rewritten  

1 1
2    ( )

T
L n r p iT

ij p i j rp r
r i

MSEC r iα
λ λ= =

= − ≠
−∑ ∑

Φ K Φ
Φ K Φ  (1.50) 

It can be seen from above equation, the term on the left-hand side is the element modal strain 

energy change of the jth element for the ith mode, which can be obtained from equation (1.43) 

by using the experimental mode shape of the undamaged and damaged states. All the terms on 

the right-hand side are all known information of the undamaged system except pα . Thus the 

severity of damage can be obtained by solving the equation (1.50).  

After determining the damage sites using the localization approach, i.e., using 

equation (1.42), the damage severity of the suspected damage elements can then be evaluated 

for the ith mode 

11 12 1 11

21 22 2 12

1 2

  

qi

qi

J J Jq qiJ

MSEC
MSEC

MSEC

β β β α
β β β α

β β β α

⎡ ⎤⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪⎩ ⎭ ⎪ ⎪⎣ ⎦⎩ ⎭

 (1.51) 

where q = number of suspected damage elements; J = number of the selected element for the 

computation of the modal strain energy change; ( 1,  2,  ,  ;  1,  2,  ,  )st s J t qβ = = = 
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sensitivity coefficient of modal strain energy to damage, which is obtained from equation 

(1.50) as 

1
2    ( )

T
n T r t i

st i s rr
r i

r iβ
λ λ=

=− ≠
−∑ Φ K ΦΦ K Φ  (1.52) 

and n = number of analytical modes that theoretically should be equal to the total number of 

degrees of freedom of the structure. In practice, only *n  number lowest modes ( *n n< ) are 

used in the equation (1.52). The number of suspected damaged elements q would be much 

smaller than the total number of elements L in the system. The group of selected elements for 

modal strain energy change computation may or may not include the suspected damage 

elements with J q≥ . When there are m modes used in the identification, the equation (1.51) 

becomes an overdetermined set of equations of size m J× . An iterative process was 

introduced by Shi et al. (2000) in order to find the damage coefficients in (1.51). Once the 

coefficients pα are estimated by solving the equation (1.51), these coefficients are then used to 

update the related elements to obtain the corrected elemental stiffness matrix and the global 

stiffness matrix. The updated system is considered as a new undamaged state of the structure. 

Then a new set of damage coefficients pα  can be obtained using the modal strain energy 

change and the coefficients stβ  in the sensitivity matrix calculated based on the updated 

undamaged state. This process is repeated until convergence in the estimated pα . It is worth 

noting that this process determines the damage coefficients pα  with updating of the elemental 

stiffness matrix from the undamaged state to the damaged state.  

The method discussed above was illustrated and verified by a numerical example with 

a fixed-end beam and an experiment with a single-bay, two-story portal steel frame structure 

Shi et al. (2000). Results indicated that the presented method was effective in localizing 
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damage, but it was noise sensitive in the damage quantification. Shi et al. (2002) further 

proposed an improved version of this method in which the change of the ith mode shape before 

and after the occurrence of damage in the structure is rewritten as (Sutter et al., 1988) 
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in which w = a weighting factor. Substituting equations (1.53), (1.54), and (1.55) into equation 

(1.46), and after some manipulation, w
ikd  can be obtained 
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Thus the change of the ith mode shape can be written as 
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Inserting equations (1.37) and (1.57) into (1.44), the modal strain energy change of the jth 

element for the ith mode becomes 
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The corresponding sensitivity coefficient of modal strain energy to damage stβ  is now 

becoming 
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Comparing between equations (1.48) and (1.56) gives the following relationship 
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when r iλ λ> , ( )w
ir ird d . This means the contribution from using higher modes in the 

computation of i∆Φ  in equation (1.53) for the improved version of modal strain energy 

method will be less than that in equation (1.47) for the original version of the method. 

Therefore a smaller number of analytical modes are required in improved version of the 

method to achieve the same degree of accuracy as in the original method, which needs a large 

number of modes in the computation. Again, the improved algorithm was illustrated and 

verified by a numerical example with a fixed-end beam and an experiment with a single-bay, 

two-story portal steel frame structure. It was demonstrated that the improved algorithm (1) 

reduced the truncation error in computation; (2) avoided the finite element modeling errors in 

higher modes; and (3) improved the rate of convergence in the computation. 

The measured mode shapes and elemental stiffness matrix are required in the above 

identification algorithms (both original and improved algorithms). As well known, the 

measured modes are usually incomplete in practice because of the limited number of sensors. 

In order to apply this method for damage identification, the mode shape expansion technique 

is needed to expand the measured mode shape to the full dimension of the finite element 

model. 
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1.2.4 Sensitivity-Based Finite Element Model Updating  

Another class of vibration-based damage identification methods consists of applying 

sensitivity-based finite element (FE) model updating for damage identification (Friswell and 

Mottershead, 1995). This class of methods updates the physical parameters of a FE model of 

the structure by minimizing an objective function expressing the discrepancy between 

analytically predicted and experimentally identified modal parameters and quantities derived 

thereof that are sensitive to damage. Optimum solutions of the problem are reached through 

sensitivity-based optimization algorithms. 

The FE model updating can be described as to find a solution for the following 

generic nonlinear least squares problem 

2
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in which where ( )r θ  = residual vector containing the differences between the numerical 

predicted and experimental determined modal data; nθ∈  = a set of physical parameters, 

also called updating parameters, which will be adjusted in order to minimize the objective 

functions. The updating parameters are the uncertain physical properties of the numerical 

model. Instead of the absolute value of each uncertain variable θ , a dimensionless correction 

factor ip can be defined to represent the variation of iθ  relative to its reference values ref
iθ  
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The correction factor ip  can be assigned to a single element or a group of elements. Then the 

FE model updating problem defined in equation (1.61) can be rewritten as 
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Considering the importance and the identification accuracy of the different modal 

parameters (i.e., statistical uncertainty of identified parameters), the weighted nonlinear least 

squares problem can be used in the FE model updating instead of the normal least squares 

problem given in equation (1.63), i.e., 

2
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2 2
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j j
j

f w r
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where W = a diagonal matrix whose component is 2
jw  and jw = weight factor for the residual 

( )jr p . Depending on each particular FE model updating problem, the weight factors jw  

applied to the various modal residuals can be selected so as to account for the different levels 

of identification accuracy of the different modal parameters. In practice, the weight factors are 

usually obtained as the reciprocals of the standard deviation or coefficient-of-variation of the 

corresponding measured modal parameters. 

In the application of the sensitivity-based FE model updating techniques, the 

fundamental properties of the original model such as the symmetry, positivity and sparse 

pattern in the stiffness and mass matrices are retained because the updating is carried out at the 

element level. In addition, there is a physical explanation for each updating parameter. 

Therefore the sensitivity-based model updating techniques have attracted more and more 

attention in the civil engineering research community.  

Teughels and De Roeck (2004) applied the FE model updating techniques to a pre-

stressed concrete highway bridge Z24 in Switzerland for damage identification. The damage 

pattern was identified using eigen-frequencies and un-scaled mode shapes obtained from 

ambient vibrations. For the undamaged as well as the damaged state of the bridge, the modal 

properties computed from the updated model correspond well with their experimentally 

identified counterparts. Jaishi and Ren (2005) demonstrated a comparative study of the 
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influence of different possible residuals in objective function through a simulated simply 

supported beam. Frequency residual only, mode shape related function only, modal flexibility 

(uniform load surface) residual only, and their combinations were studied independently. It 

was found that the objective function which consisted of all three residuals was the best for FE 

model updating in view of model tuning as well as damage localization. This objective 

function was then implemented in a second case study of a concrete-filled steel tubular arch 

bridge. The FE model mass matrix obtained from Guyan reduction technique was used to 

obtain the mass-normalized mode shapes in order to calculate the modal flexibility. The 

updated FE model of the bridge was able to produce a sufficient improvement on modal 

parameters of the concerned modes which were in close agreement with the experimental 

results. In stead of using uniform load surface residual obtained from the modal flexibility 

matrix, Jaishi and Ren (2006) presented the objective function consisting of the modal 

flexibility matrix component residual (through the Frobenius matrix norm) in the FE model 

updating for damage detection. The proposed damage identification procedure was illustrated 

with a simulated example of simply supported beam and afterwards was applied for damage 

identification of a laboratory tested reinforced concrete beam. It was verified that the modal 

flexibility was sensitive to damage and the proposed procedure of FE model updating using 

the modal flexibility residual was promising for the detection of damaged elements. 

The difference between various sensitivity-based FE model updating algorithms can 

be found in: objective functions to be minimized, numerical schemes used to implement the 

optimization, and algorithms to obtain the sensitivity matrix. The sensitivity-based FE model 

updating strategy applied in this study for damage identification of a real-world structure will 

be explained in detail in Chapter 5.  
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1.3 Objectives and Scope 

As reviewed in the above section, vibration-based structural damage identification has 

received increasing attention and has progressed significantly in the civil engineering 

community over the past decade. Most of these damage identification techniques are typically 

investigated, verified and validated by using numerically simulated data and/or laboratory 

experimental data. Sensitivity-based FE model updating has been shown to be a good 

candidate methodology for damage identification of real-world structures. However, the 

application of FE model updating for identifying damage in large and complex structures 

using modal parameters identified based on field response measurements is still very limited. 

In addition, among these limited applications, real structures are usually represented by beam-

type or truss-type models to simplify the identification problem. 

In vibration-based structural damage identification, it is very crucial to extract modal 

parameters accurately based on structural response measurements. The accuracy of the 

identified modal parameters directly influences the structural damage identification results. 

Experimental modal analysis has been widely used in the civil engineering research 

community to extract structural modal parameters from vibration measurements. In classical 

experimental modal analysis, the frequency response functions (FRFs) in the frequency 

domain or impulse response functions (IRFs) in the time domain usually provide the basic 

input of system identification algorithms, which produce accurate estimates of modal 

parameters provided that the signal-to-noise ratio of the dynamic measurement data is high 

enough. However, it is very difficult to obtain FRFs or IRFs in dynamic field tests of civil 

structures, since typically only the structure dynamic response (output) can be measured in 

such tests. Thus, most often, modal parameters have to be extracted based on structural 

response measurements only. It is worth noting that output-only system identification 
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techniques are necessary and essential for developing long-term continuous vibration-based 

structural health monitoring systems. For the continuous monitoring of a structure during its 

service life, it is impossible to measure its sources of excitation and only its response to 

ambient/natural excitation sources such as traffic, wind, micro-tremors and combinations 

thereof can be measured. Several output-only system identification techniques have been 

developed and applied to civil engineering structures. However, the performance of these 

techniques applied to real-world large and complex structures based on low-amplitude 

dynamic response measurements still needs further investigation. 

As discussed earlier, the basic premise of vibration-based structural damage 

identification and health monitoring is that changes in structural characteristics such as mass, 

stiffness, and energy dissipation mechanisms, will influence the vibration response of the 

structure. Therefore, changes in modal parameters can be used as damage indicators in 

structural damage identification and health monitoring. However, varying environmental 

conditions (e.g., temperature, wind characteristics, and humidity) may also cause changes in 

these modal parameters. Variations in modal parameters due to changes in environmental 

conditions have been shown to be very significant in previous limited studies; they may be 

even larger than those caused by structural damage (Abdel Wahab and De Roeck, 1997; 

Cornwell et al., 1999b; Peeters and De Roeck, 2001; Xia et al., 2006; He et al., 2007). 

Therefore, in order to develop a robust and reliable vibration-based structural health 

monitoring system, it is of significant importance to study the correlation between the 

identified modal parameters and the varying environmental conditions. 

In view of the issues in the area of vibration-based damage identification and health 

monitoring of civil structures addressed above, the objectives of the research work presented 

in this dissertation are as follows.  
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1. Perform a comparative study of output-only system identification techniques 

applied to the Alfred Zampa Memorial Bridge (AZMB) based on dynamic field test data. The 

modal parameters of the AZMB identified using different methods and data from different 

types of test are compared for cross-validation purposes and also to investigate the 

performance of these output-only system identification methods when applied to bridge 

vibration data corresponding to different excitation sources. 

2. Improve / extend the existing sensitivity-based finite element (FE) model updating 

techniques for damage identification of real-world structures. A FE model updating strategy is 

applied for damage identification of a full-scale seven-story reinforced concrete building slice 

tested on the UCSD-NEES shake table based on the modal parameters identified from the 

ambient vibration data.  

3. Develop and deploy a state-of-the-art long-term continuous monitoring system on 

the Voigt Bridge. This instrumented bridge testbed will serve as a live laboratory in 

developing structural health monitoring technologies. 

4. Investigate the effects of changing environmental conditions on the identified 

modal parameters of the Voigt Bridge and provide an objective criterion for damage detection 

under varying environmental conditions. 

In order to overcome the scarcity of actual ambient vibration test data for studying the 

effects of various damage scenarios on system identification results for large and complex 

bridge structures, a simulation platform to simulate wind-induced vibration response of long-

span suspension bridges is also developed in this study. The simulation is performed using a 

detailed three-dimensional FE model of the bridge and a state-of-the-art stochastic wind 

excitation model including both buffeting and self-excited forces. High fidelity model-based 

simulation provides an excellent framework for developing and validating system and damage 
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identification methods (for realistic damage scenarios) as well as for determining the optimum 

number, type and location of sensors to be deployed in order to maximize the information 

related to potential damage gathered in the form of dynamic signatures of the bridge.  

The research work outlined above is essential for the development of robust and 

reliable health monitoring systems for large and complex real-world civil structures. 

1.4 Organization of Dissertation 

The content and structure of this dissertation is arranged as follows: 

Chapter 2 presents a literature review of output-only system identification techniques 

including both time domain methods and frequency domain methods. These methods includes: 

(1) the natural excitation technique (NExT) combined with eigensystem realization algorithm 

(ERA); (2) the random decrement technique combined with ERA; (3) the covariance-driven 

stochastic subspace identification method; (4) the data-driven stochastic subspace 

identification method, (5) the Fourier spectra analysis method and (6) the enhanced frequency 

domain decomposition method. In order to improve the reliability and accuracy of identified 

modal parameters using NExT-ERA, the multiple-reference NExT-ERA (MNExT-ERA) is 

developed as an extension of the NExT-ERA in this study. 

Chapter 3 provides a comparative study of system identification techniques applied to 

the Alfred Zampa Memorial Bridge (AZMB) based on the dynamic field test data. The modal 

parameters of the AZMB identified using different methods and data from different types of 

test are compared for cross-validation purposes and also to investigate the performance of 

these output-only system identification methods applied to bridge vibration data 

corresponding to different excitation sources. Finally, the identified natural frequencies and 
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mode shapes are compared with their analytical counterparts obtained from a three-

dimensional (3D) finite element (FE) model used in the design phase of the AZMB. 

Chapter 4 describes the simulation framework developed for wind-induced ambient 

vibration response of the Vincent Thomas Bridge (VTB) using a detailed 3D FE model of the 

bridge and a state-of-the-art stochastic wind excitation model. Based on simulated wind-

induced ambient vibration data, modal parameters of the VTB are identified using the data-

driven stochastic subspace identification method. The system identification results are verified 

by the computed eigenproperties of the bridge FE model, which allows to assess the 

performance of the above output-only system identification method when applied to wind-

excited long-span suspension bridges. 

Chapter 5 describes the sensitivity-based FE model updating techniques for vibration-

based structural damage identification. A linear flat shell element is implemented in the 

element library of the MATLAB-based structural analysis software FEDEASLab, which is 

then integrated with the FE model updating algorithms used/developed in order to perform 

structural damage identification. A comparative study of the influence of different objective 

functions on the damage identification results is performed by using simulated data for a 

simply supported plate. Finally a sensitivity-based FE model updating strategy is applied for 

damage identification of a full-scale seven-story reinforced concrete building slice tested on 

the UCSD-NEES shake table based on the modal parameters identified from the ambient 

vibration data.  

Chapter 6 develops and implements a state-of-the-art long-term continuous 

monitoring system on the Voigt Bridge Testbed. This monitoring system makes it possible to: 

(1) study the effects of varying environmental conditions such as temperature, wind 

characteristics, and humidity on the identified modal properties of the bridge; (2) allow for the 
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early identification of possible damages in the bridge structure and enable maintenance and 

repair works at the initial damage phase; and (3) evaluate the health condition of this structure 

shortly after a major catastrophic event such as an earthquake.  

Chapter 7 develops an automated system identification procedure based on the data-

driven stochastic subspace identification method. This automated system identification 

procedure is applied to identify the modal parameters of the Voigt Bridge as a function of time 

based on the data collected over a period of 50 days from the deployed structural monitoring 

system. Different environmental parameters are investigated during the monitoring period and 

then ARX models are used to correlate the identified natural frequencies with these measured 

environmental parameters. Finally an objective criterion is provided for damage detection 

under varying environmental conditions. 

Chapter 8 summarizes and concludes this dissertation.  

1.5 Summary 

The vibration-based structural damage identification and health monitoring has been 

the subject of significant research in structural engineering in recent years. The basic premise 

of vibration-based structural damage identification is that changes in structural characteristics 

such as mass, stiffness, and energy dissipation mechanisms influence the vibration response 

characteristics of structures. Therefore, changes in modal parameters and quantities derived 

thereof are often used as damage indicators in structural damage identification and health 

monitoring. 

A comprehensive literature review on the vibration-based structural damage 

identification methods are first presented in this chapter. Then the objectives and scope of this 

research and the organization of this dissertation are provided.  
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Chapter 2 

Output-Only System Identification 

2.1 Introduction 

Experimental modal analysis has been widely used in the civil engineering research 

community to extract structural modal parameters (e.g., natural frequencies, damping ratios 

and mode shapes) from vibration measurements. These modal parameters are essential for 

structural damage identification and health monitoring. 

In classical experimental modal analysis, the frequency response functions (FRFs) in 

the frequency domain or impulse response functions (IRFs) in the time domain are usually the 

basis of system identification algorithms, which produce accurate estimates of modal 

parameters provided that the signal-to-noise ratio of the dynamic measurement data is high 

enough. However, it is very difficult to obtain FRFs or IRFs in dynamic field tests of civil 

structures, since typically only the structure dynamic response (output) can be measured in 

such tests. Especially in the case of large and flexible bridges (such as suspension and cable-

stayed bridges) with natural frequencies of the predominant vibration modes in the range 0-1 

Hz, it is extremely challenging and costly to provide controlled excitation for significant level 

of response. Thus, system identification methods based on response-only measurements 

(output-only) have received increasing attention and obtained substantial progress in the civil 

engineering community in recent years. It is worth noting that these output-only system 

identification techniques are necessary and essential for developing a long-term continuous 

vibration-based structural health monitoring system. For continuously monitoring a structure 
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during its service life, it is impossible to measure the input signals and only structural response 

subjected to ambient/natural excitation sources such as traffic, wind, micro-tremors and 

combinations thereof can be measured. The experimental modal analysis techniques, which 

utilize only response measurements of a structure under operational or ambient conditions to 

identify the modal parameters, are also named as operational modal analysis (OMA). 

Output-only system identification methods can be classified into two main groups, 

namely (1) frequency domain methods, and (2) time domain methods. The major frequency 

domain methods, such as the peak picking (PP) method, the frequency domain decomposition 

(FDD) technique (Brincker et al., 2000) and the enhanced FDD (EFDD) technique (Brincker 

et al., 2001), are developed based on response auto / cross-spectral densities. Time domain 

output-only system identification methods can be subdivided into two categories, namely (1) 

two-stage methods, and (2) one-stage methods. In the two-stage approaches, free vibration 

response estimates, including random decrement functions and response correlation functions, 

are obtained in the first stage from response measurements, and then modal parameters are 

identified in the second stage using any classical system identification algorithm based on 

impulse / free response function estimates. These classical system identification algorithms 

include the Ibrahim time domain (ITD) method (Ibrahim and Mikulcik, 1977), the multiple-

reference Ibrahim time domain (MITD) method (Fukuzono, 1986), the least-squares complex 

exponential (LSCE) method (Brown et al., 1979), the polyreference complex exponential 

(PRCE) method (Vold et al., 1982), and the eigensystem realization algorithm (ERA) (Juang 

and Pappa, 1985). In contrast to two-stage approaches, one-stage system identification 

methods such as the data-driven stochastic subspace identification (SSI-DATA) method (Van 

Overschee and De Moor, 1996) can be used to identify modal parameters based on output-

only measurements directly.  
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Brief review of different output-only system identification techniques is provided in 

following sections. These methods include: (1) the natural excitation technique (James et al., 

1993) combined with ERA (NExT-ERA), (2) the random decrement technique (Cole, 1968) 

combined with ERA (RDT-ERA), (3) the covariance-driven stochastic subspace identification 

method (Van Overschee and De Moor, 1996), (4) SSI-DATA, (5) the Fourier spectra analysis 

(FSA) method (He et al., 2005) and (6) EFDD method. The first three methods belong to two-

stage time domain system identification methods whereas the SSI-DATA is a one-stage 

system identification method, and the last two methods are frequency domain non-parametric 

methods. It should be noted that in order to improve the reliability and accuracy of identified 

modal parameters using NExT-ERA, the Multiple-reference NExT-ERA (MNExT-ERA) is 

developed as an extension of the NExT-ERA in this study. 

2.2 Eigensystem Realization Algorithm 

The eigensystem realization algorithm (ERA) was developed by Juang and Pappa 

(1985) for modal parameter identification and model reduction of linear systems. The discrete-

time state-space representation of a finite dimensional, linear time invariant system of order n 

is given by  

( 1) ( ) ( )k k k+ = +z Az Bu  

( ) ( ) ( )k k k= +x Cz Du  
(2.1) 

where ,  , ,  n n n l m n m lA B C D\ \ \ \× × × ×∈ ∈ ∈ ∈  = state space matrices in discrete form; 

( ) nkz \∈  = state vector; ( ) lku \∈  = load vector (vector of loading functions); and 

[ ]1 2( ) ( ) ( ) ( ) Tm
mk x k x k x kx \ "∈ = , a column vector of size m (= number of measured / 

output channels) which represents the system response at discrete time ( )t k t= ∆  along the m  
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measured degrees of freedom (DOFs). Free vibration response (i.e., ( ) 0u k = ) of the system 

can be obtained as 

2(0) (0);  (1) (0);  (2) (0);   ( ) (0)kk= = = =x Cz x CAz x CA z x CA z"  (2.2) 

Based on the free response vector, the following two ( )m s s× ×  Hankel matrices are formed 

( )

(1) (2) ( )
(2) (3) ( 1)

(0)

( ) ( 1) (2 1)

x x x
x x x

H

x x x

"
"

# # % #
"

s

m s s

s
s

s s s
× ×

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 (2.3) 

( )

(2) (3) ( 1)
(3) (4) ( 2)

(1)

( 1) ( 2) (2 )

x x x
x x x

H

x x x

"
"

# # % #
"

s

m s s

s
s

s s s
× ×

⎡ ⎤+⎢ ⎥
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (2.4) 

where s = an integer that determines the Hankel matrix size. Substituting equation (2.2) into 

equation (2.3), the Hankel matrix (0)Hs  can be written 

2

2 3 1

1 2

1 2 1

(0) (0) (0)
(0) (0) (0)

(0)

(0) (0) (0))

CAz CA z CA z
CA z CA z CA z

H H H

CA z CA z CA z

"
"

# # % #
"

s

s
s

s s s

+

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.5) 

in which 

1

1s−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

C
CA

H

CA
#

 

2
2 (0) (0) (0)s⎡ ⎤= ⎢ ⎥⎣ ⎦H Az A z A z"

 

(2.6) 

Similarly substitute equation (2.2) into equation (2.4), the Hankel matrix (1)H s  can be 

written  
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1 2(1)s =H H AH  (2.7) 

Therefore the state space system matrices A and C can be obtained 

† †
1 2(1)s=A H H H  

1
T
m=C E H  

(2.8) 

where †
1H  and †

2H  = Moore-Penrose pseudo-inverse matrices of 1H  and 2H  respectively; 

[   ]E I 0T
m m= , and mI is the m m× unit matrix. 

A singular value decomposition of Hankel matrix (0)sH  is performed as 

(0)
T

n ns T
n p T

p p

Σ 0 V
H UΣV U U

0 Σ V

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥= = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (2.9) 

The singular value decomposition is partitioned according to the selected number n of largest 

singular values as shown in the above equation in which the diagonal matrix Σ  is split up in 

two diagonal matrices: nΣ and pΣ  which contain the n largest (corresponding to the order of 

the realized system) and the remaining p relatively small singular values (corresponding to 

computational error or noise), respectively. Then the matrices of 1H  and 2H  can be obtained 

1/ 2 1/ 2
1 2;     T

n n n n= =H U Σ H Σ V  (2.10) 

The state-space matrices A and C [see equation (2.8)] can be estimated by  

1/ 2 1/ 2(1)T s
n n n n
− −=A Σ U H V Σ  

1/ 2T
m n n=C E U Σ  

(2.11) 

Based on matrices A and C, the modal parameters (natural frequencies and damping ratios) of 

 / 2N n=  vibration modes can be obtained as 
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2 1ln( ) /i i tω λ −= ∆  

2 1cos( (ln( )));     1,  2,  , i iangle i Nζ λ −=− = …  

(2.12) 

where th
i i=λ  eigenvalue of matrix A and t∆  = sampling time. It should be noted that 2 1i−λ  

and 2iλ  (i = 1, 2, …, N) are complex conjugate pairs of eigenvalues, each pair corresponding 

to a vibration mode, i.e., the natural frequency and damping ratio obtained from 2 1i−λ  are the 

same as those obtained from 2iλ . The vibration mode shapes are obtained as 

2 1C Ti i−= ⋅φ  (2.13) 

where iT denotes the thi  eigenvector of matrix A. Similarly, 2 1T i−  and 2T i  (i = 1, 2, …, N) are 

complex conjugate pairs of eigenvectors, each pair corresponding to a vibration mode. 

Based on the realized state-space model and the identified modal parameters, the 

contribution of the thi  mode to free vibration response can be derived as  

*
2 1 2 1 2 2ˆ ˆ( ) (0) (0)k k

i i i i i i ik λ λ− −= +x z zφ φ  (2.14) 

in which the superscript * denotes the complex conjugate, and ˆ (0)zi  = initial condition for the 

thi  modal response, which is easily to be obtained 

1 1 1 1/ 2ˆ(0) (0) T T
n n n

− − −= =z T z T A Σ V E  (2.15) 

where [1  ]n =E 0 , (0)z = initial conditions of state vector in equation (2.1) in the case of free 

vibration. 

2.3 Natural Excitation Technique 

The basic principle behind the natural excitation technique (NExT) is that the 

theoretical cross-correlation function of the response processes along two different DOFs of 

an ambient (broad-band) excited structure has the same analytical form as the impulse 
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response function (or, more generally, the free vibration response) of the structure (James et 

al., 1993; Farrar and James, 1997; Caicedo et al., 2004). Consider the differential equation of 

motion of an N DOF, linear time-invariant system 

( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx Pf�� �  (2.16) 

with initial conditions 0(0)=x x  and 0(0)=x x� � , where ( ), ( ), and ( )t t tx x x� �� = nodal 

displacement, velocity, and acceleration vectors, respectively; , and M, C K =  mass, damping, 

and stiffness matrices, respectively; P = load distribution matrix; and ( )tf = load vector 

function. Assuming that the ambient excitation function and structural responses are each 

stationary stochastic processes, equation (2.16) can be rewritten as 

( ) ( ) ( ) ( )t t t t+ + =MX CX KX PF�� �  (2.17) 

where ( ), ( ), and ( )t t tX X X� �� = displacement, velocity, and acceleration stochastic vector 

processes, respectively; ( )tF = stochastic excitation vector process. Multiplying each term of 

equation (2.17) expressed at time t t τ= + with the scalar reference response quantity X ( )r t  

and taking the mathematical expectation (E) yields 

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]r r r rE X t t E X t t E X t t E X t tτ τ τ τ+ + + +M X + C X + K X = P F�� �  (2.18) 

Under the condition that future input forces are uncorrelated with the current structural 

response in the reference channel r, equation (2.18) reduces to 

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]r r rE X t t E X t t E X t tτ τ τ+ + +M X + C X + K X = 0�� �  (2.19) 

which is equivalent to (Lutes and Sarkani, 1997) 

( ) ( ) ( )
r r rX X Xτ τ τX X XMR + CR + KR = 0�� �  (2.20) 

in which ( )rX τXR  is the cross-correlation vector between X ( )r t and ( )tX . It is observed that 

the above differential equation governing the cross-correlation vector function ( )rX τXR  is 
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identical to the equation of motion (2.16) under free vibration condition. It can also be shown 

that the correlation functions of the velocity and acceleration processes also satisfy equation 

(2.20) for positive values of the time lag τ  (Beck et al. 1994). Once an estimation of the 

cross-correlation vector ( )rX τXR  is obtained for a given reference channel, the ERA method 

reviewed above can be used to estimate the modal parameters. 

In order to improve the reliability and accuracy of identified modal parameters, the 

multiple-reference NExT-ERA (MNExT-ERA) can be applied as an extension of NExT-ERA. 

In MNExT-ERA, instead of using a single (scalar) reference response channel as in NExT-

ERA, a vector of reference channels (multiple reference channels) is used to obtain an output 

cross-correlation matrix. The correlation matrix between an N-DOF response vector ( )X t  

(e.g., nodal displacements, velocities, or accelerations) and a subset of this response vector, 

( )Xr t  (with rN  reference channels), is defined as 

1 2
( ) ( ) ( ) ( )

X X X X X
R R R R"r r r r

Nr
r

X X X
N N×

⎡ ⎤= ⎢ ⎥⎣ ⎦
τ τ τ τ  (2.21) 

It can be seen that each column of the cross-correlation matrix ( )X XR r τ  is a cross-

correlation vector between the system response vector and a single (scalar) reference response. 

The cross- correlation matrix ( )X XR r τ  is then used to form Hankel matrices for application of 

ERA and identifying modal parameters 

( ) ( )

(1) (2) ( )
(2) (3) ( 1)

(0)

( ) ( 1) (2 1)

R R R
R R R

H

R R R

"
"

# # % #
"

r

s

m s N s

s
s

s s s
× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 (2.22) 
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( ) ( )

(2) (3) ( 1)
(3) (4) ( 2)

(1)

( 1) ( 2) (2 )

R R R
R R R

H

R R R

"
"

# # % #
"

r

s

m s N s

s
s

s s s
× × ×

⎡ ⎤+⎢ ⎥
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (2.23) 

The basic idea behind the use of multiple reference channels (as opposed to the 

classical approach of using a single reference channel) is to avoid missing modes in the NExT-

ERA identification process due to the proximity of the reference channel to nodes of these 

modes. In the case that a single cross-correlation vector does not contain significant 

information about a given vibration mode, the latter can still be identified accurately in 

MNExT-ERA through output cross-correlation functions based on other reference channels. In 

MNExT-ERA, the ERA is applied in its multiple-input, multiple-output formulation, but 

instead of forming the Hankel matrix based on the free vibration response of a truly multiple-

input system, the block Hankel matrix is formed by including rN  cross-correlation vectors 

with different reference channels.  

2.4 Random Decrement Technique  

The random decrement technique (RDT) was developed by Cole and co-workers 

during the late 1960s and early 1970s at NASA (Cole, 1968, 1971, 1973; Chang, 1975). The 

basic idea behind this technique is to estimate random decrement (RD) functions by averaging 

time segments of the measurement data selected under certain triggering conditions. 

Considering two stationary processes ( )X t and ( )Y t , the auto- ( )XXD τ and cross- ( )YXD τ  RD 

functions are defined as conditional mean values 

( )( ) [ ( ) | ]XX XD X tE t Cτ τ= +  

( )( ) [ ( ) | ]YX XD Y tE t Cτ τ= +  

(2.24) 
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The first subscript refers to the process for which the mean value is calculated and the second 

subscript refers to the process for which the condition is fulfilled. The condition 

( )X tC represents the triggering conditions. Under the assumption that the processes are not only 

stationary but also ergodic, the RD functions can be estimated as 

( )
1

1ˆ ( ) ( ) |XX xD x
i

N

i t
i

t C
N

τ τ
=

= +∑  

( )
1

1ˆ ( ) ( ) |YX xD y
i

N

i t
i

t C
N

τ τ
=

= +∑  

(2.25) 

where N denotes the number of triggering points. From equations (2.24) and (2.25), it can be 

seen that the triggering condition simply describes a requirement for the initial condition of 

the time segments in the averaging process at time lag 0τ = . Level crossing triggering 

condition ( )
L
X tC , zero crossing triggering condition ( )

Z
X tC , positive point triggering 

condition ( )
P
X tC , and local extreme triggering condition ( )

E
X tC  are the most often used 

triggering conditions in the application of RDT, which are defined as  

( ) { ( ) }L
X tC X t a= =  

( ) { ( ) 0, ( ) 0}�Z
X tC X t X t= = >  

( ) 1 2{ ( ) }P
X tC a X t a= ≤ <  

( ) 1 2{ ( ) , ( ) 0}�E
X tC a X t a X t= ≤ < =  

(2.26) 

Asmussen (1997) introduced a generalized triggering condition ( )
AG

X tC  defined as  

( ) 1 2 1 2{ ( ) , ( ) }�AG
X tC a X t a b X t b= ≤ < ≤ <  (2.27) 

All different triggering conditions defined as equations (2.26) can be considered as specific 

formulation of this general triggering condition ( )
AG

X tC . 
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RD functions have been traditionally interpreted as free decays (Cole 1968, 1971, 

1973). For example, if the triggering condition is ( )X t a=  only, the RD free decay represents 

a step response and if the triggering condition is ( )X t v� =  only, the free decay corresponds to 

an impulse response. In both of these cases, the modal parameters can be extracted using the 

RD functions by classical system identification algorithm such as ERA.  

The relation between RD functions and correlation functions have been investigated 

by several studies (e.g., Vandiver et al., 1982; Brincker et al., 1990, 1991; Asmussen, 1997). 

Based on the assumption that the stochastic processes are stationary zero-mean Gaussian 

processes, the RD functions subject to the general triggering condition ( )
AG

X tC can be derived 

(Asmussen, 1997) 

2 2

( ) ' ( )( )
�

��XX XX
XX

X X

R RD a bτ τ
τ

σ σ
= −

 

2 2

( ) ' ( )( )
�

��YX YX
YX

X X

R RD a bτ τ
τ

σ σ
= −

 

(2.28) 

where ( )XXR τ and ( )YXR τ  = auto and cross correlation functions of stationary processes; 

' ( )XXR τ  and ' ( )YXR τ  = time derivative of the auto and cross correlation functions; 2
Xσ  and 

2
X�σ  = variance of process ( )X t  and derivative process ( )X t� , respectively; a� and b� are defined 

as 

2 2

1 1

2 2

1 1

( ) ( )
;     

( ) ( )

a b

X Xa b
a b

X Xa b

xf x dx xf x dx
a b

f x dx f x dx
= =
∫ ∫

∫ ∫

�

�

� � �
��

� �
 (2.29) 

where ( )Xf x  and ( )Xf x� �  are the probability density distribution functions of stochastic 

variables ( )X t  and ( )X t� , respectively. It is worth noting that the relation between RD 

functions subjected to any particular triggering condition and the correlation functions can be 
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determined directly from equations (2.28) and (2.29). Among the four trigger conditions 

defined in equation (2.26), the positive point triggering condition is perhaps the simplest 

triggering condition. Under this triggering condition, the RD functions are proportional to 

response correlation functions. 

2.5 Covariance-Driven Stochastic Subspace Identification 

Covariance-driven stochastic subspace identification (SSI-COV) is developed based 

on the stochastic system realization theory which is closely related to deterministic realization 

and was developed in 1970’s (Akaike, 1974). Instead of the impulse response function (IRF) 

used in deterministic realization theory to identify the modal parameters such as ERA method, 

the stochastic realization theory uses the covariance of output-only response in the modal 

identification. Based on the previous works by Van Overschee and de Moor (1996), Peeters 

and de Roeck (2001), and Zhang (2005), the SSI-COV is briefly reviewed in this section. 

Equation (2.1) is rewritten here 

( 1) ( ) ( )+ = +z Az Buk k k  

( ) ( ) ( )= +x Cz Duk k k  
(2.30) 

In practice, the input function u is often unknown / unmeasured and only the response 

of the structure is measured. Thus, the discrete-time state-space model in equations (2.30) can 

be extended to the following stochastic version thereof 

( 1) ( ) ( )z Az wk k k+ = +  

( ) ( ) ( )x Cz vk k k= +  
(2.31) 

where state-space matrices A and C are the same as in equations (2.1) and (2.30): A = state 

transition matrix, which completely characterizes the dynamics of the system through its 

eigenproperties, and C = output matrix that specifies how the inner states are transformed into 
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the measured system response/output; ( )w \nk ∈  = process noise due to external disturbances 

and modeling inaccuracies (i.e, missing high-frequency dynamics) and unknown input 

excitation (undistinguishable from the external disturbances); and ( )v \mk ∈  = measurement 

noise due to sensor inaccuracies and also unknown input excitation (feed-through term). Both 

noise terms ( )w k  and ( )v k are assumed to be zero-mean, white vector sequences with the 

following covariance matrix: 

( )( )
( ) ( )

( )
w Q S

w v
S Rv

T T
ijT

i
E j j

i
δ

⎡ ⎤⎛ ⎞ ⎡ ⎤⎟⎜⎢ ⎥ ⎢ ⎥⎟ =⎜ ⎟⎢ ⎥⎜ ⎢ ⎥⎟⎜⎝ ⎠ ⎣ ⎦⎣ ⎦  
(2.32) 

where E[…] is the mathematical expectation operator; ijδ = Kronecker delta; and Q, R, S = 

process and measurement noise auto / cross-covariance matrices. 

The stochastic process is assumed to be stationary with zero-mean, i.e., 

[ ]( ) 0;     ( ) ( )T zE k E k k⎡ ⎤= =⎢ ⎥⎣ ⎦z z z Σ  (2.33) 

where the state covariance matrix is independent of the time k . Both noise terms ( )kw  

and ( )kv  are independent of state process ( )kz  

( ) ( ) 0;     ( ) ( ) 0T TE k k E k k⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦z w z v  (2.34) 

The output covariance matrix is defined as 

( ) ( )Λ x xT
i E k i k⎡ ⎤= +⎢ ⎥⎣ ⎦  (2.35) 

then we can find 

0 ( ) ( ) ( ( ) ( ))( ( ) ( ))Λ x x Cz v Cz v CΣ C RT T z TE k k E k k k k⎡ ⎤ ⎡ ⎤= = + + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (2.36) 

The state and output covariance matrix G is defined as  

( 1) ( ) ( ( ) ( ))( ( ) ( )) zG z x Az w Cz v AΣ C ST T TE k k E k k k k⎡ ⎤ ⎡ ⎤= + = + + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (2.37) 

Based on these definitions, the following properties are readily be derived 
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0;     z z T z T= Σ + = +Σ A A Q Λ CΣ C R  

1;     z T i
i

−= + =G AΣ C S Λ CA G  

(2.38) 

The property 1i
i

−=Λ CA G in the above equation indicates that the output covariance can be 

considered as Markov parameters (impulse responses) of a deterministic linear time invariant 

system A , G , C , and 0Λ . Thus the classical deterministic realization theory can be extended 

to stochastic systems. In practice, the covariance Λi can be estimated form measurement data 

1

0

1( ) ( ) lim ( ) ( )Λ x x x x
N

T T
i

k

E k i k k i k
N

−

=

⎡ ⎤= + = +⎢ ⎥⎣ ⎦ ∑  (2.39) 

where the second equation follows the ergodicity assumption.  

In order to estimate A , C , and G though decomposition of the covariance matrix, two 

block Toeplitz matrices (0)T and (1)T  are defined  

1 1

1 2 1 2

1
2 1 2 2

(0)

C
CA

T O Γ A G A G G

CA

"
"

"
# # % # #

"

i i

i i i i
i i

i
i i i

−

+ − −

−
− −

⎡ ⎤ ⎡ ⎤Λ Λ Λ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Λ Λ Λ⎢ ⎥ ⎡ ⎤⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Λ Λ Λ⎢ ⎥ ⎣ ⎦⎣ ⎦

 (2.40) 

1 2

2 1 3

2 2 1 1

(1)T O AΓ

"
"

# # % #
"

i i

i i
i i

i i i

+

+ +

− +

⎡ ⎤Λ Λ Λ⎢ ⎥
⎢ ⎥Λ Λ Λ⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥Λ Λ Λ⎢ ⎥⎣ ⎦

 (2.41) 

where the matrices iO  and iΓ  are called the extended observability matrix and the reversed 

extended stochastic controllability matrix, respectively. Following the same procedure as 

described in the ERA section, both matrices iO  and iΓ  can be obtained through the singular 

value decomposition of the block Toeplitz matrix (0)T . Then the system matrices A and C as 

well as modal parameters are ready to be identified.  
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2.6 Data-Driven Stochastic Subspace Identification 

The data-driven stochastic subspace identification (SSI-DATA) extracts a linear state-

space model of the system considered using output-only measurement data directly (Van 

Overschee and De Moor, 1996; Peeters and De Roeck, 2001). Compared to two-stage time-

domain system identification methods such as SSI-COV and NExT-ERA, SSI-DATA does not 

require any pre-processing of the data to calculate auto / cross-correlation functions or auto / 

cross-spectra of output data (i.e., SSI-DATA is a one-stage system identification method). In 

addition, robust numerical techniques such as QR factorization, singular value decomposition 

and least squares are involved in this method. A brief review of this method is presented next. 

Considering the discrete-time stochastic state-space model in equations (2.30), the 

output block Hankel matrix is defined as 

0| 1
0|2 1

|2 1

(0) (1) ( 1)

( 2) ( 1) ( 3)
1 ( 1) ( ) ( 2)

( ) ( 1) ( 1)
( 1) ( 2) ( )

(2 1) (2 ) (2 2)

pi
i

fi i

j

i i i j
i i i j
i i i jj

i i i j

i i i j

−
−

−

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − + −⎢ ⎥
⎢ ⎥ ⎡ ⎤⎡ ⎤− + −⎢ ⎥ ⎢⎢ ⎥= = =⎢ ⎥ ⎢⎢ ⎥+ + −⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + −⎢ ⎥⎣ ⎦

x x x

x x x
XXx x xX x x x XX

x x x

x x x

"
# # # #

"
"
"
"

# # " #
"

('past ')
('future ')
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where the first subscript 0 and i denotes the time index of the first element of the first column 

and the second subscript i-1 and 2i-1 denotes the time index of the last element of the first 

column. The columns j is typically set to be nx -2i-1 ( nx is sampling points of the response), 

implying all the measured data are used (It is assumed that j →∞  for all theoretical 

derivations). The subscript p and f represent the past and future. The matrices pX  and fX  are 

defined by splitting the output Hankel matrix 0|2 1iX −  into two sub-matrices of i block rows. 
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Another division is obtained by shifting the first block row of the future matrix fX  to the past 

matrix pX  

0|
0|2 1

1|2 1

('past ') ( 1)
('future ') ( 1)

X X
X

X X
7
7

i p
i

i i f

m i
m i

+

− −
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 (2.43) 

The SSI-Data algorithm starts by the orthogonal projection of the row space of future output, 

|2 1i i−X  into the row space of past output, 0| 1i−X  which is defined (Van Overschee and De 

Moor, 1996)  

†|2 1
|2 1 0| 1 0| 1 0| 1 0| 1

0| 1
( )T Tf i i

i i i i i i i
p i

−
− − − − −

−
= = =

X XY X X X X XX X  (2.44) 

where the symbol ‘ † ’ denotes the Moore-Penrose pseudo-inverse operator. The projection of 

equation (2.44) can be computed by the numerically robust QR factorization. All the useful 

past information to predict the future are kept by this projection and the (uncorrelated) noise is 

canceled out. A singular value decomposition of the projection iY  is performed as 
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It has been proved that the projection iY  can be written as the product of extended 

observability matrix iO  and the Kalman filter state sequence ˆ
iZ  

ˆ
i i i=Y O Z  (2.46) 

where 1( ) ( )O C CA CA"
TT T i T

i
−⎡ ⎤= ⎢ ⎥⎣ ⎦ and [ ]ˆ ˆ ˆ ˆ( ) ( 1) ( 1)i i i i j= + + −Z z z z" . Based 

equations (2.45) and (2.46) , matrices iO  and ˆ
iZ  can be determined by 
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Another projection similar to projection iY is defined as  
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Similar to equation (2.46), projection 1i−Y  can be written as  

1 1 1
ˆ

i i i− − +=Y O Z  (2.49) 

The extended observaility matrix 1i−O  is easily obtained by removing the last block of the 

matrix iO  (the last m rows) and then the state sequence  

†
1 1 1

ˆ
i i i+ − −=Z O Y  (2.50) 

Once the Kalman filter state estimate sequences ˆ
iZ  and 1

ˆ
i+Z  are obtained from the 

output-only data, the system matrices A and C can be estimated using the following linear 

functions 
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where wρ  and vρ  are the residuals uncorrelated with the Kalman state sequences and outputs. 

The equation (2.51) can be solved in a least squares sense 
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 (2.52) 

Modal parameters can be identified based on equations (2.12) and (2.13) using the estimated 

system matrices A�  and C� . 
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2.7 Non-Parametric Frequency Domain Methods 

2.7.1 Fourier Spectral Analysis Technique 

This method might be the simplest method to estimate the natural frequency and mode 

shapes using only response measurements subjected to ambient excitations. In this method, the 

natural frequencies and vibration mode shapes are determined based on the Fourier amplitude 

spectra (FAS) and Fourier phase spectra (FPS) of the multi-channel response data. Each 

output channel is subjected to a Fast Fourier Transform (FFT). The natural frequencies of the 

system are identified as the frequencies corresponding to FAS peaks presented in a significant 

number of channels. The mode shape associated with an identified natural frequency is 

obtained as the ratios of the magnitudes of the FAS peaks at the various channels to the 

magnitude of the FAS peak at a reference channel making use of the FPS’s to obtain the phase 

(i.e., in-phase or 180 degrees out-of-phase) information. A few drawbacks of the FSA method 

applied to measured ambient vibration data are: (1) modal damping ratios cannot be estimated 

with reasonable accuracy; (2) the accuracy of modal frequency estimation is limited to the 

frequency resolution of response Fourier spectra; (3) closely spaced modes cannot be 

identified separately, and (4) FSA is not suitable for non-classically damped structures. 

Therefore, this method is usually applied for the preliminary signal analysis.  

2.7.2 Frequency Domain Decomposition Technique 

The frequency domain decomposition (FDD) method, a non-parametric frequency-

domain approach, is an extension of the basic frequency domain (BFD) approach referred to 

as peak picking technique. According to the FDD technique, the modal parameters are 

estimated through SVD of the power spectral density (PSD) matrix performed at all discrete 

frequencies. Considering a lightly damped system, the number of vibration modes 
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contributing significantly to a given cross-spectral density (CSD) function at a particular 

frequency is limited to a small number (usually 1 or 2). Through the above mentioned SVD, 

CSD functions are decomposed into single-degree-of-freedom (SDOF) CSD functions, each 

corresponding to a single vibration mode of the dynamic system. In the EFDD method 

(Brincker et al. 2001), the natural frequency and damping ratio of a vibration mode are 

identified from the SDOF CSD function corresponding to that mode. For this purpose, the 

SDOF CSD function is taken back to the time domain by inverse Fourier transformation, and 

the frequency and damping ratio of the mode considered are estimated from the zero-crossing 

times and the logarithmic decrement, respectively, of the corresponding SDOF auto-

correlation function. 

It is worth noting that since only the data near the peak of the singular values plot are 

used to estimate correlation function of the corresponding SDOF system, it may cause the bias 

error in the damping estimation. Most recently, frequency-spatial domain decomposition has 

been developed to solve this problem making use of the property of the unitary singular matrix 

to obtain the enhanced output PSD by pre- and post- multiplying a singular vector 

corresponding to a certain natural frequency (Zhang et al., 2005). In this way the output PSD 

is enhanced around the modal frequency and is attenuated when the frequency beyond this 

region. Therefore, the singular vector corresponding to this modal frequency works like a 

modal filter. More details about the EFDD method can be found in Brincker et al. (2000, 

2001a, b), Gade et al. (2005), and Zhang et al. (2005). 

2.8 Summary 

Output-only system identification techniques are briefly reviewed in this chapter. 

These methods are: (1) the natural excitation technique combined with eigensystem realization 
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algorithm (NExT-ERA) and the multiple-reference NExT-ERA (MNExT-ERA); (2) the 

random decrement technique combined with ERA (RDT-ERA), (3) the covariance-driven 

stochastic subspace identification (SSI-COV) method, (4) the data-driven stochastic subspace 

identification (SSI-DATA) method, (5) the Fourier spectra analysis (FSA) method and (6) the 

enhanced frequency domain decomposition (EFDD) method. NExT-ERA / MNExT-ERA, 

RDT-ERA, and SSI-COV belong to two-stage time domain system identification methods 

whereas the SSI-DATA is a one-stage time domain system identification method. The last two 

methods are frequency domain non-parametric methods. These output-only system 

identification techniques are necessary and essential for developing a long-term continuous 

vibration-based structural health monitoring system.  
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Chapter 3 

Dynamic Testing and System Identification of Alfred Zampa 

Memorial Bridge 

3.1 Introduction 

Dynamic tests of bridges are usually subdivided into two types: forced and ambient 

vibration tests. Forced vibration tests are directly related to the application of classical 

experimental modal analysis (Ewins, 2003), in which the bridge is usually excited by artificial 

means such as eccentric or linear inertial shakers (Halling et al., 2001; Brownjohn et al., 2003) 

or drop weights (Abdel Wahab and De Roeck, 1998). A sudden impact on the bridge induces a 

condition of free vibration. In previous experimental studies, some creative methods have 

been employed to generate impact loads in dynamic testing of bridges. For example, in a study 

by Delaunay et al. (1999), the horizontal impulsive force was generated by the sudden release 

of a tension cable that connected the bridge to a tug-boat. In another study by Huang et al. 

(1999), impact forces in the longitudinal and transverse directions were generated by the 

sudden braking of a truck at a specified location on the bridge, whereas vertical impact forces 

were generated by simply letting the rear wheels of the truck drop from the top of a concrete 

block. Earthquake excitation (when measured) provides a natural source of forced vibration 

for bridge and other civil structures (Smyth et al., 2003).  

In general, forced vibration tests provide more accurate modal identification results 

than ambient vibration tests, since (a) well-defined input excitations are used in the modal 

identification procedure, and (b) the excitations can be optimized to enhance the response of 
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the vibration modes of interest. However, in the case of large and flexible bridges (such as 

suspension and cable-stayed bridges) with natural frequencies of the predominant modes in 

the range 0-1Hz, it is challenging and costly to provide controlled excitation for significant 

level of response.  

In contrast, ambient vibration tests take advantage of “free” or natural excitation 

sources such as traffic, wind, micro-tremors and combinations thereof. Moreover, since 

ambient vibration tests do not interrupt service of the test structure (e.g., shutting down traffic 

during bridge testing), they can be used readily for long term continuous structural health 

monitoring applications. Ambient vibration tests have been successfully applied to a  variety 

of bridge structures such as the Vincent Thomas suspension bridge (Abdel-Ghaffar and 

Housner, 1978), Golden Gate suspension bridge (Abdel-Ghaffar and Scanlan, 1985), Roebling 

suspension bridge (Ren et al., 2004a),  Safti Link curved cable-stayed bridge (Brownjohn et al., 

1999), Vasco da Gama cable-stayed bridge (Cunha et al,. 2001), twin curved cable-stayed 

bridges on the north and south sides of Malpensa airport in Milan (Gentile and Martinez y 

Cabrera, 2004), Brent-Spence truss bridge (Harik et al., 1997) and Tennesse River steel arch 

bridge (Ren et al., 2004b). In these studies, system identification based on ambient vibration 

test data provided accurate estimates of natural frequencies and mode shapes despite the 

relatively low amplitude of the measured vibrations. Even though modal damping ratios / 

factors can be satisfactorily identified using ambient vibration data, they typically require the 

use of advanced system identification methods due to the low amplitude and relatively low 

signal-to-noise ratio of such data. Therefore, results on identification of modal damping ratios 

using ambient vibration data are scarce.  

This chapter describes in detail a set of dynamic tests performed on the Alfred Zampa 

Memorial Bridge (AZMB). They include ambient vibration tests (mainly wind-induced) and 
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forced vibration tests based on controlled traffic loads and vehicle-induced impact loads. The 

vibration response of the bridge was measured using an array of 34 uni-axial and 10 tri-axial 

force-balanced accelerometers from the mobile field laboratory of the George E. Brown, Jr. 

Network for Earthquake Engineering Simulation (NEES) field testing site at the University of 

California at Los Angeles (NEES@UCLA). These accelerometers were installed at 25 

selected stations along both sides of the bridge deck. Instead of roving accelerometers around 

to the different measurement stations with fixed accelerometers at one or more reference 

stations (as commonly done for dynamic testing of bridges), a total of 64 channels of 

acceleration response data were recorded simultaneously in the tests described here, including 

25 vertical, 25 transversal, and 14 longitudinal motion components. These dynamic field tests 

are the first ones conducted on the AZMB, and they were performed just before the bridge 

opening to traffic. Therefore, these tests provided a unique opportunity to determine the 

dynamic properties of the bridge in its as-built (baseline) condition with no previous traffic 

loads or seismic excitation.  

Three different output-only system identification algorithms were applied to dynamic 

field test data collected from the AZMB for modal identification. These methods consist of: (1) 

the multiple-reference natural excitation technique combined with eigensystem realization 

algorithm (MNExT-ERA) (Juang and Pappa, 1985; James et al., 1993, He et al., 2006), a two-

stage time-domain system identification method; (2) the data-driven stochastic subspace 

identification (SSI-DATA) method (Van Overschee and De Moor, 1996), a one-stage time-

domain system identification method; and (3) the enhanced frequency domain decomposition 

(EFDD) technique (Brincker et al., 2001), a non-parametric frequency domain system 

identification method which is a sophisticated extension of the well-known peak picking 

technique. The modal parameters of the AZMB identified using different methods and data 
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from different types of test are compared for cross-validation purposes and also to investigate 

the performance of these output-only system identification methods applied to bridge vibration 

data corresponding to different excitation sources. Finally, the identified natural frequencies 

and mode shapes are compared with their analytical counterparts obtained from a three-

dimensional (3D) finite element model used in the design phase of the AZMB. 

3.2 Alfred Zampa Memorial Bridge 

The Carquinez Strait, located about 32 km northeast of San Francisco, carries the 

Sacramento River into San Francisco Bay. Before construction of the AZMB, the strait was 

spanned by two steel truss bridges built in 1927 and 1958, respectively, which provide a vital 

link on the interstate Highway I-80 corridor. The AZMB is the third bridge crossing the 

Carquinez Strait and will replace the original bridge that was built in 1927. With a main span 

of 728 m and side spans of 147 m and 181 m, the AZMB is the first major suspension bridge 

built in the United States (US) since the 1960s. The design and construction of the AZMB 

incorporates several innovative structural features that have never been used previously for a 

suspension bridge in the US, namely (1) orthotropic (aerodynamic) steel deck; (2) reinforced 

concrete towers; and (3) large-diameter drilled shaft foundations. The AZMB is also the first 

suspension bridge in the world with concrete towers in a high seismic zone. 

The closed steel box girder with orthotropic deck provides a light weight, durable, and 

low-maintenance alternative to the stiffening trusses that have been used on previous 

suspension bridges in the US. It is continuous through the towers, with expansion joints 

located only at the far ends of the side spans. Its slender 3 m depth allows adequate navigation 

clearance without excess structure height. Its shape was developed in a wind tunnel to provide 

aerodynamic stability and low drag. Its rigidity against bending and torsion contributes to 
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superior bridge performance under wind, seismic, and traffic loads. Its closed form, with 

smooth outside surfaces and stiffening elements located inside, reduces maintenance costs.  

The reinforced concrete towers rising about 125 m above the mean water level are the 

prominent architectural feature of the bridge. The ductile frames formed by the tower shafts 

and their connecting struts provide a “rectangle of air” above drivers. This is the first 

application of concrete towers on a suspension bridge in the US, and to any suspension bridge 

in the world in a high seismic risk zone. The cellular shafts incorporate spirally reinforced 

corner pilasters to improve ductility and provide architectural relief. The towers were designed 

to a seismic standard requiring essentially elastic behavior in the maximum credible 

earthquake (as defined in Caltrans’ seismic design procedures), with some limited inelastic 

behavior allowed in their lower sections. Drilled shaft foundations support pile caps on which 

the towers were built. Steel casings were driven through overlying sediments into the top of 

the rock. Then an uncased rock socket was drilled below the casing. The rock socket and 

casing were then reinforced and concreted. Each tower is supported by twelve such shafts, 

with a maximum length of about 90 m. These foundations are economical to build, have less 

impact on water flow than large sunken caissons, and were designed to the same seismic 

standard as the towers. 

The south transition pier supports the end of the steel deck girder, houses tie-downs 

that divert the geometry of the cables to the south anchorage, and supports the end of the south 

viaduct. It is structurally and architecturally similar to the main towers, with cellular 

reinforced concrete shafts and pile foundations. The south cable anchorage transfers the thrust 

of the cables to the ground via massive concrete anchor blocks and a combination of batter 

piles and vertical piles. The splay chambers rise 18 m above ground, while the anchor blocks 

extend about 10 m beneath the ground surface. The north cable anchorage transfers the thrust 
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of the cables to the ground by direct bearing on the underlying rock, and also serves as a 

bridge abutment. The concrete anchor blocks and splay chambers are benched into the rock 

beneath the roadway and only the relatively small saddle housings are exposed. More details 

about this bridge such as the special engineering studies and structural quantities can be found 

elsewhere (Ketchum, 2006; Caltrans, 2006).  

3.3 Description of Instrumentation and Data Acquisition System 

3.3.1 NEES@UCLA Data Acquisition Equipment 

Equipment from NEES@UCLA was used to perform the dynamic tests on the AZMB. 

The NEES@UCLA field mobile laboratory deployed for this study consisted of:  

1. EpiSensor accelerometers from Kinemetrics Inc. including both EpiSensor ES-U 

(uni-axial) and EpiSensor ES-T (tri-axial). The EpiSensor force-balanced 

accelerometers have a wide frequency bandwidth from DC (i.e., 0Hz) to 200Hz, a 

large amplitude range (user selectable at 0.25 g, 0.5 g, 1 g, 2 g, 4 g± ± ± ± ± ) set at 

2 g±  for these experiments, and a broad dynamic range (140 dB+ for ES-U and 155 

dB+ for ES-T). The significant bandwidth (from DC to 200 Hz) allows for the study 

of motions at higher frequencies while maintaining the very important low frequency 

and DC response needed in field calibration, in post-processing of the data (e.g., 

double integration of acceleration records) and in studying the low frequency 

predominant modes of the AZMB. Figure 3.1 shows both EpiSensors ES-U and ES-T 

used in the tests. 

2. Quanterra Q330 data loggers from Kinemetrics, Inc., to provide signal 

conditioning (e.g., anti-aliasing filter), analog to digital (A/D) conversion, GPS (i.e., 

global positioning system) time stamping for synchronization across multiple nodes, 
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local memory buffer and IP-network (i.e., Internet Protocol network) communication 

capabilities via hardwire or wireless. The nominal performance specifications for the 

Q330 data loggers include 24-bit A/D resolution, 135 dB dynamic range, and a time 

stamp (time synchronization) accuracy of < 0.1 ms. Figure 3.2 shows a Q330 data 

logger used in the tests. 

3. Antelope data acquisition software (Boulder Real Time Technologies, 2006) for 

real-time monitoring and recording of data. A data concentrator which consists of a 

field-ruggedized UNIX workstation running Antelope, networking switches and 

wireless communication radios, was used to centrally record the data from each of the 

Q330 data logger nodes.  

4. Mobile command center containing computing facilities, satellite uplink (not used 

in these tests) and equipment storage. 

Collectively, the NEES@UCLA field data acquisition system represents the state-of-

the-art in seismic monitoring equipment. The accelerometers transmit analog signals to the 

Q330 data loggers in which they are digitized, time-stamped and stored in a local memory 

buffer as data packets. From there, the data packets are sent to the data concentration point 

using Transmission Control Protocol / Internet Protocol (TCP/IP) with either Ethernet cables 

or IEEE 802.11b, a standard for local area networks from the Institute of Electrical and 

Electronic Engineers (IEEE), long-range wireless radios. Ethernet cables were used for this 

experiment due to external radio frequency interference which limited drastically the 

transmission distance of the wireless equipment. The data concentration point contains a Sun 

Microsystems Netra 120 server (a high density, thin, ruggedized server designed to withstand 

extreme levels of temperatures, humidity, radiation and vibrations) running Antelope data 

acquisition software to centrally record data packets received from each of the various 
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Quanterra Q330 nodes. Finally, the Antelope server in the data concentration point transmits, 

using an orb2orb transfer protocol, all of the received data packets to a laptop computer inside 

the mobile command center also running Antelope software. The laptop computer was used to 

observe the experiment in real-time using the Antelope real-time monitoring (Antelope RTM) 

system. Figure 3.3 illustrates the network of the NEES@UCLA field mobile laboratory. 

3.3.2 Accelerometer Layout 

The mobile command center was located near midpoint of the bridge main span and 

the accelerometers were installed at selected locations (stations) along both sides of the bridge 

deck covering the whole length of the bridge. Along the west side of the bridge deck, 14 

stations were instrumented with either a single EpiSensor ES-T (tri-axial) or three EpiSensors 

ES-U (uni-axial) at each station to measure the vertical, transversal and longitudinal motion 

components. The east side of the bridge deck was instrumented with 22 EpiSensors ES-U at 

11 stations (i.e., two uni-axial accelerometers per station) measuring the vertical and 

transversal motion components. Figure 3.4 shows the sensor locations along the bridge deck. 

At each station, the accelerometers were mounted on a square aluminium plate of 

size 203 203 6 (mm)× × . These plates were attached to the bridge deck using semi-permanent 

adhesive sheets providing the required stiffness between the plates and the deck. Each Q330 

has two 3-channel ports (A and B) to connect sensors. A hub was used to connect up to three 

EpiSensors ES-U to each port. Due to a limited number of hubs available at the time of the 

experiments and the narrow time window available to perform the experiments, acceleration 

responses at stations 6SW (i.e., station 6 at southwest side of the bridge deck), 6SE, 7SE, 6NE 

and 7NE (see Figure 3.4) could not be recorded. 
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3.4 Dynamic Tests Performed on the Bridge 

Three types of excitation sources were used for the dynamic field tests performed on 

the AZMB: controlled traffic loads, vehicle-induced impact loads and wind. The controlled 

traffic loads consisted of two heavy trucks weighing 405 kN (Truck A) and 409 kN (Truck B), 

respectively, traversing the bridge at specified velocities and the impact loads were generated 

using one or both of these trucks driving over triangular shaped steel ramps (60cm long and 

10cm high) designed and constructed specifically for these tests. The vehicle-induced impact 

excitation was intended to induce a free vibration response significantly higher than the 

ambient vibration response (mainly wind-induced) and the response to the controlled traffic 

loads. Four controlled traffic load patterns were defined in the controlled traffic loads and 

vehicle-induced impact tests, namely: (I) two trucks crossing over the bridge in parallel 

(Figure 3.5a); (II) two trucks crossing over the bridge in opposite direction (Figure 3.5b); (III) 

one truck crossing over the bridge; and (IV) two trucks crossing over the bridge following 

each other in the same traffic lane. It should be mentioned that the trucks could only use the 

two middle traffic lanes (see Figure 3.5) during the tests.  

3.4.1 Controlled Traffic Load Tests 

The first three controlled traffic load patterns were used as the excitation sources in 

this set of tests. For each traffic load pattern, two specified truck velocities were used, namely 

24 km/h and 48 km/h. Due to the end-of-construction field condition at the time of the tests, 

the trucks could be driven at the specified velocities only along the main span of the bridge 

(between the two towers). During the tests, the trucks were commanded through radio 

communication from the mobile command center, located near midpoint of the main span, 

where the data were monitored in real-time and recorded. Table 3.1 provides a detailed 
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description of the controlled traffic load tests. As an illustration, Figure 3.6 shows the vertical 

acceleration response at the midpoint, south quarter point and near the south end of main span 

on the west side of the bridge deck (i.e., stations 0W, 3SW, and 5SW) measured in Test No. 5, 

during which one truck crossed over the bridge from north to south on the west traffic lane. 

Notice that a peak vertical bridge deck acceleration of about 0.01g is observed during this test. 

The Fourier amplitude spectrum of the vertical response measured at station 3SW is shown in 

Figure 3.7. For a long-span suspension bridge such as the AZMB, the lower modes natural 

frequencies are below 1 Hz. It is observed from Figure 3.7 that during the controlled traffic 

load tests, the vibration modes with natural frequencies above 1 Hz (higher vibration modes) 

are more significantly excited than those with natural frequencies below 1 Hz (lower vibration 

modes).  

3.4.2 Vehicle-Induced Impact Tests 

Two pairs of triangular shaped steel ramps were used in the vehicle-induced impact 

tests. As an illustration, Figure 3.8 shows two pairs of steel ramps set up along the centerline 

of the bridge main span. In this set of tests, all of the four controlled traffic load patterns 

defined above were used in combination with seven different ramp configurations: (a) two 

pairs of ramps located at midpoint of main span; (b) a single pair of ramps located at midpoint 

of main span on the west traffic lane; (c) a pair of ramps located at the north quarter point of 

main span on the west traffic lane and the second pair located at midpoint of main span on the 

east traffic lane; (d) one pair of ramps located at the north quarter point of main span on the 

west traffic lane and the second pair located at the south quarter point of main span on the east 

traffic lane; (e) a single pair of ramps located at the north quarter point of main span on the 

west traffic lane; (f) a pair of ramps located at both the north and south quarter points of main 

span on the east traffic lane; and (g) a pair of ramps located at both the north quarter point and 
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midpoint of main span on the west traffic lane. The trucks approached the ramps at the 

specified velocity of 32 km/h, but traversed the ramps at the reduced velocity of 8 km/h. For 

safety reason, one of the trucks crossed over the ramps at very low velocity (less than 1 km/h). 

Details of these tests are provided Table 3.2. 

As an illustration, Figure 3.9 shows the vertical bridge deck acceleration response at 

the midpoint, south quarter point and near the south end of main span on the west side of 

bridge deck (i.e., stations 0W, 3SW, and 5SW) measured in Test No. 10, during which both 

trucks crossed over the bridge in opposite direction with two pairs of ramps located at 

midpoint of main span. Notice that a peak vertical bridge deck acceleration of about 0.08g is 

observed during this test, which is significantly larger than that observed in Test No. 5 (peak 

acceleration of 0.01g). Figure 3.10 shows the Fourier amplitude spectra of the vertical 

acceleration response measured at station 3SW in Test No. 10 and Test No. 12, during which 

both trucks crossed over the bridge in opposite direction with two pairs of ramps located at the 

north quarter point of main span on the west traffic lane and the south quarter point of main 

span on the east traffic lane, respectively. It is clearly seen that the relative contributions of the 

bridge vibration modes to the measured response depends on the locations of the steel ramps 

(i.e., the locations of the impact loads). However, in both cases (Test No. 10 and Test No. 12) 

the higher vibration modes were excited much more significantly than the lower vibration 

modes. 

At the end of the sequence of vehicle-induced impact tests, the response of the bridge 

was measured due to longitudinal forces applied on the bridge deck. These forces were 

generated through braking of the trucks while they were crossing over the bridge in parallel 

from south to north (Test No. 16). In this test, for safety consideration, the drivers applied 

normal and not hard breaks on the trucks to stop at midpoint of main span.  
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3.4.3 Ambient Vibration Tests 

Ambient vibration tests were conducted after completion of all the tests based on the 

two trucks in traffic condition, just after midnight local time, while there were no construction 

activities on the bridge and thus bridge vibrations were induced mainly by wind. Two cases of 

ambient vibration tests were performed: the bridge response was measured (1) when both 

trucks were stationed at midpoint of main span (Test No. 17), and (2) after both trucks left the 

bridge (Test No. 18). As an illustration, Figure 3.11 shows the vertical acceleration response at 

the midpoint, south quarter point and near the south end of main span on the west side of the 

bridge deck (i.e., stations 0W, 3SW, and 5SW) measured in Test No. 18. Notice that a peak 

vertical bridge deck acceleration of about 0.003g is observed during this test, which is much 

smaller than that observed in Test No. 5 (controlled traffic load tests), see Figure 3.6. The 

Fourier amplitude spectrum of the vertical acceleration response measured at station 3SW is 

shown in Figure 3.12. During Test No. 18, the vibration modes below 1 Hz were excited as 

much as those above 1 Hz. Despite the fact that the amplitude of the measured ambient 

vibration response is much lower than that of the forced vibration response measured, the 

ambient vibration data was found to be very clean (i.e., high signal-to-noise ratio, see Figure 

3.12), especially for identifying the lower vibration modes.  

3.5 System Identification 

System identification of the AZMB was performed based on both ambient and forced 

vibration test data. During the dynamic tests, the bridge acceleration response at various points 

(stations) was sampled at a rate of 200 Hz resulting in a Nyquist frequency of 100 Hz, which 

is much higher than the frequencies of interest in this study (< 4 Hz). The 20 minutes long 

ambient vibration test data used in this study were collected just after midnight local time, 
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while there were no construction activities on the bridge. Therefore, the bridge ambient 

vibrations were driven mainly by wind (Test No. 18). 

As described in the previous section, two types of forced vibration tests were 

performed on the AZMB, namely (1) controlled traffic load tests, and (2) vehicle-induced 

impact tests. In the vehicle-induced impact tests, the load applied to the bridge departed from 

an ideal impulse load due to the continuous motion of the truck on the bridge before and after 

the impact, which causes errors in identifying the damping ratios (He et al., 2006). Therefore, 

the bridge vibration data from the vehicle-induced impact tests were not used to identify the 

bridge modal parameters in this study. Due to the limited duration of each controlled traffic 

load test (100 seconds for Tests No. 1, 2, 3 and 200 seconds for Tests No. 4, 5, 6) and the 

requirement of high frequency resolution (to resolve closely-spaced vibration modes) in the 

system identification, the bridge vibration measurements from the six different tests are 

concatenated back to back resulting in a total duration of 900 seconds (15 minutes). As an 

illustration, Figure 3.13 shows the bridge vertical acceleration response at the midpoint, south 

quarter point and near the south end of main span on the west side of the bridge deck (i.e., 

stations 0W, 3SW, and 5SW, respectively) measured during the six forced vibration tests. The 

amplitude of vibration of the bridge during the first 300 seconds (trucks moving at 48 km/h) is 

larger than during the last 600 seconds (trucks moving at 24 km/h).  

In order to improve the computational efficiency and avoid missing modes in the 

system identification process, the lower vibration modes (with natural frequencies below 1 Hz) 

and higher vibration modes (with natural frequencies above 1 Hz) are identified separately by 

applying to the bridge vibration data a low-pass Butterworth infinite impulse response (IIR) 

filter of order 7 with a cut-off frequency of 1 Hz and a band-pass finite impulse response (FIR) 
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filter of order 1024 with lower and upper cut-off frequencies of 1 Hz and 4 Hz, respectively. 

Only vertical response measurements were used to identify the higher vibration modes.  

3.5.1 System Identification Results Based on Ambient Vibration Data 

In the implementation of MNExT-ERA, stations 1NE, 2SW, 3NW, and 4SE were 

used as reference stations and response correlation functions were estimated through inverse 

Fourier transformation of the corresponding PSD functions. Estimation of the PSD functions 

was based on Welch-Bartlett method using 300 second long (60,000 points) Hanning windows 

with 50 percent overlap, in order to reduce the effects of spectral leakage. In order to increase 

the computational efficiency of the system identification procedure, the estimated auto / cross-

correlation functions were down-sampled to 10 Hz and 40 Hz for identifying lower and higher 

vibration modes, respectively. After down-sampling, the Nyquist frequency is still much 

higher than the frequency range of interest (≤  1 Hz for lower vibration modes and ≤  4 Hz for 

higher vibration modes). The down-sampled estimated auto / cross-correlation functions were 

then used to form Hankel matrices for applying ERA in the second stage of the modal 

identification. Due to the fact that the accelerometer measuring the vertical response at station 

5SE was not functioning properly, the Hankel matrix constructed using vertical vibration data 

for identifying lower vibration modes has dimensions (21 200) (4 200)× × ×  (21 stations, 4 

reference stations), while the Hankel matrix based on horizontal vibration data has dimensions 

(22 200) (4 200)× × ×  (22 stations). For identifying the higher vibration modes, a Hankel 

matrix of dimensions (21 400) (4 400)× × ×  was constructed. The natural frequencies and 

damping ratios of the identified vibration modes are reported in Table 3.3 together with those 

identified using the other two methods. It should be noted that the modal parameters of some 

significant higher (vertical) vibration modes are not reported here, because the corresponding 
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mode shapes could not be classified due to insufficient spatial density of the sensor network 

deployed along the bridge deck.  

In applying SSI-DATA to identify the modal parameters of the lower vibration modes, 

the filtered measured data were first down-sampled to 10 Hz and then used to form the output 

Hankel matrix composed of 100 block rows with either 21 rows in each block (21 vertical 

channels) for identifying vertical modes or 22 rows in each block (22 horizontal channels) for 

identifying horizontal modes. In identifying the higher vibration modes using SSI-DATA, the 

filtered measured data were first down-sampled to 40 Hz and then used to form the output 

Hankel matrix composed of 50 block rows with 21 rows in each block (21 vertical channels). 

The identified natural frequencies and damping ratios are reported in Table 3.3. In the 

application of MNExT-ERA and SSI-DATA in this study, a stabilization diagram was used to 

determine the “optimum” order of the realized system from which the modal parameters are 

extracted. For example, in identifying the modal parameters of the lower vibration modes 

(below 1 Hz) using SSI-DATA based on the ambient vibration data, the order of the realized 

system was determined as n = 32. 

In the implementation of EFDD, the 20 minutes long filtered ambient vibration data 

were also down-sampled to 10 Hz and 40 Hz for identifying lower and higher vibration 

modes, respectively. Estimation of the PSD functions was based on Welch-Bartlett method 

using 300 seconds long Hanning windows with 50 percent overlap. The modal frequencies 

were estimated at peak locations (i.e., peak picking) in the first singular value versus 

frequency plot and the mode shapes were estimated by the first singular vector at the 

corresponding frequencies (Brincker et al., 2001). The SDOF CSD functions are estimated 

from the first singular value plot using a modal assurance criterion (MAC) (Allemang and 

Brown, 1982) higher than 0.95 between the estimated mode shape and the singular vectors at 
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discrete frequencies around the natural frequency. The modal parameters estimated using 

EFDD are given in Table 3.3.  

From Table 3.3, it is observed that the natural frequencies identified using the three 

system identification methods considered here are in excellent agreement, except for a few 

modes which could not be identified by all three methods such as the first anti-symmetric 

vertical mode (1-AS-V) missed using EFDD and the 5-AS-V mode missed by the SSI-DATA 

method. It is also found that the modal damping ratios identified using the three different 

methods are in reasonable agreement for most identified vibration modes considering that the 

estimation uncertainty of damping ratios is inherently higher than that of natural frequencies. 

The modal damping ratios of some higher torsional modes (4-AS-T, 5-S-T, 5-AS-T) identified 

using EFDD are near zero. It is worth mentioning that the identified modal damping ratios 

might be influenced by the aerodynamic damping induced by the wind-structure interaction. 

The fact that certain modes (1-AS-V, 2-S-T, 5-AS-V, 4-S-T) could not be identified by all 

three methods is likely due to their low participation (relative to other modes) in the measured 

bridge vibration (i.e., these modes were not significantly excited).  

The vibration mode shapes identified using MNExT-ERA, SSI-DATA, and EFDD are 

complex valued. Figure 3.14 represents in polar plots (i.e., rotating vectors in the complex 

plane) the mode shapes of the AZMB (main span only) identified using MNExT-ERA based 

on ambient vibration data. These polar plots have the advantage to show directly the extent of 

the non-proportional damping characteristics of a vibration mode. If all complex valued 

components of a mode shape vector are collinear (i.e., in phase or 180 degrees out of phase), 

this vibration mode is said to be classically (or proportionally) damped. On the other hand, the 

more these mode shape components are scattered in the complex plane, the more the vibration 

mode is non-classically (or non-proportionally) damped. However, measurement noise, 
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estimation errors, and modeling errors could also cause a “true” classically damped mode to 

be identified as non-classically damped. Figure 3.14 shows that most of the vibration modes 

identified in this study are either perfectly or nearly classically damped except for some higher 

vibration modes (5-AS-V, 2-AS-T, 3-AS-T, 4-S-T, 4-AS-T).  

A 3D representation of the normalized mode shapes for these identified vibration 

modes is given in Figure 3.15. Normalization was performed by projecting all mode shape 

components onto their principal axis (in the complex plane) and then scaling this projected 

mode shape vector for a unit value of its largest component. The identified space-discrete 

mode shapes were interpolated between the sensor locations using cubic splines along both 

sides of the bridge deck and straight lines along the deck transverse direction. Since the 

accelerometers at stations 6SW, 6SE, 7SE, 6NE and 7NE could not be recorded, the vibration 

mode shapes are plotted over the bridge main span only and are based on the assumption that 

the motion of the bridge deck at the towers is restrained in both the horizontal and vertical 

direction. In addition, the vertical acceleration response at station 5SE was not recorded 

properly during the tests, and the mode shape components at stations 5NE and 5SW were used 

to estimate the component at station 5SE based on the symmetric or anti-symmetric property 

of vibration modes. From Figure 3.15 it is observed that: (1) the identified mode shapes with 

natural frequencies of 0.41 Hz and 0.56 Hz (observed only over the main span in this study) 

are neither symmetric nor anti-symmetric with respect to the centerline of the main span, and 

(2) the identified modes with natural frequencies of 0.96 Hz and 1.04 Hz have similar mode 

shapes (i.e., 4-AS-V). Additional measurement stations on the towers and approach spans 

(which have different lengths) are needed to identify the corresponding bridge global mode 

shapes. 
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MAC values were computed in order to compare corresponding mode shapes 

identified using different system identification methods and are reported in Table 3.4. The 

high MAC values obtained for most vibration modes indicate an excellent agreement between 

the mode shapes identified using different methods based on ambient vibration data. The low 

MAC values of higher torsional modes such as 4-S-T (i.e., fourth symmetric torsional mode) 

and 5-AS-T (i.e., fifth anti-symmetric torsional mode) indicate that the accuracy of these 

identified mode shapes is not as high as that for lower vibration modes, which could be due to 

the low participation (relative to other modes) of these modes to the measured bridge response.  

3.5.2 System Identification Results Based on Forced Vibration Data 

The system identification methods MNExT-ERA, SSI-DATA, and EFDD were also 

applied to identify the bridge modal parameters based on forced vibration test data. MNExT-

ERA and EFDD were implemented in exactly the same way as for ambient vibration data. 

However, in applying SSI-DATA to identify the higher vibration modes, an output Hankel 

matrix was formed composed of 60 block rows instead of 50 (for ambient vibration data) due 

to the fact that the forced vibration tests are of shorter duration than the ambient vibration test. 

The modal parameters identified using these three methods based on the forced vibration data 

are reported in Table 3.5. The identified natural frequencies using different methods are found 

to be in excellent agreement. The modal damping ratios of some vibration modes such as 1-

AS-V, 1-S-T, and 2-AS-T identified using EFDD are near zero. Excluding these modes, the 

modal damping ratios estimated using the different methods are in reasonable agreement, 

especially those identified using MNExT-ERA and SSI-DATA. The high MAC values (see 

Table 3.6) obtained for most vibration modes indicate an excellent agreement between the 

mode shapes identified using different methods based on forced vibration test data. The low 

MAC values obtained for a few modes, such as the 1-AS-V and the mode with a natural 
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frequency of 0.41 Hz, could be due to the low relative participation of these modes to the 

measured forced vibration response of the bridge.  

By comparing the average values of the modal parameters (natural frequencies and 

modal damping ratios) identified using the three methods based on the ambient vibration data 

(see Table 3.3) with their counterparts identified based on the forced vibration data (see Table 

3.5.), it is found that: (1) The natural frequencies identified using the two types of test data are 

in excellent agreement except for the 1-AS-V mode. The significant difference in the 

identified natural frequencies for this mode reflects the difficulty in identifying it due to its 

very low relative contribution to the bridge vibration response in both the ambient and forced 

vibration tests. Thus, this mode could not be reliably identified. (2) The order (in terms of 

natural frequency) of vibration modes 1-S-V and 1-AS-V identified based on ambient 

vibration data is swapped over when these modes are identified based on forced vibration data. 

(3) The identified modal damping ratios are response amplitude dependent. For most vibration 

modes, especially for the lower vibration modes, the modal damping ratios identified using 

forced vibration data are higher than those identified using ambient vibration data as clearly 

shown in Figure 3.16. The order of the vibration modes used in the figure corresponds to the 

sorted natural frequencies identified based on forced vibration data. Figure 3.17 shows the 

average (over the three methods) of the MAC values between the corresponding mode shapes 

identified based on ambient vibration and forced vibration data. The high average MAC 

values obtained for most vibration modes indicate an excellent agreement between the mode 

shapes identified using the two types of test data. The low average MAC values obtained for a 

few higher torsional modes is likely due to the large estimation errors of these modes due to 

their low relative contributions to the measured bridge vibration response.  

 



 
 

76

3.6 Comparison between Experimental and Analytical Modal Parameters 

A 3D finite element model of the AZMB developed in the structural analysis software 

ADINA (ADINA R&D Inc., 2002) was provided by Caltrans (Dr. Charles Sikorsky, personal 

communication, 2005). Figure 3.18 shows the 3D finite element model of the AZMB. This 

finite element model is composed mainly of: (1) linear elastic frame elements (with possible 

initial strain) to model the two main suspension cables, suspender cables, steel box girder (in 

both the longitudinal and transversal directions) and tower shafts (at some specific locations, 

the shafts are modeled using multilinear inelastic frame elements), (2) multilinear inelastic 

frame elements to model the pile foundations supporting the tower shafts, and (3) linear elastic 

shell elements to model the pile caps. The inertia properties of the bridge are modeled with 

element consistent mass matrices based on element shape functions and material density. 

Additional lumped masses, assigned to some translational DOFs, are also included in the 

model to represent various equivalent masses not accounted for by the element mass matrices. 

This finite element model of the AZMB is composed of 3281 elements and approximately 

14,000 DOFs. It was used in the design process of this bridge. 

In this section, the identified natural frequencies and mode shapes of the bridge 

vibration modes below or slightly above 1 Hz are compared with their analytical counterparts 

obtained from the finite element model of the bridge. The first 200 vibration modes of the 

finite element model of the AZMB were computed. In order to pair each identified vibration 

mode with the corresponding analytical vibration mode, MAC values were calculated between 

the identified mode shape and all 200 computed mode shapes truncated at accelerometer 

locations (i.e., measured DOFs) in order to have the same size as the identified mode shapes. 

For each identified vibration mode, the computed eigen-mode with the highest MAC value is 

considered as its analytical counterpart. In the case where several computed eigen-modes have 
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very close high MAC values with the identified mode considered, the one with natural 

frequency closest to the identified natural frequency is selected. The computed natural 

frequencies and mode shapes corresponding to the lowest 16 identified vibration modes are 

shown in Figure 3.19 together with the corresponding natural frequencies identified from 

ambient and forced vibration data, respectively, averaged over the three system identification 

methods used. Figure 3.20 shows in bar plot the comparison between natural frequencies 

identified from ambient and forced vibration data (averaged over the three methods used) and 

analytically predicted from the finite element model of the bridge. By comparing the 

corresponding identified and analytically predicted natural frequencies (given in Figure 3.19), 

the following observations can be made: (1) The identified and analytically predicted natural 

frequencies of the 1-S-V, 2-S-V, and 2-AS-V vibration modes are in excellent agreement. 

Their differences are less than 1 percent. The agreement between identified and analytical 

natural frequencies for the 2-AS-H, 1-S-T, and 1-AS-T modes is very good, with differences 

less than or slightly above 3 percent. (2) The discrepancies between identified and analytically 

predicted natural frequencies for the 1-S-H and 1-AS-V modes are significant. For the 1-S-H 

mode, the discrepancy is likely due to inaccuracies in the finite element model, since the 

system identification results using different methods based on different test data are found to 

be in very good agreement. However, for the 1-AS-V mode, the discrepancy could be caused 

by both inaccuracies in the finite element model and system identification errors, since the 

natural frequency of this mode identified using different test data are not in good agreement 

either. (3) The other identified and corresponding analytically predicted natural frequencies 

are found to be in reasonable agreement (less than 10 percent difference). Figure 3.21 shows 

in bar plot the MAC values (averaged over the three system identification methods used) 

between identified and analytically predicted mode shapes. For most vibration modes, there is 
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a very good to excellent agreement between identified and analytically predicted mode shapes. 

The low MAC values obtained for a few modes, such as the 1-AS-V and the mode with a 

natural frequency of 0.41 Hz, are caused by both system identification errors due to the low 

relative contributions of these modes to the measured bridge vibration and inaccuracies in the 

finite element model of the bridge. 

3.7 Summary and Conclusions 

A set of dynamic field tests were conducted on the Alfred Zampa Memorial Bridge 

(AZMB), located 32 km northeast of San Francisco on interstate Highway I-80, just before its 

opening to traffic in November 2003. These tests provided a unique opportunity to obtain the 

modal parameters of the bridge in its as-built condition with no previous traffic loads or 

seismic excitation.  

The dynamic field tests included ambient vibration tests (mainly wind-induced) and 

forced vibration tests based on controlled traffic loads and vehicle-induced impact loads. The 

controlled traffic loads consisted of two heavy trucks traversing the bridge at specified 

velocities and the impact loads were generated using one or both of these trucks driving over 

small steel ramps designed and constructed specifically for these tests. During the vibration 

tests, the dynamic response of the bridge was measured using an array of 34 uni-axial and 10 

tri-axial force-balanced accelerometers. These accelerometers were installed at 25 selected 

stations along both sides of the bridge deck, covering the whole length of the bridge main span. 

Instead of roving accelerometers around to the different measurement stations with fixed 

accelerometers at one or more reference stations (as typically done in the past), a total of 64 

channels of acceleration response data were recorded simultaneously in the dynamic field tests 

described here, including 25 vertical, 25 transversal, and 14 longitudinal motion components. 
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During the forced vibration tests, the vibration modes with natural frequencies above 

1 Hz were more significantly excited than those with natural frequencies below 1 Hz, which 

renders the lower vibration modes of the bridge (< 1 Hz) more difficult to identify. During the 

ambient vibration tests, the bridge was excited mainly by the wind which provided a 

broadband excitation. The lower vibration modes (< 1 Hz) and some higher modes (> 1 Hz) 

were excited almost at the same level. Therefore, the ambient vibration data was found to be 

more informative for identification of the lower vibration modes. In addition, even though the 

amplitude of the measured ambient vibration response is very low (0.003g peak acceleration), 

the recorded data was found to be very clean (i.e., data has high signal-to-noise ratio). 

Two time domain system identification methods, namely the multiple-reference 

natural excitation technique combined with the eigensystem realization algorithm (MNExT-

ERA) and the data-driven stochastic subspace identification (SSI-DATA) method, as well as a 

frequency domain method, namely enhanced frequency domain decomposition (EFDD), were 

applied to identify the modal parameters of the bridge based on bridge vibration data from two 

types of test: ambient vibration test and forced vibration tests based on controlled-traffic loads. 

From the modal identification results obtained, the following conclusions can be made: (1) 

The natural frequencies identified using the three different methods are in excellent agreement 

for each type of tests. (2) The natural frequencies identified based on data from the two 

different types of test are also in excellent agreement, except for the 1-AS-V (first anti-

symmetric vertical) mode. The significant difference in the identified natural frequencies for 

this mode reflects the difficulty in identifying it due to its very low relative contribution to the 

measured bridge vibration in both the ambient and forced vibration tests. In addition, the order 

(in terms of natural frequency) of vibration modes 1-S-V and 1-AS-V identified based on 

ambient vibration data is swapped over when these modes are identified based on forced 
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vibration data. (3) Considering that the estimation (or statistical) uncertainty of modal 

damping ratios is inherently higher than that of natural frequencies, the modal damping ratios 

identified are in reasonable agreement across the different identification methods used. (4) The 

identified modal damping ratios are response amplitude dependent. For most vibration modes, 

especially for the lower vibration modes, the modal damping ratios identified using forced 

vibration data are higher than those identified using ambient vibration data. (5) For most 

vibration modes, the mode shapes identified using different methods and the different test data 

are in excellent agreement.  

The system identification results obtained from this study provide benchmark modal 

properties of the AZMB, which can be used as a baseline in future health monitoring studies 

of this bridge. Overall, all three system identification methods applied in this study performed 

very well in both types of test. However, in order to avoid missing modes in the identification 

process, use of several system identification methods is recommended for cross-validation 

purposes, as different methods have different estimation variability with respect to input 

factors such as measurement noise level, frequency content of input excitation, and excitation 

amplitude. It should be noted that the performance of the EFDD method is not as robust as 

that of the other two methods, since it requires user intervention for peak picking in the 

identification process. 

Finally, the identified natural frequencies and mode shapes are compared with their 

analytically predicted counterparts obtained from a 3D finite element model used in the design 

phase of the AZMB. The identified (experimental) and analytical modal properties are found 

to be in good agreement for the most contributing modes to the measured bridge vibration.  

 



 
 

81

3.8 Acknowledgements 

This Chapter contains the material from the following two papers submitted to the 

Journal of Structural Engineering, ASCE (2007): (1) “Dynamic Testing of Alfred Zampa 

Memorial Bridge” with authors Joel P. Conte, Xianfei He, Babak Moaveni, Sami F. Masri, 

John P. Caffrey, Mazen Wahbeh, Farzad Tasbihgoo, Daniel H. Whang, and Ahmed Elgamal; 

and (2) “System Identification of Alfred Zampa Memorial Bridge Using Dynamic Field Test 

Data” with authors Xianfei He, Babak Moaveni, Joel P. Conte, Ahmed Elgamal, and Sami F. 

Masri. The first paper has been in press (with permission from ASCE) and the second one is 

under review for possible publication. The dissertation author is the primary investigator of 

these two papers. The dynamic field tests on the Alfred Zampa Memorial Bridge used for this 

part of research was performed by a joint UCSD-USC-UCLA research team. I wish to 

acknowledge the USC and UCLA research team members: Sami F. Masri, John P. Caffrey, 

Mazen Wahbeh and Farazad Tasbihgoo (USC), Steve Kang and Daniel Whang (UCLA) for 

their cooperation and help during the tests. The dynamic tests were also assisted by several 

individuals and organizations: Brian Boal (Caltrans), Louis Bates (Caltrans Consultant 

Engineer), Joe Reyes (Caltrans), and Frank Daams (FCI/Cleveland Bridge). Their help is very 

much appreciated. I am thankful to Dr. Mark Ketchum (from OPAC Consulting Engineers) for 

very useful and interesting discussions about the conception and design of the Alfred Zampa 

Memorial Bridge. I am also grateful to the California Department of Transportation and Dr. 

Charles Sikorsky who provided the finite element model of this bridge. 

3.9 References 

Abdel-Ghaffar, A. M., and Housner, G. W. (1978). “Ambient vibration tests of suspension 
bridge.” Journal of the Engineering Mechanics Division, ASCE, 104(5), 983-999. 



 
 

82

Abdel-Ghaffar, A. M., and Scanlan, R. H. (1985). “Ambient vibration studies of Golden Gate 
Bridge: I. suspended structure.” Journal of Engineering Mechanics, ASCE, 111(4), 
463-482. 

Abdel Wahab, M. M., and De Roeck, G. (1998). “Dynamic testing of prestressed concrete 
bridges and numerical verification.” Journal of Bridge Engineering, ASCE, 3(4), 159-
169. 

Allemang, R. J., and Brown, D. L. (1982). “A correlation coefficient for modal vector 
analysis.” Proceedings of 1st International Modal Analysis Conference, Bethel, 
Connecticut, 110-116. 

Boulder Real Time Technologies (2006). Antelope Release 4.8 <http://www.brtt.com>. 
Boulder Real Time Technologies, Inc, Boulder, Colorado. 

Brincker, R., Ventura, C., and Andersen, P. (2001). “Damping estimation by frequency 
domain decomposition.” Proceedings of IMAC XIX, Kissimmee, USA. 

Brownjohn, J. M. W., Lee, J., and Cheong B. (1999). “Dynamic performance of a curved 
cable-stayed bridge.” Engineering Structures, 21(11), 1015-1027. 

Brownjohn, J. M. W., Moyo, P., Omenzetter, P., and Lu, Y. (2003). “Assessment of highway 
bridge upgrading by dynamic testing and finite- element model updating.” Journal of 
Bridge Engineering, ASCE, 8(3), 162-172.  

California Department of Transportation (Caltrans), (2006). “The New Carquinez Bridge.” 
<http://www.dot.ca.gov/dist4/carquinez.htm> (August 15, 2006).  

Cunha, A., Caetano, E., and Delgado, R. (2001). “Dynamic tests on large cable-stayed 
bridge.” Journal of Bridge Engineering, ASCE, 6(1), 54-62. 

Delaunay D., Grillaud, G., Bietry, J., and Sacre, C. (1999). “Wind response of long span 
bridges: in-situ measurements and modal analysis.” Proceedings of the 17th 
International Modal Analysis Conference, Kissimmee, Florida, 719-725. 

Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W. (1996). “Damage 
identification and health monitoring of structural mechanical systems from changes in 
their vibration characteristics: A literature review.” Report No. LA-13070-MS, Los 
Alamos National Laboratory, Los Alamos, New Mexico.   

Ewins, D. J. (2003). Modal Testing: Theory, Practice and Application, Research Studies Press, 
Baldock, UK.  

Gentile, C., and Martinez y Cabrera, F. (2004). “Dynamic performance of twin curved cable-
stayed bridges.” Earthquake Engineering and Structural Dynamics, 33(1), 15-34.  

Halling, M. W., Muhammad, I., and Womack, K. C. (2001). “Dynamic testing for condition 
assessment of bridge bents.” Journal of Structural Engineering, ASCE, 127(2), 161-
167.   



 
 

83

Harik, I. E., Allen, D. L., Street, R. L., Guo, M., Graves, R. C., Harison, J., and Gawry, M. J. 
(1997). “Free and ambient vibration of Brent-Spence Bridge.” Journal of Structural 
Engineering, ASCE, 123(9), 1262-1268.  

Huang, C. S., Yang, Y. B., Lu, L. Y., and Chen C. H. (1999). “Dynamic testing and system 
identification of a multi-span highway bridge.” Earthquake Engineering and 
Structural Dynamics, 28(8), 857-878.  

He, X., Moaveni, B., Conte, J. P., and Elgamal, A. (2006). “Comparative study of system 
identification techniques applied to New Carquinez Bridge.” Proceedings of the 3rd 
International Conference on Bridge Maintenance, Safety and Management, Porto, 
Portugal. 

James, G. H., Carne, T. G., and Lauffer, J. P. (1993). “The natural excitation technique for 
modal parameters extraction from operating wind turbines.” Report No. SAND92-
1666, UC-261, Sandia National Laboratories, Sandia, New Mexico.  

Juang, J. N., and Pappa, R. S. (1985). “An eigensystem realization algorithm for modal 
parameter identification and model reduction.” Journal of Guidance, Control and 
Dynamics, 8(5), 620-627. 

Ketchum, M. (2006). “Carquinez Strait Bridge page.” 
<http://www.ketchum.org/carquinez.html> (August 15, 2006). 

Peeters, B., and De Roeck, G. (2001). “Stochastic system identification for operational modal 
analysis: A review.” Journal of Dynamic Systems, Measurement, and Control, 123(4), 
659-667. 

Ren, W. X., Harik, I. E., Blandford, G. E., Lenett, M., and Baseheart, T. M. (2004a). 
“Roebling suspension bridge. II: Ambient testing and live-load response.” Journal of 
Bridge Engineering, ASCE, 9(2), 119-126. 

Ren, W. X., Zhao, T., and Harik, I. E. (2004b). “Experimental and analytical modal analysis 
of steel arch bridge.” Journal of Structural Engineering, ASCE, 130(7), 1022-1031. 

Smyth, A.W., Pei, J.-S., and Masri, S.F. (2003). “System identification of the Vincent Thomas 
suspension bridge using earthquake records,” Earthquake Engineering and Structural 
Dynamics, 32(3), 339-367.  

Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., and Nadler, B. R. 
(2003). “A review of structural health monitoring literature: 1996-2001.” Report No. 
LA-13976-MS, Los Alamos National Laboratory, Los Alamos, New Mexico. 

Van Overschee, P., and De Moor, B. (1996). Subspace Identification for Linear Systems: 
Theory-Implementation-Applications, Kluwer Academic Publishers, Norwell, 
Massachusetts, USA. 



 
 

84

Table Captions 

Table 3.1.   Controlled traffic load tests 

Table 3.2.   Vehicle-induced impact load tests 

Table 3.3.   System identification results based on the ambient vibration data 

Table 3.4.   MAC values between mode shapes identified using different methods based on the 

ambient vibration data 

Table 3.5.   System identification results based on the forced vibration test data 

Table 3.6.   MAC values between mode shapes identified using different methods based on the 

forced vibration data 
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Table 3.1.   Controlled traffic load tests 
Tests No. 
Time* 

Traffic 
Pattern 

Driving 
Direction 

Velocity 
(km/h) 

Test description 

1 
04:14:05 

Pattern I From North (N) to 
South (S) 

48 Truck A driving on the west lane 
and truck B driving on the east 
lane. 

2 
04:24:10 

Pattern III From S to N 48 Truck A crossing over the bridge 
on the west lane. 

3 
04:30:13 

Pattern II Truck A from N to S; 
Truck B from S to N 

48 Truck A driving on the west lane 
and truck B driving on the east 
lane. 

4 
04:48:41 

Pattern II Truck A from S to N; 
Truck B from N to S 

24 Truck A driving on the east lane 
and truck B driving on the west 
lane. 

5 
04:56:55 

Pattern III From N to S 24 Truck A crossing over the bridge 
on the west lane. 

6 
05:04:15 

Pattern I From S to N 24 Truck A driving on the west lane 
and truck B driving on the east 
lane. 

* The time shown here and in the next table is the Coordinated Universal Time (UTC) (also known as 
Greenwich Mean Time). 
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Table 3.2.   Vehicle-induced impact load tests 
Tests No. 
Time 

Traffic 
Pattern 

Driving 
Direction 

Impact Loads Test description 

7 
05:55:05 

Pattern I From North (N) to 
South (S) 

Configuration a Truck A driving on the west lane 
and truck B driving on the east 
lane. 

8 
06:25:13 

Pattern I From S to N Configuration a Truck A driving on the west lane 
and truck B driving on the east 
lane. 

9 
06:39:40 

Pattern 
III 

From N to S Configuration b Truck A crossing over the bridge 
on the west lane. 

10 
06:47:32 

Pattern II Truck A from S to 
N; 
Truck B from N to 
S 

Configuration a Truck A driving on the east lane 
and truck B driving on the west 
lane. 

11 
07:12:13 

Pattern II Truck A from N to 
S; 
Truck B from S to 
N 

Configuration c Truck A driving on the west lane 
and truck B driving on the east 
lane. 

12 
07:30:27 

Pattern II Truck A from S to 
N; 
Truck B from N to 
S 

Configuration d Truck A driving on the east lane 
and truck B driving on the west 
lane. 

13 
07:36:10 

Pattern 
III 

From N to S Configuration e Truck A crossing over the bridge 
on the west lane. 

14 
07:54:25 

Pattern 
IV 

From S to N Configuration f Two trucks following each other 
to cross over the bridge on the 
east lane. 

15 
08:13:20 

Pattern 
IV 

From N to S. 
 

Configuration g Two trucks following each other 
to cross over the bridge on the 
west lane. 
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Table 3.3.   System identification results based on the ambient vibration data 
Natural frequencies [Hz] Damping ratios [%] Modes 

MNEXT -ERA SSI-DATA EFDD MNEXT -ERA SSI-DATA EFDD 
1-S-H 0.159 0.158 0.161 1.29 0.50 2.47 
1-S-V 0.194 0.193 0.193 0.27 0.21 0.89 

1-AS-V 0.204 0.201  1.98 1.36  
2-S-V 0.258 0.258 0.259 0.21 0.23 1.00 

2-AS-V 0.350 0.350 0.349 0.15 0.20 0.66 
1-AS-H 0.361 0.365 0.361 1.68 0.49 0.92 

 0.414 0.414 0.415 0.23 0.13 0.72 
1-S-T 0.469 0.471 0.476 1.29 0.17 0.48 
3-S-V 0.484 0.483 0.484 0.15 0.21 0.71 

 0.561 0.561 0.562 0.16 0.15 0.34 
3-AS-V 0.645 0.645 0.645 0.09 0.11 0.42 
1-AS-T 0.738 0.741 0.737 0.18 0.34 0.28 
4-S-V 0.799 0.799 0.799 0.16 0.23 0.34 

4-AS-V 0.958 0.956 0.957 0.27 0.15 0.17 
2-S-T 1.003 1.007  2.97 0.58  

4-AS-V 1.036 1.035 1.038 0.11 0.22 0.24 
5-S-V 1.160 1.174 1.165 0.18 0.36 0.50 

5-AS-V 1.345  1.343 0.46  0.11 
2-AS-T 1.367 1.360 1.362 1.00 0.26 0.19 
6-S-V 1.572 1.575 1.570 0.63 0.30 0.14 
3-S-T 1.684 1.689 1.685 0.17 0.09 0.26 

3-AS-T 2.029 2.025 2.034 0.34 0.13 0.14 
4-S-T 2.331 2.340  0.21 0.32  

4-AS-T 2.671 2.673 2.676 0.40 0.45 0.00 
5-S-T 2.949 2.948 2.947 0.27 0.13 0.08 

5-AS-T 3.273 3.271 3.301 0.59 0.15 0.00 
 

Notes: (1) In the first column, S = Symmetric; AS: = Anti-Symmetric; H, V, T = Horizontal, Vertical, 
and Torsional mode, respectively. 

 (2) An empty cell in the first column indicates that the corresponding mode is neither a 
symmetric nor an anti-symmetric mode. 

 (3) An empty cell in the second through sixth column indicates that the natural frequency 
and/or damping ratio is not available because the corresponding vibration mode was missed 
in the identification process.  
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Table 3.4.   MAC values between mode shapes identified using different methods based on the 
ambient vibration data 

MAC values Modes 
MNExT-ERA & SSI-DATA MNExT-ERA & EFDD SSI-DATA& EFDD 

1-S-H 1.000 1.000 1.000 
1-S-V 0.998 1.000 0.997 

1-AS-V 0.991   
2-S-V 1.000 1.000 1.000 

2-AS-V 1.000 1.000 1.000 
1-AS-H 0.985 0.987 0.998 

 1.000 1.000 1.000 
1-S-T 0.976 0.994 0.991 
3-S-V 0.996 0.997 0.999 

 0.997 1.000 0.996 
3-AS-V 1.000 1.000 1.000 
1-AS-T 0.986 0.995 0.995 
4-S-V 0.998 0.999 1.000 

4-AS-V 0.994 0.973 0.986 
2-S-T 0.980   

4-AS-V 0.994 0.997 0.987 
5-S-V 0.991 1.000 0.992 

5-AS-V  0.950  
2-AS-T 0.934 0.806 0.875 
6-S-V 0.988 0.997 0.994 
3-S-T 0.988 0.998 0.992 

3-AS-T 0.647 0.940 0.781 
4-S-T 0.318   

4-AS-T 0.673 0.881 0.740 
5-S-T 0.682 0.996 0.706 

5-AS-T 0.910 0.420 0.363 
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Table 3.5.   System identification results based on the forced vibration test data 
Natural frequencies [Hz] Damping ratios [%] Modes 

MNEXT -ERA SSI-DATA EFDD MNEXT -ERA SSI-DATA EFDD 
1-S-H 0.160 0.165 0.161 3.56 1.53 0.89 

1-AS-V 0.174 0.172 0.176 9.11 6.84 0.00 
1-S-V 0.194 0.193 0.195 1.77 1.23 0.97 
2-S-V 0.257 0.256 0.252 1.00 0.47 1.72 

2-AS-V 0.349 0.348 0.349 0.59 0.39 1.07 
1-AS-H 0.366 0.368 0.361 1.98 1.67 0.66 

 0.407 0.408 0.405 2.02 2.52 0.82 
1-S-T 0.473 0.469 0.479 0.81 0.36 0.00 
3-S-V 0.478 0.484  1.76 1.51  

 0.561 0.559 0.564 1.30 0.97 0.39 
3-AS-V 0.645 0.644 0.647 1.02 0.79 0.63 
1-AS-T 0.736 0.736 0.733 0.30 0.25 0.50 
4-S-V 0.794 0.795 0.794 0.36 0.21 0.53 

4-AS-V 0.954 0.953 0.950 0.33 0.16 0.44 
2-S-T  0.998   0.91  

4-AS-V 1.028 1.034 1.028 0.48 0.29 0.15 
5-S-V 1.152 1.184 1.152 0.41 1.42 0.40 

5-AS-V 1.334 1.360 1.333 1.00 1.44 0.07 
2-AS-T 1.366  1.367 0.52  0.00 
6-S-V 1.563 1.557 1.567 0.84 0.44 0.19 
3-S-T 1.687 1.699 1.685 0.31 0.36 0.09 

3-AS-T 2.019 2.021 2.022 0.27 0.22 0.20 
4-S-T  2.334   0.41  

4-AS-T 2.656 2.657 2.654 0.23 0.13 0.25 
5-S-T 2.951 2.943 2.957 0.11 0.23 0.11 

5-AS-T  3.275   0.26  
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Table 3.6.   MAC values between mode shapes identified using different methods based on the 
forced vibration data 

MAC values Modes 
MNExT-ERA & SSI-DATA MNExT-ERA& EFDD SSI-DATA& EFDD 

1-S-H 0.998 0.998 0.999 
1-AS-V 0.697 0.711 0.517 
1-S-V 0.961 0.998 0.966 
2-S-V 0.998 0.997 0.993 

2-AS-V 0.996 1.000 0.996 
1-AS-H 0.956 0.954 0.944 

 0.842 0.916 0.788 
1-S-T 0.989 0.998 0.988 
3-S-V 0.902   

 0.974 0.956 0.983 
3-AS-V 0.997 0.986 0.982 
1-AS-T 0.996 0.998 0.996 
4-S-V 0.994 0.997 0.997 

4-AS-V 0.988 0.987 0.998 
2-S-T    

4-AS-V 0.964 0.974 0.945 
5-S-V 0.980 0.999 0.982 

5-AS-V 0.941 0.996 0.945 
2-AS-T  0.664  
6-S-V 0.998 0.999 0.998 
3-S-T 0.843 0.932 0.965 

3-AS-T 0.949 0.967 0.958 
4-S-T    

4-AS-T 0.905 0.972 0.894 
5-S-T 0.821 0.853 0.689 

5-AS-T    



 
 

91

Figure Captions 

Figure 3.1.   EpiSensor accelerometers 

Figure 3.2.   Quanterra Q330 instrumented in the tests 

Figure 3.3.   Network diagram of the NEES@UCLA seismic monitoring equipment 

Figure 3.4.   Layout of accelerometers along the bridge deck (unit: m) 

Figure 3.5.   Controlled traffic load patterns 

Figure 3.6.   Vertical bridge deck acceleration response measured in Test No. 5 

Figure 3.7.   Fourier amplitude spectrum of vertical acceleration response at station 3SW 

measured in Test No. 5 

Figure 3.8.   Steel ramps used in the tests 

Figure 3.9.   Vertical bridge deck acceleration response measured in Test No. 10 

Figure 3.10.  Fourier amplitude spectra of vertical acceleration response at station 3SW 

measured in Tests No. 10 and 12 

Figure 3.11.  Vertical bridge deck acceleration response measured in Test No. 18 

Figure 3.12.  Fourier amplitude spectrum of vertical acceleration response at station 3SW 

measured in Test No. 18 

Figure 3.13.  Vertical acceleration response measured during the six controlled traffic load 

tests 

Figure 3.14.  Polar plot representation of vibration mode shapes identified using MNExT-ERA 

based on ambient vibration data 

Figure 3.15.  3D representation of normalized vibration mode shapes identified using 

MNExT-ERA based on ambient vibration data 
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Figure 3.16.  Comparison of damping ratios identified using ambient vibration and forced 

vibration test data (see Figure 3.14 or Figure 3.15 for abbreviation of vibration 

modes) 

Figure 3.17.  Averaged (over the three methods) MAC values between corresponding mode 

shapes identified based on ambient vibration and forced vibration test data 

Figure 3.18.  Finite element model of the AZMB 

Figure 3.19.  Vibration mode shapes of the AZMB computed from the bridge finite element 

model in ADINA* : horizontal vibration modes; av fv
id idf , f =  natural frequency 

identified based on ambient vibration and forced vibration data, respectively, 

averaged over the three system identification methods) 

Figure 3.20.  Comparison of identified (averaged over the three methods) and analytically 

predicted natural frequencies 

Figure 3.21.  Averaged (over the three methods) MAC values between identified and 

analytically predicted mode shapes 
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(a) EpiSensors ES-U 

 
(b) EpiSensor ES-T 

Figure 3.1.   EpiSensor accelerometers 
 

 

 

Figure 3.2.   Quanterra Q330 instrumented in the tests 
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Figure 3.3.   Network diagram of the NEES@UCLA seismic monitoring equipment 
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Figure 3.4.   Layout of accelerometers along the bridge deck (unit: m) 
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Figure 3.5.   Controlled traffic load patterns 
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Figure 3.6.   Vertical bridge deck acceleration response measured in Test No. 5 
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Figure 3.7.   Fourier amplitude spectrum of vertical acceleration response at station 3SW 
measured in Test No. 5 

 

 

 

Figure 3.8.   Steel ramps used in the tests 
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Figure 3.9.   Vertical bridge deck acceleration response measured in Test No. 10 
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(a) Test No. 10 
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(b) Test No. 12 

Figure 3.10.  Fourier amplitude spectra of vertical acceleration response at station 3SW 
measured in Tests No. 10 and 12 
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Figure 3.11.  Vertical bridge deck acceleration response measured in Test No. 18 
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Figure 3.12.  Fourier amplitude spectrum of vertical acceleration response at station 3SW 
measured in Test No. 18 
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Figure 3.13.  Vertical acceleration response measured during the six controlled traffic load 
tests 
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Figure 3.14.  Polar plot representation of vibration mode shapes identified using MNExT-
ERA based on ambient vibration data 
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Figure 3.15.  3D representation of normalized vibration mode shapes identified using 
MNExT-ERA based on ambient vibration data 
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Figure 3.16.  Comparison of damping ratios identified using ambient vibration and forced 
vibration test data (see Figure 3.14 or Figure 3.15 for abbreviation of vibration modes) 
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Figure 3.17.  Averaged (over the three methods) MAC values between corresponding mode 
shapes identified based on ambient vibration and forced vibration test data 
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Figure 3.18.  Finite element model of the AZMB 
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Figure 3.19.  Vibration mode shapes of the AZMB computed from the bridge finite 

element model in ADINA* : horizontal vibration modes; av fv
id idf , f =  natural frequency 

identified based on ambient vibration and forced vibration data, respectively, averaged 
over the three system identification methods) 
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Figure 3.20.  Comparison of identified (averaged over the three methods) and analytically 
predicted natural frequencies 
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Figure 3.21.  Averaged (over the three methods) MAC values between identified and 
analytically predicted mode shapes 
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Chapter 4 

System Identification of Vincent Thomas Bridge Using 

Simulated Wind-Induced Ambient Vibration Data 

4.1 Introduction 

Vibration-based structural health monitoring has been the subject of significant 

research in structural engineering in recent years. The basic premise of vibration-based 

structural health monitoring is that changes in structural characteristics such as mass, stiffness, 

and energy dissipation mechanisms influence the vibration response characteristics of 

structures. Therefore, changes in dynamic features such as modal parameters and quantities 

derived thereof are often used as damage indicators in structural damage identification and 

health monitoring. Salawu (1997) presented a review on the use of natural frequency changes 

for damage detection. It is however challenging if not impossible to localize the detected 

damage (e.g., to obtain spatial information on the damage) from changes in natural 

frequencies only. Pandey et al. (1991) introduced the concept of mode shape curvature for 

damage localization. In their study, both a cantilever and a simply supported beam model were 

used to demonstrate the effectiveness of using changes in modal curvature as damage indicator 

to detect and localize damage. As another mode shape based damage indicator, Pandey and 

Biswas (1994) proposed the use of changes in the dynamically measured flexibility matrix to 

detect and localize damage. They showed that the flexibility matrix of a structure can be easily 

and accurately estimated from a few low frequency vibration modes of the structure. Methods 

based on changes in identified modal parameters to detect and localize damage in structures 
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have also been further developed for the purpose of damage quantification (i.e., estimation of 

the extent of damage). Among these methods are strain-energy based methods (Shi et al., 

2002), the direct stiffness calculation method (Maeck and De Roeck, 1999), and sensitivity-

based finite element (FE) model updating methods (Friswell and Mottershead, 1995; Teughels 

and De Roeck, 2004). A comprehensive literature survey on vibration-based structural health 

monitoring methods can be found in a number of recent publications (Doebling et al., 1996; 

Farrar and Jauregui, 1998; Sohn et al., 2003).  

In order to develop a robust and reliable structural health monitoring methodology, it 

is essential to investigate the effects of realistic damage scenarios on structural modal 

properties. Since it is inconvenient or impossible to study the changes in structural modal 

parameters caused by various damage scenarios and damage levels through actual tests on a 

real structure during its service life, dynamic response simulation of the structure based on a 

well calibrated and validated FE model thereof provides an essential tool in structural health 

monitoring research. In this study, a simulation platform is presented to simulate the wind-

induced (ambient) vibration response of Vincent Thomas Bridge (VTB) using a detailed three-

dimensional (3D) FE model of the bridge and a state-of-the-art stochastic wind excitation 

model. The VTB is a suspension bridge that crosses over the main channel of Los Angeles 

Harbor in San Pedro, California. The bridge was constructed in the early 1960’s with an 

overall length of approximately 1850 m, comprising the main span of 457 m and 154 m spans 

on either side. Generally, traffic, wind, micro-tremors and their combinations are the main 

sources of ambient excitation for bridges. This paper focuses on realistic simulation of the 

wind-induced response of VTB and system identification of the bridge based on its simulated 

wind response data.  
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Wind loads, including self-excited (caused by the interaction between wind and 

structural motion) and buffeting forces (caused by the fluctuating wind velocity field), are 

dependent on the geometric configuration of the bridge deck section, the reduced frequency of 

the bridge, and the incoming wind velocity fluctuations. In the simulation, the self-excited 

forces are represented in the time domain by means of convolution integrals involving 

aerodynamic impulse functions and structural motions. In order to simulate properly the 

stochastic characteristics of buffeting forces, the longitudinal (along-wind direction) and 

vertical spatially discrete wind velocity fields along the bridge axis are simulated as two 

independent stochastic vector processes according to their prescribed power spectral density 

matrices. The spectra of the longitudinal and vertical wind velocity fields are assumed to 

remain constant along the bridge axis and the coherence function of the wind velocity 

fluctuations at two different positions along the bridge is taken as the model proposed by 

Davenport (1968). 

In the second part of the chapter, the dynamic properties of the bridge are identified 

using the data-driven stochastic subspace identification method (Van Overschee and De Moor, 

1996) based on low-amplitude simulated wind-induced response of VTB. The system 

identification results are verified by the computed eigenproperties of the bridge FE model, 

which allows to assess the performance of the above output-only system identification method 

when applied to wind-excited long-span suspension bridges. In order to study the effects of 

measurement noise on the system identification results, zero-mean Gaussian white noise 

processes are added to the simulated output signals. Statistical properties (bias and coefficient-

of-variation) of the identified modal parameters are investigated under increasing level of 

measurement noise.  
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The framework presented in this paper will allow to investigate systematically the 

effects of various realistic damage scenarios in long-span cable-supported bridges on changes 

in modal identification results obtained from ambient vibration data. Such studies are required 

in order to develop robust and reliable vibration-based structural health monitoring methods 

for this type of bridges, which is a long-term research objective of the authors. 

4.2 Aerodynamic Forces 

4.2.1 Self-Excited Forces 

The differential equations of motion of a bridge subjected to aerodynamic forces with 

respect to the static equilibrium position can be expressed as 

( ) ( ) ( ) se bt t t+ + = = +Mx Cx Kx F F F�� �  (4.1) 

where ( )tx , ( )tx� , and ( )tx��  = nodal displacement, velocity, and acceleration response vectors, 

respectively; M, C, and K = structural mass, damping, and stiffness matrices, respectively; 

and F = nodal load vector, where the subscripts se and b correspond to the self-excited and 

buffeting force components, respectively (see Figure 4.1).  

For harmonic structural motion, the self-excited forces such as lift seL , drag seD , and 

pitching moment seM  per unit span of the bridge are typically expressed as (Scanlan, 1978a; 

Simiu and Scanlan, 1996; Chen et al., 2000a, b) 

2 * * 2 * 2 * * 2 *
1 2 3 4 5 6

1( )
2se

h B h p pL t U B KH KH K H K H KH K H
U U B U B

α
ρ α

⎡ ⎤
⎢ ⎥= + + + + +⎢ ⎥
⎣ ⎦

� ��

 

2 * * 2 * 2 * * 2 *
1 2 3 4 5 6

1( )
2se

p B p h hD t U B KP KP K P K P KP K P
U U B U B

α
ρ α

⎡ ⎤
⎢ ⎥= + + + + +⎢ ⎥
⎣ ⎦

�� �

 

2 2 * * 2 * 2 * * 2 *
1 2 3 4 5 6

1( )
2se

h B h p pM t U B KA KA K A K A KA K A
U U B U B

α
ρ α

⎡ ⎤
⎢ ⎥= + + + + +⎢ ⎥
⎣ ⎦

� ��

 

(4.2) 



 
 

110

where ρ  = air density; U = mean wind velocity; B = bridge deck width; ω  = circular 

frequency of vibration; /K B Uω= = reduced frequency; *
iH , *

iA  and *
iP  ( 1,  ,  6i = … ) = 

flutter derivatives; and h, p, and α  = vertical, lateral, and torsional displacement, respectively. 

It should be noted that the formulation of the self-excited forces in equation (4.2) cannot be 

applied directly in time domain simulation, since the flutter derivatives are frequency 

dependent. For arbitrary structural motion, the self-excited forces per unit span can be 

expressed in terms of impulse response functions as (Lin and Yang, 1983; Chen et al., 2000a, 

b) 

21( ) ( ) ( ) ( ) ( ) ( ) ( )
2

t t t

se Lh Lp LL t U f t h d f t p d f t dαρ τ τ τ τ τ τ τ α τ τ
−∞ −∞ −∞

⎡ ⎤
= − + − + −⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ ∫  

21( ) ( ) ( ) ( ) ( ) ( ) ( )
2

t t t

se Dh Dp DD t U f t h d f t p d f t dαρ τ τ τ τ τ τ τ α τ τ
−∞ −∞ −∞

⎡ ⎤
= − + − + −⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ ∫  

21( ) ( ) ( ) ( ) ( ) ( ) ( )
2

t t t

se Mh Mp MM t U f t h d f t p d f t dαρ τ τ τ τ τ τ τ α τ τ
−∞ −∞ −∞

⎡ ⎤
= − + − + −⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ ∫  

(4.3) 

where the ( )Xyf "  terms in the integrands are the impulse response functions of the self-

excited forces, which are associated with the aerodynamic force component indicated by the 

subscript. In order to evaluate the self-excited forces in the time domain based on equation 

(4.3), it is necessary to determine the aerodynamic impulse response functions based on the 

experimentally determined flutter derivatives.  For this purpose, the self-excited forces are 

taken to the frequency domain via Fourier transformation of equations (4.2) and (4.3) as 

2 * * 2 * * 2 * *
1 4 5 6 2 3

2 2 * * 2 * * 2 * *
5 6 1 4 2 3

2 * * 2 * * 2 2 * *
1 4 5 6 2 3

[ ( )] ( ) ( ) ( ) [ ( )]
1[ ( )] ( ) ( ) ( ) [ ( )]
2

[ ( )] ( ) ( ) ( ) [ ( )]

se

se

se

L t K iH H K iH H K B iH H h t
D t U K iP P K iP P K B iP P p t
M t K B iA A K B iA A K B iA A t

ρ
α

⎡ ⎤⎡ ⎤ ⎡+ + +⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢= + + + ⋅⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ + + +⎢ ⎥⎣ ⎦ ⎣⎣ ⎦

F F
F F
F F

⎤
⎥
⎥
⎥

⎢ ⎥
⎦

(4.4) 
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2

[ ( )] [ ( )] [ ( )] [ ( )] [ ( )]
1[ ( )] [ ( )] [ ( )] [ ( )] [ ( )]
2

[ ( )] [ ( )] [ ( )] [ ( )] [ ( )]

se Lh Lp L

se Dh Dp D

se Mh Mp M

L t f t f t f t h t
D t U f t f t f t p t
M t f t f t f t t
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α

α

ρ
α

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

F F F F F
F F F F F
F F F F F

 (4.5) 

where [ ]…F  = Fourier transform operator. Thus, the relationship between aerodynamic 

impulse response functions and flutter derivatives can be obtained by comparing equations 

(4.4) and (4.5) term by term: 

2 * *
1 4[ ( )] ( )Lhf t K iH H= +F  

2 * *
5 6[ ( )] ( )Lpf t K iH H= +F  

2 * *
2 3[ ( )] ( )Lf t K B iH Hα = +F  

(4.6) 

2 * *
5 6[ ( )] ( )Dhf t K iP P= +F  

2 * *
1 4[ ( )] ( )Dpf t K iP P= +F  

2 * *
2 3[ ( )] ( )Df t K B iP Pα = +F  

(4.7) 

2 * *
1 4[ ( )] ( )Mhf t K B iA A= +F  

2 * *
5 6[ ( )] ( )Mpf t K B iA A= +F  

2 2 * *
2 3[ ( )] ( )Mf t K B iA Aα = +F  

(4.8) 

Using the above equations, the self-excited forces can be used in time domain analysis 

based on equation (4.3) once the flutter derivatives are obtained from wind-tunnel experiments. 

The experimental flutter derivatives in the above equations are usually obtained at a discrete 

set of reduced frequencies ( )kK ω . Then, the rational function approximation method known 

as Roger’s approximation is used to estimate the aerodynamic force coefficients defined in 

equations (4.6), (4.7), and (4.8), also known as aerodynamic transfer functions, as continuous 
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functions of the reduced frequency K  (Roger, 1977; Chen et al., 2000a; Lazzari et al., 2004). 

For example, let 

2 * * 2
1 4 ,1 ,2 ,3

,
4

,

[ ( )] ( ) ( )

                                                 

Lh Lh Lh Lh

n

Lh k
k

Lh k

B iBf t K iH H C iC C
U U

iC Ud i
B

ω ω

ω

ω=

⎡
⎢= + = + +
⎢⎣

⎤
⎥
⎥+ ⎥
⎥+ ⎥⎦

∑

F

 (4.9) 

where ,Lh iC  and ,Lh kd ( , 0Lh kd ≥ ; 1,  ,  i n= …  and 4,  ,  k n= … ) = frequency independent 

coefficients. The first and second terms on the right-end side of equation (4.9) represent the 

non-circulatory static-aerodynamics and the aerodynamic damping, respectively; the third 

term denotes the additional aerodynamic mass which is usually negligible; and the rational 

terms represent the unsteady components which lag the velocity term and allow an 

approximation of the time delays through the positive values of parameters ,Lh kd . The value of 

n indicates the level of accuracy in this approximation. Based on equation (4.9), the following 

relations can be derived: 

3
*
1 ,2 , ,2 2 3

4 ,

( )
2 2 8

n

Lh Lh k Lh k
k Lh k

v vH v C C d
d vπ π π=

= +
+∑

 

2 2
*
4 ,1 ,3 ,2 2 2 2

4 ,

( )
4 4

n

Lh Lh Lh k
k Lh k

v vH v C C C
d vπ π=

= − +
+∑

 

(4.10) 

where 2 /v Kπ= = reduced velocity. Therefore, the frequency independent coefficients ,Lh iC  

and ,Lh kd can be determined through least squares fitting of flutter derivatives obtained 

experimentally at discrete reduced frequencies/velocities. The above rational function 

representation of the aerodynamic transfer function for the self-excited lift force component 

induced by the vertical structural motion [see equation (4.9)] can be extended into the Laplace 

domain by introducing the Laplace parameter .s iω=  Then, the self-excited lift force 
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component induced by vertical structural motion can be derived by substituting the inverse 

Laplace transformation of ( )[ ( )]Lh i sf t ω=F  into the corresponding component in equation (4.3) 

as 

,

2
2

, ,1 ,2 ,3 2

( )

,
4

1( ) ( ) ( ) ( )
2

                           ( )
Lh k

se h Lh Lh Lh

d Un t t
B

Lh k
k

B BL t U C h t C h t C h t
U U

C e h d
τ

ρ

τ τ
− −

−∞
=

⎡
⎢= + +⎢⎣

⎤
⎥+ ⎥
⎥⎦

∑ ∫

� ��

�
 (4.11) 

The self-excited lift force components induced by lateral and torsional structural motions can 

be obtained similarly. Thus, the total self-excited lift force can be expressed as  

,

,

, , ,

2 ( )2
,1 ,2 ,3 ,2

4

2 ( )2
,1 ,2 ,3 ,2

( ) ( ) ( ) ( )
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2
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se se h se p se
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Lh Lh Lh Lh k
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d U
t t

B
Lp Lp Lp Lp k
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L t L t L t L t

B BU C h t C h t C h t C e h d
U U

B BU C p t C p t C p t C e p
U U

α

τ

τ

ρ τ τ

ρ τ

− −

−∞=

− −

−∞

= + + =

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥⎣ ⎦

+ + + +

∑ ∫

∫

� �� �
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α τ
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⎢ ⎥
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⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥+ + + +⎢ ⎥
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∑ ∫� �� �

 (4.12)

Formulations for the self-excited drag force ( )seD t  and self-excited moment ( )seM t  can be 

derived similarly. These derivations are not shown here for the sake of brevity. 

4.2.2 Buffeting Forces 

The buffeting forces per unit span of the bridge are commonly expressed as (Scanlan, 

1978b; Simiu and Scanlan, 1996; Chen et al., 2000a, b) 
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21 2 ( ) ( )( ) [ ]
2b L Lbu L D Lbw

u t w tL t U B C C C
U U

χ χρ
⎧ ⎫⎪ ⎪⎪ ⎪′=− + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭  

21 2 ( ) ( )( )
2b D Dbu D Dbw

u t w tD t U B C C
U U

χ χρ
⎧ ⎫⎪ ⎪⎪ ⎪′= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭  

2 21 2 ( ) ( )( )
2b M Mbu M Mbw

u t w tM t U B C C
U U

χ χρ
⎧ ⎫⎪ ⎪⎪ ⎪′= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭  

(4.13)

where LC , DC , MC  = mean lift, drag and moment coefficients, respectively; /L LC dC dα′ = , 

/D DC dC dα′ =  and /M MC dC dα′ =  (α= angle of attack of the wind); )(tu and )(tw  = wind 

velocity fluctuations in the longitudinal and vertical directions, respectively; Lbu
χ , Lbw

χ , Dbu
χ , 

Dbw
χ , Mbu

χ , Mbw
χ  = aerodynamic admittance transfer functions between wind velocity 

fluctuations and buffeting forces. Their squared magnitudes are known as aerodynamic 

admittance functions. Similar to the self-excited forces in equation (4.2), the buffeting forces 

in equation (4.13) cannot be used directly in time domain analysis, since the aerodynamic 

admittance transfer functions are frequency dependent. From equation (4.13), the buffeting 

force spectra can be derived as  

{ }2 22 2 2 2 21( ) 4 ( ) [ ] ( )
4Lb L Lbu uu L D Lbw wwS U B C S C C Sω ρ χ ω χ ω′= + +  

{ }2 22 2 2 2 21( ) 4 ( ) ( )
4Db D Dbu uu D Dbw wwS U B C S C Sω ρ χ ω χ ω′= +  

{ }2 22 2 4 2 21( ) 4 ( ) ( )
4Mb M Mbu uu M Mbw wwS U B C S C Sω ρ χ ω χ ω′= +  

(4.14)

where ( )uuS ω , ( )wwS ω  = power spectral density functions of longitudinal and vertical wind 

velocity fluctuations, respectively. It should be noted that the statistical correlation between 

longitudinal and vertical wind velocity fluctuations is neglected in deriving equation (4.14). 

The aerodynamic admittance functions are assumed to be identical and approximated by the 

Liepmann function (Liepmann, 1952) as 
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2( ) 1/(1 )r
B

U
πω

χ ω = +  (4.15)

where the subscript r  refers to uLb , wLb , uDb , wDb , uMb , and wMb . Equivalent wind 

power spectral density functions are defined as 

( ) ( ) /(1 / )eq
uu uuS S B Uω ω πω= +  

( ) ( ) /(1 / )eq
ww wwS S B Uω ω πω= +  

(4.16)

Thus, the buffeting forces can be obtained from the equivalent wind velocity fluctuations 

simulated using the equivalent wind power spectral density functions as  

21 2 ( ) ( )( ) [ ]
2

eq eq

b L L D
u t w tL t U B C C C
U U

ρ
⎧ ⎫⎪ ⎪⎪ ⎪′=− + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭  

21 2 ( ) ( )( )
2

eq eq

b D D
u t w tD t U B C C
U U

ρ
⎧ ⎫⎪ ⎪⎪ ⎪′= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭  

2 21 2 ( ) ( )( )
2

eq eq

b M M
u t w tM t U B C C
U U

ρ
⎧ ⎫⎪ ⎪⎪ ⎪′= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭  

(4.17)

4.2.3 Rational Function Approximation of Flutter Derivatives 

This section illustrates the rational function representation of self-excited force 

coefficients [see equations (4.6), (4.7), and (4.8)] through least squares fitting of flutter 

derivatives determined experimentally at discrete reduced frequencies/velocities [see equation 

(4.10)]. 

Since the aerodynamic coefficients of VTB are not available, the flutter derivatives 

*
1H  to *

4H  and *
1A  to *

4A , determined experimentally for the William Preston Lane Bridge 

(WPLB) (J. D. Raggett, Personal communication, 2004) located in Baltimore, Maryland, are 

used for VTB which is similar in size and design. The remaining dimensionless aerodynamic 
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coefficients are taken as (J. D. Raggett, Personal communication, 2004):  * *
5 6 0H H= = , 

* *
5 6 0A A= =  and * * * * *

2 3 4 5 6 0P P P P P= = = = = ; 0LC = , 0MC = , 0.162DC =  ( DC  is 

estimated as 2.5 times the projected frontal area per unit length of the bridge deck normalized 

by the deck’s width); *2 *2 1/ 2
1 4( ) 1.415LC K H H′ ≅ + = , *2 *2 1/ 2

1 4( ) 0.238MC K A A′ ≅ + =  and 

0DC ′ = ; and *
1 2 /DP C K=− .  

In this study, two lag terms (i.e., n = 5) are used in the rational representations [e.g., 

equation (4.9)]. Figure 4.2 shows a comparison of the flutter derivatives estimated from the 

rational function representations [e.g., equation (4.10)] and those measured in wind tunnel 

tests for WPLB. The excellent agreement obtained indicates that the self-excited forces on the 

bridge deck section can be approximated by the rational functions considered with very good 

accuracy. 

4.3 Simulation of Wind-Induced Response of Vincent Thomas Bridge  

A detailed 3D FE model of VTB (see Figure 4.3) developed in the structural analysis 

software ADINA (ADINA R&D Inc., 2002) was used in this study for the simulation of wind-

induced response of VTB. This FE model is composed of 3D linear elastic (tension-only) truss 

elements to represent the main suspension cables and suspender cables, 3D linear elastic 

membrane and shell elements to model the reinforced-concrete bridge deck and stringers 

supporting the deck on the floor trusses, and beam-column elements to model the stiffening 

trusses, the lateral braces between the stiffening trusses, and the tower shafts. The floor trusses 

were modeled with 3D elastic beam-column and trusses elements. This FE model consists of 

approximately 8,900 nodes and 9,400 elements, resulting in approximately 22,000 degrees of 

freedom (DOFs). The natural frequencies of the low frequency vibration modes computed 
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from this FE model of VTB are given in Table 4.1 where they are compared with the (1) 

corresponding natural frequencies previously identified from actual ambient vibration data and 

earthquake records (Abdel-Ghaffar et al., 1992), and (2) corresponding natural frequencies 

computed from other validated FE models of VTB (Abdel-Ghaffar et al., 1992). This 

comparison shows that the FE model of VTB used in this study captures reasonably well the 

dominant low frequency vibration modes of this bridge.  

In simulating the wind-induced response of VTB, the aerodynamic forces are assumed 

to act along the bridge deck only. The aerodynamic parameters are assumed to be invariant 

along the bridge axis and the variation of the aerodynamic characteristics due to static rotation 

of the bridge deck (under gravity loads and aerostatic forces due to mean wind velocity) is 

neglected for simplicity. The aerodynamic parameters introduced in Section 4.2.3 are used in 

the simulation. The buffeting forces are simulated based on the simulated equivalent wind 

velocity fluctuation time histories according to equation (4.17). The statistical correlation 

between longitudinal and vertical wind velocity fluctuations is ignored so that the spatially 

discretized wind velocity field is simulated as the combination of two independent stochastic 

vector processes. The simulation of the wind velocity fluctuations, ( ) ( ) and ,eq equ t w t is 

performed using the spectral representation method in conjunction with the fast Fourier 

transform technique (Deodatis, 1996; Cao et al., 2000). The wind spectra for the longitudinal 

and vertical wind velocity fields are taken as Kaimal’s spectrum (Kaimal et al., 1972) and 

Panofsky’s spectrum (Lumley and Panofsky, 1964), respectively, defined as 

2
*

5/ 3

200( , ) 504 ( )[1 ]
2 ( )

uu
zuS z zU z

U z

ω
ω

π
π

=
+

 
(4.18)
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2
*

5/ 3

3.36( , )
4 ( )[1 10( ) ]

2 ( )

ww
zuS z zU z

U z

ω
ω

π
π

=
+

 

where 0( ) / ln( / )u kU z z z∗ =  = shear velocity of the wind flow in m/s; 0z = roughness length 

in m; 0 4.k ≈ ; and )(zU = mean wind velocity in m/s at height z above the ground level. In 

this study, 0 0.07z = m, and the height of the bridge deck above the ground is 60z = m. The 

mean wind velocity, U, is taken as 10 m/s (36 km/h) to simulate wind-induced ambient 

vibrations under common low wind intensity. The coherence function of the wind velocity 

fluctuations at two different locations of abscissas 1x  and 2x   along the bridge deck is taken as 

(Davenport, 1968; Cao et al., 2000) 

1 2
1 2( , , ) exp( ),    0

2 ( )r

x x
Coh x x

U z
λω

ω ω
π

−
= − >  (4.19)

where subscript r = u or w, 10λ=  for the longitudinal wind velocity fluctuation and 8λ=  

for the vertical wind velocity fluctuation. The aerodynamic forces are discretized at 27 

locations along the bridge axis as shown in Figure 4.4, implying that the longitudinal and 

vertical stochastic wind velocity fields are discretized into two independent vector processes 

of 27 components each. Two hour long wind velocity records are simulated with a sampling 

time of 0.25 st∆ = . As illustration, Figure 4.5 shows a sample of the simulated longitudinal 

and vertical wind velocity fluctuations at the center point of main span. The estimated (from 

simulated time histories) equivalent power spectral density function of the longitudinal wind 

velocity fluctuation is compared in Figure 4.6 to the theoretical wind spectrum [see equations 

(4.16) and (4.18)] used to simulate the stochastic wind velocity field. Similarly, Figure 4.7 

shows a comparison between exact and estimated (from simulated time histories) coherence 

functions of the longitudinal wind velocity fluctuations at two stations located 28.4 m apart. 
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From Figure 4.6 and Figure 4.7, it is observed that the simulated wind velocity field along the 

bridge follows closely the assumed theoretical wind spectrum and coherence function.  

It is assumed that the self-excited forces per unit span at different locations along an 

“aerodynamic” element of length L (corresponding to the tributary length of the 

“aerodynamic” node located at the center of the “aerodynamic” element) are fully correlated, 

while the random fluctuation of the buffeting forces per unit span along an “aerodynamic” 

element is accounted for. It is assumed that the buffeting force components induced by the 

longitudinal, ,u  and vertical, ,w  wind velocity fluctuations are uncorrelated, since the 

statistical correlation between u and w  is neglected. Based on the above assumptions, for 

example, the self-excited and buffeting lift force components acting at an “aerodynamic” node 

with tributary length L can be expressed as (Chen et al., 2000a) 

( ) ( )e c
se seL t L t L=  

0
( ) [ ( ) ( ) ( ) ( )]

t
e c c
b Lbu bu Lbw bwL t L h t L h t L dτ τ τ τ τ= − + −∫  

(4.20)

where the superscript c indicates the center location of the “aerodynamic” element e ;  ( )Lbuh t  

and ( )Lbwh t  are the impulse response functions, the Fourier transforms of which, ( )LbuH ω and 

( )LbwH ω  (referred to as the joint acceptance functions), satisfy the following relation: 

2
1, 2 1 22 0 0

1( ) ( , )
L L

Lbr LbrH coh x x dx dx
L

ω ω= ∫ ∫  (4.21)

in which orr u w=   ; and 1, 2( , )Lbrcoh x x ω  denotes the coherence function of the lift buffeting 

force components per unit span at two different positions 1x  and 2x  along the “aerodynamic” 

element, which is assumed to be the same as that for the wind velocity fluctuations [see 

equation (4.19)]. The drag and moment buffeting force components can be expressed in a 
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similar way. The transfer functions ( )
brLH ω  ( ,r u w= ) in equation (4.21) are also 

approximated using rational functions for the purpose of time domain analysis, e.g., 

1
2

( ) [ ]
br

n

L k
k

k

iH C C Ud i
B

ω
ω

ω=

= +
+

∑  (4.22)

where the coefficients Ck and kd  are determined through least squares fitting. 

The dynamic response of a suspension bridge depends on the deformed bridge 

configuration and stress state under gravity loads. Therefore, first a geometric nonlinear static 

analysis is performed for the bridge under gravity loads only, using an incremental-iterative 

solution procedure. The aerodynamic wind forces (with buffeting forces based on the 

fluctuating wind velocity fields ( )u t  and ( )w t  and self-excited forces computed based on the 

displacement field of the bridge relative to its static equilibrium position under gravity loads 

only) are then applied with initial conditions given by the bridge state under gravity loads only. 

The dynamic equations of motion of the bridge under aerodynamic wind loads are linearized 

(geometrically) about the displacement and stress fields corresponding to gravity loads. 

Finally, these linearized equations of motion are solved using the constant average 

acceleration version of Newmark time stepping method with parameters 0.5=δ  and 0.25=α . 

As illustration, Figure 4.8 shows the simulated vertical dynamic response of the bridge at the 

center of main span. 

4.4 System Identification of Vincent Thomas Bridge 

4.4.1  Data-Driven Stochastic Subspace Identification 

Data-driven stochastic subspace identification (SSI-DATA) is one of the most 

advanced state-of-the-art output-only system identification method, which has already been 

successfully applied for modal parameter identification of long-span bridges based on ambient 
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vibration data. The SSI-DATA algorithm extracts a linear state-space model of the system 

considered using output-only measurement data directly (Van Overschee and De Moor, 1996; 

Peeters and De Roeck, 2001). Compared to two-stage time-domain system identification 

methods such as covariance-driven stochastic subspace identification (SSI-COV) (Van 

Overschee and De Moor, 1996) and the natural excitation technique (NExT) (James et al., 

1993) combined with the eigensystem realization algorithm (ERA) (Juang and Pappa, 1985), 

SSI-DATA does not require any pre-processing of the data to calculate auto/cross-correlation 

functions or auto/cross-spectra of output data (i.e., SSI-DATA is a one-stage system 

identification method). In addition, robust numerical techniques such as QR factorization, 

singular value decomposition (SVD) and least squares are involved in this method. A brief 

review of this method is presented next.  

The discrete-time state-space representation of a linear time-invariant system of order 

n is defined as 

( 1) ( ) ( )k k k+ = +z Az Bu  

( ) ( ) ( )k k k= +x Cz Du  
(4.23)

where ,  , ,  n n n l m n m lA B C D\ \ \ \× × × ×∈ ∈ ∈ ∈  =  state space matrices in discrete form; 

( ) nkz \∈  = state vector; ( ) lku \∈  = load vector (vector of loading functions); and 

( ) mkx \∈ , a column vector of size m (= number of measured/output channels) which 

represents the measured system response at discrete time ( )t k t= ∆  along m  DOFs. In 

practical applications, the load vector input function u is often unknown/unmeasured and only 

the response of the structure is measured. In this case, the discrete-time state-space model in 

equation (4.23) is extended to the following stochastic version: 
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( 1) ( ) ( )k k k+ = +z Az w  

( ) ( ) ( )k k k= +x Cz v  
(4.24)

where state matrices A and C are the same as in equation (4.23): A = state transition matrix, 

which completely characterizes the dynamics of the system through its eigenproperties, and C 

= output matrix that specifies how the inner states are transformed into the measured system 

response/output; ( )w \nk ∈  = process noise due to external disturbances, modeling 

inaccuracies (i.e., missing high-frequency dynamics) and unknown input excitation 

(undistinguishable from the external disturbances); and ( )v \mk ∈  = measurement noise due 

to sensor inaccuracies and also unknown input excitation (feed-through term). Both noise 

terms ( )kw  and ( )kv are assumed to be zero-mean, white vector sequences with the following 

covariance matrix: 

( )( )
( ) ( )

( )
T T

ijT

i
E j j

i
Q Sw

w v
v S R

δ
⎡ ⎤ ⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥ ⎢ ⎥⎟ =⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜⎝ ⎠ ⎣ ⎦⎣ ⎦  

(4.25)

where E[…] denotes the mathematical expectation operator; ijδ = Kronecker delta; and Q, R, 

S = process and measurement noise auto/cross-covariance matrices. 

The SSI-DATA procedure of extracting the state-space matrices A and C from output-

only data can be summarized as follows: (1) Form an output Hankel matrix and partition it 

into “past” and “future” output sub-matrices. (2) Calculate the orthogonal projection matrix of 

the row space of the “future” output sub-matrix into the row space of the “past” output sub-

matrix using QR factorization. (3) Obtain the system observability matrix and Kalman filter 

state estimate via SVD of the projection matrix. (4) Using the available Kalman filter state 

estimate, extract the discrete-time system state-space matrices as a least squares solution. In 

order to increase the computational efficiency of the system identification procedure, only the 
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reference “past” outputs (outputs from the “reference” sensors) instead of all “past” outputs 

are used to form the output Hankel matrix (Peeters and De Roeck, 1999). Once the system 

state-space matrices are determined, the modal parameters (natural frequencies and damping 

ratios) of the  / 2N n=  vibration modes can be obtained as 

2ln( ) /i i tω λ= ∆  

2cos( (ln( )))i iangleξ λ=−  

1,  2,  , i N…=  

(4.26)

where th
i iλ =  eigenvalue of matrix A and t∆  = sampling time. It should be noted that 2 1iλ −  

and 2iλ  (i = 1, 2, …, N) are complex conjugate pairs, each pair corresponding to a vibration 

mode, i.e., the natural frequency and damping ratio obtained from 2 1iλ −  are the same as those 

obtained from 2iλ . The vibration mode shapes are obtained as 

2 1i iC T −= ⋅φ  (4.27)

where Ti  denotes the thi  eigenvector of matrix A. Similarly, 2 1T i−  and 2T i (i = 1, 2, …, N) are 

complex conjugate pairs of eigenvectors, each pair corresponding to a vibration mode. 

4.4.2  System Identification Results 

A simulated array of 42 channels (21 along each side of the bridge deck) of vertical 

acceleration response of the bridge subjected to wind excitation is used for system 

identification. The simulated wind aerodynamic forces correspond to a mean wind velocity 

10 m/s  (36 km/h)U =  . Figure 4.9 shows the virtual accelerometer array along the bridge deck. 

The simulated acceleration records used in the identification process are 250 s long with a 

sampling rate of 20 Hz, corresponding to 5000 samples per record/channel and a Nyquist 

frequency 10Nyqf =  Hz. In applying SSI-DATA, these simulated acceleration data were first 
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low-pass filtered using a finite impulse response (FIR) filter of order 512 with a cut-off 

frequency at 1.0 Hz. Then, an output Hankel matrix is formed including 100 block rows based 

on these low-pass filtered vibration data. The 15 channels on the east side of main span are 

used as reference “past” output channels.  

The identified natural frequencies and damping ratios are reported in Table 4.1 

together with the corresponding computed natural frequencies and specified damping ratios of 

the VTB FE model used in this study. Table 4.1 also provides modal parameters obtained 

from previous system identification studies of VTB based on actual ambient vibration data and 

earthquake records (Abdel-Ghaffar et al., 1992). It is observed that there is an excellent 

agreement between the identified natural frequencies based on the simulated wind-induced 

response data and those computed from the bridge FE model. The difference between 

identified and analytically predicted natural frequency is largest for the first mode, which 

could be due to the fact that the FE model of VTB used here has three very closely spaced 

modes with natural frequencies of 0.182, 0.226, and 0.231 Hz. The vibration mode at 0.182 

Hz could not be accurately identified based on the simulated accelerometer data. The damping 

ratios identified based on the simulated wind-induced response data and the damping ratios 

specified in the FE model of VTB are in a good agreement considering that the estimation 

uncertainty of damping ratios is inherently larger than that of natural frequencies.  

It is important to mention that the identified natural frequencies and damping ratios 

also include the contribution of the aerodynamic stiffness and damping induced by the wind-

structure interaction, which depend on the reduced wind velocity ( 2 U Bπ ω ), the geometrical 

configuration of the bridge section and the approach wind flow. Due to wind-structure 

interaction, the identified modal parameters (especially the damping ratios) of long-span 

cable-supported bridges under wind loading can vary significantly with wind velocity when 
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approaching the flutter onset velocity. In a hybrid experimental-analytical flutter analysis of 

Jianyin Bridge, a suspension bridge with a main span of 1385 m and a streamlined closed box 

steel girder (36.8 m wide and 3 m high), modal aerodynamic damping ratios of some vibration 

modes reached values of approximately up to 10% (from corresponding structure modal 

damping ratios of 0.5%) at the flutter onset wind velocity (Ding et al., 2002). More studies 

about effects of wind-structure interaction on dynamic characteristics of long-span cable-

supported bridges can be found in Matsumoto et al. (1996), Miyata et al. (1997), Larsen 

(1998), Chen et al. ( 2000a, b; 2001), Matsumoto et al. (2002), and Chen and Kareem (2003). 

The vibration mode shapes identified using state-space model based system 

identification methods such as SSI-DATA are in general complex valued. Figure 4.10 

represents in polar plots (i.e., rotating vectors in the complex plane) the mode shapes of VTB 

identified using SSI-DATA based on the simulated (wind-induced) ambient vibration data. 

These polar plots have the advantage to show directly the extent of the non-proportional 

damping characteristics of a vibration mode. If all complex valued components of a mode 

shape vector are collinear (i.e., in phase or 180 degrees out of phase), this vibration mode is 

said to be classically (or proportionally) damped. On the other hand, the more these mode 

shape components are scattered in the complex plane, the more the vibration mode is non-

classically (or non-proportionally) damped. However, measurement noise, estimation errors 

and modeling errors can also cause a truly classically damped mode to be identified as non-

classically damped. Figure 4.10 shows that most of the vibration modes (modes # 1, 4-8) 

identified in this study are either perfectly or nearly classically damped. A 3D representation 

of the normalized mode shapes of the bridge deck for these identified vibration modes is given 

in Figure 4.11. Normalization was performed by projecting all mode shape components onto 

their principal axis (in the complex plane) and then scaling this projected mode shape vector 
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for a unit value of its largest component. The identified space-discrete mode shapes were 

interpolated between the virtual sensor locations using cubic splines along both sides of the 

bridge deck and straight lines across the deck. 

The modal assurance criterion (MAC) (Allmang and Brown, 1982) is used to compare 

the identified and computed (“exact”) vibration mode shapes. The MAC value, bounded 

between 0 and 1, measures the degree of correlation between corresponding identified and 

computed mode shapes as 

2*
identified computed

identified computed 22
identified computed

ΜΑC , )=
φ φ

(φ φ
φ φ

 (4.28)

where * denotes the complex conjugate transpose. A MAC value of 0 indicates that the 

corresponding identified and computed mode shapes are completely uncorrelated, while a 

MAC value of 1 indicates perfect correlation between them. The MAC values for all pairs of 

identified and computed mode shapes are also given in Table 4.1. For all vibration modes 

identified, except for the second one, there is a very good to excellent agreement between 

corresponding identified and computed mode shapes. The high degree of non-classical 

damping identified for the second mode (see Figure 4.10) could be the reason behind the low 

MAC value obtained for this mode. Such high degree of non-classical damping could be 

true/physical (possibly due to wind-structure interaction) or could be caused by estimation 

and/or modeling errors. 3D representations of the mode shapes computed from the FE model 

of VTB are shown in Figure 4.12, which can be compared directly with their identified 

counterparts in Figure 4.11. 

In order to study the effects of measurement noise on the system identification results, 

zero-mean Gaussian white noise processes are added to the simulated bridge vibration 

response data. Statistical properties (mean and standard deviation) of the estimated modal 
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parameters are investigated for increasing level of measurement noise. For this purpose, a set 

of 100 identifications was performed at each of three different measurement noise levels (2%, 

5% and 10%). For a given output channel, the noise level is defined as the ratio (in percent) of 

the root mean square (RMS) of the added noise process to the RMS of the simulated 

acceleration response. The added measurement noise processes are assumed statistically 

independent across the output channels and over the 100 realizations considered. The statistics 

(mean and coefficient-of-variation) over 100 trials of the identified natural frequencies and 

damping ratios normalized to their counterparts identified based on simulated noise-free data 

are reported in Table 4.2 and Table 4.3, respectively, for the three measurement noise levels 

considered. The coefficient-of-variation of a random variable is defined as the ratio of its 

standard deviation to its (absolute) expected value (mean). In addition, mean and mean +/- one 

standard deviation of the identified natural frequencies and damping ratios normalized to their 

counterparts identified based on simulated noise-free data are represented graphically in 

Figure 4.13 and Figure 4.14, respectively. Based on the results reported in Table 4.2 and Table 

4.3 and plotted in Figure 4.13 and Figure 4.14, it is observed that both the bias and coefficient-

of-variation of the identified natural frequencies and damping ratios introduced by the 

measurement noise increase with increasing noise level as expected. However, bias and 

coefficient-of-variation due to measurement noise remain very small (negligible) for the 

identified natural frequencies (see Table 4.2 and Figure 4.13). Although they are significantly 

larger for the identified damping ratios (see Table 4.3 and Figure 4.14), they remain relatively 

small since it is well known that the estimation uncertainty of damping ratios is inherently 

larger than that of natural frequencies. It was also found that the measurement noise 

considered has very small (negligible) effects on the identified mode shapes. 
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4.5 Conclusions 

Wind-induced ambient vibration of Vincent Thomas Bridge (VTB), a long-span 

suspension bridge located in San Pedro near Los Angeles, California, is simulated using a 

detailed three-dimensional FE model of the bridge and a state-of-the-art stochastic wind 

excitation model including both buffeting and self-excited forces. Based on these simulated 

ambient vibration data, modal parameters of the low frequency vertical vibration modes of 

VTB are identified using data-driven stochastic subspace identification (SSI-DATA), a state-

of-the-art output-only system identification method. The identified modal parameters are in 

good agreement with the computed (“exact”) modal parameters obtained directly from the FE 

model of VTB, which themselves are in good agreement with the corresponding modal 

parameters of VTB identified by other researchers using actual ambient vibration data. This 

system identification study also provides the opportunity to investigate the accuracy of the 

modal identification results obtained using SSI-DATA in the case of a large and complex 

(virtual) structural problem for which the “exact” modal parameters (modal parameters of the 

FE model of VTB) are known, which is usually not the case when system identification 

methods are applied directly to real-world structures and data.  

The effect of measurement noise on the identified modal parameters is investigated. 

Measurement noise is simulated by adding statistically independent zero-mean Gaussian white 

noise processes to the finite element simulated bridge response to wind excitation along a set 

of degrees of freedom (virtual output channels). The statistical properties (mean and 

coefficient-of-variation) of the identified modal parameters are investigated under increasing 

measurement noise level. Both bias and coefficient-of-variation of the identified natural 

frequencies and damping ratios introduced by the measurement noise increase with increasing 

noise level as expected. However, bias and coefficient-of-variation due to measurement noise 
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remain very small (negligible) for the identified natural frequencies. Although they are 

significantly larger for the identified damping ratios, they remain relatively small since it is 

well known that the estimation uncertainty of damping ratios is inherently larger than that of 

natural frequencies. 

The methodology and study presented in this paper provide a validated framework for 

studying the effects of realistic damage scenarios in long-span cable-supported (suspension 

and cable-stayed) bridges (e.g., corrosion-induced losses in stiffness and strength of main 

cables and suspenders at different locations along the bridge) on modal identification results. 

These effects represent the basis for developing robust and reliable vibration-based structural 

health monitoring systems for long-span cable-supported bridges. 
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Table Captions 

Table 4.1.   System identification results 

Table 4.2.   Mean and coefficient-of-variation (COV) of the identified natural frequencies 
normalized to their counterparts identified based on noise-free data at different 
measurement noise levels 

Table 4.3.   Mean and coefficient-of-variation (COV) of the identified damping ratios 
normalized to their counterparts identified based on noise-free data at different 
measurement noise levels 
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Table 4.1.   System identification results 

Natural frequency [Hz] Damping ratio [%] Abdel-Ghaffar et al. (1992) 

Identified freq. 
[Hz] 

Computed freq. 
[Hz] 

Mode 
No. 

 Identified Computed Identified Specified
MAC

A.V. E.Q. 2D 
Model 

3D 
Model 

1 0.214 0.231 3.8 1.8 0.961 0.216 0.209 0.197 0.201 

2 0.226 0.226 2.3 1.8 0.711 0.234 0.224 0.221 0.224 

3 0.357 0.364 0.9 1.6 0.928 0.366 0.364 0.348 0.336 

4 0.455 0.459 2.6 1.7 0.988 0.487 0.448 0.459 0.443 

5 0.514 0.511 2.1 1.8 0.995 0.494 0.513 0.455 0.438 

6 0.576 0.571 0.5 1.8 0.994 0.579 0.562 0.549 0.527 

7 0.687 0.684 1.5 2.0 0.994 N/A N/A N/A N/A 

8 0.815 0.823 0.2 2.3 0.997 N/A N/A N/A N/A 
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Table 4.2.   Mean and coefficient-of-variation (COV) of the identified natural frequencies 
normalized to their counterparts identified based on noise-free data at different measurement 
noise levels 

2% noise 5% noise 10% noise Mode 
No mean COV[%] mean COV [%] mean COV [%] 

1 0.9998 0.05 0.9994 0.06 0.9992 0.07 

2 1.0003 0.07 1.0000 0.09 0.9998 0.10 

3 1.0005 0.03 1.0006 0.03 1.0008 0.04 

4 0.9998 0.04 0.9997 0.05 0.9996 0.06 

5 0.9999 0.01 0.9999 0.01 0.9999 0.02 

6 0.9994 0.01 0.9992 0.01 0.9991 0.02 

7 1.0001 0.01 1.0001 0.01 1.0001 0.01 

8 1.0006 0.01 1.0007 0.01 1.0009 0.02 
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Table 4.3.   Mean and coefficient-of-variation (COV) of the identified damping ratios 
normalized to their counterparts identified based on noise-free data at different measurement 
noise levels 

2% noise 5% noise 10% noise Mode 
No mean COV[%] mean COV [%] mean COV [%] 

1 0.984 1.61 0.973 1.73 0.966 1.91 

2 0.993 3.01 0.976 3.92 0.979 3.74 

3 1.306 3.46 1.372 4.09 1.417 4.58 

4 1.018 1.53 1.016 2.07 1.012 2.83 

5 1.010 0.49 1.016 0.58 1.017 0.83 

6 1.097 1.83 1.122 2.14 1.186 2.93 

7 1.007 0.28 1.011 0.47 1.018 0.70 

8 1.275 2.21 1.308 2.92 1.375 3.53 
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Figure Captions 

Figure 4.1.   Aerodynamic forces on bridge deck section 

Figure 4.2.   Rational function approximations of flutter derivatives for William Preston Lane 

Bridge (J. D. Raggett, Personal communication, 2004) 

Figure 4.3.   Three-dimensional finite element model of Vincent Thomas Bridge 

Figure 4.4.   Locations of spatially discretized aerodynamic forces  (“aerodynamic” nodes) 

along the bridge deck 

Figure 4.5.   Simulated longitudinal, ( ),equ t  and vertical, ( ),eqw t  wind velocity fluctuations 

(U = 10 m/s) 

Figure 4.6.   Comparison of estimated (from simulated data) and exact longitudinal wind 

velocity spectrum 

Figure 4.7.   Comparison of simulated and exact coherence function of the longitudinal wind 

velocity fluctuation 

Figure 4.8.   Simulated vertical displacement response of VTB at center of main span 

Figure 4.9.   Virtual array of accelerometers along the bridge deck 

Figure 4.10.  Polar plot representation of vibration mode shapes identified using SSI-DATA 

Figure 4.11.  3D representation of normalized vibration mode shapes identified using SSI-

DATA 

Figure 4.12.  3D representation of vibration mode shapes computed from the finite element 

model of VTB 

Figure 4.13.  Statistics (mean, mean +/- one standard deviation) over 100 trials of the 

identified natural frequencies normalized to their counterparts identified based 

on noise-free data at different measurement noise levels 
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Figure 4.14.  Statistics (mean, mean +/- one standard deviation) over 100 trials of the 

identified damping ratios normalized to their counterparts identified based on 

noise-free data at different noise levels 
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Figure 4.1.   Aerodynamic forces on bridge deck section 
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Figure 4.2.   Rational function approximations of flutter derivatives for William Preston 
Lane Bridge (J. D. Raggett, Personal communication, 2004) 
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Figure 4.3.   Three-dimensional finite element model of Vincent Thomas Bridge 

 

 

 
 

Figure 4.4.   Locations of spatially discretized aerodynamic forces  (“aerodynamic” nodes) 
along the bridge deck 
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Figure 4.5.   Simulated longitudinal, ( ),equ t  and vertical, ( ),eqw t  wind velocity 

fluctuations (U = 10 m/s) 
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Figure 4.6.   Comparison of estimated (from simulated data) and exact longitudinal wind 
velocity spectrum 
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Figure 4.7.   Comparison of simulated and exact coherence function of the longitudinal 
wind velocity fluctuation 
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Figure 4.8.   Simulated vertical displacement response of VTB at center of main span 

 

 

 
 

Figure 4.9.   Virtual array of accelerometers along the bridge deck 
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Figure 4.10.  Polar plot representation of vibration mode shapes identified using SSI-DATA 
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Figure 4.11.  3D representation of normalized vibration mode shapes identified using SSI-

DATA 
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Figure 4.12.  3D representation of vibration mode shapes computed from the finite element 
model of VTB 
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Figure 4.13.  Statistics (mean, mean +/- one standard deviation) over 100 trials of the 
identified natural frequencies normalized to their counterparts identified based on noise-

free data at different measurement noise levels 
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Figure 4.14.  Statistics (mean, mean +/- one standard deviation) over 100 trials of the 
identified damping ratios normalized to their counterparts identified based on noise-free 

data at different noise levels 
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Chapter 5  

Finite Element Model Updating and Damage Identification 

of a Seven-Story Reinforced Concrete Shear Wall Building 

Slice Tested on the UCSD-NEES Shake Table 

5.1 Introduction 

Damage identification consists of detecting the occurrence of damage, localizing the 

damage zones, and estimating the extent of damage. Numerous vibration-based methods have 

been proposed to achieve these goals. Salawu (1997) presented a review on the use of natural 

frequency changes for damage detection. It is however challenging to localize the damage 

(e.g., to obtain spatial information on the structural damage) from changes in natural 

frequencies only. Pandey et al. (1991) introduced the concept of mode shape curvature for 

damage localization. In his study, both a cantilever and a simply supported beam model were 

used to demonstrate the effectiveness of using changes in modal curvature as a damage 

indicator to detect and localize damage. As another mode shape based damage indicator, 

Pandey and Biswas (1994) proposed the use of changes in the dynamically measured 

flexibility matrix to detect and localize damage. It was shown that the flexibility matrix of a 

structure can be easily and accurately estimated from a few low frequency vibration modes of 

the structure. Recently, Bernal and Gunes (2004) have incorporated changes in modal 

flexibility matrices (or flexibility proportional matrices) into the damage locating vector (DLV) 

technique to localize damage. Methods based on changes in identified modal parameters to 

detect and localize damage in structures have also been further developed for the purpose of 
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damage quantification. Among these methods are strain-energy based methods (Shi et al., 

2002) and the direct stiffness calculation method (Maeck and De Roeck, 1999).  

Another class of sophisticated methods consists of applying sensitivity-based finite 

element (FE) model updating for damage identification. The FE model updating methodology 

is one of the most promising approaches to identify (i.e., detect, localize and quantify) 

structural damage. This class of methods updates the physical parameters of a FE model of the 

structure by minimizing an objective function expressing the discrepancy between analytically 

predicted and experimentally identified features that are sensitive to damage such as natural 

frequencies and mode shapes. Optimum solutions of the problem are reached through 

sensitivity-based optimization algorithms. In this study, a sensitivity-based FE model updating 

strategy is applied for damage identification of a full-scale seven-story reinforced concrete 

(R/C) building slice tested on the UCSD-NEES shake table. The shake table tests were 

designed so as to damage the building progressively through several seismic input motions 

reproduced on the shake table. At various levels of damage, several low amplitude white noise 

base excitations were applied through the shake table to the building which responded as a 

quasi-linear system with parameters evolving as a function of damage. In addition, ambient 

vibration tests were performed on the building specimen between seismic tests.  

In this chapter, the sensitivity-based FE model updating methodology is described. A 

linear flat shell element is implemented in the element library of the MATLAB-based 

structural analysis software FEDEASLab (Filippou and Constantinides, 2004), which is then 

integrated with the FE model updating algorithms used/developed in order to perform 

structural damage identification. This shell element is based on the mixed discrete variational 

principle proposed by Hughes and Brezzi (1989) in conjunction with Allman type 

interpolation (Allman, 1988) for the membrane part and the discrete Kirchhoff plate element 
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derived by Batoz and Tahar (1982) for the plate part. The resulting finite element has six 

degrees of freedom (DOFs) per node, including a true (mechanics-based) drilling degree of 

freedom. A comparative study of the influence of different objective functions on the damage 

identification results is performed by using simulated data for a simply supported plate. 

Finally a sensitivity-based FE model updating strategy is applied for damage identification of 

a full-scale seven-story reinforced concrete (R/C) building slice.  

5.2. Sensitivity-Based FE Model Updating 

5.2.1 Objective Function 

The sensitivity-based FE model updating can be posed as an optimization problem to 

minimize an objective function containing the discrepancies between numerical and 

experimental modal data by adjusting a set of physical parameters (see Figure 5.1):  

2

1

1 1min ( ) ( ) ( ) [ ( )]
2 2

m
T

j
j

f r
θ

θ r θ r θ θ
=

= = ∑  (5.1) 

in which ( )r θ  = residual vector containing the differences between the analytically predicted 

and experimentally identified modal data; nθ∈ = a set of physical parameters, also called 

updating parameters, which is adjusted to minimize the objective function. In order to obtain a 

unique solution, the number m of residuals should be larger than the number n of unknowns 

(i.e., updating parameters).  

5.2.1.1 Eigen-Frequency Residual 

Natural frequencies provide global information of a structure and are sensitive to the 

structural stiffness property. In addition, the natural frequencies are usually identified with a 

higher accuracy than other modal parameters. Therefore the natural frequencies are excellent 

residual candidates for setting up the objective function in the FE model updating. In order to 
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simplify the sensitivity formulations, the eigen-frequency residuals, instead of the natural 

frequency residuals, are usually used in the FE model updating, which are defined as 

(Teughels and De Roeck, 2004)  

2
j

( )
( ) ( ) ,   = ,  {1 2 }j j

f f j f
j

r j N
θ

r θ θ
⎡ ⎤−

⎡ ⎤= = ∈⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

λ λ
λ ω

λ
 (5.2) 

in which  ( ) fN
fr θ ∈ = eigen-frequency residual vector; ( )j θλ  and jλ  = numerical and 

corresponding experimental eigenvalues, respectively; fN = number of identified natural 

frequencies which are used in the model updating.  

5.2.1.2 Mode Shape Residual 

In order to obtain spatial information on the structural damage, it is necessary to 

include mode shape residuals in the objective function. Due to the fact that only non-mass 

normalized mode shapes can be identified using output-only system identification methods 

based on structural response measurements, the mode shape residuals are usually defined as 

(Teughels and De Roeck, 2004)  

[ ]
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θ

r θ θ
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⎡ ⎤
= = − ∈ ∈⎢ ⎥

⎢ ⎥⎣ ⎦

φ φ
φ φ

 (5.3) 

( )j θφ and jφ = numerical and corresponding experimentally identified mode shape 

vectors; mN = number of identified mode shapes used in the model updating; l, r = arbitrary 

and reference DOF of the mode shape ( )j θφ (or jφ ), respectively. In the mode shape residual 

vector, each mode shape component l is divided by the reference component r, which is the 

component of largest amplitude. This way, both numerical and experimental mode shapes are 

normalized in the same fashion. 
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5.2.1.3 Pseudo Modal Flexibility Residual 

Changes in the dynamically measured flexibility matrix have been shown to be useful 

damage indicators to detect and localize damage (Pandey and Biswas, 1994; Toksoy and 

Aktan, 1994; Catbas et al. 1997; Zhao and DeWolf 1999). These changes can also be used in 

the FE model updating for damage identification. However, due to the fact that (1) identified 

mode shapes are un-mass normalized in the case of output-only modal analysis, (2) identified 

mode shape components are available only at the sensor locations, and (3) only relative 

differences of flexibility matrices are required in the damage identification procedure, the 

pseudo modal flexibility matrix, instead of the flexibility matrix, can be used to set up the 

residual vector. The pseudo modal flexibility residual vector is defined as 

( )
( ) ( ) ,  {1 2 },    {1 2 }ij ij

pf pf r
ij

f f
r j Ndof i j

f
θ

r θ θ
⎡ ⎤−

⎡ ⎤= = ∈ ∈⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 (5.4) 

where r
ijf  = reference component of the measured pseudo modal flexibility matrix. The 

numerical and experimentally identified pseudo modal flexibility matrices are defined as 

1

1( )  
pf TN

j j
Ndof Ndof r r

j j j jλ φ φ×
=

=∑F θ
φ φ

 
(5.5) 

1

1pf TN
j j

Ndof Ndof r r
j j j jλ φ φ×
=

=∑F
φ φ

 
(5.6) 

where pfN , Ndof = number of identified modes and measured DOFs, respectively, used to 

build the pseudo modal flexibility matrix. 

Additional to aforementioned three types of residuals, other modal properties such as 

modal curvature, modal strains, modal strain energy, uniform load surface, etc. can also be 

used to set up the objective function. The selection of residuals and objective functions is 

dependent on the particular applications. 
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5.2.2 Correction Factors and Residual Sensitivity 

The updating parameters are the uncertain physical properties of the numerical model. 

Instead of the absolute value of each uncertain variable θ , a dimensionless correction factor 

ip is defined to represent the variation of iθ  relative to its reference values ref
iθ  

[ ] ( ) / (1 )ref ref ref
i i i i i i ip pθ θ θ θ θ⎡ ⎤= = − − → = −⎢ ⎥⎣ ⎦p  (5.7) 

The correction factor ip  can be assigned to a single element or a group of elements. The FE 

model updating problem defined in equation (5.1) is then to find the values of p to minimize 

the differences between the numerical (analytical) and measured modal data 

2

1

1 1min ( ) ( ) ( ) [ ( )]
2 2

m
T

j
j

f r
=

= = ∑p
p r p r p p  (5.8) 

In the case that Young’s modulus is considered as the model updating parameter, the 

correction factor for element (group) i becomes ( ) /ref ref
i i i ip E E E= − − . Thus the correction 

factor indicates directly the level of damage when the finite element model updating is applied 

for structural damage identification purposes.  

The optimum solutions of the minimization problem defined in equation (5.7) will be 

solved through an iterative sensitivity based optimization methods, in which the gradient and 

the Hessian of the objective function ( )f p  are needed 

1

( ) ( ) ( ) ( ) ( )
m

T
j j

j

f r r
=

∇ = ∇ =∑p p p J p r p  (5.9) 

2 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
m

T T
j j

j

f r r
=

∇ = + ∇ ≈∑p J p J p p p J p J p  (5.10) 

in which ( )J p = Jacobian matrix (sensitivity matrix) containing the first partial derivatives of 

the residuals with respect to p. The Hessian matrix 2 ( )f∇ p  is approximated with the first 
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order term in equation (5.10), which is known as the Gauss-Newton approximation, most 

often used in nonlinear least squares problems. In this case, the nonlinear least squares 

problem is solved by a sequence of approximating linearized least squares problems, at each 

iteration k 

1
1min ( ) [ ( ) ( ) ] [ ( ) ( ) ],  with 
2

T
k k k k k k k k k k kq += + + = +

z
z r p J p z r p J p z p p z  (5.11) 

( )kq z = quadratic model function that approximates ( )f p at the current vector kp ; z = the step 

vector from kp .  

The sensitivity of the residuals defined in equations (5.2), (5.3), and (5.4) with respect 

to the correction factor ip can be obtained through the modal parameter sensitivities as 

1f j

i ijp p
r ⎡ ⎤∂ ∂

= ⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

λ
λ

 (5.12) 

2

1
( )

l l r
j j jms

r r
i j i j ip p p

r ⎡ ⎤∂ ∂∂
= −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

φ φ φ
φ φ

 (5.13) 

1pf
kj

r
i ikj

f
p pf

r ⎡ ⎤∂∂
= ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (5.14) 

where 2 2 2 3
1

1 1 2{ ( + )- ( )}
( ) ( ) ( )

pf T rN
kj j j j jT T

j j j jr r r
ji j j i i j j i j j i kj

f
p p p p p=

⎡ ⎤∂ ∂ ∂ ∂ ∂
= +⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∑

λ φ
λ φ λ φ λ φ

φ φ
φ φ φ φ ; the modal 

sensitivities j ip∂ ∂λ  and j ip∂ ∂φ  can be obtained by the work of Fox and Kapoor (1968). In 

the case of updating Young’s modulus only, these formulas are simplified to 

j T T ref
j j j i

i i i

E
p p E

K K∂ ∂ ∂
= = −

∂ ∂ ∂

λ
φ φ φ φ  (5.15) 

1; 1;
( ) ( )

d d
j q qT T ref

q j q j i
q q j q q ji j q i j q i

E
p p E

K K
= ≠ = ≠

∂ ∂ ∂
= = −

∂ − ∂ − ∂∑ ∑λ λ λ λ
φ φ φ

φ φ φ φ  (5.16) 
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in which d = number of analytical vibration mode shapes used to calculate j

ip
∂

∂

φ
. It should be 

noted that the analytical mode shapes used in above sensitivity equations are mass normalized. 

Based on the residual sensitivity described above, the sensitivity matrix ( )J p  is finally 

obtained as 

1 1 1

1 2

2 2 2

1 2

1 2

( )

n

j
n

i

m m m

n

r r r
p p p
r r r

r
p p p

p

r r r
p p p

J p

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

∂⎡ ⎤ ⎢ ⎥∂ ∂ ∂= =⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

 (5.17) 

It can be seen that in the application of the sensitivity-based FE model updating 

techniques, the fundamental properties of the original model such as the symmetry, positivity 

and sparse pattern in the stiffness and mass matrices are retained because the updating is 

carried out at the element level.  

5.2.3 Weighting and Optimization Algorithm 

Considering the importance and the identification accuracy of the different modal 

parameters (i.e., statistical uncertainty of identified parameters), the weighted nonlinear least 

squares problem can be used in FE model updating instead of the normal least squares 

problem given in equation (5.1), i.e.,  

2 2

1
min ( ) [ ( )] [ ]

m n
p

j j i i
j i n

f w r w p
p

p p
= =

= +∑ ∑  (5.18) 

where jw  = weight factor of residual component ( )jr p  and p
iw  = weight factor of damage 

factors ip . Depending on each particular FE model updating problem, weight factors jw  
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applied to the various modal residuals can be selected so as to account for the different levels 

of identification accuracy of the different modal parameters. In practice, the values of jw  can 

be selected as inversely proportional to the coefficient-of-variation of the corresponding 

measured components. Weight factors p
iw  are penalizing the larger values of damage factors 

in order to limit the perturbation of updating parameters to which the considered residuals are 

little sensitive. In the weighted nonlinear least squares problem, only the relative proportion of 

the weight factors is important rather than their absolute values. The ability to weight the 

different data sets gives the method its power and versatility, but at the same time requires 

engineering insight to provide the correct weights.  

The optimization algorithm used to minimize the objective function defined in 

equation (5.1) and (5.18) is a standard Trust Region Newton method, which is a sensitivity-

based iterative method available in MATLAB optimization Toolbox (e.g., fmincon, fminunc, 

and lsqnonlin). The gradient and Hessian of the objective function can be obtained analytically 

from equations (5.9) and (5.10). 

5.3 Linear Flat Shell Element 

In this study, the MATLAB-based structural analysis software FEDEASLab (Filippou 

and Constantinides, 2004) is integrated with the FE model updating algorithms described 

above in order to perform structural damage identification. FEDEASLab was developed as an 

instruction tool for linear and nonlinear matrix structural analysis. This software is extended 

herein by implementing a four-node linear flat shell element borrowed from the FE literature. 

Considering a linear flat shell element (See Figure 5.2), deformations of the element 

due to the membrane and bending forces will be uncoupled under the assumptions: (1) the 

middle surface (corresponding to z = 0) is chosen in representing displacement, rotations and 
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stress resultants; (2) the material properties are constant across the thickness, and (3) the 

displacement are small. This section briefly reviews the implemented linear flat shell element 

based on the previous research work performed by Kamal (1998). The shell element is based 

on the discrete Kirchhoff plate element derived by Batoz and Tahar (1982) for the plate part 

and the mixed discrete variational principle proposed by Hughes and Brezzi (1989) in 

conjunction with Allman type interpolation (Allman, 1988) for the membrane part. The 

resulting finite element has six DOFs per node.  

5.3.1 Strain-Displacement Relationship 

The in-plan displacement at any point in the shell can be expressed (assuming that the 

plane sections remain plane): 

0 zu u β= +  (5.19) 

in which 

0
0

0

;    ;     x

y

uu
vv

u u β
β
β
⎡ ⎤⎡ ⎤⎡ ⎤

= = = ⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.20) 

where 0u  and 0v are the in-plane displacements of the middle surface of the shell; x yβ θ=  is 

y-rotation of the shell cross-section perpendicular to x-axis and y xβ θ=−  is x-rotation of the 

shell cross-section perpendicular to y-axis. Then the strain vector at any point in the shell 

element due to these displacements are given by 

0 zε ε χ= +  (5.21) 

where  
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0

0
0

0 0
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y

v u
x y

ε
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⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂

= ⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂

+⎢ ⎥
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 (5.22) 

and  

x

y

y x

x

y

x y

χ

β

β

β β
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⎢ ⎥
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⎢ ⎥∂

= ⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂ ∂⎢ ⎥+
∂ ∂⎢ ⎥⎣ ⎦

 (5.23) 

The principal of virtual work requires a virtual strain vector which can be expressed as  

0 zε ε χδ δ δ= +  (5.24) 

5.3.2 Stress-Strain Relationship 

The linear stress-strain relationship at any depth z of the shell is given by  

0( )zσ Dε D ε χ= = +  (5.25) 

where D is the constitutive matrix for plane stress condition at any depth z  

2

1 0
1 0

(1 )
0 0 (1 ) / 2

v
E v
v

v
D

⎡ ⎤
⎢ ⎥= ⎢ ⎥−
⎢ ⎥−⎣ ⎦

 (5.26) 

in which E and v = represent the Young’s modulus and the Poisson ratio, respectively. The 

stress vector σ at any depth z is given as  

xx

yy

xy

σ
σ
σ
σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.27) 
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By integrating equation (5.25) through the thickness of the shell, t, the stress resultants are 

obtained as 

0 0 0( ) ( ) ( ) m mbdz z dz dz zdzN σ D ε χ D ε D χ D ε D χ= = + = + = +∫ ∫ ∫ ∫  (5.28) 

2
0 0 0( ) ( ) ( ) mb bzdz z z dz zdz z dzM σ D ε χ D ε D χ D ε D χ= = + = + = +∫ ∫ ∫ ∫  (5.29) 

where 
T

xx yy xyN N N⎡ ⎤= ⎢ ⎥⎣ ⎦N  are the internal in-plane normal and shear forces per unit length 

of the shell and 
T

xx yy xyM M M⎡ ⎤= ⎢ ⎥⎣ ⎦M are the internal moment per unit length of the shell. 

The integrated constitute matrices mD , bD , and mbD  are known respectively as membrane, 

bending and membrane-bending coupling constitutive matrices. Based on the assumption that 

the middle surface corresponds to z = 0 and the material properties are constant across the 

thickness, then 

3

2 2

1 0 1 0
1 0 ;     0;     1 0

(1 ) 12(1 )
0 0 (1 ) / 2 0 0 (1 ) / 2

m mb b

v v
Et Etv v

v v
v v

D D D
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (5.30) 

This shows that the deformations due to the membrane and bending forces are uncoupled in 

the case of aforementioned assumptions. 

5.3.3 Principle of Virtual Work 

The principle of virtual work for shell can be written as  

T T
m p

V V V

W dV dV f wdVσ ε f uδ δ δ δ= − −∫ ∫ ∫  (5.31) 

where σ  and εδ  are defined in equations (5.27) and (5.24), respectively; mf  and pf  are the 

in-plane and out-of-plane body forces; u  is the displacement field vector defined in equation 

(5.19) and w is the out-of-plane displacement field. Using the definition of the stress resultant 

vectors defined in equations (5.28) and (5.29), the above equation can be expressed as  
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0 0

0 0

( ) ( )

       =

T T
m p

V V V

T T T T
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A A A A A

W z dzdA z dzdA f wdzdA

dA dA dA dA f t wdA

σ ε χ f u β

N ε M χ n u m β

δ δ δ δ δ δ

δ δ δ δ δ
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∫ ∫ ∫ ∫ ∫
 (5.32) 

where n and m represent the external forces resultants defined as  

;     m mdz zdzn f m f= =∫ ∫  (5.33) 

Based on the principle of virtual work, the total inertial virtual work IWδ  and total external 

virtual work EWδ  are equal to each other, thus, 

0

0

I E
T T

I
A A

T T
E p

A A A

W W
W dA dA

W dA dA f t wdA

δ δ

δ δ δ

δ δ δ δ

=

= +

= + +

∫ ∫

∫ ∫ ∫

N ε M χ

n u m β

 
(5.34) 

In the above, N and M are the internal stress resultants in equilibrium with external body force 

resultants n and m and out-of-plane body forces pf . The principle of virtual work expressed in 

equation (5.34) is an integral form of equilibrium.  

5.3.4 Finite Element Approximation 

The interpolation for the in-plane displacement field can be written as  

0
m

mu N P N Pψ
ψ= +  (5.35) 

where the nodal displacement vectors mP  and Pψ  are given by (see Figure 5.3):  

[ ] [ ]1 1 2 2 3 3 4 4 1 2 3 4;     T
m u v u v u v u vP Pψ ψ ψ ψ ψ= =  (5.36) 

The shape function matrix mN  is defined as 

1 2 3 4

1 2 3 4

0 0 0 0
0 0 0 0

m N N N N
N N N N

N
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5.37) 

where the bilinear shape functions IN  are defined as 
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1

2
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4

1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4

N

N

N

N

ξ η

ξ η

ξ η

ξ η

= − −

= + −

= + +

= − +

 (5.38) 

In the above, ξ  and η  are the natural coordinates defined in the interval {-1, 1}. The shape 

function Nψ  is defined as 

1 2 3 4N N N NNψ ψ ψ ψ ψ⎡ ⎤= ⎣ ⎦  (5.39) 

where  

8 8
JI KI

I L JI M KI
l lN N Nn nψ = +  (5.40) 

The indices in the above equation are defined in Table 5.1. The JIl denotes the length of the 

element side associated with the corner nodes J and I, i.e.,  

2 2 1/ 2

;      

( )

cos ;     sin ;
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JI I J JI I J

JI JI JI

JI JI
JI JI

JI JI

JI
JI
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x x x y y y

l x y
y x
l l

n

α α

α
α

= − = −

= +

= = −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (5.41) 

The serendipity shape functions used in equation (5.40) are  

2
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2
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2
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2
8

1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4

N

N

N

N

ξ η

ξ η

ξ η

ξ η

= − −

= + −

= − +

= − −

 (5.42) 
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The interpolation for the out-of-plane displacement field w and rotation field xθ  and 

yθ  were given, respectively, as 

w
pw N P=  (5.43) 

and  

;     x x p y y pN P N Pθ θθ θ= =  (5.44) 

The nodal displacement vector pP  is defined as (see Figure 5.4) 

1 1 1 2 2 2 3 3 3 4 4 4

T

p x y x y x y x yw w w wP θ θ θ θ θ θ θ θ⎡ ⎤= ⎣ ⎦  (5.45) 

The shape function wN  is given as  

1 2 3 4
w w w w wN N N N N⎡ ⎤= ⎣ ⎦  (5.46) 

where  

1 3

1 ( ) ( ) ( )
4 8 8

w T TJI KI
I I L M M M IJ L L KI

l lN M M N M N MN n n
×

⎡ ⎤⎧ ⎫⎧ ⎫= + − − − +⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

 (5.47) 

The indices in the above equation are defined in Table 5.2. The bilinear shape functions 

( 1 2 3 4, , , and N N N N ) and serendipity shape functions ( 5 6 7 8, , , and N N N N ) are defined in 

(5.38) and (5.42), respectively. The definition of JIl  and IJn  can be found in (5.41). The shape 

functions 5 6 7 8, , , and M M M M  are defined as  

2
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2
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2
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1 (1 ) (1 )
2
1 (1 ) (1 )
2
1 (1 ) (1 )
2
1 (1 ) (1 )
2

M
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M

ξ ξ η

ξ η η

ξ ξ η

ξ η η

= − −

= + −

= − +

= − −

 (5.48) 

The shape functions xNθ  and yNθ  are defined as  
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1 2 3 4

1 2 3 4

x x x x x

y y y y y

N N N N N

N N N N N

θ θ θ θ θ

θ θ θ θ θ

⎡ ⎤= ⎣ ⎦
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 (5.49) 

where  

1 3

1 3

ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ

T T T
xI x I I x I x x I y

T T T
yI y I y I x I y I y

N N e N

N N N

N e M e e e

N e M e e e e

θ

θ

×

×

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦
 (5.50) 

The unit vector ˆ xe  and ˆ ye  are defined as  

1 0
ˆ ˆ;     

0 1x ye e
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (5.51) 

The shape functions 1 2 3 4, , , and M M M M  are defined as 

3 ( )
2

IJKI
I L M

KI IJ

N N
l l

nnM = −  (5.52) 

The indices I, J, K, L, M, the shape functions 1 2 3 4, , , N N N N  and the definition of JIl  and IJn  

are the same as those defined in equation (5.47). The interpolations for rotation fields xβ  and 

yβ  are written in a form similar to equation (5.44) as 

;     x x p y y pN P N Pβ ββ β= =  (5.53) 

in which matrices xNβ  and yNβ  can be written in terms of xNθ  and yNθ  using the relationship as 

= ;     =x y y xN N N Nβ θ β θ−  (5.54) 

It is worth noting that the interpolation of the initial geometry (assumed to be flat) is 

give by bilinear map (see Figure 5.3 and Figure 5.4) 
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 (5.55) 

Based on the form of strain-displacement relationship used by Jetteur and Frey (1986) 

and Taylor (1988), the membrane strain-displacement relationship can be written 

0 ( , ) ( , ) ( , )m mx y x y x yε B P G Pψ
ψ= +  (5.56) 

The matrices mB  and Gψ  are defined as  

1 2 3 4

1 2 3 4

m m m m
mB B B B B

G G G G Gψ

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 (5.57) 

where  
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 (5.58) 

and  
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I I Ie
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d

G B n B n

G G G
Ω

= +

= − Ω
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 (5.59) 

The indices I, J, K, L, M, the bilinear shape functions 1 2 3 4, , , N N N N , the serendipity shape 

functions 5 6 7 8, , , N N N N  and the definition of JIl  and IJn  are the same as those defined in 
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equation (5.40). The eΩ denotes the domain of the element. Similarly, the plate strain-

displacement relationship can be written as 

( , ) ( , )p px y x yχ B P=  (5.60) 

in which  

1 2 3 4
p p p p

p B B B BB ⎡ ⎤= ⎣ ⎦  (5.61) 

and 
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∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥−⎢ ⎥∂ ∂⎣ ⎦

 (5.62) 

The shape functions xINθ  and yINθ  can be found in equation (5.50). 

By discretizing the shell region into Nel finite elements, the virtual work equation, i.e., 

equation (5.34), can be written as the following form: 

0 0
1 1e e e e e

e e
Nel Nel

T T T T T
p

e eA A A A A

dA dA dA dA w f tdAδ δ δ δ δ
= =
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⎢ ⎥ ⎢ ⎥+ = + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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Substitute equations (5.28) and (5.29) into above equation, it can be obtained 
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Using the displacement interpolations in equations (5.35) and (5.43), the cross-section 

rotations interpolations in equation (5.53), the strain-displacement relationship in equations 

(5.56)and (5.60), equation (5.64) becomes  
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Finally the integral equilibrium equation for linear analysis of shells using flat element can be 

written 
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in which matrices LK , LF , and LP  are well known as the stiffness matrix, the equivalent 

consistent nodal load vector, and the nodal displacement vector for a linear flat shell element 

in its local coordinate system. They are defined as following: 
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Based on the equation (5.65), it can be seen that 
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It is evident, from the definitions of its sub-matrices in equation (5.68), that the stiffness 

matrix LK satisfies symmetry owing to the symmetry of constitutive matrices mD , bD , and 

mbD . In addition, since the mb =D 0 under the condition that the middle surface corresponds to 

z = 0 and the material properties are constant across the thickness, see equation (5.30), the 

sub-matrices mpK , pmK , pψK , and pψK  become 

mp pm p pψ ψ= = = =K K K K 0  (5.70) 

and imply that the membrane and bending behaviors are uncoupled at the element level. 

Therefore the stiffness for a linear flat shell element can be written as 
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The Allman type (Allman 1988) membrane interpolations are used in above 

derivations and there are three parameters at each node for the membrane element (see Figure 

5.3). Among these, two are in-plane nodal displacements and the third one ψ is used for a 

higher order interpolation of the in-plane displacement field. This nodal parameter can be 

interpreted as an in-plane rotation (i.e., drilling degree of freedom) for the membrane element 

(Jetteur and Frey, 1986; Kamal, 1998). The meaning of this nodal kinematics parameter ψ  

can also be tied to true in-plane rotation if the mixed variational formulation (Kamal, 1998) is 

employed for the membrane part, which requires modifying the virtual work equation (5.66)  
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in which γ  is the regularization parameter. The element matrix eh  is defined as   
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where  

[ ] [ ]1 2 3 4 1 2 3 4;     m g g g gψ= =b b b b b g  (5.74) 

and  
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In the above equation, the indices I, J, K, L, M, the bilinear shape functions 1 2 3 4, , , N N N N , 

the serendipity shape functions 5 6 7 8, , , N N N N , and the definition of JIl  and IJn  are the same 

as those defined in equation (5.40). 



 
 

170

Based on equation (5.72), the stiffness for a linear flat shell element in equation (5.71) 

can be modified as  

;     
Tmm mmembrane e e

L membrane
mbending e
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ψ ψψ
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 (5.76) 

The stiffness matrix obtained from equation (5.76) is implemented in study. As 

aforementioned, this brief review about the linear flat shell element is based on the work 

performed by Kamal (1998), from which more detail can be found.  

5.4 Damage Identification of a Simply Supported Plate Based on Numerical Data 

A comparative study of the influence of different objective functions on the damage 

identification results is performed in this section by using simulated data for a simply 

supported plate. The simply supported plate with a size of 180 120 8× × in ( 4.57 3.05 0.2× × m) 

is discretized into 36 shell elements with 49 nodes (see Figure 5.5). The density and modulus 

of elasticity of the plate are 72.6098 10−×  2 4kip s /in⋅  ( 3 32.79 10  kg/m× ) and 3600 ksi 

( 102.48 10× Pa), respectively. These 36 elements are divided into 9 groups / substructures as 

seen in Figure 5.6. In order to simulate structural damage, the elastic moduli of group 1, 2, 5, 

and 7 are assumed to be reduced by 45, 40, 35 and 30 percent, respectively. Natural 

frequencies of the first 6 vibration modes considered in this study are listed in Table 5.3 for 

both undamaged and damaged plate. Table 5.3 also reports the modal assurance criterion 

(MAC) (Allemang and Brown, 1982) values between mode shapes computed from the 

undamaged plate with their counterparts computed from the damaged plate. From Table 5.3, it 

can be seen that due to the simulated damage, the maximum difference in natural frequency is 

on the order of 12% and the minimum MAC value is about 0.906. As an illustration, Figure 

5.7 shows mode shapes of these six vibration modes computed from undamaged state. 
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Three different objective functions are considered in this numerical example based on 

the natural frequency residuals, mode shape residuals, and pseudo modal flexibility residuals 

2 2
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In the above definitions, ( )f
jr p , ( )ms

jr p , ( )pf
jr p , are the component of frequency residual 

vector , mode shape residual vector, and pseudo modal flexibility residual vector, respectively 

[see equations (5.2), (5.3), and (5.4)]; p is the vector of correction factor [see equation (5.7)]; 

fN , sN , and pfN are the number of frequency residual components, mode shape residual 

components, and pseudo modal flexibility residual components, respectively, used in the 

objective functions. In this example, Young’s moduli of the nine groups of elements are 

selected as model updating parameters (i.e., nine unknown parameters). Thus the locations and 

levels of the simulated damage are identified by the correction factors directly.  

In the implementation of the first objective function, six different cases are considered 

depending on the number of vibration modes used in the FE model updating, namely: Case 1, 

only the natural frequency and mode shape of the first vibration mode is used; Case 2, the 

natural frequencies and mode shapes of the first two vibration modes are used; Case 3, the 

natural frequencies and mode shapes of the first three vibration modes are used; Case 4, the 

natural frequencies and mode shapes of the first four vibration modes are used; Case 5, the 

natural frequencies and mode shapes of the first five vibration modes are used; and Case 6, the 

natural frequencies and mode shapes of all the first six vibration modes are used. The standard 
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optimization algorithm lsqnonlin available in MATLAB optimization Toolbox is applied for 

all six cases. In this example, the maximum number of iterations (MaxIter) is defined as 400. 

The termination tolerance on the function value (TolFun) and termination tolerance on 

updating parameters (TolX) are defined as 1010− . The damage identification results of these 

six cases are reported in Table 5.4. It should be noted that the optimization programs are not 

converged within 400 iterations for Case 1 and Case 2. The correction factors provided in 

Table 5.4 are the results at the 400th step iteration for these two cases. For the Cases 3, 4, 5, 

and 6, the exact correction factors are obtained. In other words, the locations and levels of the 

simulated damage are exactly identified using the first objective function in the case that 

frequencies and mode shapes of more than two vibration modes are used to set up the 

objective function. Thus, in the application FE model updating for damage identification, 

enough modal properties are needed. Figure 5.8 shows the history of the correction factors in 

the model updating process for Case 3. It is clearly observed that the correction factors 

assigned to the undamaged elements (substructures) approach zeros during the model updating 

and those assigned to the damaged elements (substructures) reach their corresponding exact 

levels of the simulated damage at the end of model updating. 

In the implementation of the other two objective functions for damage identification 

of the simulated plate, the natural frequencies and mode shapes of the first three vibration 

modes are used to define these functions. Table 5.5 presented the damage identification results 

obtained using all three different objective functions. It is found that the locations and levels 

of the simulated damage can be exactly (or almost exactly) identified using any of these three 

objective functions. However, based on this example, it is found that the locations and levels 

of the damage can be exactly identified with high computation efficiency using the first and 

third objective functions. The first objective function is defined by the combination of natural 
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frequency residuals and mode shapes residuals whereas the third objective function is defined 

by combination of natural frequency residuals, mode shapes residuals, and pseudo modal 

flexibility residuals. Considering the propagation of the identification errors of the natural 

frequencies and mode shapes to the pseudo modal flexibility matrix, the objective function 

defined by the combination of natural frequency and mode shape residuals is applied for 

damage identification of a seven-story shear wall building tested on the UCSD-NEES shake 

table. 

5.5 Damage Identification a Seven-Story Shear Wall Building Slice Tested on the UCSD-

NEES Shake Table 

The UCSD-NEES shake table is located at the Englekirk Structural Engineering 

Center at the Camp Elliott Field Station, 15 km east of the main UCSD campus. This unique 

facility allows to perform landmark seismic experiments on large- or full-scale structural and 

soil-foundation-structure interaction systems. A full-scale seven-story reinforced concrete 

(R/C) shear wall building slice was tested on the UCSD-NEES shake table in the period 

October 2005 - January 2006. The objective of this test program was to verify the seismic 

performance of a reinforced concrete wall system designed for lateral forces obtained from a 

displacement-based design methodology, which are significantly smaller than those dictated 

by current seismic design provisions. The shake table tests were designed so as to damage the 

building progressively through several historical seismic motions reproduced on the shake 

table. At various levels of damage, several low amplitude white noise base excitations were 

applied through the shake table to the building slice which responded as a quasi-linear system 

with dynamic parameters depending on the level of structural damage. In addition to white 

noise base excitation tests, ambient vibration tests were also performed on the building 

specimen at different damage levels. Different state-of-the-art system identification methods 
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were applied to dynamic response measurements to estimate modal parameters (natural 

frequencies, damping rations and mode shapes) of the test building in its undamaged (baseline) 

and various damage states (Moaveni et al., 2007). In this section, modal parameters identified 

using the data-driven stochastic subspace identification (SSI-DATA) method (Van Overschee 

and De Moor, 1996) based on ambient vibration data are used for damage identification. First, 

changes of the identified modal parameters with increasing level of damage are investigated. 

Then, a FE model updating strategy is applied to identify the damage existed in the building at 

various damage states, in which the objective function is defined as a combination of residuals 

in natural frequencies and mode shape components. Finally, the damage identification results 

are compared to the actual damage observed in the test building. 

5.5.1 Seven-Story Reinforced Concrete Shear Wall Building Slice 

The full-scale seven-story R/C building slice tested on the UCSD-NEES shake table 

consists of a main wall (web wall), a back wall perpendicular to the main wall (flange wall) 

for lateral stability, concrete slabs at each floor level, an auxiliary post-tensioned column to 

provide torsional stability, and four gravity columns to transfer the weight of the slabs to the 

shake table. A picture of the building slice is shown in Figure 5.9. Figure 5.10 presents an 

elevation dimensions of the test building and Figure 5.11 shows a plan view of the structure 

with wall and slab dimensions at different levels. More details about the test structure can be 

found elsewhere (http://nees.ucsd.edu/7Story.html). 

In order to perform damage identification of this test building based on FE model 

updating techniques, a three dimensional (3D) linear elastic FE model of the building is 

developed using the general-purpose FE structural analysis program, FEDEASLab. A four-

node linear flat shell element presented in section 5.3 borrowed from the FE literature is 
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implemented in FEDEASLab in order to model the web wall, back wall, and concrete slabs. 

As aforementioned, this shell element is based on the mixed discrete variational principle in 

conjunction with Allman type interpolation for the membrane part and the discrete Kirchhoff 

plate element for the plate part. In the FE model of the test building, the gravity columns and 

braces are modeled using truss elements. Overall, the FE building model is defined by 423 

nodes and 398 elements. Figure 5.12 shows the FE model of the shear wall building developed 

and Table 5.6 provides measured values of Young’s moduli of various concrete components 

of the building structure (referred to as initial values). The location of the various concrete 

components is defined in Figure 5.10. 

5.5.2 Dynamic Tests and Identified Modal Parameters 

The test structure was instrumented with an array of accelerometers, strain gages, and 

linear variable displacement transducers (LVDTs). In addition, the displacement response of 

selected points on the structure was measured in 3D using global positioning system (GPS) 

sensors. Table 5.7 provides a summary of the sensor array installed on the test structure. In 

this study, measured response data from 28 longitudinal accelerometers (three on each floor 

slab as shown in Figure 5.11) and one on the web wall at mid-height of each story are used to 

identify the modal parameters of the test structure.  

A sequence of dynamic tests (68 tests in total) were performed including ambient 

vibration, free vibration, and forced vibration tests (white noise and seismic base excitations) 

using the UCSD-NEES shake table. The test structure was damaged progressively through 

four historical earthquake records consisting of (http://peer.berkeley.edu/smcat): (1) 

longitudinal component of the 1971 San Fernando earthquake recorded at the Van Nuys 

station (EQ1); (2) transversal component of the 1971 San Fernando earthquake recorded at the 
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Van Nuys station (EQ2); (3) longitudinal component of the 1994 Northridge earthquake 

recorded at the Oxnard Boulevard station in Woodland Hill (EQ3); and (4) 360 degree 

component of the 1994 Northridge earthquake recorded at the Sylmar station (EQ4). The 

acceleration time histories of these four earthquake records are shown in Figure 5.13. 

Based on these seismic tests, five different damage states (S0, S1, S2, S3 and S4) of 

the building are defined. Damage state S0 is defined as the undamaged state of the structure or 

state of the structure before experiencing the first seismic excitation (EQ1), while damage 

states S1, S2, S3, and S4 correspond to the state of the structure after it was subjected to the 

first (EQ1), second (EQ2), third (EQ3), and fourth (EQ4) seismic excitation, respectively. 

Damage state S0 does not correspond to the uncracked state of the structure, since the 

structure had already been subjected to low-amplitude white noise base excitations (0.02-

0.03g RMS) for the purposes of checking the instrumentation and data acquisition system as 

well as tuning the shaking table controller. It should be noted that the bracing system between 

the slabs and the post-tensioned column was modified after the third seismic excitation (EQ3). 

Table 5.8 describes a reduced set of the dynamic tests used in this study together with the 

corresponding damage states. 

SSI-DATA is applied herein for modal parameters identification using ambient 

vibration data. SSI-DATA determines the system model in state-space using output-only 

measurements directly. The procedure of extracting the modal parameters using SSI-DATA 

can be summarized as follows: (1) Form the output Hankel matrix and partition it into “past” 

and “future” output sub-matrices; (2) Calculate the orthogonal projection of the row space of 

the “future” output sub-matrix into the row space of the “past” output sub-matrix using QR 

factorization; (3) Obtain the observability matrix and Kalman filter state estimate via SVD of 

the projection matrix; and (4) Using the available Kalman filter state estimate, extract the 
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discrete-time system state-space matrices based on a least squares solution. Once the system 

state-space matrices are determined, the modal parameters are ready to be obtained (see 

Chapter 2 for detail).  

The measured acceleration response was sampled at a rate of 240 Hz resulting in a 

Nyquist frequency of 120 Hz, which is much higher than the modal frequencies of interest in 

this study (< 25 Hz). In the implementation of SSI-DATA, the acceleration response is first 

filtered between 0.5 Hz and 25 Hz using a high order (1024) band-pass finite impulse response 

(FIR) filter. Then the filtered acceleration data are down-sampled to 80 Hz in order to improve 

the computational efficiency of system identification. For each dynamic test, an output Hankel 

matrix is formed including 45 block rows with 28 rows in each block (28 longitudinal 

channels). Figure 5.14 represents in polar plots (i.e., rotating vectors in the complex plane) 

three longitudinal mode shapes associated with natural frequencies and damping ratios 

identified at the undamaged state of the structure. These polar plots have the advantage to 

show directly the extent of the non-proportional damping characteristics of a vibration mode. 

If all complex valued components of a mode shape vector are collinear (i.e., in phase or 180 

degrees out of phase), this vibration mode is said to be classically (or proportionally) damped. 

On the other hand, the more these mode shape components are scattered in the complex plane, 

the more the vibration mode is non-classically (or non-proportionally) damped. However, 

measurement noise, estimation errors, and modeling errors could also cause a “true” 

classically damped mode to be identified as non-classically damped. Figure 5.14 shows that 

the first two identified modes are nearly perfectly classically damped, while the third mode is 

non-classically damped. A 3D representation of the normalized mode shapes for these 

identified vibration modes is given in Figure 5.15. Normalization was performed by projecting 

all mode shape components onto their principal axis (in the complex plane).  
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The identified natural frequencies and damping ratios of the first three longitudinal 

vibration modes at different damage states are reported in Table 5.9 and Table 5.10, 

respectively. The identified natural frequencies and damping ratios are also represented in bar 

plots (see Figure 5.16 and Figure 5.17). From these tables and figures, it is observed that: (1) 

with increasing level of damage, the identified natural frequencies decrease monotonically due 

to loss of stiffness in the building; (2) although the identified damping ratios vary from 

damage state to damage state, there is no clear trend between the level of damage and changes 

in the damping ratios. Figure 5.18 shows in bar plots of the MAC values between the 

corresponding mode shapes identified at various damaged states and undamaged state. For 

each mode, the MAC values generally decrease with increasing level of damage. From this 

figure, it is found that mode shapes of the second and third vibration modes are more sensitive 

to the level of damage.  

5.5.3 Damage Identification  

The first step to identify damage in the test structure using the FE model updating 

algorithm described earlier is to obtain a reference (calibrated) FE model based on the modal 

parameters identified at the undamaged (or baseline) state of the building (S0). In this step, 

Young’s moduli of the main wall at all seven stories (two parameters per story at the first three 

levels and one parameter per story for levels 4-7) and Young’s moduli of the slab at each story  

are taken as updating (or calibrating) parameters, which results in 17 calibrating parameters in 

this step. Once the reference model is determined, Young’s moduli of the main wall at all 

seven stories (two parameters per story at the first three levels and one parameter per story for 

levels 4-7) are updated at the four damage states S1, S2, S3, and S4. In all model updating 

performed, the natural frequencies and mode shapes of the first three longitudinal modes 

identified using SSI-DATA are used in the objective function [see equation (5.18)], resulting 
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in a residual vector with 42 components (i.e., 3 natural frequencies and 3 vibration mode 

shapes of 13 components each). At each damage state, a specific set of weight factors is 

assigned to the residuals based on their statistical uncertainty (coefficient-of-variation). It 

should be mentioned that the optimal weights at each damage state are obtained through a 

trial-and-error process, observing the match between the numerically predicted and 

experimentally identified modal parameters (Teughels and De Roeck, 2004). 

The Young’s moduli of the different concrete components of the main (web) wall 

updated based on the modal parameters identified at the undamaged state S0, referred to as 

reference values, are reported in Table 5.11 together with the corresponding measured values 

(at the day of the test) used in the initial FE model. From these results, it is observed that the 

reference (calibrated) Young’s moduli of the main wall differ from their initial/measured 

values. This is due to the fact that the updating parameters (Young’s moduli) act as effective 

Young’s moduli reflecting the overall stiffness of the test structure, including the contributions 

of other structural components such as back wall and steel braces for which the parameters are 

not calibrated / updated. The correction factors / damage factors (relative to the reference state) 

obtained at different damage states are presented in bar plot Figure 5.19. These results indicate 

that: (1) the severity of structural damage increases as the structure is exposed to stronger 

earthquake excitations; and (2) the extent of damage decreases rapidly along the height of the 

structure (damage concentrated in the two bottom stories), except for a false alarm in the 

fourth story at damage state S4. The large identified damage factor in the fourth story could be 

due to large identification errors in the identified modal parameters at damage state S4. Table 

5.12 presents the natural frequencies computed from the updated FE model at each damage 

state together with their counterparts identified from ambient vibration data as well as the 

MAC values between the corresponding analytical (FE computed) and experimental mode 
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shapes. It should be noted that the analytical (FE computed) mode shapes are truncated at the 

locations of the accelerometers in order to match the size of the experimental mode shapes. 

The natural frequencies computed from the updated FE model at each damage state are also 

given in bar plot in Figure 5.20 together with their counterparts identified from vibration data. 

From Table 5.12 and Figure 5.20, it is observed that: (1) Generally speaking, there is a very 

good agreement between the identified natural frequencies and their analytical counterparts 

computed from the updated FE model at each damaged state. However, the discrepancies 

between analytical and identified natural frequencies are larger for the second and third modes 

than those for the first mode. This is due to the fact that the identified modal parameters of the 

second and third modes are not as accurate as (i.e., have a larger estimation uncertainty than) 

those of the first mode, resulting in smaller weight factors being assigned to their 

corresponding residuals. (2) The MAC values between analytical and identified mode shapes 

are very close to one for all damage states except damage state S4, in which the MAC values 

for the second and third modes are lower. This indicates a lower level of confidence for 

identified damage at damage state S4. Pictures of the actual damage in the bottom two stories 

of the main wall at damage state S4 are shown Figure 5.21 and Figure 5.22. During the 

seismic test EQ4, a lap-splice failure (i.e., debonding between longitudinal steel reinforcement 

bars and the surrounding concrete) occurred in the web wall at the bottom of the second story 

on the west side as shown in Figure 5.22. Figure 5.23 shows the envelope of absolute strains 

along the shear wall height for the first two stories measured from LVDTs during the four 

seismic tests. Figure 5.24 shows the envelope of absolute strains along the vertical steel 

reinforcement bars measured from strain gages during the four seismic tests. All these figures 

provide a physical observation/measure of the damage in the wall. The damage identification 
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results in the bottom two stories are consistent with the actual damage observed in the test 

structure. 

5.6 Summary and Conclusions 

In this chapter, the sensitivity-based finite element (FE) model updating methodology 

is described. A four-node linear flat shell element borrowed from the FE literature is 

implemented in the element library of the MATLAB-based structural analysis software 

FEDEASLab, which is then integrated with the FE model updating algorithms used/developed 

in order to perform structural damage identification. The implemented linear flat shell element 

is based on the mixed discrete variational principle proposed by Hughes and Brezzi in 

conjunction with Allman type interpolation for the membrane part and the discrete Kirchhoff 

plate element derived by Batoz and Tahar for the plate part. The resulting finite element has 

six degrees of freedom per node, including a true (mechanics-based) drilling degree of 

freedom. 

A comparative study of the influence of different objective functions on the damage 

identification results is performed by using simulated data for a simply supported plate. From 

this numerical example, it is found that the objective function defined by a combination of 

natural frequency residuals and mode shapes residuals and the objective function defined by a 

combination of natural frequency residuals, mode shapes residuals, and pseudo modal 

flexibility residuals are good candidates for structural damage identification using sensitivity-

based FE model updating techniques. 

Finally, a sensitivity-based FE model updating strategy is applied for damage 

identification of a full-scale seven-story R/C building slice tested on the UCSD-NEES shake 

table. The shake table tests were designed so as to damage the building progressively through 
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a sequence of historical earthquake records reproduced on the shake table. The natural 

frequencies and mode shapes of the first three longitudinal modes identified using the data-

driven stochastic subspace identification based on the ambient vibration data are used in the 

damage identification. In the application of the FE model updating strategy to identify the 

damage in the building at various damage states, the objective function is defined as a 

combination of residuals in natural frequencies and mode shape components. The damage 

identification results are consistent with the actual damage observed (visually) in the building 

and inferred from LVDT and strain gages data. 
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Table 5.1   Indices in Equation (5.40) 
I J K L M 

1 4 2 8 5 

2 1 3 5 6 

3 2 4 6 7 

4 3 1 7 8 
 

 

Table 5.2   Indices in Equation (5.47) 
I J K L M 

1 2 4 8 5 

2 3 1 5 6 

3 4 2 6 7 

4 1 3 7 8 
 

 

Table 5.3   Modal parameters of the simulated plate at both undamaged and damaged states 
Natural frequencies (Hz) Mode 

No Undamaged state Damaged state 
Difference in 

frequencies (%) 
MAC 
values 

1 42.71 37.74 11.64 0.996 

2 80.39 73.35 8.76 0.991 

3 130.44 114.82 11.97 0.952 

4 142.74 129.42 9.34 0.966 

5 160.33 144.44 9.91 0.919 

6 210.91 189.40 10.20 0.906 
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Table 5.4   Damage identification results of the simulated plate using the first objective 
function  

Case No. 
 Exact 

values 1 2 3 4 5 6 

1p  0.45 0.446 0.450 0.450 0.450 0.450 0.450 

2p  0.40 0.402 0.397 0.400 0.400 0.400 0.400 

3p  0.00 0.002 0.002 0.000 0.000 0.000 0.000 

4p  0.00 0.040 0.004 0.000 0.000 0.000 0.000 

5p  0.35 0.348 0.351 0.350 0.350 0.350 0.350 

6p  0.00 0.000 0.000 0.000 0.000 0.000 0.000 

7p  0.30 0.266 0.297 0.300 0.300 0.300 0.300 

8p  0.00 0.026 0.000 0.000 0.000 0.000 0.000 

Correction 
factors 

9p  0.00 0.000 0.000 0.000 0.000 0.000 0.000 

No. of iterations N/A 400>  400>  23 108 65 57 
 

Table 5.5   Damage identification results of the simulated plate using different objective 
functions  

Objective function 
 Exact 

values 1 2 3 

1p  0.45 0.450 0.449 0.450 

2p  0.40 0.400 0.399 0.400 

3p  0.00 0.000 0.001 0.000 

4p  0.00 0.000 0.000 0.000 

5p  0.35 0.350 0.350 0.350 

6p  0.00 0.000 0.000 0.000 

7p  0.30 0.300 0.298 0.300 

8p  0.00 0.000 0.005 0.000 

Correction 
factors 

9p  0.00 0.000 0.000 0.000 

No. of iterations N/A 23 37 21 
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Table 5.6   Measured values of Young’s moduli of various concrete components  
Components C1 C2 C3 C4 C5 C6 C7 C8 C9 

E (GPa) 24.47 26.00 34.84 30.20 28.90 32.14 33.54 28.91 30.32 
 

 

Table 5.7   Summary of instrumentations 
Sensor Type Location Quantity 

Foundation 14 

Slabs 89 

Reaction block 9 
Accelerometer 

(113) 

Soil 1 (tri-axial) 

Web wall (levels 1-2) 34 LVDT 
(54) Web wall (levels 3-7) 20 

Potentiometer (8) Web wall (levels 1-2) 8 

Web wall 143 

Flange wall 64 

Gravity columns 16 
Strain Gage 

(231) 
Braces connecting slabs to 

post-tensioned column 8 
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Table 5.8   Dynamic tests used in this study (WN: white noise test, AV: ambient vibration test) 
Test No. Test Date Test Description Damage State 

39 Nov. 21, 05 8 min WN + 3 min AV S0 

40 Nov. 21, 05 EQ1  

41 Nov. 21, 05 8 min WN + 3 min AV S1 

43 Nov. 21, 05 EQ2  

46 Nov. 22, 05 8 min WN + 3 min AV S2 

48 Nov. 22, 05 EQ3  

49 Nov. 22, 05 8 min WN + 3 min AV S3 

62 Jan. 14, 06 EQ4  

64 Jan. 14, 06 8 min WN + 3 min AV S4 
 

 

Table 5.9   Identified natural frequencies using SSI-DATA based on ambient vibration data 
Mode No S0 S1 S2 S3 S4 

1 1.91 1.88 1.67 1.44 1.02 

2 10.51 10.21 10.16 9.23 5.67 

3 24.51 24.31 22.60 21.82 15.09 
 

 

Table 5.10 Identified damping ratios using SSI-DATA based on ambient vibration data 
Mode No S0 S1 S2 S3 S4 

1 2.32 2.93 1.31 2.70 1.02 

2 2.38 2.68 1.42 1.32 1.73 

3 0.45 0.64 0.92 1.43 0.95 
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Table 5.11 Young’s moduli of various concrete components in the main wall 

Story Measured/Initial  
values (GPa) Ref.  values (GPa) 

First bottom 24.47 17.13 

First top 24.47 21.61 

Second bottom 26.00 27.40 

Second top 26.00 25.89 

Third bottom 34.84 35.24 

Third top 34.84 37.52 

Fourth 30.20 33.86 

Fifth 28.90 28.35 

Sixth 32.14 34.40 

Seventh 33.54 34.57 
 

 

Table 5.12 Comparison of experimentally identified modal parameters with their FE computed 
counterparts 

Experimentally Identified 
Natural Frequencies [Hz]  

FE Computed Natural 
Frequencies [Hz]   MAC 

Damage 
State Mode 

1 
Mode 

2 
Mode 

3 
Mode 

1 
Mode 

2 
Mode 

3 
Mode 

1 
Mode 

2 
Mode 

3 

S0 1.91 10.51 24.51 1.89 10.37 25.03 1.00 0.99 0.96 

S1 1.88 10.21 24.31 1.86 10.25 24.91 1.00 0.99 0.97 

S2 1.67 10.16 22.60 1.69 9.82 22.43 1.00 0.98 0.98 

S3 1.44 9.23 21.82 1.46 9.06 21.36 1.00 0.97 0.96 

S4 1.02 5.67 15.09 1.01 5.82 15.59 1.00 0.90 0.88 
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Figure Captions 

Figure 5.1.   Flowchart of FE model updating procedure with physical parameters θ  

Figure 5.2.   Local reference coordinate system of the flat shell element 

Figure 5.3.   Membrane element with drilling degrees of freedom 

Figure 5.4.   Bending plate element 

Figure 5.5.   Simulated simply supported plate 

Figure 5.6.   Substructures of the simulated plate 

Figure 5.7.   Mode shapes of the first six vibration modes computed from the undamaged plate 

Figure 5.8.   Updating history of correction factors 

Figure 5.9.   Picture of the seven-story shear wall building slice 

Figure 5.10. Elevation dimensions (unit: m) of the shear wall building slice 

Figure 5.11. Plan view (unit: m) of the shear wall building slice 

Figure 5.12. Finite element model of the shear wall building slice 

Figure 5.13. Acceleration time history of the input earthquake records 

Figure 5.14. Polar plot representation of vibration mode shapes identified using SSI-DATA 

based on ambient vibration data at undamaged state 

Figure 5.15. 3D representation of normalized vibration mode shapes identified using SSI-

DATA based on ambient vibration data at undamaged state 

Figure 5.16. Natural frequencies identified using SSI-DATA at different damaged states 

Figure 5.17. Damping ratios identified using SSI-DATA at different damaged states 

Figure 5.18. MAC values between corresponding mode shapes identified at various damaged 

states and undamaged state 

Figure 5.19. Identified correction factors/damage factors 
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Figure 5.20. Comparison of the identified natural frequencies and their analytical counterparts 

computed from the updated FE model at each damage state 

Figure 5.21. Observed damage at bottom of the first story at damage state 4 

Figure 5.22. Lap-splice failure at bottom of the second story at damage state 4 

Figure 5.23. Envelope of absolute strains along the shear wall height for the first two stories 

measured from LVDTs during the four seismic tests 

Figure 5.24. Envelope of absolute strains along the vertical steel reinforcement bars for the 

first two stories measured from strain gages during the four seismic tests 
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Figure 5.1.   Flowchart of FE model updating procedure with physical parameters θ  
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Figure 5.2.   Local reference coordinate system of the flat shell element 
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Figure 5.3.   Membrane element with drilling degrees of freedom 
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Figure 5.4.   Bending plate element 
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Figure 5.5.   Simulated simply supported plate 
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Figure 5.6.   Substructures of the simulated plate 
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Figure 5.7.   Mode shapes of the first six vibration modes computed from the undamaged plate 
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Figure 5.8.   Updating history of correction factors 
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Figure 5.9.   Picture of the seven-story shear wall building slice 
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Figure 5.10. Elevation dimensions (unit: m) of the shear wall building slice 
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Figure 5.11. Plan view (unit: m) of the shear wall building slice 
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Figure 5.12. Finite element model of the shear wall building slice 
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Figure 5.13. Acceleration time history of the input earthquake records 
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Figure 5.14. Polar plot representation of vibration mode shapes identified using SSI-DATA 

based on ambient vibration data at undamaged state  
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Figure 5.15. 3D representation of normalized vibration mode shapes identified using SSI-

DATA based on ambient vibration data at undamaged state 
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(c) Mode 3 

Figure 5.16. Natural frequencies identified using SSI-DATA at different damaged states 
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Figure 5.17. Damping ratios identified using SSI-DATA at different damaged states 
 



 
 

205

 

S0 S1 S2 S3 S4

0.96

0.98

1

M
A

C
 V

al
ue

Damage State
 

(a) Mode 1 

S0 S1 S2 S3 S4
0.85

0.9

0.95

1

M
A

C
 V

al
ue

Damage State
 

(b) Mode 2 

S0 S1 S2 S3 S4
0.8

0.85

0.9

0.95

1

M
A

C
 V

al
ue

Damage State
 

(c) Mode 3 

Figure 5.18. MAC values between corresponding mode shapes identified at various damaged 
states and undamaged state 
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Figure 5.19. Identified correction factors/damage factors 
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Figure 5.20. Comparison of the identified natural frequencies and their analytical counterparts 

computed from the updated FE model at each damage state  
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Figure 5.21. Observed damage at bottom of the first story at damage state 4 
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Figure 5.22. Lap-splice failure at bottom of the second story at damage state 4 
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Figure 5.23. Envelope of absolute strains along the shear wall height for the first two stories 

measured from LVDTs during the four seismic tests 
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Figure 5.24. Envelope of absolute strains along the vertical steel reinforcement bars for the 

first two stories measured from strain gages during the four seismic tests 
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Chapter 6 

Deployment of Long-Term Continuous Structural 

Monitoring System on Voigt Bridge Testbed 

6.1 Introduction 

Long-term continuous health monitoring and condition assessment of highways and 

bridges is necessary to allow for the early identification of possible damages existing in 

structures and to enable maintenance and repair works at the initial damage phase, to 

maximize the lifespan of these structures at minimum life-cycle costs, while guaranteeing 

structural safety and reliability. In addition, a long-term monitoring system makes it possible 

to study the effects of varying environmental conditions such as temperature, wind 

characteristics, and relative humidity on the identified modal properties (e.g., natural 

frequencies, damping ratios, and mode shapes) of bridges. Variations in modal properties due 

to changes in environmental conditions have been shown to be very significant in previous 

studies; they may even induce changes larger than those caused by structural damage (e.g., 

Abdel Wahab and De Roeck, 1997; Cornwell et al., 1999; Peeters and De Roeck, 2001; He et 

al., 2007).  

In this study, a state-of-the-art long-term continuous monitoring system is developed 

and deployed on the Voigt Bridge. In this monitoring system, thirty piezoelectric 

accelerometers and a video camera are deployed for traffic induced vibration monitoring and 

fifteen capacitive accelerometers are installed for seismic monitoring. In addition, twenty-four 

thermocouples, and eight thermistor & relative humidity (RH) sensors are installed inside the 
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bridge to measure the concrete temperature and temperature / relative humidity (RH) of the air 

inside the bridge box girders. Another two thermocouples are installed outside the bridge to 

measure the temperature of the air surrounding the bridge. A wind monitor and a thermistor & 

RH sensor are installed at the weather monitoring station to measure the wind characteristics, 

temperature and relative humidity of the air outside the bridge. This monitoring system makes 

it possible to: (1) study the effects of varying environmental conditions such as temperature, 

wind characteristics, and humidity on the identified modal properties of the bridge; (2) allow 

for the early identification of possible damages in the bridge structure and enable maintenance 

and repair works at the initial damage phase; and (3) evaluate the health condition of this 

structure shortly after a major catastrophic event such as an earthquake. 

In this chapter, details of the monitoring system are presented, including sensor 

instrumentation, data acquisition, data synchronization and data transmission. In next Chapter, 

an automated system identification procedure will be developed and applied to identify the 

modal parameters of the Voigt Bridge, as a function of time, based on response measurements 

from this long-term monitoring system. Then the correlation between the identified natural 

frequencies and different measured environmental parameters will be studied. 

6.2 Voigt Bridge Testbed 

The Interstate-5 / Voigt Drive overcrossing, i.e., referred to as Voigt Bridge (Figure 

6.1), is located on the eastern edge of the University of California at San Diego (UCSD) 

campus. This two-lane two-way bridge was built in 1964 to connect UCSD west and east 

campus facilities and carries traffic over Interstate-5. It is about 90 m in length, with two 

middle spans 29 m each and two side spans of 15 m and 16 m, respectively. This single-

column bent, 4-span, reinforced concrete box girder structure has a skew angle of 
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approximately 32 degrees. Cap beams (lateral diaphragms), 1.8 m in thickness, are situated 

over each of the columns and provide additional stiffness to the girders. It is worth noting that 

the Voigt Bridge represents a construction style typical of a large number of highway 

overpasses in California. 

It is envisioned that this densely instrumented bridge testbed will serve as a live 

laboratory for the development of vibration-based structural health monitoring technologies. 

This particular bridge is selected due to its proximity to the campus, an important 

consideration for convenient long-term maintenance and accessibility. Secure access to the 

bridge-deck cells is provided through manhole arrays. This access to the interior of the bridge 

makes it possible to place all of the sensors and data acquisition hardware inside the bridge 

girder structure, thereby providing security and protection from weather conditions. Figure 6.2 

shows the cross section and plan view of the bridge and Figure 6.3 shows two interiors of the 

box cells through which the instruments are installed on the bridge. As an illustration, Figure 

6.4 shows the access to interior of the north side of the bridge through a manhole. 

6.3 Instrumentation Component of Long-Term Monitoring System 

The long-term monitoring system developed on the Voigt Bridge includes thirty 

piezoelectric accelerometers, fifteen capacitive accelerometers, a video camera, twenty six 

thermocouples, nine thermistor & RH sensors, and a wind monitor.  

6.3.1 Sensor Instrumentation for Bridge Vibration Monitoring 

6.3.1.1 Piezoelectric Accelerometers 

Thirty PCB model 393B04 piezoelectric accelerometers (http://www.pcb.com) are 

deployed along both sides of the bridge (i.e., the northern-most cell and next to the southern-

most cell) to measure the vertical acceleration response of the bridge (Figure 6.5). This class 
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of accelerometers makes use of the piezoelectric effect discovered in 1880 by Pierre and 

Jacques Curie (http://www.encyclopedia.com, Fraser, 2006), whereby certain crystals exhibit 

electrical charges under mechanical loading. Piezoelectric accelerometers incorporate a crystal 

sensing element which has the property of emitting a charge when subjected to a force. As 

these are active electrical systems, the crystals produce an electrical output only when they 

experience a change in load, they cannot perform true static measurements. Typical 

piezoelectric accelerometers offer higher measurement and frequency ranges than force 

balance accelerometers at the expense of resolution and inability to measure down to 0 Hz 

(http://www.pcb.com). Lower costs are another advantage of piezoelectric accelerometers 

over force balance accelerometers. The piezoelectric accelerometers used here have a large 

measurement range: 5 g± , a wide frequency range ( 5%± ) from 0.06 to 450 Hz, and a highly 

accurate broadband resolution of 3 µg  RMS. Table 6.1 present the calibration coefficients of 

30 accelerometers used in this system.  

At each station, the accelerometer is attached with machine screws to an L-shaped 

aluminum bracket, cut to length with a threaded hole. The bracket is then glued to the stem 

wall using high-strength Epoxy. Figure 6.6 shows a picture of a piezoelectric accelerometer 

installed on the stem wall.  

6.3.1.2 Capacitive Accelerometers 

Fifteen PCB model 3801 accelerometers (http://www.pcb.com) are deployed along the 

north side of the bridge to measure the bridge’s horizontal response (Figure 6.7). Capacitive 

accelerometers measure acceleration by monitoring a change in electrical capacitance. Within 

these sensors, the sensing element consists of two parallel plate capacitors acting in a 

differential mode. These capacitors operate in a bridge circuit, along with two fixed capacitors, 
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and alter the peak voltage generated by an oscillator when the structure undergoes acceleration 

(http://www.sensorland.com). The capacitive accelerometers typically operate in a low 

frequency range. Unlike piezoelectric accelerometers, these sensors can measure down to 0 Hz. 

The principal advantage of capacitive accelerometers is their low cost, making them attractive 

for dense sensor arrays. However, the resolution of these sensors is typically less than either 

force balance or piezoelectric accelerometers. In this system, these sensors primary purpose is 

seismic monitoring as traffic loads mainly induce vertical vibration of the bridge. The 

frequency range ( 5%± ) of the employed PCB model 3801 accelerometer is from 0 to 80 Hz 

and the broadband resolution is 60 µg . Table 6.2 provides the calibration coefficients of these 

accelerometers.  

At each station, the accelerometer is attached with hot glues to an L-shaped aluminum 

bracket that is used to attach the piezoelectric accelerometer to the stem wall. Figure 6.8 

shows a picture of a capacitive accelerometer mounted on the stem wall. 

6.3.1.3 Video Camera 

A Sony XCD-X710CR digital color camera (http://bssc.sel.sony.com) is installed on a 

light post on the southwestern end of the bridge (Figure 6.9). Sony´s XCD-X710CR digital 

camera incorporates a progressive scan 1/3" CCD with square pixels and offers excellent 

sensitivity (1024 (H) x 768 (V) XGA. This digital camera satisfies the demand for high speed, 

color, progressive scan cameras and is ideally suited for (a) achieving 30 frames/sec in color; 

(b) high resolution of 1024 x 768; and (c) access to the raw pixel values allowing a user to 

perform their own color processing. The "CR" in its model number stands for "Color Raw". 

This “CR” model uses a CCD with a color mask (commonly called a "Bayer filter") and 

outputs the "raw color" pixel values in 8 or 10 bit to be converted later to a color image on a 
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computer (http://www.goelectronic.com). 

In the monitoring system deployed in this study, this camera is positioned so as to 

monitor traffic crossing over the bridge, in order to correlate the bridge’s measured dynamic 

response with the corresponding vehicles.  

6.3.2 Sensor Instrumentation for Environmental Monitoring 

6.3.2.1 Temperature and Humidity Sensors 

Twenty four thermocouples are installed at eight stations along both south and north 

sides of the bridge superstructure (Figure 6.10). The thermocouple provides a simple and 

efficient means of measuring temperature. A thermocouple works because there is voltage 

drop across dissimilar metals placed in contact and subjected to a change in temperature. In 

principle, a thermocouple can be made from almost any two metals. In practice, several 

thermocouple types have become standard because of desirable qualities such as linearity of 

the voltage drop as a function of temperature and large voltage to temperature ratio 

(http://www.iotech.com). The four most common types are designated as J (Iron & 

Constantan), K (Chromel, Nickel - Chromium Alloy & Alumel, Nickel - Aluminium Alloy), T 

(Copper & Constantan) and E (Chromega & Constantan).  

In this study, the Omega wire type K TT-K-24 is used to make the sensing point (or 

probe part) of the thermocouple. The type K is the most commonly used general purpose 

thermocouple and the temperature range is approximately between -200 oC and 1200 oC . 

Extension wire EXPP-K-20 and Connectors (pair) SMPW-K-MF are used to extend a 

thermocouple signal from a probe back to the conditioning module and A/D convector. From 

Figure 6.10, it can be seen that twenty four thermocouples are deployed at eight stations. At 

each section, two thermocouples are inserted into the top and bottom of the stem wall to 
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measure the concrete temperature. 6.35mm holes are drilled 80 mm deep into the concrete and 

then filled using silicone heat sink grease. A thermocouple is then inserted into the center of 

each of the holes. The heat sink grease serves as an electronic isolator to prevent the 

thermocouples from accidentally grounding out on any metal in the holes (i.e., rebar) and also 

functions as a thermal conductor to transfer heat from the concrete to the sensor. Finally, a 

silicone caulk is placed over the drilled hole to prevent water from seeping into the hole and to 

keep the heat sink grease from drying. A third thermocouple is attached at midheight to the 

exterior of the stem wall to measure air temperature inside the bridge. The deployment of 

thermocouples makes it possible to study the effects of temperature and its gradients (if 

needed) in longitudinal, transversal, and vertical directions on the bridge dynamic properties. 

Another two thermocouples (EXPP-K-20) are employed to measure the temperature of the air 

surrounding the bridge. One of them is used to measure the air temperature above the bridge 

(see Figure 6.11) and the other one is used to measure the air temperature underneath the 

bridge (see Figure 6.12). 

Eight Precon HS-2000V (http://www.preconusa.com) thermistor & RH sensors are 

also installed at each midspan along both south and north sides of the bridge superstructure to 

measure the relative humidity and temperature of the air inside the bridge. The HS-2000V 

humidity sensor combines capacitive-polymer sensing technology with a novel measurement 

method, eliminating the need for temperature correction and calibration by the user 

(http://www.preconusa.com). The sensor, which was calibrated by the manufacturer prior to 

shipment, includes a thermistor and circuitry to correct for temperature and calculate the true 

relative humidity. The sensor provides both humidity and temperature outputs and is accurate 

to 2%± . The output of the HS-200V is ratiometric, with output voltage varying from zero to 

the supply voltage as the measured parameter varies from zero to full-scale. Figure 6.13 shows 
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a picture of a Precon HS-2000V thermistor & RH sensor and thermocouples installed along 

the stem wall at a typical station. 

6.3.2.2 Weather Monitoring Station  

In order to measure the wind characteristics, a model 05103V wind monitor from R. 

M. Young Company (http://www.youngusa.com) is installed to measure both wind speed and 

wind direction. The wind speed sensor is a four blade helicoid propeller. Propeller rotation 

produces an AC voltage with frequency directly proportional to wind speed. The wind 

direction sensor is a rugged yet lightweight vane with a sufficiently low aspect ratio to assure 

good fidelity in fluctuating wind conditions (http://www.youngusa.com). Vane angle is sensed 

by a precision potentiometer housed in a sealed chamber. With a known excitation voltage 

applied to the potentiometer, the output voltage is directly proportional to the vane angle. A 

mounting orientation ring assures correct realignment of the wind direction reference when the 

instrument is removed for maintenance. The instrument is made of UV stabilized plastic with 

stainless steel and anodized aluminum fittings. Transient protection and cable terminations are 

in a convenient junction box. The model 05103V used in this study offers calibrated 0-5 VDC 

outputs, which is convenient for data collection. The operational temperature for this model is 

between -50 oC  to 50 oC . The output range of this mode is 0-100 m/s for wind speed and 

o360 (mechanical) for Azimuth. The model is mounted at the top of the light post on which 

the camera is mounted (Figure 6.14).  

In order to measure the temperature and relative humidity of the air outside the bridge, 

another Precon HS-2000V thermistor & RH sensor is installed together with the wind monitor 

(Figure 6.14) at the top of the light post. Within this study, this station is referred to as a 

weather monitoring station since the air temperature, relative humidity and wind 
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characteristics can be measured from instruments installed at this station. In order to protect 

the thermistor & RH sensor from error-producing solar radiation and precipitation, a multi-

plate radiation shield is used (see Figure 6.14). The multiple plates have a unique profile that 

blocks direct and reflected solar radiation, yet permits easy passage of air. Enlarged top plate 

and steep edge profile minimize moisture accumulation from precipitation and dew. The plate 

material is especially formulated for high reflectivity, low thermal conductivity, and maximum 

weather resistance (http://www.youngusa.com).  

6.4 Data Acquisition System 

Data from all the sensors are collected on the bridge, using a local data acquisition 

system, housed within the northwest corner of the bridge. The current data acquisition system 

(Figure 6.15) is built around a National Instruments (NI) PXI/SCXI combination chassis with 

an embedded PXI-8186 real-time controller (http://ni.com). 

Four NI PXI-4472B boards (http://ni.com) are being used for acquiring signals from 

thirty piezoelectric accelerometers. Each PXI-4472B board has eight analog inputs with 24-bit 

resolution delta-sigma modulating analog-to-digital converters (ADCs) that are 

simultaneously sampled at a programmable rate from 0 to 45 kHz (http://ni.com). In addition 

to acquiring data, the PXI-4472B incorporates for each channel integrated electronic 

piezoelectric (IEPE) signal conditioning and anti-aliasing filters. The analog inputs have both 

analog and real-time digital filters implemented in the hardware to prevent aliasing.  

In order to acquire the temperature using thermocouples, a SCXI-1303, 32-channel 

isothermal terminal block (a shielded device with screw terminals) is used to connect 

thermocouples and signals to SCXI-1102 modules (http://ni.com). The SCXI-1303 has a high-

accuracy thermistor cold-junction temperature sensor, and an isothermal copper plane to 
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minimize the temperature gradients across the screw terminals when taking measurements 

with thermocouples. The SCXI-1102 module is used for signal conditioning of the 

thermocouples, which has a two-pole low-pass filter with a 2 Hz cutoff frequency to reject 60 

Hz noise. 

A NI PXI-6031E (16-bit A/D, 32 differential inputs, 100 kS/s maximum multiplexed 

sampling rate) board is currently being used for acquiring signals from the capacitive 

accelerometers, thermistor & RH sensors, and the wind monitor. A SCB-100 is used to 

connect all these sensors and signals to the PXI-6031E board. The SCB-100 is a shielded I/O 

connector block for interfacing I/O signals to plug-in DAQ devices with 100-pin connectors. 

Combined with the shielded cables, the SCB-100 provides rugged, very low-noise signal 

termination. 

6.5 Data Acquisition and Synchronization 

For this monitoring system, a data acquisition program is developed using NI 

LabVIEW program to sample the analog signals from the accelerometers and environmental 

sensors at a rate of 1000 Hz. Once digitized, the signals are placed into a ring buffer. After a 

predetermined number of samples are collected in the buffer, the data is written to disk as a 

text file in ASCII format and the buffer is cleared (Fraser, 2006). The concrete temperature, 

the temperature and relative humidity of the air (both inside and outside the bridge) are 

collected during the first two minutes of each hour. Then during the following five minutes, 

the acceleration responses of the bridge and wind characteristics are collected.  

Synchronization of the data from all of the sensors is accomplished through the 

National instruments PXI hardware. PXI modular instrumentation makes use of the 

technology advancements of the mainstream PC industry and by using the standard PCI bus, 
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PXI modular instrumentation systems can benefit from widely available software and 

hardware components (http://zone.ni.com/devzone/cda/tut/p/id/4811). Further PXI provides 

advanced timing and triggering capabilities allowing for the synchronized acquisition of data 

from all of the sensors through the various A/D boards. 

6.6 Image Acquisition and Synchronization 

As aforementioned, a Sony XCD-X710CR digital color camera is positioned to 

monitor traffic crossing over the bridge. Using LabVIEW (http://ni.com), images are acquired 

from the camera at a programmable sampling rate, and time stamped using the system clock 

on the data / image acquisition computer. By building the image acquisition directly into the 

data acquisition program, highly accurate synchronization between the dynamic sensors and 

the camera is achieved.  

The firewire output from the Sony camera is connected to the data acquisition 

computer through an IEEE 1394 interface board. A “while loop” is embedded within the 

LabVIEW data acquisition code which configures the camera (image resolution and size), 

controls the acquisition sampling rate, decodes the acquired Bayer image, and saves the 

picture in a compressed color jpeg format. In its current state, the camera and image 

acquisition code are configured to sample and archive 640x480 pixel color images at 3 frames 

/ second (FPS). Within LabVIEW, a compression ratio of 70% is utilized. While higher 

sampling rates and image sizes with no compression are feasible, these are deemed 

unnecessary in accurately identifying and tracking traffic on the bridge. As an illustration, 

Figure 6.16 shows the streaming images measured from the camera, which can be used to 

monitor the traffic flow crossing the bridge. 
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6.7 Internet Connectivity and Data Transmission 

For controlling the data acquisition system and streaming data from the bridge, a 

wireless cloud is created to access the wired UCSD Internet network located in a nearby 

UCSD building (Figure 6.17). A high bandwidth Internet connection is established on the 

bridge by installing a wireless router on the southeast corner of this building (approximately 

60 meters from the bridge). Using a wireless Ethernet bridge with an external antenna 

mounted on the bridge guard rail (Figure 6.17), this wireless cloud is converted to a standard 

wired Internet connection and connected to the data acquisition system through an Ethernet 

cable.  

Remote access to the data acquisition computer is provided using Windows Remote 

Desktop Connection. Through the Windows Remote Desktop Connection, changes can be 

made to the data acquisition parameters (e.g., sample rates, sensor calibration constants, buffer 

size, etc.) and the measured data are transferred to archiving server located on the campus 

network. Figure 6.18 shows data streaming path from the bridge to the archiving server 

located inside the SERF building on UCSD campus. On-going work is underway for the 

development of an automated java-based data transmission program, capable of compressing 

the data files and streaming the zipped data using File Transfer Protocols (FTP) to an 

archiving server located on the campus network. 

6.8 Summary  

A state-of-the-art long-term continuous monitoring system has been developed and 

deployed on the Voigt Bridge. In this chapter, details of this structural monitoring system are 

described, including sensor instrumentation, data acquisition system, data synchronization and 

transmission. The monitoring system consists of video camera, thirty piezoelectric 
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accelerometers (in the bridge vertical direction), and fifteen capacitive accelerometers (in the 

bridge lateral direction) for bridge vibration monitoring. The primary purpose of the fifteen 

capacitive accelerometers is seismic monitoring, while the piezoelectric accelerometers 

measure the traffic induced mainly vertical vibrations of the bridge. Twenty six thermocouples, 

nine thermistor & relative humidity sensors, and a wind monitor are also employed to measure 

concrete temperature, temperature and relative humidity of the air (both inside and outside the 

bridge), and wind characteristics. This monitoring system makes it possible to: (1) study the 

effects of varying environmental conditions such as temperature, wind characteristics, and 

humidity on the identified modal properties of the bridge; (2) allow for the early identification 

of possible damages in the bridge structure and enable maintenance and repair works at the 

initial damage phase; and (3) evaluate the health condition of this structure shortly after a 

major catastrophic event such as an earthquake.  

It is envisioned that this densely instrumented bridge testbed will serve as a live 

laboratory for the development of vibration-based structural health monitoring technologies. 
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Table Captions 

Table 6.1 Calibration coefficients of the piezoelectric accelerometers 

Table 6.2 Calibration coefficients of the capacitive accelerometers 
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Table 6.1 Calibration coefficients of the piezoelectric accelerometers 
Channel 

No. Serial No. Calibration 
Coefficient [mV/g] 

Channel 
No. Serial No. Calibration 

Coefficient [mV/g] 

1 21641 1001 16 21622 1015 

2 21621 1023 17 21730 1017 

3 21745 1010 18 21733 1027 

4 21620 1006 19 21729 1015 

5 21743 1062 20 21851 1024 

6 21742 997 21 21853 1014 

7 21746 1005 22 21854 1032 

8 21855 1028 23 21857 998 

9 21613 994 24 21616 1056 

10 21615 1007 25 21619 1024 

11 21744 1013 26 21852 1005 

12 21747 1017 27 21856 1006 

13 21748 971 28 21617 996 

14 21618 1005 29 21749 1010 

15 21741 1024 30 21750 1026 
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Table 6.2 Calibration coefficients of the capacitive accelerometers 
Channel No. Serial No. Calibration Coefficient [mV/g] 

1 209 1001 

2 214 1001 

3 205 1000 

4 216 1003 

5 206 1003 

6 210 1003 

7 218 1000 

8 207 998 

9 217 984 

10 211 1009 

11 204 1006 

12 208 998 

13 215 1005 

14 213 1006 

15 203 1002 
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Figure Captions 

Figure 6.1.   Picture of Voigt Bridge (Photo on the bottom is from http://maps.google.com) 

Figure 6.2.   (a) Cross section of Voigt Bridge; (b) Plan view of Voigt Bridge 

Figure 6.3.   (a) Interior of the northern-most cell, and (b) Interior of next to the southern-most 

cell 

Figure 6.4.   Access to the interior of the bridge box-girder through a manhole 

Figure 6.5.   Deployment of piezoelectric accelerometers shown on plan view of bridge 

superstructure 

Figure 6.6.   Picture of a piezoelectric accelerometer installed on the stem wall 

Figure 6.7.   Deployment of capacitive accelerometers shown on plan view of bridge 

superstructure 

Figure 6.8.   Picture of a capacitive accelerometer installed on the stem wall 

Figure 6.9.   Sony XCD-X710CR digital color camera installed in the monitoring system 

Figure 6.10. Deployment of thermocouples inside the bridge 

Figure 6.11. Thermocouple used to measure the air temperature above the bridge 

Figure 6.12. Thermocouple used to measure the air temperature underneath the bridge 

Figure 6.13. HS-2000V sensor and thermocouples installed along the stem wall at a typical 

station 

Figure 6.14. Weather monitoring station 

Figure 6.15. Data acquisition system: 1. PXI/SCXI combination chassis, 2. PXI 4472B DAQ 

boards, 3. PXI-6031E DAQ board, 4. SCXI-1303 terminal block, 5. DC power 

supplies for thermistor & relative humidity sensors and wind monitor, 6. SCB-

100 connector block 

Figure 6.16. Traffic flow crossing over the bridge 
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Figure 6.17. Locations of antennas deployed in the monitoring system (Original photo is from 

http://maps.google.com) 

Figure 6.18. Data streaming path from Voigt Bridge to SERF Building (Original photo is from 

http://maps.google.com) 
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Figure 6.1.   Picture of Voigt Bridge (Photo on the bottom is from http://maps.google.com) 
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Figure 6.2.   (a) Cross section of Voigt Bridge; (b) Plan view of Voigt Bridge 
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Figure 6.3.   (a) Interior of the northern-most cell, and (b) Interior of next to the southern-most 
cell 
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Figure 6.4.   Access to the interior of the bridge box-girder through a manhole  
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Figure 6.5.   Deployment of piezoelectric accelerometers shown on plan view of bridge 
superstructure 

 

 
Figure 6.6.   Picture of a piezoelectric accelerometer installed on the stem wall 
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Figure 6.7.   Deployment of capacitive accelerometers shown on plan view of bridge 
superstructure 
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Figure 6.8.   Picture of a capacitive accelerometer installed on the stem wall  

 

 
Figure 6.9.   Sony XCD-X710CR digital color camera installed in the monitoring system 
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Figure 6.10. Deployment of thermocouples inside the bridge 
 

 

 
Figure 6.11. Thermocouple used to measure the air temperature above the bridge 
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Figure 6.12. Thermocouple used to measure the air temperature underneath the bridge 
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Figure 6.13. HS-2000V sensor and thermocouples installed along the stem wall at a typical 
station 

 

HS-2000V 
Sensor 

Thermocouples 



 
 

239

 

 
Figure 6.14. Weather monitoring station 
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Figure 6.15. Data acquisition system: 1. PXI/SCXI combination chassis, 2. PXI 4472B DAQ 
boards, 3. PXI-6031E DAQ board, 4. SCXI-1303 terminal block, 5. DC power supplies for 

thermistor & relative humidity sensors and wind monitor, 6. SCB-100 connector block 
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Figure 6.16. Traffic flow crossing over the bridge 
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Figure 6.17. Locations of antennas deployed in the monitoring system (Original photo is from 

http://maps.google.com) 
 

Figure 6.18. Data streaming path from Voigt Bridge to SERF Building (Original photo is from 
http://maps.google.com) 
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Chapter 7 

Environmental Effects on Identified Modal Parameters of 

Voigt Bridge Testbed 

7.1 Introduction 

Variations in modal properties due to changes in environmental conditions have been 

shown to be very significant in previous studies; they may even induce changes larger than 

those caused by structural damage (e.g., Abdel Wahab and De Roeck 1997, Cornwell et al. 

1999, Peeters and De Roeck 2001, He et al. 2007).  

Abdel Wahab and De Roeck (1997) investigated the effect of temperature variation on 

modal parameters of a pre-stressed concrete highway bridge by performing two sets of 

dynamic tests at different times. It was observed that a decrease in temperature from 15 CD   to 

0 CD caused some natural frequencies to increase by about 4-5%. Cornwell et al. (1999) 

studied the variability of modal frequencies of the Alamosa Canyon Bridge caused by varying 

temperature conditions. In their studies, two sets of vibration tests were performed in August 

1996 and July 1997, respectively. In each of them, the tests were performed every two hours 

over a 24-hour time period. It was shown that the measured frequency of the first mode varied 

by approximately 5% during the first 24-hour period. The frequencies of the first, second and 

third modes varied by 4.7%, 6.6%, and 5.0%, respectively, over the second 24-hour period.  

Peeters and De Roeck (2001a) reported their studies about the effects of 

environmental conditions on modal frequencies of Z24-Bridge through nearly one-year 

continuous monitoring of this four-span classical post-tensioned concrete box girder bridge. It 
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was found that natural frequencies of the first four vibration modes changed by 14-18% during 

the monitoring period. A bilinear behavior was observed between temperature and frequency 

with the knee situated around 0 CD . The frequencies of all the modes presented, except the 

second mode, decreased with the temperature increase. As for the second mode, its frequency 

increased with increasing temperature when the temperature was above 0 CD . The reason for 

the bilinear behavior between temperature and frequency was the asphalt layer (wearing 

surface), which contributed significantly to the stiffness of the structure during the cold period. 

However, during the warm period, the asphalt did not play any role in the structural stiffness. 

Finally, black-box models were built in their studies to describe the identified natural 

frequencies as a function of environmental temperature.  

More recently, studying environmental effects on structural modal properties has 

received more attention in the structural health monitoring research community (e.g., Ni et al., 

2005; Xia et al., 2006; He et al., 2007). The study presented in this Chapter is based on the 

state-of-the-art long-term continuous monitoring system deployed on the Voigt Bridge, which 

is described in detail in Chapter 6. In this state-of-the-art monitoring system, thirty 

piezoelectric accelerometers and a video camera are deployed for traffic induced vibration 

monitoring and fifteen capacitive accelerometers are installed for seismic monitoring. In 

addition, twenty four thermocouples, and eight thermistor & relative humidity (RH) sensors 

are installed inside the bridge to measure the concrete temperature and temperature / relative 

humidity of the air inside the bridge box girder. A wind monitor, a thermistor & RH sensor, 

and two thermocouples are employed to measure the wind characteristics, temperature and 

relative humidity of the air outside the bridge. 

In this chapter, the acceleration response of the bridge collected over a period of 50 

days (from August to September, 2007) are used to identify the modal parameters of the Voigt 
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Bridge as a function of time. An automated system identification procedure is developed 

based on the data-driven stochastic subspace identification method (Van Overschee and De 

Moor, 1996). Various environmental parameters (e.g., temperature, humidity, wind 

characteristics) measured during this period are investigated. Finally, based on the research 

work performed by Peeters and De Roeck (2001a), black-box models are constructed to 

correlate the identified time-varying natural frequencies with the measured environmental 

parameters. An objective criterion for damage detection under varying environmental 

conditions is also provided based on the estimated black-box models.  

7.2 Automated System Identification of the Voigt Bridge 

7.2.1 Automated System Identification Procedure 

As described in Chapter 6, the Voigt Bridge is located on the eastern edge of the 

University of California at San Diego (UCSD) campus. This two-lane two-way bridge was 

built in 1964 to connect UCSD west and east campus facilities and carries traffic over 

Interstate-5. It is about 90 m in length, with two middle spans 29 m each and two side spans of 

15 m and 16 m, respectively. This single-column bent, 4-span, reinforced concrete box girder 

structure has a skew angle of approximately 32 degrees. The Voigt Bridge represents a 

construction style typical of a large number of highway overpasses in California. 

Since only the response of the bridge is measured (i.e., un-measured input) from the 

long-term monitoring system during the monitoring period, the system identification 

procedure developed herein is based on output-only measurements. The data-driven stochastic 

subspace identification (SSI-DATA) method is applied to extract the modal properties of the 

bridge (Van Overschee and De Moor, 1996; Peeters and De Roeck, 2001b). The SSI-DATA 

algorithm extracts a system model in state-space using output-only measurement data directly. 
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Compared to two-stage time-domain system identification methods such as covariance-driven 

stochastic subspace identification (SSI-COV) (Van Overschee and De Moor, 1996) and the 

natural excitation technique (NExT) (James et al., 1993) combined with the eigensystem 

realization algorithm (ERA) (Juang and Pappa, 1985), SSI-DATA does not require any pre-

processing of the data to calculate auto / cross-correlation functions or auto / cross-spectra of 

output data. In addition, robust numerical techniques such as QR factorization, singular value 

decomposition (SVD) and least squares are involved in this method. A brief review of this 

method is presented below. 

The discrete-time state-space representation of a finite dimensional, linear time 

invariant system of order n is given by  

( 1) ( ) ( )k k k+ = +z Az Bu  

( ) ( ) ( )k k k= +x Cz Du  
(7.1) 

where ,  , ,  n n n l m n m lA B C D\ \ \ \× × × ×∈ ∈ ∈ ∈  = state space matrices in discrete form; 

( ) nkz \∈  = state vector; ( ) lku \∈  = load vector (vector of loading functions); and 

[ ]1 2( ) ( ) ( ) ( ) Tm
mk x k x k x kx \ "∈ = , a column vector of size m (= number of measured / 

output channels) which represents the system response at discrete time ( )t k t= ∆  along the m  

measured degrees of freedom (DOFs). 

In practice, the input function u is often unknown / unmeasured and only the response 

of the structure is measured. Thus, the discrete-time state-space model in equation (7.1) can be 

extended to the following stochastic version: 

( 1) ( ) ( )z Az wk k k+ = +  

( ) ( ) ( )x Cz vk k k= +  
(7.2) 
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where state-space matrices A and C are the same as in equation (7.1): A = state transition 

matrix, which completely characterizes the dynamics of the system through its eigenproperties, 

and C = output matrix that specifies how the inner states are transformed into the measured 

system response / output; ( )w \nk ∈  = process noise due to external disturbances and 

modeling inaccuracies (i.e, missing high-frequency dynamics) and unknown input excitation 

(undistinguishable from the external disturbances); and ( )v \mk ∈  = measurement noise due 

to sensor inaccuracies and also unknown input excitation (feed-through term). Both noise 

terms ( )w k  and ( )v k are assumed to be zero-mean, white vector sequences with the following 

covariance matrix: 

( )( )
( ) ( )

( )
w Q S

w v
S Rv

T T
ijT

i
E j j

i
δ

⎡ ⎤⎛ ⎞ ⎡ ⎤⎟⎜⎢ ⎥ ⎢ ⎥⎟ =⎜ ⎟⎢ ⎥⎜ ⎢ ⎥⎟⎜⎝ ⎠ ⎣ ⎦⎣ ⎦  
(7.3) 

where E[…] is the mathematical expectation operator; ijδ = Kronecker delta; and Q, R, S = 

process and measurement noise auto / cross-covariance matrices. 

The SSI-DATA procedure of extracting the state-space matrices A and C from output-

only data can be summarized as follows: (1) Form an output Hankel matrix and partition it 

into “past” and “future” output sub-matrices. (2) Calculate the orthogonal projection matrix of 

the row space of the “future” output sub-matrix into the row space of the “past” output sub-

matrix using QR factorization. (3) Obtain the system observability matrix and Kalman filter 

state estimate via SVD of the projection matrix. (4) Using the available Kalman filter state 

estimate, extract the discrete-time system state-space matrices as a least squares solution. 

Once the system state-space matrices are determined, the modal parameters (natural 

frequencies and damping ratios) of the / 2N n=  vibration modes can be obtained as 
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2ln( ) /i i tω λ= ∆  

2cos( (ln( )))i iangleξ λ=−  

1,  2,  , i N…=  

(7.4) 

where th
i iλ =  eigenvalue of matrix A and t∆  = sampling time. It should be noted that 2 1iλ −  

and 2iλ  (i = 1, 2, …, N) are complex conjugate pairs, each pair corresponding to a vibration 

mode (i.e., the natural frequency and damping ratio obtained from 2 1iλ −  are the same as those 

obtained from 2iλ ). The vibration mode shapes are obtained as 

2 1i iC T −= ⋅φ  (7.5) 

where Ti  denotes the thi  eigenvector of matrix A. Similarly, 2 1T i−  and 2T i (i = 1, 2, …, N) are 

complex conjugate pairs of eigenvectors, each pair corresponding to a vibration mode. 

An automated modal analysis procedure has been developed to apply SSI-DATA for 

continuous health monitoring of the Voigt Bridge. In this implementation of SSI-DATA, first 

a stabilization diagram is constructed for system order 2, 4, , 60n = "  [see equation (7.1)  

or equation (7.2)]. An example of stabilization diagram is given in Figure 7.1. For a realized 

state-space model of a given order n, an identified mode is considered as a physical vibration 

mode of the bridge if its identified modal parameters satisfy each of the following four 

conditions: (1) The deviation of its natural frequency from the average value of the 

corresponding frequencies obtained from models of order less than n is less than 1%. (2) The 

modal assurance criterion (MAC) value (Allemang and Brown, 1982) between the mode shape 

and the average of the corresponding mode shapes identified from models of order less than n 

is higher than 95%. (3) Its identified damping ratio is nonnegative and less than 20%. The 

relative change of damping ratio with respect to the average value of the corresponding 

damping ratios obtained from models of order less than n is not considered herein due to the 
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relatively high estimation uncertainty characterizing damping ratios. (4) Increasing 

progressively the model order n (starting from 2n= ), the identified modal parameters 

corresponding to this mode satisfy the first three conditions defined above at least 10 times. 

The system order is then determined by the minimum order which contains all the physical 

modes identified using criteria 1 through 4. Finally, the bridge modal parameters are extracted 

from the realized state space model with the determined minimum order. 

7.2.2 Automated System Identification Results 

In this study, the acceleration data collected over a period of 50 days (from August to 

September, 2007) is used in the identification process. It should be noted that the 

accelerometers measuring the vertical response at stations 4, 5, 14, and 15 are not functioning 

properly (at periods of time). Thus acceleration response measured form these stations are not 

used in the automated system identification. Typical acceleration data in time and frequency 

domain are shown in Figure 7.2 and Figure 7.3, respectively. The measured bridge 

acceleration responses are sampled at the rate of 1000 samples-per-second resulting in a 

Nyquist frequency of 500 Hz, which is much higher than the bridge’s natural frequencies of 

interest (< 20 Hz in this study). In the aforementioned implementation of SSI-DATA at each 

time period, the measured data are first filtered by a band-pass finite impulse response (FIR) 

filter of order 1024 with lower and upper cut-off frequencies of 2 Hz and 25 Hz, respectively. 

The filtered data is down-sampled to 100 Hz in order to improve the computational efficiency. 

After re-sampling, the Nyquist frequency (50 Hz) is still higher than the natural frequencies of 

interest (< 20 Hz). The down-sampled filtered data is then used to form the output Hankel 

matrix composed of 100 block rows with 23 rows in each block (23 vertical channels) for 

identifying the modal parameters of the bridge. Acceleration measured from stations 16, 17 
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and 18 are not used either in order to improve the system identification results for the 

monitoring period considered in this study. 

The natural frequencies of three identified vibration modes of the Voigt Bridge are 

plotted as a function of time in Figure 7.4. The monitoring system was not operating at the 

beginning of September so the response measurement is not available during this short period. 

A 3D representation of the normalized identified mode shape for each of these three vibration 

modes is given in Figure 7.5 obtained using traditional SSI-DATA based on acceleration 

response measurements from all 30 channels. It is worth noting that different physical 

vibration modes are identified at different time periods due to varying excitation sources and 

environmental conditions. Table 7.1 summarizes the natural frequency identification results 

obtained from the automated system identification procedure. For each identified mode, the 

frequency change is defined as max min min( ) /f f f f∆ = − . It is seen that the relative changes 

in the bridge identified natural frequencies are on the order of 10-15% for the three modes 

considered. These changes are primarily caused by the varying environmental conditions since 

the bridge did not undergo any change in damage / deterioration during the monitoring period. 

From Figure 7.4, some temporal variation patterns of the identified natural frequencies of 

these modes are observed.  

The identified damping ratios of these three vibration modes of the Voigt Bridge are 

plotted as a function of time in Figure 7.6. No clear temporal variation patterns of the 

identified damping ratios are observed, and the damping ratios identified during the 

monitoring period are consistent (considering the relatively high estimation uncertainty in 

characterizing damping ratios). The average damping ratios for these three modes are 

respectively 1.3%, 2.2% and 1.6%. In order to illustrate the identified mode shapes as a 

function of time, the identified mode shapes along the south side of the bridge are plotted in 
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Figure 7.7, Figure 7.8, and Figure 7.9, for the first, second, and third vibration mode, 

respectively. Generally speaking, no clear patterns in the temporal variation of these mode 

shapes are observed.  

7.3 Measurement of Environmental Parameters 

7.3.1 Temperature Measurements 

Two thermocouples (EXPP-K-20) are employed to measure the air temperature 

surrounding the bridge. One of them is used to measure the air temperature above the bridge 

and the other to measure air temperature underneath the bridge (see Chapter 6). Figure 7.10 

shows the temperature of the air surrounding the bridge measured using these two 

thermocouples during the period of 50 days. Figure 7.11 shows the temperature measured 

during the period of August 7 through August 14 in order to illustrate the typical temporal 

variation patterns of the temperature measurements. It should be noted that the temperature 

shown in these figures at each hour is the averaged temperature based on 2 minutes of 

recorded data. From these figures, it is observed that: (1) the temperature of the air 

surrounding the bridge reaches its maximum in the early afternoon every day; (2) the 

temperature of the air above the bridge is generally higher than its counterpart underneath the 

bridge during the daytime while the air temperature underneath the bridge is higher than its 

counterpart above the bridge during the night. This is due to the fact that the thermocouple 

used to measure the air temperature above the bridge is exposed to direct sunlight and the 

thermocouple used to measure the air temperature underneath the bridge is installed under the 

shadow and very close to the ground. 

In order to measure the concrete temperature and the air temperature inside the bridge, 

twenty four thermocouples are installed at eight stations along both south and north sides of 
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the bridge superstructure (see chapter 6). At each section, two thermocouples are inserted into 

the top and bottom of the stem wall to measure the concrete temperature and the third 

thermocouple is attached at mid-height to the exterior of the stem wall to measure the air 

temperature inside the bridge. Figure 7.12 and Figure 7.13 show the air and concrete 

temperatures measured inside the bridge along south and north sides of the bridge, 

respectively. In order to illustrate the typical temporal variation patterns of the measured 

temperatures, Figure 7.14 depicts the temperature measured along the north side of the bridge 

during the period of August 7 through August 14. Based on these figures, it is found that: (1) 

the temperature measurements inside the bridge are much smoother than the temperature 

measurements outside the bridge; (2) at each station, the concrete temperatures measured at 

the top and bottom of the stem wall, typically lags behind the air temperature by 

approximately 2-3 hours; (3) the temperature measured during night is higher than that 

measured during the day time; (4) the concrete temperature and the air temperature inside the 

bridge typically lag several hours behind the air temperature outside the bridge. 

Besides these thermocouples, nine thermistor & RH sensors (HS-2000V) are also 

installed to measure the air temperature both inside and outside the bridge. Eight of them are 

installed at each midspan along both south and north sides of the bridge superstructure to 

measure the air temperature inside the bridge. Another one is installed together with the wind 

monitor at the weather monitoring station. Figure 7.15 shows the air temperature measured at 

the weather monitoring station during the monitoring period. Figure 7.16 shows the air 

temperature measured during the period of August 7 through August 14 so as to investigate 

the typical variation patterns of the temperature measurements. The variation patterns of the 

air temperature measured at the weather monitoring station are similar to those of the air 

temperature surrounding the bridge (see Figure 7.10 and Figure 7.11). It should be noted that 
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the air temperature measured at the weather monitoring station is different from the air 

temperature surrounding the bridge because the thermistor installed at the weather monitoring 

station is protected by a multi-plate radiation shield. The multiple plates have a unique profile 

that blocks direct and reflected solar radiation, yet permits easy passage of air (see Chapter 6). 

For the sake of brevity, the air temperature measurements inside the bridge using thermistor & 

RH sensors are not shown here; however, the data measured by these sensors are consistent 

with those obtained from the thermocouples. 

7.3.2. Wind Characteristics and Air Humidity Measurements 

In the state-of-the art monitoring system developed and implemented in this study, a 

model 05103V wind monitor from R. M. Young Company is used to measure wind speed and 

wind direction. The measured data is first filtered by a low-pass FIR filter of order 1024 with 

cut-off frequency of 100 Hz. Then the averaged wind speed and wind direction over a period 

of 5 minutes are obtained at each hour. Figure 7.17 and Figure 7.18 present the wind speed 

and direction, respectively, measured at the weather monitoring station during the monitoring 

period. Figure 7.19 shows the wind speed measured during the period of August 7 through 

August 14 so as to investigate the typical variation patterns of the wind speed. It is observed 

that: (1) the wind speed measured during day time is usually higher than that measured during 

night; and (2) the wind speed reaches the maximum in the early afternoon every day.  

The air humidity both inside and outside bridge is also measured using the installed 

nine thermistor & RH sensors mentioned earlier. The measured data is first filtered by a low-

pass FIR filter of order 1024 with cut-off frequency of 10 Hz. Then the averaged relative 

humidity over 2-minute measurements is obtained for each hour. Figure 7.20 and Figure 7.21 

present the air relative humidity measured inside the bridge along south and north sides of the 
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bridge, respectively. Figure 7.22 shows the relative humidity of the air measured at the 

weather monitoring station. Variation patterns of the air humidity measured at various stations 

are not consistent except at stations 6, 7, and 8. It is also observed that air relative humidity 

measured at the weather monitoring station is much higher than that measured inside the 

bridge.  

7.4 Correlation between Identified Natural Frequencies and Measured Environmental 

Parameters 

The bridge did not undergo any damage / deterioration during the monitoring period 

considered in this study. Therefore, experimental black-box models can be built to correlate 

the time varying natural frequencies identified during this period with the measured 

environmental parameters. The environmental parameters considered herein include the 

temperature of the air surrounding the bridge, the temperature measurements inside the bridge, 

the wind speed measured at the weather monitoring station and the averaged relative humidity 

measurements over eight stations inside the bridge.  

Based on the correlation coefficients computed for twenty four temperature 

measurements taken inside the bridge, these measured temperatures are divided into four 

groups: (1) the concrete temperature measured at the top of stem walls; (2) the air temperature; 

(3) the concrete temperature measured at the bottom of the stem wall along the south side of 

the bridge; and (4) the concrete temperature measured at the bottom of the stem wall along the 

north side of the bridge. The correlation coefficient xyρ between two variables x  and y is 

defined as (Peeters and De Roeck, 2001a) 

1 1

1 1,     ( )( ),     
1

N N
xy

xy xy k k k
k kx y

s
s x x y y x x

s s N N
ρ

= =

= = − − =
− ∑ ∑  (7.6) 
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where xys is the sample covariance; x xxs s= , y yys s=  are the sample standard deviation; 

N is the number of data points and k is the discrete time index. An absolute value of 

correlation coefficient close to 1 indicates a high linear correlation between the two variables. 

For each of these four groups of the temperature measurements inside the bridge, the 

correlation coefficient between any two station measurements exceeds 99%. In other words, 

temperature measurements from different stations within the same group provide nearly the 

same information. The averaged temperature measurement of each group is reated as 

representative of the whole group.  

Therefore, a total of eight different environmental parameters are considered in this 

study, namely, (1) T1: air temperature measured above the bridge; (2) T2: air temperature 

measured underneath the bridge; (3) T3: space-averaged temperature measured in the concrete 

at the top of the stem walls; (4) T4: space-averaged air temperature measured inside the bridge; 

(5) T5: space-averaged temperature measured in the concrete at the bottom of the stem wall 

along the south side of the bridge; (6) T6: space-averaged temperature measured in the 

concrete at the bottom of the stem wall along the north side of the bridge; (7) WS: wind speed 

measured at the weather monitoring station; and (8) RH: air relative humidity measured inside 

the bridge. As an illustration, Figure 7.23 through Figure 7.26 present plots of identified 

natural frequencies as a function of T1, T3, WS, and RH, respectively. It should be noted that 

the variations of the identified natural frequencies are influenced by combination of various 

environmental parameters. Thus, in the following section, ARX models with multiple inputs 

are used to correlate the identified natural frequencies with different measured environmental 

parameters based on the data collected over the 50 day period.  
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7.4.1 Modeling Natural Frequencies as a Function of Measured Environmental 

Parameters 

7.4.1.1 Brief Review of ARX Models 

In this section, black-box models are constructed to represent the relationship between 

an identified natural frequency (output) and the measured environmental parameters (inputs). 

For a single-input-single-output (SISO) linear, time-invariant system, probably the simplest 

input-output relationship is obtained by describing it as a linear difference equation (Ljung, 

1999) 

1

1 2

( ) ( 1) ( )

( ) ( 1 ) ( 1) ( )

na

nb

y t a y t a y t na

b u t nk b u t nk b u t nb nk e t

+ − + + −

= − + − − + + − − + +

"

"
 (7.7) 

where ( )y t  is the output (e.g., an identified natural frequency in our case); ( )u t  is the input 

(e.g., a measured environmental parameter in our case); and ( )e t  is the equation error term 

which is assumed to be zero-mean Gaussian distributed white noise with covariance 

[ ( ) ( )] ( )E e t e t τ λδ τ− =  (7.8) 

where ( )δ τ  is the Kronecker delta and [ ]E i  is the expected value operator. This well known, 

model (7.7) is called an ARX model, where AR refers to the autoregressive part and X to the 

extra input (called the exogeneous variable in econometrics). In the above definition, na , nb , 

and nk  are the auto-regressive order, the exogeneous order, and the pure time delay between 

input and output, respectively. The orders na  and nb  determine the number of model 

parameters:  ( 1, , )ia i na= " and ( 1, , )jb j nb= " . By introducing the backward shift operator 

1q− : 1 ( ) ( 1)q y t y t− = − , the model (7.7) is rewritten as 

( ) ( ) ( ) ( ) ( )A q y t B q u t e t= +  (7.9) 

where  
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1
1( ) 1 na

naA q a q a q− −= + + +"  

1 1
1 2( ) nk nk nk nb

nbB q b q b q b q− − − − − += + + +"  
(7.10) 

In general, the parametrized linear input-output models are written as (Ljung, 1999) 

( ) ( , ) ( ) ( , ) ( )y t G q u t H q e t= +θ θ  (7.11) 

where θ  contains the model parameters; G  is the transfer function and H  is the noise model. 

In the case of ARX model, θ , G , and H  are give as 

1 1[ ]T
na nba a b b=θ " "  

( ) 1( , ) ,   ( , )
( ) ( )

θ θB qG q H q
A q A q

= =  
(7.12) 

The model parameters θ  of an ARX model can be estimated by a linear least squares method, 

which makes the ARX model popular in practical application. With different choice of na , 

nb , and nk , different ARX models can be identified based on the input and output data. The 

loss function is usually used as a criterion to assess the quality of these different identified 

ARX models. The loss function is defined as (Ljung, 1999; Peeters and De Roeck, 2001a) 

2

1

1ˆ ˆ( , )
N

t

t
N

λ ε
=

= ∑ θ  (7.13) 

with the prediction errors (the residuals) defined as  

ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )t A q y t B q u tε = −θ  (7.14) 

The loss function is also an estimate of the noise covariance λ . In practical applications, the 

loss function usually keeps decreasing as the model order increases. Therefore some other 

criteria such as Akaike's information criterion (AIC) and Rissanen's minimum description 

length (MDL) criterion are necessary to estimate the system orders (Ljung, 1999).  

In our application, for each vibration mode, a multiple-input single-output ARX 

model is needed to correlate the identified natural frequency with different measured 
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environmental parameters. Based on the definition in equations (7.7) and (7.9), the ARX 

model with multiple inputs is defined as  

1 1( ) ( ) ( ) ( )   + ( ) ( ) ( )nu nuA q y t B q u t B q u t e t= + +"  (7.15) 

where nu is the number of input variables and  

1
1( ) 1 na

naA q a q a q− −= + + +"  

1 1 1 1

1

11
1 1,1 1,2 1,( ) nk nk nk nb

nbB q b q b q b q− − − − +−= + + +"  

#  

11
,1 ,2 ,( ) nu nu nu nu

nu

nk nk nk nb
nu nu nu nu nbB q b q b q b q− − − − +−= + + +"  

(7.16) 

In the above equation,  ( 1, , )ka k na= "  and , ( 1, , ;   1, , )i j ib i nu j nb= =" "  are the ARX 

model parameters.  

7.4.1.2 Identification of ARX Models Based on Identified Natural Frequencies and 

Measured Environmental Parameters 

For a typical concrete bridge, such as the bridge testbed developed in this study, the 

effects of wind and relative humidity on the identified natural frequencies are usually 

negligible (Peeters and De Roeck, 2001a). In this study, for each vibration mode, three 

different cases are considered to identify the ARX model representing the identified natural 

frequency as a function of measured environmental parameters, namely: (1) only six 

temperature measurements are used as input variables (i.e., T1, T2, T3, T4, T5, T6); (2) six 

temperature measurements and the wind speed measurement are consider as input variables 

(i.e., T1, T2, T3, T4, T5, T6, WS); (3) all eight environmental parameters are considered as 

input variables (i.e., T1, T2, T3, T4, T5, T6, WS, RH). Table 7.2 presents the loss functions 

[see equation (7.13)] of ARX models for these three cases. It is observed that the influence of 
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the relative humidity and the wind speed on the variations of natural frequencies based on the 

ARX model is very small. The contribution of the wind speed to natural frequencies based on 

the ARX model is slightly higher than that of relative humidity. In this study, for each 

identified vibration mode, the ARX model with seven inputs (i.e., temperature measurements 

and wind speed measurement) is finally used to correlate the identified natural frequency with 

the measured environmental parameters. Table 7.3, Table 7.4, and Table 7.5 present the model 

parameters of each identified ARX model. For each identified ARX model, the system order is 

estimated based on the AIC criterion. In addition, the measured data is divided into two 

subsets for estimating the system order. The first subset includes the data measured in August 

and the second subset includes the data measured in September. Another quality criterion to 

assess the quality of the identified ARX model is to investigate the auto-correlation function 

of its prediction error due to the fact that the prediction error should be zero-mean white noise 

in the case that a good ARX model is obtained. The auto-correlation function of the prediction 

error is estimated as  

1

1 ˆ ˆˆ ( ) ( , ) ( , )
N

e
k

R t t
N

τ ε ε τ
=

= −∑ θ θ  (7.17) 

The auto-correlation functions of prediction errors for three ARX models corresponding to 

natural frequencies of three identified vibration modes are plotted, respectively, in Figure 7.27, 

Figure 7.28, and Figure 7.29 together with the 99% confidence intervals. From these figures, it 

can be concluded that the identified ARX models with multiple inputs fit the measured data 

very well. 

Based on previous research work performed by Peeters and De Roeck (2001a), the 

ARX models are identified using the following dimensionless normalized data: 
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( )( )( ) ,  ( ) ,  1,  2, 
i

mm
i i

i
y u

u t uy t yy t u t i nu
s s

−−
= = = "  (7.18) 

where the superscript m denotes a measured / identified quantity with the engineering units; y , 

iu are the sample mean of output and input data, respectively and ys , 
ius  are the sample 

standard deviations defined in equation (7.6). By substituting equation (7.18) into (7.15), the 

ARX models identified from the dimensionless normalized data can be converted to 

engineering units ARX models:  

1

1 1( ) ( ) ( ) ( )   + ( ) ( ) ( )
nu

y ym m m
nu nu y

u u

s s
A q y t B q u t B q u t s e t C

s s
= + + +"  (7.19) 

in which the offset C is computed as  

1

1 1(1) (1)   (1)
nu

y y
nu nu

u u

s s
C A y B u B u

s s
= − − −"  (7.20) 

The estimated value of C for each ARX model is given in Table 7.3, Table 7.4, and 

Table 7.5 together with the corresponding estimated model parameters. Based on equation 

(7.15) or (7.19), the identified natural frequency can be described as a function of measured 

temperatures and wind speed. As an illustration, Figure 7.30 shows the simulated natural 

frequencies of three vibration modes considered in this study using the corresponding ARX 

models based on the measured environmental parameters. Figure 7.31 shows the differences / 

deviations between the corresponding simulated and identified natural frequencies. It should 

be noted that these differences are actually the variations of the identified natural frequencies 

after removing the environmental effects. 
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7.4.2 Objective Criterion for Damage Detection under Varying Environmental 

Conditions  

Once good models representing the identified natural frequencies as a function of 

measured environmental parameters are obtained using the data collected from the undamaged 

state (or baseline state) of the bridge, they can be used to simulate the natural frequencies 

based on the new measured environmental parameters (fresh data). From the comparison of 

these simulated natural frequencies and their identified counterparts, the changes in identified 

natural frequencies caused by structural damage can be distinguished from those caused by 

varying environmental conditions. This section will provide an objective criterion for damage 

detection under the varying environmental conditions. 

Considering an ARX model representation of a linear SISO system 

( ) ( , ) ( ) ( , ) ( )y t G q u t H q e t= +θ θ  (7.21) 

It is assumed that the “true” system can be described by the model structure of the above 

equation 

0
0 0( ) ( , ) ( ) ( , ) ( )y t G q u t H q e t= +θ θ  (7.22) 

where 0θ  are the “true” model parameters and 0 ( )e t  is zero-mean Gaussian distributed white 

noise with covariance 0λ . Based on the input-output data, the model parameters are estimated 

by the linear least squares method. Then, the noise-free simulated output from the estimated 

model is written as  

ˆˆ( ) ( , ) ( )y t G q u t= θ  (7.23) 

The simulation error is defined as the difference between the true output and its simulated 

counterpart 
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0
0 0

0
0

ˆ ˆˆ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

ˆ      [ ( , ) ( , )] ( ) ( )

d t y t y t G q u t H q e t G q u t

G q G q u t v t

= − = + −

= − +

θ θ θ

θ θ
 (7.24) 

where 0 0
0( ) ( , ) ( )v t H q e t= θ . The term between the brackets can be expanded by a Taylor 

series. If only the first-order term is retained (Peeters and De Roeck, 2001a) 

0
0 0

ˆ ˆ( ) ( , ) ( )( ) ( )d t J q u t v t= − +θ θ θ  (7.25) 

in which  

0

0
( , )( , ) G qJ q

=

∂
=

∂ θ θ

θθ
θ

 (7.26) 

Since when N →∞ , 0
ˆ →θ θ  and 0 ( )e t  is zero-mean Gaussian distributed white noise, the 

simulation error ˆ( )d t  is asymptotically Gaussian distributed with zero-mean (i.e., 

ˆ[ ( )] 0E d t = ), and a certain covariance 2
ˆ ( )

ˆ[ ( )]
d t

E d t P= , which is denoted as  

ˆ ( )
ˆ( ) (0,  )

d t
d t N P∼  (7.27) 

By introducing the asymptotic covariance matrix of the model parameters P̂
θ

, the covariance 

ˆ( )d t
P  can be derived as (Peeters and De Roeck, 2001a) 

0 0

0
ˆ ˆ0 0( )

0
ˆ

 [ ( , ) ( )]  [ ( , ) ( )] (0)

( , ) ( , )        [ ( )]  [ ( )] (0)

T
vd t

T
v

P J q u t P J q u t R

G q G qu t P u t R
= =

= +

∂ ∂
= +

∂ ∂

θ

θ
θ θ θ θ

θ θ

θ θ
θ θ

 
(7.28) 

where 0 0 2(0) [( ( )) ]vR E v t= .  

Similarly, in the case of an ARX model with multiple inputs, the covariance ˆ( )d t
P  can 

be derived as 
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= == =
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θ θ θ θ
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in which nu is the number of input variables and 

( ) ( , )
( )

θ i
i

B qG q
A q

=  

11 1,1 1, ,1 ,[ ]
nuna nb nu nu nba a b b b b=θ " " " "  

(7.30) 

In the above equation, ( )A q  and ( )iB q , 1,  , i nu= " , is defined in equations (7.15) 

and (7.16). Since none of the expressions at the right-hand side of the equation (7.29), namely, 

01

( , ) ( )
nu

i
i

i

G q u t
= =

∂
∂∑

θ θ

θ
θ

, P̂
θ

, and 0 (0)vR  are known, the asymptotic covariance of the 

simulation error can only be estimated by these three terms estimates. As discussed earlier, the 

model parameters of the ARX model are estimated using least squares method. The least 

squares method not only provides estimates of the model parameters ( θ̂ ), but also an estimate 

of the asymptotic covariance matrix of these parameters ( ˆ̂P
θ

). The estimates of θ̂  and ˆ̂P
θ

 can 

be obtained using MATLAB system identification toolbox.  

Base on equations (7.15) and (7.16), we can get  

( , ) ( , ) ( , )i i i

k ij

G q G q G q
a b

⎡ ⎤∂ ∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

θ θ θ0 0 0 0
θ

" "  (7.31) 

The partial derivatives can be written as 

2

( , ) ( )   ( 1,   )
( )

ii i

k

G q B q q k na
a A q

−∂
=− =

∂
θ "  

1( , ) 1   ( 1,  ,  )
( )

ij nki
i

ij

G q q j nb
b A q

− + −∂
=− =

∂
θ "  

(7.32) 

These expressions are defining time domain filtering operations on the inputs. An estimate of 
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01
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= =

∂
∂∑  is obtained by replacing the true but unknown parameters 0θ  by their 

estimate: 
ˆ1

( , ) ( )
θ θ

θ
θ

nu
i

i
i

G q u t
= =

∂
∂∑ . 

Since 0 ( )v t  is obtained by filtering the white noise sequence 0 ( )e t  through an auto-

regressive filter 

0 01( ) ( )
( )

v t e t
A q

=  (7.33) 

The computation of 0 (0)vR  can be obtained through the following procedure (Ljung, 1999; 

Peeters and De Roeck, 2001a). The vectors ( )tx , ( )tw  and the matrix A are defined as 

0 0 0( ) ( 1) ( 2) ( )
T

t v t v t v t na⎡ ⎤= − − −⎢ ⎥⎣ ⎦x "  

0( ) ( ) 0 0
T

t e t⎡ ⎤= ⎢ ⎥⎣ ⎦w "  

0 0 0 0
1 2 1

1 0 0 0
0 1 0 0

0 0 1 0

na naa a a a−
⎡ ⎤− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

"
"
"

" " " " "
"

 

(7.34) 

in which 1( ) nat ×∈x \  is the state vector; na na×∈A \  is the state transition matrix and 

1( ) nat ×∈w \  is the process noise vector. Equation (7.33) is now written as 

( 1) ( ) ( )t x t t+ = +x A w  (7.35) 

The state covariance matrix is defined as [ ( ) ( ) ]TE t t=Σ x x  and the noise covariance matrix is 

defined as [ ( ) ( ) ]TE t t=Q w w . Since 0 ( )e t  is independent of any of the previous outputs, thus 

we have  
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TA A= +Σ Σ Q  (7.36) 

The above equation is known as Lyapunov equation. Any of the diagonal elements of Σ  is 

equal to 0 (0)vR . An estimate 0ˆ (0)vR  of 0 (0)vR is obtained by replacing 0λ  by λ̂  in Q and 

0 ( )A q  by ˆ( )A q  in A. 

Based on all these estimates described above, the asymptotic covariance estimate of 

the simulation error ˆ ( )
ˆ
d t

P  is obtained.  

From equation (7.27), we can get  

ˆ

ˆ( ) - ( ) (0, 1)
kd

y t y t N
P

∼  (7.37) 

Since the true asymptotic covariance of the simulation error is unknown and only its estimate 

ˆ ( )
ˆ
d t

P  is available, the 100(1-α ) percent confidence interval on ( )y t  (the true value) is given 

by  

ˆ ˆ/ 2, / 2,
ˆ ˆˆ ˆ( ) ( )

k k
v vd d

y t t P y t t Pα α
⎡ ⎤− +⎢ ⎥⎣ ⎦

 ,    (7.38) 

in which / 2,vtα  can be found from a statistical table of the Student’s t – distribution. The 

symbol v  is the number of degrees of freedom of the data, v N d= − , where d  is the 

number of model parameters.  

The confidence interval defined in equation (7.38) can be used as an objective 

criterion to detect damage under the varying environmental conditions. In the case that the 

natural frequency (identified from the bridge vibration data) is lower than its ARX simulated 

counterpart and lies outside the confidence interval of a specified level (e.g., 95% confidence 

interval), then the variation of the identified natural frequency is caused not only by variations 

in environmental conditions, but also by a statistically significant loss of stiffness (i.e., 
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damage) in the bridge structure. In this study, the data collected in the period of 50 days which 

are used to identify the ARX models and the new data measured over the first 10 days of 

October are fed the models to yield the simulated natural frequencies and the 95% confidence 

intervals. The identified natural frequencies and the differences between the corresponding 

identified and simulated natural frequencies (variations of the identified natural frequencies 

after removing environmental effects) during the period from September 10th to October 10th 

are shown in Figure 7.32 and Figure 7.33, respectively, together with the corresponding 95% 

intervals. It is worth noting that these two figures provide the same information for damage 

detection under varying environmental conditions. Based on these two figures, it is observed 

the identified natural frequencies are in general within the confidence intervals, which is 

consistent with the fact that the bridge did not undergo any damage during this period. 

However, it is also observed that the identified natural frequencies during some short periods 

move out of the lower bounds of the confidence intervals (especially for the second mode). 

This could be due to the fact that in general the temperature during the validation period (the 

first 10 days of October) is lower than those used to estimate the ARX models. Therefore 

these ARX models are not capable of correlating well the natural frequencies with the 

measured environmental parameters. The ARX models identified in this study need to be 

improved and validated using vibration and environmental data recorded over a longer time 

period (e.g., one year) from the long-term monitoring system developed in this study. 

7.5 Summary and Conclusions  

In this chapter, an automated system identification procedure is developed based on 

the data-driven stochastic subspace identification. This automated system identification 

procedure is successfully applied to identify the modal parameters of the Voigt Bridge as a 

function of time. Data collected over a period of 50 days from the state-of-the-art structural 
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monitoring system deployed on the bridge (see Chapter 6) is used in the identification process. 

It is found that changes in the identified natural frequencies due to varying environmental 

conditions are significant, on the order of 10-15 percent. It is worth noting that variations of 

the identified natural frequencies are caused mainly by changes in environmental conditions 

since the bridge did not suffer any damage during the monitoring period. The identified modal 

damping ratios and mode shapes are also investigated as a function of time in this study. No 

clear temporal variation patterns of the identified damping ratios and mode shapes are 

observed. 

Different measured environmental parameters are investigated during the monitoring 

period considered in this study (i.e., period of 50 days from August to September, 2007). For 

each vibration mode, a multiple-input single-output ARX model is successfully identified to 

represent the identified natural frequency of this mode (output variable) as a function of seven 

measured environmental parameters (input variables), namely, (1) T1 = air temperature 

measured above the bridge; (2) T2 = air temperature measured underneath the bridge; (3) T3 = 

space-averaged temperature measured in the concrete at the top of the stem walls; (4) T4 = 

space-averaged air temperature measured inside the bridge; (5) T5 = space-averaged 

temperature measured in the concrete at the bottom of the stem wall along the south side of the 

bridge; (6) T6 = space-averaged temperature measured in the concrete at the bottom of the 

stem wall along the north side of the bridge; and (7) WS = wind speed measured at the 

weather monitoring station. Based on the estimated parameters of each ARX model, the 

confidence interval of the natural frequency is obtained and used as an objective criterion for 

damage detection under varying environmental conditions. In the case that the natural 

frequency (identified from the bridge vibration data) is lower than its ARX simulated 

counterpart and lies outside the confidence interval of a specified level (e.g., 95% confidence 
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interval), then the variation of the identified natural frequency is caused not only by variations 

in environmental conditions, but also by a statistically significant loss of stiffness (i.e., 

damage) in the bridge structure. 

It should be noted that the effects of changing environmental conditions on the 

identified modal parameters need further investigation using vibration and environmental data 

recorded over a longer time period (e.g., one year) from the long-term monitoring system 

developed in this study. In addition, other types of methods such as statistical learning 

techniques should be applied to explain/correlate the identified natural frequencies to the 

measured environmental conditions. 
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Table Captions 

Table 7.1.   Summary of natural frequency identification results obtained during the 
monitoring period 

Table 7.2.   Loss functions of the identified ARX models with different input parameters  

Table 7.3.   ARX model parameters identified for the natural frequency of the first mode 

Table 7.4.   ARX model parameters identified for the natural frequency of the second mode 

Table 7.5.   ARX model parameters identified for the natural frequency of the third mode 
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Table 7.1.   Summary of natural frequency identification results obtained during the 
monitoring period 
Mode No 

 
Minimum (Hz) 

fmin 
Average (Hz) 

favg 
Maximum (Hz) 

fmax 
Frequency change (%) 

(fmax -fmin)/fmin 

1 4.31 4.74 4.92 14.3% 

2 9.77 10.60 11.28 15.5% 

3 12.62 13.07 13.83 9.6% 
 

 

Table 7.2.   Loss functions of the identified ARX models with different input parameters  

Mode ARX model with 6 
input parameters 

ARX model with 7 
input parameters 

ARX model with 8 input 
parameters 

1 0.5391 0.5352 0.5336 

2 0.4067 0.3961 0.3944 

3 0.4201 0.4148 0.4136 
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Table 7.3.   ARX model parameters identified for the natural frequency of the first mode  
 0â  1̂a  2â     
ˆia  1 -0.4299 -0.1575    
 11b̂  12b̂  13b̂  14b̂  15b̂   

1̂ib  0.0265 -0.1655 0.0073 0.1688 -0.012  

 21b̂  22b̂  23b̂  24b̂  25b̂  26b̂  

2̂ib  0.0807 -0.3054 0.1797 -0.1538 -0.085 0.0698 

 31b̂  32b̂      

3̂ib  -0.3001 -0.1784     

 41b̂  42b̂  43b̂  44b̂    

4̂ib  1.588 -1.0393 2.7157 -3.8781   

 51b̂  52b̂  53b̂     

5̂ib  -5.1709 5.6823 -0.3488    

 61b̂  62b̂      

6̂ib  2.8011 -1.6623     

 71b̂  72b̂      

7̂ib  -0.0403 -0.0876     

Ĉ  1.9254      
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Table 7.4.   ARX model parameters identified for the natural frequency of the second mode  
 0â  1â  2â       
ˆia  1 -0.2639 -0.2352      
 11b̂  12b̂  13b̂       

1̂ib  -0.114 -0.0534 0.2238      

 21b̂         

2̂ib  0.2915        

 31b̂  32b̂        

3̂ib  -4.0032 3.9551       

 41b̂  42b̂  43b̂  44b̂      

4̂ib  0.9968 1.1921 -2.0157 -1.6793     

 51b̂  52b̂        

5̂ib  4.8792 -4.9224       

 61b̂  62b̂  63b̂       

6̂ib  -2.2781 3.2761 0.5388      

 71b̂  72b̂  73b̂       

7̂ib  -0.1447 0.0016 -0.0666      

Ĉ  5.0414        
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Table 7.5.   ARX model parameters identified for the natural frequency of the third mode  
 0â  1â  2â        
ˆia  1 -0.4687 -0.1613       
 11b̂  12b̂  13b̂  14b̂       

1̂ib  0.1119 -0.0629 0.002 0.1848      

 21b̂          

2̂ib  0.2248         

 31b̂  32b̂         

3̂ib  -3.305 3.498        

 41b̂          

4̂ib  -1.6624         

 51b̂  52b̂         

5̂ib  3.2168 -3.1146        

 61b̂          

6̂ib  1.1605         

 71b̂          

7̂ib  -0.1236         

Ĉ  4.7430         
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Figure Captions 

Figure 7.1.   Stabilization diagram obtained using SSI-DATA 

Figure 7.2.   Typical acceleration response measurements: (Top) acceleration response 
measured at mid-point of the west middle span along north side of the bridge; 
(Bottom) acceleration response measured at mid-point of the east middle span 
along north side of the bridge 

Figure 7.3.   Fourier amplitude spectra of typical acceleration response measurements: (Top) 
acceleration response measured at mid-point of the west middle span along north 
side of the bridge; (Bottom) acceleration response measured at mid-point of the 
east middle span along north side of the bridge 

Figure 7.4.   Natural frequencies identified during the monitoring period 

Figure 7.5.   3D representation of normalized identified mode shapes 

Figure 7.6.   Damping ratios identified during the monitoring period 

Figure 7.7.   Normalized mode shape of the first vibration mode identified during the 
monitoring period along south side of the bridge 

Figure 7.8.   Normalized mode shape of the second vibration mode identified during the 
monitoring period along south side of the bridge 

Figure 7.9.   Normalized mode shape of the third vibration mode identified during the 
monitoring period along south side of the bridge 

Figure 7.10. Air temperature surrounding the bridge measured during the monitoring period 

Figure 7.11. Air temperature surrounding the bridge measured during the period of Aug. 7 
through Aug. 14 

Figure 7.12. Temperature measurements inside the bridge (along south side of the bridge) 
during the monitoring period 

Figure 7.13. Temperature measurements inside the bridge (along north side of the bridge) 
during the monitoring period 

Figure 7.14. Temperature measurements inside the bridge (along north side of the bridge) 
during the period of Aug. 7 through Aug. 14 

Figure 7.15. Air temperature measured at the weather monitoring station during the 
monitoring period 

Figure 7.16. Air temperature measured at the weather monitoring station during the period of 
Aug. 7 through Aug. 14 
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Figure 7.17. Wind speed measured at the weather monitoring station during the monitoring 
period 

Figure 7.18. Wind direction measured at the weather monitoring station during the monitoring 
period 

Figure 7.19. Wind speed measured at the weather monitoring station during the period of Aug. 
7 through Aug. 14 

Figure 7.20. Air relative humidity inside the bridge (along south side of the bridge) measured 
during the monitoring period 

Figure 7.21. Air relative humidity inside the bridge (along north side of the bridge) measured 
during the monitoring period 

Figure 7.22. Air relative humidity measured at the weather monitoring station during the 
monitoring period 

Figure 7.23. Identified natural frequencies vs. air temperature measured above the bridge (T1) 

Figure 7.24. Identified natural frequencies vs. concrete temperature measured at the top of the 
stem walls (T3) 

Figure 7.25. Identified natural frequencies vs. wind speed 

Figure 7.26. Identified natural frequencies vs. air relative humidity measured inside the bridge 

Figure 7.27. Normalized auto-correlation of the prediction errors of the ARX model identified 
for the first vibration mode natural frequency 

Figure 7.28. Normalized auto-correlation of the prediction errors of the ARX model identified 
for the second vibration mode natural frequency 

Figure 7.29. Normalized auto-correlation of the prediction errors of the ARX model identified 
for the third vibration mode natural frequency 

Figure 7.30. Comparison of the simulated natural frequencies and their identified counterparts: 
red thick line, simulated natural frequency based on measured environmental 
parameters; blue thin line, identified natural frequency 

Figure 7.31. Differences between the corresponding simulated and identified natural 
frequencies (variations of identified natural frequencies after removing the 
environmental effects) 

Figure 7.32. Identified natural frequencies together with their 95% confidence intervals 

Figure 7.33. Differences between the corresponding identified and simulated natural 
frequencies together with their 95% confidence intervals 
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Figure 7.1.   Stabilization diagram obtained using SSI-DATA 
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Figure 7.2.   Typical acceleration response measurements: (Top) acceleration response 
measured at mid-point of the west middle span along north side of the bridge; (Bottom) 

acceleration response measured at mid-point of the east middle span along north side of the 
bridge 
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Figure 7.3.   Fourier amplitude spectra of typical acceleration response measurements: (Top) 
acceleration response measured at mid-point of the west middle span along north side of the 
bridge; (Bottom) acceleration response measured at mid-point of the east middle span along 

north side of the bridge 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.4.   Natural frequencies identified during the monitoring period 
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(a) Mode 1 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.5.   3D representation of normalized identified mode shapes 
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(a) Mode 1 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.6.   Damping ratios identified during the monitoring period 
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Figure 7.7.   Normalized mode shape of the first vibration mode identified during the 
monitoring period along south side of the bridge 
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Figure 7.8.   Normalized mode shape of the second vibration mode identified during the 
monitoring period along south side of the bridge 
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Figure 7.9.   Normalized mode shape of the third vibration mode identified during the 
monitoring period along south side of the bridge 
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Figure 7.10. Air temperature surrounding the bridge measured during the monitoring period 
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Figure 7.11. Air temperature surrounding the bridge measured during the period of Aug. 7 

through Aug. 14 
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Figure 7.12. Temperature measurements inside the bridge (along south side of the bridge) 

during the monitoring period 
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Figure 7.13. Temperature measurements inside the bridge (along north side of the bridge) 

during the monitoring period 
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Figure 7.14. Temperature measurements inside the bridge (along north side of the bridge) 

during the period of Aug. 7 through Aug. 14 
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Figure 7.15. Air temperature measured at the weather monitoring station during the 

monitoring period  
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Figure 7.16. Air temperature measured at the weather monitoring station during the period of 

Aug. 7 through Aug. 14 
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Figure 7.17. Wind speed measured at the weather monitoring station during the monitoring 

period 
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Figure 7.18. Wind direction measured at the weather monitoring station during the 

monitoring period 
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Figure 7.19. Wind speed measured at the weather monitoring station during the period of 

Aug. 7 through Aug. 14 
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Figure 7.20. Air relative humidity inside the bridge (along south side of the bridge) measured 

during the monitoring period 
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Figure 7.21. Air relative humidity inside the bridge (along north side of the bridge) measured 

during the monitoring period 
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Figure 7.22. Air relative humidity measured at the weather monitoring station during the 

monitoring period 
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Figure 7.23. Identified natural frequencies vs. air temperature measured above the bridge (T1) 
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Figure 7.24. Identified natural frequencies vs. concrete temperature measured at the top of the 

stem walls (T3)  
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Figure 7.25. Identified natural frequencies vs. wind speed 
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Figure 7.26. Identified natural frequencies vs. air relative humidity measured inside the bridge
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Figure 7.27. Normalized auto-correlation of the prediction errors of the ARX model identified 

for the first vibration mode natural frequency 
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Figure 7.28. Normalized auto-correlation of the prediction errors of the ARX model identified 

for the second vibration mode natural frequency 
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Figure 7.29. Normalized auto-correlation of the prediction errors of the ARX model identified 
for the third vibration mode natural frequency 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.30. Comparison of the simulated natural frequencies and their identified counterparts: 
red thick line, simulated natural frequency based on measured environmental parameters; blue 

thin line, identified natural frequency 
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(a) Mode 1 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.31. Differences between the corresponding simulated and identified natural 
frequencies (variations of identified natural frequencies after removing the environmental 

effects) 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.32. Identified natural frequencies together with their 95% confidence intervals 
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(b) Mode 2 
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(c) Mode 3 

Figure 7.33. Differences between the corresponding identified and simulated natural 
frequencies together with their 95% confidence intervals 
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Chapter 8 

Concluding Remarks 

8.1 Summary of Contributions and Highlight of Findings 

The research work presented in this dissertation contributes to the development of a 

robust and reliable vibration-based structural health monitoring system in the following areas: 

(1) system identification of real-word structures with real-world complexities using output-

only system identification methods based on dynamic field test data; (2) damage identification 

of real-word structures based on the modal parameters identified from dynamic field test data; 

(3) simulation of wind-induced ambient vibration response of long-span suspension bridges 

using detailed three-dimensional (3D) bridge finite element (FE) models and state-of-the-art 

stochastic wind excitation model; (4) development and deployment of state-of-the-art long-

term continuous structural monitoring system; (5) investigation of the effects of changing 

environmental conditions on identified modal parameters. 

The principal contributions and major findings of this research work are summarized 

below: 

1. Dynamic field tests were conducted on the Alfred Zampa Memorial Bridge 

(AZMB), just before its opening to traffic in November 2003. These tests provided a unique 

opportunity to obtain modal parameters of the bridge in its as-built condition with no previous 

traffic loads or seismic excitation. The AZMB is the first major suspension bridge built in the 

United States since the 1960s.  
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A comparative study of output-only system identification techniques applied to the 

AZMB is performed based on bridge vibration data from two types of tests: ambient vibration 

test and forced vibration tests based on controlled-traffic loads. These methods consist of: (1) 

the multiple-reference natural excitation technique combined with the eigensystem realization 

algorithm (MNExT-ERA), a two-stage time-domain system identification method; (2) the 

data-driven stochastic subspace identification (SSI-DATA) method, a one-stage time-domain 

system identification method; and (3) the enhanced frequency domain decomposition (EFDD) 

technique (Brincker et al., 2001), a non-parametric frequency domain system identification 

method. Modal parameters identified using different methods and different types of test data 

are compared for cross-validation purposes and also to investigate the performance of 

different output-only system identification methods applied to bridge vibration data for 

different excitation sources. 

From the modal identification results obtained, the following conclusions can be made: 

(1) The natural frequencies identified using the three different methods are in excellent 

agreement for each type of test. (2) The natural frequencies identified based on data from the 

two different types of test are also in excellent agreement, except for the 1-AS-V (first anti-

symmetric vertical) mode. The significant difference in the identified natural frequency for 

this mode reflects the difficulty in identifying it due to its very low relative contribution to the 

measured bridge vibration in both the ambient and forced vibration tests. In addition, the order 

(in terms of natural frequency) of vibration modes 1-S-V and 1-AS-V identified based on 

ambient vibration data is swapped over when these modes are identified based on forced 

vibration data. (3) Considering that the estimation (or statistical) uncertainty of modal 

damping ratios is inherently significantly higher than that of natural frequencies, the modal 

damping ratios identified are in reasonable agreement across the different identification 
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methods used. (4) The identified modal damping ratios are response amplitude dependent. For 

most vibration modes, especially for the lower vibration modes, the modal damping ratios 

identified using forced vibration data are higher than those identified using ambient vibration 

data. (5) For most vibration modes, the mode shapes identified using different methods and 

different test data are in excellent agreement.  

Overall, all three system identification methods applied in this study perform very 

well in both types of tests. However, in order to avoid missing modes in the identification 

process, use of several system identification methods is recommended for cross-validation 

purposes, as different methods have different estimation variability with respect to input 

factors such as measurement noise level, frequency content of input excitation, and excitation 

amplitude. It is found that the EFDD method is not as robust as the other two methods, since it 

requires user (subjective) intervention for peak picking in the identification process. 

Finally, the identified natural frequencies and mode shapes are compared with their 

analytically predicted counterparts obtained from a 3D FE model used in the design phase of 

the AZMB. The identified (experimental) and analytical modal properties are found to be in 

good agreement for the modes contributing significantly to the measured bridge vibration. 

The system identification results obtained from this study provide benchmark modal 

properties of the AZMB, which can be used as baseline in future health monitoring studies of 

this bridge.  

2. The wind-induced ambient vibration of Vincent Thomas Bridge (VTB), a long-span 

suspension bridge located in San Pedro near Los Angeles, California, is simulated using a 

detailed 3D FE model of the bridge and a state-of-the-art stochastic wind excitation model 

including both buffeting and self-excited forces. Based on these simulated ambient vibration 

data, modal parameters of the low frequency vertical vibration modes of VTB are identified 
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using SSI-DATA. The identified modal parameters are in good agreement with the computed 

(“exact”) modal parameters obtained directly from the FE model of VTB, which in turn are in 

good agreement with the corresponding modal parameters of VTB identified by other 

researchers using actual ambient vibration data. This system identification study also provides 

the opportunity to investigate the accuracy of the modal identification results obtained using 

SSI-DATA in the case of a large and complex (virtual) structural problem for which the 

“exact” modal parameters (modal parameters of the FE model of VTB) are known. This 

opportunity does not exist when system identification methods are applied directly to real-

world structures and data.  

The methodology and study presented in this part of the research provide a validated 

framework for studying the effects of realistic damage scenarios in long-span cable-supported 

(suspension and cable-stayed) bridges (e.g., corrosion-induced losses in stiffness and strength 

of main cables and suspenders at different locations along the bridge) on modal identification 

results. These effects represent the basis for developing robust and reliable vibration-based 

structural health monitoring systems for long-span cable-supported bridges. 

3. A linear flat shell element is implemented in the element library of the MATLAB-

based structural analysis software FEDEASLab, which is then integrated with the FE model 

updating algorithms used/developed in order to perform structural damage identification. This 

shell element is based on the mixed discrete variational principle proposed by Hughes and 

Brezzi in conjunction with Allman type interpolation for the membrane part and the discrete 

Kirchhoff plate element derived by Batoz and Tahar for the plate part. The resulting finite 

element has six degrees of freedom (DOFs) per node, including a true (mechanics-based) 

drilling degree of freedom.  
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Using the extended version of FEDEASLab, a comparative study of the influence of 

different objective functions on the damage identification results is performed by using 

simulated data for a simply supported plate. From this numerical example, it is found that the 

objective function defined by a combination of natural frequency residuals and mode shapes 

residuals and the objective function defined by a combination of natural frequency residuals, 

mode shapes residuals, and pseudo modal flexibility residuals are good candidates for 

structural damage identification using sensitivity-based FE model updating techniques. 

4. A sensitivity-based FE model updating strategy is applied for damage identification 

of a full-scale seven-story R/C building slice tested on the UCSD-NEES shake table. The 

shake table tests were designed so as to damage the building progressively through a sequence 

of historical earthquake records reproduced on the shake table. The natural frequencies and 

mode shapes of the first three longitudinal modes identified using SSI-DATA based on the 

ambient vibration data are used in the damage identification process. In the application of the 

FE model updating strategy to identify the damage in the building at various damage states, 

the objective function is defined as a combination of residuals in natural frequencies and mode 

shape components. The damage identification results are consistent with the actual damage 

observed (visually) in the building and inferred from LVDT and strain gages data. 

5. A state-of-the-art long-term continuous monitoring system is developed and 

deployed on the Voigt Bridge Testbed. The monitoring system consists of high-resolution 

video camera, thirty piezoelectric accelerometers (in the bridge vertical direction), and fifteen 

capacitive accelerometers (in the bridge lateral direction) for bridge vibration monitoring. The 

primary purpose of the fifteen capacitive accelerometers is seismic monitoring, while the 

piezoelectric accelerometers measure the traffic induced mainly vertical vibrations of the 

bridge. Twenty six thermocouples, nine thermistor & relative humidity sensors, and a wind 
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monitor are also employed to measure concrete temperature, temperature and relative 

humidity of the air (both inside and outside the bridge), and wind characteristics. This 

monitoring system makes it possible to: (1) study the effects of varying environmental 

conditions such as temperature, wind characteristics, and humidity on the identified modal 

properties of the bridge; (2) allow for the early identification of possible damages in the bridge 

structure and enable maintenance and repair works at the initial damage phase; and (3) 

evaluate the health condition of this structure shortly after a major catastrophic event such as 

an earthquake.  

It is envisioned that this densely instrumented bridge testbed will serve as a live 

laboratory for the development of vibration-based structural health monitoring technologies. 

6. An automated system identification procedure is developed based on SSI-DATA. 

This automated system identification procedure is successfully applied to identify the modal 

parameters of the Voigt Bridge as a function of time based on the data collected over a period 

of 50 days (from August to September, 2007) using the state-of-the-art structural monitoring 

system deployed. It is found that changes in natural frequencies due to varying environmental 

conditions are significant, on the order of 10-15 percent. It is worth mentioning that variations 

of these identified natural frequencies are caused mainly by changes in environmental 

conditions, since the bridge did not suffer any damage during the monitoring period. The 

identified modal damping ratios and mode shapes are also investigated as a function of time in 

this study. No clear temporal variation patterns of the identified damping ratios and mode 

shapes are observed. 

7. Different measured environmental parameters are investigated during the 

monitoring period considered in this study (i.e., period of 50 days from August to September, 

2007). For each vibration mode, a multiple-input single-output ARX model is successfully 
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identified to represent the identified natural frequency of this mode (output variable) as a 

function of seven measured environmental parameters (input variables), namely, (1) T1 = air 

temperature measured above the bridge; (2) T2 = air temperature measured underneath the 

bridge; (3) T3 = space-averaged temperature measured in the concrete at the top of the stem 

walls; (4) T4 = space-averaged air temperature measured inside the bridge; (5) T5 = space-

averaged temperature measured in the concrete at the bottom of the stem wall along the south 

side of the bridge; (6) T6 = space-averaged temperature measured in the concrete at the 

bottom of the stem wall along the north side of the bridge; and (7) WS = wind speed measured 

at the weather monitoring station. Based on the estimated parameters of each ARX model, the 

confidence interval of the natural frequency is obtained and used as an objective criterion for 

damage detection under varying environmental conditions. In the case that the natural 

frequency (identified from the bridge vibration data) is lower than its ARX simulated 

counterpart and lies outside the confidence interval of a specified level (e.g., 95% confidence 

interval), then the variation of the identified natural frequency is caused not only by variations 

in environmental conditions, but also by a statistically significant loss of stiffness (i.e., 

damage) in the bridge structure. 

8.2 Recommendations for Future Work 

Based on the research work performed and presented herein, several research areas 

have been identified as open to and in need of future work. 

1. The effects of changing environmental conditions on the identified modal 

parameters need further investigation using vibration and environmental data recorded over a 

longer time period (e.g., one year) from the long-term monitoring system developed in this 

study. In addition, other types of methods such as statistical learning techniques should be 
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applied to explain/correlate the identified natural frequencies to the measured environmental 

conditions.  

2. Investigation of the effects of (dynamic) traffic loading on the identified bridge 

modal parameters is also needed for developing robust and reliable long-term health 

monitoring systems for highway bridges. This can be achieved by leveraging the long-term 

monitoring system deployed on the Voigt Bridge Testbed. 

3. An important issue not addressed in this research is the propagation of uncertainty 

from estimation errors in statistical properties of output data (e.g., auto/cross-correlation and 

auto-cross spectra of output channels) to the identified modal parameters and then to the 

damage identification results. An interesting topic of future research is to study analytically 

the uncertainty in damage identification results due to the uncertainty of the identified modal 

parameters.  

4. The simulation platform for wind-induced vibration response of long-span 

suspension bridges developed in this research should be exercised to study the effects of 

various realistic damage scenarios on system identification results of long-span cable-

supported bridges, and how these effects can be used to identify the damage.  

5. The discipline of structural damage identification should be extended for the 

purpose of damage prognosis, which consists of predicting in probabilistic terms the 

remaining life of a structure (e.g., buildings, bridges) from the probabilistic characterization of 

its current state and future loads (both service and extreme). 




