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Ab s t r a c t — Standard and routine 
metabolic rates (SMRs and RMRs, 
respectively) of juvenile sandbar 
sharks (Carcharhinus plumbeus) were 
measured over a range of body sizes 
(n =34) and temperatures normally 
associated with western Atlantic 
coastal nursery areas. The mean SMR 
Q10 (increase in metabolic rate with 
temperature) was 2.9 ±0.2. Heart rate 
decreased with increasing body mass 
but increased with temperature at a 
Q10 of 1.8−2.2. Self-paired measures 
of SMR and RMR were obtained for 
15 individuals. Routine metabolic rate 
averaged 1.8 ±0.1 times the SMR and 
was not correlated with body mass. 
Assuming the maximum metabolic 
rate of sandbar sharks is 1.8−2.75 
times the SMR (as is observed in 
other elasmobranch species), sandbar 
sharks are using between 34% and 
100% of their metabolic scope just 
to sustain their routine continuous 
activity. This limitation may help 
to explain their slow individual and 
population growth rates, as well as 
the slow recoveries from overfishing 
of many shark stocks worldwide. 
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Shark populations continue to suffer 
from overfishing throughout the North-
west Atlantic and worldwide (Baum et 
al., 2003). The sandbar shark (Carcha-
rhinus plumbeus) can serve as a model 
for overfished coastal shark species, 
many of which share ecological and 
ecophysiological characteristics. After 
the rapid expansion of the Atlantic 
coastal commercial shark fishery in 
the mid-1980s, sandbar shark num-
bers declined 66% by 1991 (Musick 
et al., 1993; Sminkey and Musick, 
1995). Like many of their K-selected 
relatives, sandbar sharks grow slowly 
and mature after a minimum of 13−15 
years (Casey and Natanson, 1992; 
Sminkey and Musick, 1995). Demo-
graphic models of these species predict 
very slow rates of population increase 
even in the absence of fishing pressure, 
and elasticity analyses of these models 
demonstrate that the juvenile stage 
is the most critical life history stage 
(Sminkey and Musick, 1996; Cortes, 
1999; Brewster-Geisz and Miller, 
2000). It is necessary, therefore, to 

understand the actual and potential 
contributions of various juvenile nurs-
ery areas to recovery of the Northwest 
Atlantic sandbar shark population 
and to recovery of other coastal shark 
stocks (Branstetter, 1990). 

Bioenergetics models can be used to 
assess the impacts and requirements 
of juvenile sharks as apex predators. 
Metabolic rate is the largest and most 
variable component of the energy bud-
get for active fish species, and it is 
critical that it be determined accu-
rately in order to construct realistic 
bioenergetics models (Ney, 1993). 
Systematic metabolic rate data for 
elasmobranchs are only rarely avail-
able, and previous models of sandbar 
shark bioenergetics have relied upon 
metabolic rate data from unrelated 
species (Medved et al., 1988; Stillwell 
and Kohler, 1993). 

* Contribution number 2720 from Depart-
ment of Fisheries Science, Virginia 
Institute of Marine Science, College of 
William and Mary, 1208 Greate Road, 
Gloucester Point, VA 23062. 

Manuscript submitted 21 August 2004 
to the Scientific Editor’s Office. 
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The lower Chesapeake Bay, Mid-Atlantic Bight, and 
adjacent coastal lagoon systems serve as the primary 
summer nurseries for sandbar sharks in the Northwest 
Atlantic (Musick et al., 1993). Juvenile sandbar sharks 
return for four to ten years to these nursery grounds, 
where they enjoy the benefits of generally high food 
availability and limited exposure to large shark preda-
tors (Musick and Colvocoresses, 1986; Grubbs et al., 
in press). Juvenile sandbar sharks in the nurseries 
are exposed to seasonal water temperature variations, 
as well as shorter time-scale fluctuations associated 
with their vertical movements and day to day variation. 
The minimum seasonal temperatures (≈15°C) occur in 
mid or late May, whereas the maximum temperatures 
(≈28°C) are reached in surface waters in July and Au-
gust (Merson and Pratt, 2001). Throughout the day, 
sandbar sharks perform frequent vertical excursions 
and thus experience surface and bottom water tem-
peratures that can differ by up to 5°C (Grubbs, 2001). 
Similarly, in Virginia’s Eastern Shore lagoons, juvenile 
sandbar sharks venture onto broad, warm tidal flats at 
high tide and return to deeper, cooler channels as the 
tide recedes (Conrath1). 

To improve bioenergetics models and to define criti-
cal habitat and the current suitability of nursery areas 
more accurately, standard (SMR) and routine metabolic 
rates (RMR) of juvenile sandbar sharks were measured 
over a relevant range of body masses (≈1 to 10 kg) and 
temperatures (18–28°C) (Merson and Pratt, 2001). This 
is the first direct measurement of SMR, and the first 
comparison of paired SMR and RMR, in a continuously 
active carcharhiniform species. 

Materials and methods 

All experiments were conducted at the Virginia Insti-
tute of Marine Science Eastern Shore Laboratory from 
June through September 2002. Sandbar sharks (57−124 
cm total length; 1.025−10.355 kg) were captured by 
using hook and line from the surrounding tidal lagoon 
system and maintained in shoreside tanks (temperature 
22−29°C, salinity 34−36‰). Individuals were fasted 
for at least 48 hours prior to use in an experiment to 
reduce any confounding effects of specific dynamic action 
(Medved, 1985). 

Standard metabolic rates 

Because sandbar sharks are continuously active obligate 
ram ventilators, SMR measurements were obtained 
from chemically immobilized and artificially ventilated 
animals maintained in flow-through, sealed box res-
pirometers (Brill, 1979, 1987; Leonard et al., 1999). 
Respirometers were constructed of 0.85 cm thick acrylic, 
sized to accommodate the fish being studied, and cov-

1 Conrath, C. 2004. Personal commun. Virginia Institute 
of Marine Science. 1208 Greate Road, Gloucester Point, VA 
23062. 

ered with black plastic to minimize visual disturbance. 
Aerated and filtered seawater from a constant pressure 
head tank passed through the mouth and over the gills 
of the sharks, was mixed in the chamber by a small 
recirculating pump, and exited the respirometer by a 
hose mounted at the top. Water leaving the respirom-
eter was collected, re-aerated, and mixed with a small 
amount of fresh filtered seawater to help maintain a 
constant temperature. Turnover rate for the system was 
20−30%/hour (Steffensen, 1989). 

Sharks were netted, injected with 0.4−1.8 mg/kg of 
the neuromuscular blocking agent pancuronium bromide 
through the caudal vein, and returned to the holding 
tank until they were unable to swim (typically 1−2 min). 
They were then placed supine on a moist towel and ven-
tilated with aerated seawater while electrocardiogram 
(EKG) wire leads were inserted subcutaneously over the 
pectoral girdle to monitor heart rate. Individuals were 
also given an intramuscular injection (0.2−1.2 mg/kg) 
of steroid anesthetic Saffan® (alphaxalone and alph-
adolone; Pitman-Moore, Uxbridge, UK) (Oswald, 1978). 
Two 20-gauge hypodermic needles were inserted into 
the dorsal musculature and used to administer supple-
mentary doses of pancuronium bromide and Saffan® 

whenever any slight tail movement was observed. 
The partial pressure of oxygen (PO2, mm Hg) in the 

seawater was measured with a polarographic oxygen 
electrode (Radiometer A/S, Copenhagen, Denmark) 
mounted in a water-jacketed cuvette (maintained at the 
experimental temperature) and connected to a digital 
oxygen meter (Cameron Instruments Company, Port 
Aransas, TX). All equipment was calibrated to man-
ufacturer’s specifications. Oxygen level in the inflow 
water was measured hourly, and outf low water was 
otherwise monitored continuously. Water temperature, 
PO2, and heart rate were recorded every 10 seconds 
with a computerized data acquisition system (Daqbook 
120 with a DBK52 thermocouple expansion card; Iotech, 
Inc., Cleveland, OH). The inflow ventilation volume (Vg, 
L/min) was adjusted to keep oxygen extraction between 
10% and 20%. Measured PO2 values were converted 
to oxygen content (mg O2/L) following Richards (1965) 
and Dejours (1975). Standard metabolic rate (mg O2/h) 
was calculated by using the Fick principle (Steffensen, 
1989). Because the effects of pancuronium bromide were 
not reversible, at the end of each experiment individuals 
were euthanized with a massive overdose of sodium pen-
tobarbital injected into the caudal vein. Sex was then 
determined and they were weighed to the nearest five 
grams and measured (precaudal and total lengths). 

Standard metabolic rate data for each individual were 
plotted against time and averaged over all hours (range 
1−7 hours) after the outflowing PO2 stabilized. Standard 
metabolic rate measurements were obtained at 24 ±1°C 
on 33 of the 34 animals. In addition, 18 animals were 
exposed to acute temperature changes (to 18 ±1°C or 28 
±1°C, or to both). Temperature change rates averaged 
4.5 ±0.6°C per hour and 6.4 ±1.1°C per hour for cool-
ing and heating, respectively, although these were not 
statistically different (t =−1.46, df=36, P=0.15). Data 
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collection was not resumed until at least one hour after 
the chamber had equilibrated to the new temperature 
(Steffensen, 1989). In order to minimize any system-
atic errors, the direction of temperature change was 
not always the same. To quantify the effects of acute 
temperature changes on SMR and heart rate, Q10 values 
were calculated over the temperature ranges 18−24°C, 
24−28°C, and 18−28°C by following the methods of 
Schmidt-Nielsen (1997). 

Routine metabolic rates 

An annular respirometer (1250 L; diameter 167 cm) was 
used to measure RMR (Bushnell et al., 1989; Parsons, 
1990; Carlson et al., 1999). A cage (diameter 61 cm) was 
placed in the center to force the sharks to swim around 
the perimeter of the tank. Water temperature was con-
trolled during an experiment at 24−26°C by adjusting 
room temperature. 

Sharks were transferred to the respirometer and 
allowed to recover for 30−90 minutes. The tank was 
sealed and data recording continued until oxygen con-
tent was reduced by 15% (≈two hours). The tank water 
was then re-oxygenated before the next measurement by 
pumping the seawater through a membrane oxygenator 
(Medtronics, Inc., Minneapolis, MN) (Steffensen et al., 
1984). A complete RMR experiment consisted of one to 
five iterations of this process. 

Oxygen concentration (mg O2/L) was measured with a 
YSI 57 oxygen meter by using a YSI 5739 polarographic 
electrode oxygen-temperature probe (Yellow Spring In-
struments, Yellow Spring, OH). Water temperature and 
oxygen content were recorded at 20-second intervals with 
a computerized data acquisition system (model PCA-14, 
Dianachart, Inc., Oak Ridge, NJ). Routine metabolic 
rates (mg O2/h) were calculated from the rate of decline 
in dissolved oxygen (mg O2/(L × min)) and the volume of 
the respirometer (Steffensen, 1989). Swimming speeds 
(in body lengths per second, BL/s) were determined 
every 15−30 minutes by averaging the time required 
for the shark to complete three to six laps. To account 
for the increased costs of swimming in a circular path, 
recorded RMRs were corrected to straight line estimates 
(RMRsl) by following the method of Weihs (1981). 

Statistical analysis 

Routine and standard metabolic rate data at each tem-
perature were fitted to the allometric equation MR = 
a × Mb by using nonlinear, iterative Gauss-Newton 
regression (Brill, 1979, 1987). This technique provides 
more accurate estimates of the parameters than log-
transformed linear regression (Glass, 1969). The likeli-
hood ratio test statistic was used to test for differences 
in the allometric exponents (b) among temperatures 
and between SMR and RMR at 24−26°C. Analysis of 
covariance (ANCOVA) of log-transformed metabolic 
rate (with log-transformed mass as covariate) was also 
used to test the equivalence of the exponents (b) in the 
untransformed allometric equations. Differences in SMR 
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gure 1 
Standard metabolic rates (mg O hr) of uvenile sandbar 
sharks (Carcharhinus plumbeus) as determined by flow-
through box respirometry at 18°C ( ), 24°C ( ), and 
28°C ( ). Lines show best-fit allometric equations at 
each temperature. Error bars indicate ±1 standard error. 

0.9 1.5 7 8 9 10 
30 

40 

60 

80 

300 

400 

600 

800 

100 

1000 

S
M

R
 (

m
g 

O
 

h)
 

Mass (kg) 

and heart rate among temperatures were evaluated by 
using ANCOVA. Analysis of covariance with mass as 
covariate was used to test for differences in mean SMR 
Q10’s and heart rate Q10’s among the three temperature 
ranges. The relationship between the RMR-to-SMR ratio 
and body mass was assessed with linear least squares 
regression. Statistical analyses were performed in Sta-
tistica 6.1 (StatSoft, Inc., Tulsa, OK) and SAS, version 
8.0 (The SAS Institute, Inc., Cary, NC), with P<0.05 
taken as the limit for significance. All values reported 
are means ± standard error of the mean. 

Results 

Standard metabolic rates 

Standard metabolic rate increased with body mass (range 
1.025−10.355 kg) at all three temperatures (ANCOVA, 
logmass, F1,59=265.04, P< 0.001 ) (Fig. 1). The best-fit-
ting allometric equations relating SMR (mg O2/h) to 
body mass (M, kg) were 

18°C: SMR = 65 (±15) × n=16, r2 =0.71 (1) 

M0.73 (±0.14) 

24°C: SMR = 120 (±17) × n=33, r2 =0.84 (2) 
M0.79 (±0.08) 

28°C: SMR = 207 (±28) × n=16, r2 =0.87 (3) 
M0.63 (±0.07). 

Standard metabolic rate increased with temperature 
for each individual and overall (ANCOVA, temperature, 
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F2,59=20.99, P<0.001). However, the allometric exponents 
(b) at each temperature were not significantly differ-
ent (likelihood ratio test, χ 2

2=3.2, P=0.20; ANCOVA, 
logmass×temperature interaction, F2,59=0.81, P=0.45). 

The mean SMR Q10’s were 3.2 ± 0.4 for 18−24°C 
(n=14), 2.5 ±0.2 for 24−28°C (n=16), and 2.9 ±0.2 for 
18−28°C (n=13). There was no overall effect of body 

mass on SMR Q10’s (increases in metabolic rate with 
temperature) (ANCOVA, mass, F1,36=0.04, P=0.84), but 
there was a significant negative correlation between 
mass and SMR Q10 for 24−28°C (P=0.014, r2=0.36; 
slope=−0.20 ± 0.07). The temperature range did not 
affect mean SMR Q10 (ANCOVA, range, F2,36=1.37, 
P=0.27). The data sets were therefore pooled and the 
overall mean Q10 was 2.9 ±0.2 (n=43). 
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gure 2 
Heart rates (beats min) of uvenile sandbar sharks 
Carcharhinus plumbeus) (treated with pancuronium 

bromide) measured during standard metabolic rate 

lines represent best-fit linear regressions at each tem-
perature as a function of body mass. Error bars indicate 
±1 standard error. 
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Heart rates 

Heart rate was negatively correlated with body mass at 
all temperatures (ANCOVA, mass, F1,50=29.99, P<0.001) 
(Fig. 2). The relationships between heart rate and body 
mass at each of the three temperatures were 

18°C: Heart rate = 
39.3 (±2.0) − n=14, P=0.05, r2 =0.29 (4) 

1.07 (±0.49) × M 

24°C: Heart rate = 
66.7 (±1.6) − n=29, P<0.001, r2=0.58 (5) 

1.81 (±0.30) × M 

28°C: Heart rate = 
80.4 (±2.9) − n=13, P=0.01, r2 =0.50 (6) 

2.02 (±0.61) × M. 

Heart rate increased with temperature for each indi-
vidual and overall (ANCOVA, temperature, F2,50=64.21, 
P<0.001) (Fig. 2). However, the influence of body mass on 
heart rate did not vary among temperatures (ANCOVA, 
mass×temperature interaction, F2,50=0.69, P=0.51). 

The mean Q10s for heart rate were 2.2 ± 0.05 for 
18−24°C (n=14), 1.8 ±0.04 for 24−28°C (n=12), and 2.1 
±0.03 for 18−28°C (n=11). Heart rate Q10 was not cor-
related with body mass (ANCOVA, mass, F1,31=0.95, 
P=0.34). However, an overall significant effect of temper-
ature range on heart rate Q10 was observed (ANCOVA, 
range, F2,31= 4.68, P=0.02). 18−24°C and 18−28°C were 
significantly different from 24−28°C (P<0.001), but not 
from each other (P=0.08, Tukey unequal n HSD test). 

Routine metabolic rates 

Routine metabolic rate increased with increasing body 
mass (Fig. 3). The best-fitting allometric equation relating 
RMR (mg O2/h) to mass (range 1.025−7.170 kg) was 

RMR = 213 (± 38) × M0.79 (±0.11).	 n=16 (53 trials), (7) 
r2=0.82 

The estimated additional costs of swimming in a curved 
path versus a straight line increased with body mass 
(range 0.8–19.9%; Fig. 3). With the straight-line swim-
ming (RMRsl) estimates, the allometric equation for 
RMR became: 

RMRsl = 200 (±33) × M0.77 (±0.11). n=16, r2=0.83 (8) 

Although the acclimation periods in the annular res-
pirometer were relatively short, it has been shown that 
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Figure 3 
Paired routine (RMR, ) and standard metabolic rates 

charhinus plumbeus) at 24−26°C. Error bars indicate ±1 
standard error. The solid line depicts the best-fitting 
allometric equation with the fish swimming in a curved 
path in an annular respirometer: RMR 213 (±38) 

0.79 (±0.11). The dashed line represents the best-fit allo-
metric equation using the corrected straight-line swim-
ming (RMRsl) estimates: RMRsl = 200 (±33) 0.77 (±0.11)
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sandbar sharks recover rapidly from angling stress 
(6−10 h; Spargo et al.2). There was no evidence of sys-
tematic decreases in RMR (relating to recovery from 
handling stress) during individual RMR experiments, 
which averaged 16.2 ±2.0 hours in length. Using only 
the final trial for each individual, we fitted RMR to the 
allometric equation: 

RMR = 203 (±35) × M0.76 (±0.12). n =16, r2=0.78 (9) 

Routine (average ±SEM) swimming speeds decreased 
with increasing body size according to the exponential 
equation speed (bl/s)=3.54 TL−0.43 (r2=0.18) (Fig. 4). In 
most cases the animal maintained a swimming speed 
and direction along the outer wall of the chamber for 
5−20 minutes before turning around. Because each 
shark swam at a relatively constant speed, the effect 
of swimming speed on metabolic rate could not be 
determined. 

Paired standard and routine metabolic rates 

Paired SMR and RMR measurements were obtained for 
15 sharks (1.025−7.170 kg) (Fig. 3). The mean ratio of 
RMR to SMR at 24°C was 1.8 ±0.1. The mean ratio of 
RMRsl to SMR was 1.6 ±0.1. There was no significant 
correlation between body mass and the ratio of RMR to 
SMR (P=0.93, r2<0.01). The allometric exponents for 
RMR and SMR at 24°C were also not significantly differ-
ent (likelihood ratio test, χ2

1=0.002, P=0.96; ANCOVA, 
logmass × type interaction, F1,45=0.33, P=0.57). 

Discussion 

Effects of body mass and temperature on SMR and RMR 

This study presents the first direct measures of SMR 
and expands the size range over which SMR and RMR 
have been reported for continuously active shark spe-
cies (Fig. 5). Sandbar shark metabolic rate, like that 
of a wide variety of species, increases with increasing 
body mass according to the allometric equation MR = 
aMb, with a b of ~0.71−0.79 (Schmidt-Nielsen, 1997). 
The effects of body mass on SMR, RMR, and RMRsl 
(b in Eqs. 1−3 and 7−9) in sandbar sharks were simi-
lar to published values for other elasmobranchs (e.g., 
Pritchard et al., 1958; DuPreez et al., 1988; Sims, 1996). 
The temperature independence of b, previously reported 
for the lesser sandshark (Rhinobatos annulatus) and the 
bullray (Myliobatus aquila) (DuPreez et al., 1988), was 
evident overall in sandbar sharks. However, there was 
a significant effect of mass on SMR Q10 for the 24−28°C 

2 Spargo, A. L., N. Kohler, G. Skomal, and R. Goodwin. 
2001. The physiological effects of angling on post-release 
survivorship in juvenile sandbar sharks (Carcharhinus 
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and tunas as a function of body mass: Isurus oxyrinchus 
18°C ( , Graham et al., 1990); Sphyrna lewini 21°C 

), 26°C ( ), and 29°C ( ) (Lowe, 2001); Negaprion 
▼

(♦
♦

j
· 

brevirostris 22–25°C ( , Bushnell et al., 1989) and 25°C 
, Scharold and Gruber, 1991); Carcharhinus acrono-

tus 28°C ( , Carlson et al., 1999); C. plumbeus 18°C 
(·······), 24°C (— — —), and 28°C (– – –) (present study); 
kawakawa (Euthynnus affinis) 25°C (———, Brill, 1987); 
yellowfin tuna (Thunnus albacares) 25°C (– ·· –, Brill, 
1987); skip ack tuna (Katsuwonus pelamis) 23.5−25.5°C 
(– –, Brill, 1979). Lines are best-fit allometric equa-
tions at the stated experimental temperatures. 

range. These two findings appear to contradict each 
other, but the 24−28°C pattern may be influenced by 

plumbeus). (Abstract.) American Elasmobranch Society 
17th Annual Meeting, State College, PA. Website:http://www. 
flmnh.ufl.edu/fish/organizations/aes/abst2001d.htm [accessed small sample sizes at larger body masses (only 2 sharks 
on 26 September 2005.] >7.5 kg). 
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The effects of acute temperature change on SMR were 
consistent with published values for other elasmobranchs 
(Q10≈2−3; e.g., DuPreez et al., 1988; Carlson and Par-
sons, 1999; Miklos et al., 2003). The Q10 for the SMR in 
elasmobranchs has also been reported to vary with the 
temperature ranges assessed (Butler and Taylor, 1975; 
Hopkins and Cech, 1994), but this was not the case 
for sandbar sharks. It is important to note the distinc-
tion between acute temperature changes and seasonal 
acclimatization when reporting Q10 values (Schmidt-
Nielsen, 1997). In the present study, sandbar sharks 
were exposed to rapid temperature changes that mir-
rored short-term temperature fluctuations experienced 
in the wild (SMR Q10=2.9 ±0.2). In seasonally acclima-
tized bonnethead sharks (Sphyrna tiburo), the effect 
of seasonal temperature change on metabolic rate was 
lower (Q10=2.29−2.39; Carlson and Parsons, 1999). 

Cost of activity and routine energy expenditure 

The SMR is never realized in fish that must swim contin-
uously to maintain hydrostatic equilibrium or to venti-
late their gills. Measurement of SMR and RMR in active 
species nevertheless allows insight into the division of 
metabolic costs between swimming and maintenance 
processes. For example, the average metabolic rate of 
juvenile scalloped hammerhead sharks (Sphyrna lewini) 
in the wild was 1.4 times the estimated SMR (Lowe, 
2002). In sandbar sharks, the RMR to SMR ratio (1.8 
±0.1) and RMRsl to SMR ratio (1.6 ±0.1) were similar to 
those observed and estimated for several elasmobranch 
species (e.g., 1.5, Brett and Blackburn, 1978; 1.4, Nixon 
and Gruber, 1988; 1.7, Carlson et al., 1999). In other 
words, SMR comprises 56−63% of total metabolic rate 
at routine activity levels. Because the allometric expo-
nents for RMR and SMR were not different at 24°C, we 
conclude that the RMR-to-SMR ratio (and, therefore, 
cost of activity) is also size independent, at least over 
the size range of sandbar sharks tested. 

Our metabolic rate data span the size and tempera-
ture ranges relevant to the summer populations of ju-
venile sandbar sharks in Chesapeake Bay and other 
western Atlantic nursery areas (Grubbs et al., in press; 
Merson and Pratt, 2001). Bioenergetics models require 
estimates of field activity and corresponding energetic 
costs (Lowe, 2002). The swimming speeds of sandbar 
sharks in the annular respirometer (mean 0.55 ±0.03 
bl/s) were well within the range of activity levels ob-
served in nature (Grubbs, 2001). After the application 
of an oxycalorific coefficient of 13.6 J/(mg O2) (Elliott 
and Davison, 1975), the RMR and RMRsl for a 1-kg 
sandbar shark at 24°C represent energy expenditures 
of 69.7 and 63.4 kJ/day, respectively. These values are 
comparable to those for the lemon shark (Negaprion 
brevirostris, 67.7 kJ/day; Nixon and Gruber, 1988), S. 
tiburo (80.2 kJ/day; Parsons, 1990), and S. lewini (96 
kJ/day at ~28°C; Lowe, 2002) . The Q10 values for SMR 
obtained between 18° and 28°C demonstrate that juve-
nile sandbar shark metabolic demands change signifi-
cantly as ambient temperature changes, both on short 

time scales and over the course of the summer stay in 
the nursery areas. 

Heart rates 

Heart rate decreased with increasing body mass but 
increased with temperature (Fig. 2), as it does for other 
ectothermic species (Schmidt-Nielsen, 1997). Heart 
rates of juvenile sandbar sharks were comparable to 
heart rates of two other shark species while swimming 
(Scharold et al., 1989; Scharold and Gruber, 1991), 
although the sandbar shark data should be interpreted 
with caution. Pancuronium bromide has been shown to 
exhibit vagolytic activity in mammals (Melnikov et al., 
1999), but to our knowledge its effect on shark heart 
rates is unknown and would depend on the resting vagal 
tone. In the dogfish (Scyliorhinus canicula), resting 
vagal tone increased with temperature between 7°C and 
17°C (Taylor et al., 1977). The resting vagal tone and 
resulting elevation in heart rate after treatment with 
pancuronium bromide could be significant in sandbar 
sharks, especially at the higher temperatures. If so, 
Figure 2 may reflect the effect of temperature and body 
mass on intrinsic heart rate. 

Measuring SMR of immobilized sharks 

Standard metabolic rate is defined as the oxygen con-
sumption of a postabsorptive-stage fish at rest, and it is 
considered the minimum metabolic cost of organismal 
maintenance (Brett and Groves, 1979). Two methods 
are commonly used to determine SMR. In the first, the 
slope of a power-performance curve relating the loga-
rithm of oxygen consumption rate to relative swimming 
speed is extrapolated back to zero activity (e.g., Lowe, 
2001). However, extrapolation does not take into account 
physiological differences between active and quiescent 
fish, specifically the induction of anaerobic metabolism 
during high-velocity swimming, and may misrepresent 
SMR (Brett and Groves, 1979; Cech, 1990). Further, 
swimming kinematics can be significantly altered in 
a swim flume, leading to overestimates of SMR (Lowe, 
1996, 2001). The second option for measuring SMR is to 
confine the fish in a sealed or flow-through respirometer 
(e.g., Brill, 1987; Hopkins and Cech, 1994). This process 
works well for sedentary species, but active fish will 
struggle in such situations, requiring the use of paralytic 
and sedative agents, as well as artificial ventilation. 

Several studies have confirmed, however, that the two 
methods yield identical results (SMRs and allometric 
exponents) in various fish species (e.g., yellowfin tuna 
[Thunnus albacares]; kawakawa [Euthynnus affinis]; 
skipjack tuna [Katsuwonus pelamis]; rainbow trout [On-
chorynchus mykiss]; American shad [Alosa sapidissima]; 
aholehole [Kuhlia sandvicensis] [Brill, 1979, 1987; Dew-
ar and Graham, 1994; Leonard et al., 1999]). Moreover, 
treatment with anaesthetics has been shown to have no 
effect on the SMR of little skate (Raja erinacea; Hove 
and Moss, 1997) or nursehound (Scyliorhinus stellaris; 
Baumgarten-Schumann and Piiper, 1968). 
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Because sandbar sharks are continuously active, we 
chose to measure SMR in immobilized and artificially 
ventilated animals in flow-through respirometers. As a 
check of this technique, a two-point power-performance 
curve was constructed by using the logarithms of self-
paired SMR and RMR and the mean swimming speed 
of the animal in the annular respirometer. The average 
slope for 15 sharks (0.38 ±0.04) at 24−26°C was similar 
to the slopes of power-performance curves for four other 
ectothermic shark species (0.2, Scharold et al., 1989; 
0.34, Scharold and Gruber, 1991; 0.38, Carlson et al., 
1999; 0.32, Lowe, 2001), and we interpret these data as 
additional evidence that the technique provides accept-
able results. This approach, moreover, avoids the expense 
and difficulties of developing a swimming tunnel large 
enough to accommodate juvenile sandbar sharks and may 
well be generally applicable for generating power perfor-
mance curves in other continuously active fish species. 

Elasmobranch metabolic rates and the cost of growth 

The published SMRs of active elasmobranchs are well 
below those of high-energy demand teleosts (e.g., the 
endothermic tunas; Korsmeyer et al., 1996), with the 
exception of the endothermic mako shark (Isurus oxy-
rinchus) (Graham et al., 1990) (Fig. 5). Brill (1987, 
1996) proposed that the high SMRs of tunas are an 
unavoidable consequence of their morphological, bio-
chemical, and physiological adaptations for extremely 
high maximum aerobic metabolic rates, specifically 
that their large gill surface areas have led to high 
osmoregulatory costs (but see Brill et al., 2001). Most 
elasmobranchs, including the sandbar shark, have less 
than one third the gill surface area of a similar-size 
tuna (Muir and Hughes, 1969; Emery and Szcepan-
ski, 1986). These modest mass-specific gill surface 
areas and corresponding low rates of oxygen delivery 
in ectothermic sharks likely dictate slow asymptotic 
growth rates (Pauly, 1981), in contrast to those of 
tunas, whose cardiovascular systems are adapted for 
meeting multiple metabolic demands (including growth) 
(Bushnell and Brill, 1991; Korsmeyer et al., 1996; Brill 
and Bushnell, 2001). 

Significant levels of specific dynamic action (SDA, the 
elevation in metabolic rate in conjunction with protein 
synthesis after a meal [Brown and Cameron, 1991]) can 
probably not be met by the cardio-respiratory systems 
of elasmobranchs, particularly in continuously active 
species such as the sandbar shark, while they sustain 
routine activity levels. The oxygen consumption rate fol-
lowing a meal can exceed 2−3 times the SMR (DuPreez 
et al., 1988; Sims and Davies, 1994; Ferry-Graham and 
Gibb, 2001), whereas the RMR of sandbar sharks was 
1.6−1.8 times SMR. Assuming that the maximum meta-
bolic rate is 1.8 to 2.75 times the SMR (Scharold et al., 
1989; Lowe, 2001), we determined that sandbar sharks 
are using between 34% and 100% of their metabolic 
scope just to sustain routine activity levels. 

Given these limitations, sandbar sharks and other 
active elasmobranchs probably make tradeoffs among 

metabolic demands at the expense of SDA or growth to 
remain within their available metabolic scope, or they 
may adjust their behavior to seek cooler waters during 
digestion (Matern et al., 2000). Because rapid incorpo-
ration of ingested amino acids into body proteins is not 
possible, many elasmobranchs may have to reduce the 
rate of digestion or integrate SDA over a longer period 
(or do both). For example, estimated daily rations for 
several elasmobranch species average 1−2% of body 
weight per day (e.g., Bush and Holland, 2002; Dowd 
et al., 2006), compared to 4% or more in fast growing 
teleosts (e.g., Olson and Boggs, 1986). Not surprisingly, 
sandbar sharks in the Northwest Atlantic mature only 
after 13−15 years and grow less than 10 cm per year 
during that time (Sminkey and Musick, 1995). Growth 
rates for many other large, active elasmobranch spe-
cies are also slow (Branstetter, 1990). Future research 
might well focus on exploring the relationship between 
SDA, active metabolic rates, and metabolic scopes of 
slow growing, continuously active sharks. 
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