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Abstract

Quantitative models of behavior are a fundamental tool in cog-
nitive science. Typically, models are hand-crafted to imple-
ment specific cognitive mechanisms. Such “classic” models
are interpretable by design, but may provide poor fit to ex-
perimental data. Artificial neural networks (ANNs), on the
contrary, can fit arbitrary datasets at the cost of opaque mech-
anisms. Here, we adopt a hybrid approach, combining the
predictive power of ANNs with the interpretability of classic
models. We apply this approach to Reinforcement Learning
(RL), beginning with classic RL models and replacing their
components one-by-one with ANNs. We find that hybrid mod-
els can provide similar fit to fully-general ANNs, while re-
taining the interpretability of classic cognitive models: They
reveal reward-based learning mechanisms in humans that are
strikingly similar to classic RL. They also reveal mechanisms
not contained in classic models, including separate reward-
blind mechanisms, and the specific memory contents relevant
to reward-based and reward-blind mechanisms.

Keywords: computational cognitive modeling; recurrent neu-
ral networks; reinforcement learning; model comparison;
model inspection

Introduction and Background
Computational models of behavior are a fundamental tool in
many areas of cognitive science. Some of the most popu-
lar models include reinforcement learning (RL; Daw, 2011;
R. R. Miller et al., 1995; Sutton and Barto, 2017), Bayesian
inference (Ma, 2019), and evidence accumulation (Ratcliff
and McKoon, 2008). Computational models have a long and
rich history in the cognitive sciences, partly because they
hold the tantalizing promise to quantitatively test elaborate
hypotheses about unobservable cognitive processes.

To this aim, computational models typically embody hand-
crafted hypotheses about a cognitive process of interest
(Busemeyer and Diederich, 2010). For example, RL models
assume that long-term reward histories are compressed into
a low-dimensional, Markovian value representation, which
is incrementally updated after new reward experiences, fol-
lowing a delta rule (Daw, 2011; Sutton and Barto, 2017).
However, such classical models face problems (Eckstein et
al., 2021):

1) It is fundamentally unclear how well any given model
fits the data (Box, 1979; Navarro, 2019). Using the classic
approach, several competing models are usually compared in
terms of fit to identify the best (Katahira, 2016; Wilson and
Collins, 2019). However, it is unclear when to stop searching:

How do we determine that a winning model fits the data “well
enough” (Palminteri et al., 2017)?

2) There also is the danger of model misspecification, e.g.,
of overlooking a mechanism that is crucial in the true data
generating process (Nassar and Frank, 2016; Nussenbaum
and Hartley, 2019). If a model is misspecified, we are not
only disregarding a crucial mechanism, but other, correctly
specified mechanisms will compensate for the deficit, lead-
ing to additional distortions (Sugawara and Katahira, 2021).

In this study, we argue that deep learning, amongst many
possible applications in the cognitive sciences (Barak, 2017;
Ma and Peters, 2020), can address these issues: 1) The uni-
versal function approximation theorem states that any suffi-
ciently powerful artificial neural network (ANN) can approx-
imate any input-output function arbitrarily well (Cybenko,
1989; Hornik, 1991): Sufficiently deep ANNs, trained on suf-
ficiently large datasets, should therefore be able to represent
any computational processes (LeCun et al., 2015), including
cognitive computational processes. Recent studies have put
this claim to test, and indeed found near-optimal fits of ANNs
in simulation (Ger et al., 2023). In empirical data, many stud-
ies have shown extensive improvements in fit compared to
hand-crafted models (e.g., Agrawal et al., 2020; Battleday
et al., 2020; Kuperwajs et al., 2022; Peterson et al., 2021;
Sutskever and Nair, 2008), including in RL tasks (Dezfouli,
Ashtiani, et al., 2019; Dezfouli, Griffiths, et al., 2019; Fintz
et al., 2021; Jaffe et al., 2022; Song et al., 2017; Yang et al.,
2019).

2) ANNs offer the promise of overcoming model misspec-
ification, precisely because they do not put constraints on the
underlying mechanism, and hence allow any mechanism to
be discovered. However, this flexibility also is a drawback:
ANNs are often called “black boxes” because they do not—
unlike hand-crafted models—offer direct insight into the pro-
cess they learn to emulate (Ma and Peters, 2020).

Here, we first fit a classic hand-crafted RL model and an
ANN to the same human learning task (Bahrami and Nava-
jas, 2020). We formulate the RL model as a special case
of the general ANN, which allows us to construct “hybrid”
RL-ANN models to fill the gaps between both extremes: We
will endow the RL model—step-by-step—with specific, in-
terpretable, and delineated mechanisms until we obtain the
fully general ANN. In this process, we calculate model fits
to assess the empirical evidence for each added mechanism
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in human behavior. We also probe and inspect the compo-
nent mechanisms of each fitted model: For example, we can
directly compare an ANN’s learned input-output mappings to
the fixed input-output mappings of the classic RL model. The
main contribution of this study is to create cognitive models
that capture human learning exhaustively, yet provide insight
into its mechanisms.

Results
Dataset
Human Task In a publicly available dataset, 965 human
participants completed 150 trials of a drifting 4-armed bandit
task (Bahrami and Navajas, 2020; original task by Daw et al.,
2006). On each trial, participants were asked to select one of
four bandits and received a continuous numerical reward (1-
98 points) based on the chosen bandit’s current reward pay-
out. Reward payouts drifted over time (Gaussian walk). Each
participant was randomly assigned to one of three predeter-
mined reward payoff schedules. For details, refer to Bahrami
and Navajas (2020) and Daw et al. (2006).

Previous Findings The task was originally designed to
study the neural mechanisms underlying exploratory and ex-
ploitative choice (Daw et al., 2006). More recently, Fintz
et al. (2021) trained ANN models that suggest that partic-
ipants used RL-like, reward-sensitive as well as exploration-
like, reward-insensitive strategies. However, the study did not
address how both mechanisms interact, a question we will ad-
dress here.

Data Preprocessing We removed all participants who had
missed more than 10% of trials (57 participants, 5.9%), a
visually-determined elbow point, for a final sample size of
908. We set aside 20 participants per payoff schedule (60 to-
tal) as a testing dataset to assess model fit. Of the remaining
848 participants, we selected the largest balanced sub-sample
in terms of reward schedules (825 participants; 275 per sched-
ule) for the training dataset. Reward magnitudes were divided
by 100 (resulting range: 0.01-0.98).

Modeling
Modeling Strategy In its basic form, the classic RL model
RLαβ comprises two functions: A classic, fixed value update
rule fRL that calculates action values v(a) based on observed
rewards rt ; and a softmax action rule that translates values
v(a) into action probabilities p(a) (Table 1). Our first hybrid
model replaces the classic, fixed value update fRL with a re-
current neural network (RNN; a sequential ANN) fRNN . This
allows the shape of the human learning rule to be learned em-
pirically. Our next models expand the list of inputs to the
value update fRNN to assess which information humans use
to calculate values v(a). For example, are value updates con-
textualized by the current value landscape, or is the previous
value of an action enough to determine its new value? Lastly,
we test if other processes besides reward-based learning af-
fect human choice. We construct an ANN that calculates

Table 1: Specification of all models in terms of their update
and action rules. “Model Names” (left column) are structured
as follows: “RLαβ” refers to the basic, classic RL model.
Model names containing “RNN” [“LSTM”] refer to models
that replace the classic RL update rule with a flexible RNN
[LSTM]: Their update rules (right column) use fRNN [ fLST M]
rather than fRL. “O-”, “S-”, and “OS-” (left column) indicate
the memory-based inputs to each model’s update rule (right
column): “O-” and “OS-” models have access to their own
previous output [v, c, or g]; “S-” and “OS-” models have ac-
cess to their previous hidden state s. “-v” and “-c” (left col-
umn) indicate the observation-based inputs to each model’s
update rule (right column): rewards r allow for the calcula-
tion of values v; and choices a for choice-kernels c. “-cv”
refers to models that track both v and c, and combine them at
decision time: The action rule (right column, top row in each
panel) in “v” [“c”] models is based on just values v [choice
kernels c]; “cv” models calculate both and combine them ad-
ditively (i.e., without the capability to show c-v interactions).
“-all” indicates models that have access to all available infor-
mation simultaneously, allowing them to model c-v interac-
tions. Best-fitting models are in bold.

Model Names Update and Action rules
Value (“v”) Models pt(a) = so f tmax(vt(a))
RLαβ vt+1(at) += fRL(vt(at),rt)
RNN-v vt+1(at) += fRNN(vt(at),rt)
O-RNN-v vt+1(at) += fRNN(vt(at),rt ,vt)
S-RNN-v vt+1(at) += fRNN(vt(at),rt ,st)
OS-RNN-v vt+1(at) += fRNN(vt(at),rt ,vt ,st)
LSTM-v vt+1(at) += fLST M(vt(at),rt ,st)
Choice-Kernel (“c”) Models pt(a) = so f tmax(ct(a))
RNN-c ct+1(a) = fRNN(at)
O-RNN-c ct+1(a) = fRNN(at ,ct)
S-RNN-c ct+1(a) = fRNN(at ,st)
OS-RNN-c ct+1(a) = fRNN(at ,ct ,st)
LSTM-c ct+1(a) = fLST M(at ,ct ,st)
Additive (“cv”) Models pt(a) = so f tmax(vt(a)+ ct(a))
RNN-cv vt+1(at) += fRNN(vt(at),rt)

ct+1(a) = fRNN(at)
O-RNN-cv vt+1(at) += fRNN(vt(at),rt ,vt)

ct+1(a) = fRNN(at ,ct)
S-RNN-cv vt+1(at) += fRNN(vt(at),rt ,st)

ct+1(a) = fRNN(at ,st)
OS-RNN-cv vt+1(at) += fRNN(vt(at),rt ,vt ,st)

ct+1(a) = fRNN(at ,ct ,st)
LSTM-cv vt+1(at) += fLST M(vt(at),rt ,st)

ct+1(a) = fLST M(at ,ct ,st)
Interactive (“all”) Models pt(a) = so f tmax(gt(a))
RLαβp f gt+1(at)+ = fRL(vt(at),rt ,at)
RNN-all gt+1 = fRNN(rt ,at)
O-RNN-all gt+1 = fRNN(rt ,at ,gt)
S-RNN-all gt+1 = fRNN(rt ,at ,st)
OS-RNN-all gt+1 = fRNN(rt ,at ,gt ,st)
LSTM-all gt+1 = fLST M(rt ,at ,st)
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Figure 1: Overview and fit of the main models. A) Mod-
els are arranged according to their complexity, starting with
RLαβ at the top-left, and ending with LSTM-all at the bottom-
right. Three main features differentiate RLαβ from LSTM-
all: The ability to flexibly learn the update rule from data
(yellow, diagonal); additional memory capacity (green hues,
vertical); and the existence of a reward-blind choice mech-
anism, and its interaction with the reward-based mechanism
(red hues, horizontal). Arrow colors show which mechanism
is added for each model. Numbers underneath model names
indicate model fit (explained in panel B). Best-fitting models
in bold. B) Model fits, i.e., CE losses on the held-out test
dataset (lower is better). Each panel shows one model fam-
ily (“-c”: Choice-kernel models; “-v”: value models; “-cv”:
additive models; “-all”: interactive models; see Table 1).

reward-independent “choice kernels”, and explore the inter-
actions between value and choice kernel.

Classic Cognitive Models: “RLαβ” and “RLαβp f ” RL
models are built on the notion of values and reward predic-
tion errors (Daw, 2011; Wilson and Collins, 2019): Learners
acquire, through trial-and-error, a value v(ai) for each action
ai. Values are acquired incrementally, by updating them each
time a reward r is observed, based on the reward prediction
error rpe = r − v(ai). To update v(at), having observed rt ,
previous values are moved slightly in the direction of the ob-
served outcome: vt+1(at) = vt(at)+α∗rpe, with the learning
rate parameter α controling the update size. To select actions
based on these (potentially continuously evolving) values, the
cognitive literature often employs the “softmax” transform:
p(a) = so f tmax(β∗v(a)).1 The inverse decision temperature
parameter β controls the stochasticity.

To fit our RLαβ model to the dataset, we initialized ac-
tion values at 0.5 and performed gradient descent (Adam op-
timizer) on the cross-entropy loss CE = −∑

smax
s=1 ∑

tmax
t=1 a1h ∗

log(p(a))/(pmax + tmax). a1h is the one-hot vector of partic-
ipants’ actions; p(a) are model-derived action probabilities
for each subject s and trial t (batch size smax = 64). Parame-
ters α = 0.77 and β = 7.05 led to the best fit on the training
data. (For testing loss and prediction accuracy on held-out
participants, see Table 1 and Fig. 1B).

To assess qualitative model fit (Palminteri et al., 2017), we
characterized models’ ability to reproduce human behavior:
We simulated behavior from the best (in training) among four
models, asking the model to select actions based on its own
proposed action probabilities, using human-fitted parameters.
We simulated n = 825 agents with t = 150 trials, and sub-
jected the simulated agents to the same behavioral analyses
as humans. Although the RLαβ model learned to perform the
task, it did not reproduce typical human behavioral patterns
(Fig. 2B). To address this shortcoming, the RLαβ model is
commonly expanded, for example by forgetting and choice
persistence mechanisms, parameterized by f and p, respec-
tively (e.g., Eckstein et al., 2022). Adding these parameters
in model RLαβp f led to a slight improvement in model fit
(Fig. 1).

Most Flexible Model: “LSTM-all” We next fit the most
general ANN: a long short-term memory (LSTM; Hochreiter
and Schmidhuber, 1997) model we call “LSTM-all” because
it has access to “all” observable trial information rt and at .
We trained LSTM-all to output a 4-dimensional “gist” vector
gt(a) on each trial t, which—similar to RLαβ’s vt(a)—was
submitted to the softmax function to obtain action probabili-
ties (Table 1).

LSTM-all was fitted using the same CE loss as RLαβ and
RLαβ p f . Hyperparameters were chosen based on visual in-
spection of training trajectories, and then fixed for all mod-

1We use the notation a to signify the vector of all actions; at
refers to the action chosen at trial t. p(a) [v(a)] denotes the vector
of all action probabilities [values].
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els.2 LSTM-all’s behavioral validation was outstanding, with
all human behavioral markers reproduced reliably (Fig. 2B;
for quantitative fit, see Fig. 1B). Hence, as expected, the con-
strained RLαβ model does not capture human behavior as well
as the flexible LSTM-all. This raises the question which spe-
cific mechanisms LSTM-all capture that RLαβ was lacking.

Basic Value RNN: “RNN-v” We first tested whether relax-
ing the functional form of the RLαβ value update improves
model fit. We created RNN-v, a model identical to RLαβ ex-
cept that it replaced fRL with an unconstrained RNN fRNN .
Notably, fRNN was constrained to the same inputs as fRL (i.e.,
did not recurrent states like regular RNNs; Table 1). Specif-
ically, RNN-v implements a recurrent 3-layer MLP with 2
input units (vt(at),rt ), 16 hidden units (st ), and 1 output unit
(ut(at)). RNN-v’s free parameters θRNN contain weight ma-
trices W and biases b. tanh is a non-linear activation function:

st = tanh(Wh[vt(at),rt ]+bh)

ut(at) =Wust +bu

vt+1(at) = vt(at)+ut(at)

As expected, RNN-v achieved better quantitative (Fig. 1B)
and qualitative fit (Fig. 2B), though the differences were rel-
atively small.

After training, the fitted weights θRNN of fRNN implement
a value update function entirely learned from human behav-
ior (Fig. 2A, second row). Because fRNN has the same inputs
and outputs as fRL (Table 1), the two are directly comparable
(Fig. 2A, top row). We found that when the chosen action
at had a high value prior to the update (x-axis), fRNN and
fRL were similar: Larger rewards (yellow) resulted in larger
updated values than smaller rewards (blue). There was a dif-
ference with respect to reward sensitivity, however: Whereas
fRL showed an even spread over reward magnitudes, fRNN
was compressed at the high and low ends. Furthermore, when
the chosen action at had a low value prior to the update, fRNN
diverged substantially from fRL: Previously low values stayed
low, irrespective of the reward magnitude. In sum, allowing
functional flexibility in the value update improved RNN-v’s
fit to human data. The learned value update function showed
a distortion in human reward sensitivity and reduced updat-
ing for low-valued actions. 3 However, compared to other
mechanisms explored later, the improvement in RNN-v’s fit
was relatively small (Fig. 1B).

2batch size smax: 64; number of training steps: 200.000; size of
hidden layer: 16; Adam optimizer learning rate for RLαβ, RLαβp f ,
and all models of the “-all” family: 0.001; for all other models:
0.0001

3Note that these patterns could conflate task-based and individual
differences. For example, it is possible that some participants, e.g.,
due to a lack of task engagement, showed a lack of reward-informed
action choice (i.e., no detectable value update in vt+1) and hence ob-
served generally smaller rewards (i.e., low values vt ). These partici-
pants might explain the left (low-value) side of the update function.
A different group of participants, showing optimal task engagement,
might however show great sensitivity to reward differences (i.e., eas-
ily detectable value update in vt+1), and hence observe consistently
large rewards (i.e., high values vt ). These participants might explain
the right (high-value) side of the update function.
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Figure 2: A) Analyzing learned learning rules. All “v mod-
els” update v(a) on each trial, using parameters and (except
for RLαβ) update functions (learning rules) learned from hu-
man data. X-axes (vt(at)) and colors (rt ) show function in-
puts, y-axes show function outputs (vt+1(at)), for a full spec-
ification of the learned functions. Methods: 10.000 random
input tuples were passed through each update function to ob-
tain outputs. rt was sampled randomly across the allowed
range [0,1]; vt(at) and st were sampled within 3 standard de-
viations of their mean along their first principal component
(PC). Points indicate means, error bars standard errors of the
mean, after binning data points into 0.1-sized bins based on
reward magnitude. Differences in y-axis scale can be inter-
preted as differences in “decision temperature”. B) Assessing
qualitative model fit using behavioral simulations. We used
human-fitted parameters θ to simulate artificial behavior, and
subjected all (artificial and human) datasets to the same be-
havioral analyses. Action bout length (participants’ average
numbers of subsequent identical actions) is one example be-
havior. Box plots show the 25th, 50th (median), and 75th
percentile over participants; whiskers extend to the 1.5-fold
interquartile range; remaining participants are represented by
dots. Models are arranged in the same way as in Fig. 1. Qual-
itative model fit, i.e., similarity to human behavior (top-right),
closely mirrors quantitative model fit (Fig. 1, Table 1), with
similar results for behaviors other than action bout length.
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Value RNN with Output Memory: “O-RNN-v” We next
investigated whether the ability to access not just the value
of the chosen action vt(at), but of all actions vt(a) improves
model fit, creating model O-RNN-v (Table 1). Access to v(a)
allows O-RNN-v to condition individual value updates on its
own, as well as all other actions’ values. Indeed, model fit
improved (Fig. 1B, Fig. 2B): In analyses not shown here, we
observed that O-RNN-v learned to apply different value up-
dates in different value contexts. This suggests that in the cur-
rent task, humans conditioned individual value updates on the
current value landscape, rather than performing them in iso-
lation, in accordance with previous findings (e.g., Palminteri
et al., 2015).

Value RNN with State Memory: “OS-RNN-v” We next
investigated the effects of memory more broadly, construct-
ing OS-RNN-v, which receives its own prior hidden state st
as an additional input, completing the classic RNN architec-
ture (Table 1). Access to st allows the model to carry in-
formation between trials that is not directly related to action
choice (in the way v(s) is), and can hence capture long-term
contingencies or action plans (or individual differences, see
Discussion). This change further improved quantitative (Fig.
1) and qualitative fit (Fig. 2B).

Value LSTM: “LSTM-v” We then constructed LSTM-v,
a vanilla LSTM trained on the value-based inputs (Table 1):
Like the other models in the “v family”, LSTM-v submitted a
4-dimensional vector v(a) to the choice rule, and provided up-
dates ut(at) to the previous action (at). LSTM-v is the most
powerful model in the v-family, with a potentially improved
capacity to capture long-term dependencies. However, model
fit did not improve (Fig. 1, Fig. 2B).

Choice-Kernel RNNs: “-c Models” Despite access to the
full capacity of the LSTM architecture, LSTM-v does not
achieve the same fit as LSTM-all (Fig. 1, Fig. 2B). The rea-
son is that LSTM-v lacks access to the identity of the chosen
action at (Table 1). We therefore investigated next how much
behavioral variance in the human data could be explained by
models based on action identity at . To this aim, the choice-
kernel or “c family” of models had access to at , but not r
(Table 1). We constructed the c family in direct correspon-
dence to the v family, allowing direct comparison of the role
of memory (differences between “O-”, “S-”, and “OS-” mod-
els).

We found that similar to value RNNs, choice-kernel RNNs
benefit from access to c (“O” models) and s (“S” models“),
with even larger observed differences in model fit (Fig. 1).
This suggests that long-term memory might play a larger role
in action-history dependent (i.e., choice kernel-based) than in
reward-dependent (i.e., value-based) choice.

Interestingly, the choice kernel-based model with full
memory capacity (LSTM-c) explains more variance than its
value-based partner LSTM-v (Fig. 1), suggesting that in the
current task, participants relied more on action patterns than
reward information. This could reflect an increased use of

exploratory strategies (Fintz et al., 2021) or lack of task en-
gagement.

Additive Combination of Value and Choice Kernel: ” -cv
Models” We next asked how v and c processes interact. We
first constructed models that calculate both choice kernels and
values independently, and only (additively) combine them at
the final decision stage (“additive” family, Table 1). Indeed,
additive models fit the human data much better than either
component model alone, at every level of memory use (Fig.
1). Additive models also show substantially better qualitative
fit than prior models (Fig. 2B).

Interactions between Value and Choice Kernel: “-all
Models” The models in the additive family lack one cru-
cial capability of LSTM-all, notably the non-linear combina-
tion of reward and action identity: By design, additive models
cannot capture processes that combine, compare, or contex-
tualize reward and action identity with each other because the
calculations are performed separately (Table 1).

We hence constructed the final “interactive” model family
to assess evidence for choice kernel-value interactions (Ta-
ble 1). Interestingly, interactive models do not generally pro-
vide improvements in quantitative (Fig. 1) or qualitative fit
(Fig. 2B) over additive models (with the potential exception
of LSTM-all). This might suggest that humans process re-
ward histories and action histories using distinct cognitive—
and potentially neural—pathways, in accordance with previ-
ous findings (K. J. Miller et al., 2019).4

Discussion
This paper addresses several open questions in the field of RL
and cognitive modeling: 1) How much behaviour in typical
RL tasks is explained by theoretical, hand-crafted RL mod-
els? Echoing previous findings in RL (e.g., Dezfouli, Ash-
tiani, et al., 2019; Dezfouli, Griffiths, et al., 2019; Fintz et
al., 2021; Jaffe et al., 2022; Song et al., 2017; Yang et al.,
2019) and other fields (e.g., Agrawal et al., 2020; Battleday
et al., 2020; Kuperwajs et al., 2022; Peterson et al., 2021), we
find that hand-crafted, cognitive RL models leave substantial
amounts of behavioral variance unexplained, which can reli-
ably be captured using more flexible, ANN-based models.

2) If hand-crafted RL does not explain human choice,
which mechanisms do? We find strong evidence for an
outcome-insensitive decision mechanism, which might cap-
ture exploration or habits (K. J. Miller et al., 2019). This
mechanism can be inspected and interpreted based on input-
output mappings just like the value-based mechanism (Fig.
2A), though we are not showing the results here. Surpris-
ingly, we find no evidence for non-linear interactions between
reward-based and outcome-insensitive mechanisms, suggest-
ing separate cognitive mechanisms.

4Note that this conclusion is based on the assumption that the
current dataset was large enough to fit all models optimally, which
might not be the case (see Discussion and Fig. 3). Some of the
observed pattern could also arise if more complex models were un-
derfit.
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Figure 3: Model fits vary with training data size. Each line
refers to one model, colors and linetypes specify model cat-
egories. Each model was fitted to four different datasets
(30, 120, 480, or 825 participants) for 200.000 training
steps, using the same hyperparameters. The trained models
were then tested on the same held-out data (y-axis, negative
log-likelihood / cross-entropy). More flexible models (e.g.,
LSTM, OS-RNN) showed greater improvements in fit than
less flexible models (e.g., RLαβ), driven by both increased
overfitting (i.e., worse fit to held-out data) when trained on
smaller datasets, and superior generalization (i.e., better fit to
held-out data) when trained on larger datasets.

3) How do humans perform RL? RL theory specifies a par-
ticular updating rule, but other functional forms are possible.
Our framework shows which form the human update takes
when learned directly from data.

4) What role does memory play in human action selection?
While the literature on memory and its interactions with RL is
rich, it has traditionally been difficult to create hand-crafted
models that encompass both processes (Collins, 2019; Daw
and Shohamy, 2008). We show distinct roles of memory for
reward-based and reward-insensitive choice processes.

These findings extend previous studies that have aimed to
achieve interpretability when using ANNs as cognitive mod-
els. Previous suggestions range from shifting the research
focus from explanation to prediction (Yarkoni and Westfall,
2017), analyzing ANNs’ hidden representations (Kriegesko-
rte, 2015; Schaeffer et al., 2020) or behavioral predictions
(Agrawal et al., 2020; Dezfouli, Griffiths, et al., 2019; Fintz
et al., 2021), directly comparing ANNs to hand-crafted cog-
nitive models (Fintz et al., 2021), creating ANNs that expose
interpretable information in their hidden state (Dezfouli, Ash-
tiani, et al., 2019; Dezfouli, Griffiths, et al., 2019), or inte-
grating ANN-based representations (Battleday et al., 2020;
Noti et al., 2016) or entire computational components into
existing, hand-crafted models (Peterson et al., 2021). Our ap-
proach is very closely related to Peterson et al. (2021).

Limitations and Future Work

Dataset Size One limitation of the current study is the
dataset size. Even though at 965 participants, the dataset
(Bahrami and Navajas, 2020) is an order of magnitude larger
than most standard studies in the field, we observed indices
that it might be too small: We calculated the test loss of
our models after training on different data sizes. Our most
flexible models still showed improvements leading up to the
largest size (Fig. 3). Furthermore, some results were sensi-
tive to small changes in the size of training and testing data
or on participants’ assignments. We see two main solutions:
collecting a larger dataset or reducing model complexity in
accordance with the given dataset (e.g., by reducing the num-
ber of hidden neurons).

Task Design Some of our results might be specific to the
current task, rather than pertain to learning and decision mak-
ing more broadly. For example, the strong role of choice
kernel-based control might be related to the relatively large
number of four alternatives, or the common closeness of al-
ternatives to each other, which makes it difficult to identify
the best (Fintz et al., 2021). If this is the case, conclusions
drawn from this dataset might not explain the fundamental
set-up of human learning, but rather elucidate particular task
strategies (Eckstein et al., 2021; Nussenbaum and Hartley,
2019).

To alleviate this problem, future work needs to exhaus-
tively sample the space of task features over which con-
clusions are aimed to be drawn (e.g., number of bandits;
stochastic or deterministic reward scheme; volatile or stable
trial structure; correlated, anticorrelated, uncorrelated ban-
dits; etc.). Such a dataset would allow to marginalize over
individual task features (Peterson et al., 2021), and follow
a ubiquitous aspiration to introduce richer, more complex
paradigms into the study of cognition (Battleday et al., 2020;
Ma and Peters, 2020).

Individual Differences Like the majority of cognitive
ANN studies, our approach does not explicitly model individ-
ual differences (however, see Dezfouli, Ashtiani, et al., 2019;
Dezfouli, Griffiths, et al., 2019). This is particularly relevant
in the current setting because our basic RL models have no ca-
pacity to capture individual differences, while more advanced
models have this capacity as long as they are endowed with
state-memory: These advanced models can adapt to individu-
als by conditioning decisions on their hidden state, which can
represent unique individual characteristics.

Conclusion
In this paper, we introduce “hybrid ANNs”, a combination of
classic RL models and ANNs. These models have both pre-
dictive (excellent fit) and explanatory power (interpretability
of the resulting models), and potentially provide detailed in-
sight into human cognitive processes.
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