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A point process is a random collection of points falling in some space.

In most applications, each point represents the time and/or location of an

event. Examples of events include incidence of disease, sightings or births of a

species, or the occurrences of fires, earthquakes, lightning strikes, tsunamis,

or volcanic eruptions. When modeling purely temporal data, the space in

which the points fall is simply a portion of the real line (Figure 1). Increas-

ingly, spatial-temporal point processes are used to describe environmental

processes; in such instances each point represents the time and location of an

event in a spatial-temporal region (Figure 2).
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Figure 1: Temporal point process

DEFINITIONS

There are several ways of characterizing a point process. The mathematically-

favored approach is to define a point process N as a random measure on a

space S taking values in the non-negative integers Z+ (or infinity). In this

framework the measure N(A) represents the number of points falling in the
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subset A of S. Attention is typically restricted to random measures that are

finite on any compact subset of S, and to the case where S is a complete

separable metric space (e.g. Rk).
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Figure 2: Spatial-temporal point process

For instance, suppose N is a temporal point process. For any times s

and t, the measure N assigns a value to the interval (s, t). The value as-

signed by N is the number of points occurring between time s and time t;

in Figure 1, this number is 3. For the set A in Figure 2, the value of N(A) is 2.

The random measure definition above is perhaps not the most intuitive

means of characterizing a point process, and several alternatives exist. Con-
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sider the case of a temporal point process, e.g. the times of events occurring

between time 0 and time T . One may characterize N as an ordered list

{τ1, τ2, ..., τn} of event times. One may alternatively convey the equivalent

information about N via the interevent times {u1, u2, ..., un}, where τ0 = 0

and ui = τi − τi−1.

N may alternatively be described by a counting process N(t), where for

any t between 0 and T , N(t) is the number of points occurring at or before

time t. Note that this process N(t) must be non-decreasing and right con-

tinuous, and take only non-negative integer values. One could thus define

a temporal point process as any non-decreasing, right-continuous Z+-valued

process. This sort of definition is used by Jacod (1975), Brémaud (1981),

Andersen et al. (1993), and others.

The counting process definition of a point process lends itself naturally to

discussions of martingales and distributional theory. On the other hand, the

random measure formulation has the advantage of generalizing immediately

to point processes in higher dimensions and in abstract spaces, and is thus
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preferred.

Within the random measure framework, it is often convenient to note that

a realization of a point process N can be written as the sum of Dirac delta

measures δτi
, where for any measurable set A, δτi

(A) = 1 if A contains the

point τi, and δτi
(A) = 0 otherwise. In addition, one often works with in-

tegrals with respect to dN :
∫
A

dN is simply the number of points in the set

A, and for any function f on A,
∫
A

fdN is defined simply as the sum
∑

i:τi∈A
f(τi).

Traditionally the points of a point process are thought to be indistin-

guishable, other than by their times and/or locations. Often, however, there

is other important information to be stored along with each point. For exam-

ple, one may wish to analyze a list of times of volcanic eruptions along with

the sizes of the eruptions, or a catalog of arrival times of hurricanes along with

the amounts of damage attributed to each. Such processes may be viewed as

marked point processes, i.e. a random collection of points, where each point

has associated with it a random variable, or mark.
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The relationship between time series and point processes is worth noting.

Many environmental datasets that are traditionally viewed as realizations

of (marked) point processes could in principle also be regarded as time se-

ries, and vice versa. For instance, a sequence of earthquake origin times is

typically viewed as a temporal point process; however, one could also store

such a sequence as a time series consisting of zeros and ones, with the ones

corresponding to earthquakes. Such a representation would typically be ex-

tremely cumbersome, requiring numerous zeros to store limited information.

The time series representation is useful for processes taking on different val-

ues on a lattice of different time points; the point process representation is

preferable for processes that take on values only at certain selected times, and

where these time points may be anywhere on the real line, not necessarily on

a lattice.

BASIC CLASSES OF POINT PROCESSES

Of the adjectives used to describe point processes, two of the most funda-

mental describe processes whose points are well-dispersed. A point process is
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called simple if with probability one, all its points {τi} are distinct, i.e. τi 6= τj

for i 6= j. A point process N is orderly if for any t, 1
∆tP{N [t, t+∆t] > 1} → 0

as ∆t → 0.

A point process N may be called self-exciting if cov{N(A), N(B)} > 0 for

any two adjacent disjoint sets A and B in S; N is self-correcting if instead

this covariance is always negative. Thus the occurrence of points in a self-

exciting point process causes other points to be more likely to occur, whereas

in a self-correcting process, the points have an inhibitory effect.

The most important type of point process is the Poisson process, which is

neither self-exciting nor self-correcting. The Poisson process is defined as a

simple point process N such that the number of points in any set follows a

Poisson distribution and the numbers of points in disjoint sets are indepen-

dent. That is, N is a Poisson process if N(A1), . . . , N(An) are independent

Poisson random variables, for any disjoint, measurable subsets A1, . . . , An of

S.
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MODELING TEMPORAL POINT PROCESSES

The behavior of a temporal point process N is typically modelled by spec-

ifying its conditional rate process λ. λ may be thought of as the frequency

with which events are expected to occur around a particular point in time,

conditional on the prior history of the point process. In the statistical lit-

erature, λ is more commonly referred to as the conditional intensity rather

than conditional rate. However, the term intensity is also used in various

environmental sciences, e.g. in describing the size or destructiveness of an

earthquake, so to avoid confusion, the term rate is preferred.

Formally, the conditional rate process λ associated with a temporal point

process N may be defined by the limiting conditional expectation

λ(t) = lim
∆t→0

E{N [t, t + ∆t]|Ht}
∆t

, (1)

provided the limit exists. Here Ht is the entire history of the point process

N up to time t. Some authors instead define λ via

λ(t) = lim
∆t→0

P{N [t, t + ∆t] > 0|Ht}
∆t

; (2)

for orderly point processes the two definitions are equivalent.
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λ(t) represents the infinitesimal expected rate of events at time t, given

the entire history up to time t. As all finite-dimensional distibutions of N

may be derived from the conditional rate (see Daley and Vere-Jones, 1988),

in modeling N it suffices to set down a model for λ.

Although λ may be estimated nonparametrically (Diggle 1985; Guttorp

and Thompson, 1990; Vere-Jones, 1992), it is more common to estimate λ via

a parametric model. At present, two models most often used for many tem-

poral environmental processes such as wildfire and earthquake origin times

are stationary Poisson and renewal models (Johnson and Gutsell, 1994; Ka-

gan, 1997). These models are described below.

In general, λ depends not only on t but also on the times τi of preceding

events. When N is a Poisson process, however, λ is deterministic; i.e. λ(t)

depends only on t. A stationary Poisson process has constant conditional

rate: λ(t) = α, for all t. In the case of modeling environmental disturbances,

this model incorporates the idea that the risk of an event is the same at
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all times, regardless of where and how frequently such disturbances have oc-

curred previously.

Another important elementary type of temporal point process is the re-

newal process. A renewal process on the line is a simple point process such

that the interevent times {u1, u2, ..., un} are independent (typically i.i.d.)

random variables. In the i.i.d. case, the density function governing each

interevent time is called the renewal density. For example, Nadeau et al.

(1995) analyze clusters of Parkfield microearthquakes by modeling them as

renewal processes with log-normal renewal density.

For a temporal renewal process with density f , the conditional rate is given

by λ(t) = s(t− t̃), where t̃ is the time of the most recent event prior to time

t, and s(t) is the survivor function corresponding to f . That is, s(t) = f(t)
1−F (t) ,

where F (t) =
t∫
0
f(u)du is the cumulative distribution function corresponding

to f . Note that f is ordinarily taken to be a density on the half-line, i.e.

f(t) = 0 for t < 0.
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Renewal models embody the notion that the hazard of an event occurring

at a particular time depends only on the time since the most recent event. In

fire hazard analysis, for example, such a model is consistent with the theory

of fuel loading followed by complete fuel depletion in the event of a fire.

Self-exciting point process models are often used in epidemiology and seis-

mology to model events that are clustered together in time. A commonly

used example is the Hawkes model, where λ is given by

λ(t) = µ(t) +
t∫

0

ν(t− u)dN(u), (3)

the functions µ(t) and ν(t) representing the background rate and clustering

density, respectively. An example where µ(t) is constant is offered by Hawkes

and Adamopoulos (1973). Two forms of the clustering density ν that are used

in modeling earthquakes (Ogata, 1988) are:

ν(t) =
κ

(t + φ)θ
(4)

and

ν(t) =
K∑

k=1
φkt

k−1e−θt, (5)

which correspond with power-law and exponential decay in the clustering be-
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havior over time.

Self-correcting models are used in ecology, forestry and other fields to

model occurrences that are well-dispersed. Such models may be useful in

describing births of species, for example, or in seismology for modeling earth-

quake catalogs after aftershocks have been removed (Vere-Jones, 1978). An

important example is the Markovian point process model (so called because

the conditional rate obeys the Markov property) where

λ(t) = f{t, N [0, t)}. (6)

For example, the function f may be selected so that λ takes the form

λ(t) = exp{α + β(t− ρN [0, t))}, (7)

where α, β and ρ are constants (e.g. Isham and Westcott, 1979; Ogata and

Vere-Jones, 1984; Vere-Jones and Ogata, 1984). The parameters α and β

govern the background rate and trend in the occurrences, while the product

βρ represents the decrease in conditional rate of future events caused by each

event, perhaps due to diminished fuel load in the case of wildfire modeling,

or the release of strain energy in the seismological case.
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MODELING MARKED AND MULTIDIMENSIONAL POINT PROCESSES

The above models are used to describe purely temporal behavior of point

processes. When N is a marked point process, e.g. information associated

with the character or magnitude of each event is available, the marks may

provide additional information and therefore the formulae for λ may be ad-

justed. For instance, Ogata (1988) suggests replacing the clustering density

ν(t) by a function ν(t,mi) which is a function not only of time t but also of

the mark mi associated with event i.

The definition of the conditional rate process can be extended to the more

general case of a spatial-temporal marked point process. Unlike the one-

dimensional case where it is most natural to condition on the past, various

natural choices exist for conditioning in the spatial case; see Merzbach and

Nualart (1986) or Schoenberg (1999) for details.

The spatial-temporal Poisson process may be useful to model processes

without spatial or temporal interactions, i.e. processes for which the oc-
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currence of an event at one location and time does not influence the oc-

currence of future events or events at other locations. Many environmental

processes are thought to have important interactions however. In the case

where points are clustered spatially and/or temporally, the Hawkes model,

whose definition extends immediately to the spatial-temporal case, may be

useful. An important example is the Neyman-Scott cluster process (Ney-

man and Scott, 1958). When points are well-dispersed, multi-dimensional

self-correcting models may be useful; see Ogata and Tanemura (1986) for an

application to Japanese black pine saplings and seedlings, where each tree

appears to have an inhibitory effect on the growth of nearby trees.

The definition of the renewal process may also be extended to the plane;

see Hunter (1974) or Daley and Vere-Jones (1988). Despite the popularity of

renewal models for temporal point processes, two-dimensional renewal mod-

els appear to have been sparsely (if ever) used in the analysis of planar point

process data.

TRANSFORMATIONS
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Some important operations on point processes include superposition, thin-

ning, and rescaling. Graphically, these operations correspond, respectively,

to overlaying points of one process onto the plot of another point process,

deleting certain points, and stretching out an axis of a point process.

Mathematically, superposition of point processes corresponds to addition,

i.e. N3 is the superposition of point processes N1 and N2 if N3(A) = N1(A)+

N2(A) for any measurable set A in S. In the case of thinning, each point

τi of N is deleted with some probability pi; in the simple case all points are

eliminated with equal probability (pi = p). A temporal point process N is

rescaled by a factor of α to form the process M if N(0, t) = M(0, αt) for all

t.

The Poisson process frequently arises as a limiting process resulting from

transformations of point process. For example, Palm (1943) showed that un-

der quite general conditions, when k independent copies of a temporal point

process are superposed and rescaled by a factor of k, the resulting process
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converges to a Poisson process (for details see Kallenberg, 1983, or Daley

and Vere-Jones, 1988). Similar results can be obtained for randomly thinned

point processes (Westcott, 1976) or rescaled point processes (see Karr, 1991).

Other important operations involve transforming a point process into an

image, e.g. via Dirichlet tessellation [see tessellation] or kernel smoothing.

ESTIMATION AND SIMULATION

The parameter vector θ for a point process model with conditional rate

λ(θ) is usually estimated by maximizing the log-likelihood function

L(θ) =
∫
S

log[λ(θ)]dN −
∫
S

λ(θ)dµ, (8)

with µ typically Lebesgue measure on S.

For example, for a temporal point process observed from time 0 to time

T , one maximizes the log-likelihood function

L(θ) =
T∫
0

log[λ(t; θ)]dN(t)−
T∫
0

λ(t; θ)dt. (9)
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The consistency, asymptotic normality, and efficiency of the maximum like-

lihood estimators, under various conditions, have been established (Brillinger,

1975; Ogata, 1978). Standard errors may be obtained via the Hessian of

the log-likelihood, under certain limitations (Kutoyants, 1984; Dzhaparidze,

1985; Rathbun and Cressie, 1994).

Alternatively, simulations may be useful for obtaining approximate stan-

dard errors and for other types of inference. Lewis and Shedler (1979) and

Ogata (1981) devised an effective simulation method for point processes based

on random thinning theory. The procedure, which works for point processes

whose conditional rate λ is bounded (or locally bounded), involves simulating

a (locally) stationary Poisson process and thinning it, keeping each point τi

with probability λ(τi).

MODEL EVALUATION
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A useful technique for evaluating point process models is via random

rescaling. The method essentially involves rescaling the observed point pro-

cess N at time t by a factor of λ̂(t), where λ̂ is an estimate of the con-

ditional rate λ. The resulting process M is a stationary Poisson process

with unit rate, under quite general conditions (Meyer, 1971; Brémaud, 1972;

Papangelou, 1972; Aalen, 1975). The technique has been extended to the

multi-dimensional case (Merzbach and Nualart, 1986; Nair, 1990; Schoen-

berg, 1999).

It can be shown that the rescaled process M is Poisson with unit rate if

and only if the model is correct; i.e. λ̂ = λ almost everywhere with probabil-

ity one (Schoenberg, 1999). Hence a useful method for assessing the fit of a

point process model is to examine whether the rescaled point process looks

like a Poisson process with unit rate. Several tests exist for this purpose,

with different uses depending on the alternative hypotheses (e.g. Saw, 1975;

Diggle, 1979; Dijkstra et al., 1984; Lisek and Lisek, 1985; Lawson, 1988; Ar-

sham, 1987; Andersen et al., 1993). Some of the most useful are tests based

on second and higher order properties (Bartlett, 1964; Davies, 1977; Ripley,
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1979; Heinrich, 1991).
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