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Abstract: 
In this report we present an architectural approach to add quality-of-service (QoS) 
assurance and location awareness to service-based systems within existing clinical 
infrastructures. To address typical design requirements of such systems (e.g., 
cooperating services, performance and availability) the work proposes a service-
oriented architecture (SOA) as architectural concept and architectural translucency 
to provide stable QoS. We evaluate position sensing systems, QoS assurance 
approaches and present design principles for service-based health care applications. 
Furthermore, we present a clinical application scenario and an architectural 
approach to integrate existing infrastructure into a human centric assistance system. 
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Chapter 1

Introduction

Services in clinical environments typically take place under high workloads and
have to handle many different problems in a very short time. Digital assistance
through software systems and electronic devices is able to reduce administra-
tive workload and free physician and nurses for their core competence, taking
care of patients. Examples for such technologies are hospital information sys-
tems (HIS) and electronic patient records (EPR) or electronic health records
(EHR) [7] which simplify the access to patient data and medical information.
Furthermore, there are devices that can provide information about the location
of patients, staff and medical devices in the hospital. Such localization can be
done via different technologies, for example Ultra Wide Band (UWB), Bluetooth
(BT) or Wireless LAN (WLAN) location applications. UWB has the advantage
that it works independently of other systems, allows very precise location and
sends with a very low signal strength. WLAN localization on the other hand
can be done in existing WLAN networks and allows the localization of comput-
ers, such as handhelds and laptops. Hybrid approaches that use two or more
such technologies typically provide higher precision and more robust position
sensing [10]. Handhelds and laptops are widely used in hospital environments.
They enable mobile access to hospital information systems and patient records.
We can improve the access to patient data by combining the localization with
the data from the HIS and EPR. A doctor can use a laptop while doing the
ward round to display only information that is relevant to the patients of the
room he is currently in. This would prevent the physician from searching for
the patient and therefore save time.

A service-oriented architecture (SOA) is an emerging paradigm to offer func-
tionality in such distributed environments [30].

A key requirement when using SOA in such scenarios is the assurance of
acceptable service levels of Quality of Service (QoS) parameters. QoS param-
eters are part of the nonfunctional properties (NFPs) of a service, typically
specified in service level agreements (SLAs). We distinguish between run-time
related and design-time related NFPs. Run-time related NFPs are performance
oriented. Examples are response time, throughput, availability. Design-time

1



CHAPTER 1. INTRODUCTION 2

related NFPs such as language of service and compliance are typically set dur-
ing design time and do not change during runtime. Run-time related NFPs can
change during runtime when service usage patterns differ (times of extensive us-
age by many users are followed by times of rare usage), or when failures occur.
Such failures can occur within the service, as well as in the network components
that lie between user and service.

Formalization and specification of NFPs and their SLAs is currently a very
active research field (see Section 3). The enforcement of these levels for runtime-
related NFPs cannot be done automatically a priori, due to the changes in ser-
vice usage and network availability. An approach to dynamically adapt service
performance to these changes can ensure continuous meeting of service levels.
This approach should employ service reconfiguration at runtime, as changes
in source code of a service are not a feasible option. One approach to iden-
tify possible reconfigurations in a SOA and evaluate their implication is called
architectural translucency [38].

This report evaluates position sensing techniques, how we can use them
in healthcare scenarios, and how we can employ architectural translucency to
ensure QoS for such scenarios. Furthermore, we present an application that
demonstrates the concept.

The rest of this report is structured as follows: in Chapter 2 we describe
related work for similar application scenarios. In Chapter 3 we present tech-
nologies for position sensing and our architectural approach to assure QoS in
such environments. In Chapter 4 we present a case study clinical application.
Useful insights and our future activities are outlined in Chapter 5.



Chapter 2

Related Work

One application that combines location-aware access with HIS is described
in [33]. It is implemented using agent-oriented middleware (SALSA) [44]. As
the implementation is PDA-based (device-based position calculation), neural
networks were used to implement position sensing. A key shortcoming is the
insufficient precision for delivering relevant patient information.

A concept of context-aware computing in health care is presented in [6]. It
includes a scenario with scenes such as Entering an Active Zone, the Context-
aware Hospital Bed and the Context-aware Hospital EPR. Key lessons learned
are:

• Context-awareness can improve targeted data access to EPRs by clinicians.

• Access to physical objects (e.g., container, x-ray image, wheelchair, bed)
reveals activity. Based on information about this access we can present
proper data to support this activity.

• We can use context-awareness to suggest courses of action, not to auto-
matically react to context changes.

There are several design principles for runtime infrastructures presented
in [6]. These include:

• Distributed and Cooperating Services (e.g., a SOA),

• Security and Privacy,

• Lookup and Discovery (e.g., provided by foundation services in SOA), as
well as basic design principles such as

• Performance and Availability.

The application we present applies these design principles by employing a
SOA.
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Chapter 3

Technology and Architecture

In the first section of this chapter we describe technologies for position sensing
and which of them we are using in our application. In the following sections we
define architecture as applied to service-based software systems and present our
approach for QoS assurance.

3.1 Position Sensing Technologies
Several research projects and commercial products are offering positioning us-
ing WLAN or other wireless technologies. Depending on the system and used
technology different levels of precision can be reached. The Horus system devel-
oped at the University of Maryland [46] and the RADAR system by Microsoft
Research [5] were one of the first viable efforts to provide WLAN-based posi-
tion sensing. They are using a WLAN signal strength map for positioning and
reach precision of less than three meters. A downside is that they are requiring
huge initial effort to set up the signal strength map. A similar system is being
developed and offered by Ekahau [16]. These systems work only in areas where
signals from enough WLAN access points are received (at least three) and need
to be recalibrated in case the infrastructure is changed. The Place Lab system
by Intel Research [24] is pursuing an opposite approach minimizing the needed
initial effort. The system provides WLAN positioning in a whole city. The
needed data is gathered by "war driving" (driving around in a car and collect
WLAN access point signals). The achieved precision is much less but the system
is more prone to changing infrastructure.

Systems based on RFID technologies or BT for positioning are offering
slightly better precision [28, 19, 4] but cannot be built on existing infrastructure.
Additional RFID tags and readers, or BT infrastructure have to be installed.

Hybrid positioning systems use two or more wireless communication tech-
nologies for position sensing. One example is MagicMap [10] where WLAN,
RFID and ZigBee [3] are used. MagicMap delivers 33% better precision when
at least two technologies are available.
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CHAPTER 3. TECHNOLOGY AND ARCHITECTURE 5

3.2 Software System Architecture
The term architecture is intuitively associated with what humans see and ex-
perience. From such perspective people understand architecture as physical
structures and their construction to form a coherent whole. Beside this external
view there is the view of the building architect. This perspective allows the
architect to provide the required properties in his building – shelter, light, heat,
safety, accessibility, etc. [2].

A general definition of software architecture is as a structure composed of
components, and rules for the interaction of these components [25]. Other def-
initions include the view of software architecture as components, connections,
constraints and rationale [8], as elements, form and rationale [31], and as com-
ponents, connectors and configurations [22]. All these definitions represent more
or less the external view of a software system. In order to account for the inner
view of the architect a software systems architecture should include also a col-
lection of stakeholder-need statements and a rationale that demonstrates that
the external view (components, connections and constrains) can satisfy these
statements [21].

The usage of managed environments to facilitate the development of dis-
tributed applications leads to transparency of component location – the devel-
oper can write a procedure call once and the environment takes care to find
the needed component (local or remote) and forward the call to it. Such trans-
parency makes the task of writing distributed applications easier, but rarely
accounts for typical NFP constrains related with remote calls, e.g., the need to
limit the number of such calls or to process them asynchronously.

3.3 Service-based Environments
Web services are emerging as a dominating technology for providing and combin-
ing functionality in distributed systems. As shown in Figure 3.1 service-based
environments are not something fundamentally new, but are rather an evolu-
tionary step. Thus, the transparency of location and the NFP-related problems
that we can observe in other distributed environments are also inherent to SOA.
Furthermore, the SOAP-based interchange paradigm adds a huge performance
overhead. Not only is the message size considerably larger, but every web ser-
vice request using complex data types involves a serialization of object status
by the requesting service before the request is submitted and its deserialization
by the service that then processes this request.

A SOA is defined by its components (services), connections and constrains
(what other service can consume them and how). Hereby, it offers native capa-
bilities, such as publication, discovery, selection and binding. An extended view
of SOA (see Figure 3.2) [29] also allows to specify different roles involved in the
provision of services. Since services are basic building blocks for the creation of
new applications, the area of composite services is introduced on top of native
capabilities. It governs the way applications are developed from basic services.
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Figure 3.1: Development of Distributed Computing Architectures

Figure 3.2: Extended Service Oriented Architecture
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There are two basic aspects of a successful service offering: to provide the
needed functionality and to provide the needed Quality of Service (QoS). QoS
parameters are part of NFPs of a service, typically specified in service level
agreements (SLAs). We distinguish between runtime-related and design-time-
related NFPs. Runtime-related NFPs are performance oriented. Examples are
response time, throughput, availability. Design-time-related NFPs such as lan-
guage of service and compliance are typically set during design time and do
not change during runtime. Runtime-related NFPs can change during runtime
when service usage patterns differ (times of extensive usage by many users are
followed by times of rare usage), or when failures occur. Such failures can oc-
cur within the service, as well as in the network components that lie between
user and service. NFPs and QoS are regarded (together with semantics) as
topics that encompass all three levels of services within an SOA (basic services,
composite services, managed services) [30].

3.4 Quality of Service
Much work has been done in the area of QoS-aware web service discovery [26],
QoS-aware platforms and middleware [45], and context-aware services [43].

Extensive research concerning assurance of NFPs exists in the field of CORBA
(Common Object Request Broker Architecture), particularly in the areas of
real-time support [32], replication as approach for dependability [17] as well as
adaptivity and reflection [14]. There are various efforts to address NFPs in dis-
tributed computing environments that look at different system levels. Under
the term performability, originally introduced in 1997 [12], there are works in
the area of resource control [37] and addressing fault-tolerance at system level
and application level [23].

Furthermore, there are architectural approaches that aim to improve NFPs
in one location, e.g., reliability at the OS level [42, 41], scalability by clustering
of web servers [20] or email servers [35], as well as introducing software RAID
approaches [9].

Failures at the network level lead to network partitions. There is currently no
convincing way to mathematically model network partitions [48]. Furthermore,
it is NP-hard to derive a partition model from link and node failure models [34].
A convincing approach to incorporate network failures in availability metrics
that define Availclient = Availnetwork×Availservice is presented in [48]. A novel
approach to further improve availability in such settings by better assignment
of object replicas to nodes is presented in [47].

3.5 Architectural Translucency
Functional composition and orchestration, as well as formalization and specifi-
cation of NFPs and their SLAs are currently very active research fields. The
enforcement of these levels for runtime-related NFPs cannot be done automati-
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cally a priori, due to the changes in service usage and network availability. An
approach to dynamically adapt service performance to these changes can ensure
continuous meeting of service levels. Providing such dynamically reconfigurable
runtime architectures is regarded as one of the main research challenges in the
area of service foundations [30]. Such approach should employ service recon-
figuration at runtime, as changes in source code of a service are not a feasible
option.

The approach can be based on experimental computer science [15, 18]. Ex-
perimental computer science uses experiments to enhance theory in two general
ways – to confirm or refute theory predictions and to find new phenomena [1].
Thereby an experimental approach needs three key building blocks – a hypoth-
esis to be tested, an apparatus to be measured, and systematic analysis of the
data to see whether it supports the hypothesis [15].

One approach to dynamically adapt service performance to changes in load
and usage is called architectural translucency [38]. It can ensure continuous
meeting of service levels by employing service reconfiguration at runtime, as
changes in source code of a service are not a feasible option.



Chapter 4

Application in Clinical
Environments

Our application scenario focuses on the surgical sector – one of the largest cost
factors in health care and at the same time a place, where high creation of value
takes place.

For the effective utilization of the surgical sector pre- and postoperative
processes are crucial. The surgery (equipments and specialists) is a fixed (and
expensive) resource. So pre- and postoperative processes need to be aligned and
provide for an optimized utilization of this resource.

4.1 Perioperative and Postoperative Processes
The perioperative processes start with a notification from an operating room
nurse or an anesthesia nurse, that the next patient should be transported to the
operating room. Then the patient is moved by a transport service or a nurse
from the ward to the operating room area. In the main registration area the
patient is transferred from the ward bed to an operating room table. Afterward
the patient is taken to the induction area, where the patient is anesthetized.
Then the patient is moved to the operating room, where the preparation for
the operation starts, for example operation specific bedding, sterile coverage
etc. The surgery starts with the cut and finishes with the suture. After the
surgery the patient is transported to the post anesthesia recovery unit, where
he is moved again to the ward bed and recovers from anesthesia. After the
recovery the patient is transported back to the ward.

There are many visions how to redesign and reorganize perioperative patient
flow and work processes for maximum operating room productivity, which also
bring changes in operating room architecture. Figure 4.1 [36] shows a ground
plan and flow diagram of patient movement through the operating room of the
future. Patients are brought from the main registration area (1 and arrow) to
the induction area (2). Perioperative preparation and induction of anesthesia
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occur in the induction area (2), concomitantly with instrument setup taking
place in the operating room (3). The sequence is timed so that anesthetized
patients are transferred to the operating room (2, arrow, and 3) for surgery as
instrument setup is completed. At the conclusion of surgery, patients emerge
from anesthesia in the operating room and are promptly transferred to the
early recovery area (3, arrow, and 4), or emergence occurs in the early recovery
area. After approximately 15 min of recovery, patients are transferred to the
postanesthesia care unit (4 and arrow) by the perioperative nurse. The work
space provides access to the hospital information system. It is used by surgeons
between cases for dictation, order writing, and teleconsultation with patients’
families and by the anesthesia team during surgery for perioperative planning
for subsequent cases.

Figure 4.1: Example for Optimized Process Flow in Surgery.

A different setting where position sensing is used to better plan and con-
trol resources during the perioperative and postoperative processes is described
in [39, 40].

While there the focus is on process optimization and technology selection
process for WLAN-based positioning systems, here, our focus lies on the pro-
vision of data in such environment. Our objective is to use the existing infras-
tructure (WLAN, RFID, HIS) to allow for clinicians to access EPRs from the
HIS in a context-aware way.
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4.2 Service-oriented Technology Environment and
Architectural Approach

Our WLAN positioning system is Ekahau [16], our HIS is FD Klinika [13], we
are using Tablet PCs as mobile devices for the clinicians. Our architectural
approach (see Figure 4.2 is to use an SOA with wrappers that provide web
service interfaces to the enterprise service bus (ESB) [11]. The AT engine is
responsible for service QoS assurance by monitoring and management. When it
notices that for example a service is experiencing higher loads, it dynamically
reconfigures the replication settings of the service to further provide the expected
QoS. Integration of other systems (e.g., enterprise resource planning, external
partner applications, health insurance systems). Representation and further
information processing are depicted in the upper part of the figure. During the
first stage (depicted green) we plan to provide portal-based access to EPRs that
are extracted from the HIS and visualized on the Tablet PC depending on the
current location of the Tablet PC, particularly other WLAN-enabled objects
surrounding it (e.g., patient tags). During the second stage (depicted red) we
plan to introduce more complex planning and evaluation functions. These will
be realized by composite services.

Figure 4.2: Systems, Technologies and Architecture for Service Delivery in Clin-
ical Environments.



Chapter 5

Conclusion

In this report we present an architectural approach to enhance to an existing
clinical infrastructure with QoS assurance and location awareness. To address
typical design requirements of such systems (e.g., cooperating services, perfor-
mance and availability) we propose SOA as architectural concept and archi-
tectural translucency to provide stable QoS. Location awareness is provided
by an off-the-shelf WLAN-based positioning system. Open issues that we are
currently addressing include the standardization of healthcare-related services
within an ESB and service priorities (e.g., wireless transmitted alarms regarding
vital data) within a limited resource environment.
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