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Abstract

Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the Heat

Transport Coefficient of Solids and Mixtures

by

Kranthi Kiran Mandadapu

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Panayiotis Papadopoulos, Chair

This thesis presents a class of homogeneous non-equilibrium molecular dynamics (HNEMD)
methods for obtaining the heat transport coefficient that relates the heat flux and temperature gra-
dient in the linear irreversible regime. These methods are based on the linear response theory of
statistical mechanics. The proposed HNEMD methods are parallelizable, and yield better statistical
averages at lower overall computational cost than the existing direct and Green-Kubo methods.

The HNEMD method, as it was initially proposed, is applicable only to single-species systems
with two-body interactions. In this thesis, the HNEMD method is extended to single species sys-
tems with many-body interactions, and is applied to silicon systems where three-body interactions
are taken into account.

The HNEMD method developed for single-species systems is inadequate for obtaining the heat
transport coefficient of multi-species systems. A further development of the HNEMD method,
the Mixture-HNEMD (M-HNEMD) method, is presented for multi-species systems with many-
body interactions. This M-HNEMD method satisfies all the requirements of linear response theory
and is compatible with periodic boundary conditions. Applications of the M-HNEMD method
to liquid argon-krypton systems with two-body interactions and to perfectly crystalline gallium-
nitride systems with three-body interactions are presented, and the results are consistent with the
results from the Green-Kubo method. This is the first HNEMD method which can be used for
calculating the heat-transport coefficient of multi-species systems.

The expressions for stress tensor and heat-flux vector needed for the development of HNEMD
method for single-species systems and of the M-HNEMD method for multi-species systems with
many-body interactions require an extension of the statistical mechanical theory of transport pro-
cesses proposed by Irving and Kirkwood. This extension forms an integral part of the thesis.
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Chapter 1

Introduction

Heat conduction is a process involving transfer of energy between regions due to a temperature
gradient. In the linear irreversible thermodynamic regime, i.e., when systems are close to ther-
modynamic equilibrium, the heat flux JQ is often modeled as directly proportional to the tem-
perature gradient ∇T , where T is the temperature. This is very well known as the Fourier’s law
JQ = −κ∇T . The constant of proportionality κ relating the heat flux to the temperature gradient
is called the heat transport coefficient.

Heat transport coefficient estimates are very important in many applications, such as ther-
moelectric devices which convert heat to electricity [3, 44], semiconductor devices [20], etc. In
thermoelectrics, the efficiency of the device depends on the thermal conductivity through a dimen-
sionless factor ZT , also called as the figure of merit, by

ZT =
σS2T

κ
, (1.1)

where Z =
σS2

κ
, S is the Seebeck coefficient and σ is the electrical conductivity. If ZT is high,

the efficiency of such devices is high. One way of increasing ZT is to create a material which
keep σS2 constant and to reduce the thermal conductivity κ, showing the importance of the heat
transport coefficient [44, 36].

The heat transport coefficient is usually obtained by experiment. However, in some cases, it
can be very expensive to perform such experiments. Consider the example of Indium-Gallium-
Arsenide (Inx − Ga1−x − As) alloy semiconductors as thermoelectric devices. The thermal con-
ductivity of these semiconductors varies with the alloy composition x and exhibits a minimum
for x = 0.53 [52]. It was later found by experiments that adding Erbium-Arsenide (ErAs) nano-
particles to (In0.53 − Ga0.47 − As) reduced the thermal conductivity by 50% and the numerator in
(1.1) did not change, thereby doubling the ZT [36]. In order to find a better thermoelectric ma-
terial, i.e., higher ZT , than ErAs : In0.53 − Ga0.47 − As, one needs to alloy further using group
III and group V compounds from the periodic table. However, there exist many possible choices
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Chapter 1. Introduction

of elements in groups III and V, therefore the task of doing experiments may become very ex-
pensive. Molecular dynamics (MD) simulations provide a valuable tool in the above problem by
reducing the pool of choices for which experiments can be performed, thereby reducing the total
cost of experiments. Another important case involves problems related to mechanics, where the
thermal conductivity tensor κ is often strongly dependent on the deformation gradient F and the
temperature T . The task of designing experiments that measure κ(F, T ) is generally complex and
expensive owing to the size of the parametric space of F and T . Moreover, it is often difficult to
identify from the experimental results the contribution of, say, a distribution of defects or impuri-
ties. Molecular dynamics (MD) simulations provide an efficient supplement to such experiments.

Heat transport coefficient can be computed using MD simulations given sufficient information
regarding the inherent molecular structure and an interatomic potential that accurately describes
the interactions among the particles in the system [31, 42, 11, 69, 21, 25, 48, 51, 70, 67, 33, 73, 46,
45, 47]. The two most commonly used methods for estimating the heat transport coefficient are (i)
the direct method [69, 67, 73] and (ii) the GreenKubo (GK) method [38, 40, 28, 70, 67, 33]. In the
direct method, a fixed heat flux JQ is driven through the system and the corresponding temperature
gradient is estimated [67, 73]. The heat transport coefficient is then obtained by using Fourier’s law
(JQ = −κ∇T ). This is a non-equilibrium molecular dynamics (NEMD) method as the system
is driven to a non-equilibrium thermodynamic state due to the temperature gradient and is called
as the direct method, as it is analogous to the experimental measurement. Another variant of the
direct method exists, where a fixed temperature gradient is maintained by using two reservoirs with
different temperatures at the two ends of the system and the corresponding heat flux is estimated
[31, 69]. The heat transport coefficient is then obtained using Fourier’ law. This method is fraught
with finite-size effects and unrealistically large temperature gradients making it difficult to obtain
an estimate of the heat transport coefficient at the desired temperature. On the other hand, the
Green-Kubo (GK) method is an equilibrium molecular dynamics method, where fluctuations of the
heat flux from equilibrium MD simulations are employed to calculate the heat transport coefficient
via the Green-Kubo formulae [70, 67, 33]. These formulae are obtained by employing Onsager’
regression hypothesis [57, 58], and are given by integrals of autocorrelation functions of the heat
fluxes [40, 28]. In this method, the heat flux autocorrelation function is obtained from the heat flux
fluctuations and is then integrated. Typically, the GK method requires very long simulation times
to yield values of heat transport coefficients that are converged to within statistical uncertainties,
largely due to the inaccuracy of the calculation of the autocorrelation function. An alternative to
these methods, the so-called homogeneous nonequilibrium molecular dynamics (HNEMD) method
[21, 24, 46, 45, 47], with which this thesis is chiefly concerned, has advantages over both the
GK method and the direct method. Relative to the former it is free of difficulties involving the
calculation and integration of the heat flux autocorrelation tensor, while relative to the latter it
does not have strong size effects and unrealistically large temperature gradients. In addition, the
HNEMD method typically yields better statistical averages than both the direct and the GK method
at a lower overall computational cost.

The HNEMD method, initially proposed by Evans [21], defines a mechanical analog to the
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Chapter 1. Introduction

thermal transport process and uses the linear response theory to calculate the transport coefficients.
This method is synthetic, in the sense that a fictitious external force field is used to mimic the ef-
fect of a thermal gradient, thereby reducing the thermal transport problem to a mechanical problem.
This external force field appears in the equations of motion. If this force field is sufficiently small,
the long-time ensemble average of the heat flux vector corresponding to the resultant nonequilib-
rium system is proportional to the field with the constant of proportionality being the Green-Kubo
formula for the heat transport coefficient. Therefore, the heat transport coefficient at a desired
temperature can be computed from the response of the heat flux vector to the fictitious force field,
thereby avoiding the tedious calculation and integration of the heat flux autocorrelation function.

The HNEMD method was initially formulated by Evans for ”single-species” systems modeled
by interaction potentials consisting of two-body (or pair) potentials. Therefore, in its original incar-
nation, it was not applicable to materials that contain different species and are modeled by higher
order potentials. Also, if this initially developed HNEMD method is applied to multi-species sys-
tems, e.g., a semi-conductor gallium-nitride (GaN) system, the long-time average of the heat flux
vector still remains proportional to the external field. However, the constant of proportionality
is not just equal to heat transport coefficient, but involves additional correlation integrals. These
correlation integrals need to be evaluated from an equilibrium simulation in addition to running
the HNEMD algorithm. To this end, a new class of HNEMD method is developed in this thesis to
address the shortcomings of the original HNEMD method.

The contributions from this thesis can be grouped into three parts: (i) extension of the HNEMD
method to single species systems modeled by three-body and many-body potentials, (ii) a new
HNEMD method for multi-species systems, called here as Mixture-HNEMD (M-HNEMD) method,
modeled by interaction potentials containing terms of any order, and (iii) extension of Irving and
Kirkwood’s statistical mechanical theory of transport processes to systems modeled by many body
potentials, so as to be able to derive the expressions for stress tensor and heat flux vector which
can be used in the HNEMD and M-HNEMD methods.

The thesis is organized as follows: In Chapter 2, a review of the basic continuum thermome-
chanics is given within the context of heat conduction in solids and liquid mixtures. Here, the
balance laws of mass, momentum, energy and entropy are introduced. Explicit formulae for the
internal entropy production rate in terms of the flux vectors, such as heat flux and diffusive flux,
and thermodynamic forces, such as temperature gradient and chemical potential gradient that drive
the irreversible processes, are obtained. Assuming that the system is not far from equilibrium,
linear phenomenological laws are introduced between the fluxes and thermodynamic forces and
heat transport coefficient is identified as a constant of proportionality between the heat flux and
the temperature gradient. In Chapter 3, a review of statistical mechanics is given. Here, Green-
Kubo formulae required for the evaluation of heat transport coefficient are also introduced. Later,
the statistical mechanical theory of transport processes given by Irving and Kirkwood is extended
to systems modeled by many-body interaction potentials. In Chapter 4, a review of the existing
molecular dynamics methods, such as the direct method and Green-Kubo methods for evaluating
the heat transport coefficients is given and their advantages and disadvantages are highlighted.

3



Chapter 1. Introduction

Also, the HNEMD method, which forms the main contribution of this thesis, is introduced. Chap-
ter 5 introduces the linear response theory necessary for the application of the HNEMD method to
compute the heat transport coefficient. Here, a review of the equations of motion required to main-
tain a constant temperature in the form of a Nosé-Hoover thermostat is presented, and it is proved
that these equations of motion reproduce the canonical phase-space distribution. Subsequently,
these equations of motion are perturbed by an external field in a particular way and the long-time
average of any phase variable is shown to be proportional to the external field with the constant of
proportionality being an integral of an autocorrelation function. Three basic conditions required
for the application of this theory to evaluate the heat transport coefficient are obtained by equating
the above integral of the autocorrelation function to the Green-Kubo formula for the heat trans-
port coefficient. In Chapter 6, the equations of motion necessary for the application of HNEMD
method to single-species systems are introduced for the case of two-body potentials and applied
to an argon (Ar) system at the triple point. These are then extended to three-body and many-body
potentials and applied to a silicon (Si) system. In Chapter 7, it is shown that the HNEMD method
in its original form is inadequate to estimate the heat transport coefficient for a multi-species sys-
tem. Next, the M-HNEMD equations of motion are developed and applied to a pure argon system,
an argon-krypton (Ar-Kr) binary mixture, and a perfect GaN crystal. Chapter 8 summarizes the
findings of the thesis and describes potential directions of future work.
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Chapter 2

Continuum Thermomechanics

In this chapter, the macroscopic balance laws of mass, momentum and energy are introduced.
The Second Law of Thermodynamics is introduced as a form of entropy balance with positive
internal entropy production rate. For the case of solids and liquid mixtures, explicit formulae for
the internal entropy production rate in terms of the flux vectors and the thermodynamic forces
driving the irreversible processes are obtained. Further, in the linear irreversible thermodynamical
regime, linear phenomenological relations are proposed between fluxes and thermodynamic forces,
thereby identifying thermal conductivity as a constant of proportionality between the heat flux and
the temperature gradient vectors.

2.1 Kinematics and Balance Laws

Consider a body B, defined as a collection of material points, whose reference configuration is
denoted by R0 at time t0 and whose current configuration is R at time t. Let X be the position
vector of any material point in the reference configuration and let corresponding position vector x
in the current configuration be defined by a mapping χ : R0 × t → R such that x = χ(X, t).

Deformation in the body is characterized by the deformation gradient F defined as F(X, t) =
∂x

∂X
.

The local forms of macroscopic balances of mass, momentum and energy with respect to the
current configuration are expressed as

ρ̇(x, t) + ρ(x, t)
∂

∂x
· v(x, t) = 0 , (2.1)

ρ(x, t)v̇(x, t) =
∂

∂x
·T(x, t) + ρ(x, t)b(x, t) , (2.2)
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Chapter 2. Continuum Thermomechanics

and

ρ(x, t)ė(x, t) = ρ(x, t)b(x, t) · v(x, t) + ρ(x, t)r(x, t) +
∂

∂x
· (T(x, t)v(x, t))− ∂

∂x
· JQ(x, t) ,

(2.3)

where ρ(x, t) > 0 is the mass density, v(x, t) =
dx

dt
is the velocity, T(x, t) is the Cauchy stress

tensor, b(x, t) is the body force per unit mass, JQ(x, t) is the heat flux vector, r(x, t) is the heat
source per unit mass at the macroscopic point x at time t, and e(x, t) is the total energy per unit
mass defined as

e =
1

2
v · v + ε (2.4)

with ε being the internal energy per unit mass. Here, “
∂

∂x
·” denotes the divergence operator and

˙
(·) =

d

dt
(·) denotes the material time-derivative of (·).

The local form of the Second Law of Thermodynamics is expressed as

ρ(x, t)η̇(x, t) = − ∂

∂x
· Jη(x, t) + ρ(x, t)se(x, t) + ρ(x, t)si(x, t) , (2.5)

where η(x, t) is the entropy per unit mass, Jη(x, t) is the entropy flow per unit area, se(x, t) is the
external entropy production rate per unit mass (e.g., radiation) and si(x, t) is the internal entropy
production rate per unit mass which is positive for irreversible processes and zero for reversible
processes, i.e.,

si(x, t) ≥ 0 , (2.6)

see [61, Chapter 3] and [18, 26, 27]. Using (2.4), the balance of energy (2.3) can be rewritten as

ρε̇ = − ∂

∂x
· JQ + ρr + T : L (2.7)

using (2.2), where L =
∂v

∂x
is the velocity gradient, and “:” denotes the double dot product of any

two tensors.

2.2 Heat Conduction in an Elastic Solid

In an elastic solid, the internal energy ε and entropy η are assumed to depend on the deformation
gradient F and temperature T , i.e.,

ε = ε̂(F, T ) , (2.8)

η = η̂(F, T ) . (2.9)
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Chapter 2. Continuum Thermomechanics

Now, defining the Helmholtz free energy per unit mass ψ = ψ̂(F, T ) as

ψ = ε− Tη , (2.10)

the rate of change of entropy is given by

ρη̇ =
ρε̇− ρṪ η − ρψ̇

T

= − ∂

∂x
·
(

JQ
T

)
+ ρ

r

T
−
(
ρη + ρ

∂ψ

∂T

)
Ṫ

T
+

(
T− ρ∂ψ

∂F
FT

)
:

L

T
− JQ ·

∇T

T 2
,

(2.11)

where the second equality is obtained by using (2.7). Comparing (2.11) to the balance of entropy
given by (2.5), it can be seen that the entropy flow Jη, externally supplied entropy rate se and the
internal entropy production rate si are given by

Jη =
JQ
T

, (2.12)

ρse = ρ
r

T
, (2.13)

ρsi = −
(
ρη + ρ

∂ψ

∂T

)
Ṫ

T
+

(
T− ρ∂ψ

∂F
FT

)
:

L

T
+ JQ ·XQ ≥ 0 , (2.14)

respectively, where XQ = −∇T

T 2
. Since inequality (2.14) holds for all F and T , and also T may

vary independently of F for homothermal processes, (∇T = 0) one can obtain

T = ρ
∂ψ

∂F
FT , (2.15)

η = −∂ψ
∂T

, (2.16)

therefore one is left with the inequality

JQ ·XQ ≥ 0 . (2.17)

Here, XQ is called the thermodynamic force driving the irreversible process of heat conduction.
In the linear irreversible thermodynamic regime, the heat flux vector JQ may be assumed to be
linearly dependent on the thermodynamic force XQ, i.e.,

JQ = LQQXQ , (2.18)

7



Chapter 2. Continuum Thermomechanics

where LQQ is the constant of proportionality tensor. Admitting Fourier’ law in the form JQ =
−κ∇T , and recalling the definition of XQ, the thermal conductivity tensor can be obtained as

κ =
LQQ

T 2
. (2.19)

2.3 Heat Conduction in Liquid Mixtures

It is well known that mixtures consisting of different species are capable of heat conduction, dif-
fusion and cross phenomena such as the thermo diffusion (commonly called Sorét effect) and the
Dufour effect [18, Section 49]. Sorét effect is a phenomenon where a concentration gradient is
set up due to a temperature gradient [35]. Dufour effect is a phenomenon where a temperature
gradient arises when two substances diffuse each other [66]. In a mixture consisting of n differ-
ent species, one may write balance laws of mass, momentum and energy for each species [55].
However, for the present purpose, only balances of mass for the species are written separately and
combined balance laws of momentum and energy are used to define the internal entropy production
rate [18, 19].

At the macroscopic point x, the system of liquid mixtures has a density ρ(x, t) such that

ρ(x, t) =
n∑
k=1

ρk(x, t) , (2.20)

where ρk(x, t) is the density of species k [18, Chapter 43]. The local form of the balance of mass
for the species k, when there are no chemical reactions, is expressed as

∂ρk
∂t

= − ∂

∂x
· (ρkvk) , (2.21)

where vk is the velocity of the species k. Summing (2.21) over all the species, one may obtain

∂

∂t

(
n∑
k=1

ρk

)
= − ∂

∂x
·

(
n∑
k=1

ρkvk

)
. (2.22)

Now, defining the barycentric velocity v at the macroscopic point x as

v =

n∑
k=1

ρkvk

ρ
, (2.23)
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Chapter 2. Continuum Thermomechanics

and using (2.20), (2.22) can be written as

∂ρ

∂t
= − ∂

∂x
· (ρv) . (2.24)

Also, the material time derivative of the density of species k can be written as

ρ̇k = = −ρk
∂

∂x
· v − ∂

∂x
· Jk (2.25)

using (2.21) and (2.22), where Jk = ρk(vk − v) is the diffusive flux. It can be seen from the
definition of diffusive flux and barycentric velocity (2.23) that

n∑
k=1

Jk =
n∑
k=1

ρk(vk − v) = 0 . (2.26)

Again, summing up (2.25) over all the species and using (2.20), one may obtain

ρ̇ = −ρ ∂
∂x
· v , (2.27)

which is the balance of mass at the macroscopic point x when all of the species are taken together.
Now, defining the concentration of each species ck as

ck =
ρk
ρ
, (2.28)

the rate of concentration of species may be obtained as

ρċk = − ∂

∂x
· Jk . (2.29)

The local form of the combined balance of momentum is expressed as

ρv̇ =
∂

∂x
·T +

n∑
k=1

ρkbk , (2.30)

where bk is the body force per unit mass on the species k. Similarly, the local form of the balance
of energy is expressed as

ρė =
n∑
k=1

ρkbk · vk + ρr +
∂

∂x
· (Tv)− ∂

∂x
· JQ . (2.31)

9



Chapter 2. Continuum Thermomechanics

Again, defining the total energy e =
1

2
v · v + ε for the liquid mixture, (2.31) may be written as

ρε̇ = −ρr + T : L +
n∑
k=1

bk · Jk −
∂

∂x
· JQ . (2.32)

At this stage, the derivations are specialized to the case of a liquid mixture system, which is as-

sumed to be constitutively dependent on specific volume ν =
1

ρ
, temperature T and concentrations

ck, i.e.,
ε = ε̂(ν, T, c1, c2, . . . , cn) , (2.33)

η = η̂(ν, T, c1, c2, . . . , cn) . (2.34)

Again, similar to the case of solids, introducing the Helmholtz energy to beψ = ψ̂(ν, T, c1, c2, . . . , cn)
= ε− Tη, the rate of entropy is obtained as

ρη̇ =
ρε̇− ρṪ η − ρψ̇

T

= − ∂

∂x
·
(

JQ
T

)
+ ρ

r

T
−
(
ρη + ρ

∂ψ

∂T

)
Ṫ

T
+

(
T− ∂ψ

∂ν
I

)
:

L

T
− JQ ·

∇T

T 2

− ρ
n∑
k=1

∂ψ

∂ck

ċk
T

+
n∑
k=1

bk · Jk .

(2.35)

Using (2.29) and letting µk =
∂ψ

∂ck
be the chemical potential of species k, (2.35) can be reduced to

ρη̇ = − ∂

∂x
·
(

JQ −
∑n

k=1 µkJk
T

)
+ ρ

r

T
−
(
ρη + ρ

∂ψ

∂T

)
Ṫ

T
+

(
T− ∂ψ

∂ν
I

)
:

L

T

− JQ ·
∇T

T 2
+

n∑
k=1

[
bk −∇

(µk
T

)]
Jk .

(2.36)

where I is the identity tensor. Comparing (2.36) to (2.5), the entropy flow Jη, the external entropy
supply rate se, and the internal entropy production rate are obtained as

Jη =
JQ −

∑n
k=1 µkJk
T

, (2.37)

ρse =
r

T
, (2.38)

10



Chapter 2. Continuum Thermomechanics

ρsi = −
(
ρη + ρ

∂ψ

∂T

)
Ṫ

T
+

(
T− ∂ψ

∂ν
I

)
:

L

T
+ JQ ·XQ +

n∑
k=1

Jk ·Xk ≥ 0 , (2.39)

respectively, where XQ and Xk = bk −∇
(µk
T

)
are the thermodynamic forces driving the irre-

versible processes of heat transfer and diffusion, respectively. Again, as (2.39) is valid for all ν
and T assuming no viscous effects, one can obtain the following results

η = −ρ∂ψ
∂T

, (2.40)

T =
∂ψ

∂ν
I , (2.41)

ρsi = JQ ·XQ +
n∑
k=1

Jk ·Xk ≥ 0 . (2.42)

Taking into account (2.26), the total rate of entropy production (2.42) can be equivalently expressed
as

ρsi = JQ ·XQ +
n−1∑
k=1

Jk · (Xk −Xn) ≥ 0 . (2.43)

Reducing (2.43) to the special case of binary mixture (n = 2) results in

ρsi = JQ ·XQ + J1 · (X1 −Xn) ≥ 0 . (2.44)

Assuming the irreversible processes are close to thermodynamic equilibrium, the linear phenomeno-
logical relations

J1 = L11(X1 −X2) + L1QXQ (2.45)
JQ = LQ1(X1 −X2) + LQQXQ (2.46)

are proposed, where L11, L1Q, LQ1 and LQQ are phenomenological coefficient matrices. Using
(2.45), (2.46) and (2.44) it can be seen that

[
XQ X1 −X2

] [ LQQ LQ1

L1Q L11

] [
XQ

X1 −X2

]
≥ 0 (2.47)

for any XQ and X1 − X2. It can be seen from (2.47) that the tensor
[

LQQ LQ1

L1Q L11

]
is positive

definite. Hence LQQ and L11 are also positive definite and are therefore invertible.
It is important to emphasize that in the case of binary liquid mixtures the evaluation of LQQ is

11



Chapter 2. Continuum Thermomechanics

not sufficient for estimating the thermal conductivity κ. Indeed, experiments measuring thermal
conductivity of binary liquid mixtures are typically conducted using the stationary state (J1 = 0).
In this case, (2.45) implies X1 −X2 = −L−1

11 L1QXQ, which reduces (2.46) to

JQ = (LQQ − LQ1L
−1
11 L1Q)XQ . (2.48)

Therefore, for binary liquid mixtures, admitting Fourier’s law in the form JQ = −κ∇T and
recalling the definition of XQ, the thermal conductivity tensor may be obtained as

κ =
1

T 2
(LQQ − LQ1L

−1
11 L1Q) . (2.49)

In contrast to liquid mixtures, in a crystalline solid, if no significant mass diffusion exits, one
may neglect diffusion and the cross phenomena associated with it. In this case, XQ is the only
thermodynamic force, and therefore the heat flux vector in the linear irreversible regime follows

the phenomenological law JQ = LQQXQ, thus yielding the thermal conductivity as κ =
LQQ

T 2
, as

shown in Section 2.2.
The main objective of this work is to estimate the heat transport coefficient

LQQ

T 2
using molecu-

lar dynamics simulations in an accurate and time efficient manner. Hence, a connection needs to be
established between macroscopic quantities such as energy, heat flux, diffusive flux etc., with the
molecular variables such as positions and momenta of atoms or molecules that form the system.
This will be accomplished in Chapter 3.

12



Chapter 3

Statistical Mechanics

It is well-known that every macroscopic system is made up of atoms or molecules whose dynamics
is governed by certain laws (e.g., Newton’s Laws) with specified interparticle interactions. It is very
difficult to determine the state of the macroscopic system by determining the position and momenta
of each and every atom referred to together as molecular variables . Hence, the behavior of the
system is governed by a set of few macroscopic observables (e.g., energy, temperature, etc.) which
can reproduce a phenomenon. Consistent with these governing macroscopic observables, there
exist many microstates, i.e., sets of positions and momenta of all atoms, which together form an
ensemble. Any macroscopic observable measured under the governing set is defined as an average
over all members of the ensemble, and any deviation from the average value is called a fluctuation.
Statistical mechanics deals with the relationship between the microscopic dynamics and the set of
macroscopic observables that govern the macroscopic behavior of the system [10, 8, 41].

A fundamental result in statistical mechanics is the expression for specific heat Cv, an equilib-
rium property, in terms of fluctuations of energy in the ”canonical” ensemble where the governing
set of macroscopic variables are the number of particles N , volume V and temperature T [8]. In
a similar manner, it is possible to obtain expressions for the nonequilibrium properties L11, L1Q,
LQ1, and LQQ in terms of the fluctuations of the diffusive and heat flux vectors in an equilibrium
system [57, 58, 40]. In this chapter, explicit expressions for the heat transport coefficients are
given as integrals of correlations of diffusive and heat flux vectors in an equilibrium system. Also,
a detailed derivation of the expression for the instantaneous heat flux vector is given in terms of
positions and momenta of atoms of a system modeled by M-body potentials, which can then be
used to obtain the required transport coefficient LQQ.

3.1 Green-Kubo Formulae

Consider an isolated system which can exchange neither energy nor matter with the surroundings.
The governing set of macroscopic variables in this case are the number of particles N , volume V

13



Chapter 3. Statistical Mechanics

and energyE. Assume that the system reached equilibrium, where the macroscopic variables when
averaged do not change with time. Imagine that the total system is divided into subsystems where
local temperature and concentrations may be defined. It is known from equilibrium statistical
mechanics that on an average (over all the members in the ensemble corresponding to the isolated
system), the temperature and concentrations of the constituents are uniform throughout the system
and hence no average thermodynamic forces such as Xk and XQ in the case of mixtures. However,
there may be spontaneous local fluctuations (in any member of the ensemble) resulting in non-zero
thermodynamic forces Xk and XQ, which, though small, drive the irreversible process of diffusion
and heat transfer in the system. Hence, it may be possible to model the fluctuations using the
phenomenological laws (2.45)-(2.46).

To model the fluctuations, it was hypothesized by Onsager that the “decay of a system from
a given nonequilibrium state produced by a spontaneous fluctuation obeys, on the average, the
(empirical) law for the decay from the same state back to equilibrium, when it has been produced
by a constraint which is then suddenly removed” [57, 58, 59]. Let a1, a2, . . . , an be a set of macro-
scopic observables which are of interest for the isolated system in equilibrium. These can either
be defined for the whole system (such as pressure in the total system), or for subsystems (such as
energy of a subsystem) making up the total system. These macroscopic variables are stochastic
variables since they are not constant across the members of the ensemble. Let ā1, ā2, . . . , ān be
the average values (over the members of the ensemble corresponding to N,V,E) of a1, a2, . . . , an
respectively. Let the fluctuations in the variable ai be αi, where

αi = ai − āi , for i ∈ 1, . . . , n . (3.1)

When the macroscopic variables of interest are equal to their averages, the entropy of the system
S(α1, α2, . . . , αn) is at its maximum [64]. Therefore,

∂S

∂αi

∣∣∣∣∣
α1=0,...,αn=0

= 0 . (3.2)

When the fluctuations are small, the entropy can be expanded by Taylor series as

S(α1, . . . , αn)− S(0, . . . , 0) = ∆S = −1

2

∑
i,j

gijαiαj + h.o.t , (3.3)

where gij are the elements of the matrix g such that

gij = − ∂2S

∂αi∂αj
. (3.4)
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The probability of a fluctuation in which αi lies between αi and αi + dαi is given by

Pdα1, . . . , dαn =
1

C
exp

(
∆S

kB

)
dα1, . . . , dαn , (3.5)

where C is the normalization constant such that the integration of the probability density function
yields unity [39]. Using (3.5), one can obtain the relation

〈αiαj〉 = kBg
−1
ij , (3.6)

where kB is the Boltzmann constant, g−1
ij are the elements of the inverse of g and 〈·〉 denotes the

average over the ensemble corresponding to the isolated system in equilibrium.
At this stage, it is assumed that the decay of macroscopic variables, when they are perturbed

from their average values due to the external constraints (for example, heating), can be modeled
by linear transport laws of the form

d

dt
(ai(t)− āi(t)) =

∑
j

Mij(aj − āj) , (3.7)

where Mij are constants. For example, one such linear transport law is the Fourier’ law for heat
conduction. Now, when a fluctuation occurs, it has to decay to maintain equilibrium. It was
hypothesized by Onsager, as stated earlier, that this decay of fluctuations can also be modeled by
the same transport laws which are used to model the perturbations of the system due to external
constraints. Let α1(t), . . . , αn(t) be the fluctuations in a1, . . . , an respectively at time t. It is known
that certain section of the ensemble corresponding to the isolated system are consistent with this
fluctuation. Following the molecular dynamics (or trajectory) of each and every member of this
subsection of the ensemble, one can note the fluctuation at time t + τ . Let the fluctuation in ai at
time t + τ given that the system had a set of fluctuations of α1(t), . . . , αn(t) at time t be denoted
by αi(t+ τ)

∣∣
α1(t),...,α(t)

. Following each and every member of this subsection of the ensemble, one
can calculate the average (over this subsection of the ensemble) of αi(t + τ)

∣∣
α1(t),...,α(t)

denoted

by αi(t+ τ)
∣∣
α1(t),...,α(t)

. Using Onsager’ hypothesis for this average over the subsection of the
ensemble, the equation for the decay of the fluctuation occurring at time t is written in a time-
difference sense as

αi(t+ τ)
∣∣
α1(t),...,αn(t)

− αi(t) = τ
n∑
j=1

Mijαj(t) . (3.8)

To be able to write linear laws (3.7) in the time-difference schemes, the time interval of observation
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τ should be such that
τ � 1

Mij

, for all i, j . (3.9)

Multiplying both sides of (3.8) by αk(t), taking averages over the whole ensemble and following
the derivations in [40, 75], it can be shown that

kB
∑
j

Mijg
−1
jk =

∫ τ

0

(
1− s

τ

)
〈α̇i(0)α̇k(s)〉 ds , (3.10)

where α̇k(s) is the time derivative with respect to the molecular time scale τm, which is smaller
than the observation time τ . The term 〈α̇i(0)α̇k(s)〉 is called the time-correlation function, which
is obtained by taking the time dependent quantity α̇i(t) at time t = 0 and multiplying it by the
other time dependent quantity α̇k(t) at time t = s, and then averaging the product over the entire
ensemble. Usually, these correlation functions decay in time and have a decay time τc, after which
they vanish. Assuming that the decay time τc of the correlation function 〈α̇i(0)α̇k(s)〉 is smaller
than the time interval τ , (3.10) can be reduced to

kB
∑
j

Mijg
−1
jk =

∫ ∞
0

〈α̇i(0)α̇k(s)〉 ds , (3.11)

yielding the left hand side to be an integral over infinite time interval. Now, introducing the ther-

modynamic force Xi(α) =
∂S

∂αi
, (3.8) can be written as

αi(t+ τ)|α1(t),...,αn(t) − α1(t)

τ
=

n∑
j=1

LijXj(t) , (3.12)

where Lij =
∑
k

Mikg
−1
kj . Interpreting the time derivative on left hand side of (3.12) as flux Ji,

(3.12) is of the form
Ji =

∑
j

LijXj , (3.13)

which is equivalent to the form of the transport laws (2.45) and (2.46) connecting the forces and
fluxes in the linear irreversible regime, with Lij being the transport coefficient. Thus, using (3.8)
and (3.11), the transport coefficient Lij relating the thermodynamic current Ji and the thermody-
namic force Xj can be obtained in terms of the correlation function as

Lij =
1

kB

∫ ∞
0

〈α̇i(0)α̇j(s)〉 ds , (3.14)
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famously known as the Green-Kubo relations. Here, it is very important to note that, in obtaining
the (3.14), it is crucial to find the time interval τ such that

τm � τc � τ � 1

Mij

. (3.15)

However, all the Green-Kubo relations derived above are for the case of discrete macroscopic
variables. In order to obtain the transport coefficient L11, L1Q and LQQ, it is important to derive
the theory for continuous systems, i.e., systems where the macroscopic quantities are defined at
every macroscopic point x as described in Chapter 2. Using Onsager’ hypothesis and following
the derivations in [40], it can be shown that the phenomenological coefficient matrices for a binary
liquid mixture can be obtained in terms of the correlation functions as

L11 =
V

kB

∫ ∞
0

〈
J̃1(t)⊗ J̃1(0)

〉
dt , (3.16)

L1Q =
V

kB

∫ ∞
0

〈
J̃1(t)⊗ J̃Q(0)

〉
dt , (3.17)

LQQ =
V

kB

∫ ∞
0

〈
J̃Q(t)⊗ J̃Q(0)

〉
dt , (3.18)

where J̃1(t) and J̃Q(t) are the instantaneous diffusive and heat flux vectors respectively in any
member of the ensemble. For solids, as there is no diffusion, there exists only one transport coef-

ficient LQQ given by (3.18). As the objective of this thesis is to estimate
LQQ

T 2
using (3.18), one

needs expressions for the instantaneous heat flux vector J̃Q(t) [32, 24].

3.2 Stress and Heat Flux from Molecular Dynamics Simula-
tions

In this section, the local forms of balance of mass, linear momentum and energy are obtained from
the principles of classical statistical mechanics, where the particles obey Newton’s laws of motion,
in the absence of heat sources, body forces or external interaction potentials. The stress tensor
and heat flux vector in terms of molecular variables are obtained from the derivations of balance
of linear momentum and the balance of energy respectively following the Irving and Kirkwood
procedure [32, 24].

Consider a system consisting of N atoms whose positions are denoted by r1, r2, . . . , rN and
momenta by p1,p2, . . . ,pN . The 6N-dimensional space of positions and momenta denoted by
Γ = {(ri,pi) , i = 1, 2, . . . , N} is called the phase space. The instantaneous state of the system
may be represented by a point in the phase space. As mentioned earlier, there are many pos-
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sible microstates (choices of positions and momenta of atoms) consistent with few macroscopic
variables that govern the behavior of the system. Hence, there exists a phase-space distribution
function f(Γ, t) that denotes the probability of the system occupying a microstate Γ at time t, such
that the distribution function is normalized to unity, i.e.,∫

f(Γ, t) dΓ = 1 . (3.19)

Consider any subset Ω of the phase space. Then,
∫

Ω
f(Γ, t) dΓ gives the fraction of members of

the ensemble that are within Ω. If one follows this set in time then the fraction of members within
this set should remain constant in time, as members are neither created nor destroyed. Therefore

d

dt

∫
Ω

f(Γ, t) = 0 . (3.20)

Assuming that f(Γ, t) is continuous in Γ and time t, using Reynolds transport theorem, (3.20) can
be reduced to ∫

Ω

[
∂f(Γ, t)

∂t
+ f(Γ, t)

∂

∂Γ
· Γ̇ + Γ̇ · ∂

∂Γ
f(Γ, t)

]
dΓ = 0 , (3.21)

where
∂

∂Γ
· Γ̇ =

∑
i

(
∂

∂pi
· ṗi +

∂

∂ri
· ṙi
)

. Since Ω is any arbitrary subset of the phase space,

localizing (3.21) to a point yields the Liouville equation for evaluating the phase space distribution
function as

∂f(Γ, t)

∂t
= −

[
∂

∂Γ
· Γ̇ + Γ̇ · ∂

∂Γ

]
f(Γ, t) = −iLf(Γ, t) , (3.22)

where iL is called as f -Liouvillean operator. The solution of (3.22) is formally represented as

f(Γ, t) = exp(−iLt)f(Γ, 0) , (3.23)

where f(Γ, 0) is the initial phase space distribution consistent with the initial preparation of the

system [24]. It should be noted that if
∂

∂Γ
· Γ̇ = 0, the phase space is incompressible. This is

equivalent to the concept of material incompressibility in continuum mechanics.
Consider a general phase variable G(Γ) = G̃(t). The time derivative of G is given by

Ġ(Γ) =

[
Γ̇ · ∂

∂Γ

]
G(Γ) = iLG(Γ) , (3.24)
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where iL is called as p-Liouvillean operator. The solution of (3.24) is formally represented as

G̃(t) = exp(iLt)G̃(0) . (3.25)

The ensemble average of G at time t, 〈G(t)〉, can be evaluated in two ways. First, one can choose
choose an initial configuration Γ from the initial probability distribution and then evaluate the
phase variable G at time t by following the trajectory starting from Γ. Finally, one can obtain
the average by multiplying this value with a weighing factor determined by the initial probability
distribution f(Γ, 0), i.e.,

〈G(t)〉 =

∫
G(t)f(Γ, 0) dΓ . (3.26)

This is the Heisenberg picture and is equivalent to the Lagrangian formulation in continuum me-
chanics, where one follows the material point. Second, one can choose any particular point Γ in the
phase space and evaluate the change in the probability function f(Γ, t) at that point as a function
of time. Then, one can calculate the average by evaluating the phase variable at that point G(Γ)
and multiplying it with the probability function at time t, i.e.,

〈G̃(t)〉 =

∫
G(Γ)f(Γ, t) dΓ . (3.27)

This is called the Schrödinger picture and is equivalent to the Eulerian formulation in continuum
mechanics, where one stays at a fixed point and monitors the particles coming in to the differential
volume around the fixed point. It can be proved that the averages calculated by Heisenberg and
Schrödinger representations are equivalent, see [24, Section 3.3]. A schematic of the Heisenberg
and Schrödinger representations is shown in Figure 3.1.

Using the properties of Liouvillean operators, the following identities can be established:∫
f(Γ, t)iLG(Γ) dΓ = −

∫
G(Γ)iLf(Γ, t) dΓ , (3.28)

∫
G(Γ)

[
exp

(
− iL0t

)
g(Γ, 0)

]
dΓ =

∫
g(Γ, 0)

[
exp

(
iL0t

)
G(Γ)

]
dΓ , (3.29)

where the first identity is obtained using integration by parts and the second identity is the equiva-
lence of Heisenberg and Schrödinger representations, see [24, Chapter 3].

At this stage, the particles in the system are assumed to obey Newton’ laws of motion, i.e., the
rates of position and momentum of atom i are given by

ṙi =
pi
mi

,

ṗi = Fi ,
(3.30)
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(a) The Heisenberg picture. (b) The Schrödinger picture.

Figure 3.1: The Heisenberg-Schrödinger picture, from [24].

respectively, where Fi is the interaction force on atom i given by

Fi = −∂Φ

∂ri
, (3.31)

with Φ(r1, r2, . . . , rN) being the total interaction potential of the system. The latter is of the general
form

Φ(r1, r2, . . . , rN) =
1

2!

∑
i1,i2

u2(ri1 , ri2) +
1

3!

∑
i1,i2,i3

u3(ri1 , ri2 , ri3) + . . .+

1

M !

∑
i1,i2,···iM

uM(ri1 , ri2 , . . . , riM ) ,
(3.32)

where M ≤ N and uM(ri1 , ri2 , . . . , riM ) describes M-body interactions [49]. The total inter-
atomic force Fi on atom i is given by

Fi = −∂Φ

∂ri
=

1

1!

∑
i2

Fii2 +
1

2!

∑
i2,i3

Fii2i3 + . . .+
1

(M − 1)!

∑
i2,...,iM

Fii2...iM , (3.33)

where Fii2...iM = − ∂

∂ri
uM(ri, ri2 , . . . , riM ) is the M-body force contribution on atom i.

To obtain the local forms of balances of mass, linear momentum and balance of energy from
the principles of classical statistical mechanics, a connection needs to be established between the
macroscopic and molecular variables. Firstly, the probability per unit volume of finding an atom i
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at the macroscopic point x is
∫
δ(x− ri)f(Γ, t) dΓ, and the contribution of mass of atom i to the

density at x is then given by
∫
miδ(x − ri)f(Γ, t) dΓ at time t. Therefore, the total mass density

at x due to the contribution from all molecules is given at time t by

ρ(x, t) =

∫ ∑
i

miδ(x− ri)f(Γ, t) dΓ . (3.34)

Similarly, the linear momentum at x is given at time t as

ρ(x, t)v(x, t) =

∫ ∑
i

piδ(x− ri)f(Γ, t) dΓ . (3.35)

In order to define the energy density from the molecular quantities, one needs to define the energy
Ei of each atom i. This is taken to be of the form

Ei =
pi · pi
2mi︸ ︷︷ ︸
kinetic

+
1

2!

∑
i2

u2(ri, ri2) +
1

3!

∑
i2,i3

u3(ri, ri2 , ri3) + . . .+
1

M !

∑
i2,...,iM

uM(ri, ri2 , . . . , riM )︸ ︷︷ ︸
potential

.

(3.36)

based on the assumption that the energy from any K-body term uK(ri1 , ri2 , . . . , riK ) is divided
equally among the atoms i1, i2, . . . , iK . For this choice of energy of each atom i, the energy
density at x is given at time t as

ρ(x, t)e(x, t) =

∫ ∑
i

[pi · pi
2mi

+ Ei

]
δ(x− ri)f(Γ, t) dΓ , (3.37)

assuming no external interaction potentials.
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3.2.1 Balance of Mass

Taking the partial time derivative of (3.34),

∂ρ

∂t
=

∫ ∑
i

miδ(x− ri)
∂f(Γ, t)

∂t
dΓ

= −
∫ ∑

i

miδ(x− ri) iLf(Γ, t) dΓ

=

∫
f(Γ, t) iL

(∑
i

miδ(x− ri)
)

dΓ

=

∫
f(Γ, t)

∑
i

mi
∂δ(x− ri)

∂ri
· ṙi

(3.38)

where the second, third and fourth equalities follow from (3.22), (3.28) and (3.24), respectively.
Using (3.30), (3.35) and the property of the delta function

∂

∂ri
δ(x− ri) = − ∂

∂x
δ(x− ri) (3.39)

obtained by chain rule, equation (3.38) can be reduced to

∂ρ

∂t
= −

∫
f(Γ, t)

∑
i

∂δ(x− ri)

∂x
· pi
mi

= − ∂

∂x
·
∫ ∑

i

piδ(x− ri)f(Γ, t) dΓ

= − ∂

∂x
· (ρv) ,

(3.40)

which is the local form of balance of mass given by (2.1). Hence, the microscopic definition of
mass density given by (3.34) exactly satisfies the balance of mass given by (2.1).
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3.2.2 Balance of Momentum

Following the same procedure as for the balance of mass, the partial time derivative on the left and
right hand sides of (3.35) yields

∂

∂t
(ρv) =

∫ ∑
i

piδ(x− ri)
∂f(Γ, t)

∂t
dΓ

= −
∫ ∑

i

piδ(x− ri) iLf(Γ, t) dΓ

=

∫
f(Γ, t) iL

(∑
i

piδ(x− ri)
)

dΓ

=

∫
f(Γ, t)

∑
i

[
ṗiδ(x− ri) + pi

(∂δ(x− ri)

∂ri
· ṙi
)]

dΓ ,

(3.41)

where the second, third and fourth equalities follow from (3.22), (3.28) and (3.24), respectively.
Now, using (3.30) and (3.39), equation (3.41) can be reduced to

∂

∂t
(ρv) =

∫
f(Γ, t)

∑
i

Fiδ(x− ri) dΓ− ∂

∂x
·
∫
f(Γ, t)

∑
i

pi ⊗ pi
mi

δ(x− ri) dΓ , (3.42)

where the second term on the right hand side can be rewritten as

∂

∂x
·
∫
f(Γ, t)

∑
i

pi ⊗ pi
mi

δ(x− ri) dΓ =
∂

∂x
·
∫
f(Γ, t)

∑
i

mi

( pi
mi

− v
)
⊗
( pi
mi

− v
)
δ(x− ri) dΓ +

∂

∂x
· (ρv ⊗ v) ,

(3.43)

upon using (3.34) and (3.35). Hence, equation (3.42) can be reduced to

∂

∂t
(ρv) +

∂

∂x
· (ρv ⊗ v) =

∫
f(Γ, t)

∑
i

Fiδ(x− ri) dΓ

− ∂

∂x
·
∫
f(Γ, t)

∑
i

mi

( pi
mi

− v
)
⊗
( pi
mi

− v
)
δ(x− ri) dΓ .

(3.44)
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The first term on the right hand side of (3.44) can be written in terms of the interaction potential Φ
as ∑

i

Fiδ(x− ri) =
∑
i

δ(x− ri)
[ 1

1!

∑
i2

Fii2 +
1

2!

∑
i2,i3

Fii2i3 + . . .

+
1

(M − 1)!

∑
i2,...,iM

Fii2...iM

]
,

(3.45)

using the definition of the interatomic force Fi in (3.33). Assuming central forces, for any K-body
term in the M-body potential (3.32)

∂

∂ri
uK(ri, ri2 , . . . , riK )+

∂

∂ri2
uK(ri, ri2 , . . . , riK )+ . . .+

∂

∂rK
uK(ri, ri2 , . . . , riK ) = 0 . (3.46)

Now, any K-body force term on the right hand side of (3.45) can be written as

1

(K − 1)!

∑
i,i2,...,iK

δ(x− ri)Fii2...iK = − 1

K!

[
(K − 1)

∑
i,i2,...,iK

δ(x− ri)
∂

∂ri
uK(ri, ri2 , . . . , riK )+

∑
i,i2,...,iK

δ(x− ri)
∂

∂ri
uK(ri, ri2 , . . . , riK ) .

(3.47)

Substituting (3.46) in the last term of the right hand side of (3.47) and rearranging terms, equation
(3.47) can be reduced to

1

(K − 1)!

∑
i,i2,...,iK

δ(x− ri)Fii2...iK =
1

K!

∑
i,i2,...,iK

[
(K − 1)δ(x− ri)− δ(x− ri2)− . . .

− δ(x− riK )
]
Fii2...iK .

(3.48)

Using the identity

δ(x− ri)− δ(x− ri2) = − ∂

∂x
· (rii2bii2) , (3.49)

where rii2 = ri − ri2 and the bond function bii2 = b(x; ri, ri2) =
∫ 1

0
δ(x − ri + λrii2) dλ, (3.48)

can be reduced to

1

(K − 1)!

∑
i,i2,...,iK

δ(x−ri)Fii2...iK = − ∂

∂x
·
[ ∑
i,i2,...,iK

Fii2...iK⊗
(
rii2bii2 +. . .+riiKbiiK

)]
. (3.50)
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The bond function b(x; ri, rj) can be interpreted as follows: if, in Figure 3.2, x is on the line
segment connecting ri and rj then b(x; ri, rj) = 1, otherwise, b(x; ri, rj) = 0. Using (3.50),

Figure 3.2: A schematic showing the positions of atoms, ri and rj , and the continuum point x to
depict the bond function.

equation (3.45) may be rewritten as∑
i

Fiδ(x− ri) = − ∂

∂x
·
[ 1

2!

∑
i,i2

Fii2 ⊗ rii2bii2 +
1

3!

∑
i,i2,i3

Fii2i3 ⊗ (rii2bii2 + rii3bii3) + . . .+

1

M !

∑
i,i2,...,iM

Fii2...iM ⊗ (rii2bii2 + . . .+ riiM biiM )
]
.

(3.51)

Finally substituting (3.51) in (3.44), it can be shown that

ρv̇ =
∂

∂x
·
∫

(TK + TV )f(Γ, t) dΓ , (3.52)

where
TK = −

∑
i

mi

( pi
mi

− v
)
⊗
( pi
mi

− v
)
δ(x− ri) , (3.53)

and

TV = −
[ 1

2!

∑
i,i2

Fii2 ⊗ rii2bii2 +
1

3!

∑
i,i2,i3

Fii2i3 ⊗ (rii2bii2 + rii3bii3) + . . .+

1

M !

∑
i,i2,...,iM

Fii2...iM ⊗ (rii2bii2 + . . .+ riiM biiM )
]
.

(3.54)
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It can be seen that (3.52), obtained from point function mass and momentum densities (3.34) and
(3.35), becomes identical in form to the local form of balance of mass (2.2) when body forces are
absent. However, to obtain the macroscopic balance of momentum, one needs to take appropriate
space averages. Comparing terms in (3.52) and (2.2), the point wise stress tensor may be defined
as

Tp =

∫
(TK + TV )f(Γ, t) dΓ . (3.55)

Here, it can be seen that TK consists of contributions only from velocities and is called as the
kinetic stress tensor. Moreover, it is always symmetric. On the other hand, TV is due to the
forces between atoms and is called as the virial stress tensor. This is always symmetric if the
interatomic potential describing the interactions between the atoms follows the central force model
i.e., equation (3.46), which is almost always the case [1]. It is important to note that in the case
of gases, where the interaction forces are very weak, the contribution of the kinetic stress tensor
to the total stress tensor is more than the virial stress tensor. However, when interaction forces
become important as in the case of liquids and solids, the contribution from virial stress tensor is
significantly higher than the kinetic part.

3.2.3 Balance of Energy

In this subsection, point-wise definition of the heat flux vector is obtained. Taking the partial time
derivative on both sides of (3.37)

∂

∂t
(ρe) =

∫ ∑
i

Eiδ(x− ri)
∂f(Γ, t)

∂t
dΓ

= −
∫ ∑

i

Eiδ(x− ri) iLf(Γ, t) dΓ

=

∫
f(Γ, t) iL

(∑
i

Eiδ(x− ri)
)

dΓ

=

∫
f(Γ, t)

∑
i

Ėiδ(x− ri) dΓ +

∫
f(Γ, t)

∑
i

Ei

(∂δ(x− ri)

∂ri
· ṙi
)]

dΓ

=

∫
f(Γ, t)

∑
i

Ėiδ(x− ri) dΓ− ∂

∂x
·
(∫

f(Γ, t)
∑
i

Eiṙiδ(x− ri) dΓ
)
,

(3.56)
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where the second, third and fourth equalities follow from (3.22), (3.28) and (3.24), respectively.
The first term on the right hand side of (3.56) can be written as∑

i

Ėiδ(x− ri) =
∑
i

[ pi
mi

· ṗi +
1

2!

∑
i2

u̇2(ri, ri2) +
1

3!

∑
i2,i3

u̇3(ri, ri2 , ri3) + . . .

+
1

M !

∑
i2,...,iM

u̇M(ri, ri2 , . . . , riM )
]
δ(x− ri)

=
1

2!

∑
i,i2

(
2

pi
mi

· Fii2 + u̇2(ri, ri2)
)
δ(x− ri) + . . .+

1

M !

∑
i,i2,...,iM

(
M

pi
mi

· Fii2...iM + u̇M(ri, ri2 , . . . , riM )
)
δ(x− ri) ,

(3.57)

using the definition of Ei (3.36) and equations of motion (3.30). Now, any K-body term in (3.57)
can be further simplified as

1

K!

∑
i,i2,...,iK

(
K

pi
mi

· Fii2...iK + u̇K(ri, ri2 , . . . , riK )
)
δ(x− ri)

=
1

K!

∑
i,i2,...,iK

(
K

pi
mi

· Fii2...iKδ(x− ri)
)

+
1

K!

∑
i,i2,...,iK

(∂uK
∂ri
· pi
mi

+
∂uK
∂ri2

· pi2
mi2

+

. . .+
∂uK
∂rK

· pK
mK

)
δ(x− ri)

=
1

K!

∑
i,i2,...,iK

[ pi
mi

· Fii2...iK

(
δ(x− ri)− δ(x− ri2)

)
+

. . .+
pi
mi

· Fii2...iK

(
δ(x− ri)− δ(x− riK )

)]
= − ∂

∂x
·

(
1

K!

∑
i,i2,...,iK

[
(rii2bii2 + . . .+ riiKbiiK )⊗ Fi,i2,...,iK

] pi
mi

)
,

(3.58)
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where the third equality is obtained using (3.49) and the definition of Fii2...iK . Using (3.58) and
(3.54), the first term on the right hand side of (3.57) can be obtained as

∑
i

Ėiδ(x− ri) = − ∂

∂x
·

(∑
i

[ 1

2!

∑
i2

rii2bii2 ⊗ Fii2 +
1

3!

∑
i2

(rii2bii2 + rii3bii3)⊗ Fii2i3+

. . .+
1

M !

∑
i2,...,iK

(rii2bii2 + . . .+ riiKbiiM )⊗ Fii2...iM

] pi
mi

)

= − ∂

∂x
·

(∑
i

[ 1

2!

∑
i2

rii2bii2 ⊗ Fii2 +
1

3!

∑
i2

(rii2bii2 + rii3bii3)⊗ Fii2i3 + . . .

+
1

M !

∑
i2,...,iK

(rii2bii2 + . . .+ riiKbiiM )⊗ Fii2...iM

]( pi
mi

− v
))

+
∂

∂x
·
(
TT
V v
)
.

(3.59)

Now, the second term on the right hand side of (3.56) can be written as∫
f(Γ, t)

∑
i

Eiṙiδ(x− ri) dΓ =

∫
f(Γ, t)

∑
i

Ei

( pi
mi

− v
)
δ(x− ri) dΓ + ρev

=

∫
f(Γ, t)

∑
i

[( pi
mi

− v
)
·
( pi
mi

− v
)

+
∑
i2

u2 +
∑
i2,i3

u3

+ . . .+
∑

i2,i3,...,iM

uM

]( pi
mi

− v
)
δ(x− ri) dΓ + ρev −TT

Kv

=

∫
f(Γ, t)

∑
i

Êi

( pi
mi

− v
)
δ(x− ri) dΓ + ρev −TT

Kv

(3.60)

using (3.34) and (3.35), where TK is given by (3.53) and

Êi =
( pi
mi

− v
)
·
( pi
mi

− v
)

+
∑
i2

u2 +
∑
i2,i3

u3 + . . .+
∑

i2,i3,...,iM

uM . (3.61)
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Substituting (3.59) and (3.60) in (3.56), using (3.37) and the pointwise stress tensor definition,
equation (3.56) can be reduced to

ρė =
∂

∂x
·
(
TpTv

)
− ∂

∂x
·

(∫ ∑
i

[
ÊiIδ(x− ri) +

1

2!

∑
i2

rii2bii2 ⊗ Fii2 + . . .

+
1

M !

∑
i2,...,iK

(rii2bii2 + . . .+ riiKbiiM )⊗ Fii2...iM

]( pi
mi

− v
)
f(Γ, t) dΓ

)

=
∂

∂x
·
(
TpTv

)
− ∂

∂x
· JpQ ,

(3.62)

where

JpQ =

∫ ∑
i

[
ÊiIδ(x− ri) +

1

2!

∑
i2

rii2bii2 ⊗ Fii2 + . . .

+
1

M !

∑
i2,...,iK

(rii2bii2 + . . .+ riiKbiiM )⊗ Fii2...iM

]( pi
mi

− v
)
f(Γ, t) dΓ .

(3.63)

It can be seen that (3.62) is identical in form to the balance of energy (2.3) in the absence of body
forces and external heat source. Again comparing terms in (3.62) and (2.3), the point-wise heat
flux vector is given by (3.63).

As mentioned earlier, in order to obtain the macroscopic balance of energy from (3.62) one
has to perform appropriate space averaging over a microscopically large though macroscopically
small domain, determined by the resolving power of one’s measuring instruments, [32]. Therefore,
averaging over a spatial domain of volume V and specializing to any one system in the ensemble,
the macroscopic instantaneous stress tensor and heat flux vectors can be obtained in terms of the
molecular variables from (3.55) and (3.63) as

T̃(t) =
1

V

∫
V

Tp dx

= − 1

V

∑
i

mi

( pi
mi

− v
)
⊗
( pi
mi

− v
)
− 1

V

[ 1

2!

∑
i,i2

Fii2 ⊗ rii2+

1

3!

∑
i,i2,i3

Fii2i3 ⊗ (rii2 + rii3) + . . .+
1

M !

∑
i,i2,...,iM

Fii2...iM ⊗ (rii2 + . . .+ riiM )
] (3.64)
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and

J̃Q(t) =
1

V

∫
V

JpQ dx

=
1

V

∑
i

[
ÊiI +

1

2!

∑
i2

rii2 ⊗ Fii2 + . . .

+
1

M !

∑
i2,...,iK

(rii2 + . . .+ riiK )⊗ Fii2...iM

]( pi
mi

− v
)
,

(3.65)

respectively. The instantaneous heat flux vector thus obtained can be used with the Green-Kubo
relations (3.16) to obtain the heat transport coeffiecient LQQ.
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Molecular Dynamics Methods

In this chapter, a review of the existing molecular dynamics methods for evaluating the heat trans-
port coefficients, such as the direct method and the Green-Kubo method, is given and their advan-
tages and limitations are highlighted. Also, an introduction to the HNEMD method is given which
will be dealt in an elaborate manner in the subsequent chapters.

4.1 Direct Method

The direct method is a non-equilibrium molecular dynamics method and is analogous to the ex-
perimental measurement [67]. In this method, a known value of heat flux JQ is constantly driven
through the system, which is then left to evolve by Newton’s equations of motion (3.30) resulting
in a constant temperature gradient ∇T when the system reaches steady-state. The value of ther-
mal conductivity κ at a temperature T is then obtained by using Fourier’s law JQ = −κ∇T . A
detailed explanation and the application of the method is given in [67, 73].

The heat flux in the system is driven by the addition and removal of energy from the system at
two different locations. The energy is added or removed by appropriate scaling of the velocities
of atoms in the system. Figure 4.1 shows a schematic representation of the molecular dynamics
system used to compute the thermal conductivity. As shown in Figure 4.1, energy ∆ε is added by

rescaling the velocities of atoms at every time step in the slab of thickness w centered at z = −Lz
4

and removed from the slab of same thickness w centered at z =
Lz
4

. Applying the balance law of

energy to the slab at z = −Lz
4

when the system reaches a steady state, it can be seen that

1

wA

∆ε

∆t
=

JQz − (−JQz)
w

, (4.1)

where, JQz is the heat flux in the z direction, A is the cross-sectional area of the MD system and
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w	
 w	


	  	   +Δε	
 -‐Δε	

JQz	
 JQz	
JQz	


z	  =-‐	  Lz/2	
 z	  =-‐	  Lz/4	
 z	  =	  0	
 z	  =	  Lz/4	
 z	  =	  Lz/2	


Figure 4.1: Schematic representation of the molecular dynamics system in the direct method,
where Lz is the total length of the system in the z-direction, from [67].

∆t denotes the time step in solving the equations of motion (3.30). In this way, a heat flux of

JQz =
∆ε

2A∆t
(4.2)

is driven through the system. Here, the system is allowed to reach a steady state by solving
(3.30) and imposing periodic boundary conditions (PBCs) in all three directions. PBCs are usually
chosen to mimic the presence of an infinite bulk surrounding the N-particle model system in order
to obtain the bulk estimates. In the case of PBCs, all atoms that exit the system from one side enter
it again from the opposite side with the same momentum and forces, see, e.g.., [2, Section 1.5.2].
To determine the temperature as a function of z, the system is divided into small blocks along the
z-axis. The temperature at z is then defined in terms of the kinetic energies of the atoms in the
block centered at z using the equipartition theorem [64, Section 6.5] as

T (z) =

〈 ∑
i ∈ block

mivi · vi
3NzkB

〉
=
〈
Tb(z)〉 , (4.3)

where the summation is on the atoms in the block, 〈·〉 denotes the ensemble average corresponding
to the steady state phase space distribution, kB is the Boltzmann’s constant and Nz is the number
of atoms in the block. Furthermore, assuming the system to be ergodic, the ensemble average in
(4.3) is evaluated as a time average of the kinetic energy once the steady state is reached, i.e.,

〈Tb(z)〉 = lim
Y→∞

1

Y

∫ t0+Y

t0

T̃bz(t) dt, (4.4)

where Tb(z) = T̃bz(t). Using (4.4), a typical temperature profile for the case of silicon modeled by
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the Stillinger-Weber potential at 500K is shown in Figure 4.2 [67]. A linear fit can be applied to the

C. Effect of deviations from Fourier’s law

To establish that Fourier’s law !Eq. "1#$ is obeyed and that
nonlinear response effects are not important, it is necessary
to establish that the computed value of % does not depend
strongly on the value of &' for some range of values of &'.
To do this, we have computed % for several different values
of &' for a 4!4!96 system at T"500 K. The thermal cur-
rent is proportional to &'/A , where A is the cross-sectional
area of the system "A"4.73 nm2 for the 4!4!96 system#.
The results are shown in Fig. 5. We see that while there does
appear to be some variation of % with &', for values of &'/A
near 1.06!10#4 eV/nm2 "corresponding to &'"5
!10#4 eV for a system with A"4.73 nm2#, the variations
appear to be rather small "$10%#, and an accurate value of %
can be calculated. Choosing &'/A significantly smaller than
1!10#4 eV/nm2 tends to result in large error bars because
the magnitude of the temperature difference between the hot
and cold ends of the simulation cell becomes comparable to
the typical statistical noise. Although no significant devia-
tions from Fourier’s law are apparent from Fig. 5, we will
avoid unnecessarily large values of &'/A . Thus, choosing a
value of &'/A(1!10#4 eV/nm2 "i.e., 1.6!10#5 J/m2# ap-
pears to be suitable, and in the remainder of this paper we
will use a value of 5!10#4 eV for &' for systems of dimen-
sion 4!4 "i.e., 4.73 nm2# in the direction perpendicular to
the current.

D. Finite-size effects

Finite-size effects arise when the length of the simulation
cell Lz is not significantly longer than the phonon mean-free
path.4,7 This is understood to be a result of scattering that
occurs at the interfaces with the heat source and sink. For a
sample with length smaller than the mean-free path in an
infinite system, the thermal conductivity will be limited by
the system size. This regime is known as the Casimir limit. A

simple approach to determine the effective mean-free path
leff when Lz(l) , where l) is the mean-free path for an
infinite system, is to add the inverse mean-free paths. Then
leff is given by,

FIG. 3. Typical temperature profile for a 4!4!288 system at
an average temperature of 500 K. The heat source is located at z
"39 nm, and the heat sink is located at z"117 nm. Within 6 nm of
the source and sink, a strong nonlinear temperature profile is always
observed. For obtaining temperature gradients to compute % from
Fourier’s law !Eq. "1#$, we therefore make linear fits using only
parts of the system, which are at least 6 nm away from the heat
source and sink "see Fig. 4#.

FIG. 4. Linear fits to temperature profiles for a 4!4!288 sys-
tem at an average temperature of 500 K "see Fig. 3#. Temperature
profiles were fit for the regions at least 6 nm away from the heat
source. In this case, linear fits are made over 66 nm of the system.
The fits in the case have slopes of "a# 0.31 K/nm and "b# 0.32 K/nm.
Taking the average, this results in a thermal conductivity from Eq.
"1# of 47.9 W/mK.

FIG. 5. Effect of changing &' for a 4!4!96 system at an
average temperature of 500 K. This shows a broad range of values
for &'/A where nonlinear behavior is not present and Fourier’s law
is obeyed.

SCHELLING, PHILLPOT, AND KEBLINSKI PHYSICAL REVIEW B 65 144306

144306-4

Figure 4.2: Temperature profile along the length of a unit cell silicon system consisting of 4× 4×
288 unit cells at an average temperature of T = 500K, from [67].

temperature profile as shown in Figure 4.3 to estimate the temperature gradient. The temperature
gradient thus obtained and the heat flux given by (4.2) can be used along with Fourier’s law to
obtain an estimate of the thermal conductivity. However, it is important to understand the behavior
of the simulated system for various values of ∆ε, as one needs to identify a range of ∆ε where
the heat flux and the temperature gradient are directly proportional to each other, or equivalently,
the thermal conductivity obtained should be independent of ∆ε. Figure 4.4 shows the effect of
the magnitude ∆ε of the energy difference on the thermal conductivity. Furthermore, using this
method, it can be seen that the thermal conductivity attained is dependent on the length of the
simulated system, as shown in Figure 4.5. To obtain meaningful values that may be compared
with experiments, it is necessary to perform several simulations of increasing lengths and then
extrapolate to the infinite-size limit. The thermal conductivity at infinite length κ∞ may then be
obtained from linear extrapolation using

1

κ(Lz)
=

1

κ∞
+

α

Lz
, (4.5)

where κ(Lz) is the thermal conductivity obtained corresponding to a length Lz and α is a length-
independent coefficient.
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C. Effect of deviations from Fourier’s law

To establish that Fourier’s law !Eq. "1#$ is obeyed and that
nonlinear response effects are not important, it is necessary
to establish that the computed value of % does not depend
strongly on the value of &' for some range of values of &'.
To do this, we have computed % for several different values
of &' for a 4!4!96 system at T"500 K. The thermal cur-
rent is proportional to &'/A , where A is the cross-sectional
area of the system "A"4.73 nm2 for the 4!4!96 system#.
The results are shown in Fig. 5. We see that while there does
appear to be some variation of % with &', for values of &'/A
near 1.06!10#4 eV/nm2 "corresponding to &'"5
!10#4 eV for a system with A"4.73 nm2#, the variations
appear to be rather small "$10%#, and an accurate value of %
can be calculated. Choosing &'/A significantly smaller than
1!10#4 eV/nm2 tends to result in large error bars because
the magnitude of the temperature difference between the hot
and cold ends of the simulation cell becomes comparable to
the typical statistical noise. Although no significant devia-
tions from Fourier’s law are apparent from Fig. 5, we will
avoid unnecessarily large values of &'/A . Thus, choosing a
value of &'/A(1!10#4 eV/nm2 "i.e., 1.6!10#5 J/m2# ap-
pears to be suitable, and in the remainder of this paper we
will use a value of 5!10#4 eV for &' for systems of dimen-
sion 4!4 "i.e., 4.73 nm2# in the direction perpendicular to
the current.

D. Finite-size effects

Finite-size effects arise when the length of the simulation
cell Lz is not significantly longer than the phonon mean-free
path.4,7 This is understood to be a result of scattering that
occurs at the interfaces with the heat source and sink. For a
sample with length smaller than the mean-free path in an
infinite system, the thermal conductivity will be limited by
the system size. This regime is known as the Casimir limit. A

simple approach to determine the effective mean-free path
leff when Lz(l) , where l) is the mean-free path for an
infinite system, is to add the inverse mean-free paths. Then
leff is given by,

FIG. 3. Typical temperature profile for a 4!4!288 system at
an average temperature of 500 K. The heat source is located at z
"39 nm, and the heat sink is located at z"117 nm. Within 6 nm of
the source and sink, a strong nonlinear temperature profile is always
observed. For obtaining temperature gradients to compute % from
Fourier’s law !Eq. "1#$, we therefore make linear fits using only
parts of the system, which are at least 6 nm away from the heat
source and sink "see Fig. 4#.

FIG. 4. Linear fits to temperature profiles for a 4!4!288 sys-
tem at an average temperature of 500 K "see Fig. 3#. Temperature
profiles were fit for the regions at least 6 nm away from the heat
source. In this case, linear fits are made over 66 nm of the system.
The fits in the case have slopes of "a# 0.31 K/nm and "b# 0.32 K/nm.
Taking the average, this results in a thermal conductivity from Eq.
"1# of 47.9 W/mK.

FIG. 5. Effect of changing &' for a 4!4!96 system at an
average temperature of 500 K. This shows a broad range of values
for &'/A where nonlinear behavior is not present and Fourier’s law
is obeyed.
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Figure 4.3: Linear fit to a temperature profile along the length of a silicon molecular dynamics
system consisting of 4× 4× 288 unit cells at an average temperature of T = 500K, from [67].

The preceding direct method has many disadvantages. First, it is only capable of obtaining the
thermal conductivity component along the direction of the induced flux. Second, the temperature

gradients in this method are found to be on the order of 109K

m
, as seen in Figure 4.3, and therefore

the validity of Fourier’s law becomes questionable. Since the gradients are large, it is very difficult
to identify the temperature at which the thermal conductivity is obtained. Third, the length of the
system in the direction along which the thermal conductivity is estimated needs to be much larger
than the mean-free path of the phonons in order to avoid scattering of phonons with the heat source
(+∆ε) and sink (−∆ε) [67]. In the case of silicon at 500K, where the phonon mean-free path is
around 100nm, the number of atoms in the system need to be on the order of 3 × 105 to avoid
the size effects, hence making the simulation computationally costly in spite of imposing periodic
boundary conditions. Fourth, the computational cost also increases since the direct method de-
pends on identifying a range where the thermal conductivity is independent of ∆ε, as shown in
Figure 4.4.
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C. Effect of deviations from Fourier’s law

To establish that Fourier’s law !Eq. "1#$ is obeyed and that
nonlinear response effects are not important, it is necessary
to establish that the computed value of % does not depend
strongly on the value of &' for some range of values of &'.
To do this, we have computed % for several different values
of &' for a 4!4!96 system at T"500 K. The thermal cur-
rent is proportional to &'/A , where A is the cross-sectional
area of the system "A"4.73 nm2 for the 4!4!96 system#.
The results are shown in Fig. 5. We see that while there does
appear to be some variation of % with &', for values of &'/A
near 1.06!10#4 eV/nm2 "corresponding to &'"5
!10#4 eV for a system with A"4.73 nm2#, the variations
appear to be rather small "$10%#, and an accurate value of %
can be calculated. Choosing &'/A significantly smaller than
1!10#4 eV/nm2 tends to result in large error bars because
the magnitude of the temperature difference between the hot
and cold ends of the simulation cell becomes comparable to
the typical statistical noise. Although no significant devia-
tions from Fourier’s law are apparent from Fig. 5, we will
avoid unnecessarily large values of &'/A . Thus, choosing a
value of &'/A(1!10#4 eV/nm2 "i.e., 1.6!10#5 J/m2# ap-
pears to be suitable, and in the remainder of this paper we
will use a value of 5!10#4 eV for &' for systems of dimen-
sion 4!4 "i.e., 4.73 nm2# in the direction perpendicular to
the current.

D. Finite-size effects

Finite-size effects arise when the length of the simulation
cell Lz is not significantly longer than the phonon mean-free
path.4,7 This is understood to be a result of scattering that
occurs at the interfaces with the heat source and sink. For a
sample with length smaller than the mean-free path in an
infinite system, the thermal conductivity will be limited by
the system size. This regime is known as the Casimir limit. A

simple approach to determine the effective mean-free path
leff when Lz(l) , where l) is the mean-free path for an
infinite system, is to add the inverse mean-free paths. Then
leff is given by,

FIG. 3. Typical temperature profile for a 4!4!288 system at
an average temperature of 500 K. The heat source is located at z
"39 nm, and the heat sink is located at z"117 nm. Within 6 nm of
the source and sink, a strong nonlinear temperature profile is always
observed. For obtaining temperature gradients to compute % from
Fourier’s law !Eq. "1#$, we therefore make linear fits using only
parts of the system, which are at least 6 nm away from the heat
source and sink "see Fig. 4#.

FIG. 4. Linear fits to temperature profiles for a 4!4!288 sys-
tem at an average temperature of 500 K "see Fig. 3#. Temperature
profiles were fit for the regions at least 6 nm away from the heat
source. In this case, linear fits are made over 66 nm of the system.
The fits in the case have slopes of "a# 0.31 K/nm and "b# 0.32 K/nm.
Taking the average, this results in a thermal conductivity from Eq.
"1# of 47.9 W/mK.

FIG. 5. Effect of changing &' for a 4!4!96 system at an
average temperature of 500 K. This shows a broad range of values
for &'/A where nonlinear behavior is not present and Fourier’s law
is obeyed.
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Figure 4.4: Thermal conductivity dependence on the rescaling energy ∆ε of a silicon system
consisting of 4 × 4 × 96 unit cells at an average temperature of T = 500K, from [67]. It can be
seen that the heat-flux is directly proportionately to the temperature gradient following Fourier’s
law.

4.2 Green-Kubo Method

The method of Green-Kubo is the second most commonly used method to obtain the heat trans-

port coefficient
LQQ

T 2
[70, 67]. In this method, a molecular dynamics system is allowed to reach

equilibrium at a certain temperature T and volume V by imposing periodic boundary conditions
in all three directions. Once the system reaches equilibrium, the average heat flux in the system
is zero. However, there exist fluctuations of the heat flux vector whose instantaneous values J̃Q(t)
are continuously noted. Using these instantaneous heat flux values, the heat flux autocorrelation
function is obtained as a function of time by

CJQ
(τ) = 〈J̃Q(τ)⊗ J̃Q(0)〉 = lim

Y→∞

1

Y

∫ t0+Y

t0

J̃Q(τ + s)⊗ J̃Q(s) ds , (4.6)

where the second equality is obtained by appealing to the ergodic hypothesis. The autocorrelation
function is used in the Green-Kubo formula (3.18) to obtain the heat transport coefficient tensor
LQQ

T 2
. As mentioned earlier, in the case of solids, this heat transport coefficient reduces to the ther-

mal conductivity κ. Figure 4.6 shows the normalized heat flux autocorrelation function of silicon

35



Chapter 4. Molecular Dynamics Methods

1
leff

!
1
l!

"
4
Lz
. "3#

Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Figure 4.5: Thermal conductivity dependence on the length Lz of the system in the z-direction for
silicon and diamond, from [67].

at 1000K, modeled by Stillinger-Weber interatomic potential. It can be seen that the autocorrela-
tion function decays abruptly for shorter times followed by a long tail. It is this long tail of the
autocorrelation function that contributes significantly to the thermal conductivity tensor, especially
in the case of solids. Figure 4.7 shows the integration of autocorrelation function yielding the
thermal conductivity as a function of time.

There are two main advantages in using the Green-Kubo method. First, thermal conductivity
converges quickly with the system size which is on the order of 2000 atoms for the case of silicon
at 1000K, as shown in Table 4.1. Second, running a single simulation yields all the components of
thermal conductivity tensor κ unlike the direct method. However, the most important shortcoming
of the Green-Kubo method is the convergence of autocorrelation function with the simulation time
for a particular system size. As mentioned earlier, in the Green-Kubo approach, the heat transport
coefficient is obtained by integration of the corresponding auto-correlation function (4.6). Hence,
the result directly depends on the accuracy of the auto-correlation function. For a finite simulation
time τM , using ergodic hypothesis (4.6), the estimate C̄JQ

(τ) of the autocorrelation function CJQ
(τ)

is given by

C̄JQ
(τ) =

1

τM

∫ τM

0

J̃Q(s)⊗ J̃Q(s+ τ) ds (4.7)

Assuming that the process J̃Q(t) follows Gaussian statistics, the variance in the estimate of CJQ

can be calculated theoretically for the following two cases: (i) τ → 0, i.e., at short correlation
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Figure 4.6: Normalized heat flux autocorrelation for silicon at T = 1000K, from [67]. (a)
Normalized correlation function at short correlation times (b) Normalized correlation function at
all times.

times, and (ii) τ →∞, i.e., at long correlation times [2]. For τ → 0,

〈C̄JQ
(τ)2〉 − 〈C̄JQ

(τ)〉2

〈CJQ
(0)〉2

= 4
τc
τM

(4.8)

where τc is given by

τc =

∫ ∞
0

〈CJQ
(s)〉2 ds

〈CJQ
(0)〉2

(4.9)

which again depends on the decay of the auto-correlation function. For τ → ∞, the variance in
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obtained from 6 ns of total simulation time, and using the
definitions of current and local energy given in Eqs. !17"–
!19". We see in Fig. 7!a" that for short times (#!0.1 ps) the
autocorrelation function shows an abrupt decrease. This has
also been found by Che et al.12 for simulations of diamond,
and is believed to be related to high-frequency optical modes
that contribute little to the thermal conductivity. Indeed, it
was established by Ladd, Moran, and Hoover17 that the
short-time decays and oscillations found in the current-
current correlations when the current is given by Eq. !10"
disappear when using an alternate form of Eq. !10", which
instead uses phonon occupation numbers and group veloci-
ties. For longer times, Fig. 7!b" shows that the decay appears
to be much slower. As was found by Che et al.,12 we find that
this slow decay is most important for establishing the ther-
mal conductivity. We note that some correlations appear to
persist out to 100 ps or longer.
We obtain the thermal conductivity from Eq. !9". The

value of the summation defined by Eq. !9" as a function of
the integration time #M is shown in Fig. 8 for the same data
shown in Fig. 7. At a few typical points in Fig. 9 error bars
are included to show uncertainty in the results of direct inte-

gration. The statistical error was estimated from the calcu-
lated values of $ averaged over six different 1.0 ns of data.
We note that 100 to 200 ps of integration time appears to be
adequate to obtain a converged value of $, consistent with
the observations above that the correlation function in Fig. 7
is very nearly zero by 100 ps. Direct integration to 200 ps in
this case results in a value of 66 W/mK. For comparison,
integration out to a time of 500 ps results in a value of 74
W/mK, but with significantly larger statistical error. Other
simulations for different system sizes !see next section" show
no systematic variation in the values of $ obtained for inte-
gration times #M longer than about 200 ps. Since the fluc-
tuations in $ obtained for #M greater than 200 ps appear to be
no larger than the estimated statistical error, we conclude that
200 ps represents an adequate integration time #M and that
any observed fluctuations in $ for longer integration times
#M result from statistical error.
This analysis shows that for a sufficiently long #M and

total simulation time, direct integration can be used to obtain
$. However, it is desirable to find a technique that reduces
the requirements for the total simulation time and also de-
creases the statistical error associated with direct integration
to long times #M . As we noted above, one possible technique
is to fit exponential decays to the simulation data that can
then be integrated in Eq. !8".12,13,16 An example of an expo-
nential fit to the simulation data is shown in Fig. 9 for the
6"6"6 simulation. The fit exponential decay constant was
5 ps. This can be compared to about a value of about 16 ps
obtained by Che and co-workers for diamond at 300 K.12 We
see in Fig. 9 that while the fit is reasonable to a time of 10 ps,
for times beyond 10 ps the fit systematically underestimates
the current-current correlation function. As a result, integra-
tion of the fit function results in a value for $ of 38 W/mK,
significantly smaller than the direct integration result of 66
W/mK for #M#200 ps.
In Fig. 10 we show the modulus of the frequency-

dependent thermal conductivity !$(%)! along with the fre-
quency dependence of the exponential fit shown from Fig. 9.

FIG. 8. Thermal conductivity at T#1000 K for a 6"6"6 Si
system found by integrating the current-current correlation function
shown in Fig. 8 using Eq. !9" as a function of the upper integration
limit #M . We see that the integral changes only very little beyond
200 ps, consistent with the observation that the current-current cor-
relations shown in Fig. 8 are negligible beyond 200 ps.

FIG. 9. Normalized current-current autocorrelation function
!solid line" for the same system as in Fig. 8. Included is an expo-
nential fit with a decay constant of 5 ps !dotted line". Beyond 10 ps,
the exponential fit is very poor.

FIG. 10. Modulus of the frequency-dependent thermal conduc-
tivity vs frequency for the 6"6"6 Si system at T#1000 K !solid
line". Included is the modulus of the Fourier-transformed exponen-
tial fit !dotted line" from Fig. 10. For frequencies about 0.1 THz, the
fit agrees well with the data. However, below 0.1 THz significant
differences are apparent, consistent with the observation in Fig. 10
that the decay is not well fit by an exponential.
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Figure 4.7: Thermal conductivity estimation as a function of time by the integration of heat flux
autocorrelation function of silicon at T = 1000K, from [67].

the estimate of CJQ
(τ) is shown to be

〈C̄JQ
(τ)2〉 − 〈C̄JQ

(τ)〉2

〈CJQ
(0)〉2

= 2
τc
τM

, (4.10)

see [2]. Here, it is important to mention that (4.8) and (4.10) are obtained by assuming that the
total simulation time τM is much longer than the characterisitic decay time of the fluctuations
of JQ and also that equal number of samples are used to obtain the estimates of CJQ

(τ) at both
shorter and longer correlation times. From (4.8) and (4.10), it can be seen that the variance in
C̄JQ

(τ) relative to the zero time correlation changes very small when one goes from shorter times
to longer times. The values of C̄JQ

(τ) may not be reliable when they are of the order of their
variances. For example, in the case of Silicon at 1000K where the decay of the normalized heat
flux autocorrelation function is shown in Figure 4.6, the value of τc is approximately 0.4ps. If
one assumes the total simulation time to be 30 million time steps of 0.5fs each, then the relative
standard deviation of C̄J(τ) for short times is approximately 0.03 using (4.8) and for long times is
0.015 using (4.10). Hence, all the values of C̄JQ

(τ) for correlation times greater than 25ps may not
be reliable and when integrated these correspond to 15 − 20% of the total thermal conductivity.
One way to reduce these errors is to continue the simulation for a long time thereby making the
Green-Kubo method computationally costly.
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Size (unit cells) Number of atoms κ (W/mK)
4× 4× 4 512 22
5× 5× 5 1000 82
6× 6× 6 1728 66
8× 8× 8 4096 62

Table 4.1: Comparison of thermal conductivity (κ) of silicon at T = 1000K obtained by the GK
method for different system sizes, from [67]. It can be seen that the thermal conductivity converges
for a system size of 6× 6× 6 unit cells.

4.3 HNEMD Method

In addition to the two methods described above, there exists another method known as the HNEMD
method initially proposed by Evans which forms the main contribution of this thesis [24, 21, 46, 45,
47]. The HNEMD method of Evans defines a mechanical analogue to the thermal transport process
and uses the linear response theory to calculate the transport coefficients. This method is synthetic,
in the sense that a fictitious force field is used to mimic the effect of a thermal gradient, thereby
reducing the thermal transport problem to a mechanical problem. Using the linear response theory
[24, 45], the long-time ensemble average of the heat flux vector for the resulting non-equilibrium
system can be shown to be proportional to the external force field (when the latter is sufficiently
small), with the constant of proportionality being the Green-Kubo formula for the heat transport
coefficient tensor. In this way, one can obtain the heat transport coefficient tensor without explicitly
calculating the autocorrelation functions. Hence, one can circumvent the problems related to the
calculation and integration of autocorrelation functions.

In the following sections, the linear response theory required for the HNEMD method is de-
veloped and then applied to single or multicomponent systems modeled by pair potentials. Subse-
quently, the method is extended to three-body potentials and many-body potentials [21, 46, 45, 47].
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Linear Response Theory

In many problems, one needs to calculate the heat transport coefficient tensor at a particular tem-
perature. This corresponds to the situation where the governing set of macroscopic variables are
the number of particles N , volume V and temperature T . The ensemble and the probability dis-
tribution corresponding to this governing set are called the canonical ensemble and the canonical
phase space distribution. The dynamics of particles evolving using Newtons laws given by (3.30)
correspond to a constant energy and hence cannot reproduce the canonical phase space distribution
function. Therefore, one needs to model the dynamics of particles such that the canonical distri-
bution at a particular temperature is reproduced. In this chapter, the equations of motion required
to maintain constant temperature are presented [56, 30]. These are called the Nosé-Hoover (NH)
thermostatted equations of motion. These are then used to derive the extended canonical phase-
space distribution function. Next, the Nose-Hoover thermostatted equations of motion perturbed
by an external field are considered to derive the linear response theory necessary for the application
of the HNEMD method [45, 24].

5.1 Nosé-Hoover Thermostat

In problems related to canonical ensemble (N, V, T ), it is important that the equations of motion
used to model the system preserve the canonical phase space distribution

f(Γ) =
e−βH0(Γ)

Z(β)
, (5.1)
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whereH0 is the total energy, Z(β) =
∫
e−βH0(Γ) dΓ is the partition function, β =

1

kBT
[64]. Here,

the total energy of the N -body system is given by

H0 =
N∑
i=1

pi · pi
2mi

+ Φ(r1, r2, . . . , rN) , (5.2)

where Φ(r1, r2, . . . , rN) is the inter-atomic potential given by (3.32).
Thermostatted equations of motion corresponding to this canonical ensemble were given ini-

tially by Nosé [56] and later amended by Hoover [30] in to the form

ṙi =
pi
m
,

ṗi = Fi − ζpi ,

ζ̇ =
1

Q

( N∑
i=1

pi · pi
mi

− 3NkBT

)
.

(5.3)

Here, ζ is the thermodynamic friction coefficient and Q is an arbitrary parameter chosen to yield
the canonical phase space distribution. The equations follow the integral feedback mechanism
to generate the canonical distribution and are referred to as Nosé-Hoover equations of motion.
Taking into account (3.22), the distribution function f(Γ, ζ, t) corresponding to (5.3) is given by
the Liouville equation

∂f(Γ, t)

∂t
= −

[
∂

∂Γ
· Γ̇ + Γ̇ · ∂

∂Γ
+ ζ̇

∂

∂ζ
+

∂

∂ζ
ζ̇

]
f(Γ, t) , (5.4)

which can be rewritten as

df(Γ, t)

dt
= −

[
∂

∂Γ
· Γ̇ +

∂

∂ζ
ζ̇

]
f(Γ, t) . (5.5)

Now, using the NH equations of motion (5.3), the term on the right hand side of (5.5) can be
evaluated as

∂

∂Γ
· Γ̇ +

∂

∂ζ
ζ̇ =

N∑
i=1

∂

∂ri
· ṙi +

N∑
i=1

∂

∂pi
· ṗi +

∂

∂ζ
ζ̇

= 3Nζ ,

(5.6)

thereby reducing (5.5) to
df(Γ, t)

dt
= 3Nζ . (5.7)
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Taking the time derivative of H0 +
1

2
Qζ2, it follows that

d

dt

(
H0 +

1

2
Qζ2

)
=
∑
i

(
pi · ṗi
mi

+
∂Φ

∂ri
· ṙi
)

+Qζζ̇

= −3NζkBT ,

(5.8)

where use is made of the equations of motion (5.3) and the definition of (3.33) interatomic force
Fi on atom i. Therefore, using (5.8) and (5.7), a differential equation can be obtained for the phase
space distribution in the form

1

f

df(Γ, t)

dt
= −β d

dt

(
H0 +

1

2
Qζ2

)
, (5.9)

whose solution yields f(Γ, ζ, t) to be the extended canonical distribution given by

f(Γ, ζ, t) = fc(Γ, ζ) =
e−β
(
H0(Γ)+ 1

2
Qζ2
)

∫
e−β
(
H0(Γ)+ 1

2
Qζ2
)

dΓ dζ
. (5.10)

Hence, the NH equations of motion (5.3) produces the desired canonical distribution accurately.

5.2 Isothermal Linear Response Theory for HNEMD Method

The general form of the equations of motion in the linear response theory is obtained by a pertur-
bative external field Fe in the presence of a Nosé-Hoover (NH) thermostat thus leading to

ṙi =
pi
mi

+ Ci(Γ)Fe ,

ṗi = Fi + Di(Γ)Fe − ζpi ,

ζ̇ =
1

Q

( N∑
i=1

pi · pi
mi

− 3NkBT

)
,

(5.11)

where Ci(Γ) and Di(Γ) are the second-order tensor phase variables which describe the coupling of
the system to the applied external field Fe [23]. It can be seen that when Fe = 0, the phase-space
distribution f(Γ, ζ, t) becomes the (extended) canonical distribution fc given by (5.10). Assuming
that the external field Fe is applied at time t = 0, the perturbed distribution f(Γ, ζ, t) corresponding
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to field dependent equations of motion (5.11) is obtained by solving the Liouville equation

∂f(Γ, ζ, t)

∂t
=

[
∂

∂Γ
· Γ̇ + Γ̇ · ∂

∂Γ
+ ζ̇

∂

∂ζ
+

∂

∂ζ
ζ̇

]
f(Γ, ζ, t)

= −iLf(Γ, ζ, t) ,

(5.12)

with initial condition f(Γ, ζ, 0) = fc(Γ, ζ). Here, iL represents the f -Liouvillean operator corre-
sponding to (5.11). Assuming the external field Fe to be small enough and independent of time,
the Liouvillean iLc and the perturbed distribution function f(Γ, ζ, t) may be approximated by

iL = iL0 + i∆L(t) ,

f(Γ, ζ, t) = fc(Γ, ζ) + ∆f(Γ, ζ, t) ,
(5.13)

where i∆L(t) and ∆f(Γ, ζ, t) are linear perturbations to the field-free Liouvillean iL0 and the
extended canonical distribution fc(Γ, ζ), respectively, due to the presence of the external field Fe.
Here, iL0 corresponds to the field-free equations of motion, i.e., equation (5.11) with Fe = 0,

while fc satisfies
∂

∂t
f = −iL0f . Using the approximation (5.13), the Liouville equation (5.12) can

be linearized as
∂

∂t
∆f(Γ, ζ, t) + iL0∆f(Γ, ζ, t) = −i∆L(t)fc(Γ, ζ) , (5.14)

while satisfying an initial condition ∆f(Γ, ζ, 0) = 0. The solution ∆f(Γ, ζ, t) of the linearized
Liouville equation (5.14) can be obtained formally as

∆f(Γ, ζ, t) = −
∫ t

0

exp
(
−iL0(t− s)

)
i∆L(s)fc(Γ, ζ) ds , , (5.15)

where i∆L(s)fc(Γ, ζ) = iL(s)fc(Γ, ζ) − iL0fc(Γ, ζ). The validity of the solution can be verified
by the following two steps: (i) substituting t = 0 and observing that ∆f(Γ, ζ, 0) = 0 thereby
satisfying the initial condition and (ii) substituting (5.15) in (5.14) and observing that it satisfies
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the linearized Liouville equation for all times [24]. Hence,

i∆L(s)fc(Γ, ζ) = iL(s)fc(Γ, ζ)

=

[
∂

∂Γ
· Γ̇ + Γ̇ · ∂

∂Γ
+ ζ̇

∂

∂ζ
+

∂

∂ζ
ζ̇

]
fc(Γ, ζ)

=

[ N∑
i=1

∂

∂ri
·CiFe +

N∑
i=1

∂

∂pi
·DiFe

]
fc(Γ, ζ)

+ β

[
−

N∑
i=1

Di
T pi
m

+
N∑
i=1

Ci
TFi

]
· Fefc(Γ, ζ)

= βV

[
B(Γ)− J(Γ)

]
· Fefc(Γ, ζ) ,

(5.16)

where

B(Γ) =
1

βV

(
N∑
i=1

∂

∂ri
·CT

i +
N∑
i=1

∂

∂pi
·DT

i

)
, (5.17)

and

J(Γ) =
1

V

(
N∑
i=1

Di
T pi
mi

−
N∑
i=1

Ci
TFi

)
. (5.18)

It should be noted that when B = 0 and no thermostatting mechanism exists, i.e., ζ = 0 in

(5.11),
∂

∂Γ
· Γ̇ = 0 and hence the phase space becomes incompressible, as mentioned in Chapter 3.

Therefore, the condition B = 0 is called as the adiabatic incompressibility of phase space AIΓ,
and B is known as the phase space compression factor, see [24, Chapter 5] . The variable J
is defined as the “dissipative” flux, as it can be seen in [24, Section 5.1] that in the absence of
thermostatting mechanism, the rate of change of internal energy H0 is given by Ḣ0 = −βJ · Fe.

Let G(Γ(t)) = G̃(t) be a general phase variable. Then, the ensemble average of G evolving
with (5.11) in the Schrödinger representation is given by

〈G̃(t)〉 =

∫
G(Γ)f(Γ, ζ, t) dΓ dζ , (5.19)

where f(Γ, ζ, t) is the perturbed phase-space distribution function obtained by solving (5.12). Us-
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ing (5.13), (5.15) and (5.16), the ensemble average of G̃(t) is reduced to

〈G̃(t)〉 =

∫
G(Γ)f(Γ, ζ, t) dΓ dζ

= 〈G̃(0)〉c+

βV

∫ t

0

(∫
G(Γ)

[
exp

(
− iL0(t− s)

)([
J(Γ)−B(Γ)

]
· Fe

)
fc(Γ, ζ)

]
dΓ dζ

)
ds .

(5.20)

The inner integral on the right-hand side of (5.20) can be written as∫
G(Γ)

[
exp
(
− iL0(t− s)

)([
J(Γ)−B(Γ)

]
· Fe

)
fc(Γ, ζ)

]
dΓ dζ =∫ ([

J(Γ)−B(Γ)
]
· Fe

)
fc(Γ, ζ)

[
exp

(
iL0(t− s)

)
G(Γ)

]
dΓ dζ

(5.21)

by virtue of the identity (3.29) in Chapter 3, where iL0 is the phase-variable p-Liouvillean of the
field-free equations of motion, i.e., equations (5.11) with Fe = 0. Also, g(Γ, 0) in (3.29) is chosen
to be equal to

[
J(Γ)−B(Γ)

]
·Fefc(Γ, ζ). In equation (5.21), exp

(
iL0(t−s)

)
G(Γ) is the value of

G at time t−s starting with an initial value Γ chosen from
[
J(Γ)−B(Γ)

]
·Fefc(Γ, ζ). Introducing

the notation exp
(
iL0(t− s)

)
G(Γ) = G̃((t− s)0; Γ), where the subscript ‘0’ in (t− s)0 indicates

that the propagation is by field-free equations of motion, (5.21) can be rewritten as∫
G(Γ)

[
exp
(
− iL0(t− s)

)([
J(Γ)−B(Γ)

]
· Fe

)
fc(Γ, ζ)

]
dΓ dζ

=

∫ ([
J̃(0; Γ)− B̃(0; Γ)

]
· Fe

)
fc(Γ, ζ)G̃((t− s)0; Γ) dΓ dζ

=

∫ (
G̃((t− s)0; Γ)⊗

[
J̃(0; Γ)− B̃(0; Γ)

])
Fefc(Γ, ζ) dΓ dζ

=

(〈
G̃((t− s)0)⊗

[
J̃(0)− B̃(0)

]〉
c

)
Fe ,

(5.22)

where ‘⊗’ denotes tensor product and
〈

G̃((t−s)0)⊗
[
J̃(0)− B̃(0)

]〉
c

is the correlation function

of G and J−B with respect to the extended canonical distribution (5.10). Substituting (5.22) into
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(5.20), the ensemble average of G̃(t) with respect to (5.11) becomes

〈G̃(t)〉 = 〈G̃(0)〉c + βV

∫ t

0

(〈
G̃((t− s)0)⊗

[
J̃(0)− B̃(0)

]〉
c

)
Fe

= 〈G̃(0)〉c + βV

∫ t

0

(〈
G̃((s)0)⊗

[
J̃(0)− B̃(0)

]〉
c

)
Fe .

(5.23)

It is noted that, since
∫ t

0

(〈
G̃((s)0) ⊗

[
J̃(0) − B̃(0)

]〉
c

)
in (5.23) is independent of Fe, the

ensemble average 〈G̃(t)〉 corresponding to (5.11) is linearly dependent on the applied external
field Fe, as expected from the linear response theory. Now, the long-time ensemble average of
G̃(t) can be obtained as

〈G̃(∞)〉 = βV

∫ ∞
0

(〈
G̃((s)0)⊗

[
J̃(0)− B̃(0)

]〉
c

)
Fe . (5.24)

Choosing the phase variable G to be the heat flux vector (3.65), the long time average of the
heat flux vector under the perturbed equations of motion is

〈J̃Q(∞)〉 = βV

∫ ∞
0

(〈
J̃Q((s)0)⊗

[
J̃(0)− B̃(0)

]〉
c

)
Fe . (5.25)

Also, choosing the tensors Ci and Di in (5.11) to be such that vector the J−B is equal to the heat
flux vector JQ, then (5.25) can be reduced to

〈J̃Q(∞)〉
T

=

(
V

kBT 2

∫ ∞
0

〈
J̃Q((s)0)⊗ J̃Q(0)

〉
c

)
Fe . (5.26)

Thus, in the linear non-equilibrium steady state,
〈J̃Q(∞)〉

T
is proportional to the external field Fe

with the constant of proportionality being the Green-Kubo expression for the transport coefficient
LQQ

T 2
given by (3.18). In other words, the transport coefficient tensor

LQQ

T 2
can be calculated by

using (5.11) and tracking the response of
〈J̃Q(∞)〉

T
to Fe rather than calculating the autocorrelation

function directly from an equilibrium simulation as in the Green-Kubo method.
To summarize, three conditions need to be satisfied by the equations of motion (5.11), and

hence Ci and Di, to apply them for the evaluation of the transport coefficient
LQQ

T 2
using the

HNEMD method. These are (i) equivalency of fluxes,

J−B = JQ , (5.27)
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(ii) preservation of zero total momentum,

N∑
i=1

pi = 0 , (5.28)

and (iii) compatibility with periodic boundary conditions so as to take advantage of quick conver-
gence with respect to system size, as in the Green-Kubo method. It should be mentioned here that
the condition given by (5.27) can also be imposed by constructing Ci and Di so that B = 0 and
J = JQ. As a consequence of this alternative construction, the equations of motion (5.11) satisfy
the condition of adiabatic incompressibility of phase space AIΓ, as mentioned earlier. The second
condition is applied to simplify the calculation of heat flux and the equivalency of fluxes (5.27)
and is discussed in the following chapter. In this case, the macroscopic momentum in the heat flux
vector (3.65) becomes zero and the instantaneous heat flux vector is of the form

J̃Q(t) =
1

V

∑
i1

[
Ei1I +

1

2!

∑
i2

ri1i2 ⊗ Fi1i2 +
1

6!

∑
i2,i3

[ri1i2 + ri1i3 ]⊗ Fi1i2i3 + . . .

+
1

M !

∑
i2,...iM

[ri1i2 + ri1i3 + . . .+ ri1iM ]⊗ Fi1i2...iM

]
pi1
mi

(5.29)

One of the main contributions in this work is to design Ci and Di systematically so that (5.11)

can be employed to obtain the heat transport coefficient materials
LQQ

T 2
for single or multi-species

system modeled by complex many-body potentials. The systematic selection of Ci and Di is
presented in the following chapter.
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Chapter 6

An Extended HNEMD Method for Single
Species Systems

In this chapter, the expressions for the tensor variables Ci and Di in the equations of motion (5.11)
consistent with the linear response theory of Chapter 5 are given for systems consisting of single
species and modeled by pair, three-body and many-body potentials. The expressions for Ci and Di

were initially given by Evans [21] for systems modeled by pair potentials (for example, Argon),
however, in an ad-hoc manner. Here, a systematic procedure is outlined to construct Ci and Di for
three-body to multi-body potentials by observing the physical similarities of the quantities in the
stress tensor and heat flux vector to the expressions for Ci and Di already given in the case of pair
potentials. Finally, the HNEMD method is applied to argon and silicon systems by incorporating
the algorithm into a software called “Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)” [60].

6.1 Pair Potentials

For single species systems modeled by pair potentials, the total energy H0 of the molecular system
is obtained from (5.2) and (3.36) by putting M = 2, and takes the form

H0 =
N∑
i=1

pi · pi
2m

+
1

2!

∑
i,j

u2(ri, rj) . (6.1)

Here, m is the mass of the atom corresponding to the single species. The heat flux vector in the
state of zero total momentum is obtained from (3.65) as

J̃Q(t) =
1

V

∑
i

[
EiI +

1

2!

∑
j

rij ⊗ Fij

]
pi
m
. (6.2)
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The choice of Ci and Di for such systems as given by Evans [24, 21] are

CiFe = 0 ,

DiFe =

[
(Ei − Ē)I +

1

2

∑
j

Fij ⊗ rij −
1

2N

∑
j,k

Fjk ⊗ rjk

]
Fe .

(6.3)

It can be seen that ∑
i

DiFe = 0 , (6.4)

from (6.3), and hence
∑̇
i

pi = −ζ
∑
i

pi from (5.11) and (6.4). This implies that, if the initial

total momentum is zero, which is usually the case in molecular dynamics simulations, the total
momentum is zero at subsequent times. Therefore, the choice of Ci and Di given by (6.3) satisfies
the condition of preservation of zero total momentum (5.28). It can also be seen that (6.3) are
compatible with PBCs, as atoms that leave the system from one side can enter from the opposite
side with the same momentum and forces. Also, the phase space compression factor is given by

B =
1

βV

(
N∑
i=1

∂

∂ri
·CT

i +
N∑
i=1

∂

∂pi
·DT

i

)
,

=
1

βV

(
N∑
i=1

pi
m

)
N − 1

N
,

= 0 ,

(6.5)

hence satisfyies the condition of adiabatic incompressibility of phase space AIΓ. The dissipative
flux

J =
1

V

(
N∑
i=1

Di
T pi
m
−

N∑
i=1

Ci
TFi

)

=
1

V

[∑
i

EiI +
1

2

∑
j

rij ⊗ Fij

]
pi
m
−
[
ĒI +

1

2N

∑
j,k

rjk ⊗ Fjk

](∑
i

pi
mi

)
= JQ ,

(6.6)

where the third equality in (6.6) is obtained by using the preservation of total momentum condition,
and hence J − B = JQ. Therefore, all the three conditions, (5.27), (5.28) and compatibility with
PBCs, described at the end of Section 5.2 are satisfied by (6.3) making them an ideal choice to
apply the HNEMD method for systems modeled by pair potentials. A scalar heat conduction
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coefficient κ is estimated by setting Fe = (0, 0, Fez). In this case, (5.26) reduces to

〈J̃Qz(∞)〉
V T

=

(
1

V kBT 2

∫ ∞
0

〈J̃Qz((s)0)J̃Qz(0)〉c ds

)
Fez = κFez . (6.7)

The equations of motion (5.11) with the NH thermostat are integrated by the operator split
method, as described in Appendix A. The following three methods are considered to deduce the
thermal conductivity from estimates of 〈J̃Qz(∞)〉 corresponding to a set of force fields {Fez,j, j =
1, . . . , n}:

1. Linear extrapolation: This is the approach used in [21], where a least squares fit of the

function κ + mFez to κj =

〈
J̃Qz,j(∞)

〉
V TFez,j

vs. Fez,j is extrapolated to Fez = 0 to determine

a value for the thermal conductivity κ. The variance in the intercept σ2
κ =

σ2

∆

n∑
j=1

Fez,j is

used to estimate the error, with σ2 =
1

n− 2

n∑
j=1

(κj − κ−mFez,j)2 being the fit error and

∆ = n
n∑
j=1

(
Fez,j

)2 −
( n∑
j=1

Fez,j
)2 and n being the number of samples, see [6].

2. Gradient: In this method, the slope of a least squares fit of the function κFez to
〈J̃Qz,j(∞)〉

TV
vs. Fez,j in (6.7) is identified as the thermal conductivity. A zero intercept, i.e., lim

Fez→0
JQz =

0, is assumed. The error in the slope is estimated via σ2
κ =

σ2

∆
n where, again, σ2 is the fit

error and ∆ is the variance of Fez,j , see [6].

3. Mean: Here, the conductivity is taken to be the average over κj , namely κ =
1

n

n∑
j=1

κj , and

the error is estimated by σ2
κ =

1

n

1

n− 1

n∑
j=1

(κj − κ)2, see [6].

The HNEMD algorithm is incorporated into a software called LAMMPS. LAMMPS is a paral-
lelizable molecular dynamics software which has all the basic subroutines, such as finding neigh-
bor lists, time stepping, force calculation, etc., that are needed for running a molecular dynamics
simulation. The HNEMD algorithm is written as a separate subroutine and is then integrated with
LAMMPS.
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6.1.1 Argon using the Lennard-Jones Potential

As an initial test, the algorithm is applied to an argon system at its triple point (86.5 K, 5.719 Å)
using a Lennard-Jones (LJ) pair potential with 256 atoms in an FCC lattice and a time step-size of
4.0 fs for about 106 time steps. Lennard-Jones is a pair potential, where the two-body term u2 in
(3.32) is of the form

u2(ri, rj) = 4εij

[(σij
rij

)6

−
(σij
rij

)12
]
, (6.8)

where rij = ‖ri − rj‖ is the distance between atoms i and j, εij is the depth of the potential
energy well, σij is the distance at which the interaction potential between two particles is zero.
The parameters εij and σij depend on the type of atoms i and j. For argon, εij = 1.6539× 10−21 J

and σij = 3.405 Å [65], and the cut-off distance for the potential is rc = 13 Å. Figure 6.1 shows
the variation of κj with the external field Fez,j . It is observed that there exists a finite range
0.04 Å−1 < Fez < 0.1 Å−1, in which κj is essentially independent of Fez. Outside this range, there
is strong dependence of κj on Fez and the linear response theory is not applicable. The thermal
conductivity obtained by the extrapolation method using the estimates in the range of validity of
the linear response theory is found to be 0.126 ± 0.001W/mK, where the experimental result
is 0.126W/mK. The results in Table 6.1 show that this method can also be applied to calculate
the thermal conductivity at different temperatures and volumetric deformations yielding results
comparable to those obtained using the Green-Kubo method, see, e.g., [33].
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Figure 6.1: Variation of thermal conductivity κ(Fez) with Fez for argon at its triple point. The
intercept at Fez = 0 is the estimate of the true thermal conductivity κ. Note that the errors in the
estimates for smaller Fez are small enough to make the error bars indistinguishable.
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Interatomic distance (Å) Temperature (K) HNEMD κ (W/mK) GK κ (W/mK)
5.376 10 1.97 1.91
5.376 20 0.86 0.95
5.376 30 0.60 0.63
5.376 50 0.37 0.39
5.719 86.5 0.13 0.13

Table 6.1: Comparison of thermal conductivity (κ) of argon at triple point obtained by the
HNEMD and GK methods at different temperatures and fictitious volumetric deformations

6.2 Three-body Potentials

As mentioned earlier, the expressions for Ci and Di have not been obtained systematically for
systems until now modeled by pair potentials. Hence, it becomes difficult to construct Ci and Di

for higher-order potentials. In this section, similarities between the heat flux vector JQ given by
(3.65), stress tensor T given by (3.64), and Ci and Di for pair potentials are carefully observed so
as to be able to construct Ci and Di that satisfy the three conditions of the linear response theory
for systems modeled by three-body potentials.

The choice of Ci and Di for pair potentials (6.3) can be rewritten as

CiFe = 0 ,

DiFe =

(
EiI +

1

2

∑
j

Fij ⊗ rij

)
Fe −

(
ĒI− 1

2N

∑
j,k

Fjk ⊗ rjk

)
Fe .

(6.9)

The term (Ei − Ē)Fe in (6.9) implies that a heat current is induced by driving the particles with
energy Ei greater (respectively, smaller) than the average energy Ē in the direction (respectively,

against the direction) of the external field Fe. The term
1

2

∑
j

(Fij ⊗ rij)Fe implies that the heat

current is also driven based on the deviation of the virial part of the stress tensor of atom i (3.54)
from the average stress. It can also be observed that the tensor Di coupled to the external field
Fe also appears in the heat flux vector given by (6.2) which also says that heat flux is driven
in a general system based on the energy and virial stress tensor of individual atom i. With the
observations in place, one may write the expressions for Ci and Di for systems modeled using
three-body potentials by incorporating the three body terms corresponding to energy Ei and virial
stress TV in Di. Specifically, the expressions for Ci and Di for the case of three-body potentials
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take the form

CiFe = 0 ,

DiFe =

(
EiI +

1

2

∑
j

Fij ⊗ rij +
1

3!

∑
j,k

Fijk ⊗ [rij + rik]

)
Fe

−
(
ĒI− 1

2N

∑
j,k

Fjk ⊗ rjk +
1

3!N

∑
i,j,k

Fijk ⊗ [rij + rik]

)
Fe .

(6.10)

Again, it can be seen that
∑
i

DiFe = 0 from (6.10) and hence
∑̇
i

pi = −ζ
∑
i

pi. If the total

initial momentum is zero, the total momentum is zero for all subsequent times. Hence, (6.10)
satisfies the preservation of total momentum condition (5.28). It should be noted here that the
averages in (6.10) need to be subtracted in order to satisfy the condition of zero total momentum.
It can also be seen that (6.10) are compatible with periodic boundary conditions, as atoms that
leave the system from one side can enter it again from the opposite side with the same momentum
and forces. Finally, for this choice of Ci and Di for the three-body potentials, it follows from
(5.17) that

B = 0 . (6.11)

Therefore, the condition of adiabatic incompressibility of phase space AIΓ is satisfied. Also, the
dissipative flux J can be obtained using (6.10) as

J =
1

V

(
N∑
i=1

Di
T pi
mi

−
N∑
i=1

Ci
TFi

)

=
1

V

∑
i

(
EiI +

1

2

∑
j

rij ⊗ Fij +
1

3!

∑
j,k

[rij + rik]⊗ Fijk

)
pi
mi

− 1

V

(
ĒI− 1

2N

∑
j,k

rjk ⊗ Fjk +
1

3!N

∑
i,j,k

[rij + rik]⊗ Fijk

)(∑
i

pi
mi

)
= JQ ,

(6.12)

where the third equality is obtained by using the condition of zero total momentum (5.28). Hence,
J − B = JQ and therefore all the three conditions imposed in Chapter 5 are satisfied. The linear
response theory then implies that the long-time ensemble average of heat-flux vector JQ under the
application of the external field Fe is given by (5.26) and the constant of proportionality which is

the thermal conductivity tensor κ (equivalent to
LQQ

T 2
for systems consisting of single species) is

obtained by tracking the (linear) dependence of
〈J̃Q(∞)〉

T
on Fe.

53



Chapter 6. An Extended HNEMD Method for Single Species Systems

6.2.1 Silicon using the Stillinger-Weber Potential

As a test case, the HNEMD algorithm developed for three-body potentials is applied to bulk silicon
(diamond crystal structure) modeled by Stillinger-Weber (SW) potential [68] consisting of both
two-body and three-body terms since it is widely accepted that elastic constants, phonon dispersion
curves and thermal expansion coefficients can be accurately modeled using this potential, see, e.g.,
[37, 7, 13, 34]. The two-body and three-body terms in the SW potential are of the form

u2(ri, rj) = εf2

(
rij
σ

)
,

u3(ri, rj, rk) = εf3

(
ri
σ
,
rj
σ
,
rk
σ

)
,

(6.13)

respectively. Here, the functions f2 and f3 are given by

f2

(
rij
σ

)
=

A
(
B
(rij
σ

)−p
−
(rij
σ

)−q)
exp

[((rij
σ

)
− a
)−1]

for
(rij
σ

)
< a

0 for
(rij
σ

)
≥ a

(6.14)

and

f3

(
ri
σ
,
rj
σ
,
rk
σ

)
= h

(
rij
σ
,
rik
σ
, θjik

)
+ h

(
rji
σ
,
rjk
σ
, θijk

)
+ h

(
rki
σ
,
rkj
σ
, θikj

)
, (6.15)

respectively, where

h

(
rij
σ
,
rik
σ
, θjik

)
= λ exp

[
γ

((rij
σ

)
− a
)−1

+ γ

((rik
σ

)
− a
)−1]

cos

(
θjik +

1

3

)2

, (6.16)

and θjik is the angle between rj and rk subtended at ri [68]. The parameter set in the SW potential
for silicon is given by

A = 7.049 , B = 0.602 ,

p = 4 , q = 0 , a = 1.80 ,

λ = 21.0 , γ = 1.20 ,

σ = 0.209 nm , ε = 50 kcal/mol ,

see [68].
Applying the HNEMD method to bulk silicon (1000 K, 5.43 Å), a sequence of simulations

is performed using the Stillinger-Weber potential with 1728 atoms in a diamond cubic lattice for
about 4 million time steps, each of size 0.55 fs. The system is chosen large enough to be free
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of the size effects noted for the GK method in [67]. It is concluded from Figure 6.2 that linear
response theory is valid for 0.3 × 10−4 Å−1 < Fez < 2 × 10−4 Å−1. Since the external field
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Figure 6.2: Variation of thermal conductivity κ(Fez) with Fez for silicon system at T = 1000K.
The intercept at Fez = 0 is the estimate of the true thermal conductivity κ. Note that the errors in
the estimates for smaller Fez are small enough to make the error bars indistinguishable.

is applied only along the z-direction, it is expected for the diamond cubic system that the average
heat fluxes 〈J̃Qx(∞)〉 and 〈J̃Qy(∞)〉 in the x and y directions approach zero respectively, as shown
in Figure 6.3. The value of thermal conductivity obtained by linear extrapolation to Fez → 0 is
50 ± 4W/mK, which is lower than but consistent with the Green-Kubo result 66 ± 16W/mK
and the direct method result 65 ± 16W/mK [67]. The gradient method gives a conductivity
estimate of 55 ± 2W/mK, see Figure 6.4. On the other hand, the mean of values in the range
0.3× 10−4 Å−1 < Fez < 1× 10−4 Å−1 gives a conductivity estimate in the range 53 ± 2W/mK,
see Figure 6.2. Hence, all the three approaches for evaluating κ from the HNEMD method yield
consistent results.

To quantify the significance of three-body terms on deducing thermal conductivity, the sim-
ulations were repeated with only two-body terms included in the equations of motion (5.11) and
(6.10), as well as in the heat flux vector JQ(Γ) of (3.65). A regime of Fez was found where the
linear response theory is valid, as shown in Figure 6.5. The values of thermal conductivity from
both the gradient and mean methods were found to be 26 ± 1W/mK which is approximately
half of the respective values obtained from simulations including three-body terms, see Figure 6.6.
This clearly demonstrates the significance of the three-body terms in the equations of motion and
the heat flux vector when estimating the thermal conductivity of silicon, as these ensure that the
diamond crystal structure is the most stable periodic arrangement of particles [68].
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Figure 6.3: The running average of components of the heat flux JQ in the x and z directions for
the silicon system in the non-equilibrium steady state with Fez = 8 × 10−5Å−1. Note that the y
direction is omitted for clarity.
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Figure 6.4: Heat flux Jz as a function of Fez used to obtain the thermal conductivity of a silicon
system at T = 1000K via the gradient method. It is assumed that the linear fit passes through the
origin.
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Figure 6.5: Comparison of thermal conductivity κ(Fez) variation with Fez for silicon at T=1000K.
The intercept at Fez = 0 is the estimate of the true thermal conductivity κ. The method using the
full heat flux and fictitious force is compared with the same method using only the two-body terms.
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Figure 6.6: Comparison of heat flux Jz estimates for silicon at T=1000K using the gradient
method. The method using the full heat flux and fictitious force is compared with the same method
using only the two body terms.
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6.3 Multi-body potentials

In this section, expressions for Ci and Di are given for systems modeled by multi-body potentials
(any M in (3.32)) [45]. Multi-body potentials with M = 4 (dihedral angles and torsion) are
important in describing the surface and cluster phases of silicon [53]. Also, multi-body potentials
are used to model many metals [16, 17].

The complex part of deriving the expressions for Ci and Di is obtaining the expressions for
stress and heat flux in the case of multi-body potentials, which have already been derived in Chap-
ter 3, see (3.64) and (3.65). The equation for the heat flux with zero total momentum is given by

J̃Q(t) =
1

V

∑
i1

[
Ei1I +

1

2!

∑
i2

ri1i2 ⊗ Fi1i2 +
1

6!

∑
i2,i3

[ri1i2 + ri1i3 ]⊗ Fi1i2i3 + . . .

+
1

M !

∑
i2,...iM

[ri1i2 + ri1i3 + . . .+ ri1iM ]⊗ Fi1i2...iM

]
pi1
m

(6.17)

Again, noting the relation between the heat-flux vector, stress tensor and Ci and Di, in analogy
to the case of three body potentials, the expressions for Ci and Di for multi-body potentials are
proposed by taking in to the multi-body terms in Ei and the virial stress TV as

CiFe = 0 ,

DiFe =

(
EiI +

1

2!

∑
i2

Fii2 ⊗ rii2 +
1

3!

∑
i2,i3

Fii2i3 ⊗ [rii2 + rii3 ] + . . .

+
1

M !

∑
i2,...,iM

Fii2...iM ⊗ [rii2 + . . .+ riiM ]

)
Fe −

(
ĒI− 1

2!N

∑
i1,i2

Fi1i2 ⊗ ri1i2+

+
1

3!N

∑
i1,i2,i3

Fi1i2i3 ⊗ [ri1i2 + ri1i3 ] + . . .

+
1

M !N

∑
i1,i2,...,iM

Fi1i2...iM ⊗ [ri1i2 + . . .+ ri1iM ]

)
Fe .

(6.18)

It can be seen that this choice satisfies the zero total momentum preservation and is compatible
with PBCs, as the atoms that leave the system from one side can enter it again from opposite side
with the same momentum and forces. The phase space compression factor for this choice is

B =
1

βV

(
N∑
i=1

pi
m

)
N − 1

N
= 0 , (6.19)
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and the dissipative flux is obtained as

J =
1

V

∑
i

Di
T pi
m
−
∑
i

Ci
TFi

=
1

V

∑
i

[
EiI +

1

2!

∑
i2

rii2 ⊗ Fii2 +
1

3!

∑
i2,i3

(rii2 + rii3)⊗ Fii2i3 + . . .+

1

M !

∑
i2,...,iM

(rii2 + . . .+ riiM )⊗ Fii2...iM

]
pi
m
− 1

V

[
Ē +

1

2!N

∑
i1,i2

ri1i2 ⊗ Fi1i2+

1

3!N

∑
i1,i2,i3

(ri1i2 + ri1i3)⊗ Fi1i2i3 +
1

M !N

∑
i1,i2...,iM

(ri1i2 + . . .+ ri1iM )⊗ Fi1i2...iM

](∑
i

pi
m

)
,

= JQ ,

(6.20)

where the second equality is obtained by substituting (6.18), the third equality is obtained by ob-
serving that the total momentum is zero. Hence, (6.18) satisfies all the three conditions that are
required for the application of the linear response theory in Chapter 5 and hence (6.18) with (5.11)
may be used to obtain the thermal conductivity estimate. In the preceding derivations, it is im-
portant to note that the tensor variable Ci coupled with the momenta is always zero. However,
CiFe = 0 need not be true in general, which is shown in the following chapter in which the equa-
tions of motion (5.11) are obtained for systems containing different species capable of diffusion,
heat transport and cross effects.

6.4 Discussion

The HNEMD method for silicon requires 1-2 million time steps to obtain the thermal conductivity
from a heat-flux average that is converged to within statistical uncertainties. This is a small num-
ber relative to the GK method, which requires on the order of 20-30 million time steps to reach
a comparable confidence interval. In terms of CPU time, the HNEMD method requires approxi-
mately 30 hours, where as the Green-Kubo method requires on the order of 150-200 hours. This
is because the GK method relies on the integration of heat flux autocorrelation functions with long
decay times, where the tail might not be calculated accurately, as discussed in Chapter 4. One way
to avoid long simulation times in GK method is to approximate the decay of the autocorrelation
function with exponential curves. However, it is shown in [67] that exponential curves do not cor-
rectly represent the long-time decay of the autocorrelation function. Since the HNEMD method
estimates the average 〈J̃Qz(∞)〉 for a range of Fez, it eschews errors related to autocorrelation
calculations.

The HNEMD method has two potential shortcomings. First, it requires simulations for multiple
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values of Fez in order to identify the range of the linear response theory. This is alleviated by the
fact that such simulations are independent of each other and can be performed in parallel. Second,
the method is inefficient for extremely small values of Fez. In this range, the system is very close
to the equilibrium state and the effect of the external force field on the system becomes comparable
to the system at equilibrium. Therefore, 〈J̃Qz(∞)〉 approaches zero making it difficult to estimate
the ratio 〈J̃Qz(∞)〉

TFez
as Fez approaches zero, see Figure 6.7. Hence, it is important to determine a
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Figure 6.7: The running average of components of the heat flux JQ for the silicon system in the
non-equilibrium steady state with Fez = 1× 10−5Å−1.

range of Fez that is large enough to obtain reasonable values of 〈J̃Qz(∞)〉
TFez

and small enough for the
system to be in the linear non-equilibrium range.

The kinetic theory of gases can be employed to estimate the linear response range of a system
to the external perturbation Fez. It is known for the case of gases that Fourier’s Law (JQ = −κ∇T )
is valid when the relative variation of temperature is small within a length equal to the mean-free
path ϕ (defined as the average distance that the particle travels before colliding an other particle)
[9, 62], namely

ϕ
|∇T |
T
� 1 . (6.21)

Assuming that silicon at 1000K is a gas of phonons, (6.21) can be employed with ϕ being the
phonon mean-free path. In the linear range, it can be seen from (6.7) and Fourier’s law that
the effect of external field Fez is identical to that of a logarithmic temperature gradient, i.e.,

Fez =
∂ lnT

∂z
=

1

T

∂T

∂z
. Therefore, appealing to (6.21), it is concluded that if the system is in
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the linear range, then Fez �
1

ϕ
. Hence, for silicon Fez � 0.0015 Å−1, since the phonon mean-

free path of Si at 1000K is estimated from the kinetic theory to be 600 Å, see [67]. In fact, it
can be observed from Figure 6.2 that the linear range of Fez is approximately 1/100 to 1/10 of
0.0015Å−1. It follows that the number of simulations that must be performed for different Fez to
obtain a reliable conductivity estimate with the HNEMD method can be significantly reduced. At
a minimum, the proposed extrapolation method requires only two conductivity estimates, whereas
the gradient method requires a single flux measurement in the linear range since zero flux at zero
Fez is assumed at the outset. The estimation of conductivity by the mean method can be also po-
tentially accomplished with a single measurement, but it is more sensitive than the gradient method
to the accurate knowledge of the lower limit of the linear range.
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Chapter 7

A New HNEMD Method for Multiple Species
Systems

The HNEMD equations of motion and specifically the tensors Ci and Di, developed in Chapter 6
are suitable for systems consisting of a single species, since they yield the transport coefficient
LQQ

T 2
without requiring the calculation of any average quantities from equilibrium simulations. If

these HNEMD equations of motion are employed for multi-species systems, e.g., a semi-conductor
gallium-nitride (GaN) system [72, 71], the long-time average of the heat flux vector JQ still re-
mains proportional to the external field. However, the constant of proportionality is not just equal
to the heat transport coefficient, but involves additional correlation integrals, since the HNEMD
equations do not satisfy the condition of equivalence of fluxes (5.27), as in the case of single-
species systems, which is shown in the following section. Hence, these correlation integrals need
to be evaluated from an equilibrium simulation in addition to running the HNEMD algorithm. An
earlier attempt to obtain non-equilibrium equations of motion specifically tailored to multi-species
also requires equilibrium MD simulations in addition to running the non-equilibrium algorithm as
equivalency of fluxes condition is not satisfied [22]. In this chapter, the deficiency of the HNEMD
method leading to additional correlation functions is shown preceding the development of M-
HNEMD method. Also, expressions for Ci and Di are developed to obtain the heat transport
coefficient for multi-species systems without resorting to additional equilibrium simulations. The
resulting method is termed as the Mixture-HNEMD (M-HNEMD) method.

7.1 Thermal Conductivity Estimation by the HNEMD method

In this section, it is shown that the original HNEMD method [21, 45] is not consistent for mixtures
and alloys due to the non-equivalency of the fluxes J−B and JQ (i.e., J−B 6= JQ). To appreciate
this point, recall that Ci and Di in the original HNEMD equations of motion [45] are given in the
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form

Ci = 0 , Di = νi −
1

N

N∑
j=1

νj , (7.1)

where

νi = EiI +
1

2!

∑
i2

Fii2 ⊗ rii2 +
1

3!

∑
i2,i3

Fii2i3 ⊗ (rii2 + rii3)+

. . .+
1

M !

∑
i2,...,iM

Fii2...iM ⊗ (rii2 + . . .+ riiM ) . (7.2)

These choices are compatible with preservation of zero total momentum, since
∑

i Di = 0. On the
other hand, in this case the fluxes B and J defined respectively in (5.17) and (5.18) are given by

B =
1

βV

(
N∑
i=1

pi
mi

)
N − 1

N
(7.3)

and

J =
1

V

(
N∑
i=1

νTi
pi
mi

− 1

N

N∑
j=1

νTj

N∑
i=1

pi
mi

)
= JQ −A , (7.4)

where

A(Γ) = Ã(t)
1

V N

N∑
j=1

νTj

N∑
i=1

pi
mi

(7.5)

is the difference between the heat flux JQ and the dissipative flux J. It can be seen from (7.3), (7.4)
and (7.5) that the difference in the fluxes J and B is not equal to the heat flux JQ, which violates the
second condition (5.27) in Section 5.2. Therefore, in the HNMED method, the long-time average
of the macroscopic heat flux vector JQ in (5.25) can be expressed with the aid of (7.3) and (7.4) as

〈J̃Q(∞)〉
T

=

(
V

kBT 2

∫ ∞
0

〈
J̃Q((s)0)⊗ J̃Q(0)

〉
c

ds−

V

kBT 2

∫ ∞
0

〈
J̃Q((s)0)⊗

[
Ã(0) + B̃(0)

]〉
c

ds

)
Fe

(7.6)

or 〈
J̃Q(∞)

〉
T

=
1

T 2
(LQQ − LQA − LQB)Fe , (7.7)
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where

LQA =
V

kB

∫ ∞
0

〈
J̃Q((s)0)⊗ Ã(0)

〉
c

ds , (7.8)

and

LQB =
V

kB

∫ ∞
0

〈
J̃Q((s)0)⊗ B̃(0)

〉
c

ds . (7.9)

Hence, estimation of LQQ requires the calculation of LQA+LQB in addition to running the standard

HNEMD algorithm to obtain 〈J̃Q(∞)〉
T

. These extra correlation terms need to be evaluated by
means of a Green-Kubo method, which naturally involves the errors related to the integration
and calculation of correlation functions. If, upon employing the Green-Kubo method, the sum
LQA+LQB is found to be small compared to LQQ, then it is sufficient to use the classical HNEMD
method given by (7.1) for estimating LQQ.

7.2 M-HNEMD Algorithm

In this section, equations of motion, and particularly choices for Ci and Di, are derived for a system
of n different species, which satisfy the three basic conditions (5.27), (5.28) and compatibilitiy with
PBCs discussed in Section 5.2. In the following, a sequence of proposed forms for Ci and Di is
suggested and refined to satisfy the three conditions, hence leading to the final expressions given
at the end of this section.

As observed in Section 7.1, using Di in the form (7.1) violates the equivalence of fluxes (5.27).
To circumvent this problem, Di may be initially modified as

Di = νi −
mi

m̄

N∑
j=1

νj , (7.10)

where m̄ =
N∑
i=1

mi. Using (7.10) with Ci = 0, the flux vector J in (5.18) becomes

J =
1

V

N∑
i=1

νTi
pi
mi

− 1

m̄

( N∑
j=1

νTj

)( N∑
i=1

pi

)
(7.11)

and
N∑
i=1

pi = 0, provided that the total initial momentum is zero, hence J = JQ. However, the flux
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vector B in (5.17) is now equal to

B =
1

βV

(
N∑
i=1

pi
mi

− 1

m̄

N∑
i=1

pi

)
=

1

βV

N∑
i=1

pi
mi

6= 0 , (7.12)

resulting, again, in J−B 6= JQ. One way to achieve B = 0 is to choose

Ci = −ri ⊗
pi
mi

; (7.13)

however, this choice introduces additional terms in J, such that

J = JQ +
N∑
i=1

(
pi
mi

⊗ ri

)
Fi 6= JQ . (7.14)

To simultaneously eliminate B and set J = JQ, one should also change Di to

Di = νi −
mi

m̄

N∑
j=1

νj − (Fi · ri)I +
mi

m̄

N∑
j=1

(Fj · rj)I . (7.15)

While (7.13) and (7.15) enforce the conditions (5.28) and (5.27), they do not satisfy frame
invariance, i.e., they do not yield the same behavior under arbitrary translations and rotations of
the system. To impose frame invariance, one should subtract from the position vector ri of every
atom a suitably defined vector r̄, which convects with the body. In this case, (7.13) and (7.15)
become

Ci = − (ri − r̄)⊗ pi
mi

,

Di = νi −
mi

m̄

N∑
j=1

νj −

(
Fi · (ri − r̄)− mi

m̄

N∑
j=1

Fj · (rj − r̄)

)
I

(7.16)

There are various possible choices for r̄ which enforce frame invariance without violating

(5.28) and (5.27). One such choice is r̄ = rMC =
1

m̄

N∑
i=1

miri, namely the position vector of

the mass center of the system. Other choices include the position vector of any fixed point in the
system, provided that this point convects with any arbitrary translation and rotation of the whole
system. One such choice would be, for example, the left-bottom corner ra of the system. How-
ever, all the aforementioned choices are incompatible with periodic boundary conditions (PBCs).
Indeed, in the case of PBCs, all atoms that exit the system from one side enter it again from the
opposite side with the same momentum, see, e.g., [2, Section 1.5.2]. In this so-called wrapping
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process, the terms (7.16) with r̄ = rMC or r̄ = ra create large jumps in velocities and forces, as
ri− r̄ is discontinuous in time. This discontinuity can be minimized by choosing for each atom an
r̄ that depends only on atoms in its neighborhood. (Empirical evidence of both of these issues is
given in Section 7.3.) Here, it is assumed that the neighborhood of an atom is comprised only of
atoms within the cut-off radius rc > 0 of the potential. This treatment is also time-discontinuous
due to neighboring atoms leaving or entering the cutoff of a given atom. For solids, these events
can be quite rare and become non-existent for low enough temperatures. For dense fluids, on the
other hand, an atom can change neighbors as frequently as every time-step. For this choice of r̄,
equation (7.16) can be cast as

Ci = − (ri − r̄i)⊗
pi
mi

,

Di = νi −
mi

m̄

N∑
j=1

νj −

(
Fi ·

(
ri − r̄i

)
− mi

m̄

N∑
j=1

Fj ·
(
rj − r̄j

))
I ,

(7.17)

where r̄i = 1
Ni

∑Ni
j=1
j 6=i

rj and Ni is the number of atoms in the neighborhood of atom i within

the cut-off radius. Despite the time-discontinuity, the choice of (7.17) preserves total momentum
and also satisfies (5.28) and (5.27) with B = 0 since the partial derivatives of Ci and Di with
respect to the phase variables are unaffected. Therefore, the equations of motion (5.11) with (7.17)
can be used to evaluate LQQ and are referred to as the M-HNEMD equations of motion under
periodic boundary conditions. Also, Ci in (7.17) remains bounded with increasing system size,
unlike the choice of r̄ = rCM . Since B = 0, the equations of motion also satisfy the adiabatic
incompressibility of phase space, as in the case of HNEMD method for single-species systems.

A casual review reveals that, when reduced to a single-species system (mi = m), the M-
HNEMD algorithm is not identical to the original HNEMD algorithm. This demonstrates the
non-uniqueness of the NEMD algorithms for evaluating thermal conductivity.

7.3 Results

The HNEMD and M-HNEMD algorithms are applied to estimate the thermal conductivity κ of

Ar and GaN systems and the transport coefficient
LQQ

T 2
for an Ar-Kr system. A sequence of the

heat flux averages 〈J̃Qx,k(∞)〉 corresponding to a decreasing sequence of Fex,k is computed to
determine the linear regime of the system under the action of the external field Fe = (Fex,k, 0, 0).

In this case, κxx is estimated for Ar and GaN and
LQQ,xx
T 2

is estimated for Ar-Kr systems using
the gradient method described in Chapter 6 and [46]. Before the external field Fe is switched
on, the system is equilibrated using the NH thermostat which generates the (extended) canonical
ensemble given in (5.10). When the external field is applied, the duration of each of the simulations
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in the sequence is chosen to make the variance of the estimated 〈J̃Qx,k(∞)〉 negligible and hence
the reported error estimates are based on the regression errors. The time integration scheme used
for the HNEMD method is described in [46] and is modified for the M-HNEMD method, as in
Appendix B.

7.3.1 Argon

As an initial test, the M-HNEMD algorithm with (7.17) is applied to a single-species (n = 1) Ar
system at its triple point (T = 86.5 K, face-centered cubic lattice of length 5.719 Å). The system is
modeled using a Lennard-Jones potential (M = 2 in (3.32)) with N = 256 atoms, cut-off radius
of rc = 13Å and periodic boundary conditions on the 4 × 4 × 4 unit cells. In the Lennard-Jones
potential given by (6.8), the characteristic energy is εij = 1.6539× 10−21 J and the characteristic
length is σij = 3.405 Å, see Section 6.1.1. Each run is carried out for 106 time steps with a step-size
of ∆t = 4.0 fs.

The computationally tractable linear regime of Fex is found to be between 0.001 Å−1 < Fex <

0.1 Å−1, as shown in Figure 7.1(a), where κxx,k =
〈J̃Qx,k(∞)〉
TFex,k

is independent of Fex,k. It is

concluded from Figure 7.1(a) that the results from the M-HNEMD and HNEMD algorithms are
practically identical, thus providing a validation of the M-HNEMD algorithm for a single-species
system. The value of thermal conductivity using the M-HNEMD algorithm with the gradient
method is found to be 0.1305 ± 0.0002W/mK, see Figure 7.1(b). This compares favorably to the
HNEMD result 0.1302 ±0.0002W/mK and the Green-Kubo result 0.129W/mK, see Figure 7.2.

As an aside, it is also observed that when using r̄ = rCM in (7.16) the thermal conductivity κxx
shows a decreasing trend for increasing values of Fex until it reaches a regime of severe disconti-
nuity, see Figure 7.3. As argued in Section 7.2, the discontinuity of κxx(Fex) can be attributed to
the non-smooth transition during the re-mapping due to the PBCs. This problem is eliminated with
the use of equation (7.17). Interestingly, the use of equation (7.17) also eliminates the decreasing
trend of κxx, which facilitates the identification of a linear regime.

7.3.2 Argon-Krypton Mixture

The M-HNEMD algorithm (7.17) is applied to the binary Ar-Kr mixture system at T = 115.6 K.
The system is comprised of a total of N = 256 atoms (128 Ar and 128 Kr) in a cube of volume
24.1923 Å3 with PBCs. It is modeled using a Lennard-Jones potential given by (6.8), where the
parameters for Ar are as in Section 7.3.1, while for Kr are εij = 2.3056×10−21 J and σij = 3.670 Å
[54]. The two parameters for Ar-Kr pairs are determined from the Lorentz-Berthelot mixing rules
[63]. The system is initially created by filling the left half of the simulation box with argon atoms
and the right half with krypton. It is then equilibrated to become a liquid mixture by integrating
the NH equations of motion for about 104 time steps with step-size ∆t = 4.0 fs. Once the system
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Figure 7.1: Comparison between the M-HNEMD and HNEMD algorithms for argon at the triple
point. The dashed and solid lines correspond respectively to the M-HNEMD and HNEMD esti-
mates of κxx.

is equilibrated, the M-HNEMD equations of motion are solved for 106 time steps to obtain the heat
transport coefficient LQQ,xx/T 2.

Figure 7.4(a) shows that the linear regime is found approximately when 0.01 Å−1 < Fex <
0.085 Å−1 for both the M-HNEMD and HNEMD algorithms. The M-HNEMD estimate for the
transport coefficient LQQ,xx/T 2 is found to be 0.08743 ± 0.00011W/mK, see Figure 7.4(b). This
is in good agreement with the Green-Kubo estimate of 0.08720W/mK at a correlation time of
t = 1ps, which is obtained by performing equilibrium molecular dynamics simulations, see Fig-
ure 7.5. The HNEMD estimate is found to be 0.08618 ± 0.00013W/mK, which is very close to
the Green-Kubo and M-HNEMD estimates, see Figure 7.5. As mentioned in Section 7.1, since
LQA,xx + LQB,xx

T 2
= 0.00043W/mK is small compared to the Green-Kubo estimate from Fig-

ure 7.5, either the HNEMD or the M-HNEMD algorithm may be employed to obtain an accurate
estimate of LQQ,xx for Ar-Kr in the given state.

Figure 7.6 shows the magnitude of the discontinuities in the trajectory of a typical r̄i relative to
the trajectory of the associated atom ri. These trajectories were captured before the field Fex was
applied to allow for comparison of r̄i to an unperturbed ri. Even in a dense fluid, it is apparent that
the discontinuities are quite small relative to the normal fluctuations in position.
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Figure 7.2: Green-Kubo estimate of the thermal conductivity of argon at triple point based on the
direct integration of the heat flux auto-correlation function.
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7.3.3 Gallium-Nitride

The HNEMD and M-HNEMD methods are next employed to estimate the thermal conductivity of
a perfect GaN system (wurtzite crystal structure) using an orthogonal cell with lattice parameters
a = 3.19Å and c = 5.20Å at T=500K, see [73] for details on the lattice structure. The system
is modeled using 512 atoms with 4 unit cells per direction (4 × 4 × 4) and a Stillinger-Weber
potential given by (6.13)-(6.16), see [4, 5, 68], under periodic boundary conditions. It is observed
that 4×4×4 system is sufficient for obtaining the value of thermal conductivity using both HNEMD
and M-HNEMD algorithms. A time-step of 0.5 fs is used for 8×106 time steps. The linear regime
in the HNEMD method is found in the range 7 × 10−5 Å−1 < Fez < 1.3 × 10−4 Å−1 and the
thermal conductivity is estimated via the slope method as 133.65 ±2.50W/mK, see Figure 7.7(a)
and Figure 7.7(b).

Using the M-HNEMD method, the thermal conductivity is found to be 132.02 ± 5.85W/mK,
see Figure 7.7(a) and Figure 7.7(b), which is comparable to the HNEMD result. Both the HNEMD
and M-HNEMD estimates are comparable to the estimate of the direct method estimate, which is
120.59W/mK [73]. It can also be seen in Figure 7.8 that the average of the heat flux 〈J̃Q(t)〉 con-
verges after 4×106 time steps for Fex = 1.0×10−4Å−1 thus demonstrating that the duration of the
simulations is sufficient. Finally, the Green-Kubo approach yields an estimate of 128.09W/mK
using 8×106 time steps and 1000 atoms (5×5×5). In the Green-Kubo approach, it is observed that
a system at least as large as 5× 5× 5 is needed to obtain a thermal conductivity value. In all cases,
the Green-Kubo estimate is based on the criterion of the first plateau attained by the integral of the
correlation, as in [67]. Figure 7.9 shows that 〈J̃Q(t) ⊗ J̃Q(0)〉 decays in a complicated manner
with correlation time, unlike the Ar-Kr system, which makes this criterion somewhat ambiguous.
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As seen in Figure 7.9, the noise past a correlation time of approximately 200 ps is quite significant,
thus requiring considerably more simulation time than the M-HNEMD method to obtain a similar
quality thermal conductivity estimate. However, (LQA,xx + LQB,xx) /T

2 = 0.051W/mK is ex-
tremely small compared to the Green-Kubo estimate leading to the conclusion that the HNEMD
method yields comparable results for GaN.
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estimates
for gallium-nitride using the Green-Kubo method. Note that in (a) the data has been decimated to
show each correlation clearly; the inset shows the full correlations which densely fill the envelopes
described by the decimated data.

7.4 Discussion

As observed in Section 7.3, the Green-Kubo method may not be viable for the estimation of ther-
mal conductivity in systems like GaN. In such systems, it is difficult to establish that the complex
autocorrelation function has decayed sufficiently to permit accurate integration. In addition, given
that the decay of the autocorrelation function is fairly long (at least 150 − 200 ps in the case of
GaN, see Figure 7.9), it takes considerable simulation time using the GK method to obtain the
thermal conductivity within reasonable statistical certainty. These problems may be avoided by
using the HNEMD and M-HNEMD methods, thereby circumventing the integration of a noisy au-
tocorrelation function. Also, these non-equilibrium methods yield results of reasonable accuracy
for relatively small total simulation times, as the signal-to-noise ratio is high due to the action of
the finite non-zero external field Fe. Moreover, the HNEMD and M-HNEMD methods are par-
allelizable for a simulation corresponding to a choice of Fe. Here, the simulation domain can be
spatially decomposed into small boxes and assigned to various processors [60]. Each processor
computes forces and then updates the positions and velocities of all atoms within its box. The
information needed for forces at the edge of the box is obtained by communicating with the pro-
cessors corresponding to the neighboring boxes [60].

For single-component systems, the HNEMD and M-HNEMD algorithms, while not mathe-
matically identical, yield statistically identical results, which demonstrates the non-uniqueness in
the construction of non-equilibrium molecular dynamics methods. Interestingly, even when ap-
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plied to multi-component Ar-Kr and GaN systems, the HNEMD and M-HNEMD algorithms yield
very similar results, as LQA + LQB is very small compared to the heat transport coefficient ten-
sor LQQ. However, the M-HNEMD is theoretically consistent with the linear response theory
for multi-component system, in the sense that, in addition to preserving total momentum (see
equation (5.28)) and being compatible with periodic boundary conditions, it also satisfies equiv-
alency of fluxes (see equation (5.27)). In contrast, for multi-component systems the HNEMD
method violates equation (5.27), thereby requiring additional equilibrium simulations to establish
that LQA + LQB is small compared to LQQ. Although these results have not answered the ques-
tion whether the quantity LQA + LQB is insignificant for all material systems under all conditions
conclusively, they do suggest that the original HNEMD method can provide accurate thermal con-
ductivity estimates without strictly satisfying the equivalence of fluxes and the incompressibility
of phase space. Nevertheless, in all cases, without resorting to additional simulations to calcu-
late expensive time-correlations, the marginally more complex M-HNEMD algorithm will provide
accurate results if used in the linear regime.

As expected, the M-HNEMD method shares some of the same challenges that apply to HNEMD
method. First, it requires simulations corresponding to a decreasing sequence of Fe to establish
the linear regime. This can be alleviated by performing these simulations in parallel, as they are
completely independent of each other. Second, it becomes extremely inefficient for very small Fe,
where the signal-to-noise ratio is low. In such a case, it takes simulation time on the order of a

Green-Kubo estimate to obtain a reasonable estimate of
〈J̃Qx(∞)〉
TFex

as Fex tends to zero. Alter-

nately, in the very low bias regime, other NEMD methods may be attractive. For instance, the
method of Ciccotti and co-workers [12, 51] employs a direct difference of heat flux between un-
perturbed and periodically perturbed trajectories to obtain the linear response of the system. In the
M-HNEMD under consideration, it is important to set Fex far enough from zero to avoid this prob-
lem, while still staying within the linear regime. An estimate of the linear regime can be obtained
from prior knowledge of the phonon mean-free path [46].
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Chapter 8

Conclusions and Future Work

This thesis introduces a class of homogeneous non-equilibrium molecular dynamics methods for
calculating the heat transport coefficient of solids and liquids (including mixtures). The first sig-
nificant contribution is the extension of the HNEMD method originally formulated for systems
modeled by pair potentials, to systems modeled by many-body potentials. This extension now en-
ables the computation of heat transport coefficient estimates across a wide range of single-species
systems, such as silicon, germanium, copper, aluminum, etc., which are modeled by many-body
potentials [16]. As a test case, the extended HNEMD method is applied to a silicon system and it
shows that the heat transport coefficient of silicon can be obtained accurately with lower overall
computational cost compared to the GK and direct methods. In addition, the HNEMD method may
be applied for systems with defects, such as vacancies, impurities, etc., to characterize their effects
on the heat transport coefficient. In such problems, since the number of atoms corresponding to
equilibrium concentrations of defects are on the order of 105 − 107, the HNEMD method may
be favorable to the Green-Kubo or the direct methods due to the advantage of obtaining smaller
statistical uncertainties at lower overall computational cost.

The second significant contribution documented in this thesis is a new HNEMD method for
multi-species systems, referred to as the M-HNEMD method. The proposed M-HNEMD method
solves the problem of computing the heat transport coefficient estimates for multi-species systems
modeled by many-body potentials without resorting to additional equilibrium molecular dynamics
simulations. This has remained an open problem even for the simple case of systems modeled by
pair potentials. The new method is tested for argon-krypton liquid mixtures and solid gallium-
nitride systems and it shows that the heat transport coefficient estimates for these systems can
be obtained accurately. This method may now be applied to study a wide range of multi-species
systems from crystalline In-Ga-As semiconductor thermoelectric devices, as mentioned in the in-
troduction, to semi-flexible polymer systems such as liquid butane [14, 15].

A third contribution of this thesis is the extension of statistical mechanical theory of transport
processes developed by Irving and Kirkwood to systems modeled by many-body potentials. This
results in the expressions for stress tensors and heat-flux vectors for the case of many-body po-
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tentials. The stress tensor thus obtained can be used to analyze metallic and non-metallic systems
with cracks, dislocations, etc., [74] when they are modeled by complicated many-body potentials
[16, 17].

A number of new research questions can now be addressed on the strength of these new meth-
ods. For example, recent experiments [43] have shown that the thermal conductivity of individual
crystalline silicon nanowires of diameters in the range of 20 − 100nm were more than one order
of magnitude lower than the bulk silicon. This was attributed to the boundary effects and possible
phonon spectrum modification. It was also found that, when a certain amount of roughness is added
to the boundary of these nano-wires, the thermal conductivity is one order of magnitude lower than
the smooth nanowires [29]. As an initial step in understanding these effects, the HNEMD method
may be applied to obtain the thermal conductivity values. Since the nanowires have free surfaces
and to capture the effects of these free surfaces, it is not appropriate to apply periodic boundary
conditions. In these systems, the numbers of atoms required to obtain an estimate of thermal con-
ductivity are on the order of 3 × 106 and it is hoped that the HNEMD method, with its advantage
of yielding better statistical averages with lower computational cost, may be suitable. Since the
Green-Kubo method is based on the validity of Fourier’ law and Onsager’ regression hypothesis,
this class of problems presents an opportunity to test their validity in the case of nanowires.
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Appendix A

Numerical Integration Algorithm for
HNEMD Method

The governing system of equations (5.11) and (6.18) with the addition of a Nosé-Hoover (NH)
thermostat can be decomposed into

d

dt

ri
pi
ζ

 =

 0
0

1
Q

(
T̄ (p)/T − 1

)
+

 0
−ζpi

0

+

 0
Di(r,p,F(r))Fe

0

+

 0
Fi(r)

0

+

 1
m

pi
0
0

 (A.1)

where T̄ (p) =
∑
i

pi · pi
2m

, T is the expected temperature, ζ is the NH control variable, DiFe is

the Evans bias force (6.18), and Fi is the interatomic force. To integrate this system of ordinary
differential equations, the operator-split method [50] is employed. This method is based on the
decomposition of the p-Liouvillean operator that propagates the initial state

Γ(t) = exp(iLt)Γ(0) (A.2)

into L = Lζ + Lp1 + Lp2 + Lp3 + Lx which correspond to sequence of vectors on the right-hand
side of (A.1), so that

exp(iL∆t) = exp

(
iLζ

∆t

2

)
exp
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iLp3

∆t

2

)
exp

(
iLp2
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2

)
exp
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iLp1

∆t

2

)
exp(iLx∆t)

exp

(
iLp1

∆t

2

)
exp

(
iLp2

∆t

2

)
exp

(
iLp3

∆t

2

)
exp

(
iLζ

∆t

2

)
+ h.o.t. .

(A.3)

In applying the operator split methodology the action of each of the evolution operators Lζ ,Lp1 . . .
on {ri,pi, ζ} is integrated in turn, preferrably exactly; however, in the case of the Evans force
DiFe, which depends on p only through the energy Ei, it is possible but not feasible to integrate
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ṗ = Di(r,p,F(r))Fe exactly given the quadratic dependence of DiFe on p. Therefore, given the
relative expense of the operations, where the interatomic force evaluation is the most expensive
followed by the Evans force, the integration of DiFe is lumped with F, see (A.8) and (A.9) below.
With this choice, the resulting update is essentially the same as in the NVT algorithm in [50,
Equation 26], namely

ζn+1/2 = ζn +
∆t

2Q

(
T̄ (pn)

T0

− 1

)
, (A.4)

p̃n = exp

(
∆t

2
ζn+1/2

)
pn , (A.5)

pn+1/2 = p̃n +
∆t

2m
Fn , (A.6)

rn+1 = rn +
∆t

m
pn+1/2 , (A.7)

F̃n+1 = F(rn+1) , (A.8)
Fn+1 = F̃n+1 + D(rn+1, F̃n+1,pn+1/2)Fe , (A.9)

pn+1 = p̃n+1 +
∆t

2m
Fn+1 , (A.10)

p̃n+1 = exp

(
∆t

2
ζn+1/2

)
pn+1/2 , (A.11)

ζn+1 = ζn+1/2 +
∆t

2Q

(
T̄ (pn+1)

T0

− 1

)
, (A.12)

where (A.4) and (A.12) are the exact integration of Lζ over ∆t
2

. Likewise, (A.5) and (A.11) are
the exact integration of Lp3 over ∆t

2
, (A.6) and (A.10) are the integration of Lp2+p1 over ∆t

2
and,

finally, (A.7) is the exact integration of Lx over ∆t. Here, the subscripts enumerate time-steps.
It also should be noted that this operator-split method is not second-order accurate, unlike the
similar schemes in [50], due to its inability to integrate the Evans force DiFe exactly. However,
the method does preserve momentum exactly, assuming the total initial momentum is zero. By
summing either (A.5) or (A.11) over the atoms, it is clear that the exponential factor merely scales
the original momentum, i.e., zero, and therefore does not change it. Likewise, (A.6) and (A.10)
do not change the total momentum since both the interatomic and field-dependent forces sum to
zero. The sum of the interatomic forces F(r) is zero since the system is periodic and the sum of the
field-dependent forces D(r,F,p)Fe is zero since these forces are formulated as a deviation from
an average.

This algorithm was incorporated into the MD code LAMMPS [60].
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Appendix B

Numerical Integration Algorithm for
M-HNEMD Method

Following Appendix A, the governing system of equations (5.11) can be decomposed into

d

dt
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(B.1)

where T̄ (p) =
1

3NkB

∑N
i=1

pi · pi
mi

. The operator-split method in [50] is employed to integrate the

preceding system of ordinary differential equations. In this method, the propagation

Γ(t) = exp(iLt)Γ(0) (B.2)

of the initial state is approximated according to
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(B.3)
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where iL is the p-Liouvillean [24, Section 3.3] . The update formulae for the individual steps are
defined as

L1 : ζn+1/2 = ζn +
∆t

2

1

Q

(
T̄ (pn)

T
− 1

)
(B.4)

L2 : p̃n+1/2 = exp

(
−∆t

2
ζn+1/2

)
pn (B.5)

L3+4 : pn+1/2 = p̃n+1/2 +
∆t

2m
Fn (B.6)

L5 : rn+1/2 = rn +
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2m
pn+1/2 (B.7)

L6 : r̃n+1 = rn+1/2 + ∆tC(rn+1/2,pn+1/2) Fe (B.8)

L5 : rn+1 = r̃n+1 +
∆t

2m
pn+1/2 (B.9)

F̃n+1 = F(rn+1) (B.10)
Fn+1 = F̃n+1 + D(rn+1,pn+1/2, F̃n+1)Fe (B.11)

L3+4 : p̃n+1 = pn+1/2 +
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2m
Fn+1 (B.12)
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Q
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T̄ (pn+1)

T
− 1

)
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where, in the interest of brevity, all the i subscripts referring to atoms have been omitted. Here
the subscript n refers to the time-step. Also note that F0 is defined as F0 = F(r0), given initial
conditions r0 and p0.

All the steps of this algorithm involve exact integration of the respective propagators, with the
exception of (B.8) and (B.12) which involve integration of the forces CiFe and DiFe. Indeed,
(B.12) is exact except for the part of Di that depends on kinetic energy and, consequently, on
terms involving squares of the components of pi. Moreover, Di involves the momenta of each
atom through the average kinetic energy embedded in Di. Likewise, (B.8) is inexact due to the
dependence of Ci on a set of rj , which couples the integration for atom i to the motions of its
neighboring atoms.

This algorithm was incorporated into the MD code LAMMPS [60].
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