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is presented for closed-loop discrete-time linear time-invariant (LTI) system. The

proposed algorithm allows closed-loop signals to be subjected to linear constraints

on amplitude and rate of change. As an illustrative example the seeking process

in a hard disk drive is investigated and experimentally verified.

To study the dependence of the read signal on cross-track and vertical

motion, a straightforward analytical model for the read back signal is derived

for perpendicular and longitudinal magnetic recording. The model captures the
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In addition, a novel method of measuring the relative head-medium spacing

based on the measurement of the read back signal from servo sectors is developed.
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data based modeling.

Finally, a dynamic model of the resistance heater in a thermal flying height

control (TFC) slider is identified based on experimentally obtained step-input data.

A generalized realization algorithm is used for identification of a discrete-time

dynamic model of the resistance heater. Based on the identified model and convex

optimization techniques, a computational scheme is proposed to obtain optimized

feed forward input profiles to the heater element that minimize repeatable flying
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height variations. The optimized input signals were applied to the heater and

greatly reduced flying height variations were observed in spinstand experiments.
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1 An introduction to storage

technology

1.1 Information storage in human history

The time line of human history reveals several events that have triggered

and accelerated the growth of societies and economies enormously. Many of those

events are directly linked to the ability (and improvement) of storing, retrieving and

distributing information. One of the main steps was unquestionably the invention

of written language as a form of communication and information storage about

6,000-8,000 years ago [1]. This seems long ago but it can be considered relatively

recent compared to approximately 250,000 years of Homo sapiens [2]. ”Technical”

inventions such as papyrus - the ancient form of paper - have made it easy to

transport and store written information over generations. Libraries that assured

access to the documents are presumably as old as written language itself. But it was

not until the middle of the 15th century, when a mass production process for books

based on movable types was invented by a German named Johannes Gutenberg.

1
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The mass printing press (Fig. 1.1) made books affordable and accessible to the

broad public, resulting in greatly reduced illiteracy in the population [3]. Prior

to this invention, books were extremely pricey as it could take half a year to

duplicate a book [3]. Within the first century of printing there were about 100,000

Figure 1.1: Gutenberg press of the 15th century (artist unknown - source: [4])

separate titles issued [5] and average editions at that time ranged from 200 to 1,000

copies [6]. One can note that inexpensive ”storage” and distribution of written

information was an important requirement for a further development towards our

modern society. The period from the middle of the 16th through the middle of

the 18th century is widely referred to as the ”scientific revolution” [7]. Many

important inventions, discoveries and improvements were made during this period
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in disciplines such as astronomy, physics, and biology, to only name a few. However,

as far as data storage is concerned, it was not until the industrial revolution of

the 18th and 19th century when groundbreaking inventions were made: The first

permanent photograph taken in 1826 [8] can be attributed to this period. Before

that, any visual impression could only be captured on a painting or be described

through written language. The first sound recording took also place during this

period. The phonograph [9] (gramophone) of the late 19th century allowed the

recording of arbitrary signals by mechanical means on a cylinder and later on a

disk to make storage and reproduction easier (Fig. 1.2). Up to this point, recording

Figure 1.2: Phonograph next to its inventor T.A. Edison (source: [4])

and playback of sound was only possible by ”automated instruments” similar to a
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barrel organ.

For simple large-scale computing and storage purposes, punch cards gained

popularity in the 1880s 1. Punch cards can be considered the first digital data

storage medium where the ”bits” were characterized by a hole or the absence of

a hole in stiff paper carton. The first large-scale application of punch cards was

the US census in 1890 [10]. The computational tools were built by the Tabulating

Machine Company that later merged with two other companies into International

Business Machines (IBM). Punch cards remained popular for some applications

until the middle of the 20th century.

The idea of recording signals by magnetic means was first introduced by

an American engineer named Oberlin Smith and published in a scientific journal

in 1888 where he proposed to record on a metal string [11]. However, there is no

evidence that he built a working prototype. The first functioning wire recorder

was built a decade later by a Danish engineer named Valdemar Poulsen [12]. The

invention received attention as a gold medal winner at the 1900 world exhibition

in Paris, France [13]. However, during the following 20 years, attempts to commer-

cialize the invention by Poulsen and his partners abroad failed and his company

went bankrupt [13]. One reason for the failure was that electronic circuits had

not been sophisticated enough, e.g. the vacuum tube amplifiers had not been

invented yet [14]. Furthermore, the initial recording medium - steel - incorpo-

rated a number of disadvantages such as high weight and poor handling. The first

1Punch cards had already been used for controlling musical instruments or textile looms

throughout the 19th century.
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practical working tape recorder was manufactured by the German company Allge-

meine Elektricitäts-Gesellschaft (AEG) and the corresponding tape was developed

at Badische Anilin- und Soda-Fabrik (BASF). This new device was presented to

the public at the Berlin radio exhibition in 1935 [15]. The data storage world re-

mained analog - with the exception of punch cards - until the early 1950s. In 1951,

the first digital data was recorded on tape using the first commercial computer,

the UNIVAC 1 [16]. Soon after, IBM introduced its first tape system, the IBM

726 Tape Drive in 1952 [17]. Both systems are shown in Fig 1.3. One further step

a)                b)

Figure 1.3: The first digital tape recording systems: a) The UNIVAC 1 and b)
The IBM 726 Tape Drive (source: [18])

was the first random access memory in form of the first hard disk drive (HDD)

where written data could be retrieved within a very short amount of time2. IBM

built this first HDD in its so-called ”Random Access Method of Accounting and

Control system”, or short, RAMAC in 1956. The RAMAC (Fig. 1.4) stored 5MB

2The average seek time of the 1956 RAMAC was 600ms.
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Figure 1.4: The first hard disk drive as part of the IBM RAMAC (source: [4])

of data on 50 two-foot diameter disks. It was not sold but could be rented for

$3,200 per month which would be equivalent to approximately $25,000 in today’s

dollars3.

Tape drives and hard disk drives have started a new era in information

storage and certainly laid the foundation for the information age (digital age) in

which we currently live. The main technology is still in use today; in fact, the

majority of data produced in today’s world is stored magnetically using a similar

functional principle as in the first products from 1952 and 1956, respectively. As

a product they have improved tremendously in terms of storage density and cost

per data unit volume over the past half a century as we will see in chapter 2 of

this dissertation. Other competing storage technologies such as optical storage or

solid state storage have arisen during this period. However, none of those newly

developed technologies have yet been able to replace tape drives or hard disk

3according to the United States Department of Labor inflation calculator online available at:

http://www.bls.gov/data/inflation_calculator.htm

http://www.bls.gov/data/inflation_calculator.htm
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drives as mass storage media but were only able to replace them in certain niche

applications.

In the following subsections we will shortly introduce and discuss today’s

main available storage technologies. The focus will also be on economic aspects

that have been shown to have great impact on whether or not a technology will

succeed in the long term.

1.2 Current and emerging storage technologies

1.2.1 Overview

To review the different available storage technologies and their use it is

important to understand that there is a memory hierarchy in modern computer

architecture (Fig. 1.5). The ideal storage medium would be characterized by all

the following attributes:

• high storage capacity

• fast writing of data

• high speed of (random) access to data

• low cost

• long-lasting data (non-volatile)

• low power consumption during operation
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• ease of interchangeability
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Figure 1.5: Memory hierarchy in modern computer architecture

In reality, there exists a trade off between the above attributes. The top of the

storage hierarchy pyramid depicted in Fig. 1.5 is the central processing unit (CPU)

with its multi-level registers. The CPU and register unit typically stores only a

few bytes for an extremely short period of time. This memory is volatile, i.e.,

the information is lost after power is withdrawn. The CPU has the highest price

per bit but also the highest speed. Relatively large physical (random access)

memory blocks (DRAM, SRAM) exist today at relatively low cost. They are

also volatile, much less expensive than the CPU but also much slower. For long-

term storage we only consider non-volatile memory as shown at the bottom of

the storage hierarchy pyramid in Fig. 1.5. Currently, hard disk drives represent
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the best trade off between tape storage (inexpensive, long-lasting but slow access

speed) and solid state storage (relatively expensive but fast and reliable). In the

remainder of this chapter we will briefly introduce the current existing non-volatile

storage technologies, discuss their main application and address future trends for

their implementation.

1.2.2 Hard disk drives

Hard disk drives store the largest amount of today’s data. They have been

state-of-the-art technology for mass storage for more than 50 years now. Their

storage capacity has increased from 5MB in 1956 to 2TB (2,000,000 MB) in 2011

and the price has decreased from $1.5M4 per 5MB to only $90 per 2TB. In 2010,

an approximate number of 650 million hard disk drives was shipped worldwide. A

simplified schematic of a hard disk drive is shown in Fig. 1.6. The data are stored

magnetically on circumferential data tracks on a rotating disk. A servo actuator

is used to adjust the radial position of the read/write element over the disk. The

servo sectors indicated in Fig. 1.6 help to determine the off-track position of the

read element with respect to the track center. This dissertation will focus on hard

disk drives, in particular, on servo control related aspects of hard disk drives. The

reader is referred to chapter 2 for a broad and detailed introduction to hard disk

drive technology.

4This price is evaluated in today’s dollars for a 5 year life span of a HDD considering rental

cost of $25,000 per month.
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servo actuator

data track 

servo sectors 

read/write head disk 

micro actuator

Figure 1.6: Simplified schematic of the functional principle of a hard disk drive

1.2.3 Tape storage devices

Magnetic tape seems to be an out-dated technology but it remains a pre-

ferred mass storage medium due to its low cost per unit storage capacity [19]. In

particular, for back-up and archiving purposes where data are written once but

read rarely (possibly never), it is a highly favorable solution. Today’s tape drives

are based upon the principle shown in Fig. 1.7. The tape moves from a so-called

supply reel to the take-up reel at velocity v. Data are written on the tape and

read from the tape by the read/write head. Since tape is a flexible medium it is

exposed to many disturbances during reading and writing of data. Track densities

are generally much lower compared to track densities in hard disk drives. The

lateral position of the tape head is determined by means of a timing based servo

pattern on the magnetic tape [20]. Similar to HDD technology, the off-track mo-

tion is adjusted by a servo actuator. The actuator rejects incoming disturbances
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Figure 1.7: Simplified schematic of the functional principle of a tape drive

such as lateral tape motion which is defined as the motion of the tape perpendic-

ular to the tape transport direction (see Fig. 1.7). Recently, it has been shown in

a lab demo (IBM Zurich) that tape storage is still feasible at an areal density of

46Mb/mm2 (30Gb/in2) which is more than 10 times higher than what is currently

implemented in commercial products [21]. One additional advantage of tape versus

hard drives is the exchangeability of the medium. The cartridges can be stored in

automated tape libraries that are accessed by a robot and data stored on tape has

better long-term stability than data stored on a magnetic disk [22]. All these facts

suggest that there will still be high demand for tape storage for years to come.
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1.2.4 Optical storage

Optical storage technology became very popular during the mid 1980s

mainly for audio recordings in form of compact disks (CD). The functional prin-

ciple is illustrated in Fig. 1.8. The digital information is encoded in a pit pattern

CD / DVD
Tracking motor

Spindle motor

Laser

Prism

Land

Pit

CD / DVD

Photo diode

Focus lens

Figure 1.8: Simplified schematic of the functional principle of a CD player

on a rotating disk. A photo diode reads different amounts of reflected laser light

depending on whether land or pit area is exposed to the laser light. The initial

standard for CDs used a 780 nm (red) laser which was later reduced in wavelength

for the ”Digital Versatile (or Video) Disc” (DVD) to 650 nm (red-orange) [23].

A smaller wavelength allows the reading of smaller features on the disk. This

has allowed an increase in storage capacity from 650MB to 4.7GB in the case of

CDs and DVDs. A recent implementation of blue/violet lasers at a wavelength of



13

405 nm (”Blu-ray”) can store up to 25GB/layer [24]. CDs, DVDs and the emerging

”Blu-ray” disks are characterized by inexpensive mass production and are widely-

used for the distribution and storage of digital content such as audio, video and

computer software.

1.2.5 Emerging non-volatile memory

Disk drives, tape drives and optical drives rely on moving parts. The stor-

age medium moves along the read/write element so that different areas on the

medium can be addressed. Solid state storage is based on a substantially different

technology. The bit layout is pre-defined and each bit is accessed electrically rather

than mechanically. This leads to a number of advantages of solid state storage over

conventional mechanically accessed non-volatile memory such as disk drives and

tape drives. However, so far the significant price difference and other issues such

as e.g. the current lithography limits have prevented a replacement of hard drives

and tape drives by solid state technology. The most popular solid state storage

technology is NAND flash5. One of the main technical problems with Flash stor-

age is that only a finite number of write cycles can be performed. This problem

does not generally become apparent, however, during the typical lifetime of such

a device [25].

New emerging technologies such as magnetoresistive random access memory

(MRAM) are currently being developed. The main functional principle of MRAM

5The term ”NAND” indicates that the transistors form a logic NOT AND configuration
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is illustrated in Fig. 1.9. The magnetic orientation of a free ferromagnetic layer
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Figure 1.9: Simplified schematic of magnetoresistive random access memory
(MRAM) - after [26]

can be switched, thereby changing its resistance. Thus, the resistance of the whole

element has two distinct states. This effect is also used for read sensors in HDD

technology as will be discussed in section 2.2.3. It has been suggested that MRAM

might offer all the attributes listed in section 1.2.1 and that MRAM might become

the ”universal memory” [27].

Another promising emerging technology is the so-called phase change ran-

dom access memory (PCRAM) [28]. Here, the actual interconnect device (bit)

consists of a material that has at least two different phases: An amorphous phase

characterized by high electrical resistance and a crystalline phase with low resis-

tance [28]. Both, MRAM and PCRAM could be potential candidates to replace

Flash storage which will likely face scalability problems in the near future [29].

There is a number of different new and also promising technologies that
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are not addressed here. The interested reader is referred to [29] for an excellent

overview and comparison.

1.3 Future storage trends

The continuous growth in storage capacity combined with an increasing

number of storage devices shipped each year would not be possible without a

growing demand for storage. This growth prevents the storage market from sat-

urating. According to the market research and analysis firm International Data

Corporation (IDC), the demand for data storage has exceeded the amount of avail-

able storage capacity in 2007 [30]. The supply-demand gap is expanding and in a

more recent study it was suggested that the total ”digital universe” will grow from

0.8 ZB6 in 2009 to 35 ZB in 2020 which is a 44-fold increase [31].

The way data is stored might be substantially different in the future con-

sidering current emerging concepts such as cloud storage and the increasing broad-

band access to the internet by many devices. Storage is increasingly outsourced to

third party providers [32]. This might become a thread mainly to optical storage

as it is widely used for distribution of data. However, mass storage products such

as tape drives and hard disk drives will still be needed in large quantities. The

number of hard disk drives shipped annually will exceed the inconceivable number

of 1 billion within the next few years. The total amount of storage capacity that

will be shipped on hard disk drives in the next two years will be larger than the

61 zetabyte = 1 trillion gigabytes = 1021 bytes
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total amount of hard disk drive storage capacity shipped within the past 20 years

[33].

The current cost of HDD storage is at approximately $0.05 per gigabyte

and the price will continue to decline at a rate of approximately 25% to 30%

per year [33]. For mass storage applications, solid state technology is currently

on the order of 10 times more expensive than HDD storage. Hence, solid state

technology has not been able to gain reasonable market share in terms of total

storage volume (see Fig. 1.10). However, in some applications mostly related to

Other  

1% 

HDD  

56% 

Optical  

22% 

Tape  

21% 

Figure 1.10: Market share of storage media by storage capacity shipped in 2007
according to [30]

consumer electronics, Flash applications could gain significant market share. This

is indicated in Fig. 1.11. From Fig. 1.11 we also observe that the overall market is

growing in an exponential manner. Hard disk drives will be replaced by solid state

drives in applications where it is less expensive to do so. In the near future this

will only be the case in low-end capacity products (below currently around 50GB).

Emerging hybrid drives that consist of a solid state cache and basic hard drive

storage technology might offer a good compromise between price and performance.
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Figure 1.11: Consumer storage usage (home and portable): optical disc, hard
drive, and flash (data from [34])

In the following chapter a comprehensive introduction to hard disk drive

technology is given.



2 Introduction to hard disk

drives

2.1 Mechanical aspects

Although hard disk drives have improved enormously in terms of storage

capacity and data access time over the past decades, their main functional principle

has not changed substantially. Figure 2.1 shows a schematic of the mechanical

components of a typical commercially available hard disk drive (HDD) with its

top cover removed. The data are written on circumferential tracks on the disk

surfaces. The stack of disks1 is spun by a spindle motor. Typically, data can be

stored on each surface of the disk(s). The slider incorporates the read/write head

located at the trailing edge of the slider (Fig. 2.2). It flies on an air bearing at

extremely close distance (on the order of nm) over the magnetic disk. The air

bearing is designed in a way that the distance variation between the slider and the

disk is kept at a minimum. Hence, the vertical run-out of the disks which is on

1Typically between one and four disks

18
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voice coil motor

micro actuator

with piezoelectric 

push/pull elements

pivot

E-block

spindle motor

disk

slider and 

read/write head

Figure 2.1: Schematic of the mechanical components of a hard disk drive.

the order of a few micrometers can be compensated.

As indicated in Fig. 2.2, the slider is mounted to a flexure (gimbal) which

is attached to the suspension. The suspension provides pre-load in the vertical

direction and is relatively stiff in the lateral (off-track) direction. The dimple is

a spherical protrusion on the suspension and enables all the degrees of freedom

indicated in Fig. 2.2 for the slider.

Each bit on the disk needs to be accessible by the read/write element.

Therefore, all sliders and suspensions are inter-connected through a so-called E-



20

slider
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gimbal

dimple

down-track

cross-track

vertical

roll

pitch

yaw

load/unload tip

read/write element

Figure 2.2: Schematic of suspension, slider and gimbal.

block which rotates around a pivot point (Fig. 2.1). This rotary actuator is driven

by a so-called voice-coil-motor (VCM). Some hard drives have an additional micro-

actuator to increase the positioning accuracy and closed-loop servo bandwidth.

The following subsections will explain various interdisciplinary aspects re-

lated to magnetics, tribology, signal processing, electro-mechanical and control

engineering that are of great importance in today’s hard disk drives.

2.2 Magnetic aspects

2.2.1 Recording principle

The main principle of magnetic recording is illustrated in the hysteresis

loop shown in Fig. 2.3. Several grains of the magnetic material in the recording

layer form a bit (indicated by the gray rectangles in Fig. 2.3). A bit forms the
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Figure 2.3: Typical hysteresis loop in magnetic recording

smallest undividable unit in digital storage and has two stable states. By applying

a magnetic field H the grains can be aligned to remain a total directional mag-

netization M up to a saturation value +Ms (point 1 to point 2). If the magnetic

field is applied in the opposite direction a magnetization of −Ms remains (point

3). These two possible states represent the basis for encoding digital information.

The number of grains per bit have a high influence on the signal-to-noise ratio

(SNR) during readback. The following relation holds [35]

SNRmedia ∝
Vbit

Vgrain

(2.1)

where Vbit and Vgrain are the bit and grain volume, respectively. From (2.1) we

observe that several grains per bit are needed to maintain a high SNR. A decrease

in bit size requires a decrease in grain size as well.
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2.2.2 Longitudinal and perpendicular recording

There exist two different orientations in which the bits can be magnetized:

horizontally and vertically which is referred to as longitudinal and perpendicular

recording, respectively. The vast majority of early generation disk drives had lon-

gitudinal magnetic recording (LMR) technology implemented. There were only a

few exceptions like e.g. a HDD by Censtor Corporation [36] that used perpen-

dicular magnetic recording (PMR). The first successful commercial perpendicular

hard disk drive was introduced in late 2004 by the Japanese company Toshiba [37].

However, the benefits of perpendicular versus longitudinal recording were discussed

long before it was finally implemented [38, 39]. The main advantages of perpen-

dicular over longitudinal recording are a much higher readback signal, a better

defined bit transition and higher thermal stability [40]. The maximum achievable

areal density is increased in perpendicular recording by approximately a factor

of 10, from 150Mb/mm2 (100Gb/in2) to 1.5Gb/mm2 (1Tb/in2), in comparison

with longitudinal recording [41]. Figure 2.4 shows schematically the fundamental

differences between longitudinal (Fig. 2.4a) and perpendicular (Fig. 2.4b) record-

ing. The write coil with several windings encloses a magnetic core. Depending on

the write current direction and amplitude, the stray (fringe) field below the gap of

the core magnetizes the recording media in a longitudinal manner as depicted in

Fig. 2.4a. In case of perpendicular recording the write head has a slightly different

geometry. One end of the core (monopole) has a relatively small area exposed to
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Figure 2.4: Principle of a) longitudinal and b) perpendicular magnetic recording.

the media and the return pole has a much larger area exposed. The magnetic flux

generated in the magnetic core by the write coil closes through the recording layer

and a soft magnetic underlayer as indicated by the flux lines in Fig. 2.4b. The soft

magnetic underlayer has a relative permeability that is typically on the order of

several hundred [42] and is essential in perpendicular recording as a return path of

the magnetic flux. The grains below the monopole will be re-aligned depending on

the direction and strength of the write current. Because of the larger foot print of
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the return pole, the flux density is much smaller compared to the monopole and is

therefore not sufficient to re-magnetize the media. Write heads have not changed

much in today’s products from their early versions except for a significant size

reduction. Furthermore, early write heads incorporated coils made from wound

wire that were replaced by thin film technology in the early 1980s [43].

2.2.3 Reading data

During the first decades of disk drive technology the read and write element

was combined. The bit transition could be detected as a change in magnetic flux

Φ in the ferrite core of the read/write head. According to Faraday’s law, this flux

change induces a voltage

Vind = −N
dΦ

dt
(2.2)

in the coil where N is the number of windings. Starting in the early 1990s, a

new technology based on magnetoresistive read elements was implemented. The

read and write element were separated from each other as shown in Fig. 2.4. The

magnetoresitive (MR) and giant magnetoresitive (GMR) element are multi-layered

structures that change their overall resistance in the presence of a magnetic field.

The sensitivity increase from inductive read elements to the (G)MR elements was

enormous resulting in a sharp rise in areal density (see also Fig. 2.29 on page

57). With the advent of perpendicular recording, the GMR read elements were

changed to tunnel magnetoresistance (TMR) heads. The principle of TMR is

based on electron-tunneling that occurs with a certain probability in an extremely



25

thin insulating layer between two ferromagnetic layers. The structure of tunnel

junctions is very similar to that of non-volatile MRAM memory shown in Fig. 1.9

on page 14. The free ferromagnetic layer changes its magnetization based on an

external field (written bit on the disk). If the alignment of the magnetization of

the free layer with the magnetization of the fixed layer increases, the probability

of electrons tunneling through the insulator increases. Hence, the resistance of the

TMR element changes dynamically depending on the external field. In chapter 5,

a detailed derivation of an analytical approximation of the readback signal will be

shown.

2.3 Tribological aspects

The word tribology was established by Prof. Peter Jost [44] and first in-

troduced in 1966 in a report of the British Department of Education and defined

as ”the science and technology of interacting surfaces in relative motion, and of

associated subjects and practices” [45]. In the disk drive as a paradigm of a mecha-

tronic device, there are several ”interacting surfaces in relative motion” which one

needs to address. One aspect is the bearing in the spindle motor which will be

discussed in section 2.5.1. Here, we will focus on the interface between the slider

and the disk.
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2.3.1 The head-disk interface

Since the slider incorporates the read/write element, it needs to be posi-

tioned in extremely close proximity to the disk to achieve a high signal-to-noise

ratio (SNR) and high areal densities in recording. However, contact between the

slider and the disk needs to be avoided as wear and damage to the head and the disk

might occur. The flying height of sliders with respect to the disk surface in state-

of-the-art HDDs is below 5 nanometers. This requires a very smooth disk. The

root mean square (RMS) roughness of current disks is well in the sub-nanometer

regime [46]. A thin carbon overcoat covers the slider and the disk. In addition, a

thin lubricant layer on the disk reduces friction and helps to prevent wear at the

interface. The layered structure of the slider and the disk is illustrated in Fig. 2.5.

Since the distance between the recording layer and the read/write element needs

to be minimized, the carbon overcoat and the lubricant are extremely thin layers.

The flying height is maintained by means of pressure distribution on the air

bearing. The pressure distribution is generated by the high shear in the air film

between the slider and the rotating disk. The pressure forces are in equilibrium

with the suspension spring carrying the slider. During operation of the disk drive,

the slider is supposed to ”fly” over the disk without touching the disk.

The fundamental equation that is widely used to model the air bearing in a

hard disk drive is the compressible Reynolds equation with rarefaction effects [47]

∂

∂x

(

Q̄ph3 ∂p

∂x

)

+
∂

∂y

(

Q̄ph3∂p

∂y

)

= 6µ

(

U
∂ph

∂x
+ V

∂ph

∂y

)

+ 12µ
∂ph

∂t
(2.3)
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Figure 2.5: Side view on head-disk interface showing layered structure

where p is the local pressure, h is the spacing, µ the viscosity and U and V are

x- and y- component of the disk velocity according to Fig. 2.6. The Reynolds

equation can be derived from the continuity and the Navier-Stokes equations in

fluid dynamics. In (2.3), the pressure forces on the left hand side are balanced

with the shear forces on the right hand side. The Reynolds equation assumes

an ideal gas in the converging channel between the slider and the disk (Fig. 2.6).

Furthermore, laminar air flow and a constant viscosity are assumed.

Due to the rather complex air bearing geometry, numerical solutions of

slider bearings must be obtained using (2.3). A solution of the 2nd order partial

differential equation in (2.3) is typically obtained using finite element [48] or finite



28

x

y

z

h

h(x,y)

B

L

u

v
disk velocity

dx
dy

disk

control volume

min

Figure 2.6: Coordinate system for the converging fluid channel in a slider bearing
system (after [47])

difference methods [49]. In (2.3), Q̄ was introduced as a correction term for ex-

tremely low spacing [47]. Q̄(Kn) is a function of the Knudson number Kn = λ/L0

where λ is the mean free path of the gas molecules and L0 represents the physical

length scale of the problem. In the case of an air bearing, an appropriate length

scale is the local spacing h. As the spacing between the slider an the disk reaches

atomic distances, intermolecular adhesion forces [50] play an increasingly larger

role.

2.3.2 Air bearing slider and head-gimbal assembly

Using the numerical means introduced in 2.3.1, one can design an air bearing

for a pre-defined nominal flying height. Additional design parameters are: small

flying height variations between inner and outer diameter of the disk [51], high
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shock resistance [52], low power consumption and low sensitivity to operational

and environmental variations [53].

The so-called head-gimbal assembly (HGA) refers to slider, read/write el-

ements, gimbal and suspension. A typical HGA including a recently introduced

a)                             b)

c)                          d)

5 mm
load/unload tip

slider

gimbal

reader/writer/heater

connectors

micro actuator

air bearing

contour

Figure 2.7: a) Head-gimbal assembly in a dual-stage actuator hard disk drive and
magnified views of b) the tip of the head-gimbal assembly, c) micro actuator and
d) air bearing surface

piezo-electric micro-actuator for achieving better tracking performance is shown in

Fig. 2.7. In Fig. 2.7d we observe the complicated air bearing surface consisting of
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several recessed surface depth levels and the so-called cavity. The different depth

levels determine the pressure build-up over the air bearing.

The increase in storage density and the reduction in disk form factors have

resulted in an enormous decrease of the size of sliders and suspensions. Figure 2.8

gives an overview of the decrease of slider size over the last few decades.
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Figure 2.8: Evolution of the size of the slider. Data from [54] and [55]

2.4 Signal processing aspects

A hard drive would not be a successful product without extensive signal

processing and so-called error correction codes (ECC). A simplified schematic of

a magnetic data storage system is shown in Fig. 2.9. ECC is necessary to reduce

errors due to measurement noise. Modulation coding is included for timing recov-

ery and to enhance channel performance [56]. The ECC introduces a significant

overhead of about 9% but by using sophisticated signal processing methods, one
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Figure 2.9: Schematic of data storage system with error correction codes (after
[56])

can reduce the error rates from 10−5 to 10−11 [57]. Modern ECC such as the

low-density parity check codes [58] perform very close to the theoretical channel

capacity limit governed by the Shannon/Hartley theorem [59]

C = B log2

(

1 +
S

N

)

(2.4)

where C is the channel capacity, B is the channel bandwidth, S is the signal power

and N is the noise power.

In addition, enhanced signal processing algorithms could take advantage of

inter-track interference (ITI) which is related to sensing signals from neighboring

data tracks. One could potentially utilize two-dimensional recording in future

products [60].
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2.5 Electro-mechanical aspects: actuators in a

hard disk drive

2.5.1 Spindle motor

The spindle motor in a hard disk drive has to function very precisely in

many aspects. The spindle speed measured in revolutions per minute (RPM) has

to be kept as constant as possible during operation in order to avoid jitter in the

data read/write process [54]. Many different spindle speeds are used. Typically,

7200 rpm drives are used for desktop applications, while laptop HDDs typically run

at 5400 rpm. High end and server products use spindle motor speeds up to 15000

rpm. Higher spindle speeds reduce the latency in the data read/write process but

increase disturbances such as disk flutter [54].

Another important criteria is that the leakage of the magnetic field gen-

erated by the spindle motor should be very low in order to not affect reading or

writing of data [61].

The spindle run-out is the motion of the spindle with respect to its center of

rotation. It is distinguishable into repeatable (RRO) and non-repeatable (NRRO)

run out [62]. RRO is not much of a concern as it is deterministic and could be

compensated. If uncompensated, the RRO will result in not perfectly circular data

tracks as indicated in Fig. 2.10. However, the NRRO needs to be kept as small as

possible since it might lead to track misregistration (TMR).
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realistic track
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Figure 2.10: Ideal and realistic data tracks

The spindle motor bearing has a large contribution to the NRRO. Thus,

more recently, fluid dynamic bearings (FDB) instead of ball bearings (BB) were

introduced in spindle motors which significantly reduces the NRRO. In addition,

FDB motors show larger damping, a reduced frequency resonance, a better non-

operational shock resistance, and, FDB motors are less noisy compared to ball

bearing motors [63]. A schematic of the cross-section of fluid dynamic bearings

and ball bearings is shown in Fig. 2.11

Reliability is a key issue since HDDs are expected to run for years without

being turned off. Small wear particles generated by the spindle motor could po-

tentially cause damage to the head/disk interface and therefore result in decreased

reliability. Thus, brushless direct current (BLDC) motors are typically used. They

are not commutated mechanically as conventional DC motors (with brushes) but
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a)                   b)

rotor

stator

stator coils
permanent magnet

fluid film rolling element

Figure 2.11: Schematical cross section view of a) fluid dynamic bearing and b)
ball bearing in a spindle motor. The rotor is shown semi-transparent for clarity.

commutated electronically. A measurement of the back electromotive force (back

emf) or an additional Hall sensor is used to determine the position of the rotor.

A schematic of the main principle of a BLDC motor with two pole-pairs is shown

in Fig. 2.12. The stator core consists of several electrically isolated ferromagnetic

layers. The lamination is important to keep eddy currents at a minimum during

operation. The rotating permanent magnet is oriented depending on the direction

of the current in the coils and therefore magnetic polarity of the stator poles. Spin-

dle motors in HDDs have typically several pole pairs and an upended build-up,

i.e., the the coils are facing outwards and the permanent magnet is orbiting around

the stator (see Fig. 2.11).

The coils in spindle motors are either connected in a delta or a Y-connection

(Fig. 2.13) where the Y-connection is favorable due to its lower cost [54].
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Figure 2.12: Main principle of inner rotor brushless DC motor

2.5.2 Voice coil motor

Voice coil motors (VCM) are electrodynamic actuators based on the ”mov-

ing coil” principle. Since they function in the same way as loudspeakers, the term

”voice coil motor” was established in the literature. The first hard disk drives used

linear actuators and there is still research being performed on implementing linear

actuators in disk drives [64]. However, rotatory actuators have been used predom-

inantly since the 1980s. Figure 2.14 shows two 5.25” form factor drives from the

mid 1980s, one with a linear actuator (Fig. 2.14a) and one with a rotary actuator

(Fig. 2.14b).

The main functional principle of rotary VCM is illustrated in Fig. 2.15. The

force F that is generated in one winding of the VCM is based on the Lorentz force
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Figure 2.13: Spindle motor connection: a) Y and b) ∆

a)                           b)

Figure 2.14: Two form factor 5.25” hard disk drives: a) MiniScribe-6053 44MB
from 1987 with linear actuator and b) Quantum Q250 53MB from 1985 with rotary
actuator

law given by

~F = I · (~l × ~B) (2.5)

where ~B denotes the magnetic flux density generated by the permanent magnet, I

is the input current and, ~l is the vector of the coil wire exposed to the magnetic field

of the permanent magnet. The polarity of I determines the direction of motion of

the E-block with the suspensions and the sliders. As can be seen from Eq. (2.5),
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Figure 2.15: Main functional principle of rotary voice coil motor

the generated force is directly proportional to the applied current. According

to Newton’s second law of motion, the applied force is directly proportional to

the resulting acceleration. Therefore, to get the output position, one needs to

integrate twice. This yields the typical double integrator behavior (rigid body

mode) of a voice coil motor. This simplification neglects any flexible modes and

damping effects. To obtain a more accurate model of the actuator, one has to

take flexible modes, the back EMF of the motor, effects of power amplifier [65],

(non-linear) pivot friction [66] and damping into account. In this dissertation,

data based actuator modeling will be performed rather than modeling based on

first principles.

There exist two techniques to position the slider relative to the disk when

the disk is at rest (Fig. 2.16). One is to position the slider in a so-called landing

zone close to the inner diameter of the disk. This zone is laser textured to lower the
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adhesion forces between the slider and the disk. When the disk starts to rotate, the

air bearing is established and the slider takes off. This method is often referred to as

contact-start-stop (Fig. 2.16a). In recent years, a so-called load/unload mechanism

(Fig. 2.16b) has been implemented which allows withdrawal of the slider when the

disk is not spinning, i.e., the slider is ”parked” on a ramp off the disk. This

increases shock resistance and reliability of the disk drive [67].

a)                          b) 

ramp 

suspension tip 

laser textured area 

voice coil motor 

disk 

slider 

Figure 2.16: Methods for non-operational head positioning: a) contact-start-stop
and b) load/unload

2.5.3 Micro-actuator

The VCM has a limited bandwidth due to its inertia and constrained control

signals. Thus, high frequency disturbances cannot be rejected and track misreg-



39

istration (TMR) might occur. Furthermore, the increase in storage capacity and

track density in disk drives requires a more accurate track seeking and track fol-

lowing servo mechanism.

Micro-actuators are believed to be one solution to overcome this problem

and to meet higher accuracy and speed requirements of the servo mechanism [68]

and during the process of servo writing [69]. One typically refers to this approach

as dual-stage actuators considering the voice coil motor to be the first stage and

the micro-actuator to be the second stage actuator. The VCM operates at low

frequencies (typically below 1-2 kHz) with a relatively large stroke. The micro-

actuator rejects high frequency disturbances (usually above 1kHz) with a stroke

that is orders of magnitude smaller than the VCM stroke. The much smaller mass

of the micro-actuator enables a higher bandwidth of the dual-stage actuator over

conventional voice coil motor actuators.

The performance of a conventional VCM based servo mechanism has funda-

mental limits such as described by the Bode integral theorem. In continuous-time

systems with relative actuator degree2 greater or equal to 2, the following holds

[70]
∞∫

0

= ln |S(jω)| dω (2.6)

where S is the sensitivity function of the stable feedback loop and ω is the angular

frequency. This is known as the waterbed effect which states that the total area

under the plot of the sensitivity function versus frequency remains constant. This

2difference between the denominator degree and the numerator degree in the transfer function
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means that by improving the disturbance rejection in a certain frequency range,

one worsens the disturbance rejection in another range. By considering dual-stage

actuators, one can - depending on the micro-actuator design - bypass the waterbed

effect.

A number of different approaches for second stage actuators in hard disk

drives have been explored within the last few years. Some of these micro-actuators

are MEMS-type devices (microelectromechanical systems) based on electrostatic

or electromagnetic effects [71, 72, 73, 74, 75, 76, 77, 78]. Other micro-actuators are

based on piezoelectric principles [79, 80, 81]. The actuators are either mounted on

the suspension or on the slider. There are also approaches that have the micro-

actuator integrated in the slider and allow a flying height adjustment in addition to

off-track positioning [82]. An excellent overview of available second-stage actuators

and control schemes is given in [83]. It was also proposed to use the second-

stage actuator for active vibration damping using self sensoring [84],[85], i.e., the

actuator is used as a strain sensor to detect off-track vibrations and suppress them

simultaneously.

The implementation of a dual-stage actuator in a HDD was proposed al-

ready 20 years ago [68]. Although their advantage over conventional servo mech-

anisms has been known for such a long time, dual-stage actuators have only been

implemented in commercial products in the very recent past. One reason for this

is increased production and implementation costs. In future hard disk drives with

track densities exceeding 12,000 tracks per mm (300 ktpi), dual-stage actuators



41

are likely to be used.

A typical example of a commercially available suspension based piezo ac-

tuator is shown in Fig. 2.17. The piezoelectric elements use a common electrical
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a)              b)                          c) 

Figure 2.17: Piezo-electric push/pull actuated suspension in a commercial avail-
able hard disk drive: a) close-up b) E-block actuator arm with 8 suspensions and
heads c) electrical schematic of connecting the 8 actuators

ground but are connected in the opposite way (Fig. 2.17a and c). If a voltage is

applied, one of the piezo elements contracts whereas the other one expands. Thus,

a rotary motion is induced. The micro-actuator has a limited stroke, and, thus, it

is more useful for track-following than for track-seeking [86]. However, it can be

used for short distance seeks [86, 87].

2.5.4 Flying height actuator

Two of the key technologies in achieving higher storage density are the re-

duction of the clearance between the read/write element and the recording medium
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and the minimization of flying height variations to maintain low bit error rates [88].

The flying height has decreased from initially about 20µm [89] to a few nanometers

in today’s hard disk drives. The idea of actively controlling the flying height was

introduced as early as 1990 [90]. The first design proposed was based on a piezo

element. This approach was difficult to implement at a cost-efficient mass produc-

tion level. Thin-film micro heaters for flying height control were later introduced

by Meyer et al. [91] and Mächtle et al. [92]. The implementation of a resistance

heater element became necessary at low flying heights for various reasons. First,

the write head causes thermal deformation of the air bearing surface towards the

disk during the write process which is referred to as pole tip protrusion [93]. This

causes a different flying height during writing and reading, respectively, which is

not desirable. To mitigate this effect and achieve the same flying height during

reading and writing, heads were introduced that feature a resistance heater ele-

ment that is positioned in close proximity to the read/write element. Figure 2.18

shows a side view of the slider and the disk for this case. As can be seen from

Fig. 2.18, the read/write element and the resistance heater are positioned at the

trailing edge of the slider. Activating the resistance heater, one finds that the

head disk clearance can be reduced by ∆d. Hence, write current induced pole tip

protrusion can be compensated by activating the resistance heater during reading.

A second reason for implementing micro heater elements in the slider is that toler-

ances during manufacturing of the head can be relaxed and flying height changes

due to changes in environmental conditions during operation can be compensated.
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Figure 2.18: Hard disk drive and side view of trailing edge of the slider with
resistance heater element for thermal flying height control

2.6 Control aspects

Hard disk drives are exposed to many different disturbances. As discussed

in section 2.5.1, one can differentiate repeatable and non-repeatable disturbances.

In addition to disturbances caused by misalignment of HDD components, one has

to consider aerodynamic forces or external shocks and vibrations [54]. In order

to accurately position the read/write head over a desired bit, a closed-loop servo

controller as illustrated in Fig. 2.19 is needed. In disk drives, pre-written servo
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pattern allow to generate a position error signal (PES). The PES determines the

lateral off-track position of the read/write head with respect to the track center.

A so-called servo actuator, introduced in sections 2.5.2 and 2.5.3, adjusts the off-

track position of the head. Three different operational situations occur in hard

disk drives:

1. In the so-called ”idle” or ”rest” mode, the head is positioned on the ramp

away from the disk (Fig. 2.16b)

2. In the so-called track seeking mode the head is moved from a given track to

a desired track

3. In the track-following mode, the head is positioned on the same track so that

data can be written or read back from the disk

The latter two situations will be explored in the next subsections. Before doing

this, however, a short introduction is given on how to obtain the position feedback



45

for closed-loop control.

2.6.1 Servo sectors for position estimation

In the early years of hard disk drive technology, servo information was typ-

ically written on one disk surface only, i.e., one disk was dedicated to servo infor-

mation and all other disk surfaces in the stack were used for data. This technique

is referred to as dedicated servo where one head was responsible for the positioning

of all other heads in the disk stack. However, this approach disregards dynamic

effects between individual heads and the fact that disturbance characteristics are

different for each head. Clearly, this approach is only viable at low track densities.

State-of-the-art hard disk drives use an embedded servo as indicated in

Fig. 2.20. The data sectors are interrupted by servo sectors which contain a DC

gap field, an automatic gain control field, a servo timing mark, a track identification

number and a burst pattern for the position estimate [54]. The position estimate

is available in each servo sector, i.e., it is available at discrete time intervals. The

PES sampling frequency is determined by the rotational speed times the number of

servo sectors. As the number of servo sectors increases, the servo overhead - or the

percentage of area on the disk that cannot be used to store information - increases

as well. Hence, a trade-off exists between storage capacity and PES sampling rate.

The sampling rate should be chosen at least 10 times the bandwidth of the closed-

loop system [94]. Typically, the number of servo sectors on the disk is on the order

of 200, i.e., the sampling frequency is on the order of several tens of kHz. It should
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Figure 2.20: Disk with servo and data sectors

be noted that the embedded servo demands a significant amount of space on the

disk and the overhead might exceed 15-20% [95]. The burst pattern is particularly

important for the position estimate during the track-following mode. Figure 2.21

shows a typical arrangement of A,B,C and D burst pattern in an amplitude based

servo. Bursts A, B, C and D are placed at different radial positions. In particular,

Bursts A and B are off-set by one track from each other and Bursts C and D are

also off-set by one track from each other, although they are off-set by one half of a

track with respect to Burst A. Four different off-track positions of the head (1-4) are

indicated in Fig. 2.21 by the dashed lines denoted by 1,2,3,4. The resulting in-phase

and quadrature PES is shown on the right. The in-phase PES is zero at the track

center and the quadrature PES is zero between two tracks. The corresponding
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Figure 2.21: Typical amplitude based servo pattern (after [54])

readback signals for these four head positions are shown in Fig. 2.22. At position

1 (track N-1), the read head detects the same signal amplitude due to burst A

(to the left) and due to burst B (to the right) as it moves along the track. Burst

C is not detected while the full amplitude level of burst D is measured since it is

centered on the track. At position 2, the head is located between track N and track

N-1. As the head is moved from position 1 to position 2 the amplitude from burst

A increases and the amplitude from burst B goes to zero. Now, burst C and D are

detected with equal (but decreased) amplitude levels since the head is positioned at

the centerline between the two bursts. The servo signals detected at head positions

3 and 4 are derived in a similar fashion. Based on the amplitude levels of A,B,C

and D bursts that are detected (Fig. 2.22), the PES can be computed.

In recent years, more advanced servo pattern have been proposed such as
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Figure 2.22: Readback signal for head position 1-4 from Fig. 2.21

the dual-frequency based servo pattern [96] that decreases the servo overhead.

Also the use of timing-based instead of amplitude based pattern has been shown

to increase the servo performance significantly [97].

2.6.2 Track following

It is generally acknowledged that measurable track-misregistration already

occurs if the read head is 10% of the track pitch away from the track center [72].

This introduces tight constraints on the positioning accuracy of the head with re-

spect to the track center. It is estimated that the TMR budget (3σ) will be as low
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as 2.5 nm for future 40,000 tracks per mm (1,000 ktpi) drives [98]. This requires ad-

vanced control methods that compensate for repeatable run-out and significantly

reduce non-repeatable run-out. Classic control design techniques such as PID-

control combined with lead-lag compensators would yield sufficient tracking perfor-

mance in older generation hard drives. Recently, more advanced techniques such

as linear quadratic Gaussian (LQG) and/or linear loop-transfer recovery (LTR)

[99], adaptive control [100], iterative learning control [101] and H∞-control [102]

have been proposed to only name a few.

A different approach to increase the closed-loop servo bandwidth is the

implementation of dual-stage actuators as discussed in section 2.5.3. In chapter 3,

we will show in detail the design and implementation of a dual-stage track-following

controller.

2.6.3 Track seeking

During the track seeking process, the head is moved from one track to

another. The hard disk drive servo mechanism faces several non-linearities such as

friction effects, or high frequency mechanical resonances [103]. However, the major

non-linearity that becomes apparent during the track-seeking mode is actuator

saturation, i.e., the VCM actuator has limits on its input and output. A number

of different control schemes have been proposed to address this problem.

One very popular technique is the so-called proximate time-optimal servo

mechanism (PTOS) [104] that was modified from conventional time-optimal con-
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trol. The difference between both control methods is illustrated in Fig. 2.23 for the
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Figure 2.23: a) Time optimal control (TOC) scheme and b) proximate time-
optimal control (PTOS)

continuous-time case where a is an acceleration constant of the voice coil motor

and ft,p(·) represents the switching function of the control law of TOC and PTOS,

respectively. For the TOC scheme the switching function is defined as [103]

ft(e) = sgn(e)
√

2aumax |a| (2.7)

which is very sensitive to noise. Hence, this scheme was improved by Workman

[104] to include a saturation element instead of the signum function. A linear

control law is applied for small errors e. The switching function of the PTOS

becomes

fp(e) =







k1e/k2 for |e| ≤ yl,

sgn(e)
(√

2aumaxα |e| − umax

k2

)

for |e| > yl.

(2.8)
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where α is a constant between 0 and 1 and k1 and k2 are the feedback gains of

position and velocity, respectively. The saturation element in Fig. 2.23b) is defined

as

sat(x) =







+1 for x > +yl,

x for −yl ≤ x ≤ yl,

−1 for x < −yl.

(2.9)

Workman proved that [104, 103]

yl =
umax

k1
, k2 =

√
2k1
aα

(2.10)

Another popular track-seeking control method is mode switching control with ini-

tial value compensation as proposed in the 1990s [105, 106]. Using this method,

the transient behavior of the servo during the switching process between two con-

trollers could be improved significantly. More recently, techniques such as compos-

ite nonlinear feedback (CNF) control [107] and shaped time-optimal servomecha-

nism (STOS) [108] were proposed. The STOS technique is particularly interesting

for the scope of this dissertation as is employs input shaping to deal with the ac-

tuator saturation effects. A schematic of the main working principle of STOS is

shown in Fig. 2.24. The input to the closed-loop system is pre-shaped to suppress

residual vibrations and achieve near time-optimal performance [108]. In chapter 4,

we show how convex optimization techniques can be utilized to pre-shape reference

signals for optimal seeking.
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2.7 Geometric aspects

2.7.1 Bit aspect ratio, linear density and areal density

The areal density in disk drives is defined by the track density times the

linear density (Fig. 2.25). Here, the linear density is determined by the number of

bits per unit and the track density by the number of tracks per unit length. The

down-track

cross-track
bit length

b
it

 w
id

th

track N

track N+1

track pitch

Figure 2.25: Bit geometry definition: simplified section of recorded bit pattern

bit aspect ratio (BAR) is defined by bit width over bit length. The BAR has been
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decreasing as storage density increased. In today’s drives the BAR is typically on

the order of 6. It is likely that the BAR will be reduced to 4-5 as storage densities

of 1.5Gb/mm2 (1Tb/in2) are approached [109].

2.7.2 Zone bit recording

One large benefit of storing data on a rotating disk versus e.g. (very long)

tape is that the access time (latency) is comparably low. However, this introduces

additional challenges that need to be addressed. If one would record data using a

constant write frequency for the entire disk, one would be limited by the maximum

linear bit density at the inner diameter of the disk. The bit length and data

sector length would increase linearly towards the outer diameter of the disk. To

compensate this effect, the disk is divided into several zones with different write

frequencies. In Fig. 2.26, the schematic of the so-called zone bit recording [111] is

illustrated. The disk model in Fig. 2.26 is divided into five different write frequency

zones. The number of data sectors is increasing towards the outer diameter of the

disk keeping the length of each sector approximately the same. This scheme allows

to maintain a linear density in each zone that is close to its maximum.

2.7.3 Skew angle

The skew angle illustrated in Fig. 2.27 is a consequence of the use of rota-

tional actuators rather than linear actuators for positioning the read/write element

over a data track. There are several unwanted effects related to the skew angle in a
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Figure 2.26: Schematic of zone bit recording with 5 different zones (after [110,
111])

hard disk drive. It causes a read/write offset as depicted in Fig. 2.27. It should be

noted that the skew angle in Fig. 2.27 is shown exaggerated for clarity. In a hard

disk drive, typically the skew profile is chosen (nearly) symmetrically to minimize

the skew effect. The maximum skew angle is typically 15 degrees [113].

Tracks recorded at non-zero skew angle show side-track effects as depicted

in Fig. 2.28. Close to the maximum linear recording density, the side-track effect

is almost not detectable anymore as can be seen in [114]. It is also noted that the

actual shape of a recorded bit pattern looks closer to the one shown in Fig. 2.28a)

rather than the simplified geometry shown in Fig.2.25 [114].
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zero skew (close to middle diameter of the disk) and b) at 15 degrees skew (close
to outer diameter) - after [112]

2.8 Ongoing challenges and trends in hard disk

drives

2.8.1 Miniaturization

Richard Feynman predicted in his famous paper ”There is plenty of room at

the bottom” already in 1960 [115] what tremendous progress in terms of miniatur-

ization would be ahead. In hard drive technology that meant decreasing the size

and number of disks in the drive. The progress went from 0.1MB storage capacity

on a single 24 inch disk in 1956 to a capacity exceeding 500GB3 per 3.5 inch disk

in 2011. The areal density in hard disk storage has increased over eight orders

3assumption based on 2TB state of the art hard disk drive with a stack of 4 disks
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Figure 2.28: Bit shape recorded at a skew angle of a) 0◦ and b) 15◦ and skew
related side-track effect.

of magnitude [116] since the IBM RAMAC of 1956. Figure 2.29 shows that the

slope of the increase in storage density versus time has changed over the years.

The ”kink” in the curve in Fig. 2.29 that indicates a sharp rise in storage density

in the 1990s is mostly attributed to the introduction of the magnetoresistive read

elements as described in section 2.2.3. It can partially be attributed to the in-

troduction of thin film disks and the substanial reduction in flying height. After

reaching the limit of longitudinal magnetic recording about 10 years later in spite

of switching to perpendicular recording the rise declined significantly. The limit of

conventional perpendicular recording will be reached very soon and new emerging

technologies such as shingle writing, bit patterned media or heat assisted magnetic

recording are believed to overcome the existing limits. Those new technologies will

be briefly introduced in section 2.9.
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2.8.2 Form factors

The form factor of hard drives was reduced significantly over the years

but reached its limit a few years ago. The smallest commercially available hard

Seagate Barracuda

200 GB -2004

Samsung Spinpoint

40 GB -2005

Cornice Dragon Series

12 GB - 2006

¼ U.S. $ coin 

for size comparison

3.5”                     2.5”             1”

Figure 2.30: Different form factors of recent hard disk drives: 3.5”, 2.5” and 1”.

drive was presented in 2004 [118] as a 0.85” form factor drive. Figure 2.30 shows

different form factor as they were available about 5 years ago. The so-called small

form factor 1”-drive shown on the right in Fig. 2.30 lost its market share to solid

state storage such as flash. Today, the most manufactured form factor is 2.5” for

laptop applications and external storage devices followed by 3.5” form factor drives

mostly for desktop and server applications. There are also 1.8” form factor drives

on the market.
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2.8.3 Economic challenges

As already indicated in chapter 1, the cost per storage in hard drives has

decreased significantly over the past decades (Fig. 2.31). However, there has been

1980 1985 1990 1995 2000 2005 2010 2015
10

−2

10
0

10
2

10
4

10
6

P
ric

e 
pe

r 
gi

ga
by

te
 in

 $
U

S

Year

Figure 2.31: Evolution of price per gigabyte of hard drive storage since 1980.
(Data based on [119, 120])

a growing threshold of storage capacity where competing solid state technology

was able to replace hard disk drives. Currently, this threshold is on the order of 50

gigabytes of storage capacity. Clearly, scalability has its limits in hard disk drives

since basic mechanical components add to a total cost, regardless of how few GB

are needed in the capacity range below 50GB.
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2.9 Physical limits and possible solutions

2.9.1 Thermal stability and super paramagnetic limit

The long-term stability of the magnetically stored information is crucial in

whether or not hard drive technology will survive. As the grain size gets smaller

the thermal stability decreases [121, 35]. The energy barrier for re-magnetizing a

magnetic grain must be much larger than its thermal energy. Considering an 8-year

stability of stored information, the factor between thermal energy and switching

barrier is estimated to be at least 40 [122]. Based on L10 FePt recording material

there is a fundamental limit in theoretically achievable storage density which is

reached at approximately 150Gb/mm2 (100Tb/in2) [29] which is also depicted in

Fig. 2.29. This is still two orders of magnitude above today’s storage densities.

However, the practical limits of conventional media and perpendicular recording

technology will soon be reached at approximately 1.5Gb/mm2 (1Tb/in2) [41].

Several new technology concepts that address this issue are currently under devel-

opment and will be introduced in the following three subsections.

2.9.2 Patterned and discrete-track recording

Discrete-track recording and bit patterned recording significantly reduces

magnetic ”crosstalk” effects in high areal density recording compared to con-

ventional perpendicular recording [123]. The main differences are illustrated in

Fig. 2.32. In conventional granular media, several grains form one bit. The transi-
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tions between the bits are not well defined which has a negative effect on the SNR.

In discrete-track recording, the data tracks are magnetically separated in the ra-

dial (cross-track) direction. This reduces inter-track interference significantly. In

bit patterned media, not only the tracks are magnetically separated in the radial

direction but also the bits in the down-track direction. The thermal stability is

much higher in discrete-track and bit patterned recording compared to conventional

PMR. Therefore, much higher areal densities can be achieved. However, there are

a number of problems related to flyability on patterned and discrete track media
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[124]. It was suggested that the grooves would have to be filled and planarized to

accomplish stable flying condition of the slider over the disk [125, 126]. In addition,

a cost-efficient manufacturing process has to be developed to produce such media.

2.9.3 Energy assisted magnetic recording

Another approach to increase thermal stability is to use media with a higher

coercivity and anisotropy than current media. This increases the energy barrier

for bit reversal. However, additional local energy during the writing process is

required. Different ideas have been proposed to address this. One interesting ap-

proach is microwave assisted recording. Simulations suggests that one could record

with a write field that is 1/3 of the coercivity of the media using ferromagnetic

resonance effects and a localized AC field of tens of GHz frequency [127]. However,

no working prototypes have been presented so far; thus, this technology is far from

being implemented in a product.

A more promising approach seems to be the so-called heat (also thermally)

assisted magnetic recording (HAMR/TAR) [128]. The main principle of HAMR is

shown in Fig. 2.33. A laser is used to locally heat up the recording media which

temporarily lowers the coercivity of the material. In this stage, a bit can be written

and its magnetization remains ”frozen” after cooling down. The required heat spot

size is on the order of one magnitude smaller than the wavelength of the laser light.

Therefore, a near-field optical transducer needs to be used and a complicated light

delivering system. Several lab demos have experimentally verified the effectiveness
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of HAMR [129, 130, 131].

2.9.4 Shingle recording

The implementation of BPM or HAMR will take a number of years (or it

might never happen). However, as discussed earlier, conventional perpendicular

recording will soon have reached its limits. Therefore, an intermediate solution

is needed to increase storage density. Shingle recording is one possible option for

future hard drives as only minor hardware and software modifications are needed.

The main idea of shingle recording is shown in Fig. 2.34. The write pole has much

larger width dimensions than the desired track width and a wide track is written

in the first pass. In the second pass the first track is partially overwritten resulting
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in a very narrow track. The tracks are written in a progressive scan as indicated

in Fig. 2.34. One advantage of shingle recording over conventional PMR is that

a higher write field can be applied. This increases the field gradient and results

in a much more uniform magnetization through the recording layer [60]. The

obvious disadvantage of shingle recording is a reduced speed in changing distinct

bits or tracks. In that case, adjacent tracks would have to be re-written. However,

improved data management [132] could make this problem insignificant.

2.10 Further reading

The first two chapters of this dissertation give a comprehensive introduction

and motivation to magnetic recording technology. However, we only address key
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issues that are important to understand subsequent chapters. There exist a large

number of great textbooks on magnetic recording technology that include the

various aspects discussed in chapter 1 and 2 in much more detail. The interested

reader is referred to a reference book for magnetic recording by Bertram [133] and

an extension to perpendicular technology by Khizroev and Litvinov [134].

A very detailed history of magnetic recording technology was given by

Daniel, Mee and Clark [15] and Daniel and Mee authored another textbook a

few years earlier that gives a good introduction to recording physics and media

[135]. The latter issues are addressed in detail by Plumer, van Ek and Weller

[136]. Concerning mechanical and control aspects there exist two excellent text-

books by Mamun, Guo and Bi [54] and by Chen, Lee, Peng and Venkataramanan

[86]. The latter two books have particularly helped the author of this dissertation

to learn about hard drive technology since 2007.

Tribology related issues are e.g. addressed by Bhushan [137]. Vasic and

Kurtas [138] give a comprehensive overview of recording channels and signal pro-

cessing aspects in magnetic recording.

2.11 Contribution and organization of this dis-

sertation

This dissertation focuses on optimizing the positioning of the read/write

head over the data track in hard disk drives. Cross-track positioning will be con-



66

sidered as well as vertical (flying height) adjustment.

In chapter 1, an introduction to the state-of-the-art in storage technology is

given combined with a brief history. In addition, an outlook on emerging storage

principles and future trends is presented.

Chapter 2 introduces hard drive technology with a particular focus on its

multidisciplinarity. A strong emphasis is given to electro-mechanical and control

aspects since this lies within the main scope of this dissertation.

In chapter 3, we present the system identification and controller design for

a dual-stage actuator hard disk drive. Two substantially different controller design

methods, the sensitivity decoupling method and H∞-loop shaping, are applied to a

dual-stage actuator servo system and compared. Both controllers are implemented

in a hard drive.

Chapter 4 addresses the seeking process in hard disk drives. A framework

for closed-loop input shaping based on convex optimization techniques is presented

to achieve optimal performance and reduce residual vibrations of the closed-loop

system. The theoretical framework is applied to a hard drive and experimental

results are presented.

The second part of this dissertation deals with the positioning of the read/write

element in the vertical direction. The main goal of this study is to minimize flying

height variations using active thermal flying height control as introduced in sec-

tion 2.5.4. The flying height change is measured using a pre-written servo pattern.

We first develop a simplified analytical model of the readback process in chap-
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ter 5. This model is straightforward to understand and is applicable to emerging

technologies such as bit patterned recording as well as conventional recording.

In chapter 6, we develop a novel method of estimating the flying height

change based on the servo pattern, in particular A and B burst. The technique re-

lies on a modified Wallace spacing equation. Simulations and experimental results

obtained on a spin stand show the effectiveness of the proposed method.

Chapter 7 shows how dynamic modeling of the thermal actuator can be

performed using the measurement scheme developed in chapter 6. The modeling is

based on a generalized realization algorithm. We employ a finite horizon framework

similar to the one presented in chapter 4 to minimize circumferential flying height

variations. The method is experimentally tested on a spin stand and a significant

reduction in flying height variations is observed.

Finally, in chapter 8, a summary and concluding remarks are presented.
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3 Modeling and control of a

dual-stage actuator hard disk

drive

3.1 Introduction

In section 2.5.3, we introduced dual-stage actuators and their ability to

increase closed-loop servo performance in hard drives. In this chapter, we will

investigate two different methods of dual-stage controller design: the sensitivity

decoupling method and an H∞ loop shaping method. First, data based modeling

of both actuators is performed using frequency response function measurements

and an impulse response based realization algorithm. Thereafter, two dual-stage

controllers are designed and implemented in the drive. The dual-stage hard disk

drive considered in this paper uses a push/pull actuator based on a piezoelec-

tric transducer (PZT). A close-up of the slider with the suspension and the PZT

elements is shown in Fig.3.1.

69
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Figure 3.1: Close-up image of the piezoelectric microactuator considered in this
study

3.2 Modeling and system identification

In order to be able to inject control signals, the hard disk drive servo con-

troller was bypassed completely. The circuit board was disconnected from the

HDD and all motor drivers were replaced. Since the position error signal (PES) of

the servo mechanism was not directly available, a laser Doppler vibrometer (LDV)

was used to measure the radial slider motion. To accomplish visual access to the

slider the HDD had to be modified. The top cover was replaced with one made

out of plexiglas and a mirror was used to deflect the laser beam onto the side of

the slider. The experimental set-up illustrated in Fig. 3.2 was used to determine

the frequency response function of both actuators.

Many modeling approaches yield a continuous time model of the actuator

[139, 86]; however, we estimated directly a discrete-time model using a realization

algorithm. It is noted that throughout this dissertation data based modeling is
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Figure 3.2: Schematic of the experimental set-up to determine the frequency
response function of the dual-stage actuator.

obtained through realization algorithms. In chapter 4 and 7 we use step inputs

and a generalized realization algorithm [140]. However, a step input is not a good

choice for a voice coil motor since the actuator is only marginally stable in an open-

loop configuration. This is due to a lack of an actual spring in the actuator design.

Therefore, a step input would cause a loss in LDV signal and potentially move the

head off the disk. Hence, we use frequency domain data instead that is converted

into time domain data first by means of inverse discrete Fourier transform (IDFT).
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And the modeling is performed using the eigensystem realization algorithm [141].

Additional frequency-dependent weighting functions are used to emphasize control

relevant resonance modes of the actuator response. The inverse discrete Fourier

transform (IDFT) of the frequency response function (FRF) measurement yields an

estimate for the impulse response of the system. The impulse response coefficients

(Markov parameters) are defined by

gk =
1

2N

2N−1∑

l=0

Gle
jωkl, k = 0, 1, · · · , 2N − 1 (3.1)

where Gl contains the FRF data and ωk is the frequency vector defined by

ωk =
πk

N
, k = 0, 1, · · · , 2N − 1 (3.2)

N denotes the number of FFT lines (frequency points) in the FRF measurements.

The measured data are stored in a Hankel matrix H that contains the Markov

parameter estimates defined in (3.1). By choosing m as the number of impulse

response samples taken into account, one can define an m×m Hankel matrix by

H =















g1 g2 · · · gm

g2 g3 · · · gm+1

...
...

...
...

gm gm+1 · · · g2m−1















(3.3)
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The shifted version H̄ is defined by

H̄ =















g2 g3 · · · gm+1

g3 g4 · · · gm+2

...
...

...
...

gm+1 gm+2 · · · g2m















(3.4)

To perform a control oriented modeling by means of capturing relevant resonance

modes only, an input weighting filter Fu was used. Performing an IDFT on Fu

yields

guk
=

1

2N

2N−1∑

l=0

Fuk
ejωkl, k = 0, 1, · · · , 2N − 1 (3.5)

The impulse response of the weighting filter guk
was stored in a N × N Toeplitz

matrix defined by

Γu =















gu0
gu1

· · · guN−1

0 gu0
· · · guN−2

...
...

...
...

0 0 · · · gu0















(3.6)

The procedure used in this study has been previously reported in [142] and [143].

The singular value decomposition (SVD) was applied to the weighted Hankel ma-

trix Hw defined by

Hw = HΓu = UΣVT (3.7)

where V, U and Σ represent the unitary matrices and the singular value matrix

of a standard SVD. The SVD is used to reduce Hw to a matrix with rank n

Hwn = H1H2 (3.8)
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where H1 and H2 are defined by

H1 = UnΣ
1/2
n , H2 = Σ

1/2
n VT

n
(3.9)

An estimation for the state space matrix A is

A = H∗
1H̄wH

∗
2 (3.10)

where H∗
1 and H∗

2 denote the left and right inverse of H1 and H2, respectively.

The input matrix B becomes the first column of H2Γu
−1. The first row of H1

forms the output matrix C. The feed-through term D is estimated solving a least

squares optimization [142]. For the VCM modeling, first an estimated second order

model G2nd representing the main actuator dynamics including the low frequency

friction mode [54] at 17Hz was removed from the FRF measurement and added

back to the model after the estimation. The second order model (here given in

continuous time) was parameterized by

G2nd =
Kvω

2
0

s2 + 2δω0s+ ω2
0

(3.11)

and the parameters are given by Kv = 9750, ω0 = 17 · 2π rad
s
, δ = 0.2. The

measurements and the estimated models of both actuators are depicted in Fig. 3.3

and Fig. 3.4, respectively.
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Figure 3.3: Comparison of FRF measurement and estimated 15th order VCM
model

3.3 Controller design

3.3.1 General overview

One of the main characteristics of a dual-stage controller in HDDs is that

there are two control outputs but there is only one position feed-back signal avail-

able that includes the contribution of both actuators. The relative displacement

between the two actuators is not measured in an actual disk drive. Several different

control design techniques for dual-stage actuators have been developed in recent

years [72]. Some of those methods address the problem of actuator saturation [144],

[145] and/or include feed-forward control in addition to feed-back control in or-

der to accomplish combined track-following and track-seeking controllers [146]. In
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Figure 3.4: Comparison of FRF measurement and estimated 20th order PZT
model

this study, we focus on feed-back controllers for track-following and short-distance

seeks that do not exceed the stoke of the micro-actuator.

One dual-stage controller design technique is the PQ method [147, 148]

that is based on loop shaping. It is shown in [147] that by placing the closed-loop

zeros of the feed-back connection of plant P and compensator Q one can achieve

frequency separation between both actuators. Here, P is defined as the ratio of

the VCM and the PZT model and the compensator Q is defined in the same

manner. We have recently applied the PQ method to a dual-stage tape head in

[143]. However, in the present study, P yields a non-minimum phase system which

limits bandwidth and makes it much more difficult to perform loop shaping based
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control design. Instead, we applied the sensitivity decoupling method (SDM) as

a classical control design technique and an H∞-based optimal control algorithm.

Both design methods will be explained briefly in the next two subsections.

3.3.2 Sensitivity decoupling method

The sensitivity decoupling method (SDM) [68], [72], [149] allows a separate

controller design for the VCM and the PZT. The control structure is given in

Fig. 3.5. The displacement of the PZT is estimated using a simplified PZT model

Figure 3.5: Control structure of sensitivity decoupling method

ĜPZT . From Fig. 3.5, we extract the sensitivity function ST = y
d
of the overall

system

ST =
1

1 + CPZTGPZT
︸ ︷︷ ︸

SPZT

· 1

1 +K · CV CMGV CM
︸ ︷︷ ︸

SV CM

(3.12)

where G(V CM,PZT ) and C(V CM,PZT ) represent the plant dynamics and the controller

for both actuators, respectively. A coupling factor K is defined by

K =
1 + CPZT ĜPZT

1 + CPZTGPZT

(3.13)



78

where ĜPZT is a model of the PZT actuator. An obvious choice for ĜPZT would

be the 20th order model depicted in Fig.3.4. However, to limit the complexity

of the controller, ĜPZT is approximated by a simple DC gain gPZT . The higher

frequency resonance modes of the PZT do not have a significant impact on SV CM

because of a high frequency roll-off that is included in CV CM . Hence, K ≈ 1 and

both control loops can be decoupled and designed separately.

CPZT is designed as a band pass filter including a notch filter to suppress

the micro-actuator (sway) mode [150] at 17 kHz. Thereafter CV CM is designed

containing a low pass filter approximating an integrator, a second order lead lag

compensator and a high frequency roll-off. The actual dual-stage controller CDS

in a classical control loop definition yields

CDS =







(1 + gpztCPZT )CV CM

CPZT







(3.14)

The dual-stage controller is depicted as the solid lines in Fig. 3.7 where the left plot

shows the actual VCM controller (1 + gpztCPZT )CV CM and the right plot shows

the micro-actuator controller CPZT .

3.3.3 H∞ loop shaping controller design

In addition to the sensitivity decoupling controller that is designed using

loop shaping techniques only, a combined approach is applied that uses loop shap-

ing and H∞ optimal control design via H∞ loop shaping [151], [152]. Figure 3.6

shows the main principle. The details on the H∞ loop shaping algorithm are given
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Figure 3.6: H∞ loop shaping control structure

in [153]. The principle steps of the H∞ loop shaping algorithm are:

First, weighting filters WV CM and WPZT are designed for both actuator

models that represent the shape of the optimal controllers to be estimated. Then,

a 4-block H∞ control problem is formulated and used to minimize control signal

peaking and error rejection peaking. Given the optimization constraints, an op-

timal controller CDS is computed. Finally, the weighting filters are preserved in

CDS.

We define the weighted plant GW (dotted box in Fig. 3.6) as

GW =







WV CM 0

0 WPZT













GV CM

GPZT







(3.15)

The weighting functions are defined by

WV CM = 1
KV CM

τ1s+1
τ2s+1

1
τ3s+1

WPZT = Rg

KPZT

s
τ4s+1

1
τ5s+1

(3.16)
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where the design parameters are given by 1
τ1

= 2π · 200, 1
τ2

= 2π · 1, 1
τ3

= 2π · 5000,

1
τ4

= 2π ·10, 1
τ5

= 2π ·800 rad
s

and Rg = 5. The gains KV CM and KPZT are adjusted

in such a way that the 0-dB crossover frequency of the weighted plants are located

at 500Hz, respectively, and Rg is defined as the relative gain of the PZT with

respect to the VCM at the crossover frequency. The H∞-norm of the closed-loop

transfer function T (GW , CDS), defined by

T =







GW

I






[I + CDSGW ]−1

[

CDS I

]

, (3.17)

is analytically minimized using normalized coprime factorization and a Nehari

extension [153]. Since the calculated controller is of high order (on the order of the

plant), a closed-loop reduction routine that subdivides the high order controller

into its low order components is applied. A 10th order stable approximation was

obtained and is shown as the dashed lines in Fig. 3.7.

3.3.4 Controller evaluation

To evaluate the performance of the designed controllers, the closed loop

feed-back connection was simulated. The sensitivity functions for both controllers

are shown in Fig. 3.8. The cross-over frequency is nearly the same. However, the

H∞ controller shows a better disturbance rejection for lower frequencies than the

SDM controller. Another common performance evaluation is a step function as an

input representing either a high frequency disturbance or a short track seek. A

step size of 100 nm relates to a track pitch of 250 ktpi in a hard disk drive. Figure
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Figure 3.7: Comparison SDM and H∞ loop shaping controller

3.9 shows the simulated response to a step input for both controllers, the control

signal for the VCM and the PZT. Furthermore, the individual distribution of the

VCM and the PZT to the total displacement is simulated and shown in Fig. 3.10.

We observe that the SDM controller settles slightly faster than the H∞ con-

troller. Also, the maximum value of the control signal and the overshoot are smaller

for the SDM controller. Further performance measures are given in Table 3.1.

Table 3.1: Comparison sensitivity decoupling method (SDM) and H∞ loop shap-
ing control design

SDM H∞ loop shaping

gain margin 6 dB 6 dB
phase margin 54 degrees 35 degrees
overshoot 22% 20%
10% settling time 0.175ms 0.275ms
crossover frequency ≈ 2.37kHz ≈ 2.32kHz
control signal level
‖uVCM‖∞ 5mV 10mV
‖uPZT‖∞ 5.1V 4.7V
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loop shaping controller and sensitivity decoupling method controller

3.4 Controller implementation

The controller was implemented at a sampling frequency of 40 kHz. A

100Hz square wave reference signal was applied representing a number of step

functions. The measurement for the SDM controller is shown in Fig. 3.11. Each

rise and fall in the reference signal (indicated by black arrows) is considered as

a step and a trigger. Hence, time-based averaging can be applied (see Fig. 3.12).

Numerous oscillations are observed in the averaged measurement. The unaveraged
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Figure 3.9: Simulation of step response - H∞ loop shaping controller and sensi-
tivity decoupling method controller

measurement of the H∞ controller implementation is shown in Fig. 3.13. Looking

at the averaged step response (Fig.3.14), one can observe the same oscillations as

in the SDM controller measurement.

The major oscillations in both controller implementations occur at about

2 kHz and 3.5 kHz. Furthermore, the control signals show the frequencies of the

HDD spindle speed (167Hz) and eigenfrequencies. It is conjectured that numer-

ous repeatable (non-stochastic) disturbances that are not affected by time-based

averaging cause the vibrations.



84

SDM

SDM

H 8

H 8
Figure 3.10: Simulated displacement for VCM and PZT

3.5 Conclusion

A hard disk drive with dual-stage-suspensions was modified to allow open

loop FRF measurements of both servo actuators without having access to the PES.

A discrete-time modeling algorithm based on frequency response function mea-

surements was proposed. Two different dual-stage track-following controllers were

designed using classic loop shaping techniques combined with modern H∞ control

problem algorithms. Both controllers show similar servo performance. However,

the H∞ controller shows a better disturbance rejection than the SDM controller for

low frequencies which is due to a low gain in the VCM controller for low frequencies

(see Fig.3.7). Also, the H∞ approach does not use notch filters, and, thus, is more

robust than the SDM controller. Since the optimization routine is constrained by

the pre-defined parameters in the weighting functions different weighting functions

might result in a better controller performance of the H∞ controller.
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Figure 3.11: Implemented sensitivity decoupling method controller for a square
wave reference input

Both, model estimation and optimized controller design based on predefined

controller shape filters can be implemented in the hard disk drive firmware. Since

actuator dynamics could be a function of tolerances during manufacturing, the

drive could perform a controller calibration itself, and, thus, could improve the

servo performance and the TMR budget.

The different controllers designed in this study were implemented in the

HDD and showed a stable feed-back control. Small differences between measure-

ment and simulation were observed that are caused by repeatable disturbances.
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Figure 3.12: Head position and control signals for implemented SDM controller
(averaged)
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4 Reference signal shaping for

seeking in hard disk drives

4.1 Introduction

For linear time-invariant (LTI) systems that are subject to a change from

an initial state to a target state, input shaping is a powerful technique to reduce

residual vibrations [154]. To understand the main principle of input shaping and

see its benefits, we first analytically derive the shaped input signal for a straightfor-

ward introductory example. We consider a spring-mass-damper system as shown

in Fig. 4.1. The system is governed by the 2nd order differential equation

m

c

k

x(t)

F(t)

Figure 4.1: Mass-spring-damper system

89
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mẍ(t) + cẋ(t) + kx(t) = F (t) (4.1)

where m is the mass, c is the damping coefficient and k is the spring constant.

Two different force inputs are applied to this mechanical system and the simulated

response is shown in Fig. 4.2 form = 1kg, c = 0.5 kg/s and k = 1N/m. We observe
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Figure 4.2: Input shaping example: force input and displacement output

that the response to a single-step input is highly under-damped and oscillations

occur. However, applying a two-step input signal, the residual vibrations of the

two steps (dashed lines in Fig. 4.2) cancel each other out and one obtains very fast

settling at the cost of reduced rise time. This simple procedure needs only two

parameters: the modified relative step height h and the time delay ∆t as indicated
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in Fig. 4.2. We will now show how we can analytically obtain these two parameters

for this straightforward mechanical structure.

First, we define the dimensionless damping ratio δ = c
2
√
km

and the angular

natural frequency ω0 =
√

k
m

for better manageability during the derivation. The

single-step input is defined by

F (t) =







F if t ≥ 0.

0 otherwise.

(4.2)

Considering this input step, we can find the analytical solution of (4.1) for the

under-damped case (0 ≤ δ < 1) as

x(t) =
F

k

[

1− e−δω0t

(

cos(ωdt) + δ
ω0

ωd

sin(ωdt)

)]

(4.3)

where the initial conditions are x(0) = 0 and ẋ(0) = 0 and ωd = ω0

√
1− δ2

denotes the damped natural angular frequency. It should be noted that the under-

damped case is more interesting for this type of input shaping. The main idea is

to compensate for the occurring overshoot and scaling the initial step F down to

h times its original size. We can find the first maximum of the step response by

taking the derivative of (4.3)

ẋ(t) =
F

k
e−δω0t

1

δ
√
1− δ2

sin(ωdt) (4.4)

and setting it to zero. This yields the first maximum at

t = ∆t =
π

ωd

(4.5)
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Thus, the first maximum in the output response of a lightly damped system occurs

at one half of the cycle duration. We can now calculate the relative step height

h by substituting (4.5) into (4.3) and dividing by the steady state value F/k to

obtain

h =
1

1 + e
−δπ

ω0

ωd

(4.6)

With (4.5) and (4.6), the shaped input command is fully defined. This straightfor-

ward approach can be extended to higher-order systems and can be used to design

pre-shaping input filters as shown in [154, 155].

In this chapter, we focus on reference signal input shaping for closed-loop

systems with saturation constraints on the control output as indicated in Fig. 4.3.

The targeting trajectory can be further optimized by minimizing targeting time,

energy consumption or other system parameters, through convex optimization

techniques. Those techniques have been widely applied to these problems since

they guaranty convergence to a global optimum. In addition, recent increases

in computational power in control systems justify their increasing complexity. A

broad overview of real-time or nearly real-time applications has been given in [156].

Input shaping is usually formulated as an open-loop problem where linear

constraints on input and output signals are imposed to formulate a convex opti-

mization problem to find optimal input profiles. In general, finite impulse response

(FIR) filters are used to pre-filter input signals such as shown for multi-input multi-

output (MIMO) systems in continuous time in [157] and for discrete time systems
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Figure 4.3: Closed loop LTI system with constraints on closed-loop signals

in [158].

Some closed-loop approaches are given in [159] where input shaping based

on FIR filters is also applied to closed-loop systems. Another approach to closed-

loop input shaping is the shaped time-optimal servo mechanism (STOS) approach

that has been developed in [108] for continuous time systems. The STOS was

briefly introduced in section 2.6.3 and is illustrated in Fig. 2.24 on page 52. Here,

mode switching control turns off the feedback during the targeting stage. In [160],

the reference signal generation is shown for constrained closed-loop systems based

on piecewise affine functions of state and reference. The conventionally shaped

input signal tends to be longer than the non-shaped input signal as addressed in

[161] where a solution to this problem is proposed. Another interesting approach

to open-loop input shaping has been proposed in [162] where a graphical represen-

tation of the phase portrait is used to derive the input shaper. A low quantization

level of the actuator signals (finite-state input) reduces the effectiveness of input
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shaping [163]. In [164, 165, 166], the reference signal generation is shown for a

closed-loop system although time-minimal control is not addressed. It has been

shown recently in [167] how an online optimization can yield improved performance

compared to conventional input shapers.

Limited results are available on performing input shaping on closed-loop

systems where reference and feedforward signals are computed in the presence

of constraints on control and output signals. The here presented computational

scheme is motivated by previous work [168] where optimal input and reference

signals were computed and simulation results were shown for a hard drive seeking

process. In this chapter, we present a general framework for a multi-input multi-

output system that is subjected to amplitude and rate constraints of reference

signals, closed-loop signals and outputs.

The computation of optimal reference profiles in closed-loop systems has

direct application to high performance servo systems where short-time tracking of

set-point values is required in the presence of saturation limits on control signals.

A relevant application example is the servo mechanism in a hard disk drive (HDD)

as introduced in section 2.6 of this dissertation. On the other hand, since the

algorithm is applicable to a broad field of applications, we develop here a general

input shaping technique for closed-loop MIMO linear time-invariant systems with

actuator saturation that use full degree-of-freedom control such as the one shown

in Fig. 4.3. The algorithm computes the optimal reference signals r1 and r2 given

linear constraints on the output signal yG, the plant control signal uG and the
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reference signals r1 and r2. The simulated and experimentally verified results of

the algorithm are applied in section 4.4 to the seeking process in a hard disk drive.

4.2 Defining the system

4.2.1 Specifications of closed-loop signals

We consider a linear time-invariant model of the plant G in Fig. 4.3 with p

inputs and m outputs of order nG and an LTI model of the controller C with p

outputs and m inputs of order nC . The state space model of G is given by

xG(k + 1) = AGxG(k) + BG(r2(k) + yC(k))

yG(k) = CGxG(k) +DG(r2(k) + yC(k))

(4.7)

and the feedback connection is given by

xC(k + 1) = ACxC(k) + BC(r1(k)− yG(k))

yC(k) = CCxC(k) +DC(r1(k)− yG(k))

(4.8)

In order to specify constraints to the plant input, uG and the rate of change

δuG must be available as outputs of the closed-loop state-space system as indicated

in Fig. 4.3. Therefore, we add p states to the closed-loop model and define a

measurement state vector xM

xM(k + 1) = uG(k) = yC(k) + r2(k) (4.9)

and

uG(k − 1) = xM(k) (4.10)
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We can now define the two additional outputs of our closed-loop system

uG(k) = yC(k) + r2(k)

δuG(k) = uG(k)− uG(k − 1)

(4.11)

Furthermore, we define the reference vector r(k) ∈ R
(m+p)×1, the output

vector y(k) ∈ R
(m+2p)×1 and the state space vector x(k) ∈ R

(nC+nG+p)×1 as

r(k) =







r1

r2







y(k) =











yG

uG

δuG











x(k) =











xC

xG

xM











(4.12)

Here, r1(k) and r2(k) are the computed reference signals.

Using (4.7)-(4.12) we can define the state space system of the closed loop

system as

x(k + 1) = Ax(k) +Br(k)

y(k) = Cx(k) +Dr(k) (4.13)
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where the state space matrices are calculated by

A=











AC−BCMDGCC −BCMCG 0

BGCC−BGDCMDGCC AG−BGDCMCG 0

CC−DCMDGCC −DCMCG 0











B=











BC−BCMDGDC −BCMDG

BGDC−BGDCMDGDC BG−BGDCMDG

DC−DCMDGDC −DCMDG+I











C=











MDGCC MCG 0

CC −DCMDGCC −DCMCG 0

CC −DCMDGCC −DCMCG −I











D=











MDGDC MDG

DC −DCMDGDC I −DCMDG

DC −DCMDGDC I −DCMDG











(4.14)

In (4.14), M is defined as

M = (I +DGDC)
−1 (4.15)

The inverse in (4.15) can be calculated for a well-defined closed-loop system with

DGDC 6= −I. In practical applications most plants will have at least one sample

time delay with DG = 0 making M = I.
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4.2.2 Explicit solution of the closed-loop system

The output y combines the plant output yG, the plant input uG and its rate

of change δuG on which constraints will be imposed. For the formulation of the

linear constraints we use (4.13) and follow [169, 168] to write the output equations

recursively as

y(0) = Cx(0) +Dr(0)

y(1) = CAx(0) + CBr(0) +Dr(1)

y(2) = CA2x(0) + CABr(0) + CBr(1) +Dr(2)

...

y(M) = CAMx(0) +
M∑

i=1

CAM−iBr(i− 1) +Drs

y(M + 1) = CAM+1x(0) +
M∑

i=1

CAM+1−iBr(i− 1) +Drs + CBrs

...

y(N − 1) = CAN−1x(0) +
M∑

i=1

CAN−i−1Br(i− 1) +Drs

+
N−M−1∑

i=1

CAi−1Brs

(4.16)

where M is the control horizon and N is the optimization horizon. Here, rs defines

the residual reference signal after the control horizon which in our work is set to a

constant desired value. An obvious choice is r1 = yt and r2 = 0 for k ≥ M where

yt represents the target value of the output.

We can now rewrite (4.16) conveniently in matrix notation by defining Ψ
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as

Ψ=



































D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0

...
...

...
. . .

...

CAM-2B CAM-3B · · · D

CAM-1B CAM-2B · · · CB

CAMB CAM-1B · · · CAB

...
...

. . .
...

CAN−2B CAN−3B · · · CAN−M−1B



































(4.17)

Furthermore, we define Ω, y as

Ω =



















C

CA

CA2

...

CAN−1



















,y =



















y(0)

y(1)

y(2)

...

y(N − 1)



















(4.18)
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and ∆ as

∆ =



























0

...

0

Drs

Drs + CBrs

...

Drs +
N−M−1∑

i=1

CAi−1Brs



























(4.19)

With this definition we can rewrite (4.16) as

y = Ψr+Ωx(0) +∆
︸ ︷︷ ︸

q

(4.20)

where the vector r contains the reference signals

r =

[

r(0), · · · , r(M − 1)

]T

(4.21)

and the vector y contains the output signals

y =

[

y(0), · · · , y(N − 1)

]T

(4.22)

for each time step k. In (4.20), we also introduce q that captures the residual and

initial condition. Each element in (4.21) is a vector of size (m+ p)× 1, and, each

element in (4.22) is a vector of size (m + 2p) × 1. In (4.20), the explicit input-

output relation is linear in r. We shall now proceed to specify the constraints and

the optimization routine for reference signal shaping.
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4.3 Convex optimization

For a comprehensive overview of convex optimization techniques the reader

is referred to [170]. In this study a specific solution to the closed-loop problem

will be given for designing the reference signal r subjected to constraints on the

closed-loop signals and the reference signals (4.12).

4.3.1 Constraints on the closed-loop signals

As indicated in Fig. 4.3, the output y captures all of the relevant closed-loop

signals. It contains not only the output of the plant yG but also the plant input

uG and its rate of change δuG. In defining constraints on closed-loop signals we

refer to the constraints on the output y = (yG, uG, δuG)
T in which we distinguish

between different signals. The plant output yG is subject to two different amplitude

constraints as indicated in Fig. 4.4. One constraint is a large amplitude constraint

during the targeting stage. We define the maximum and minimum constraints by

y1 and y1, respectively. Once the target is reached, a tolerance ǫ of the output

from the desired target is specified by

y2 = yt − ǫ ≤ yG ≤ y2 = yt + ǫ (4.23)

creating a tight amplitude constraint during the settling stage. In Fig. 4.4, k∗

denotes the number of samples to reach the target. For all sample numbers k < k∗

the targeting output constraints apply, while for all sample numbers k ≥ k∗ the

settling stage (and finally steady state) output constraints apply. Choosing a
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Figure 4.4: Definition of the output constraints

minimal value for k∗ would amount to finding a minimal time solution. We will

later use a line search over k∗ to find the minimal time solution. For now, k∗ is

assumed to be given.

Furthermore, we specify constraints on the plant input uG. We consider

amplitude constraints on the input. In addition, the maximum rate of change of

the input signal is limited which is commonly introduced through rate limitations

in digital-to-analog conversion. We define amplitude and rate constraints as

uG ≤ uG δuG ≤ δuG
(4.24)

and similarly

uG ≥ uG ⇔ −uG ≤ −uG

δuG ≥ δuG ⇔ −δuG ≤ −δuG

(4.25)

In matrix notation the output constraints can be written as
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Ψr+ q ≤ y(k∗) (4.26)

and

Ψr+ q ≥ y(k∗) (4.27)

where q is given in (4.20) and y and y are defined by

y(k∗) =



























y1

uG

δuG

...

y2

uG

δuG



























, y(k∗) =



























y1

uG

δuG

...

y2

uG

δuG



























(4.28)

4.3.2 Constraints on reference signals

The reference signals r1 and r2 in Fig. 4.3 are captured in the signal r

in (4.13) and (4.21). By imposing constraints on r we are now referring to the

constraints on the reference inputs r1 and r2. The reference signals are limited by

an amplitude constraint

r ≤ r ≤ r (4.29)

whereas a rate of change constraint

δr ≤ δr ≤ δr (4.30)
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with

r =

[

r, · · · , r

]T

(4.31)

δr =

[

δr, · · · , δr

]T

(4.32)

can also be included in our approach. We note that r and δr are defined similarly.

A reference change is defined by

δr(k) = r(k)− r(k − 1) (4.33)

for each k ∈ [0, · · · ,M − 1]. In matrix notation we calculate δr by

δr = Er (4.34)

where E is given by

E =















Im+p 0 · · · 0

−Im+p Im+p · · · 0

. . . . . .

0 · · · −Im+p Im+p















(4.35)

and Im+p represents a (m+ p)× (m+ p) identity matrix.
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4.3.3 Combined constraints in linear form

All the constraints in (4.26), (4.27), (4.29), (4.30) and (4.34) can be com-

bined in one single linear matrix inequality (LMI):























I

−I

E

−E

Ψ

−Ψ

































r(0)

...

r(M − 1)











≤























r

−r

δr

−δr

y(k∗)

−y(k∗)























−























0

0

0

0

q

−q























(4.36)

or short

Lr ≤ W(k∗)−Q (4.37)

In (4.36), I is an (m+ p)M × (m+ p)M identity matrix, and Ψ is given in (4.17).

In (4.36) and (4.37) the term Q with q = Ωx(0)+∆ represents the effect of initial

and residual conditions. It should be noted that W depends on the choice of k∗ in

Fig. 4.4. The additional freedom in k∗ will be used to check for a feasible solution

of the input shaping problem and to formulate a minimal time solution for settling.

4.3.4 Feasibility check for time-optimal solution

We can check whether or not the constraints are feasible for a given k∗ by

solving a relatively simple linear program (LP) [171, 172]:
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min 1Tz

r, z

subject to Lr− z ≤ W(k∗)−Q

z ≥ 0

(4.38)

If z = 0 is the optimal solution then the inequality (4.37) is feasible, otherwise

infeasible. In (4.38), 1 = [1, · · · , 1]T is a column vector of ones.

In order to obtain the time-optimal solution we solve the LP in (4.38)

several times for different values of k∗. We use a bisection method [170] that

results in quadratic convergence to find the minimum sample number k∗
min (where

1 ≤ k∗
min ≤ M) for a feasible set of constraints. The pseudo code of the bisection

algorithm is listed in Tab. 4.1.

Table 4.1: Bisection algorithm

k∗
upper=M

k∗
lower = 1

while
(
k∗
upper − k∗

l > 1
)

k∗ =
k∗u+k∗l

2

solve LP in (4.38) with k∗

if LP feasible
k∗
upper = k∗

else

k∗
lower = k∗

end if

end

k∗
min = k∗

upper

The bisection algorithm to find k∗
min leads also to a computed reference

signal r that satisfies all imposed constraints. The LP in (4.38) is used only

to check the feasibility of the proposed reference signal shaping under the given
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Figure 4.5: Optimization algorithm

constraints. The additional bisection in table 4.1 will also allow us to find the

minimal time solution that is still feasible.

It should be noted that the solution for r found by (4.38) is not unique and

most likely will not be a desired reference signal. Moreover, in many applications

a minimum time solution might not be required. Given the feasibility check from

the LP problem we now design a unique reference signal by posing a quadratic

programming (QP) problem as indicated in Fig. 4.5 that aims at minimizing the

(weighted) energy level of the signals, leading to a unique solution of the reference

signal r.

4.3.5 Quadratic programming

To further improve the energy properties of the signals in the input shaping

problem, one can pose a quadratic criterion involving both y and r given the
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constraints in (4.36) and (4.37). A particular value for k∗ can give a feasible

solution from the LP problem in (4.38) and a further refinement of this solution

can be found by solving the quadratic programming (QP) problem

min y′TP1y
′ + rTP2r

r, y′

subject to Lr ≤ W(k∗)−Q

y′ = Ψr+ q− y∗
t

(4.39)

where y∗
t is defined by

y∗
t =

[

yt 0 0 · · · yt 0 0

]T

(4.40)

In (4.39), P1 and P2 are semi-positive definite matrices with dimensions of

y′ and r, respectively. With P1 ≥ 0 and P2 ≥ 0, the QP problem is convex. The

QP in (4.39) consists of a quadratic cost function, an inequality constraint linear

in r and an equality constraint linear in r and y′.

The introduction of the additional variable y′ and the equality constraint

is necessary in order to perform optimization on yG, uG and δuG.

The QP in (4.39) represents only one possible optimization objective but

there are many other possible objectives. The weighting matrices P1 and P2 allow

an accurate tuning according to the desired closed-loop response also depending

on k. If only some of the constraints in (4.36) are in use, the problem size should

be reduced in favor of shorter computational time.
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4.3.6 Semidefinite programming

The quadratic programming problem in (4.39) can be reformulated as a

semidefinite programming (SDP) problem that can be considered as an extension

of linear programming [173]. First, the equality constraint is incorporated in the

cost function J which yields the QP

min J
r

subject to Lr ≤ W(k∗)−Q

(4.41)

where J is defined by

J = rT
(
ΨTP1Ψ+P2

)

︸ ︷︷ ︸

Θ1

r+
(
qT − y∗

t
T
)
P1Ψ

︸ ︷︷ ︸

Θ3

r

+rT ΨTP1 (q− y∗
t)

︸ ︷︷ ︸

Θ3
T

+
(
qT − y∗

t
T
)
P1 (q− y∗

t)
︸ ︷︷ ︸

Θ2

(4.42)

Suppose γ is the upper bound on J we can rewrite (4.41) as

min γ
r, γ

subject to γ − J ≥ 0

Lr ≤ W(k∗)−Q

(4.43)

If P1 ≻ 0 and/or P2 ≻ 0 holds, the inverse of Θ1 in (4.42) is defined and

we can apply the Schur complement to reformulate the first inequality constraint

in (4.43) as

Mopt =







γ −Θ3r− rTΘ3
T −Θ2 rT

r Θ−1
1






� 0 (4.44)
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where Mopt is denoted as the optimization matrix that minimizes the cost function

for the minimal value of γ. It should be noted that Mopt is linear in r and γ.

The second inequality constraint that incorporates the constraints on the

closed-loop signals can be rewritten as

Mconstr = diag (W(k∗)−Q− Lr) � 0 (4.45)

where diag (·) denotes a diagonal matrix that has the elements of the argument

vector in its main diagonal. Finally, the resulting SDP yields

min γ
r, γ

subject to







Mopt 0

0 Mconstr






� 0

(4.46)

4.3.7 Solution to LP, QP and SDP problems

A number of numerical techniques are available that solve LPs, QPs and

SDPs. Very efficient ways to solving those problems are based on primal-dual

interior-point methods as shown in [174]. There it is noted that it is more efficient

to solve the second-order cone programming problem which is a generalization of

LP or QP rather than solving the more general SDP.

We will now show the effectiveness of the optimization routine proposed in

section 4.3.1 through 4.3.5 by means of an illustrative application example: the

seeking process in a hard disk drive. Both simulation and experimental results are

presented that illustrate the effectiveness of closed-loop reference input shaping. To
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solve such optimization problems, commonly used tools are the open source LMI

parser YALMIP [175] and solver SeDuMi [176]. Our computations presented in

the next subsection were carried out using Matlab and the CVX software package

[177].

4.4 Experimental verification: seeking in a hard

disk drive

4.4.1 Experimental set-up

We consider an experimental set-up depicted in Fig. 4.6 and Fig. 4.7. A

modified 3.5 inch form factor HDD spinning at 7200 rpm was used to experimen-

tally verify the proposed optimization algorithm. As indicated in Fig. 4.6, a digital

signal processing (DSP) board is connected to the HDD and a computer. The DSP

board allows to gain access to HDD internal signals such as gray code and position

error signal (PES) in the drive. It also allows to inject pre-defined reference signals

for seeking. The steps to obtain the experimental data are listed and indicated

in Fig. 4.6. The HDD used for this study has 180 servo sectors which yields a

PES/gray code sampling frequency of 21.6 kHz. We consider a servo loop according

to Fig. 4.3 where the dynamics of the HDD servo actuator - the voice coil motor

(VCM) - are represented by G. Furthermore, a low bandwidth PID controller

C is implemented for track-following. In order to compute optimized reference
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signals, the dynamic response of the servo loop needs to be identified. This was

accomplished through step experiments described in the following subsection.

4.4.2 Closed-loop dynamic modeling of the servo mecha-

nism

The state space matrices A,B,C and D in (4.14) can be formulated using

explicit information of actuator and controller dynamics. Alternatively, since we

are dealing with a closed-loop system, the matrices can also be formulated by

directly studying the dynamics from reference signals to actuator output yG and

controller output yC . For that purpose, a 10-track step on the reference signal r1

was used to identify the dynamic behavior of the closed-loop system. For simplifi-

cation, we neither consider r2 nor constraints on δuG in this study. Therefore, the

estimation problem reduces to a single-input (r1) dual-output (yG and yC = uG)

system. A generalized realization algorithm (GRA) [140] was used to identify a

discrete-time model based on the time-domain step response data. This algorithm

will be explained more in detail in section 7.3.2 of this dissertation. The step

response measurement for both outputs is shown in Fig.4.8. Based on the step

data and the GRA a 12th order closed-loop model was estimated. The simulated

step response based on this model is also shown in Fig. 4.8 (solid lines). It can

be observed that the estimated model captures the response of the system very

well. Furthermore, a frequency domain comparison of the estimated model and a
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frequency response function measurement of the closed-loop transfer function (r1

to yG) based on sine sweep measurements was performed. The results are shown

in Fig. 4.9. It can be seen that for low frequencies there is a strong agreement be-

tween measured and modeled response. However, high frequency resonance modes

are not captured very well by the model. This is mainly due to the fact that

the step input based modeling emphazises on low frequency and most dominant

resoncance modes. We will see later that this does not have a large effect on the

performance of the shaping algorithm as those high frequencies will not be excited

by the shaped reference signal profile in closed-loop. In Fig. 4.9, the mismatch at

higher frequencies between the frequency response function measurement and the

step input based model might also be caused by the different input signals. The

frequency response measurement is based on a sine sweep input. In addition, the

measurememt could potentially be aliased.

4.4.3 Results

For our experimental studies we consider the reference signal r1 and am-

plitude constraints on the control signal yC which was set to a maximum absolute

value of 3000 units. The value ǫ was set to 10% of the track pitch which is a gener-

ally accepted limit in HDD technology as discussed in section 2.6.2. The difference

between the output yG and the target yt was minimized along with the control

signal yC = uG. No explicit constraints on the reference signal were considered by

setting P2 in (4.39) to zero. The experimental results are based on 5 averages of
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the measured signal. We will investigate the following four different cases:

1. A fixed step size of 10 tracks and various settling times

2. A variable step size combined with a fixed settling time of 10 samples

3. Tight versus loose amplitude constraints on yG for 10 track step

4. Time-minimum solution versus a fixed settling time for a 100 track seek

Fixed step size and various settling times

In Fig. 4.10 (rotated), the results for a fixed target track number of 10 tracks

are shown. Each column in Fig.4.10 represents a desired seek time ranging from

20 to 10 samples. It can be observed that the output yG reaches the target much

faster compared to the standard step input results in Fig. 4.8 and has no residual

vibrations. It can also be observed that as the desired seek time approaches the

time-minimum solution of 10 samples, the shape of the control output yC looks

very similar to ”bang-bang” control which has been shown to be the time-optimal

solution for an ideal double integrator actuator [178]. The additional flexibilities in

the actuator require the control signal yC to be slightly different than bang-bang

and we accomplish this automatically by actual input shaping of the reference

signal as plotted in the top row of Fig. 4.10. The zoom-in of the output yG is

shown in the third row of Fig. 4.10. One can observe that the experimentally

obtained data follow the shaped output signal yG of the actuator very closely. The

violation of the imposed boundaries in the experimental data is due to repeatable
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and non-repeatable run-out errors (disturbances) that are poorly suppressed by

the low bandwidth PID controller used in our experiments.

Variable step size combined with a fixed settling time

In a second experiment, the settling time was set to the time-optimal so-

lution of the 10 track step at 10 samples and the step size was varied from 1 to

10 tracks. The results are shown in Fig. 4.11. It is interesting to observe that the

output yG for each step height is just a scaled version of a different step height

whereas yC and r1 are shaped accordingly.

Tight versus loose amplitude constraints on yG

We also investigated the difference between tight amplitude constraints on

yG (ǫ equals 10% of the track pitch) and loose constraints on yG (ǫ equals 10% of

the step height). The results in Fig. 4.12 show the time-optimal solution for both

cases. Clearly, one can observe much smoother and less ”aggressive” reference and

control signals for the case of the loose constraint compared to the tight constraint.

Time-minimum solution versus a fixed settling time

The final example shown in Fig 4.13 considers a 100 track seek where the

time-optimal solution is desired. Given the constraints on yC , the target is reached

within 24 samples. However, this yields large control signals that are saturated at

the upper and lower boundaries for a significant amount of time. In addition, a
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Figure 4.10: [Rotated 90 degrees] Optimized reference signal r1 (top row), output
yG (middle rows) and control signal yC (bottom row) for 6 different sample numbers
for k∗ in simulation and actual experiment for a 10 track step. k∗ = 10 samples
represents the minimal time solution given the imposed constraints on yC depicted
by the dashed lines in the bottom row.
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slow seek to the same target was considered and a fixed settling time of 80 samples

was assumed. One can observe in Fig 4.13 that in this case the control signal is

much smaller than for the time minimal seek which is expected. This might be of

particular interest in a HDD as not always the time-minimum solution is desired.

Moving the read/write head from one data sector to the next might yield a fixed

idle time due to the limited rotational speed of the disk. Since the idle time is

known, one can compute an optimized control signal that minimizes the control

energy and residual vibrations.

4.5 Conclusions

An input shaping algorithm for closed-loop discrete-time LTI systems has

been described in this chapter. The algorithm was experimentally verified in a

modified HDD set-up showing excellent agreement between theoretical (simulation)

and actual experimental results. It was shown that input shaping significantly

reduces targeting time and residual vibrations compared to an output response

obtained using standard reference signals such as steps. It was also shown that

input shaping improves the response of systems whether or not plant saturation

is present. The method is computational inexpensive and could be implemented

in the firmware of a hard disk drive which might significantly reduce seek-time,

energy consumption and system vibrations during the seeking process in a HDD.
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4.6 Appendix - selected matrix dimensions

Symbol row dimensions column dimensions

A nC + nG + p
B nC + nG + p m+ p
C m+ 2p nC + nG + p
D m+ 2p m+ p
L 4M(m+ p) + 2N(m+ 2p) M(m+ p)
M m
Mopt M(m+ p) + 1
Mconstr 4M(m+ p) + 2N(m+ 2p)
P1 N(m+ 2p)
P2 M(m+ p)
Ψ N(m+ 2p) M(m+ p)
Q,W 4M(m+ p) + 2N(m+ 2p) 1
q N(m+ 2p) 1
Θ1 M(m+ p)
Θ2 1
Θ3 1 M(m+ p)
u M(m+ p) 1
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5 Analytical read back signal

modeling in magnetic recording

5.1 Introduction

A large number of analytical models for the magnetic read back signal have

been developed in the past for longitudinal and perpendicular magnetic recording

[179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 133, 134, 189, 190, 191, 192, 193].

Initially, the ”on-track” response was approximated in 2-D by neglecting off-track

effects and approximating an isolated bit transition which yields a bell-shaped

curve for longitudinal recording and a di-bit curve for perpendicular recording

[189]. With increasing storage density and decreasing bit aspect ratio there was a

need to switch from initial 2-D models to 3-D models [182]. Many of the models

developed consider isolated magnetic bit transitions [179, 182, 184]. A commonly

used technique is based on the principle of reciprocity as applied in [180, 181, 184,

190, 191] or Fourier components [183, 185, 192, 193]. An excellent overview of

previously developed models is given in [186]. In [186], the read back signal is

125
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approximated by considering various magnetic potentials.

In this chapter, we follow a different approach for an analytical approxi-

mation of the read back signal which is motivated by the evolution in read head

technology described in section 2.2.3 of this dissertation. Previously, inductive

recording heads were used that measured the transition (derivative) of the magne-

tization pattern on the disk. Today, giant/ tunnel magneto-resistance (G/TMR)

heads are in use that change their resistance in the presence of a magnetic field.

Furthermore, one of the possible future technologies in hard disk drives might

be bit patterned media (BPM) as discussed in section 2.9.2 of this dissertation.

G/TMR and BPM will intuitively require a read back signal model that considers

the measured response of the bit rather than the bit transition as the transition

parameter might not be described correctly with current analytical models. Fur-

thermore, servo designs in bit patterned media that incorporate either only ”up” or

only ”down” magnetized bits could be captured by the model. Track edge effects

and written transitions that are sometimes modeled by an ellipse [182] would be de-

creased as the bits on patterned media would potentially have a well defined shape.

More complicated shapes could be investigated by using the model developed and

a so-called micro grid approach [184] that is very accurate and considerably faster

than finite element solutions.

The objective of this study is to propose a 3D analytical model of the read

back signal that allows the investigation of any recorded bit pattern separated from

the various different types of head sensitivity functions. This chapter is organized
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as follows. Section 5.2 shows how the 3D distribution of the magnetic field can

be approximated for longitudinal and perpendicular magnetic recording using the

law of Biot-Savart. Thereafter, in section 5.3, a simple model of head sensitivity is

given which will be used to calculate the read back signal. Finally, in section 5.4,

the read signal for longitudinal and perpendicular recording is simulated for an

example pattern.

5.2 Media contribution

The media magnetization is modeled considering a single point of measure-

ment. The coordinate system is defined according to Fig. 5.1 which corresponds

to longitudinal magnetic recording (LMR). It will be shown later that the results

of the LMR system can be simply modified to perpendicular magnetic recording

(PMR) through a rotation by π
2
and adding a soft magnetic underlayer (SUL).

For a simple analytic approach continuity of space is assumed. Therefore, it

is necessary to assume that the relative permeability of the recording layer is unity

for both perpendicular and longitudinal recording [194]. As indicated in Fig. 5.1,

each bit is assumed to have a cuboidal shape with length L, widthW and recording

layer thickness T . Other shapes such as cylindrical shapes could also be of interest

for bit patterned media but are beyond the scope of this study. Each bit can be

modeled as a permanent magnet which itself can be modeled by placing equivalent

currents on its surface. As indicated in Fig. 5.1, an infinite number of equidistant
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currents with infinitesimal distance dx apart from each other are placed on the

bit. The origin of the coordinate system is defined in the center of the bit. Using

the law of Biot-Savart [195], which can be derived from Maxwell’s equations, one

can calculate the differential magnetic field d ~H(~r) caused by each surface current

segment as

d ~H(~r) =
I

4π

~dl × (~r
′ − ~r)

|~r′ − ~r|3
(5.1)

where ~r is the vector to the measurement point, ~r
′

is the vector to the contributing

surface current segment and ~dl is the vector of the contributing surface current

segment (Fig. 5.1). The value of each surface current equals

I = HCdx (5.2)

where HC is the coercivity of the magnetic recording layer. The currents that are
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indicated in Fig. 5.1 have four main components of direction (1,2,3,4). The vector

~r
′

to each current segment ~dl can be parameterized for the four components of

direction as

~r
′

1(x, t) =











x

W/2

T/2


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

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

+ t











0

−W

0






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



(5.3)
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~r
′

4(x, t) =
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(5.6)

Here, t ranges from 0 to 1 and x ranges from −L
2
to L

2
. The vectors ~r

′

i are given in

(5.3)-(5.6) and each current segment ~dli is defined as

~dli =
∂~r

′

i

∂t
dt (5.7)

We can now compute the total magnetic field as

~H(~r) =
4∑

i=1

∫ L
2

−L
2

∫ 1

0

HC

4π

∂~r
′

i

∂t
× (~r

′

i − ~r)
∣
∣~r

′

i − ~r
∣
∣
3 dt dx (5.8)
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Each of the two integrals in (5.8) yields two components in the analytical solution

of (5.8) and since there are four main current directions we obtain 4× 2× 2 = 16

components for the solution of (5.8). We can solve this integral analytically. For

clarity, we write the x-,y- and z-components of the measured magnetic field at

point ~r = (xm, ym, zm)
T separately in (5.9)-(5.11) as

Hx =
HC

4π

16∑

i=1

Si arctan







(
L
2
+ axix

)
(

T

2
+aziz

|W
2
+ayiy|

)aei

Ri







(5.9)

Hy =
HC

4π

16∑

i=1

aei
2

ln

[

azi

(

ayi

(
T

2
+ aziz

)

+ axiaeiRi

)]

(5.10)

Hz =
HC

4π

16∑

i=1

aei
2

ln

[

ayi

(

azi

(
W

2
+ ayiy

)

+ axiaeiRi

)]

(5.11)

where Ri and Si are defined by

Ri =

√
(
L

2
+ axix

)2

+

(
W

2
+ ayiy

)2

+

(
T

2
+ aziz

)2

(5.12)

and

Si = sign

((
W

2
+ ayiy

)(
T

2
+ aziz

))

(5.13)

respectively. The coefficients axi ∈ {−1, 1}, ayi ∈ {−1, 1}, azi ∈ {−1, 1} and

aei ∈ {−1, 1} (x-, y-, z-direction and exponent) occur in all possible perturbations

and are listed in Tab 5.1. For a simple numerical example with parameters: head-

medium spacing (HMS)=10, W=50, W=50, T=20 nm, the normalized media mag-

netization in longitudinal recording is plotted in Fig. 5.2. As indicated earlier, this

result can be modified to obtain the solution for perpendicular magnetic recording.

Figure 5.3a shows the cuboidal shaped bit from Fig. 5.1 rotated by π
2
around the



131

Table 5.1: Coefficients

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

axi 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
ayi 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
azi 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
aei 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

Figure 5.2: Normalized magnetic field components for longitudinal magnetic
recording measured at HMS=10 for W=50,L=50,T=20 nm

y-axis. The contribution of the soft magnetic underlayer (SUL) to the magnetic

field measured at ~r = (xm, ym, zm)
T has to be taken into account. The SUL has

a relative permeability that is much larger than 1 (on the order of 100). For the

analytical approximation it is assumed to be infinity. Therefore, an image source is

placed below the bit (Fig. 5.3 a). It can also be modeled by a mirror head [134] as

shown in Fig. 5.3 b). Fig. 5.3 a) (one head and two bits) represents the equivalent

numerical problem as Fig. 5.3 b) (one bit and two heads) where the magnetic field

is computed for two different points yielding the contribution of the real head Hreal

and the contribution of the image head H img. An adjustment parameter σ ≥ 0

is introduced that depends on the thickness and the relative permeability of the
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soft magnetic underlayer and the thickness of the intermediate layer. It is obvious

that placing the soft magnetic layer further away from the recording layer will

decrease the effect of the underlayer on the read back signal. By switching x- and
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Hzr

a) b)
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Hzi
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z+(T+ )/2
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Hx

Hy
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z
y
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Figure 5.3: Modeling perpendicular recording

z-components in the coordinate system definitions, (5.9)-(5.11) can be rewritten.

The shielded tunnel magneto resistance (TMR) head is mainly sensitive to the z-

component of the magnetic field [182]. Hence, only the z-component is considered

here. However, depending on the head design, the x- and y-components could be

considered as well. Hz can be written as the superposition of the contribution of

the ”real” head and the ”image” head as indicated in Fig. 5.3 b). Thus, the new



133

Figure 5.4: Normalized magnetic field components for perpendicular magnetic
recording measured at HMS=10 for W=50,L=50,T=20 nm

z-component of the magnetic field for perpendicular recording yields

Hz =
HC

4π

16∑

i=1

Si

(

Hreal
i +H img

i

)

(5.14)

where

Hreal
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and

H img
i = arctan
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(5.16)

where

R
′

i = R
′

i(x, y, z) = Ri(x, y, z + T + σ) (5.17)

The normalized contribution of the three components to the magnetic field

are plotted in Fig. 5.4. One can clearly see the similarities by comparing the x-

component and z-component in Fig. 5.2 to the z-component and x-component in

Fig. 5.4.
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5.3 Head sensitivity

The sensitivity of the read head is defined in a similar way in [190] as shown

in Fig.5.5. The shields are assumed to have infinite width and the read element

Figure 5.5: Assumed TMR head sensitivity function

has a finite width w and thickness t. The gap between the read element and the

shield is defined as g. The sensitivity function is unique to the head design. In

simulations in this chapter a sensitivity as indicated in Fig. 5.5 is assumed. The

TMR element reads 100% of the signal and the sensitivity decreases towards the

edges of the shield. At the shield, no signal is detected by the read element.

Different sensitivity functions are conceivable, such as a Gaussian shaped read

sensitivity function [196].

The read back signal is approximated by the convolution of media magneti-
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zation and read element sensitivity function. Using superposition and the analytic

model for one single bit allows the computation of the x-y distribution of the read

back signal for different flying heights and for arbitrary bit pattern.

5.4 Simulation example

As a simulation example, three different head-medium spacings are com-

puted for longitudinal and perpendicular magnetic recording. Fig. 5.7 shows the

computed read back signal for the following assumed parameters: The bit dimen-

sions were defined as L = 170 nm,W = 80 nm, T = 20 nm, σ = 0nm and reader

parameter were assumed as w = 60 nm, g = 30 nm, t = 10 nm. Figure 5.6 shows

the simulated read back signal based on the above parameters for a ”16T”-type

pattern that is used in section 6.3. The 16T pattern consists of 8 ”up”-magnetized

bits followed by 8 ”down”-magnetized bits. Three different head-medium spacings

are shown in Fig. 5.6: 18,10 and 2nm. The left column shows the time domain sig-

nal (normalized by the maximum signal at 2nm HMS) at track center (y=0); the

second column shows the corresponding single sided amplitude of the frequency

spectrum and the third column shows the read back signal distribution for one

single bit in down-track (x) and off-track (y) direction. In a similar fashion, the

read back signal for perpendicular magnetic recording is shown in Fig. 5.7. Here,

the same bit pattern and bit and head parameters were used and a typical shape

for a PMR signal can be observed.
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For further verification, the ”16T”-type pattern was written at 450MHz

onto a disk using a commercially available spinstand (Microphysics Inc.). The

raw read back signal is shown in Fig. 5.8. We observe the typical U-shape of

perpendicular recording signals when written at relatively low linear densities.

Furthermore, a good qualitative agreement between Fig. 5.8 and Fig. 5.7 (bottom

left) can be observed. A quantitative comparison could not be performed since

exact media and read element parameters are unknown.

5.5 Conclusions

The significance of the mathematical model derived in this chapter is due

to its simplicity. In particular, the magnetic field is computed directly instead

of using the transition (derivative) of the magnetization in the read back signal.

This allows a very fast simulation, without compromising accuracy. The model is

applicable to continuous and bit patterned media. The media magnetization model

is separated from the reader sensitivity function. The simulated (perpendicular)

read signal is in qualitative agreement with experimentally obtained read back

signals.
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Figure 5.6: Normalized LMR read back signal for a head-medium-spacing of 18,10
and 2 nm. First column: time/spacial domain, second column: frequency domain,
third column: read back signal of 1 single bit (normalized by bit length and bit
width)
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Figure 5.7: Normalized PMR read back signal for a head-medium-spacing of
18,10 and 2 nm. First column: time/spacial domain, second column: frequency
domain, third column: read back signal of 1 single bit (normalized by bit length
and bit width)
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6 Servo signal processing for

flying height control in hard disk

drives

6.1 Introduction

The objective of this chapter is to propose a method for accurately mea-

suring flying height variations based on servo sector measurements. The method

is based on an amplitude based servo pattern for off-track position estimation as

introduced in chapter 2.6.1. After a brief review of existing flying height estimation

schemes we will utilize the readback signal model developed in chapter 5 to simu-

late off-track characteristics of the proposed method. An experimental verification

of the measurement method is given in 6.3.

141
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6.2 Flying height estimation

6.2.1 Available techniques

Most of the reported algorithms on in-situ flying height estimation are based

on a specific data pattern that is written onto the disk, thereby resulting in certain

harmonics in the frequency spectrum of the read signal. The Wallace spacing for-

mula translates the decay of the signal to spacing change and has been shown to

be applicable to longitudinal magnetic recording as well as perpendicular magnetic

recording [197]. Commonly used is the triple harmonics method [198, 199, 200]

that uses a ”111100” data pattern to create a large first and third harmonic.

The logarithm of the ratio of the third over the first harmonic is proportional to

the flying height modulation. Ratios of different harmonics other than the third

and the first have also been used and servo pattern might be taken into account

[201]. Approaches have also been implemented based on maximum or average am-

plitudes [202] rather than harmonics amplitudes. Also, approaches that employ

random data instead of a fixed data pattern were proposed [203]. A technique that

extracts both the position error signal (PES) and the flying height information is

reported in [204] where radially adjacent and circumferentially aligned servo bursts

are generated with different frequency contributions to generate position error and

flying height signals. Other techniques are the pulse width method [205], the spec-

tral fitting method [206] and methods that estimate the flying height based on the

slope of isolated pulses of the read back signal [207]. Some of those estimation
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algorithms are only applicable to longitudinal magnetic recording (LMR) technol-

ogy and some are developed for (or are extendable to) perpendicular magnetic

recording (PMR) technology. Some embody the following disadvantages:

• Cross-track-motion might wrongfully be detected as a change in flying height

• The measurement can strongly depend on the radial position of the read

element over the disk (skew angle)

• A particular data pattern and/or the data sector is necessary, and, thus,

storage space is lost.

• The method may not be capable for perpendicular magnetic recording

6.2.2 Servo signal based flying height estimation

As described in section 2.6.1, the servo sectors on the disk are used to

determine the off-track position of the read/write head with respect to the track

center. The estimation scheme for the measurement of the variation of flying

height proposed in this chapter is based on the servo pattern written in the servo

sectors on the disk. Using the servo pattern for the estimation of flying height

has a number of advantages. At every servo sector the off-track position is known.

Hence, the effect of cross-track motion of the head on the flying height signal

can be eliminated. The estimation of flying height variation using a conventional

amplitude based servo pattern as shown in Fig.2.21 on page 47 will be shown in

this chapter. The following assumptions are made:
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1. The change in magnetic spacing corresponds to a change in flying height

which requires a constant overcoat and lubricant thickness (Fig. 2.18 on p. 43)

2. The flying height variation of adjacent servo bursts within the same servo

sector is small compared to the flying height variation between adjacent servo

sectors.

3. The writing process is less sensitive to flying height variations than the read-

ing process [200]

Based on those assumptions the change in flying height can be computed from the

Wallace equation. The Fourier transform of the read back signal decays exponen-

tially with increasing distance from the magnetic medium [133]. For simplicity,

only A and B bursts are considered here. The read back signal voltage is measured

at a specific frequency in the frequency domain of two subsequent servo bursts,

i.e., ΦA and ΦB

ΦA(k, z) + ΦB(k, z) = (ΦA(k, 0) + ΦB(k, 0)) e
−kz (6.1)

where k = 2π
λ

is the wave number. The flying height change ∆z = z − z0 can be

calculated from

∆z = − λ

2π
ln

(
ΦA(λ, z) + ΦB(λ, z)

ΦA(λ, z0) + ΦB(λ, z0)

)

(6.2)

where z0 is the reference flying height. The fluctuation of the product of the

recording layer thickness and the remanent magnetization (Mr) of the recording

media [200] causes read back signal modulation, and, therefore modulations in the
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measured flying height. The harmonics ratio method referred to earlier decreases

this effect. Two different approaches are proposed here, both based on the first

and the third harmonic of the read back signal in the servo sector. We can modify

(6.1) to compute the first harmonic corresponding to the wavelength λ1

ln (ΦA1 + ΦB1) = ln (Φ0,A1 + Φ0,B1)−
2π

λ1

z (6.3)

and the third harmonic corresponding to the wavelength

ln (ΦA3 + ΦB3) = ln (Φ0,A3 + Φ0,B3)−
6π

λ1

z (6.4)

Now, (6.4) can be subtracted from (6.3) and the change in flying height can be

computed via

∆z1−3 = +
λ1

4π
(ln (ΦA1 + ΦB1)− ln (ΦA3 + ΦB3)) (6.5)

which is similar to the known triple harmonics formula except that the sum of servo

burst harmonics are considered. The subscript ”1-3” indicates that the difference

between the first and third harmonic was taken into account for the computation

of ∆z. Alternatively, the sum of (6.4) and (6.3) can be used to calculate

∆z1+3 = −λ1

8π
(ln (ΦA1 + ΦB1) + ln (ΦA3 + ΦB3)) (6.6)

6.2.3 Simulated off-track characteristics

The cross-track characteristics of the flying height change estimate were

simulated using the same model and parameters as in chapter 5 for three cases
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(18,10 and 2nm) for LMR and PMR, respectively. Two different servo burst spac-

ing values were simulated. The definition of burst spacing is illustrated in Fig. 6.1.

A servo burst spacing of 0.5 (Fig. 6.2a and b) corresponds to a shift of 0.5W from

A 

B 

A 

B 

A 

B 

w 

burst spacing  0.5         0.33                 0.25 

down-track 

cross-track 

Figure 6.1: Illustrative definition of burst spacing for a dual servo pattern con-
sisting of A and B bursts.

the track center for each burst. The resulting total radial distance between A and

B burst would yield 0.5W +0.5W = 1W which equals the bit width. A servo burst

spacing of 0.25 (Fig. 6.2c) indicates a 50% overlap of the servo bursts.

The flying height change in Fig. 6.2 was estimated based on (6.5) and (6.6)

as given by the dash-dot line and the dashed line, respectively. Since the measure-

ment is relative, it was shifted in the z direction to the 2nm track center value. The

magnetic spacings at 10 and 18nm were computed using the relative knowledge of

the 2nm value. It can be seen that the 0.5 burst spacing case has a very small

sensitivity to off-track variations for both LMR and PMR (Fig. 6.2a and b). The

two proposed methods measure almost the same value close to the track center.
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Figure 6.2: Off-track dependence of measurement technique: computed head-
medium-spacing z for 18,10 and 2 nm and burst spacing of a) 0.5 and longitudinal
recording b) 0.5 and perpendicular recording c) 0.25 and perpendicular recording
as a function of the normalized off-track position y
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However, the values of ∆z1−3 and ∆z1+3 differ slightly but the arithmetic mean

(solid line) of both yields the correct values (10 and 18nm) close to the track center.

This effect becomes more obvious for a burst spacing of 0.25 as shown in Fig. 6.2c.

The arithmetic mean of (6.6) and (6.5) simply yields

∆zmean =
λ1

16π
(ln (ΦA1 + ΦB1)− 3 ln (ΦA3 + ΦB3)) (6.7)

Based on the performed simulations, the relative flying height change computed

by (6.7) is relatively insensitive to off-track motion for |∆y| < 0.3W and a burst

spacing of 0.5. For a burst spacing of 0.25 it is still relatively insensitive to off-tack

motion for |∆y| < 0.1W which is the generally accepted positioning requirement

in magnetic recording technology in order to avoid track misregistration. A sud-

den increase in difference between ∆z1−3 and ∆z1+3 might indicate large off-track

motion. However, ∆zmean shows small off-track sensitivity compared to ∆z1−3 and

∆z1+3 within a much larger range.

6.3 Experimental results

6.3.1 Experimental set-up and methodology

A number of flying height modulation measurements have been performed

using a disk head tester (MicroPhysics). The experimental set-up is shown in

Fig.6.3. Perpendicular magnetic recording disks and matching head/gimbal as-

semblies (HGA) were employed. The disk was spun at 7200 rpm and a simple dual
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servo pattern with A and B bursts only was written onto the disk using a 16T

pattern. A write frequency of 900MHz was used with the first harmonic of the

servo occurring at 56.25 MHz. The read back signal was captured using a 2GS/s

digitizer. All measurements were performed at 2 degrees skew angle and at a radius

r = 25mm. The disk was divided into 128 servo sectors which yields a sampling

frequency of position error signal and flying height measurement of 15.36 kHz. As

indicated in Fig. 6.3, an arbitrary waveform generator was used to apply a voltage

to the thermal actuator and a spindle index signal was used as a trigger for the

waveform generator.

Pre-amp 

board 

High speed 

ADC card 

2GS/s 

Read back signal 

Read back signal 

processing,  

computation  of 

flying height 

modulation 

computation  of 

heater voltage 

adjust heater  
voltage 

Spindle  
Index Arbitrary Waveform Generator   

(Tektronix/Sony  AWG2041)  

trigger RS232 

MicroPhysics 
DHT-2  

spin stand 
Perpendicular magnetic recording (PMR) 
head gimbal assembly (HGA)  
 

Figure 6.3: Experimental set-up
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6.3.2 Verification of proposed flying height estimation scheme

The proposed estimation method from section 6.2 was used to calculate

the flying height modulation based on the measured read back signal. First, the

dynamic flying height modulation was measured for constant (but gradually in-

creased) power levels. Figure 6.4 shows 15 different heater power levels Pin and the

flying height modulations were computed based on (6.5) and (6.6), respectively.

The PES was computed by
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Figure 6.4: Averaged flying height modulation for 15 different constant power
inputs to the heater element and position error signal over one revolution

PES =
A− B

A+ B
(6.8)
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where A and B represents the track averaged amplitude (TAA) of the A and B

burst, respectively. In Fig. 6.4, averaged values of 20 measurements are shown. It

should be noted that a voltage v was applied to the heater element and the resulting

input power Pin was computed by Pin = v2/R assuming a fixed value of the heater

resistance R. Subsequently, we investigate the effect of resistance change in the

DC gain of the model. Pin was varied from 0mW to approximately 130mW. From

Fig. 6.4 it can be observed that the measured relative flying height decreases as

the heater power increases. It is furthermore observed that the dynamic variation

of ∆z is very repeatable and very similar for different bias power level except for

a DC offset. The difference between the static flying height variation ∆z1+3 and

∆z1−3 is very small. However, in terms of dynamic behavior, ∆z1+3 looks slightly

different from ∆z1−3 at some angular positions. In general, ∆z1+3 shows more low

frequency flying height variations compared to ∆z1−3.

6.3.3 Off-track characteristics

A single (non-averaged) off-track measurement is shown in Fig 6.5. Here,

Fig 6.5a) shows the track averaged amplitude of the A and B burst and the com-

puted PES according to (6.8). On a large scale (Fig 6.5b)) ∆z1−3 appears less

sensitive to off-track motion than ∆z1+3. However, on a smaller scale (Fig 6.5c))

it can be observed that ∆z1+3 is quite insensitive to off-track motion close to the

track center. As predicted by the simulation results in section 6.2, an increase in

measured flying height can be observed for increasing off-track motion for ∆z1+3
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where ∆z1−3 decreases for increasing off-track motion.

6.3.4 Voltage step measurements

In order to identify a dynamic model of the heater actuator, a step input was

applied. The results are shown in Fig. 6.6. The step height of the input voltage was

kept constant and only the bias voltage was increased yielding a linearly increasing

power step height with increasing bias voltage. As in the static case, an average
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Figure 6.6: Averaged flying height modulation for 15 different step power inputs
to the heater element and position error signal over one revolution

over 20 measurements was calculated. Figure 6.6 shows that the response of the

actuator is very fast and that there is a minimum flying height around 12 nm

below the initial flying height. The flying height does not go below this limit

which is likely the result of head/disk contact. For heater power values above

approximately 80mW a sudden increase in position error signal and variance in

flying height modulation (Fig. 6.8) can be observed which might indicate head disk

contact.
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6.3.5 Data based dynamic modeling of the heater response

The heater response was identified based on the relative spacing between the

reference measurement (Fig. 6.4) and the step measurement (Fig. 6.6). The relative

spacing measurements for the 15 different input steps are shown in Fig. 6.7. The

two different estimation methods are in excellent agreement. The heater response

was modeled using a standard least-squares estimation and a first order model. A

significant time-delay could not be measured since the sampling time the of flying

height modulation measurement was 65.1µs which is on the order of the determined

time constant τ . It is obvious that this results in a decreased accuracy of the

estimation of τ compared to the estimation accuracy of the steady-state gain K

based on the least-squares solution. Time constant τ and gain K were estimated
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Figure 6.7: Relative steps (Fig. 6.6-Fig. 6.4) and identified first order models

for both proposed relative flying height estimation methods and Fig. 6.9 shows the
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results as a function of the power step size Pstep. The average time constant for the

measurements up to 80mW bias power Pin is on the order of the PES sampling

time (65µs). The absolute value of the gain K decreases from about 0.1 nm/mW

gradually to almost zero as the bias heater power Pin and step size Pstep increases.

This is likely due to contact with the disk at approximately −12 nm where a further

head-disk-distance decrease is not possible. The static flying height change as a

function of heater input power Pin is shown in Fig. 6.10. The relationship seems

nearly linear, although the slope of the curve (which corresponds to the static gain)

is slowly decreasing as Pin increases. This could be due to the air bearing cooling
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effect (increased thermal conductivity between head and disk as local air bearing

pressure increases and flying height decreases) [208] and/or the so-called push-back

effect (due to higher air bearing pressure at lower flying heights) [209]. Another

explanation would be an increasing heater resistance with increasing heater voltage

yielding an actual lower heater power compared to the computed heater power

assuming a constant resistance.

6.4 Conclusions

A flying height measurement scheme based on the servo pattern recorded

in the servo sectors was developed and simulated using a read back signal model.

The two proposed flying height measurement methods show excellent agreement
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within a large flying height range while being insensitive to off-track motion of the

read write head. In the proposed method, the off-track sensitivity is a function

of the radial servo burst spacing, i.e., the cross-track spacing between the A and

B burst in each servo sector. The proposed method was tested experimentally

to identify the dynamics of a resistance heater element capable of modifying the

flying height at the read/write element. Based on the current data that uses a servo

sector-based signal at a sampling rate of approximately 15.36 kHz it is suggested

that the response of the thermal actuator can be approximated by a first order
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system with a time-delay. It was found that the time delay was negligible and the

time constant was found to be very small at around 65µs. Chapter 7 will show

that a second order model of the actuator is more suitable for dynamic control.

The fast actuator response promises feasible solutions to real-time flying height

adjustment up the kHz-regime. The gain or actuator efficiency (input power vs.

flying height reduction) decreases as the flying height decreases which might be

due to the so-called push-back effect or the air-bearing cooling effect, both of which

will be further explained in section 7.3.1 of this dissertation.
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7 Dynamic flying height

adjustment in hard disk drives

through feedforward control

7.1 Introduction

Thermal flying height control is used in a ’static manner’ in today’s disk

drives, i.e., the power level applied to the heater is independent of the circumferen-

tial position of the slider on the disk. The power level is adjusted only depending

on the radial position of the slider on the disk, whether writing or reading op-

eration are performed and on the environmental conditions. However, the flying

height in a disk drive varies in a dynamic manner [198]. Dynamic flying height

variations of a slider over a disk are composed of repeatable and non-repeatable

contributions. As the name suggests, repeatable variations of flying height occur

at the same angular and radial position of the slider above the disk at each revolu-

tion [198]. Thus, the question arises as to whether a thermal flying height control

159
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slider can be used to dynamically control the repeatable flying height variations

between slider and disk. It is likely that contact between slider and disk occurs at

the same position on the disk as the flying height is decreased. Therefore, thermal

flying height control could also be used to dynamically increase the flying height

in those regions where contact occurs. This would allow a decrease in the overall

flying height without slider/disk contacts.

Limited results are available on dynamically adjusting the TFC power to

minimize flying height variations that occur along the circumference. One approach

for dynamic flying height control has been shown by Shiramatsu et al. [210] who

used a feed forward methodology without giving details on the control law that

they used. An adaptive regulator scheme was proposed and simulated by Wu et al.

[211] and experimental results using a piezo-electric actuator were recently given

[212]. In this chapter, a different method of flying height control based on convex

optimization is presented to solve the flying height variation minimization problem.

Efficient solvers for those type of problems have been developed recently, which

make real-time or nearly real-time applications feasible as shown in [156]. Hence,

the optimal power profile to the heater element can be computed that minimizes

repeatable circumferential variations of flying height. It should be noted that the

computational effort of our approach is much larger compared to look-up tables

that are pre-computed during manufacturing calibration. However, this study

indicates how optimal profiles can be obtained and stored in look-up tables. In

addition, considering the increasing complexity and computational power in micro-
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controllers, one could utilize this additional degree of freedom to be able to adapt

to changes in operational and/or environmental conditions.

The problem of dynamically adjusting the flying height can be divided into

three main steps:

1. Measurement of flying height variation

2. Data based estimation of dynamic heater response

3. Computation of optimal input profile to the heater based on estimated model

The first task was addressed in chapter 6. Steps 2 and 3 will be discussed in detail

in the following sections.

7.2 Experimental set-up

The same set-up as in chapter 6 (Fig. 6.3 on p. 149) is employed for exper-

imental verification of dynamic flying height adjustment. The measurements were

performed at a radius of 28mm, a skew angle of 1.3 degrees and a rotational speed

of 7200 rpm. The relative magnetic spacing was computed in two different ways.

First, the approach presented in chapter 6 was utilized and the flying height

change ∆z was computed from (Eq. 6.7 from p. 148 repeated)

∆z =
λ1

16π
(ln (ΦA1 + ΦB1)− 3 ln (ΦA3 + ΦB3)) (7.1)

where ΦA,Bi is the amplitude of the ith harmonic of the A and B burst, respectively,
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and λ1 is the wavelength of the first harmonic. The same ”16T” pattern from

section 6.3.1 are considered in this chapter.

The second method employs the conventional triple harmonics method [200,

199] to measure the flying height change based on data written in the servo sectors.

The approach resulted in a higher sampling rate compared to the servo sector

measurements. For this method, the flying height change was computed as

∆z =
λ1

4π
(ln (Φ1)− ln (Φ3)) (7.2)

where Φ1 and Φ3 represent the first and third harmonic of the read back signal,

respectively. The read back signals in the servo and data sectors were sampled at

2GHz. The total number of 128 servo sectors corresponds to a sampling frequency

of the flying height modulation of 15.36 kHz for the first method. The resolution

of the data sector based method contains a trade-off between time-domain and

frequency-domain accuracy. A number of 20 flying height measurements per data

sector was chosen yielding an effective sampling rate of 380 kHz which is signifi-

cantly higher than the sampling rate of the servo sector based method. A waveform

generator was used to apply the power profile to the heater. The spindle index

signal was used as a trigger.
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Figure 7.1: Simplified network model of the resistance heater element including
non-linear effects such as air-bearing cooling effect and push-back effect

7.3 Dynamic modeling of the heater response

7.3.1 Modeling based on physical principles

To model the flying height variation induced by the thermal actuator based

on physical principles is complicated and contains several interrelated effects that

have been reported in the literature; a short overview is given in the following. As

can be seen from Fig. 7.1, the system ranges over three physical domains, i.e., elec-

trical, thermal and mechanical. The power applied to the heater causes a resistive

heating (Joule heating) of the heater element and its surrounding materials. This,

in turn, causes a thermal deformation of the air bearing surface which positions the

read/write element closer to the disk as indicated in Fig. 2.18 on page 43. There

are several effects that counteract the thermally induced flying height reduction:

1. Electrical domain: The resistance of the heater element changes as the tem-
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perature increases which changes the Joule heating effect (Fig. 7.3)

2. Thermal domain: It was found in [208] that the main heat exchange between

the head and the disk is through heat conduction. As the distance between

the thermal protrusion and the disk is reduced, the conductive heat exchange

between the head and disk is affected by the local air bearing pressure and

the decrease in the mean free path of the air in the gap between thermal

protrusion and disk. This is known as the air bearing cooling effect [213, 214].

3. Mechanical domain: A local increase in air bearing pressure causes a so-called

push-back effect which is indicated in Fig.7.1 by the non-linear force Fnl act-

ing on the output. Furthermore, in the close-contact regime, intermolecular

and electrostatic forces will play a role as has been shown in [215].

7.3.2 Data-based modeling approach

A data-based (black-box) modeling approach seems more feasible than a

model derivation based on physical principles considering the presence of numerous

parameter uncertainties. A schematic of the actuator and measurement system is

shown in Fig. 7.2. Here, u represents the input power applied to the thermal

actuator G. The flying height variation d is considered an unknown disturbance

to be rejected by the thermal actuator. In the experimental set-up, the absolute

spacing z is not measurable . However, the spacing variation relative to an initially
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Figure 7.2: Schematic of thermal actuator and flying height sensor

unknown flying height z0 can be measured where

∆z = z − z0 (7.3)

The contribution of the actuator to the flying height change can be esti-

mated by performing two experiments: one without a dynamic input signal as a

reference measurement and a second experiment using an input signal which is

”persistently exciting”. A good choice is a step input signal. The step data can

then be used to identify a discrete-time model of the actuator using the generalized

realization algorithm (GRA) as presented in [140, 143]. The algorithm has some

similarities to the Hankel matrix based estimation method described in section 3.2.

However, the GRA considers a step input rather than an impuls and the estimation

is based on time-domain data only. The algorithm will be briefly reviewed below.

The GRA computes the state space matrices A, B and C of a discrete-

time model of the thermal actuator, illustrated in Fig. 7.2. The input/output
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relationship of the heater system shown in Fig. 7.2 can be written as

∆D = HU+ E (7.4)

where ∆D is a Hankel matrix of the output signals defined in (7.9), U is the input

matrix (upper triangular matrix with only ones) and H is a Hankel matrix that

contains the Markov parameters g(k) that are defined by

g(k) =







D for k = 0

CAk−1B for k ≥ 1

(7.5)

This forms the matrix

H = ΓΩ (7.6)

In (7.6), Γ and Ω are the observability and controllability matrix, respectively,

defined by

Γ =















C

CA

...

CAk−1















,Ω =

[

B AB · · · Ak−1B

]

(7.7)

The matrix E in (7.4) contains the effect of past input signals multiplied by the

Markov parameters of the system. For a step-function as an input, E is a row-wise

listing of past output signals [216] and yields

E =











∆d(0) · · · ∆d(0)

...
...

...

∆d(N − 1) · · · ∆d(N − 1)











(7.8)
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A realization is performed based on the weighted Hankel matrix

R = ∆D− E

allowing the use of step function input signals instead of impulse response mea-

surements.

The measured step data are stored in a N ×N Hankel matrix

∆D =















∆d(1) ∆d(2) · · · ∆d(N)

∆d(2) ∆d(3) · · · ∆d(N + 1)

...
...

...
...

∆d(N) ∆d(N + 1) · · · ∆d(2N − 1)















(7.9)

where N denotes the number of data points for each measurement. The vector ∆d

denotes the measured step response. The weighted Hankel matrix R is defined as

R = ∆D− E = HU (7.10)

and has the same rank as H. The matrix R is decomposed into an N× n ma-

trix R1 and an n× N matrix R2, by using singular value decomposition. This

decomposition allows choosing the rank n of the matrix, and, thus, the order of

the estimated model. The singular value decomposition applied to R yields

R = UΣVT =

[

Un Us

]







Σn 0

0 Σs













V T
n

V T
s







(7.11)

where V and U are unitary matrices, and Σ is a diagonal matrix that contains the

singular values of the original matrix. In (7.11), Σn stores the n largest singular
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values and Σs contains the remaining smaller part. The unitary matrices are

divided in a similar fashion into Un,s and Vn,s, respectively. Using the singular

value decomposition R is reduced to a rank n matrix

Rn = R1R2 (7.12)

where

R1 = UnΣ
1/2
n , R2 = Σ

1/2
n VT

n
(7.13)

With (7.7) we have R1 = Γ and R2 = ΩU where U has full rank. A shifted

version of R is defined by

R̄ = ∆̄D− Ē (7.14)

where each element is shifted one sample forward in time. Hence, ∆̄D becomes

∆̄D=















∆d(2) ∆d(3) · · · ∆d(N + 1)

∆d(3) ∆d(4) · · · ∆d(N + 2)

...
...

...
...

∆d(N + 1) ∆d(N + 2) · · · ∆d(2N)















(7.15)

and Ē is defined in a similar fashion.

From (7.5) and (7.7) it can be shown that

R̄ = ΓAΩU = R1AR2 (7.16)

R1, R2 and R̄ in (7.16) are computed in previous steps. Hence, the state matrix

A can be estimated by

A = R∗
1R̄R∗

2 (7.17)
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where

R∗
1 = Σ

−1/2
n UT

n , R∗
2 = VnΣ

−1/2
n

(7.18)

denote the left and right inverse of (7.13), respectively.

From (7.7) it can be observed that the input matrix B is the first column

of R2 and that the first row of R1 forms the output matrix C.

The feed-through term D contains only the first data point of the output

signal after an input step, i.e., D = ∆d(0). The D matrix could also be estimated

by solving a least-square problem but in the present case it can also be set to zero

as one sample time-delay can be assumed for the thermal actuator.

7.3.3 Modeling algorithm applied to experimental data

The described modeling procedure was applied to the heater element in the

TFC slider. As in chapter 6, voltage steps v were applied to the heater element

and the input power P was computed using P = v2/R assuming a fixed value

for the heater resistance R. This assumption is reasonable since it was found

experimentally that the resistance of the heater element is not a strong function

of the applied voltage. Fig. 7.3 shows the change in resistance based on different

input power levels for the case that the head is flying on the disk (loaded) and the

case that the head is stationary away from the disk without an air bearing present

(unloaded). The unloaded case shows a much higher increase in heater resistance

compared to the loaded case which is likely related to the heat transfer from the

head to the disk [213]. The dynamic response to a 2V-step input for three different
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bias voltages (3.5, 4.0 and 4.5 V) is measured. The results are shown in Fig. 7.4

and Fig. 7.5, respectively. In Fig. 7.4 the flying height change is determined using

the servo sector approach that was presented in chapter 6 and in Fig. 7.5 the flying

height change is estimated based on data sector measurements. The simulated

response using estimated 2nd order models can be seen in Fig. 7.4 and 7.5 as the

solid lines. We observe that the estimated models are in excellent agreement with

the measurements. By estimating only a first order model of the heater response,

one would observe a significant modeling error. It is also noted that the response

is in qualitative agreement with recent numerical studies [217]. The Bode plots

of the resulting 2nd order continuous-time models assuming zero-order-hold for

the 380 kHz sampling frequency case are shown in Fig. 7.6. One can observe the

presence of two time constants in the Bode plot. The estimated second order
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Table 7.1: Parameter of 2nd order discrete-time models

Bias sampling rate a b c d
3.5V 15.35 kHz -0.06847 0.06162 -1.108 0.1789
4.0V 15.35 kHz -0.07005 0.05851 -1.005 0.1277
4.5V 15.35 kHz -0.06536 0.05299 -0.9887 0.1266
3.5V 380 kHz -0.01333 0.01237 -1.674 0.6858
4.0V 380 kHz -0.01418 0.01311 -1.657 0.6699
4.5V 380 kHz -0.01499 0.01378 -1.631 0.6454

models can be parameterized in the discrete-time transfer function form

G(z) =
az + b

z2 + cz + d
(7.19)

where the model parameters a, b, c and d are given in Tab. 7.1 for the 6 identified

models.

In the remainder of this chapter we consider only the flying height change

measurements based on the servo sector approach since this is the more practical

approach in an HDD application. The step experiments were performed approx-

imately 3 nm below the initial flying height (without power input to the heater)

after applying a bias voltage. Figure 7.7 shows the change in average flying height

∆z versus heater power. We observe that the flying height decreases almost lin-

early as the heater power increases. In the close-contact regime, at the far right of

the figure, the flying height change stops to decrease and the variance of the av-

eraged signal increases. At this ”critical” flying height, slider vibrations at the air

bearing frequency near 300 kHz can be observed in the read back signal (Fig. 7.8).

It should be noted that the dynamic and static behavior of the thermal actuator

is inherently non-linear in extremely close proximity to the disk and highly depen-
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Figure 7.8: Measured read back signal of the data sector for three different flying
heights: a) initial b) -8nm c) -12nm

dent on the absolute spacing of the head over the disk as indicated in section 7.3.1.

Therefore, for our dynamic flying height control studies, we restrict our attention

to the range depicted as ”operating range” in Fig. 7.7. The initial flying height

(0mW heater input) in our experiment is around 11-12 nm and the operating range

is 3 to 7 nm below the initial flying height.

In order to compute the optimal feedforward profile in the given operating

range (Fig. 7.7), we estimate a dynamic model of the thermal actuator within that

range. The results are shown in Fig. 7.9 where Fig. 7.9a) shows the reference in-

put power and the step input power. The flying height change ∆z (response) can

be seen in Fig. 7.9b). The squares in Fig. 7.9b) represent the averaged values (20

averages) obtained at each of the 128 servo sectors and the lines in the neighbor-
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hood of the squares represent the standard deviation. The flying height change

due to the thermal actuator is the difference between the two flying height change

measurements in Fig. 7.9b) and is shown in Fig. 7.9c). The simulated flying height

change of the estimated 2nd order model is plotted in Fig. 7.9c) as well.

A plot of the singular values of the weighted Hankel matrix R in (7.10) is

shown in Fig. 7.10. From Fig. 7.10 it can be observed that although the second

singular value is much less significant than the first one, there is considerable

difference between the second and third singular value. Thus, this plot suggests

the choice of a second order model.

For maximum read back performance, the operating flying height range

of the read/write element should be as close as possible to the disk. The flying

height in an HDD needs to be reduced to approximately 1 nm as the storage density

approaches 1Tb/in2 [218]. As seen in Fig. 7.7, this introduces non-linear effects for

the head gimbal assembly used in this study. These non-linear effects are beyond

the scope of this paper but will be of interest for future work. Here, we restrict

ourselves to show how repeatable flying height variations can be minimized for the

operational range depicted in Fig. 7.7.
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7.4 Computing optimal power profile

7.4.1 Development of the optimization algorithm

If the flying height change generated by the thermal actuator matches the

inverse of the flying height modulation, a constant flying height is obtained. The

computation of the power profile based on the inverse of the flying height modula-

tion is not trivial as the inverse of the actuator model is not necessarily stable and,

in addition, non-causal. Furthermore, the fact that the control energy is limited

should be taken into account. The problem at hand can be formulated as a convex

optimization problem where the flying height modulation is minimized in a 2-norm

sense. The direct computation of a feed forward profile makes the design of a feed
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forward filter redundant.

The second order model of the identified heater actuator is written in state

space form as

x(k + 1) = Ax(k) +Bu(k)

∆d(k) = Cx(k)

(7.20)

where A, B and C follow from the identification procedure described in section

7.3.

Following [169], we can recursively re-write the actuator output ∆d as

∆d(0)=Cx(0)

∆d(1)=CAx(0) + CBu(0)

∆d(2)=CA2x(0) + CABu(0) + CBu(1)

...

∆d(N − 1)=CAN−1x(0) +
N−1∑

i=1

CAN−iBu(i− 1)

(7.21)

or in matrix form

∆d = Ψu (7.22)

where

Ψ =























0 0 0 · · · 0

CB 0 0 · · · 0

CAB CB 0 · · · 0

...
...

...
. . .

...

CAN−2B CAN−3B · · · 0

CAN−1B CAN−2B · · · CB























(7.23)
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The initial value of the state x(0) is set to zero. Based on this definition, the

following optimization problem can be stated:

min ‖Ψu+ d− inf (d)−∆z0‖2
u

subject to u ≤ umax

u ≥ umin

(7.24)

The motivation to pose the optimization problem as shown in (7.24) is as follows.

A flying height lower than the infimum (in this case minimum) of the flying height

modulation d is desired since no negative power can be applied to the heater.

An additional spacing parameter ∆z0 > 0 is required to reduce the flying height.

Linear constraints on the input power u are imposed through energy and design

limitations on the thermal actuator reflected by umax and umin. In a hard disk

drive application, ∆z0 could be increased until the minimum stable flying height is

reached. Minimizing the Euclidean norm as in (7.24) is equivalent to minimizing

the Euclidean norm squared [170]. Thus, the problem can be reformulated as a

quadratic programming problem or a semidefinite programming problem. For no

or very loose constraints on the actuator signal, the problem can be reduced to

a conventional non-constrained least-squares optimization problem which may be

sufficient in an actual hard disk drive.
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7.4.2 Optimization algorithm applied to experimental set-

up

The model of the heater element estimated in section 7.3 and (7.24) was

used to compute an optimized power input signal. The CVX software package

[177] was used to solve the optimization problem. ∆z0 was chosen to be 0.5 nm

because a bias voltage was already applied to the heater. For our experimental

conditions, this yields an approximate absolute flying height of 7 − 8 nm. The

measurements are shown in Fig. 7.11. We characterize the flying height variation by

the difference between maximum and minimum value due to repeatable (averaged)

variations (dots in Fig. 7.11b) and the variance due to non-periodic variations (solid

lines in Fig. 7.11b). It is clear from Fig. 7.11 that our feedforward compensation

targets the repeatable variations by minimizing the difference between maximum

and minimum averaged value, creating an almost flat averaged profile of flying

height variations. For comparison purposes, the dashed line in Fig. 7.11b indicates

the prediction of the feedforward compensation based on our linear model. The

good agreement between experiments and simulation indicates a) validation of our

model and b) successful computation of the optimized feedforward profile. The

variance due to non-periodic variations remains almost the same.

The measured optimized flying height profile depicted in Fig. 7.11b shows

much smaller flying height variations than the reference measurement where no

optimization was performed. We note, in particular, that the difference between



183

0 1 2 3 4 5 6 7 8
0

20

40

60

In
p
u
t 

p
o
w

e
r 

[m
W

]

0 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

∆
 z

 [
n
m

]

Time [ms]

reference measurement
optimized power input

b)

a)

1 revolution

Figure 7.11: Averaged spin stand measurement (20 averages): a) power input:
reference signal, optimized signal. b) corresponding measured flying height varia-
tion (averaged values and standard derivation)



184

maximum and minimum value is reduced from 2.54 nm to 0.84 nm. These results

show that the technique used is very promising and potentially of great use in

future disk drives.

7.5 Conclusions

A discrete-time dynamic model of a thermal flying height actuator in a

hard disk drive was identified using step experiments and a generalized realization

algorithm. The flying height change measurements used in this study were based

on two different measurement techniques with sampling rates of 15.36 kHz and

380 kHz, respectively. It was found that the heater response can be modeled suf-

ficiently well with a second order model that captures both a fast and a slow time

constant observed in the heater step response. The resistance change of the ther-

mal actuator was measured as a function of the input power and found to be within

a few percent of the case of a flying slider (loaded). It was shown that convex op-

timization techniques can be used to significantly minimize circumferential flying

height variations in a disk drive based on the identified heater actuator model.

Spin stand experiments showed that the maximum-minimum value difference of

the averaged flying height variations was reduced to about one third compared

to the initial reference measurement where no power optimization was performed.

Since the proposed method is a true feed forward technique it can only compen-

sate repeatable flying height variations. Both the simulated step response and



185

the simulated response to the optimized input signal are in good agreement with

experimentally obtained results. Small variations can be explained with modeling

and measurement errors. The presented algorithms on heater dynamics modeling

and input power optimization are not computationally expensive and could be im-

plemented in the firmware of the hard disk drive. This might enable an increase in

durability and reliability of the drive while decreasing flying height and bit error

rate. The identified linear model of the heater becomes invalid in the close-contact

regime due to non-linearities. Future work should involve non-linear modeling ap-

proaches and adaptive feed forward approaches to minimize the flying height while

maintaining a minimum in flying height variations. A final point is related to the

response time of the thermal actuator. Even though thermal equilibrium is only

reached after a few milliseconds, the second (fast) time constant of the thermal

actuator enables flying height adjustment up to several kHz.
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8 Summary

In this dissertation, the optimization of positioning the read/write element

over the data track in a hard disk drive was studied. The first focus was on increas-

ing the performance of the track-following servo mechanism using dual-stage actu-

ators. A state-of-the-art dual-stage hard drive was modified to allow open loop fre-

quency response function measurements of the voice coil motor and the piezo-based

micro-actuator. A discrete-time modeling algorithm based on frequency response

function measurements was proposed that allowed control relevant system identi-

fication. Based on the estimated models, two different dual-stage track-following

controllers were designed. One was derived using classic loop shaping techniques,

the so-called sensitivity decoupling method. The second method utilized modern

H∞ loop shaping algorithms. Both controllers showed similar servo performance.

However, the H∞ controller shows a better disturbance rejection than the sensitiv-

ity decoupling controller for low frequencies. The H∞ approach does not use notch

filters, and, thus, is more robust against model variations. The H∞ optimization

routine is constrained by pre-defined parameters in form of weighting functions.

Hence, the choice of this weighting function is crucial to controller performance.
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The clear advantage of the H∞ framework is that automated controller design can

be performed.

Furthermore, a track-seeking scheme was proposed that is based on con-

vex optimization techniques. The reference signal of the servo loop is shaped to

obtain time-optimal performance and/or to optimize the energy properties of the

closed-loop signals. The algorithm was experimentally verified in a modified hard

disk drive set-up showing excellent agreement between theoretical (simulation) and

actual experimental results. It was shown that the reference signal shaping sig-

nificantly reduces targeting time and residual vibrations compared to an output

response obtained using step inputs. It was also shown that the shaping algorithm

improves the response of systems whether or not the actuator is saturated. Above

and beyond all other consideration, the shaping algorithm is applicable to any

linear time-invariant system with an arbitrary number of inputs and outputs.

The second focus of this dissertation is on dynamic flying height control.

We first studied the effect of cross-track and vertical motion of the read element

on the readback signal. A straightforward mathematical model for the read signal

was derived. We compute the magnetic field of a contributing bit directly instead

of modeling the bit transition (derivative) of the magnetization in the read back

signal. This allows a very fast simulation without compromising accuracy. The

model is applicable to continuous and bit patterned media and allows also the

investigation of read signals of pattern that only consist of ”up” or ”down” mag-

netized bits such as some novel servo pattern that were proposed for patterned



189

recording.

Furthermore, a flying height measurement scheme based on the servo pat-

tern was developed and simulated using the derived readback signal model. The

flying height measurement method shows very small sensitivity to cross-track mo-

tion of the read write head. In the proposed method, the off-track sensitivity is

a function of the radial servo burst spacing, i.e., the cross-track spacing between

the A and B burst in each servo sector. The estimation scheme was tested exper-

imentally on a spin stand to identify the dynamics of a resistance heater element

capable of modifying the flying height at the read/write element. It was found that

the gain or actuator efficiency (input power vs. flying height reduction) decreases

as the flying height decreases which might be due to the push-back effect or the

air-bearing cooling effect.

In the final part of this dissertation we estimated a discrete-time dynamic

model of a thermal flying height actuator using step excitation and a generalized

realization algorithm. The flying height change was measured using two differ-

ent techniques with sampling rates of 15.36 kHz and 380 kHz, respectively. It was

found that the heater response can be modeled sufficiently well with a second order

model that captures both a fast and a slow time constant observed in the heater

step response. The resistance change of the thermal actuator was measured as a

function of the input power and found to be within a few percent of the case of a fly-

ing slider (loaded); therefore, it was neglected in the algorithm. It was shown that

convex optimization techniques can be used to significantly minimize circumferen-
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tial flying height variations in a disk drive based on the identified heater actuator

model. Spin stand experiments showed that the maximum-minimum value dif-

ference of the flying height variation was reduced to about one third compared

to the initial reference measurement where no power optimization was performed.

Since the proposed method is a true feed forward technique it can only compen-

sate repeatable flying height variations. The prediction is in good agreement with

experimental results. Even though thermal equilibrium is only reached after a few

milliseconds, the second (fast) time-constant of the thermal actuator enables flying

height adjustment up to several kHz.

All presented algorithms on dynamic modeling, convex optimization and

computation of optimal feedforward signals throughout this dissertation are com-

putational inexpensive and could be implemented in the firmware of a hard disk

drive. This might significantly reduce seek-time, energy consumption and system

vibrations during the seeking process. In addition, it might enable an increase in

durability and reliability and reduce bit errors rates due to reduced flying height

variations. Such advanced high-precision positioning methods are required in fu-

ture hard disk drive servo mechanisms as the storage density increases. Both the

vertical and cross-track direction need to be considered.

In conclusion, hard disk drives are extraordinary multi-disciplinary products

that deliver high-end technology at low cost. It is particularly astonishing that a

device that relies on moving parts has been able to keep up with alternative solid-

state technology for such a long time. The growing demand in storage space will
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enable hard drives to keep their number one position in terms of storage capacity

market share for years to come. The continuing decrease in bit aspect ratio and

increase in track density imposes unprecedented challenges on servo performance

in vertical and cross-track direction which encourages academic research on this

topic.
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