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ABSTRACT OF THE DISSERTATION 

 

Geospatial Approaches to Biodiversity Monitoring: 

Applications in Hawai‘i 

 

by 
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Doctor of Philosophy in Geography 

University of California, Los Angeles, 2022 

Professor Thomas Welch Gillespie, Chair 

 

 

Human activity continues to drive global biodiversity change and loss. Comprehensive 

biodiversity monitoring is critical to evaluating and informing conservation policy and 

management, and diverse data sources that can enhance the spatial and temporal coverage of 

conventional field monitoring are needed. In this dissertation, I explore the potential 

contributions of broad-scale, publicly accessible geospatial datasets to biodiversity monitoring in 

the Hawaiian Islands. This region supports exceptional levels of endemism but continues to 

experience significant native habitat loss. Non-native plant species outnumber the native flora, 

and ecosystems like tropical dry forest are unlikely to recover without active restoration. 

Though citizen science data are abundant, they are often collected opportunistically, and 

potential biases must be understood before utilizing observations. I examined citizen science 
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participation patterns from 2008-2021 using over 93,000 species observations from iNaturalist. 

The majority of observations were made by visitors to Hawaii, who were more likely to access 

remote locations and make research-grade observations. However, during the COVID-19 

pandemic, visitor activity declined significantly, demonstrating the importance of sustained, 

local participation for consistent monitoring. I then evaluated the utility of iNaturalist in invasive 

plant monitoring, and found that non-native species represented a high proportion of iNaturalist 

plant observations. Comparison of iNaturalist and professional agency observations for four 

example invasive species showed that iNaturalist data were biased toward accessible, disturbed 

sites, and professional data toward less accessible, native-dominated sites. Habitat suitability 

models built with the two datasets often produced distinct results, whereas combining the data 

provided a more comprehensive estimate of invasive species habitat. Finally, I used a Landsat 

Normalized Difference Vegetation Index (NDVI, a proxy of vegetation productivity) time series 

to evaluate changes in dry forest from 1999-2022. Despite regional declines in rainfall, native 

and restored dry forest NDVI increased during this period. Previous, coarser-scale studies have 

reported negative NDVI trends in the region, but Landsat resolution or finer is better suited to 

capturing conditions in fragmented dry forests and monitoring progress at restoration sites. 

Together, these studies illustrate the value of utilizing and integrating multiple, complementary 

data sources to improve the breadth and continuity of biodiversity monitoring. 
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 Introduction 

Anthropogenic activity continues to drive global biodiversity loss and change. Habitat 

fragmentation and loss, climate change, pollution, and species invasions have led to substantial 

declines in ecosystem functioning, in turn compromising the provision of essential ecosystem 

services (Isbell et al., 2017). Biodiversity monitoring is critical to the effective implementation 

and evaluation of biodiversity policy and environmental management. Yet few coordinated 

national or global monitoring systems exist, and explicit monitoring targets are often lacking in 

policy and program design, including in the UN Convention on Biological Diversity post-2020 

global biodiversity framework (Lindenmayer et al., 2012; Perino et al., 2022).  

The collection of high-quality species data is a perpetual challenge in conservation 

biogeography (Richardson & Whittaker, 2010). Formal, systematic surveys are resource-

intensive and therefore often limited in geographic or temporal extent (Hochachka et al., 2012), 

restricting the utility of the data in broad-scale conservation planning or applications such as 

habitat suitability modeling (Meyer et al., 2016). Monitoring has been particularly deficient in 

regions of high species endemism and for invertebrates, plants, and fungi (Hochkirch et al., 

2021). Invasive species have been notably neglected, despite being a major driver of biodiversity 

loss, and existing databases remain difficult to access, share, and integrate (Foxcroft et al., 2017; 

Reaser et al., 2020; Wallace et al., 2020). In ecological restoration—a valuable and increasingly 

necessary component of biodiversity management—monitoring has been rare or insufficient, and 

an unfortunate emphasis is placed on short-term, potentially misleading results due in part to the 

perceived costliness of monitoring activities (Stanturf et al., 2014). 

It has been widely acknowledged that diverse data streams are needed to improve our 

understanding of biodiversity trends (Perino et al., 2022; Richardson & Whittaker, 2010). 
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Integrating data sources can yield spatial, temporal, or taxonomic complementarity in 

biodiversity monitoring, while increasing longevity and resilience during periods of 

sociopolitical instability (Kühl et al., 2020). For example, lockdowns during the COVID-19 

pandemic, which halted human mobility (as well as regular research activities) in an 

unprecedented way, highlighted the gaps in current field-monitoring programs (Bates et al., 

2020). Perino et al. (2022) highlighted several opportunities for enhancing monitoring capacity, 

including citizen science monitoring networks and advancements in remote sensing methods. 

Citizen science, often defined as public participation in the collection or processing of 

scientific data, has supported several long-term, large-scale monitoring programs that have been 

used to inform environmental management and policymaking (Kühl et al., 2020). In addition to 

enabling data collection on scales that often exceed those of professional research, citizen 

science programs can increase participants’ scientific literacy (Bonney et al., 2016) and improve 

trust between professional scientists, natural resource managers, and the public (Vann-Sander et 

al., 2016). In biodiversity citizen science, participants often record species observations and a 

number of attributes, including location data. Programs vary greatly in scale and structure, which 

typically has consequences for data quality (Freitag et al., 2016). Formalized structures entail 

more rigorous, standardized data collection that could potentially deter participants. Low-

structure programs are often more accessible, but lead to uneven, opportunistic sampling and 

thus observations that are biased in space, time, or taxonomically. Because the majority of 

observations are produced by the latter (Di Cecco et al., 2021), it is necessary to investigate and 

understand sampling bias patterns so that citizen science data can be meaningfully used. 

Remote sensing provides consistent, repeatable measurements over large spatial extents, 

and remotely-sensed variables can be used to map species, habitats, and functional or spectral 
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diversity (Wang & Gamon, 2019). Though issues of data access and affordability have limited 

the use of remote sensing products to some extent, the value of remote sensing in biodiversity 

monitoring has long been recognized (e.g. the Essential Biodiversity Variables framework). It 

has the potential to enhance invasive species mapping (Foxcroft et al., 2017) as well as augment 

and improve the efficiency of conventional in situ forest restoration monitoring (de Almeida et 

al., 2020). Satellite systems like Landsat and Sentinel-2 offer long archives at site-level spatial 

resolutions that can be accessed on a number of platforms, whereas application of products from 

Light Detection and Ranging (LiDAR) methods, despite their promise in monitoring canopy 

structure, is constrained by cost and availability. 

The goal of this dissertation was to explore the utility of large-scale, public geospatial 

datasets in monitoring biodiversity in the Hawaiian Islands. Formed by volcanic hot spots nearly 

4,000 kilometers away from the nearest continent, Hawaii is the world’s most isolated 

archipelago and supports a wide range of habitats across elevation and moisture gradients 

(Fleischer et al., 1998). The native flora of Hawaii is derived from approximately 270 wind-, 

water-, and bird-dispersed original colonizing species (Price, 2004), and is currently estimated to 

include over 1,300 vascular plants, 90% of which are endemic to one or more islands (Imada, 

2012). Today, however, native Hawaiian plants are outnumbered by non-native species whose 

introduction can be linked to two main waves of human colonization. Beginning in 1000-1200 

AD, Polynesian settlers introduced many non-native crop plants that they cultivated in extensive 

agricultural systems, clearing and greatly altering Hawaii’s lowland vegetation (Cuddihy & 

Stone, 1990; Kirch, 2011). Over two dozen Polynesian introductions still occur in Hawaii. 

European colonists first arrived in the early 18th century, but it was during the mid-19th century, 

following the Great Māhele of 1848, that rapid, large-scale land changes began taking place 
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(Cuddihy & Stone, 1990). Forest clearance for commercial agriculture, cattle ranching, and 

logging expanded, particularly in dry habitats (Price, 2004), and the rate of non-native 

introductions increased, eventually totaling over 5,000 species and varieties (Nagata, 1985).  

Due to the combination of high rates of endemism and significant native vegetation loss, 

Hawaii has been included in the Polynesia-Micronesia biodiversity hotspot (Myers et al., 2000) 

(Figure 1.1). The impacts of deforestation and species invasions persist long after fields and 

pastures are abandoned. Many non-native plant species are now naturalized, with self-sustaining 

populations, while others have become highly invasive and pose significant threats to native 

ecosystems by disrupting native plant regeneration, limiting resource acquisition, and altering 

wildfire regimes (Cuddihy & Stone, 1990; Ellsworth et al., 2014). Hawaii’s native plants, having 

evolved in isolation, without herbivores, and largely without broad-scale disturbances like 

wildfire, are highly vulnerable to displacement by invasive species (Gillespie et al., 2008). Much 

of the land area of the main Hawaiian Islands is now dominated by non-native vegetation (42-

99%) (Hughes et al., 2017), and Hawaii has the highest rates of species extinction and 

endangerment in the United States (Sakai et al., 2002). Native ecosystem recovery thus requires 

intensive, active restoration and continuous monitoring (Dimson & Gillespie, 2020).  

The guiding questions of this dissertation are: 

1. How has participation in low-structure citizen science in Hawaii varied in space and over 

time? 

2. Does low-structure citizen science increase the extent of non-native plant monitoring in 

Hawaii, and, consequently, contribute to improved estimates of invasive plant habitat?  

3. How can site-level, remotely sensed indices be used to enhance monitoring of tropical 

dry forest fragments and restoration sites?  
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Figure 1.1 

The study area of the dissertation included islands in the younger, southeastern range of the Hawaiian 

archipelago, which is part of the Polynesia-Micronesia biodiversity hotspot (inset adapted from Myers et 

al., 2000; hillshade layer from State of Hawaii Office of Planning). 

 

Each question is addressed in one of the following three chapters of the dissertation. 

Chapter 2, Who, where, when: Observer behavior influences spatial and temporal patterns 

of iNaturalist participation, uses observation trends on the iNaturalist citizen science platform 

to examine who tends to participate in low-structure biodiversity citizen science, where 

observations tend to be made, and how this has changed over time, particularly after COVID-19 

lockdowns were instated. Chapter 3, Citizen science enhances invasive plant monitoring and 

estimates of habitat, focuses on sampling biases in non-native plant observations from 

iNaturalist. Using four example invasive species, I compare the environmental distribution of 

iNaturalist data to professional data from regional management agencies in Hawaii, and build a 

series of habitat suitability models with each dataset. In Chapter 4, Landsat NDVI time series 

capture greening trends in Hawaiian dry forest, I use a common remote sensing vegetation 
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index to observe changes in native species-dominated, non-native species-dominated, and 

actively restored (or in-progress) dry forest sites in order to assess the utility of open access 

Landsat imagery in increasing the longevity and frequency of ecosystem monitoring.  

While each chapter focuses on regions of or sites in the Hawaiian Islands (Figure 1.1), 

the iNaturalist and Landsat datasets have global spatial coverage. Management implications are 

discussed that may be applicable in other regions where conventional field survey data are 

scarce. The studies in this dissertation illustrate potential applications for freely accessible 

datasets in monitoring biodiversity, and demonstrate the value of utilizing multiple, 

complementary data sources to expand the breadth and continuity of monitoring.  
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 Who, where, when: Observer behavior influences spatial and temporal 

patterns of iNaturalist participation 

 

This chapter has been submitted in its current form to Applied Geography as Dimson, M. and 

Gillespie, T.W. Who, where, when: Observer behavior influences spatial and temporal patterns 

of iNaturalist participation. Applied Geography (in revision). Supplementary materials for this 

chapter are provided in Appendix A. 

 

Abstract  

Citizen science can expand professional biodiversity monitoring through the contributions of 

volunteers. Lockdowns during the COVID-19 pandemic, however, impacted participation in 

various ways. We investigated how observer behaviors and spatial biases influenced iNaturalist 

participation in the Hawaiian Islands from 2008-2021. Overall, participation grew exponentially 

until 2019, then decreased after implementation of COVID-19 travel restrictions. Sampling was 

consistently biased toward developed areas, sites near roads or trails, and areas with fewer 

protections, while Hawaii’s most diverse and remote habitats tended to be underrepresented. 

Observer behaviors, defined by activity level and primary location (i.e. Hawaii resident or 

visitor), were associated with different sampling patterns. The decrease in 2020 was largely 

driven by a decline in visitors, who represented nearly two-thirds of participants, were generally 

more active, and made more research-grade observations. Meanwhile, resident observers 

continued to participate at relatively steadier rates, but tended to be short-term participants and 

more restricted to human-impacted landscapes. The majority and spatial diversity of observations 

therefore relied on the participation of a small fraction of observers, most of whom were unlikely 



10 

to live in the region. Fostering sustained participation from local communities could improve the 

consistency and quality of iNaturalist monitoring data and thus its utility in biodiversity 

conservation. 

 

2.1. Introduction 

Biodiversity citizen science is a significant source of the broad-scale species data needed 

to inform conservation science and policymaking (McKinley et al., 2017; Theobald et al., 2015). 

Citizen science is public participation in the collection or processing of scientific data, often in 

collaboration with professional scientists (Kullenberg & Kasperowski, 2016). In addition to 

enabling data collection on scales that often exceed those of professional researchers, citizen 

science programs can increase participants’ scientific literacy (Bonney et al., 2016), improve 

trust between professional scientists, natural resource managers, and the public (Vann-Sander et 

al., 2016), and confer mental health benefits through purposeful, outdoor activities for 

participants (Coventry et al., 2019).   

The tradeoff between citizen science program structure and participant engagement often 

has consequences for data quality or credibility (Freitag et al., 2016). More formal structures 

have protocols that standardize data collection, but may be less approachable for participants, 

while low-structure programs attract more participants but often result in opportunistic 

observations. Uneven sampling effort can result in biased data and produce skewed estimates of 

biodiversity. Several sampling biases have been documented in citizen science data, including 

taxonomic biases (Boakes et al., 2016; Mair & Ruete, 2016) and spatial biases toward protected 

areas (Botts et al., 2011; Tulloch et al., 2013), sites with open water (Boakes et al., 2016), and 

areas with a higher human footprint, such as population centers, parks, agriculture, and roadsides 
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(Geldmann et al., 2016; Lloyd et al., 2020; Mair & Ruete, 2016; Pernat et al., 2021). These data 

quality issues may discourage professional scientists from using or acknowledging citizen 

science sources (Riesch & Potter, 2014; Theobald et al., 2015; Vann-Sander et al., 2016). 

However, similar biases have been recorded in data collected by professionals (Boakes et al., 

2010; Martin et al., 2012; Meyer, Weigelt, & Kreft, 2016), and the quality of biased data can be 

significantly improved by collecting information about the observation process (Kelling et al., 

2019). For example, species distribution modeling studies have demonstrated that estimates of 

observer expertise or survey effort can be used to mitigate bias (Johnston et al., 2021; Steen et 

al., 2019; van Strien et al., 2013). It is thus important to characterize observer behavior to the 

extent possible, particularly when utilizing data from low-structure programs that contribute the 

majority of citizen science observations (Di Cecco et al., 2021). 

In spring 2020, lockdown measures were implemented across the globe in an attempt to 

slow the spread of SARS-CoV-2 coronavirus and prevent significant loss of human life. These 

necessary restrictions constrained human mobility in an unprecedented way, and, by limiting 

regular research activities, highlighted the importance of considering diverse data streams like 

citizen science for monitoring biodiversity (Bates et al., 2020). Several papers have examined 

how citizen science participation changed during COVID-19 lockdowns. Participation decreased 

during the City Nature Challenge in Tokyo (Kishimoto & Kobori, 2021) and for several 

programs in the United States (Crimmins et al., 2021), but remained steady in programs in 

Colombia (Sánchez-Clavijo et al., 2021), Australia (Stenhouse et al., 2022), and Italy, Spain, and 

the United Kingdom (Basile et al., 2021). However, even if the overall number of observations 

was consistent with previous years, a relative increase in urban activity was sometimes observed, 

indicating a potential loss of data in natural areas (Basile et al., 2021; Crimmins et al., 2021; 
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Sánchez-Clavijo et al., 2021). Additionally, Kishimoto & Kobori (2021) found steadier 

participation among more enthusiastic observers, and Crimmins et al. (2021) observed that 

though total observations were less impacted during lockdowns, fewer participants were active. 

In short, citizen science participation in many regions became spatially restricted to more 

accessible sites, and was sustained by relatively smaller groups of more active observers. The 

latter may be concerning if we wish to broaden participation in and build more inclusive citizen 

science communities, which are often disproportionately white and/or male (Cooper et al., 2021; 

Pateman et al., 2021; Sánchez-Clavijo et al., 2021). Understanding the impact of COVID-19 

restrictions on participation is important for data users, but is also an opportunity to explore who 

participates in citizen science and where.  

This study examined changes in iNaturalist participation in the Hawaiian Islands from 

2008 to 2021. Located in the Polynesia-Micronesia biodiversity hotspot, a region of exceptional 

species endemism as well as ongoing habitat loss (Myers et al., 2000), the Hawaiian Islands are a 

unique place to examine trends in citizen science biodiversity monitoring as well as the effects of 

COVID-19 protocols. The region relies heavily on tourism as a source of income and 

employment (Agrusa et al., 2021) and received over 10.2 million visitors in 2019, i.e. seven 

times as many visitors as residents (Chun et al., 2019). Yet as the world’s most geographically 

isolated archipelago (Fleischer et al., 1998), travel to the islands could be feasibly restricted 

during the COVID-19 pandemic, coinciding with a 73.9% decrease visitor arrivals in 2020 

(Chun et al., 2020). The primary restriction was a 14-day quarantine for travelers to Hawaii, 

instated on March 17, 2020 (Office of the Governor, 2020a). Quarantine requirements were 

adjusted amid developments in testing, vaccination, and new variants, and ultimately lifted on 

July 8, 2021 for fully vaccinated, domestic travelers (Office of the Governor, 2021). A state-by-
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state analysis by Crimmins et al. (2021) noted significantly fewer iNaturalist observations and 

active observers in Hawaii than expected in spring 2020. As previous studies have demonstrated, 

this decrease in participation likely varied in space and among participants. 

Our analysis investigated how iNaturalist participation trends from 2008 to 2021 were 

influenced by observer behavior (characterized by participants’ primary location and activity 

level) and anthropogenic site attributes that often affect sampling, including land cover, 

proximity to roads and trails, and land designation. Our primary research questions were: 1) How 

do observer behaviors influence iNaturalist participation patterns in Hawaii? 2) Are iNaturalist 

observations spatially biased toward human-impacted landscapes, and does sampling bias vary 

according to observer behavior? 3) How have spatial and observer behavior trends varied over 

time, particularly before and after the implementation of COVID-19 travel restrictions?  

2.2. Materials and methods 

2.2.1. iNaturalist observations and attributes 

iNaturalist is a popular, web-based citizen science platform and joint initiative of the 

California Academy of Sciences and the National Geographic Society that aims to connect 

participants to nature while producing scientifically valuable biodiversity data. The app has an 

unstructured survey format that makes it possible for users of any experience level to post 

species observations from their smartphone or computer. Observations are therefore largely 

opportunistic, but abundant; over 87 million have been made by over 2.5 million users since the 

program’s launch in 2008 (iNaturalist, 2022b).  

From the iNaturalist website (www.inaturalist.org), we downloaded georeferenced 

observations made in Hawaii (place_id=11) between 01-01-2008 and 12-31-2021. Our analysis 

included 93,160 observations with some level of taxonomic identification, a positional accuracy 

http://www.inaturalist.org/
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of ≤ 30 meters, and coordinates within the land area of Hawaii’s six largest islands (Hawaiʻi, 

Maui, Oʻahu, Kauaʻi, Molokaʻi, and Lānaʻi; access to and iNaturalist data for Niʻihau and 

Kahoʻolawe being limited). We did not include observations with obscured locations in this 

analysis. iNaturalist automatically obscures coordinates for threatened, endangered, and other at-

risk taxa, and observers may also choose to obscure locations of observations made at their 

homes. The removal of these records could potentially result in spatial bias as well, but this is not 

possible to confirm given that the true coordinates are obscured within a 0.2 x 0.2 degree cell. 

Each observation was classified by quality and taxonomic group. For the quality classes, 

we used iNaturalist’s Data Quality Assessment statuses: research-grade, needs ID, and casual. 

Research-grade observations are dated, georeferenced, non-captive records uploaded with a 

photo or sound, whose identification has been agreed upon by 2/3 of iNaturalist identifiers. 

Needs ID refers to observations that possess research-grade criteria but have not yet been 

identified. Observations lacking any of the research-grade criteria are classified as casual. 

Taxonomic groups included amphibians, birds, fishes, fungi, invertebrates, mammals, 

plants and algae, and reptiles. Classification was based primarily on the iconic_taxa iNaturalist 

attribute. Observations for which iconic_taxa=NA were manually classified using the scientific 

or common name information provided. Protozoa represented a small percentage of observations 

in the study extent (<0.001%) and were excluded from analysis. 

2.2.2. Defining observer behavior 

Variables used to define observer primary location and activity level were derived from 

observations made in Hawaii from 2008-2021 (i.e. regardless of accuracy, species identification, 

etc.) and additional data acquired through the Observation Histogram operation in the iNaturalist 
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Application Program Interface version 1.3.0 (https://api.inaturalist.org). This operation yields the 

unique dates that a user was active and the number of observations they made that day.  

As location information is not available for iNaturalist observers, we inferred primary 

location from the proportion of each individual’s activity in Hawaii. We scored activity in 

Hawaii on a scale of 0 to 1 as: ℎ = 0.4(𝑜ℎ) + 0.6(𝑑ℎ), where oh is the proportion of 

observations the observer made in Hawaii, and dh is the proportion of all active days (unique 

dates on which an observer recorded at least one observation on the app) that they made an 

observation in Hawaii from 2008-2021. For h > 0.5, the observer was classified as likely to be 

resident (hereafter, ‘residents’). Otherwise, they were considered likely to be visiting (hereafter, 

‘visitors’).  While this classification method is limited by the assumption that the majority of an 

observer’s activity will occur where they live, it is better suited to an isolated region like Hawaii, 

which has clear geophysical boundaries and to which travel requires a substantial investment of 

time and resources. Previous studies have also shown that citizen science participants are 

typically active closer to home (Dennis & Thomas, 2000; Farias et al., 2022; Gratzer & 

Brodschneider, 2021; McGoff et al., 2017). 

Three engagement metrics were used to define activity level. Activity ratio is the 

observer’s active days divided by their active period (date of their first observation minus date of 

last observation, in days) (Ponciano & Brasileiro, 2014). Relative activity duration is the ratio of 

the observer’s active days to total days in our study period (i.e. 01-01-2008 to 12-31-2021) 

(Boakes et al., 2016). Activity ratio describes how engaged an observer was while active on the 

app, while relative activity duration describes their engagement relative to other iNaturalists. 

Lastly, the total number of observations made by each observer provides a measure of the extent 

of their engagement (Boakes et al., 2016). This last metric was normalized using a natural log 

https://api.inaturalist.org/
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transformation given that values were highly skewed, then scaled to span 0 to 1 like the other 

two metrics. 

To group observers by these metrics, we used a clustering analysis approach similar to 

that of Boakes et al. (2016) and Ponciano & Brasileiro (2014). We began by identifying a 

suitable number of clusters with Ward’s minimum variance, a bottom-up hierarchical clustering 

analysis that requires no predefined number of clusters (k). We then calculated Average 

Silhouette Width (ASW) with the pamk() function in the R package cluster to test the strength of 

the clustering structure for k = 2 through 10. ASW ranges from -1 to 1; we selected k with ASW 

> 0.51, which indicates a reasonable structure has been found (Struyf et al., 1996). Using this k 

value, we partitioned observers into activity levels using K-means clustering, a centroid-based, 

unsupervised algorithm that classifies data into a pre-defined number of clusters. A random 

number of centroids is given at the start, and data points are assigned to their closest centroid in 

order to form k groups.  

2.2.3. Spatial attributes 

We examined the spatial distribution of iNaturalist activity by land cover, land 

designation, and distance to roads and trails. Activity was measured by number of observations 

and number of visits by unique observers. Land cover was derived from the Carbon Assessment 

of Hawaii Land Cover map (Jacobi et al., 2017) by reclassifying the biome_unit attribute into 

eight general classes (Table 2.1a). Land designation was based on Gap Analysis Project (GAP) 

status codes for areas in the U.S. Geological Survey Protected Areas Database (U.S. Geological 

Survey Gap Analysis Project, 2018), (Table 2.1b). GAP codes serve as a measure of 

management intent to conserve biodiversity. Though protected areas are often well-sampled by 

citizen science (Stenhouse et al., 2022; Tulloch et al., 2013), the distribution of participant 
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activity may be influenced by infrastructure and management at a given site (Walden-Schreiner 

et al., 2018). To calculate distance to roads and trails, we compiled a vector layer using U.S. 

Census Bureau TIGER/Line Shapefiles for all roads in Hawaii, the Na Ala Hele Trail system 

(State Department of Land and Natural Resources, DOFAW, updated 2018), and AllTrails, a 

web and mobile outdoor recreation app for sharing trail information. We included 135 heavily 

trafficked AllTrails routes with at least 100 reviews that were not already accounted for in the Na 

Ala Hele system. Euclidean distance to road/trail was calculated across a 30-meter resolution 

raster that matched the extent and resolution of the land cover layer. This grid was divided into 

quartiles to create four classes (Table 2.1c).  

Observations were assigned to spatial classes via the Spatial Join tool in ArcMap 10.7 or 

the extract() function in the R package raster. Statistical significance of bias was estimated by 

comparing the observed distribution of observations or unique observers to the expected 

distribution, assuming that the probability of occurrence in a given spatial class is proportional to 

the area that the class occupies. We use the index from Kadmon et al. (2004): 𝐵𝑖𝑎𝑠𝑑 = (𝑛𝑑 −

 𝑝𝑑𝑁) / √𝑝𝑑(1 − 𝑝𝑑)𝑁 , where nd is the number of observations or observers per class d, pd is 

the probability that the observation or observer is located in class d given its area, and N is the 

total number of possible observations or observers. Values are distributed like a standard normal 

variable (Z) and statistically significant (α = 0.05) for values greater than 1.64. We calculated 

spatial bias in observations and unique observers per year and for the entire study period.  

Table 2.1 

Descriptions of land cover (a), land designation (b), and distance to road/trail (c) classes and the 

proportion of the study area each class occupies. 

 

a) Land cover Description % Area 

Developed Low to high intensity development; developed open space 6.3% 

Agriculture Cultivated agriculture; plantation forests 7.3% 
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Bare ground Very sparse vegetation to unvegetated areas 19.0% 

Grassland Native and alien dry, mesic, and wet grasslands 16.9% 

Dry/mesic shrubland Dry and mesic shrublands; coastal strand vegetation 14.1% 

Dry/mesic forest Dry and mesic forests 15.3% 

Wet forest/shrubland Wet forests, shrublands, ferns, and cliff communities 21.0% 

Wetland/water Native bogs, wetlands, and water 0.2% 
   

b) Land designation Description % Area 

None Area is not included in the USGS Protected Areas Database 46.4% 

Limited protection 
Protected area with no known mandates to prevent natural 
habitat conversion (GAP status 4) 

17.5% 

Multi-use 
Some protection from habitat conversion, but multiple 
extractive uses permitted (e.g. logging, mining, off-highway 
vehicle recreation)  (GAP status 3) 

20.4% 

For biodiversity 
Area has permanent protection from natural habitat 
conversion (GAP status 1 or 2) 

15.8% 
   

c) Distance to road/trail Description % Area 

Q1 ≤ 150 meters 25.3% 

Q2 ≤ 553.2 meters 24.9% 

Q3 ≤ 1513.4 meters 24.9% 

Q4 > 1513.4 meters 25.0% 

 

2.2.4. Participation over time 

Pre-COVID growth in iNaturalist participation (2008 to 2019) was estimated using linear 

models of observations, unique observers, and new observers (i.e. first-time participants in 

Hawaii) versus year. Participation metrics were log transformed (ln x) to improve fit and 

distribution of residuals. Analysis of covariance (ANCOVA) was used to test for significant 

differences in growth among observer behavior, observation quality, taxonomic, and spatial 

classes. To determine whether participation varied by quarter (January-March (JFM), April-June 

(AMJ), July-September (JAS), October-December (OND)), we first used ANCOVA to check for 

significant differences among quarterly regression slopes. As quarter did not have a significant 

effect, linear models were fitted with annual data. ANCOVA assumptions were checked using 

Shapiro-Wilk normality tests and Bartlett tests of homogeneity of variances. When ANCOVA 
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indicated significant differences for a given factor, post-hoc interaction analysis was performed 

using the emtrends() function in the R package emmeans. 

The effect of travel restrictions in 2020-2021 was evaluated in two ways. Expected values 

for 2020-2021 participation metrics were predicted using annual and quarterly 2008-2019 linear 

models. We then calculated the difference between the observed and predicted values in each 

quarter, and determined significance using predicted 95% confidence intervals (Crimmins et al., 

2021). Second, we calculated percent change in participation metrics from 2019 to 2020 and 

2021 on annual and quarterly bases. We calculated overall percent change as well as change 

within each observer behavior, observation quality, taxonomic, and spatial class. 

2.3. Results 

2.3.1. Observer behavior 

The clustering analysis included 10,265 iNaturalist observers who had made at least one 

observation meeting spatial and taxonomic requirements (section 2.2.2). Though Average 

Silhouette Width was higher for k = 2 (0.70) than k = 3 (0.58), k = 2 only distinguished the least 

active observers. We thus chose 3 clusters in order to describe more variation in activity: 

enthusiastic, moderate, and short-term. Enthusiastic observers made relatively high numbers of 

observations (median = 601) and had the highest mean relative activity duration (63.3% of the 

study period). Short-term observers made the fewest observations (median = 2) and had high 

activity ratios (median = 1) because they were only active on the app for an average of 1.7 days. 

The moderate group represented activity in between these two extremes (median = 20 

observations/observer) and included the majority of observers.  

Observers likely to be Hawaii residents represented 36.7% of participants, and nearly half 

(49.0%) were classified as short-term (Figure 2.1). The majority of enthusiastic observers were 
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classified as visitors, while only 4.1% were residents. Enthusiastic observers from either location 

represented just 14.1% of all participants but made 47.9% of observations. Enthusiastic 

observers were the most likely to make research-grade observations, while short-term observers 

were the least likely (Table 2.2). Only 52.1% of short-term observers made at least one research-

grade observation, compared to 77.0% of moderate and 95.0% of enthusiastic observers. Most 

residents were short-term, and were thus more likely to make casual observations (50.5% of 

residents submitted at least one casual observation, versus 35.5% of visitors). 

 
Figure 2.1 

Proportion of unique observers and observations per observer behavior, as defined by location (resident or 

visitor in Hawaii) and activity level (enthusiastic, moderate, or short-term). 

 

Visiting-short-term observers were most likely to equally split their activity between 

Hawaii and elsewhere (Appendix A, Figure A1). It is thus possible that some short-term observer 

locations were misclassified; for instance, a one-time observer who was visiting Hawaii during 

their brief active period on the app would be classified as resident. However, the low number of 

visiting-short-term observers that we identified was a logical outcome of classification given that 

citizen scientists more often participate close to where they live. 

Most observers only recorded one taxonomic group (Table 2.2), which was typically 

plants and algae. Plants and algae represented the majority of observations in every observer 

behavior class, at least 51.3% (visiting-enthusiastic observers) and as much as 75.9% (resident-
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short-term observers) (Appendix A, Figure A2). Birds and invertebrates were the next most-

observed taxonomic groups among all observers. Mammals and amphibians were the least likely 

to be observed. Taxonomic diversity was highest in observations made by resident-enthusiastic 

observers, who were most likely to record multiple groups (Appendix A, Figure A3).  

Table 2.2 

Sampling characteristics of individual observers, including the quality of the observations they recorded 

and the number of taxonomic groups or spatial classes they sampled at least once. Values provided are the 

mean and standard deviation of each observer behavior class. 

 

 
Resident - 
Enthusiastic 

Resident - 
Moderate 

Resident - 
Short-term 

Visiting - 
Enthusiastic 

Visiting - 
Moderate 

Visiting - 
Short-term 

Observation quality 

% research-grade 64.9 (23.2) 47.2 (34.2) 37.6 (42.4) 76.6 (27.6) 60.4 (40.6) 37.5 (45.4) 

% needs ID 25.4 (19.7) 26.5 (29.4) 28.9 (39.9) 15.7 (22.5) 18.3 (31.4) 16.3 (33.9) 

% casual 9.8 (14.9) 26.2 (32.2) 33.5 (42.8) 7.7 (18.2) 21.3 (34.8) 46.2 (49.7) 

# of taxonomic groups or spatial classes 

Taxonomic groups 4.7 (2.2) 1.9 (1.2) 1.2 (0.6) 2.7 (1.8) 1.6 (1) 1.3 (1.2) 

Land cover classes 5.5 (2.2) 2.1 (1.4) 1.3 (0.7) 2.9 (2.1) 1.7 (1.2) 1.3 (1.2) 

Land designation 
classes 

3.2 (1) 1.7 (0.8) 1.1 (0.4) 2.1 (1.1) 1.4 (0.7) 1.2 (0.5) 

Distance to 
road/trail classes 

2.7 (1.2) 1.4 (0.7) 1.1 (0.4) 1.7 (1) 1.2 (0.5) 1.1 (0.3) 

 

2.3.2. Overall spatial bias 

iNaturalist activity was most strongly biased towards developed and wetland/water land 

cover types, non-designated sites, and sites within 150 meters of a road or trail (Figure 2.2). 

Wetland/water observations were primarily clustered in highly accessible, coastal sites. The most 

significantly underrepresented classes in terms of observations were grassland and wet 

forest/shrubland land cover types, areas managed for biodiversity, and sites further than 150 

meters from roads and trails. These classes, except for grassland, were also where observers 

tended to be less active. Prior to 2016, there was greater spatial variability in sampling patterns. 
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But observations and unique observers have been consistently concentrated in certain sites, 

including those closest to roads and trails, in developed areas, and wetlands and open water, 

throughout the study period.  

 
 

Figure 2.2 

Sampling bias in iNaturalist observations and unique observer visits by a) land cover, b) land designation, 

and c) distance to road/trail. Gray area represents the percent area occupied by each class. +/- indicates 

significant over-/under-representation. 

 

Overrepresentation of areas with a higher human impact (developed, more accessible, 

and non-designated) was strongest in casual observations, and relatively lower in observations 

made by visiting-enthusiastic observers. Enthusiastic observers, particularly residents, were more 

likely to sample a greater diversity of land cover types, land designations, and sites further from 
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roads and trails than less active observers (Table 2.2). All taxonomic groups showed the same 

biases toward developed areas, non-designated sites, and sites closest to roads and trails, with a 

few exceptions. Bias toward developed sites was relatively lower among fishes and fungi, which 

were highly represented in coastal bare ground areas and dry/mesic forest, respectively. Fungi 

observations were also skewed toward multi-use areas.  

2.3.3. Pre-COVID participation trend 

We found statistically significant positive relationships (p<0.001) between year and 

observations, unique observers, and new observers from 2008-2019 (Appendix A, Table A1). 

Annual observations and unique observers increased in all observation quality, taxonomic, and 

spatial classes, with no significant differences among classes indicated by one-way ANCOVA. 

 
Figure 2.3 

Participation by observer location, estimated using linear models of log-transformed observations, unique 

observers, and new observers versus year. Participation among residents increased at a significantly 

higher rate than visitors from 2008-2019.  

 

When observers were grouped by location only, all three variables increased at a higher 

rate among residents (p<0.001 for observations and unique observers; p<0.01 for new observers) 

(Figure 2.3). When grouped by location and activity, all observer behavior classes showed 

positive trends except for the visiting-short-term group, for which no significant relationship was 
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detected. This is likely due to the low number of samples available for this group. One-way 

ANCOVA and post-hoc comparison of slopes showed that observations by resident-enthusiastic, 

resident-short-term, and visiting-moderate observers increased at a significantly higher rate than 

the visiting-enthusiastic group (Appendix A, Table A2). Annual increases in new and unique 

observers were significantly higher for resident-moderate, resident-short-term, and visiting-

moderate observers than for both enthusiastic groups.  

2.3.4. 2020-2021 changes in participation 

Participation was lower than expected in AMJ, JAS, and OND 2020 (Appendix A, Tables 

A3-4). Observations, unique observers, and new observers were 32.4%, 33.2%, and 40.1% lower 

in 2020 than in 2019, respectively, with declines primarily occurring from AMJ to OND (Figure 

2.4). From 2019 to 2020, decreases in needs ID and research-grade observations were double 

that of casual-grade, and the number of unique observers who made research-grade observations 

decreased by 37.1% (Appendix A, Figure A4). Among taxonomic groups, fishes and fungi were 

the least impacted in 2020 relative to 2019 (observations of fish increased by 2.8%), while birds 

and reptiles had the largest percent decreases in both observations and unique observers. 

Visitors and residents showed distinct trends. In 2020, observations, unique observers, 

and new observers declined by 52.7%, 50.1%, and 64.2%, respectively, in the visiting-

enthusiastic group and 47.3%, 52.3%, and 57.6% in the visiting-moderate group. Certain metrics 

were significantly lower than expected during the AMJ, JAS, and OND quarters (Figure 2.5). 

Resident participation was also lower than expected (with a few exceptions, see Figure 2.5), but 

to a lesser extent; participation in 2020 still exceeded that of 2019 during certain quarters (Figure 

2.4) and for some groups, like resident-moderate observers (Appendix A, Figure A5). 
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Figure 2.4 

Change in 

observations, 

unique observers, 

and new observers 

relative to 2019, 

shown for all 

observers (dashed 

line) and by 

observer behavior 

class (solid lines). 

 

 

 

Spatial bias did not change significantly from 2019 to 2020, and activity in all spatial 

classes was less than expected (Appendix A, Tables A3-4). Relative changes in participation did 

vary somewhat among spatial classes. Compared to 2019, declines were less pronounced in 

agricultural land cover and more pronounced in dry/mesic shrubland (Appendix A, Figure A4). 

Areas managed for biodiversity experienced a larger decrease in observations from 2019 to 2020 

compared to other land designation classes, particularly during AMJ. Certain changes only 

occurred during specific quarters: in AMJ 2020, bare ground sites saw a relative decrease in 

observations, and dry/mesic forest—a class usually sampled in proportion to its area—was 
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significantly underrepresented. The magnitude of observation bias increased in developed areas 

during the AMJ and JAS quarters and in non-designated areas during AMJ 2020.  

 
Figure 2.5 

Difference between the number of observed and predicted observations, unique observers, and new 

observers in 2020-2021, calculated by observer behavior. Significant differences (*) determined using 

95% confidence interval. Visiting short-term group excluded due to low number of samples. 

 

In 2021, total observations lower than expected based on 2008-2019 linear models, albeit 

statistically non-significant (Appendix A, Table A3). The number of unique observers was also 

lower than expected, except during JAS (Appendix A, Table A4). Results were more variable 
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within quarters and observer, observation quality, taxonomic, and spatial classes. Fishes and 

amphibians were the only taxonomic groups that exceeded expected values for 2021. Wetland 

observations were significantly lower than expected in JFM. In AMJ, resident-short-term 

participation greatly exceeded expected values, while unique and new moderate visitors were 

significantly lower than expected (Figure 2.5). When calculated over the entire year, visiting-

enthusiastic participation metrics were closest to expected values, followed by those of the 

visiting-moderate group. 

All metrics surpassed 2019 values in 2021: observations increased by 85.9%, unique 

observers by 56.9%, and new observers by 54.1%. Growth in unique observers was highest for 

casual observations (Appendix A, Figure A4). Among taxonomic groups, fishes had the highest 

increase in both observations and unique observers compared to 2019 (Appendix A, Figure A4). 

Spatial bias did not statistically differ from previous years, though 2021 growth in observations 

was relatively higher in wet forest/shrub, lands managed for multiple uses, and sites up to 1,513 

meters from a road or trail (Appendix A, Figures A4). Growth in unique observers was highest in 

wetland/water and bare ground land cover types, and areas with limited protections. For 

observers, the highest growth in participation often occurred among resident-short-term 

observers (Appendix A, Figure A5). Resident-enthusiastic observers also experienced high 

growth in observations, while unique observers increased in both moderate groups.  

2.4. Discussion 

2.4.1. Bias toward highly impacted landscapes 

iNaturalist observations in Hawaii were skewed toward sites with a higher human impact 

(i.e. areas that are developed, closer to roads or trails, and have fewer protections). This is a 

common bias in citizen science projects, including the global iNaturalist dataset (Di Cecco et al., 
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2021; Fletcher et al., 2019; Mair & Ruete, 2016). Though the magnitude of bias varied somewhat 

from year to year, more accessible, developed sites have been consistently overrepresented since 

the app’s launch in 2008 and throughout the COVID-19 pandemic. 

Annual land designation trends were more variable, but observations over the full study 

period were biased toward non-designated sites and those with limited protections. Previous 

studies indicate that citizen science bias toward protected areas varies regionally, and may be 

influenced by site characteristics of the protected areas themselves (Johnston et al., 2020; Tang et 

al., 2021; Tulloch et al., 2013). In separating designated lands by GAP status, we found that 

protected areas more explicitly managed for biodiversity were undersampled in Hawaii, while 

those that permit intensive anthropogenic use and disturbance were sampled more intensely.  

If observers are primarily active in more ‘convenient’ or accessible locations, they may 

be more likely to record common, easily-detected species (Callaghan et al., 2020; Di Cecco et 

al., 2021). For example, an increase in urban observations during COVID-19 lockdowns in 

Colombia coincided with fewer reports of threatened and endemic species (Sánchez-Clavijo et 

al., 2021). An exceptionally high proportion of native Hawaiian species are endemic and prone 

to endangerment due to their relatively narrow ranges and low population densities (Pratt, 2009; 

Sakai et al., 2002). Our land cover analysis suggests that iNaturalist data may have limited 

capacity to capture rare or at-risk taxa (Lloyd et al., 2020), particularly in native wetlands and 

wet and dry forests, which were sampled much less than developed areas despite being some of 

the islands’ most diverse ecosystems with high rates of endemism (Javar-Salas et al., 2020; Sakai 

et al., 2002). Though wetlands were overrepresented relative to their area, well-sampled sites 

were largely concentrated in coastal areas near roads and trails, rather than in high-elevation 

native bogs.  
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The skew toward human-impacted sites could potentially be influenced by the high 

number of non-native species in Hawaii, which have significantly altered native patterns of 

diversity (Craven et al., 2019; Cuddihy & Stone, 1990). Concentrations of invasive and non-

native species would not be unexpected on disturbed road- and trail-sides or in developed and 

less-protected areas. A species-level analysis would be needed to distinguish the effects of true 

non-native species occurrence versus observer bias. However, land-use change, habitat 

fragmentation, and species invasions are more often associated with a loss in species richness 

(Flaspohler et al., 2010; Martínez-Ramos et al., 2016; Murphy & Romanuk, 2014), and the 

relatively low abundance of observations in Hawaii’s most diverse habitats indicates at least 

some degree of observer bias. 

While spatial bias limits the inferences that can be made about species distributions or 

population changes (Kamp et al., 2016), particularly in more remote locations, the observations 

are not without utility. Many statistical approaches can be employed to address sampling bias 

(Fletcher et al., 2019; Steen et al., 2021; Varela et al., 2014), and spatially biased observations 

may be less problematic when used to complement professional, structured data in low-priority 

habitats (Martin et al., 2012) or areas that have not been surveyed yet or as extensively 

(Lehtiniemi et al., 2020; Robinson et al., 2020). Observations can also be filtered by quality; the 

Global Biodiversity Information Facility (www.gbif.org) and many papers have exclusively used 

research-grade iNaturalist data (e.g. Crimmins et al., 2021; Jacobs & Zipf, 2017; Pearman-

Gillman et al., 2020; Smith & Nimbs, 2022), which show less spatial bias toward human-

impacted areas than casual observations. Finally, monitoring in human-impacted landscapes has 

value in and of itself. Citizen science in urban areas provides long-term data collection on the 

response of biodiversity to urbanization (Callaghan et al., 2018, 2019; Hawthorne et al., 2015), 

http://www.gbif.org/
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and gives participants the opportunity to connect with local natural history and contribute to 

biodiversity research with local implications (Ballard et al., 2017).  

2.4.2. Preference vs. accessibility 

It is difficult to determine the degree to which sampling bias is driven by observer 

preference or site accessibility (Leonard, 2008; Tulloch & Szabo, 2012), but spatial patterns 

during the COVID-19 lockdown may offer some insight in Hawaii. Though spatial biases in 

2020-2021 did not differ significantly from previous years, certain trends were amplified in the 

quarters immediately after the onset of the pandemic. Participation decreased in dry/mesic forest, 

bare ground sites, and areas managed for biodiversity, while developed and non-designated areas 

saw a relative increase in activity. Shelter-in-place mandates (Office of the Governor, 2020b), 

coupled with spring and summer closures of state parks and beaches (Division of State Parks, 

2020; HNN Staff, 2020), suggest that this spatial shift was largely driven by access. Previous 

studies have noted that urban activity increased in regions where COVID-19 lockdowns 

restricted movement and park access (Basile et al., 2021; Crimmins et al., 2021; Sánchez-Clavijo 

et al., 2021), while urban and non-urban observations were similar in regions where residents 

were less confined to cities (Sweet et al., 2022). 

In 2021, participation rebounded more strongly in underrepresented sites (e.g. wet 

forest/shrub, protected and more intensely managed lands, sites further from roads and trails), a 

possible indication of observer interest in these sites once barriers to access were lifted. Whether 

this trend will persist into the future is uncertain. Additionally, sampling bias toward developed 

and non-designated areas differs among observer behavior groups. Bias toward human-impacted 

sites was relatively lower for enthusiastic observers prior to the pandemic, and did not increase in 
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2020. Future research could explore whether this difference among participants is due to 

preference for or unequal access to more “natural” sites.  

2.4.3. Data quality implications of observer trends 

Nearly half of the iNaturalist observations in Hawaii have been contributed by very 

active, enthusiastic observers who represent a minority of participants. Short-term observers 

outnumbered enthusiastic observers, and sampling patterns between them differed beyond sheer 

volume. Observations made by short-term and moderate observers showed higher spatial bias 

and were less likely to include the attributes required to become research-grade. These data are 

more difficult to use, as species identifications cannot be verified and true spatial patterns may be 

obscured. Perhaps unsurprisingly, enthusiastic observers were the most likely to make research-

grade observations; as the participants who have invested the most time on the app, they might 

also be expected to document more observation attributes. We also found greater taxonomic and 

spatial diversity in sampling by enthusiastic observers, who were more likely to visit sites 

outside of highly impacted, overrepresented areas. In essence, the breadth, as well as the bulk, of 

iNaturalist sampling was carried out by a small percentage of observers. 

While a small percentage of highly active users has been observed in other citizen science 

datasets (Boakes et al., 2016; Larson et al., 2020), we also found that the majority of Hawaii’s 

most active iNaturalist observers were unlikely to live in the state. Visitors represented nearly 

two-thirds of observers in this study and the majority of enthusiastic (95.9%) and moderate 

(73.6%) observers. This may be expected given that Hawaii’s relatively small population has 

been consistently outnumbered by tourists for several decades (Trask, 1992), and observers who 

elect to participate while traveling are likely to be more experienced or active on the app in 
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general (Hobbs & White, 2012). Investigating citizen science participation in other regions with 

significant tourism sectors may reveal similar trends. 

Meanwhile, short-term resident observers represented nearly half of all residents and were 

exhibiting the highest growth in participation prior to 2020. These briefly-active participants may 

have initially encountered iNaturalist by chance or through short-term events like bioblitzes, 

which can be hosted through iNaturalist projects and are effective at drawing in new, albeit 

episodic or one-time, participants (Ballard et al., 2017; Rochester, 2006; Rotman et al., 2014). 

Spikes in new short-term observers in 2015-2016 coincided with the launch of new iNaturalist 

projects by the Bishop Museum (Hawaii Biological Survey, 2018) and Hawai‘i Volcanoes 

National Park (Ferracane, 2015). 

A high proportion of one-time participants is not uncommon in citizen science projects of 

this scale and structure (Boakes et al., 2016; Di Cecco et al., 2021), but the differences between 

short-term and enthusiastic observers accordingly apply to residents and visitors. Resident-short-

term observers were the least likely to sample outside of highly human-impacted sites, 

suggesting a disparity in site access between residents and visitors. Residents were also more 

likely to make casual observations. This could also result in resident-collected data representing 

an even smaller percentage of the iNaturalist data used in research (Di Cecco et al., 2021). 

Improved retention and engagement of locally-based participants is needed to address these 

potential gaps, and could have benefits for biodiversity monitoring as well. We found that 

resident-enthusiastic observers, though few in number, were the group most likely to record 

multiple taxonomic groups and sample a diversity of site types. 

In order to expand the scope of monitoring via low-structure but accessible platforms, it 

is important to consider how to retain and encourage existing participants (Boakes et al., 2016; 
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Maund et al., 2020). To be clear, citizen science participation yields benefits beyond data 

collection for researchers, and all engagement is valuable (Bonney et al., 2016; Coventry et al., 

2019). In the context of biodiversity monitoring, however, long-term participation is particularly 

useful for understanding changes in species populations dynamics. Though iNaturalist has been 

extremely successful in attracting new users (iNaturalist, 2022a), the majority are inactive and 

participate very infrequently; many have submitted just one observation (Di Cecco et al., 2021). 

Even if overall engagement on a platform is consistently growing, high-quality, representative 

datasets may be more difficult to assemble if participation by individual observers is sporadic 

(Kamp et al., 2016; McKinley et al., 2017). Encouraging sustained, local participation may thus 

help to improve the quality, utility, as well as stability of iNaturalist data collection. 

2.4.4. Impact of COVID-19 on residents and visitors 

The COVID-19 pandemic made evident one consequence of the high proportion of 

visiting iNaturalist observers. Though participation in all observer groups was lower than 

expected in 2020, the drop in visiting-moderate and visiting-enthusiastic observer activity was 

significant throughout much of the year. Thus, total iNaturalist observations decreased, in spite 

of relatively steady participation among residents. While resident-moderate observers were 

generally the most active, the number of resident-short-term observers and observations were 

greater than expected during AMJ 2020. Shelter-in-place orders during this time may have 

motivated new participants to sign up for the app (Sanderfoot et al., 2022). If so, the effect was 

short-lived and the new observers were only briefly active.  

Quarantine restrictions were relaxed and COVID-19 testing became more widely 

available toward the end of 2020. By JFM 2021, participation among observer groups began to 

rise (Figure 2.4). However, it was still lower than expected, particularly for resident observers. 
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Resident-short-term observers experienced another AMJ spike (Figure 2.5), which may be 

related to several bioblitzes that take place during the spring (e.g. City Nature Challenge, 

Hawai‘i Intertidal Bioblitz). Despite this gain, the enthusiastic and moderate visitors were the 

closest to achieving expected rates of participation in 2021. Continued study could clarify 

whether COVID-19 had temporary or lasting effects on resident versus visitor activity in Hawaii. 

COVID-19 lockdowns disrupted long-term professional data collection by halting field 

research and travel (Corlett et al., 2020). In some regions, monitoring via citizen science 

increased (Sweet et al., 2022) or was less affected than professional surveying (Stenhouse et al., 

2022). In Hawaii, iNaturalists still collected thousands of observations in 2020. But the greatest 

declines in observations (from 2019) occurred for enthusiastic and visiting observers. This 

coincided with greater relative decreases in research-grade-eligible observations, and, as 

previously discussed, increased sampling of human-impacted sites. If collection of spatially 

diverse, high-quality observations primarily depends on the mobility of a small group of 

participants, then broad-scale citizen science via programs like iNaturalist appears vulnerable to 

the same events that disrupt professional research. 

2.4.5. Other considerations 

Long-term participation is often motivated by trust, mentorship, and relationships 

between participants and professional scientists, or participants and their communities (Rotman 

et al., 2014). Though iNaturalist can certainly be used to support these interactions, the app can 

also be easily used in solitude, and many biodiversity citizen science projects are shifting toward 

this independent format that may put more distance between researchers and volunteers (Maund 

et al., 2020). On their own, such projects may be insufficiently engaging for new participants 

without pre-existing interests or personal motivations. Opportunities for feedback, learning, 
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training, and collaboration with researchers are needed as well, and could be provided through 

institutions (e.g. museums) that can work with community-based groups to foster a more 

collective and inclusive experience (Ballard et al., 2017; Chesser et al., 2020; Pandya, 2012). 

These efforts are especially important for ensuring that audiences who have been historically 

underrepresented in or excluded from citizen science are able to participate in biodiversity 

conservation. 

Our results demonstrated that an active, local participant base is invaluable for consistent 

data collection, particularly during extraordinary circumstances like the COVID-19 pandemic. In 

order to ask relevant questions and produce relevant outcomes, citizen science projects must aim 

to increase inclusivity and prioritize local participation and perspectives (Cooper et al., 2021; 

Pocock et al., 2018). Our study can infer little about iNaturalist demographics in Hawaii, but 

there is a clear imbalance between residents and visitors who have the means to travel, perhaps 

regularly, to this isolated region. An in-depth investigation of citizen science participants—in 

iNaturalist or one of the many other projects in Hawaii (Grossman, 2022; Sherwood, 2020)—

would be needed to identify specific ethnic or socioeconomic disparities. However, citizen 

science participants are rarely representative of the general population, and instead tend to be 

white, male, and older, with higher levels of income and/or education (Hobbs & White, 2012; 

Larson et al., 2020; Maund et al., 2020; Pateman et al., 2021; Trumbull et al., 2000; West et al., 

2016), i.e. the demographics that have traditionally dominated professional science (Soleri et al., 

2016). This may intensify the disconnect between researchers and the communities in which they 

operate, particularly since many citizen science projects (like iNaturalist) are supported by 

academic institutions, government agencies, or other professional organizations (Rotman et al., 

2014), and thus do not challenge existing power dynamics between these formal centers of 
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expertise and the volunteers who are critical to sustaining data collection (Pocock et al., 2018). 

Important recommendations for engaging a more diverse citizen science community have been 

made elsewhere, but it is important to also acknowledge that many barriers to participation for 

marginalized groups are symptoms of larger socioeconomic disparities (Pandya, 2012). 

2.5. Conclusions 

Our analysis of iNaturalist participation in Hawaii corroborated some of the general 

patterns described in previous studies: sampling grew exponentially until 2020, decreased during 

COVID-19 lockdowns, and rebounded in 2021. Spatial biases toward human-impacted 

landscapes have remained relatively constant over time and increased somewhat during the early 

stages of the pandemic. A small percentage of observers contributed a large proportion of 

observations. However, we also found that that these trends varied by observer behavior, and that 

iNaturalist biodiversity monitoring in Hawaii was primarily driven by highly active visitors. 

Visitors were generally more active and greater in number. Residents were the minority of 

iNaturalists in Hawaii, and because many were short-term participants, their observations tended 

to be casual and more biased toward human-impacted landscapes. Yet enthusiastic residents, 

while small in number, made the most spatially and taxonomically diverse observations. The 

COVID-19 pandemic further demonstrated the particular importance of local participation, for 

though visitor activity decreased sharply at the onset of travel restrictions, participation by 

residents remained relatively steady, and several spikes in new resident observers occurred. By 

2021, however, visiting observers were closest to reaching expected rates of participation. In 

order to achieve more consistent, higher quality biodiversity monitoring via citizen science, it is 

important to encourage sustained and local participation.   
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 Citizen science enhances invasive plant monitoring and estimates of 

habitat  

 

A version of this chapter has been submitted to Diversity and Distributions as Dimson, M., 

Fortini, L. B., Tingley, M. W., and Gillespie, T.W. Citizen science and professional surveys offer 

complementary data for understanding invasive plant distributions. Diversity and Distributions 

(in review). Supplementary materials for this chapter are provided in Appendix B. 

 

Abstract  

Aim: Citizen science offers a cost-effective means of acquiring non-native species data. 

However, data quality issues due to unstructured sampling approaches may discourage the use of 

citizen science data by conservationists and professional scientists. To evaluate the utility of low-

structure iNaturalist data in non-native species monitoring, we examined vascular plant data for 

environmental sampling bias and bias toward native versus non-native species. Using four 

example invasive species, we then compared sampling bias in iNaturalist and professional 

agency observations and used the data to estimate suitable habitat for each species.  

Location: Hawaii, USA 

Methods: To assess observer preference for native versus non-native plants, we compared the 

number of species and observations recorded in iNaturalist to the total number of known species 

in Hawaii. We quantified environmental sampling biases with respect to site accessibility, status, 

and disturbance using a bias index. Habitat suitability for four invasive species was modeled in 

Maxent, using observations from iNaturalist, from agencies, from both sources, and iNaturalist 

observations that had been spatially and environmentally stratified. 
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Results: iNaturalist plant observations were biased toward invasive species, which were 

frequently recorded in areas with greater road/trail density and vegetation disturbance. For the 

example species, professional agencies tended to sample less accessible and native-dominated 

sites. Invasive plant models often produced distinct projections with iNaturalist versus agency 

data, particularly when predicting habitat in disturbed versus native vegetation-dominated sites. 

Stratifying the iNaturalist data had little impact on how suitable habitat was distributed for the 

example species. 

Main conclusions: Invasive species represented a high proportion of iNaturalist plant 

observations in Hawaii. Citizen science data from iNaturalist has the potential to complement 

professional invasive plant monitoring and expand estimates of habitat suitability. Each dataset 

captured unique environmental conditions, and combined models using both datasets provided a 

more comprehensive estimate of the species distribution. 

 

3.1. Introduction 

A major challenge in conservation biogeography is the collection of high-quality, 

comprehensive species occurrence data (Richardson & Whittaker, 2010). Monitoring data are 

essential to early detection, risk analysis, and effective management of non-native species, 

especially environmentally or economically harmful invasive species (Reaser et al., 2020). 

However, systematic surveys by trained experts are typically resource-intensive and limited in 

geographic scale (Hochachka et al., 2012), restricting the utility of the data in broad-scale 

applications, such as estimating species distributions (Meyer et al., 2016). Non-native species in 

particular have been historically neglected in biodiversity monitoring, and the databases that do 

exist remain difficult to access, share, and integrate (Reaser et al., 2020; Wallace et al., 2020).  
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Biodiversity citizen science, in which volunteers participate in species data collection, 

offers a cost-effective means of addressing data limitations, as the observations are often greater 

in spatial and temporal extent as well as more readily accessible (McKinley et al., 2017; 

Theobald et al., 2015). The availability and relative accessibility of citizen science data has great 

potential to expand existing information systems for non-native species (Johnson et al., 2020). 

  Citizen science programs differ in scale and structure in order to balance participant 

recruitment and experience with data credibility (Freitag et al., 2016). This can result in varying 

levels of identification accuracy as well as geographic and taxonomic completeness, particularly 

when observations are collected on an incidental basis (Dickinson et al., 2010). Nonrandom 

variation in observer ability, preferences, or search effort can produce sampling bias in the 

observations due to the mismatch between participants’ sampling patterns and actual species 

richness or abundance across space (van Strien et al., 2013). Sampling effort by citizen scientists, 

for example, is likely to be motivated by accessibility (i.e. roads or other human infrastructure) 

or interest in species and areas of conservation concern (Botts et al., 2011; Steger et al., 2017; 

Stolar & Nielsen, 2015; Tulloch et al., 2013). Thus, it is often assumed that there is a trade-off 

between the quality and quantity of citizen science data (Robinson et al., 2020). 

However, sampling biases are not unique to citizen science. Sampling by both 

professional and citizen scientists is taxonomically biased toward vertebrate species (Theobald et 

al., 2015). Herbarium data exhibit biases toward roadsides and more accessible, lower elevation 

areas, as well as seasonal bias toward spring and summer (Daru et al., 2018). In scientific 

literature, distribution data for ground-feeding birds are biased toward threatened species and 

protected areas (Boakes et al., 2010). The biases in different datasets can be complementary, and 

when combined with professional data, citizen science has increased the spatial coverage of 
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monitoring efforts for shorebirds (Robinson et al., 2020), insects (Hochmair et al., 2020; Wilson 

et al., 2020; Zapponi et al., 2017), large mammals (Farhadinia et al., 2018), and easily 

recognizable non-native aquatic species (Lehtiniemi et al., 2020). Following brief training, 

citizen scientists have produced similar field estimates of species cover and occurrence as 

professional scientists (Crall et al., 2011; Danielsen et al., 2014). Crall et al. (2015) demonstrated 

that citizen science can expand invasive plant monitoring in Wisconsin and lead to more realistic 

estimates of habitat through local and regional programs that involve identification training or 

collaboration with botanists. Nevertheless, the vast majority of citizen science plant data are 

incidental observations from low-structure programs (Di Cecco et al., 2021). Evaluation of the 

differences between low-structure citizen science data and professional plant surveys is needed 

to address assumed disparities in quality, which may otherwise limit the use of citizen science 

observations in conservation and scientific applications, such as habitat suitability modeling 

(Lewandowski & Specht, 2015; Riesch & Potter, 2014; Theobald et al., 2015).  

Habitat suitability models (HSMs) use the relationship between species occurrence 

records and the environmental conditions at those locations to predict the species’ potential 

distribution across sampled and un-sampled space. In invasive species management, HSMs have 

several applications, including predicting potential spread, disease risk, or range shifts under 

climate change (Guisan & Thuiller, 2005; Newbold, 2010; Srivastava et al., 2019). Model 

predictions can be used to identify areas vulnerable to invasion and to guide survey and 

monitoring efforts that are critical to early detection (Guisan et al., 2013). Though the use of 

citizen science observations in habitat suitability modeling has increased steadily over the last 

decade, plant data specifically is currently under-used (Feldman et al., 2021). 
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The quality of model training and evaluation data is critical to the accuracy of the 

predictions, and, ideally, species records should be representative of the entire modeled 

environment (Kramer-Schadt et al., 2013). Predictions based on biased data are often fitted to 

survey effort rather than the true potential distribution of suitable habitat (Phillips et al., 2009) 

and may inaccurately estimate species ranges (Beck et al., 2014; Björklund et al., 2016). 

Sampling bias can be addressed using data filtering treatments (e.g. spatial thinning or 

subsampling of records, culling by survey effort or observer expertise, or balancing presence and 

absence data) which can produce more accurate models that match the performance of those 

based on more structured survey data, though treatments typically do not have a consistent effect 

across the species modeled (Robinson et al., 2018; Steen et al., 2019, 2021) and will not address 

a complete lack of occurrence data in a region. Additionally, studies comparing filtered eBird 

observations to professional data have demonstrated that each dataset contributes unique biases 

and environmental conditions (Coxen et al., 2017; Robinson et al., 2020; Tanner et al., 2020). 

Modeling approaches that combine multiple datasets have thus become increasingly common; 

these range from data pooling to more formal integration techniques that can account for 

sampling issues (Fletcher et al., 2019). 

This research focused on the Hawaiian Islands, a biodiversity hotspot with both 

exceptionally high levels of endemism and ongoing habitat loss (Myers et al., 2000). Native 

plant species have become outnumbered by non-native species, some of which are highly 

invasive and pose significant threats to native ecosystems (Cuddihy & Stone, 1990). Native 

Hawaiian plants, having evolved in isolation, without herbivores, and largely without broad-scale 

disturbances like wildfire, are highly vulnerable to habitat loss to and competition with invasive 

species (Carlquist, 1974; Gillespie et al., 2008; Richardson & Pyšek, 2006). The study has two 
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primary components: a citizen science sampling bias analysis of all vascular plant observations 

in Hawaii to provide context for non-native species observations, and a species-specific 

comparison of citizen and professional science data for four example invasive species. Citizen 

science data were acquired from the global, multi-taxa citizen science platform iNaturalist 

(www.iNaturalist.org), which we selected for its potential to support monitoring of a diversity of 

regions and taxonomic groups. 

We aimed to address three main questions. First, how do sampling biases in iNaturalist 

observations of native versus non-native plant species differ in Hawaii? Given that previous 

studies have found citizen science bias toward rare or threatened species (Matteson et al., 2012; 

Tulloch et al., 2013), we investigated whether non-native species are well-represented in 

Hawaii’s iNaturalist plant data, then compared environmental sampling bias (with respect to site 

accessibility, status, and disturbance) in native versus non-native plant observations. Second, 

how do environmental sampling biases in iNaturalist compare to patterns in professional surveys 

of invasive plant species? We selected four species that were well-sampled by both iNaturalist 

citizen scientists and professional regional agencies for this comparison. Third, how do data 

source, sampling biases, and data filtering treatments influence HSM predictions for the selected 

study species? We examined relationships between single-source models (i.e. iNaturalist- versus 

agency-based HSMs); single-source models and combined models (i.e. an HSM using data from 

both sources); and unfiltered and filtered iNaturalist models.  

3.2. Methods 

3.2.1. Species data 

iNaturalist has a flexible, low-commitment structure with a participant base of over 4 

million observers worldwide. Over 200,000 iNaturalist observations have been recorded in 

http://www.inaturalist.org/
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Hawaii since the project launched in 2008. We acquired iNaturalist research-grade observations 

for vascular plant species on the four largest Hawaiian Islands (Hawaiʻi, Maui, Oʻahu, and 

Kauaʻi) through the Global Biodiversity Information Facility (GBIF.org, 2020). Research-grade 

observations are dated, georeferenced, and photographed sightings of non-captive organisms 

whose identification is agreed upon by at least two-thirds of the iNaturalist community. 

Kahoʻolawe, Lānaʻi, Molokaʻi, and Niʻihau were excluded from this analysis due to restricted 

access to and limited data on the islands (less than 0.7% of iNaturalist plant records occurred on 

these four islands). 

 There are a number of regional agencies that work to control and prevent establishment 

of invasive species in Hawaii. We used invasive plant observations shared by the Big Island 

Invasive Species Committee, Consortium of Pacific Herbarium, Kauaʻi Invasive Species 

Committee, Koʻolau Mountains Watershed Partnership, Oʻahu Army Natural Resource Program, 

Oʻahu Invasive Species Committee, and Pacific Island Ecosystems Research Center. To compare 

iNaturalist and agency observations, we selected invasive species with relatively large sample 

sizes (>100 observations) in both datasets. Four species met this threshold (Fig. 3.1; for overlap 

in environmental space, see Appendix B, Figure B1). They included long-established species that 

are close to reaching equilibrium in their Hawaiian range (Vorsino et al., 2014): Hedychium 

gardnerianum Sheph. ex Ker Gawl. [established 1940], an understory species common in 

rainforests between 0-1,700 m (Minden et al., 2010); Psidium cattleianum Sabine [est. 1825], a 

tree found primarily in rainforests between 150-1,300 m (Smith, 1985); and the shrubs Lantana 

camara L. [est. 1858] and Leucaena leucocephala (Lam.) de Wit [est. 1837], which colonize 

disturbed, dry and mesic lowland habitats up to 1,000 m and 700 m, respectively (Smith, 1985; 

Wagner et al., 1999). 
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Figure 3.1 

Distribution of iNaturalist and professional agency observations for Hedychium gardnerianum, Lantana 

camara, Leucaena leucocephala, and Psidium cattleianum.  

 

3.2.2. Sampling bias 

In order to evaluate the potential of iNaturalist as a source of invasive species 

observations, we compared the establishment means—i.e. the process by which a species came 

to occur in Hawaii (Groom et al., 2019)—of all vascular plants observed in iNaturalist to the 

species composition of Hawaii overall. Species were divided into three native and three non-

native classes (Table 3.1). Endemic, indigenous, and naturalized species occurring on Hawaii’s 

four largest islands were identified from vascular plant checklists (Imada, 2012, 2019). As there 

is currently no regulatory list of invasive species in Hawaii, invasive and potentially invasive 

species lists were compiled using the Hawaii-Pacific Weed Risk Assessment (Daehler et al., 

2004) and Hawaii’s Most Invasive Horticultural Plants list (Hawaii State Alien Species 

Coordinator, 2017). 

We investigated three environmental biases that are likely to influence citizen science 

sampling, including accessibility bias (clustering near roads and trails), status bias (preference 

for sites in or near areas of conservation interest), and disturbance bias (disproportionate 
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sampling in more heavily disturbed sites and vegetation communities, where there are likely to 

be more opportunities for recreation). Accessibility was defined by road and trail density 

(kilometers per square kilometer), calculated using 2019 TIGER/Line Shapefiles for all roads 

(prepared by the U.S. Census Bureau 2019) and the Na Ala Hele Trail system (State Department 

of Land and Natural Resources, DOFAW, updated 2018). Status bias was derived from distance 

to open and restricted access areas in the U.S. Geological Survey Protected Areas Database 

(USGS GAP, 2018), an inventory of lands set aside for the preservation of biodiversity, 

recreation, resource extraction, and other management purposes. To avoid confusion, we refer to 

these lands as “open space,” as designation as “protected” does not necessarily signify that the 

area is currently managed to mitigate impacts of invasive species or other threats. Vegetation 

disturbance was determined using the Habitat Status classes defined in the Carbon Assessment of 

Hawaii: heavily disturbed (including agricultural and developed lands), mixed native-alien 

dominated plant communities (defined as non-native dominated in this paper), native dominated 

plant communities, and bare or sparsely vegetated (<5% plant cover) (Jacobi et al., 2017).  

A 250-meter resolution grid was used to partition the study area into four classes for each 

bias type (Table 3.2). For the accessibility and status biases, class I was comprised of grid cells 

with a value of 0, and classes II-IV were determined by splitting the remaining cells into terciles. 

For the disturbance bias classes, we resampled the Habitat Status layer to 250-meter resolution 

based on the majority class in each 250-meter grid cell. Clustering of 1) all iNaturalist plant 

records and 2) the iNaturalist and 3) professional agency records for the four study species 

within these classes was quantified using a bias index as in Kadmon, Farber, & Danin (2004), 

which compares the observed distribution of records in space to the expected distribution as: 

𝐵𝑖𝑎𝑠𝑑 =  
𝑛𝑑 −  𝑝𝑑𝑁

√𝑝𝑑(1 − 𝑝𝑑)𝑁
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where nd is the number of species records per class d, pd is the probability that a record is located 

in class d given its area, and N is the total number of species records. The index assumes that the 

probability of a species being observed in a particular class is proportional to the area that the 

class occupies. Values are distributed like a standard normal variable (Z) and statistically 

significant (α = 0.05) for values greater than 1.64.  

Table 3.1 

Definitions of native and non-native species status classes. 

 

Class Definition 

Native Naturally occurring in Hawaii without human assistance  

Endemic Native to and occurring only in Hawaii 

Endemic-listed State and Federally Listed Endangered and Threatened endemic species 

Indigenous Native to Hawaii and occurring elsewhere 

Non-native Introduced to Hawaii by humans (intentional or accidental) 

Naturalized Introduced and now established; not currently considered invasive 

Invasive-potential Introduced and likely to become invasive 

Invasive Introduced and documented to cause significant ecological or economic harm; 

includes species on the Most Invasive Horticultural Plants list 

 

Table 3.2 

Site sampling bias classes, their definitions, and the percentage of the study area that each occupies. 

 

  Accessibility Bias  Status Bias  Disturbance Bias 

Class  
Road/trail  

density (km/km2) 
% Area  

Distance to  

open space (m) 
% Area  

Disturbance to plant 

communities 
% Area 

I  0 79.0%  0 43.5%  Heavily disturbed  16.9% 

II  ≤ 6.3 7.0%  ≤ 579.1 18.8%  Non-native dominated  34.1% 

III  ≤ 14.8 7.0%  ≤ 1729.5 18.8%  Native dominated 31.8% 

IV  > 14.8 7.0%  > 1729.5 18.8%  Bare ground 17.2% 

 

3.2.3. Habitat suitability modeling 

Model parameters 

HSMs were built using observations from iNaturalist and professional agencies with the 

maxent function in the R package dismo v 1.3-3 (Hijmans et al., 2020). Maxent is a popular 

presence/background correlative modeling method (Guillera-Arroita et al., 2015) that contrasts 
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true species presences with pseudo-absences generated from background data. Restricted 

background grids can be used to specify areas that were more likely to be surveyed, so that 

pseudo-absences will theoretically have the same sampling biases as the presences (Merow et al., 

2013; Phillips et al., 2009; Syfert et al., 2013). For models based on a single data source, we 

created restricted backgrounds that included grid cells within 500 meters of a) any research-

grade iNaturalist vascular plant species observation or b) any agency record. These two grids 

were merged to create a restricted background for the combined HSM series. The dismo function 

randomPoints was used to select 10,000 pseudo-absence points from the iNaturalist and 

combined background grids and 6,000 points from the agency grid (maximum number that could 

be extracted). All models used logistic output, a regularization multiplier of 2.0, and default 

settings for remaining parameters. 

Models used 250-meter resolution environmental predictors that included the islands of 

Hawaiʻi, Maui, Oʻahu, and Kauaʻi. We initially considered 28 predictors for modeling. 

Topographic predictors included slope variables (mean, minimum, maximum, range), elevation, 

and aspect derived from 10-meter resolution digital elevation models (U.S. Geological Survey 

3D Elevation Program) and resampled to 250-meters. Nineteen bioclimatic variables were 

calculated from 250-meter resolution mean monthly temperature and rainfall grids (Giambelluca 

et al., 2013, 2014). Two normalized difference vegetation index (NDVI) variables, dry-season 

NDVI (JJA 2020) and NDVI amplitude (the difference between the maximum and minimum 

NDVI values per pixel in 2020) were derived from the global 250-meter MODIS/Terra product 

MOD13Q1 v006. NDVI is often used as a proxy of photosynthetic activity, vegetation density, 

or productivity (Pettorelli, 2013). Finally, a categorical soil great group variable was created by 

converting survey data from the U.S. Department of Agriculture, Natural Resources 



57 

Conservation Service (2020) to raster based on maximum combined area. Correlation analysis 

was performed to identify and remove highly collinear continuous variables (|r|> 0.7), which 

narrowed the final set of predictors down to ten: elevation, mean slope, aspect, isothermality, 

temperature annual range, precipitation seasonality, precipitation of the warmest quarter, dry-

season NDVI, NDVI amplitude, and soil great group.  

Model series and filtering treatments 

To examine the effect of data source and spatial filtering on estimates of suitable habitat, 

we produced seven models for each of the four invasive study species (Table 3.3). All models 

used the Maxent default setting for removing duplicate observations that occur within a single 

grid cell (determined by the 250-meter resolution of the environmental layers). iNaturalist 

unfiltered and agency unfiltered HSMs used all available records from their respective sources, 

while the combined unfiltered HSM used all available records for a given species from both 

sources. 

We applied four filtering treatments to the iNaturalist data, one targeting clustering in 

geographic space and three targeting the environmental biases described previously. 

Subsampling for the iNaturalist thinned HSM was similar in concept to the Maxent removal of 

duplicate records, but further reduced spatial clustering by selecting iNaturalist records at a 

coarser resolution than that of the predictor layers (one record per 1-kilometer cell). For the 

iNaturalist accessibility-stratified, iNaturalist status-stratified, and iNaturalist disturbance-

stratified HSMs, we created environmentally stratified subsamples proportionate to the area of 

each site class. These stratified treatments aimed to remove potentially redundant records in 

oversampled site classes (Varela et al., 2014). Pseudo-absence points for filtered models were 

drawn from the iNaturalist background grid. 
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Table 3.3 

Total observations available from each data source (shaded columns) and the number of records used in 

each habitat suitability model (HSM) series. iNat = iNaturalist unfiltered HSM, iNat_1km = iNaturalist 

thinned HSM, iNat_access = iNaturalist accessibility-stratified HSM, iNat_status = iNaturalist status-

stratified HSM, iNat_disturb = iNaturalist disturbance-stratified HSM, Agency = agency HSM, Combined 

= combined HSM. 

   

Species 

Total 

iNaturalist 

records 

iNat 
iNat_ 

1km 

iNat_ 

access 

iNat_ 

status 

iNat_ 

disturb 

Total 

agency 

records 

Agency Combined 

Hedychium 

gardnerianum 
152 110 96 47 57 92 215 126 235 

Lantana 

camara 
165 131 124 80 109 76 230 154 282 

Leucaena 

leucocephala 
296 246 228 112 149 31 497 104 345 

Psidium 

cattleianum 
167 129 116 64 57 76 937 527 656 

 

Comparing predictions 

The objective of model comparison and evaluation was to observe the effects of data 

source and filtering treatment on predictions, rather than to identify the “best” or most accurate 

model. We were particularly interested in observing similarity between single-source models (i.e. 

iNaturalist-only versus agency-only, where high similarity would suggest that observations 

represented similar environments), single-source and combined models (if the combined HSM 

were more similar to either the iNaturalist-only or agency-only HSM, that could indicate that that 

source contained more comprehensive environmental information), and unfiltered and filtered 

iNaturalist models (high similarity between these models would suggest limited ability of this 

practice to reduce sampling bias). 

We used Schoener’s D, an index that measures overlap between potential species 

distributions with values ranging from 0 (no overlap) to 1 (complete overlap) (Warren et al., 

2008), to estimate similarity among the HSM predictions. It has been shown to outperform other 

similarity metrics such as Warren’s I (Brown & Carnaval, 2019; Rödder & Engler, 2011). 
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Pairwise Schoener’s D values were calculated between full models and within each site sampling 

bias class using the R package ENMeval (Muscarella et al., 2014). 

 Models were also compared using threshold-dependent measures and predictor 

contributions. The maximum sum of sensitivity and specificity threshold, recommended because 

it minimizes omission and commission errors and its selection is less affected by the use of 

pseudo-absences (Liu et al., 2005, 2013, 2016), was used to calculate total suitable area predicted 

by each HSM series (as a percentage of study area). In order to observe whether bias in the 

species records would lead to similar biases in model predictions, we also calculated the 

distribution of suitable cells among site classes. Finally, Maxent tracks the contribution of each 

environmental predictor to model gain and reports their relative contributions as percentage 

(Phillips, 2017). We used the predictors’ percent contribution to each HSM as another indicator 

of how independent sets of observations influenced model training. The maximum sum of 

sensitivity and specificity threshold was then used to identify the range of suitable values for top 

contributing predictors. 

3.3. Results 

3.3.1. Native status sampling bias 

We obtained 13,186 iNaturalist research-grade records for 253 vascular plant species that 

were collected by 1,506 unique users. Though non-native species represent just 54.9% (n = 

1620) of Hawaiian plant taxa, they represented 74.7% (n = 189) of species observed by 

iNaturalist observers (Fig. 3.2). Endemic species, particularly those that are State or Federally 

listed, were under-sampled in terms of both number of taxa and total records, and just three 

species accounted for 59.0% of all endemic plant records: Metrosideros polymorpha (664 

records), Argyroxiphium sandwicense (198), and Vaccinium reticulatum (186). Among non-
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native taxa, iNaturalist observers were more likely to record Polynesian introductions and 

species classified as invasive (Fig. 3.2). Invasive plant species represent only 7.9% of all 

Hawaiian plants, but 20.6% of the observed species and 24.7% of total iNaturalist records. 

 

 

 
 

Figure 3.2 

Endemic native, indigenous native, and non-native species as a proportion of all plant species occurring 

on Hawaii’s four largest islands, and their representation in iNaturalist research-grade observations. 

Endemic - listed refers to species listed as Threatened or Endangered at the state or federal level. Non-

native species are further classified by invasiveness. (P) = Polynesian introduction. 

 

 

3.3.2. Site sampling bias 

iNaturalist plant observations were generally biased toward road/trail accessible 

locations, sites in or near designated open spaces, and sites with heavily disturbed or non-native 

dominated vegetation. Bias toward areas with road or trail access (classes II-IV) was particularly 

strong among non-native species (Fig. 3.3a). These sites represented 21.0% of the study area, but 

contained 57.9% of iNaturalist records. Sites further from open space (III-IV) were significantly 

underrepresented for all plant species (Fig. 3.3b). Overrepresentation of open space was 

particularly strong for endemic species, for which 59.4% of records occurred in status class I. 

Record distribution among disturbance classes (Fig. 3.3c) was rather unsurprising: all species 
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were underrepresented in the bare or sparsely vegetated class (IV) and, with the exception of 

endemic species, biased toward the heavily disturbed and non-native classes (I-II). Endemic 

species were most intensely sampled in the native class (III).  

iNaturalist records for the four study species consistently demonstrated the same site 

sampling biases as the overall dataset: significant underrepresentation of road/trail-free cells 

(Fig. 3.4a), cells furthest away from open space (Fig. 3.4b), and the native dominated class (with 

the exception of H. gardnerianum) (Fig. 3.4c). Records collected by agencies showed similar 

status bias, but different patterns for accessibility and disturbance. Agency data for H. 

gardnerianum and P. cattleianum exhibited a sampling pattern opposite those of iNaturalist: 

overrepresentation of the road/trail-free class and underrepresentation of more accessible sites. 

The majority of L. camara and L. leucocephala agency records also came from the road/trail-free 

class, though it was not significantly oversampled. Among disturbance classes, agency sampling 

was more strongly skewed toward the native dominated class (III) for all four species, with 

significant undersampling in heavily disturbed sites. However, L. camara and L. leucocephala 

agency sampling was similar to iNaturalist in the non-native dominated class (II). 
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Figure 3.3 

Distribution of iNaturalist records by (a) accessibility (class I = no roads), (b) status (I = within 

designated open space), and (c) disturbance. Gray bars indicate % area represented by each class. +/- 

indicate significant over/underrepresentation. 
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Figure 3.4 

(a) Accessibility bias (class I = no roads or trails), (b) status bias (I = within designated open space), and 

(c) disturbance bias in iNaturalist vs. management agency records for four invasive species. +/- indicate 

significant over/underrepresentation. 

 

3.3.3.  Model comparison 

Model similarity 

Overlap was lowest between iNaturalist- and agency-only models (i.e. single-source 

HSMs) (D = 0.42-0.74) (Fig. 3.5), with relatively lower D scores within site classes depending 
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on the species (Appendix B, Fig. B2). For H. gardnerianum, L. camara, and P. cattleianum, 

overlap between the single-source HSMs was lowest in the bare ground class. For L. camara and 

L. leucocephala, there were greater differences between the single-source HSMs within the 

native-dominated class and in sites with low to zero road/trail density. 

 

 
Figure 3.5 

Similarity or overlap (pairwise Schoener’s D index) between habitat suitability models (HSMs), where 0 

signifies no overlap and 1 is complete overlap. inat = iNaturalist unfiltered HSM, inat_1km = iNaturalist 

thinned HSM, inat_access = iNaturalist accessibility-stratified HSM, inat_status = iNaturalist status-

stratified HSM, inat_disturb = iNaturalist disturbance-stratified HSM, agency = agency HSM, combined 

= combined HSM.   

 

Similarity between single-source and combined models also varied by species. The L. 

leucocephala combined HSM had higher overlap with the iNaturalist model across all site 

classes, while the P. cattleianum combined HSM was more similar to the agency HSM, 

particularly in open spaces and road-free, native-dominated, and bare ground sites (Appendix B, 
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Fig. B3). Single-source HSMs for both H. gardnerianum and L. camara had similar, moderate 

overlap with their respective combined HSMs (Fig. 3.5). 

The highest overlap occurred between unfiltered and thinned iNaturalist models (D ≥ 

0.89), with high D scores observed across all site classes (Appendix B, Fig. B4). Moderate to 

high overlap was also observed between the unfiltered and filtered models, with D ranging from 

0.59 to 0.94. Within site classes, the filtering treatments did not consistently reduce similarity 

between unfiltered and filtered/thinned iNaturalist models. 

Suitable area 

Predictions of percent suitable area varied among HSMs by as little as 10.4 percentage 

points (H. gardnerianum) and as much as 29.2 percentage points (P. cattleianum) (Fig. 3.6). 

Neither the iNaturalist unfiltered nor agency models consistently predicted higher estimates of 

suitable area, and the two datasets produced different estimates of suitable area across the four 

islands (Appendix B, Fig. B5). The distribution of suitable area among disturbance classes was 

similar to that of the iNaturalist and agency observations, most notably for P. cattleianum and L. 

leucocephala. However, suitable area was similarly distributed among accessibility and status 

classes (with the exception of P. cattleianum) regardless of sampling patterns in the 

observations. 

 
 
Figure 3.6 

Predicted suitable area (as a percentage of the study area) for each HSM series. 
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The iNaturalist thinning treatment produced slight increases in predictions of suitable 

area (2.2-7.4 percentage points), but the effect of stratified filtering was less consistent across 

species. Though total estimates differed between unfiltered and filtered iNaturalist HSMs, the 

distribution of suitable area among site classes was often similar (Fig. 3.7). For example, though 

the status-stratified HSM increased total estimates of suitable area for species that had been 

significantly oversampled in open spaces (status class I), there was no significant difference in 

how that suitable area was distributed. There were a few exceptions in which stratified 

iNaturalist HSMs increased predicted suitable area in undersampled classes, such as the 

disturbance-stratified HSMs for L. camara, L. leucocephala, and P. cattleianum (Fig. 3.4c), 

which increased estimates of suitable area in native-dominated sites.  

Environmental predictors 

Environmental predictors made different relative percent contributions to models of the 

same species (Appendix B, Fig. B6). Climate variables (rainfall of the warmest quarter and 

temperature annual range) made higher contributions to the L. camara and P. cattleianum agency 

and combined models, and were less important in iNaturalist-based HSMs for these species. 

Models of H. gardnerianum and L. leucocephala shared some top predictors (elevation and soil 

great group), but there were still differences in the percent contribution of these variables. 

Predictor values classified as suitable varied among models of the same species 

(Appendix B, Fig. B7). For example, the L. camara agency HSM predicted a wider range of 

suitable elevation values, but a narrower range of rainfall values than the iNaturalist HSM. 

Filtering treatments had a similar effect that varied by species. Accessibility-stratified HSMs 

produced narrower ranges of suitable elevation values for H. gardnerianum and L. leucocephala, 

but wider ranges for L. camara and P. cattleianum. 
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Figure 3.7 

Distribution of each HSM’s suitable cells by site accessibility, status, and disturbance. +/- indicate 

significant over/underrepresentation.  

  

3.4. Discussion 

3.4.1. iNaturalist bias toward non-native species 

Observer preference for rare species has been observed in studies of other taxonomic 

groups. Citizen scientists have been more motivated to survey areas where threatened bird 
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species are known to occur (Tulloch et al., 2013), and tend to underreport more common 

butterfly species (Matteson et al., 2012). However, we found that non-native species represented 

the majority of iNaturalist plant species and observations, while endemic Hawaiian plants were 

underrepresented. Though a high proportion of Hawaiian plants are threatened or endangered, 

only four species were recorded (Fig. 3.2). 

This is perhaps unsurprising in Hawaii, where non-native species currently dominate 

native Hawaiian flora both in terms of species richness and land area (with the exception of the 

Big Island) (Hughes et al., 2017). Frequent encounters with rare, threatened, or endangered 

plants would be unexpected given the more restricted ranges and smaller population sizes of 

native island species in general (Paulay, 1994). Furthermore, species-level plant identification 

can be difficult (Roman et al., 2017), and citizen scientists may be more likely to record larger 

and more widely distributed plant species that are easier to identify (Boakes et al., 2016). For 

iNaturalist in Hawaii, the most-recorded plants were ʻōhiʻa (Metrosideros polymorpha), an 

abundant endemic tree; beach naupaka (Scaevola sericea), a common coastal native also used in 

commercial and residential plantings; and noni (Morinda citrifolia), a Polynesian introduction 

with numerous cultural uses. Each of these woody species would be familiar to local observers, 

and, for plants, this familiarity may be as motivating as rarity for other taxa (Boakes et al., 2016).  

Species considered invasive or potentially invasive were recorded at a higher rate than 

other non-native plants. They represented 12.3% of all plant species in Hawaii, but 26.9% of the 

species recorded by iNaturalists and 29.8% of the observations. This could indicate that invasive 

species are more common than native species in areas surveyed by iNaturalists, but a fuller 

analysis of native vs. non-native species bias would need to account for prevalence, which this 

study did not do. It may also suggest that iNaturalist observers are more motivated or able to 
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record these taxa. While invasive species have received a fair amount of media coverage in 

Hawaii, a 2003 survey showed that the general public is relatively unconcerned about invasive 

plants (Daehler, 2008). Residents may also have positive associations with certain species. Kukui 

(Aleurites moluccana), for example, is the Hawaiian state tree and a Polynesian introduction with 

invasive potential (Daehler et al., 2004). Other invasive trees have gained emotional or cultural 

value as well, including P. cattleianum (Warner & Kinslow, 2013) and the early 20th century 

introduction Falcataria moluccana (Niemiec et al., 2017). Whatever the motivation, the relative 

abundance of non-native plant records on iNaturalist is encouraging for invasive species 

management purposes. 

3.4.2. Spatial sampling bias 

The iNaturalist data showed significant sampling biases toward open space and cells with 

higher road/trail density, which is consistent with other citizen science datasets (Botts et al., 

2011; Mair & Ruete, 2016; Tulloch et al., 2013). Observations were also skewed toward heavily 

disturbed and non-native dominated sites. These sampling patterns were not unexpected, 

especially for non-native plant species, and it is possible that they reflect the species actual 

distribution or abundance rather than observation bias. Roads often serve as a dispersal pathway 

(Pauchard et al., 2009) and source of ignition for fire-prone invasive species (Ellsworth et al., 

2014), and L. camara presence has been shown to be positively associated with roadside 

disturbance (August-Schmidt et al., 2015). 

Yet, if that were the case, one might expect the independent records from the professional 

agencies to corroborate the iNaturalist data. But accessibility sampling patterns in the agency 

records were either less pronounced than (L. camara, L. leucocephala) or the inverse (H. 

gardnerianum, P. cattleianum) of those in iNaturalist. Both datasets were similarly skewed 
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toward open space and adjacent sites, but differed in the proportion of records observed in each 

status class, particularly for L. leucocephala and H. gardnerianum (Fig. 3.4b). iNaturalists made 

far fewer observations in native-dominated sites compared to agencies, which in turn tended to 

undersample heavily disturbed sites (Fig. 3.4c). This disagreement indicates some degree of bias 

in at least one of the two sources, and that each dataset represents distinct environments. 

These biases could affect HSM accuracy if the oversampled classes do not include a 

range of environmental conditions occupied by the species. This appeared to be the case for 

disturbance bias, as oversampling in the heavily disturbed, non-native dominated, and native 

dominated classes was associated with disagreement between single-source models in how 

suitable area was distributed. But we did not find a consistent relationship between accessibility 

and status sampling bias patterns and distribution of suitable habitat. Rather, models for H. 

gardnerianum, L. camara, and L. leucocephala generally agreed with each other regardless of 

the sampling bias in the training records. This suggests that open space and road/trail networks in 

Hawaii encompass a range of environmental gradients relevant to the study species, and thus 

observer preference for these sites does not necessarily restrict the utility of those observations 

(Kadmon et al., 2004; McCarthy et al., 2012). However, it may be important to investigate 

filtering treatments and/or complementary datasets when sampling data is biased with respect to 

vegetation disturbance.   

3.4.3. Effect of filtering treatments on iNaturalist HSMs 

The thinning treatment produced HSMs that were highly similar to unfiltered iNaturalist 

HSMs, and had limited impact on predictions of suitable area and variable contributions. Other 

papers have observed that similar thinning treatments can either improve model performance by 

reducing overfitting (Boria et al., 2014; Fourcade et al., 2014) or decrease performance due to 
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the random approach as well as loss of information (Steen et al., 2021; Varela et al., 2014). In 

this study, it is possible that thinning to a 1-kilometer resolution was not coarse enough to impact 

the models beyond small increases in estimated suitable area. Relatively few records were 

removed from training at this resolution, especially compared to the other filtering treatments.  

Targeting clusters in environmental space, rather than thinning records geographically, is 

believed to have a more positive effect on model performance, but smaller datasets may also 

produce less consistent results (Varela et al., 2014). The effects of stratified filtering treatments 

in this study varied by bias type, with the most notable impact observed for disturbance bias. 

Disturbance-stratified HSMs increased relative predictions of suitable area in the native-

dominated class for the three species that were undersampled in that class. The accessibility-

stratified HSM of H. gardnerianum also produced a small increase in the proportion of suitable 

area in the undersampled road/trail-free class. These examples imply that stratified filtering can 

influence target biases in model predictions and increase habitat estimates in undersampled 

environments, but this outcome was not consistent. For the most part, filtered HSMs maintained 

similar distributions of suitable area as well as moderate to high overlap with the unfiltered 

iNaturalist HSM. This could indicate that the stratified treatments were not effective a given 

species, or, in conjunction with our previously discussed results, that certain sampling biases do 

not correspond to biases in more meaningful environmental variables.  

Reduced sample sizes due to filtering were often associated with greater divergence from 

the unfiltered model. While a smaller, evenly-sampled dataset has been found to be more 

effective than a larger, biased one (Bean et al., 2012; Varela et al., 2014), sample size does have 

a significant effect on HSM performance (Gábor et al., 2020), and thus small samples may be 

further negatively impacted by environmental filtering. We observed a strong negative 
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correlation between percent decrease in sample size and overlap with the unfiltered HSM, i.e. the 

more records were filtered out, the less similar the iNaturalist models became. It is thus difficult 

to determine whether the departures from the unfiltered HSMs are due to targeted filtering or the 

loss of training data. Future work should control for sample size (e.g. as in Boria et al., 2014), to 

more clearly distinguish between the effects of filtering, data source, and information loss.   

3.4.4. Complementary monitoring 

Though often fewer in number, iNaturalist observations covered a similarly broad range 

of conditions and were a valuable supplement to the relatively more structured, professional data 

for the example invasive species in this study. iNaturalist observers and professional agencies 

also appeared to capture unique environmental conditions, as demonstrated by the suitable 

predictor values and moderate overlap between single-source HSMs. Neither source appeared to 

consistently provide more comprehensive information or have greater similarity to the combined 

HSM, despite the higher number of agency records for three of the species (Table 3.3). When 

agency and iNaturalist sample sizes differed greatly, it is possible that the combined HSM was 

simply more similar to the source that contributed more training records. For example, there 

were four times as many agency observations for P. cattleianum. However, iNaturalists sampled 

P. cattleianum more evenly across the islands and contributed to greater predictions of suitable 

area on Oʻahu and Kauaʻi in the combined HSM (Appendix B, Fig. B5).  

Previous studies have noted that well-designed citizen science programs can collect data 

comparable to that of professional scientists (Chandler et al., 2017), and that combining 

structured survey data with eBird records improves model accuracy (Robinson et al., 2020). We 

found that incidental iNaturalist observations are useful in filling the gaps in professional survey 

data, particularly with respect to vegetation disturbance. Citizen science bias toward disturbed 
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and non-native dominated sites and professional bias toward native-dominated sites were 

reproduced in model predictions, which, in addition to highlighting the limitations of correlative 

HSMs in approximating species niches, has practical implications for HSMs as a management 

tool. Underestimates of invasive species distributions could limit land managers’ ability to 

identify vulnerable areas and prioritize monitoring efforts. Citizen science data could be critical 

in monitoring areas that have not been officially surveyed.  

Conversely, remote areas of the Hawaii region were poorly sampled in iNaturalist. 

Kahoʻolawe, Lānaʻi, Molokaʻi, and Niʻihau were excluded from this analysis, but the extremely 

low number of iNaturalist plant observations on these smaller, sparsely populated islands 

demonstrates an obvious limitation of low-structure citizen science data, which is that sampling 

is largely restricted to public access areas. Management agencies seeking to utilize citizen 

science as a complementary data source may use this known bias to prioritize their own survey 

resources. Additionally, when citizen science observations are the only monitoring data available 

for a region, care should be taken when interpreting the significance of unsampled space.  

Though we did not seek to identify the “best” model for each species, it is evident that 

iNaturalist and professional observations, on their own, produced differing estimates of suitable 

habitat (Appendix B, Fig. B5). To take advantage of biased yet complementary survey efforts, 

we simply combined or ‘pooled’ all available data. However, more formal integrated modeling 

approaches may be able to better address sampling biases while more fully preserving the 

specific strengths of each dataset (Dorazio, 2014; Fletcher et al., 2019; Isaac et al., 2020; Miller 

et al., 2019; Pacifici et al., 2017). Utilizing additional attributes of the iNaturalist data could also 

improve the modeling process. Though absence records are lacking in iNaturalist, observer 

records of non-target species could be used to infer absence and select more meaningful pseudo-
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absences (Bradter et al., 2018; Milanesi et al., 2020). This observer data is readily accessible in 

iNaturalist and could improve model accuracy.  

3.5. Conclusion 

iNaturalist observers have made thousands of plant observations in Hawaii and 

preferentially record non-native and invasive species. These observations are not free of 

sampling biases that affect other citizen science databases; records were more likely to be made 

in open spaces and relatively more accessible, disturbed areas. However, occurrence data from 

regional agencies exhibited similar or inverse sampling patterns. When these datasets were used 

to build HSMs, each data source appeared to sample distinct environments, yet neither 

consistently produced more comprehensive predictions. Low-structure citizen science programs 

like iNaturalist thus provide a valuable source of species occurrence data, however opportunistic 

or incidental, that can complement geographically limited surveys of expert scientists. Filtering 

may increase estimates of suitable habitat in undersampled sites, but may not be necessary if 

features of interest, like the road/trail network and open spaces examined here, are inclusive of a 

range of environmental conditions important to the species in question. We recommend 

examining and including all available data regardless of suspected anthropogenic sampling 

biases.  

 

Acknowledgments 

We thank the iNaturalist citizen science community, Big Island Invasive Species Committee, 

Consortium of Pacific Herbarium, Kauaʻi Invasive Species Committee, Koʻolau Mountains 

Watershed Partnership, Oʻahu Army Natural Resource Program, Oʻahu Invasive Species 

Committee, and Pacific Island Ecosystems Research Center for collecting and sharing the 



75 

species data that underpins this research. We would also like to thank Helen Sofaer for providing 

useful suggestions that clarified the ideas we have presented here. 

 

References 

August-Schmidt, E. M., Haro, G., Bontrager, A., & D’Antonio, C. M. (2015). Preferential 

associations of invasive Lantana camara (Verbenaceae) in a seasonally dry Hawaiian 

woodland. Pacific Science, 69(3), 385–397. doi:10.2984/69.3.7 

Bean, W. T., Stafford, R., & Brashares, J. S. (2012). The effects of small sample size and sample 

bias on threshold selection and accuracy assessment of species distribution models. 

Ecography, 35(3), 250–258. doi:10.1111/j.1600-0587.2011.06545.x 

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database 

and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10–

15. doi:10.1016/j.ecoinf.2013.11.002 

Björklund, N., Lindelöw, Å., & Schroeder, L. M. (2016). Erroneous conclusions about current 

geographical distribution and future expansion of forest insects in Northern Sweden: 

Comments on Hof and Svahlin (2015). Scandinavian Journal of Forest Research, 31(1), 126–

127. doi:10.1080/02827581.2015.1086018 

Boakes, E. H., Gliozzo, G., Seymour, V., Harvey, M., Smith, C., Roy, D. B., & Haklay, M. 

(2016). Patterns of contribution to citizen science biodiversity projects increase understanding 

of volunteers’ recording behaviour. Scientific Reports, 6(1), 33051. doi:10.1038/srep33051 

Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, N. E., O’Connor, K., & 

Mace, G. M. (2010). Distorted views of biodiversity: Spatial and temporal bias in species 

occurrence data. PLoS Biology, 8(6), e1000385. doi:10.1371/journal.pbio.1000385 

Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce 

sampling bias can improve the performance of ecological niche models. Ecological Modelling, 

275, 73–77. doi:10.1016/j.ecolmodel.2013.12.012 

Botts, E. A., Erasmus, B. F. N., & Alexander, G. J. (2011). Geographic sampling bias in the 

South African Frog Atlas Project: Implications for conservation planning. Biodiversity and 

Conservation, 20(1), 119–139. doi:10.1007/s10531-010-9950-6 

Bradter, U., Mair, L., Jönsson, M., Knape, J., Singer, A., & Snäll, T. (2018). Can 

opportunistically collected Citizen Science data fill a data gap for habitat suitability models of 

less common species? Methods in Ecology and Evolution, 9(7), 1667–1678. doi:10.1111/2041-

210X.13012 

Brown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. 

Frontiers of Biogeography, 11(4). doi:10.21425/F5FBG44158 



76 

Carlquist, S. J. (1974). Island biology. Columbia University Press. 

Chandler, M., See, L., Copas, K., Bonde, A. M. Z., López, B. C., Danielsen, F., Legind, J. K., 

Masinde, S., Miller-Rushing, A. J., Newman, G., Rosemartin, A., & Turak, E. (2017). 

Contribution of citizen science towards international biodiversity monitoring. Biological 

Conservation, 213, 280–294. doi:10.1016/j.biocon.2016.09.004 

Coxen, C. L., Frey, J. K., Carleton, S. A., & Collins, D. P. (2017). Species distribution models 

for a migratory bird based on citizen science and satellite tracking data. Global Ecology and 

Conservation, 11, 298–311. doi:10.1016/j.gecco.2017.08.001 

Crall, A. W., Jarnevich, C. S., Young, N. E., Panke, B. J., Renz, M., & Stohlgren, T. J. (2015). 

Citizen science contributes to our knowledge of invasive plant species distributions. Biological 

Invasions, 17(8), 2415-2427. 

Crall, A. W., Newman, G. J., Stohlgren, T. J., Holfelder, K. A., Graham, J., & Waller, D. M. 

(2011). Assessing citizen science data quality: An invasive species case study: Assessing 

citizen science data quality. Conservation Letters, 4(6), 433–442. doi:10.1111/j.1755-

263X.2011.00196.x 

Cuddihy, L. W., & Stone, C. P. (1990). Alteration of native Hawaiian vegetation: Effects of 

humans, their activities and introductions. University of Hawaii, Cooperative National Park 

Resources Studies Unit. https://pcsuhawaii.org/books-1990/ 

Daehler, C. C. (2008). Invasive plant problems in the Hawaiian Islands and beyond: Insights 

from history and psychology. In Plant Invasions: Human perception, ecological impacts and 

management (pp. 3–20). Backhuys Publishing. 

Daehler, C. C., Denslow, J. S., Ansari, S., & Kuo, H.-C. (2004). A Risk-Assessment System for 

Screening Out Invasive Pest Plants from Hawaii and Other Pacific Islands. Conservation 

Biology, 18(2), 360–368. doi:10.1111/j.1523-1739.2004.00066.x 

Danielsen, F., Jensen, P. M., Burgess, N. D., Altamirano, R., Alviola, P. A., Andrianandrasana, 

H., Brashares, J. S., Burton, A. C., Coronado, I., Corpuz, N., Enghoff, M., Fjeldså, J., Funder, 

M., Holt, S., Hübertz, H., Jensen, A. E., Lewis, R., Massao, J., Mendoza, M. M., … Young, R. 

(2014). A Multicountry Assessment of Tropical Resource Monitoring by Local Communities. 

BioScience, 64(3), 236–251. doi:10.1093/biosci/biu001 

Daru, B. H., Park, D. S., Primack, R. B., Willis, C. G., Barrington, D. S., Whitfeld, T. J. S., 

Seidler, T. G., Sweeney, P. W., Foster, D. R., Ellison, A. M., & Davis, C. C. (2018). 

Widespread sampling biases in herbaria revealed from large-scale digitization. New 

Phytologist, 217(2), 939–955. doi:10.1111/nph.14855 

Di Cecco, G. J., Barve, V., Belitz, M. W., Stucky, B. J., Guralnick, R. P., & Hurlbert, A. H. 

(2021). Observing the Observers: How Participants Contribute Data to iNaturalist and 

Implications for Biodiversity Science. BioScience, 71(11), 1179–1188. 

doi:10.1093/biosci/biab093 



77 

Dickinson, J. L., Zuckerberg, B., & Bonter, D. N. (2010). Citizen Science as an Ecological 

Research Tool: Challenges and Benefits. Annual Review of Ecology, Evolution, and 

Systematics, 41(1), 149–172. doi:10.1146/annurev-ecolsys-102209-144636 

Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis 

of presence‐only data. Global Ecology and Biogeography, 23(12), 1472–1484. 

doi:10.1111/geb.12216 

Ellsworth, L. M., Litton, C. M., Dale, A. P., & Miura, T. (2014). Invasive grasses change 

landscape structure and fire behaviour in Hawaii. Applied Vegetation Science, 17(4), 680–689. 

doi:10.1111/avsc.12110 

Farhadinia, M. S., Moll, R. J., Montgomery, R. A., Ashrafi, S., Johnson, P. J., Hunter, L. T. B., 

& Macdonald, D. W. (2018). Citizen science data facilitate monitoring of rare large carnivores 

in remote montane landscapes. Ecological Indicators, 94, 283–291. 

doi:10.1016/j.ecolind.2018.06.064 

Feldman, M. J., Imbeau, L., Marchand, P., Mazerolle, M. J., Darveau, M., & Fenton, N. J. 

(2021). Trends and gaps in the use of citizen science derived data as input for species 

distribution models: A quantitative review. PLOS ONE, 16(3), e0234587. 

doi:10.1371/journal.pone.0234587 

Fletcher, R. J., Hefley, T. J., Robertson, E. P., Zuckerberg, B., McCleery, R. A., & Dorazio, R. 

M. (2019). A practical guide for combining data to model species distributions. Ecology, 

e02710. doi:10.1002/ecy.2710 

Fourcade, Y., Engler, J. O., Rödder, D., & Secondi, J. (2014). Mapping species distributions with 

Maxent using a geographically biased sample of presence data: A performance assessment of 

methods for correcting sampling bias. PLoS ONE, 9(5), e97122. 

doi:10.1371/journal.pone.0097122 

Freitag, A., Meyer, R., & Whiteman, L. (2016). Strategies Employed by Citizen Science 

Programs to Increase the Credibility of Their Data. Citizen Science: Theory and Practice, 1(1), 

2. doi:10.5334/cstp.6 

Gábor, L., Moudrý, V., Barták, V., & Lecours, V. (2020). How do species and data 

characteristics affect species distribution models and when to use environmental filtering? 

International Journal of Geographical Information Science, 34(8), 1567–1584. 

doi:10.1080/13658816.2019.1615070 

GBIF.org. (2020). GBIF Occurrence Download (p. 1470749) [Darwin Core Archive]. The 

Global Biodiversity Information Facility. doi:10.15468/DL.243P7M 

Giambelluca, T. W., Chen, Q., Frazier, A. G., Price, J. P., Chen, Y.-L., Chu, P.-S., Eischeid, J. 

K., & Delparte, D. M. (2013). Online Rainfall Atlas of Hawai‘i. Bulletin of the American 

Meteorological Society, 94(3), 313–316. doi:10.1175/BAMS-D-11-00228.1 



78 

Giambelluca, T. W., Shuai, X., Barnes, M. L., Alliss, R. J., Longman, R. J., Miura, T., Chen, Q., 

Frazier, A. G., Mudd, R. G., Cuo, L., & Businger, A. D. (2014). Evapotranspiration of 

Hawai‘i. Final report submitted to the U.S. Army Corps of Engineers—Honolulu District, and 

the Commission on Water Resource Management, State of Hawai‘i. 

Gillespie, T. W., Chu, J., & Pau, S. (2008). Non-native plant invasion of the Hawaiian Islands. 

Geography Compass, 2(5), 1241–1265. doi:10.1111/j.1749-8198.2008.00152.x 

Groom, Q., Desmet, P., Reyserhove, L., Adriaens, T., Oldoni, D., Vanderhoeven, S., Baskauf, S. 

J., Chapman, A., McGeoch, M., Walls, R., Wieczorek, J., Wilson, J., Zermoglio, P. F., & 

Simpson, A. (2019). Improving Darwin Core for research and management of alien species. 

Biodiversity Information Science and Standards, 3, e38084. doi:10.3897/biss.3.38084 

Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., 

McCarthy, M. A., Tingley, R., & Wintle, B. A. (2015). Is my species distribution model fit for 

purpose? Matching data and models to applications: Matching distribution models to 

applications. Global Ecology and Biogeography, 24(3), 276–292. doi:10.1111/geb.12268 

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple 

habitat models. Ecology Letters, 8(9), 993–1009. doi:10.1111/j.1461-0248.2005.00792.x 

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I. 

T., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T. G., 

Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., 

Broennimann, O., Austin, M., … Buckley, Y. M. (2013). Predicting species distributions for 

conservation decisions. Ecology Letters, 16(12), 1424–1435. doi:10.1111/ele.12189 

Hawaii State Alien Species Coordinator. (2017, May 9). Hawaii’s Most Invasive Horticultural 

Plants. http://www.hear.org/hortweeds/ 

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2020). Dismo: Species Distribution 

Modeling. R package version 1.3-3. https://CRAN.R-project.org/package=dismo 

Hochachka, W. M., Fink, D., Hutchinson, R. A., Sheldon, D., Wong, W.-K., & Kelling, S. 

(2012). Data-intensive science applied to broad-scale citizen science. Trends in Ecology & 

Evolution, 27(2), 130–137. doi:10.1016/j.tree.2011.11.006 

Hochmair, H. H., Scheffrahn, R. H., Basille, M., & Boone, M. (2020). Evaluating the data 

quality of iNaturalist termite records. PLOS ONE, 15(5), e0226534. 

doi:10.1371/journal.pone.0226534 

Hughes, R. F., Asner, G. P., Litton, C. M., Selmants, P. C., Hawbaker, T. J., Jacobi, J. D., 

Giardina, C. P., & Sleeter, B. M. (2017). Influence of Invasive Species on Carbon Storage in 

Hawai‘i’s Ecosystems. In Baseline and Projected Future Carbon Storage and Carbon Fluxes 

in Ecosystems of Hawai‘i (pp. 43–55). 

Imada, C. (2012). Hawaiian Native and Naturalized Vascular Plants Checklist (Bishop Musem 

Technical Report 60). Bishop Museum. 



79 

Imada, C. (2019). Hawaiian Naturalized Vascular Plants Checklist (Bishop Musem Technical 

Report 69). Bishop Museum. 

Isaac, N. J. B., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-Supan, P. H., Browning, E., 

Freeman, S. N., Golding, N., Guillera-Arroita, G., Henrys, P. A., Jarvis, S., Lahoz-Monfort, J., 

Pagel, J., Pescott, O. L., Schmucki, R., Simmonds, E. G., & O’Hara, R. B. (2020). Data 

Integration for Large-Scale Models of Species Distributions. Trends in Ecology & Evolution, 

35(1), 56–67. doi:10.1016/j.tree.2019.08.006 

Jacobi, J. D., Price, J. P., Fortini, L. B., M, G. I., Samuel, & Berkowitz, P. (2017). Hawaii Land 

Cover and Habitat Status [Data set]. U.S. Geological Survey. doi:10.5066/F7DB80B9 

Johnson, B. A., Mader, A. D., Dasgupta, R., & Kumar, P. (2020). Citizen science and invasive 

alien species: An analysis of citizen science initiatives using information and communications 

technology (ICT) to collect invasive alien species observations. Global Ecology and 

Conservation, 21, e00812. doi:10.1016/j.gecco.2019.e00812 

Kadmon, R., Farber, O., & Danin, A. (2004). Effect of roadside bias on the accuracy of 

predictive maps produced by bioclimatic models. Ecological Applications, 14(2), 401–413. 

doi:10.1890/02-5364 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., 

Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, 

J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., … 

Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species 

distribution models. Diversity and Distributions, 19(11), 1366–1379. doi:10.1111/ddi.12096 

Lehtiniemi, M., Outinen, O., & Puntila-Dodd, R. (2020). Citizen science provides added value in 

the monitoring for coastal non-indigenous species. Journal of Environmental Management, 

267, 110608. doi:10.1016/j.jenvman.2020.110608 

Lewandowski, E., & Specht, H. (2015). Influence of volunteer and project characteristics on data 

quality of biological surveys: Data Quality of Volunteer Surveys. Conservation Biology, 29(3), 

713–723. doi:10.1111/cobi.12481 

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of 

occurrence in the prediction of species distributions. Ecography, 28(3), 385–393. 

doi:10.1111/j.0906-7590.2005.03957.x 

Liu, C., Newell, G., & White, M. (2016). On the selection of thresholds for predicting species 

occurrence with presence‐only data. Ecology and Evolution, 6(1), 337–348. 

doi:10.1002/ece3.1878 

Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species 

occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. 

doi:10.1111/jbi.12058 



80 

Mair, L., & Ruete, A. (2016). Explaining Spatial Variation in the Recording Effort of Citizen 

Science Data across Multiple Taxa. PLOS ONE, 11(1), e0147796. 

doi:10.1371/journal.pone.0147796 

Matteson, K. C., Taron, D. J., & Minor, E. S. (2012). Assessing Citizen Contributions to 

Butterfly Monitoring in Two Large Cities. Conservation Biology, 26(3), 557–564. 

doi:10.1111/j.1523-1739.2012.01825.x 

McCarthy, K. P., Fletcher Jr, R. J., Rota, C. T., & Hutto, R. L. (2012). Predicting species 

distributions from samples collected along roadsides: Road bias in predicting distributions. 

Conservation Biology, 26(1), 68–77. doi:10.1111/j.1523-1739.2011.01754.x 

McKinley, D. C., Miller-Rushing, A. J., Ballard, H. L., Bonney, R., Brown, H., Cook-Patton, S. 

C., Evans, D. M., French, R. A., Parrish, J. K., Phillips, T. B., Ryan, S. F., Shanley, L. A., 

Shirk, J. L., Stepenuck, K. F., Weltzin, J. F., Wiggins, A., Boyle, O. D., Briggs, R. D., Chapin, 

S. F., … Soukup, M. A. (2017). Citizen science can improve conservation science, natural 

resource management, and environmental protection. Biological Conservation, 208, 15–28. 

doi:10.1016/j.biocon.2016.05.015 

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling 

species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 

1058–1069. doi:10.1111/j.1600-0587.2013.07872.x 

Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in 

global plant occurrence information. Ecology Letters, 19(8), 992–1006. doi:10.1111/ele.12624 

Milanesi, P., Mori, E., & Menchetti, M. (2020). Observer‐oriented approach improves species 

distribution models from citizen science data. Ecology and Evolution, 10(21), 12104–12114. 

doi:10.1002/ece3.6832 

Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and 

promising future for data integration methods to estimate species’ distributions. Methods in 

Ecology and Evolution, 10(1), 22–37. doi:10.1111/2041-210X.13110 

Minden, V., Jacobi, J. D., Porembski, S., & Boehmer, H. J. (2010). Effects of invasive alien 

kahili ginger ( Hedychium gardnerianum ) on native plant species regeneration in a Hawaiian 

rainforest. Applied Vegetation Science, 13(1), 5–14. doi:10.1111/j.1654-109X.2009.01056.x 

Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & 

Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent 

evaluations and estimating optimal model complexity for Maxent ecological niche models. 

Methods in Ecology and Evolution, 5(11), 1198–1205. doi:10.1111/2041-210X.12261 

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). 

Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. 

doi:10.1038/35002501 



81 

Newbold, T. (2010). Applications and limitations of museum data for conservation and ecology, 

with particular attention to species distribution models. Progress in Physical Geography: 

Earth and Environment, 34(1), 3–22. doi:10.1177/0309133309355630 

Niemiec, R. M., Ardoin, N. M., Wharton, C. B., & Brewer, F. K. (2017). Civic and natural place 

attachment as correlates of resident invasive species control behavior in Hawaii. Biological 

Conservation, 209, 415–422. doi:10.1016/j.biocon.2017.02.036 

Pacifici, K., Reich, B. J., Miller, D. A. W., Gardner, B., Stauffer, G., Singh, S., McKerrow, A., & 

Collazo, J. A. (2017). Integrating multiple data sources in species distribution modeling: A 

framework for data fusion*. Ecology, 98(3), 840–850. doi:10.1002/ecy.1710 

Pauchard, A., Kueffer, C., Dietz, H., Daehler, C. C., Alexander, J., Edwards, P. J., Arévalo, J. R., 

Cavieres, L. A., Guisan, A., Haider, S., Jakobs, G., McDougall, K., Millar, C. I., Naylor, B. J., 

Parks, C. G., Rew, L. J., & Seipel, T. (2009). Ain’t no mountain high enough: Plant invasions 

reaching new elevations. Frontiers in Ecology and the Environment, 7(9), 479–486. 

doi:10.1890/080072 

Paulay, G. (1994). Biodiversity on Oceanic Islands: Its Origin and Extinction. American 

Zoologist, 34(1), 134–144. doi:10.1093/icb/34.1.134 

Pettorelli, N. (2013). The normalized difference vegetation index (First edition). Oxford 

University Press. 

Phillips, S. J. (2017). A Brief Tutorial on Maxent. 

http://biodiversityinformatics.amnh.org/open_source/maxent/ 

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. 

(2009). Sample selection bias and presence-only distribution models: Implications for 

background and pseudo-absence data. Ecological Applications, 19(1), 181–197. 

doi:10.1890/07-2153.1 

Reaser, J. K., Simpson, A., Guala, G. F., Morisette, J. T., & Fuller, P. (2020). Envisioning a 

national invasive species information framework. Biological Invasions, 22(1), 21–36. 

doi:10.1007/s10530-019-02141-3 

Richardson, D. M., & Pyšek, P. (2006). Plant invasions: Merging the concepts of species 

invasiveness and community invasibility. Progress in Physical Geography: Earth and 

Environment, 30(3), 409–431. doi:10.1191/0309133306pp490pr 

Richardson, D. M., & Whittaker, R. J. (2010). Conservation biogeography: Foundations, 

concepts and challenges. Diversity and Distributions, 16(3), 313–320. doi:10.1111/j.1472-

4642.2010.00660.x 

Riesch, H., & Potter, C. (2014). Citizen science as seen by scientists: Methodological, 

epistemological and ethical dimensions. Public Understanding of Science, 23(1), 107–120. 

doi:10.1177/0963662513497324 



82 

Robinson, O. J., Ruiz‐Gutierrez, V., & Fink, D. (2018). Correcting for bias in distribution 

modelling for rare species using citizen science data. Diversity and Distributions, 24(4), 460–

472. doi:10.1111/ddi.12698 

Robinson, O. J., Ruiz‐Gutierrez, Viviana., Reynolds, M. D., Golet, G. H., Strimas‐Mackey, M., 

& Fink, D. (2020). Integrating citizen science data with expert surveys increases accuracy and 

spatial extent of species distribution models. Diversity and Distributions, 26(8), 976–986. 

doi:10.1111/ddi.13068 

Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: 

Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915–927. 

doi:10.1111/j.1466-8238.2011.00659.x 

Roman, L. A., Scharenbroch, B. C., Östberg, J. P. A., Mueller, L. S., Henning, J. G., Koeser, A. 

K., Sanders, J. R., Betz, D. R., & Jordan, R. C. (2017). Data quality in citizen science urban 

tree inventories. Urban Forestry & Urban Greening, 22, 124–135. 

doi:10.1016/j.ufug.2017.02.001 

Smith, C. W. (1985). Impact of alien plants on Hawaii’s native biota. In Hawaii’s Terrestrial 

Ecosystems: Preservation and Management (p. 72). Cooperative National Park Resources 

Studies Unit, University of Hawaii. 

Srivastava, V., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): 

applications, benefits and challenges in invasive species management. CABI Reviews, (2019), 

1-13. doi:10.1079/PAVSNNR201914020 

Steen, V. A., Elphick, C. S., & Tingley, M. W. (2019). An evaluation of stringent filtering to 

improve species distribution models from citizen science data. Diversity and Distributions, 

25(12), 1857–1869. doi:10.1111/ddi.12985 

Steen, V. A., Tingley, M. W., Paton, P. W. C., & Elphick, C. S. (2021). Spatial thinning and 

class balancing: Key choices lead to variation in the performance of species distribution 

models with citizen science data. Methods in Ecology and Evolution, 12(2), 216–226. 

doi:10.1111/2041-210X.13525 

Steger, C., Butt, B., & Hooten, M. B. (2017). Safari Science: Assessing the reliability of citizen 

science data for wildlife surveys. Journal of Applied Ecology, 54(6), 2053–2062. 

doi:10.1111/1365-2664.12921 

Stolar, J., & Nielsen, S. E. (2015). Accounting for spatially biased sampling effort in presence-

only species distribution modelling. Diversity and Distributions, 21(5), 595–608. 

doi:10.1111/ddi.12279 

Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013). The effects of sampling bias and model 

complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE, 

8(2), e55158. doi:10.1371/journal.pone.0055158 



83 

Tanner, A. M., Tanner, E. P., Papeş, M., Fuhlendorf, S. D., Elmore, R. D., & Davis, C. A. 

(2020). Using aerial surveys and citizen science to create species distribution models for an 

imperiled grouse. Biodiversity and Conservation, 29(3), 967–986. doi:10.1007/s10531-019-

01921-6 

Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R., Froehlich, H. E., 

Wagner, C., HilleRisLambers, J., Tewksbury, J., Harsch, M. A., & Parrish, J. K. (2015). 

Global change and local solutions: Tapping the unrealized potential of citizen science for 

biodiversity research. Biological Conservation, 181, 236–244. 

doi:10.1016/j.biocon.2014.10.021 

Tulloch, A. I. T., Mustin, K., Possingham, H. P., Szabo, J. K., & Wilson, K. A. (2013). To boldly 

go where no volunteer has gone before: Predicting volunteer activity to prioritize surveys at 

the landscape scale. Diversity and Distributions, 19(4), 465–480. doi:10.1111/j.1472-

4642.2012.00947.x 

U.S. Department of Agriculture, Natural Resources Conservation Service. (2020). Soil Survey 

Geographic (SSURGO) database. https://websoilsurvey.sc.egov.usda.gov/ 

U.S. Geological Survey Gap Analysis Project. (2018). Protected Areas Database of the United 

States (PAD-US): U.S. Geological Survey data release. U.S. Geological Survey. 

doi:10.5066/P955KPLE 

van Strien, A. J., van Swaay, C. A. M., & Termaat, T. (2013). Opportunistic citizen science data 

of animal species produce reliable estimates of distribution trends if analysed with occupancy 

models. Journal of Applied Ecology, 50(6), 1450–1458. doi:10.1111/1365-2664.12158 

Varela, S., Anderson, R. P., García-Valdés, R., & Fernández-González, F. (2014). Environmental 

filters reduce the effects of sampling bias and improve predictions of ecological niche models. 

Ecography. doi:10.1111/j.1600-0587.2013.00441.x 

Vorsino, A. E., Fortini, L. B., Amidon, F. A., Miller, S. E., Jacobi, J. D., Price, J. P., Gon, S. 

’Ohukani’ohi’a, & Koob, G. A. (2014). Modeling Hawaiian Ecosystem Degradation due to 

Invasive Plants under Current and Future Climates. PLoS ONE, 9(5), e95427. 

doi:10.1371/journal.pone.0095427 

Wagner, W. L., Herbst, D. R., & Sohmer, S. H. (1999). Manual of the flowering plants of 

Hawai’i (Rev. ed). University of Hawai’i Press : Bishop Museum Press. 

Wallace, R. D., Bargeron, C. T., & Reaser, J. K. (2020). Enabling decisions that make a 

difference: Guidance for improving access to and analysis of invasive species information. 

Biological Invasions, 22(1), 37–45. doi:10.1007/s10530-019-02142-2 

Warner, K. D., & Kinslow, F. (2013). Manipulating risk communication: Value predispositions 

shape public understandings of invasive species science in Hawaii. Public Understanding of 

Science, 22(2), 203–218. doi:10.1177/0963662511403983 



84 

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus 

conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. 

doi:10.1111/j.1558-5646.2008.00482.x 

Wilson, J. S., Pan, A. D., General, D. E. M., & Koch, J. B. (2020). More eyes on the prize: An 

observation of a very rare, threatened species of Philippine Bumble bee, Bombus irisanensis, 

on iNaturalist and the importance of citizen science in conservation biology. Journal of Insect 

Conservation, 24(4), 727–729. doi:10.1007/s10841-020-00233-3 

Zapponi, L., Cini, A., Bardiani, M., Hardersen, S., Maura, M., Maurizi, E., Redolfi De Zan, L., 

Audisio, P., Bologna, M. A., Carpaneto, G. M., Roversi, P. F., Sabbatini Peverieri, G., Mason, 

F., & Campanaro, A. (2017). Citizen science data as an efficient tool for mapping protected 

saproxylic beetles. Biological Conservation, 208, 139–145. doi:10.1016/j.biocon.2016.04.035 

 

 

 

 

  



85 

 Landsat NDVI time series capture greening trends in Hawaiian dry forests 

 

Supplementary materials for this chapter are provided in Appendix C. 

 

Abstract 

Tropical dry forests are highly threatened and fragmented in the Hawaiian Islands, and 

restoration requires intensive, active management and long-term monitoring. Remote sensing 

imagery has the potential to improve the consistency and longevity of ecosystem monitoring. We 

used a 1999-2022 Landsat time series of the Normalized Difference Vegetation Index (NDVI) to 

examine whether site-level trends in Hawaiian dry forest reflect the browning patterns observed 

at coarser spatial scales in the region. NDVI trends in active dry forest restoration sites were 

examined in order to test the utility of Landsat-resolution imagery in restoration monitoring. As 

dry forest is strongly influenced by rainfall and vegetation productivity has been previously 

linked to drying trends in Hawaii, we also compared NDVI trends to precipitation anomalies 

calculated from the Rainfall Atlas of Hawaii. Trends in median NDVI and robust coefficient of 

variation of NDVI were estimated in Hawaii’s dry and wet seasons, and breakpoint analysis was 

used to detect trend departures. We found that median NDVI increased significantly in native 

and non-native dry forest sites. Greening occurred in spite of declines in rainfall and a positive 

correlation between median NDVI and precipitation anomalies, but was less common in non-

native grasslands. Two well-established restoration sites, Auwahi and Makauwahi, have 

experienced significant increases in median NDVI, and seasonal variation in NDVI at 

Makauwahi has significantly declined. Breakpoints in NDVI trends coincided with the start of 

restoration at Makauwahi. These results demonstrate that, given adequate spatial scale and 
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establishment time, freely accessible, global Landsat imagery has the potential to enhance 

monitoring in dry forest restoration sites. They also highlight the need for site-level remote 

sensing imagery for more accurate estimation of vegetation trends in heterogeneous landscapes. 

 

4.1. Introduction 

Tropical dry forests are highly threatened ecosystems that continue to experience high 

rates of cover loss worldwide (Hansen et al., 2013; Murphy & Lugo, 1986; Sanchez-Azofeifa et 

al., 2005), yet they are under-protected and under-studied compared to temperate and tropical 

rainforests (Hoekstra et al., 2004; Quesada et al., 2009; Sunderland et al., 2015). In the Hawaiian 

Islands, over 25% of endangered plants are dry forest or dry scrub species (Cabin et al., 2000), 

and it is estimated that 90% of the region’s original dry forest has been lost since the arrival of 

humans (Falk et al., 1996). Ongoing sources of disturbance include fire, feral ungulate activity, 

and non-native plant dispersal (Stone et al., 1992). Invasive pasture grasses have significantly 

altered Hawaii’s natural fire regime, further reducing the cover of native species that are not 

adapted to increased fire intensity and frequency (Ellsworth et al., 2014). This has resulted in a 

patchwork of highly flammable grasslands and small, isolated dry forest fragments that are 

highly likely to experience further fragmentation (Balzotti et al., 2020; Cabin et al., 2000; Friday 

et al., 2015).  

Advancements in the accessibility and processing of remote sensing data can be utilized 

to expand ecosystem monitoring over greater spatial and temporal scales (Secades et al., 2014). 

Satellite-derived vegetation indices, such as the Normalized Difference Vegetation Index 

(NDVI), have long been used to evaluate vegetation health and change (Xue & Su, 2017). Global 

and large-scale regional studies have used time series of NDVI and other indices to demonstrate 

the varying, often region-specific responses of vegetation greenness to long-term climatic trends, 
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including increases driven by warming and CO2 fertilization (Xu et al., 2020; Zhu et al., 2016) 

and decreases due to drought or declines in rainfall (Hilker et al., 2014; Zhou et al., 2014). The 

Hawaiian Islands have experienced significant warming and drying trends during the last century 

(Frazier & Giambelluca, 2017; McKenzie et al., 2019), and two recent remote sensing studies 

have found associations between drier climate conditions and declines in forest productivity. 

Barbosa & Asner (2016) showed that drying has driven a decrease in forest greenness (using 

Enhanced Vegetation Index anomalies) in mesic to wet zones on the island of Hawai‘i from 2002 

to 2016, with particularly strong declines in photosynthetic activity and canopy volume on the 

drier, leeward side. Madson et al. (2022) examined monthly NDVI time series and found 

significant browning in both native and non-native vegetation across the archipelago from 1984 

to 2019, and evidence of higher sensitivity to drought in leeward areas (Madson et al. 2022).  

Remote sensing may also be used to improve the longevity and efficiency of 

conventional in situ restoration monitoring (de Almeida et al., 2020; Friday et al., 2015; Hausner 

et al., 2018; Reis et al., 2019). Studies in tidal marsh (Tuxen et al., 2008), grassland (Zhang et al., 

2012), lagoon (Kim et al., 2015), and riparian (Sun et al., 2011) ecosystems have shown that 

NDVI can be used to monitor various post-restoration changes in vegetation cover and plant 

productivity. This particular application of remote sensing is an important area of research in 

Hawaiian dry forest management (Cordell et al., 2017; Friday et al., 2015). In Hawaii, dry forest 

conservation requires intensive restoration—e.g. ungulate exclusion, invasive grass control, 

supplemental irrigation, native species reintroduction and outplanting, etc. (Ammondt et al., 

2013; Cabin et al., 2002; Ellsworth et al., 2015)—as well as sufficient monitoring (Holl, 2017; 

Stanturf et al., 2014). Regular evaluation at intermediate intervals provides data that can guide 

potential remediation and adaptive management (Dey & Schweitzer, 2014; Suding, 2011; Tuxen 
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et al., 2008), while overall longer monitoring periods are needed to avoid misleading, short-term 

results (Herrick et al., 2006; Menges, 2008). Certain indicators of recovery, such as self-

recruitment by introduced native plant material (Drayton & Primack, 2012), may progress at 

slower rates that cannot be adequately captured in shorter monitoring time frames, and others 

may not follow a linear trajectory (Matthews et al., 2009). The active restoration literature 

indicates that monitoring is generally insufficient, due in part to perceived costliness, unclear 

objectives or criteria for success, and limited time, resources, or expertise (Dey & Schweitzer, 

2014; Stanturf et al., 2014; Suding, 2011). Though a few long-term examples have been shared 

in the literature (Faucette et al., 2008; Medeiros et al., 2014), a review of dry forest active 

restoration publications found that studies in Hawaii have been monitored for an average of three 

years (Dimson & Gillespie, 2020).  

To our knowledge, a site-level remote sensing time series analysis has not been 

conducted in Hawaiian dry forest. The previously mentioned studies in Hawaii used 500-meter 

resolution Moderate Resolution Imaging Spectroradiometer (MODIS) and 0.05-degree (~5 

kilometer) Advanced Very High Resolution Radiometer (AVHRR) data to detect negative trends 

in vegetation indices (J. M. Barbosa & Asner, 2016; Madson et al., 2022). But it is important to 

measure patterns across multiple spatial scales; remote sensing metrics can be highly influenced 

by pixel size, and there is often a mismatch between the spatial scale of imagery and the 

processes being monitored on the ground (Anderson, 2018). 

We thus used a 23-year Landsat time series to examine dry forest NDVI trends in Hawaii, 

where small dry forests remnants are isolated over a heterogeneous landscape. Landsat imagery 

can be freely accessed through multiple platforms, and its 30-meter spatial resolution permits 

monitoring at the site-level. Though Landsat has a less frequent revisit interval of 16 days, it may 
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be able to capture spatial trends that are obscured in coarser imagery. We estimated NDVI trends 

in native species-dominated and non-native species-dominated dry forest sites to investigate 

whether the browning trends detected elsewhere in Hawaii are also occurring in remaining dry 

forests. We examined the relationship between NDVI and rainfall anomaly trends, given recent 

drying trends in the state (Frazier & Giambelluca, 2017) and the strong influence of precipitation 

on tropical dry forest NDVI (Pau et al., 2010). We expected that NDVI and rainfall would be 

positively associated. Finally, we tested the utility of Landsat in detecting vegetation changes at 

active dry forest restoration sites, where non-native grasses were previously dominant and 

woody non-native species also occurred. We therefore estimated NDVI trends in non-native 

grassland sites as well. We hypothesized that, pre-restoration, typical NDVI values and NDVI 

seasonality would be similar to that of non-native grassland. At sites where native vegetation 

recovery was reported, post-restoration NDVI was expected to increase, become less variable, 

and approach values characteristic of dry forest.  

This research examined three questions: 1) How have seasonal NDVI parameters 

changed in native Hawaiian dry forests from 1999 to 2022?  2) Are seasonal changes in NDVI 

associated with precipitation anomalies?; and 3) Do trends in Landsat-derived NDVI reflect 

reported changes in vegetation at dry forest restoration sites?  

4.2. Methods 

4.2.1. Native dry forest sites 

Native Hawaiian dry forests are extremely rare, fragmented, and limited in extent. We 

identified nine native dry forest plots on Hawai‘i, Kaua‘i, Lana‘i, and Maui (Gillespie et al., 

2011) and O‘ahu (Knight and Barton, 2012, unpublished data) using OpenNahele, a community-

level forest plot database for the Hawaiian Islands (Craven et al., 2018). We selected plots with 
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an area of ≥ 1000 m2 in which a minimum of 80% of inventoried plants were native species and 

at least 30 total plants were inventoried. For each site, a 3x3 Landsat pixel window centered on 

the point location provided in OpenNahele was included in analysis.  

4.2.2. Restoration sites 

We identified four dry forest restoration sites—Auwahi, Makauwahi, Keaau, and 

Ohikilolo—greater than the area of a single Landsat pixel (≥ 0.1 hectare). A pixel was included 

in analysis if the majority (>50%) of its footprint was located inside the restored area. 

Auwahi forest is located on private ranch land on the leeward side of Maui. The native 

understory was degraded by 19th-century grazing and burning practices and became densely 

covered by kikuyu grass (Cenchrus clandestinus) by the mid-20th century (see Medeiros et al., 

2014 for site history). Restoration of a 4-hectare plot began in 1997 and included the 

construction of a perimeter fence to exclude feral ungulates, mass outplanting of Dodonaea 

viscosa and other natives, and two herbicide treatments spaced several months apart (1.5% 

glyphosate). Treated kikuyu mats were left on site. By 2012, native plant cover had increased by 

57.6%. Since then, several thousand additional native plants have been planted, with ongoing 

minimal weed management (hand pulling and occasional herbicide application) (Erica von 

Allmen, personal communication). 

Makauwahi Cave is a non-profit coastal reserve in Kaua‘i. Prior to restoration, the 

property supported few native species and was dominated by invasive species, including guinea 

grass (Urochloa maxima) and the small woody tree Leucaena leucocephala (see Burney & 

Burney, 2016 for site history). Restoration of an abandoned sugar cane field on the property 

began in 2005 with the reintroduction of 3,000 native and Polynesian outplants. Invasive 

vegetation control included hand removal and rotary tillage; no herbicides were used. Weeding 
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took place from 2005 to 2010, after which it was required less frequently. Supplemental water 

was provided from 2005-2007 via drip irrigation for most of the site, then completely withdrawn 

in 2010. In 2012, a fence was constructed around most of the site to exclude feral pigs. Mean 

survival rate for tree and shrub species was 64.3% after 5 years, with most mortality occurring 

immediately after outplanting or withdrawal of supplemental irrigation. 

Keaau and Lower Ohikilolo are located in the Waianae range of O‘ahu and managed by 

the Department of Forestry and Wildlife and the O‘ahu Army Natural Resources Program 

(OANRP). Lower Ohikilolo is highly fire-prone and dominated by invasive grasses (including 

guinea grass and Melinis repens), L. leucocephala, and various herbaceous non-natives 

(OANRP, 2022). A fence was constructed in 2000 to separate the area from a large goat 

population to the south, and invasive vegetation control began in 2001. Control currently occurs 

on a quarterly basis and emphasizes fuel load reduction by targeting invasive grasses through a 

combination of weed whacking and occasional post-emergent herbicide applications. Periodic 

outplanting of rare and common native species began in 2014, and native shrub cover doubled in 

certain parts of Ohikilolo after just three years. 

In 2014, the Keaau management unit was fenced after the discovery of endangered native 

plant species in the area (OANRP, 2020). Several invasive species are widespread on the rocky 

terrain, including guinea grass, L. leucocephala, and the shrub Mesosphaerum pectinatum. 

Regular weed management began in 2015 and entails hand removal, weed whacking, and pre-

emergent herbicide applications along fences and trails. Areas within 50 meters of rare taxa are 

prioritized. Reintroductions of native species began in 2016, followed by a mass outplanting 

(500 outplants) of common natives in 2017. We limited analysis to areas of Keaau and Ohikilolo 

where outplanting has occurred. 
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4.2.3. Non-native vegetation classes 

Native and restored dry forest sites were compared to non-native species-dominated dry 

forest (non-native dry forest) and non-native species-dominated dry grassland (non-native 

grassland). The potential extent of dry forest includes areas with mean annual temperature 

>17°C, mean annual precipitation of 250-2000 mm, and a potential evapotranspiration (PET) to 

precipitation ratio >1 (Murphy & Lugo, 1986). We used this definition and gridded temperature, 

precipitation, and PET data (Giambelluca et al., 2013, 2014) to estimate a climatic envelope for 

dry forest in Hawaii, from which the non-native study sites were selected (Figure 4.1).  

The Carbon Assessment of Hawaii land cover map (Jacobi et al., 2017) was used to 

identify continuous areas (≥ 10 ha) of non-native grassland and non-native dry forest within the 

potential dry forest extent and elevation range of the native and restored sites (Appendix C, 

Figure C1). For each non-native vegetation class, we selected nine 3x3 Landsat pixel windows 

for analysis. At least two plots were located on each of Hawaii’s four largest islands (Hawai‘i, 

Maui, O‘ahu, and Kaua‘i). 

 

 
Figure 4.1 

Study site locations and potential dry forest zone, defined using Murphy and Lugo (1986). Hillshade layer 

from State of Hawaii Office of Planning. 

 



93 

 

4.2.4. NDVI 

NDVI is an indicator of vegetation productivity and photosynthetic capacity and is 

calculated as a difference ratio between red and near-infrared (NIR) reflectance [(NIR - Red) / 

(NIR + Red)], as chlorophyll absorbs visible light while the cell structure of healthy leaf tissue 

strongly reflects near-infrared light (Gamon et al., 1995; Pettorelli et al., 2005). Values range 

from +1 to -1, with negative values corresponding to clouds or water and higher values 

signifying denser vegetation and greater photosynthetic activity. 

Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), 

Landsat 8 Operational Land Imager (OLI), and Landsat 9 OLI Tier 1 collections were accessed 

through Google Earth Engine, a cloud computing platform that facilitates the processing and 

analysis of remote sensing data (Gorelick et al., 2017). We used the Collection 2, Level-2 surface 

reflectance product, which is atmospherically corrected and meets the solar zenith angle 

constraint of <76 degrees. NDVI values were computed from cloud-masked red and near-

infrared bands, then extracted for the study pixels and exported for analysis. Only values greater 

than zero were retained, in order to reflect the typical NDVI of soil and vegetated surfaces (Roy 

et al., 2016). As consistent, clear Landsat 5 TM images were not available for the region, 

analysis utilized Landsat 7 ETM+, Landsat 8 OLI, and Landsat 9 OLI data only.  

Landsat data spanned July 1999 to September 2022. Though individual Landsat sensors 

have a revisit interval of 16 days, temporal coverage was inconsistent, mainly due to cloud cover. 

The median number of image dates per pixel per year ranged from 1 (primarily in 1999) to 54 

with a median of 9 (Table 4.1). NDVI observations were aggregated into seasonal time series of 

NDVI parameters. We aligned quarterly seasons—November-January (NDJ), February-April 

(FMA), May-July (MJJ), and August-October (ASO)—with Hawaii’s wet (November-April) and 
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dry seasons (May-October) (Frazier & Giambelluca, 2017), and consequently excluded 

observations before August 1999 and after July 2022 from time series analysis. 

NDVI parameters included median NDVI and robust coefficient of variation (RCV) of 

NDVI. We chose median rather than mean NDVI because the annual distribution of NDVI 

values was often moderately to highly skewed for most sites (Bulmer, 1979). RCV of NDVI is 

calculated by dividing the median absolute deviation by the median, and is a more suitable 

alternative to the mean-based coefficient of variation for skewed data (Arachchige et al., 2022). 

RCV provides a measure of seasonality and may capture the response of NDVI to climatic 

variations and other potential disturbances that cannot be detected by the median (H. A. Barbosa 

et al., 2006). A higher RCV signifies greater variability. 

Table 4.1 

Per study site, the number of Landsat pixels, number of unique Landsat image dates, and mean (± 

standard deviation) percentage of valid pixels (i.e. no cloud cover, NDVI > 0) per image date. 

 

Class Site Island # pixels # image dates % valid pixels 

Native dry 

forest 

Manuka-1 Hawai‘i 9 166 89.8 ±22.8 

Manuka-2 Hawai‘i 9 163 87.3 ±25.0 

Kokee-1 Kaua‘i 9 208 90.9 ±22.6 

Kokee-2 Kaua‘i 9 214 91.1 ±21.9 

Kanepuu-1 Lana‘i 9 222 88.5 ±25.2 

Kanepuu-2 Lana‘i 9 211 89.8 ±22.1 

Kanaio Maui 9 325 91.3 ±21.5 

Nanakuli O‘ahu 9 213 86.9 ±24.2 

Waianae O‘ahu 9 165 87.3 ±24.9 

Non-native 

dry forest 

Kailua-1 Hawai‘i 9 247 93.7 ±18.0 

Kalaoa Hawai‘i 9 216 90.6 ±21.7 

South Point-1 Hawai‘i 9 404 92.7 ±19.6 

Hanapepe Valley Kaua‘i 9 575 91.5 ±21.0 

Mokihana Kaua‘i 9 243 91.9 ±21.0 

Kanaio Rd Maui 9 245 88.3 ±25.8 

Keokea Maui 9 233 90.7 ±22.7 

Kuaokala O‘ahu 9 197 90.4 ±23.0 

Lualualei O‘ahu 9 401 86.6 ±26.1 
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Non-native 

grassland 

Pohakuloa Hawai‘i 9 372 94.2 ±17.4 

South Point-2 Hawai‘i 9 411 92.3 ±19.5 

Waimea Hawai‘i 9 343 93.2 ±20.1 

Kalaheo Kaua‘i 9 551 91.5 ±21.0 

Kapaa Bypass Kaua‘i 9 567 92.4 ±19.7 

Kula Highway Maui 9 222 89.5 ±23.6 

Piilani Highway Maui 9 434 93.9 ±17.6 

Kailua-2 O‘ahu 9 293 90.9 ±21.3 

Makaha O‘ahu 9 314 92.1 ±20.4 

Restoration 

site 

Makauwahi Kaua‘i 14 775 85.7 ±27.4 

Auwahi Maui 42 230 76.2 ±33.2 

Keaau O‘ahu 5 257 81.6 ±25.7 

Ohikilolo O‘ahu 10 345 71.4 ±28.9 

 

4.2.5. NDVI analysis 

To characterize general NDVI conditions in native dry forest, non-native dry forest, non-

native grassland, and the four restoration sites, pixel-wise summaries of median NDVI and RCV 

of NDVI were calculated per season over the 1999-2022 study period. Pre- and post-restoration 

NDVI parameters were calculated for Makauwahi, Keaau, and Ohikilolo, using the year that 

native outplanting began as a threshold. NDVI parameters in the vegetation classes were also 

calculated for pre- and post-restoration periods for comparison. Kruskal-Wallis and post-hoc 

Wilcoxon rank sum tests were used to make pairwise comparisons and identify significant 

differences between groups. 

NDVI trends in each vegetation class and restoration site were characterized by 1) 

estimating the slope and strength of potential monotonic trends within seasons, and 2) identifying 

potential breakpoints, i.e. changes within the full time series. Sen’s slope estimator was used to 

evaluate trends in median NDVI and RCV of NDVI per season. The significance of the trend 

was determined using the Mann-Kendall test, a non-parametric test suitable for the detection of 

upward or downward monotonic trends in environmental data that may not necessarily be linear 
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(Hirsch et al., 1982; Kendall, 1975; Mann, 1945). Autocorrelation and partial autocorrelation 

functions were applied to time series of each vegetation class and restoration site; if serial 

correlation was observed, Mann-Kendall tests were used with the block bootstrap method to 

improve estimates of significance. 

Though all study sites were located in the potential dry forest zone (Figure 4.1), mean 

elevation ranged from 7 to 1156 meters (mean 466 ±339) and annual rainfall from 650 to 1385 

millimeters (mean 907 ±202). We therefore used Pearson’s correlations to assess the relationship 

between site variables (mean elevation and mean annual rainfall) and median NDVI, RCV of 

NDVI, and the Kendall coefficient of each parameter over time. 

Breakpoints signify shifts in a time series and divide it into segments. The Breaks for 

Additive Seasonal and Trend (BFAST) framework has been used to detect vegetation changes, 

including forest disturbances and NDVI response to drought, with minimal influence from 

seasonal amplitudes and in spite of time series irregularity (DeVries et al., 2015; Forkel et al., 

2013; Verbesselt, Hyndman, Newnham, et al., 2010; Xu et al., 2020). In this study, we tested the 

utility of BFAST in monitoring post-restoration changes in Landsat-derived NDVI parameters, 

and examined whether breakpoints in restoration time series coincided with changes in a site’s 

management history, without concurrent breaks in climatically similar vegetation classes. The 

bfast() function in the R package ‘bfast’ was applied using a frequency of 4 and the harmonic 

seasonal model, which requires fewer observations and is less sensitive to short-term variations 

(Verbesselt, Hyndman, Zeileis, et al., 2010). We tested two minimum segment sizes of 0.08 and 

0.13 (i.e. trend departures of at least 2 and 3 years, respectively). Overlap was determined using 

each breakpoint’s 95% confidence interval. 
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4.2.6. Precipitation data and analysis 

The relationship between NDVI and precipitation trends was examined using the Rainfall 

Atlas of Hawaii, a 250-meter resolution, gridded monthly and annual rainfall product that was 

recently expanded to span 1920-2019 (Giambelluca et al., 2013). Total rainfall was extracted 

using the center of each study site, and seasonal time series were created by summing monthly 

precipitation for the NDJ, FMA, MJJ, and ASO periods. We chose mean precipitation from 

1978-2007 as a baseline as per Frazier and Giambelluca (2017). We then calculated the seasonal 

long-term precipitation anomaly (PAt) and cumulative precipitation anomaly (CPAt) as: 

PAt = 
Precipitationt - Precipitation1978-2007

Precipitation1978-2007
 

CPAt = PAt + PAt-1 

PAt is precipitation change in the year ‘t’ relative to the baseline mean, calculated using 

Precipitationt (total rainfall in the year ‘t’) and Precipitation1978-2007 (mean precipitation of the 

1978-2007 baseline period). CPAt depicts the accumulation of relative changes in precipitation 

by summing PA in the year ‘t’ and ‘t-1’. The significance of 1978-2019 seasonal precipitation 

trends at each study site were determined using Sen’s slope estimator and the non-parametric 

Mann-Kendall test (Frazier & Giambelluca, 2017).  

To evaluate the relationship between changes in seasonal rainfall and greenness from 

1999 to 2019, correlation coefficients were calculated between PAt and CPAt and median and 

RCV of NDVI in each vegetation class and restoration site. As Shapiro-Wilk tests determined 

that PAt, CPAt, median NDVI, and RCV of NDVI were not normally distributed, we used the 

non-parametric Spearman rank correlation. 
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4.3. Results 

4.3.1. NDVI by site and vegetation class 

Wilcoxon rank sum tests found significant differences (p < 0.05) in native dry forest, 

non-native dry forest, and non-native grassland median NDVI over the 1999-2022 study period. 

Among these vegetation classes, median NDVI was highest in non-native dry forest and lowest 

in non-native grassland (Figure 4.2). It was significantly higher in the NDJ quarter than during 

the dry season (MJJ and ASO) (p < 0.01, Appendix C, Table C1). There was no statistical 

difference between RCV of NDVI of native and non-native dry forest sites, and RCV of NDVI 

was highest in non-native grassland in all seasons (p < 0.001). RCV peaked in the late dry season 

(ASO) and showed the most variation across quarters in non-native grassland.  

Study site mean annual rainfall was positively associated with median NDVI and 

negatively associated RCV of NDVI in all three vegetation classes. This relationship was 

strongest for native dry forest (r = 0.74, p < 0.001; r = -0.79, p < 0.001). Mean elevation of 

native dry forest sites was also moderately positively correlated with median NDVI (r = 0.47, p 

< 0.01) and negatively correlated with RCV of NDVI (r = -0.63, p < 0.001). In the restoration 

site class, there was no correlation between site environment and NDVI parameters. 

Pre- and post-restoration median NDVI was generally lower than that of native and non-

native dry forest (p < 0.05), with a few exceptions where there was no statistical difference 

(Figure 4.2). Non-native grassland and pre- and post-restoration Ohikilolo median NDVI were 

statistically similar in all seasons. Keaau median NDVI was also similar to non-native grassland, 

except during FMA pre-restoration, when it was slightly higher. At Makauwahi, pre-restoration 

median NDVI was higher, lower, or similar to that of non-native grassland depending on the 

season, but after restoration, Makauwahi’s median NDVI was consistently significantly higher (p 
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< 0.05). At Auwahi, median NDVI was similar to that of non-native grassland during the wet 

season (FMA and NDJ) and higher during the dry season (MJJ and ASO, p < 0.001).  

 

Figure 4.2 

Pixel-wise NDVI parameters summarized within pre- and post-restoration periods (determined by the 

year that native outplanting began; Auwahi’s post restoration period includes 1999-2022). Error bars 

show 95% confidence interval of the median. For significant differences between restoration sites before 

and after outplanting, see Appendix C, Table C2. 1999-2022 summary statistics for native dry forest 

(DF), non-native DF, and non-native grassland sites can be found in Appendix C, Table C3.  
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Pre- and post-restoration RCV of NDVI was significantly higher or statistically similar to 

that of native and non-native dry forest (p < 0.05). Compared to non-native grasslands, Auwahi 

and post-restoration Makauwahi had significantly lower RCV of NDVI (p < 0.05), while pre-

restoration Makauwahi had higher RCV of NDVI in every season except FMA (p < 0.001). 

There was usually no statistical difference between RCV of NDVI in non-native grassland and 

pre- and post-restoration Keaau or Ohikilolo, wiith a few exceptions (Figure 4.2).  

The clearest post-restoration shift in NDVI occurred at Makauwahi. After restoration, the 

site’s median NDVI increased (p < 0.05) and RCV of NDVI decreased (p < 0.001) in all seasons, 

resulting in higher median NDVI and lower RCV of NDVI than non-native grassland (Figure 

4.2; Appendix C, Table C2). Post-restoration changes at Keaau and Ohikilolo were similar in 

some ways, but less consistent. Keaau experienced significant increases in median NDVI during 

MJJ and NDJ (p < 0.05) as well as significant decreases in RCV of NDVI (p < 0.05) during the 

dry quarters (MJJ and ASO). At Ohikilolo, median NDVI increased significantly in FMA, MJJ, 

and ASO (p < 0.05), but RCV of NDVI increased during ASO (p < 0.05). 

4.3.2. NDVI time series 

Seasonal trends in median NDVI over time were primarily positive, and more common in 

forest classes than in non-native grassland (Figure 4.3). The strength and significance of the 

correlation varied by site and season, but the mean slope of each class did not differ significantly. 

Relatively high slopes were observed at Makauwahi and Auwahi. At Ohikilolo, a significant 

increase in median NDVI only occurred during the ASO quarter, while Keaau’s median NDVI 

showed a significant negative trend during NDJ. 

The slope of median NDVI was positively associated with site elevation (r = 0.60, p < 

0.001) and negatively associated with site mean annual rainfall (r = -0.34, p < 0.05) in non-

native dry forest. Otherwise, site environment was not correlated with changes in NDVI. 
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Aside from significant increases in RCV of NDVI at Makauwahi, the direction of the 

RCV of NDVI trend was more variable across sites and seasons (Figure 4.4). In the majority of 

cases, there was no strong association, though increases were more common in forest sites and 

decreases more common in grassland sites.  

 

Figure 4.3 

Correlation of seasonal median NDVI and year from 1999-2022 (*p < 0.05, **p < 0.01). Sens slope given 

for significant relationships. Brown and green tiles indicate a decrease or increase in median NDVI over 

time, respectively. DF = dry forest. 

 

 Breakpoints were detected in median NDVI and/or RCV of NDVI time series at each 

restoration site, as well as in median NDVI of native and non-native dry forest (Figure 4.5). Both 

breakpoints in median NDVI at Auwahi coincided with breakpoints in native dry forest, and the 

direction of the trend departures was similar. Median and RCV of NDVI breakpoints at 

Makauwahi had the clearest overlap with the site’s restoration start date. The 95% confidence 
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interval of the Ohikilolo break, estimated to occur in 2005, was wide and overlapped a native dry 

forest breakpoint. Restoration at Keaau began after breaks detected in RCV of NDVI, which 

highlighted a steep rise in RCV between NDJ 2012 and MJJ 2014.  

 

 

Figure 4.4 

Correlation of seasonal RCV of NDVI and year from 1999-2022 (*p < 0.05, **p < 0.01, ***p < 0.001). 

Sens slope given for significant relationships. Blue and red tiles indicate a decrease or increase in RCV 

over time, respectively. DF = dry forest. 
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Figure 4.5 

Significant breakpoints (dotted lines) and trends in median and RCV of NDVI time series indicated by 

BFAST, for minimum trend departure lengths of 2 and 3 years. Red dashed lines show initial outplanting 

dates at restoration sites. DF = dry forest. 
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4.3.3. Precipitation anomalies 

Mann-Kendall tests indicated weak to moderate negative trends in the seasonal long-term 

precipitation anomaly (PAt) and cumulative precipitation anomaly (CPAt) from 1978 to 2019, 

and statistically significant trends at 11 out of 31 study sites (Appendix C, Table C4). Some 

positive trends occurred during the FMA, MJJ, and ASO quarters, but these were not significant 

and coefficients were low (mean r = 0.07 ±0.05). During the dry season, the PAt and CPAt trends 

were positively correlated with site elevation (MJJ CPAt r = 0.39, p < 0.05; ASO CPAt r = 0.49, 

p < 0.01; ASO PAt r = 0.43, p < 0.05) and negatively correlated with site rainfall (MJJ PAt r = -

0.37, p < 0.05; ASO CPAt r = -0.39, p < 0.05). During the NDJ quarter, PAt coefficients were 

positively associated with site rainfall (r = 0.40, p < 0.05). 

At the majority of study sites, seasonal PAt and CPAt were positively associated with 

median NDVI (Figure 4.6; Appendix C, Table C5). The strength and significance of the 

correlation were most consistent in non-native grassland sites and during the ASO quarter. 

Native and non-native dry forest study sites and the NDJ quarter in general showed more 

variation. The relationship between each seasonal precipitation anomaly and RCV of NDVI was 

primarily negative, but varied widely among study sites and seasons (Appendix C, Table C6). 

Trends were relatively weak, and statistical significance was observed for only a few sites. 
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Figure 4.6 

Spearman correlation of PAt and median NDVI (*p < 0.05, **p < 0.01, ***p < 0.001) from 1999-2019. 

Pink and blue tiles indicate a negative or positive relationship, respectively. DF = dry forest. 

 

4.4. Discussion 

Native dry forest became greener over the study period, a finding that differs from 

previous studies in this region at coarser spatial scales. Increases in median NDVI occurred in 

spite of a positive correlation between site mean annual rainfall and median NDVI, and despite 

negative precipitation trends. Non-native grassland NDVI was most strongly associated with 

precipitation anomalies. Restoration sites also greened during this time period, especially the 

larger, more established sites of Makauwahi and Auwahi. At Makauwahi, significant breakpoints 

in both median NDVI and RCV of NDVI coincided with the start of restoration. Keaau and 

Ohikilolo were outplanted relatively recently and likely require additional time before restoration 

results can be detected at Landsat resolution. 
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4.4.1. NDVI in native dry forest 

In the native dry forest plots in this study, vegetation greenness was lower and more 

variable at drier sites and during dry periods. We observed significantly higher median NDVI 

during the wet season (NDJ and FMA) compared to the dry season (MJJ and ASO). Native dry 

forest sites exhibited the strongest positive correlation between mean annual rainfall and median 

NDVI, with the highest median NDVI occurring at the wettest sites (Waianae and Nanakuli) and 

the lowest values occurring at the driest (Kanaio). Mean rainfall at native sites was also strongly 

negatively associated with RCV of NDVI, which was highest during the late dry season. 

Native dry forests had lower median NDVI than non-native dry forests. The greatest 

difference occurred in the dry ASO quarter, during which native RCV of NDVI was also 

significantly higher. This is not unprecedented in Hawaiian rainforest: stands of invasive Morella 

faya exhibit higher NDVI than stands of the common native Metrosideros polymorpha, 

particularly during periods of lower rainfall (Asner et al., 2006). M. polymorpha has also shown 

more conservative growth and resource use than invasive tree species in wet environments 

(Cavaleri et al., 2014). Our results offer evidence that dry forests dominated by non-native 

species may also experience less stress during the peak dry season.  

Over the last two decades, median NDVI showed significant, albeit low magnitude, 

increases at the majority of native and non-native dry forest sites in one or more seasons. 

Greening in tropical forest, due to factors such as elevated atmospheric CO2, has been observed 

in other regions (Xu et al., 2020; Zhu et al., 2016), but our Landsat results diverge from other 

studies in the Hawaiian Islands, which have attributed negative vegetation index trends to 

declines in precipitation and or worsening drought conditions (J. M. Barbosa & Asner, 2016; 

Madson et al., 2022). The MODIS-based analysis of Barbosa & Asner (2016) focused on mesic 
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to wet forests, which may help to explain the difference in our results. While Madson et al. 

(2022) did not differentiate between forests and other vegetation types in their AVHRR analysis, 

they found significant browning in both native and non-native vegetation during every month but 

January. Forest NDVI trends are known to vary across datasets of different spatial resolutions 

(Arjasakusuma et al., 2018; Fensholt & Proud, 2012), and discrepancies between Landsat- and 

AVHRR-derived trends could be partially attributed to spatial aggregation of multiple vegetation 

types within larger pixels (Munyati & Mboweni, 2013). Dry forests, being fragmented, limited in 

distribution, and a small percentage of land cover on the main Hawaiian Islands (Jacobi et al., 

2017), are unlikely to occupy the area of an AVHRR pixel. It is thus possible that a) native and 

non-native dry forests are exceptions to broader browning trends, b) our study sites occur in the 

AVHRR pixels in which Madson et al. (2022) found no significant change in NDVI, and so are 

not representative of broader trends that are indeed affecting dry forests. In native sites where 

greening was not observed (Kanepuu-1 and Nanakuli), significant trends in RCV of NDVI 

suggest that variation in dry season productivity has been increasing. Additional samples, and 

likely a longer time series, would be needed to explore these trends further. 

The strength of the NDVI trends in this study is limited by the length and temporal 

resolution of the Landsat time series. Sparse coverage prior to 1999 truncated the time series, 

limiting detection of trends that might become more apparent over a longer observation period. 

The AVHRR analysis by Madson et al. (2022), for instance, spanned 1984 to 2019. Additionally, 

the Landsat spatial resolution allows us to capture site-level variations in NDVI, but its revisit 

interval required observations to be seasonally aggregated. Coupled with missing data values due 

to cloud cover, this could potentially bias median NDVI values and obscure seasonal site 

variations. 
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4.4.2. Precipitation trends and NDVI 

Though only a few significant trends were detected, seasonal trends in both precipitation 

anomalies were primarily negative from 1978-2019. Across the Hawaiian Islands, dry season 

rainfall has declined more rapidly at locations above 1500 meters elevation (Frazier & 

Giambelluca, 2017). We found that the strength of the negative dry season PAt and CPAt trends 

was greater at lower elevations; however, all of the sites in this study were below 1200 meters, 

and may constitute an insufficient number of samples. We also observed weak but significant 

correlations between site mean annual rainfall and the precipitation anomaly trends in certain 

quarters, suggesting that drying trends have been relatively stronger at historically wetter sites 

during the dry season, and at drier sites during the wet season.  

Warmer, drier conditions in the Hawaiian Islands have been previously associated with 

declines in NDVI (J. M. Barbosa & Asner, 2016). At the majority of study sites, median NDVI 

was positively correlated with precipitation anomalies in at least one season, usually ASO 

(Figure 4.6). Yet in spite of the overall downward trend in rainfall, median NDVI at 22 of 31 

study sites increased significantly, depending on the season, over the last two decades. While it 

seems counterintuitive that sites should become greener while the climate is drying, the 

precipitation trends in Hawaii have not been consistent through time (Frazier & Giambelluca, 

2017). The response of different vegetation types also varied somewhat. The class showing the 

fewest increases in median NDVI, non-native grassland (Figure 4.3), had the strongest and most 

consistent relationship with precipitation anomalies (Figure 4.6). Shallow-rooted invasive 

grasses like Cenchrus setaceus are opportunistic and able to exploit shallow water sources, but 

are less productive in the absence of rainfall events (Cordell & Sandquist, 2008). Native woody 

species have deeper root systems that can access soil water during the dry season (Calder & Dye, 
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2001), and also perhaps when anomalous dry periods occur. This may explain why native sites 

like Manuka-1 and Manuka-2 have become greener, despite being situated in a region of Hawai‘i 

that has experienced the most significant drying trends (Frazier & Giambelluca, 2017).  

Should rainfall in Hawaii continue to decline, non-native grasslands will become drier, 

and will likely exacerbate the risk of wildfire and loss of existing dry forest (Trauernicht, 2019). 

Hotter, drier conditions are also expected to reduce forest productivity, increase tree mortality 

rates, and impede recovery of native species (Allen et al., 2015; Anderson-Teixeira et al., 2013). 

The productivity of native and restored dry forests sites, amid anomalous declines in 

precipitation, is an encouraging testament to the value of restoration efforts and of dry forests 

themselves, though this is not to say that dry forests are invulnerable to extended periods of 

drought. The 2007-2011 departure from the positive trend in native dry forest median NDVI 

coincides with Hawaii’s longest and most intense period of drought since 2000 

(droughtmonitor.unl.edu). A concurrent trend was not detected in non-native dry forest, which 

may be less sensitive to dry periods (Asner et al., 2006). Further analysis of drought and other 

potential drivers is needed to understand the response of site greenness to long-term climate 

trends in Hawaii.  

4.4.3. Post-restoration NDVI trends 

Makauwahi experienced the most significant and apparent changes in NDVI parameters 

over the study period. Seasonal NDVI patterns at the site initially resembled those of non-native 

dry grassland, but greenness increased and became less variable after restoration activities began 

(Figure 4.2). These shifts were visible in the Makauwahi NDVI time series as well, which were 

positive for median NDVI and negative for RCV of NDVI (Figures 4.3-4.4). BFAST analysis 

detected breakpoints in NDVI trends that coincided with the restoration start date in 2005 (Figure 
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4.5): median NDVI briefly dropped, then increased, while RCV of NDVI rose, then decreased. 

Native dry forest greenness is significantly higher than non-native grassland, and seasonal and 

annual variation in NDVI is significantly lower. The breaks and trends at Makauwahi likely 

reflect the removal of non-native guinea grass and L. leucocephala and the subsequent, gradual 

establishment and unassisted recruitment of outplanted native species (Burney & Burney, 2016). 

A second breakpoint in RCV of NDVI occurred in 2010, after which the decline in RCV was 

more gradual. This may be another indication of native species progress at the site; Burney and 

Burney (2016) reported that by 2010, native plant size and dominance had increased to the point 

that less intense weeding was needed and all supplemental water was withdrawn.  

Median NDVI at Auwahi, the most established of the restoration sites, experienced an 

approximately five-year departure from the positive trend from late 2007-2012 (Figure 4.5). 

These breakpoints coincided with those of native dry forest and the aforementioned period of 

prolonged drought, which was more severe on Maui and Hawai‘i than on Kaua‘i and O‘ahu 

(droughtmonitor.unl.edu). Nonetheless, greenness has increased significantly at Auwahi since 

1999, and NDVI is approaching values typical of native dry forest, particularly in the dry season. 

Though additional plantings have been conducted at the site since 2014, unassisted recruitment 

has also occurred for the majority of native woody species (Medeiros et al., 2014). 

The management of Keaau and Ohikilolo sites differs from restoration of Auwahi and 

Makauwahi in several ways. Native outplanting began more recently, and has occurred in waves 

and in relatively smaller patches; the outplanted area at Keaau was the smallest in this study, and 

Ohikilolo’s outplanted areas are dispersed over a larger management unit (Oahu Army Natural 

Resources Program, 2020; O‘ahu Army Natural Resources Program, 2021). Removal of non-

native vegetation, though extensive, has been performed more gradually and did not always 
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consist of complete eradication. Results of these efforts may be more difficult to track at the 

Landsat resolution, making interpretation of the NDVI time series less straightforward.  

Dry season median NDVI has increased at Ohikilolo, but seasonal variation in greenness 

has not much changed. Median NDVI values were still similar to non-native grassland, and no 

breakpoints were detected near or after the start of outplanting. Though OANRP surveys 

observed a significant increase in native shrub cover at the oldest outplanted area, the Ohikilolo 

plantings may need additional time before changes can be detected at a 30-meter spatial scale 

(O‘ahu Army Natural Resources Program, 2021). Furthermore, invasive Myoporum thrips were 

discovered at the site in 2020, which may affect the establishment of Myoporum sandwicensis 

outplants. One median NDVI breakpoint was identified in 2005, which had a relatively wide 

confidence interval (Figure 4.5). Several disturbance events occurred during the study period, 

including a 2003 fire in the northern region of the site, and fence breaches by feral goats multiple 

times from 2003-2008. Significant drying also occurred at the site during MJJ and NDJ 

(Appendix C, Table C4), but it is uncertain whether disturbance or climate factors influenced the 

trend departure.  

Though pre- and post-restoration NDVI summaries for Keaau indicated that dry season 

RCV of NDVI has declined, Keaau was also one of six sites at which RCV of NDVI shows a 

significant positive monotonic trend. BFAST analysis indicated that this increase was steepest 

between 2012-2014 (Figure 4.5). These results are somewhat unsurprising, as outplanting did not 

begin until 2016 and the site burned in 2018. Recruitment by native species was observed after 

the fire, and outplanting has continued since then. Like Ohikilolo, continued monitoring of 

Keaau may reveal clearer post-restoration trends in NDVI. 
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4.4.4. Management implications 

Trends at Makauwahi and Auwahi demonstrate the potential of Landsat NDVI time series 

to aid long-term restoration monitoring. The slopes of median NDVI at both sites, and of RCV at 

Makauwahi, were greater than those that occurred in native and non-native vegetation classes. 

Results at Makauwahi in particular highlight the utility of Landsat in capturing management-

related breaks in greenness trends over a >20 year time series. In many regions, recovery of 

tropical dry forest is impeded by invasive grasses (Griscom & Ashton, 2011; Sanchez-Azofeifa 

et al., 2005). Landsat imagery, which is freely accessible and global in coverage, could provide a 

cost-effective, efficient means of extending restoration monitoring periods at a global scale 

where high resolution plot data are available.  

One key shortcoming of the parameters used here is a limited ability to distinguish native 

species recovery from existing non-native woody vegetation. At Auwahi, for example, invasive 

Bocconia frutescens was common in restoration plots (Medeiros et al., 2014). While the 

transition from grassland to dry forest was more evident from the Landsat time series, 

hyperspectral band analysis at a finer spatial resolution would likely be needed to identify 

species-level differences (Somers & Asner, 2013). 

4.5. Conclusion 

Using a 1999-2022 Landsat time series, we examined seasonal NDVI trends in native dry 

forest, non-native dry forest, and non-native grassland, and monitored changes in productivity at 

dry forest restoration sites. We found significant increases in median NDVI in each vegetation 

class, but more often in the forest classes. Median NDVI was positively associated with 

precipitation anomalies, particularly in non-native grassland, but positive NDVI trends have 

occurred in dry forest despite long-term declines in precipitation, highlighting the ability of dry 
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forest to remain productive when non-native grasslands are not. However, persistent dry 

conditions can have more substantial effects, as suggested by breaks in positive median NDVI 

trends in Auwahi and native dry forest, which coincided with a prolonged period of drought 

across the Hawaiian Islands. Further investigation of drought and other potential drivers is 

needed to better understand the relationship between NDVI and long-term climatic trends.  

 These results underscore the need for consistent and more accurate dry forest monitoring 

in Hawaii. Previous NDVI studies in the Hawaiian Islands have observed browning trends at 

coarser spatial scales (e.g. 500 m, 5 km), but finer resolution imagery is needed to differentiate 

trends in fragmented dry forest patches from the surrounding landscape. Our results also 

highlight the potential of site-level remote sensing to aid and extend restoration monitoring 

efforts. We observed significant greening trends at the larger and more established restoration 

sites, Makauwahi and Auwahi. At Makauwahi, NDVI increased and became more stable after 

restoration, and trend breakpoints coincided with the start of outplanting and other management 

actions. Trends were more variable at Keaau and Ohikilolo, where ouplanting began relatively 

more recently and several disturbance events have occurred. However, extended time series of 

Landsat or finer resolution imagery could facilitate long-term monitoring efforts at these sites.  
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 Conclusions 

Continuous, large-scale monitoring is necessary to evaluate biodiversity conservation 

policy and to inform adaptive management strategies. However, monitoring is generally 

deficient, particularly for plant taxa, invasive species, and in areas with high rates of endemism 

(Hochkirch et al., 2021). Alternatives to conventional, standardized surveys, which are valuable 

but limited in spatial and temporal extent, must be considered (Kühl et al., 2020). This 

dissertation examined biodiversity monitoring applications for publicly accessible geospatial 

datasets, including iNaturalist citizen science observations and Landsat imagery, in the Hawaiian 

Islands, a biodiversity hotspot.  

Understanding the citizen science observation process can help data users to account for 

biases generated by low-structure sampling schemes (Kelling et al., 2019). Chapter 2 of the 

dissertation asked how participation in the citizen science app iNaturalist has changed over time. 

iNaturalist activity has been spatially biased toward developed and more accessible sites, 

particularly among the least active observers. Participation grew exponentially until early 2020, 

then decreased immediately after COVID-19 travel restrictions began. This was most likely due 

to a decline in visitors, who were more active and numerous than residents, made the majority of 

species observations, and were more likely to make research-grade observations. Resident 

activity was relatively more stable, and existing spatial biases in the data increased slightly.  

COVID-19 lockdowns in other regions were associated with similar effects, including 

spatial restrictions to more accessible sites and greater reliance on more active citizen science 

participants (Crimmins et al., 2021; Kishimoto & Kobori, 2021; Sánchez-Clavijo et al., 2021). 

This study corroborates those findings, but also highlights the role of travel in citizen science 

data collection in Hawaii. The majority of Hawaii’s iNaturalist observers, and the most active 
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ones, are unlikely to live in Hawaii. When tourism was restricted, fewer species observations 

were made. Thus, local participation is needed to support stable, continuous biodiversity 

monitoring via citizen science, particularly under extraordinary social circumstances. 

Furthermore, differing sampling patterns between more and less active observers suggest that 

encouraging more sustained participation could improve the spatial and taxonomic diversity of 

observations. Additional work is needed to explore why observer characteristics (visitor vs. 

resident, more vs. less active) are associated with different spatial sampling patterns in particular, 

and whether those patterns are driven by unequal access or actual preference.  

Chapter 3 focused on iNaturalist plant observations, and asked whether citizen science 

could increase the extent of professional invasive plant monitoring and be used to improve 

estimates of habitat. Though iNaturalist spatial bias toward more accessible, disturbed sites was 

greater in non-native species observations, non-native plants—and invasive species especially—

were disproportionately well-sampled compared to endemic and indigenous species. Analysis of 

four example invasive species showed that professional agency observations exhibit similar or 

inverse spatial bias patterns. Habitat suitability models for the four invasive species often 

produced distinct predictions with iNaturalist vs. agency data, particularly in disturbed vs. native 

vegetation-dominated sites. Stratifying or filtering the iNaturalist observations before modeling, 

however, had little effect on predictions of habitat suitability. 

Though preferences for threatened or rarer species have been observed in citizen science 

data for other taxonomic groups (Matteson et al., 2012; Tulloch et al., 2013), my results suggest 

that iNaturalist is a promising source of non-native and invasive plant monitoring data in Hawaii. 

While data stratification was limited in its capacity to improve habitat suitability models based 

on iNaturalist observations alone, the spatial biases in iNaturalist and professional agency data 
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can be complementary, and combining data from both sources led to more comprehensive 

estimates of suitable habitat. Citizen science could thus be used to fill monitoring gaps in areas 

excluded from official surveys. In Hawaii, this often means more disturbed areas. But agencies 

in other regions could use known biases to guide their own survey resources and utilize citizen 

science as a complementary data source for modeling and other applications. Future work could 

observe broader-scale patterns by considering additional species or regions, or explore the effects 

of more targeted data integration methods (Fletcher et al., 2019). 

Chapter 4 asked how remotely sensed Normalized Difference Vegetation Index (NDVI) 

time series could be used to facilitate tropical dry forest and restoration site monitoring. 

Significant increases in Landsat-derived median NDVI were observed at the majority of native, 

non-native, and restored dry forest study sites from 1999-2022. Median NDVI trends were more 

variable at smaller restoration sites where management began more recently, but corresponded 

with reported outcomes at the more established Makauwahi and Auwahi restoration sites. 

Additionally, breakpoints in NDVI trends at Makauwahi aligned with major management 

activities. A positive relationship was detected between median NDVI and the long-term 

precipitation anomaly at most sites, but was stronger in non-native dry grassland. 

The positive NDVI trends in this chapter deviate from coarser spatial resolution studies 

(e.g. 250-meter and 5-kilometer resolution), which have reported declines in NDVI driven by 

long-term drying in Hawaii (Barbosa & Asner, 2016; Madson et al., 2022). It is likely that 30-

meter resolution Landsat imagery is more appropriate for monitoring Hawaii’s highly 

fragmented dry forest patches. At this scale, dry forest trends appear to be discernible from those 

of adjacent vegetation types, such as non-native grassland, that are more closely linked to 

anomalous precipitation conditions. Further study of drought and other potential climate factors 
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is needed to better understand the drivers behind these site-level NDVI trends. However, these 

results highlight the value of Hawaii’s remaining dry forests, which appear to be increasing in 

productivity despite downward rainfall trends, as well as the importance of dry forest restoration. 

Time series of NDVI parameters and other remotely sensed metrics at Landsat or finer resolution 

have great potential to aid and extend monitoring efforts in this rare and threatened ecosystem. 

This research investigated biodiversity monitoring applications for geospatial datasets in 

the Hawaiian Islands. Though these datasets do not serve as direct substitutes for standardized, in 

situ biodiversity monitoring, they are readily accessible, offer near global coverage, and could 

support monitoring schemes in other regions where resources for conventional surveys are 

limited. The results of this dissertation demonstrate that utilizing multiple data sources can 

enhance the breadth and continuity of biodiversity monitoring in understudied areas and during 

periods of sociopolitical uncertainty. 
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Supplementary Material for Chapter 2. Who, where, when: Observer behavior influences spatial 

and temporal patterns of iNaturalist participation. 

 

 

 

Figure A1 

Median proportion of activity (observations and active days) in Hawaii for residents versus visitors (lines 

show interquartile range).  
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Figure A2 

Observations of each taxonomic group by observer behavior (classified by location x activity). 

 

 

 

 

Figure A3 

Proportion of observers (classified by location x activity) who made at least one observation of a given 

taxonomic group. 
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Table A1 

Slope of regression, adjusted r2, and statistical significance (sig; * p ≤ 0.05, ** p ≤ 0.01, *** p <0.001) for 

log-transformed observations, unique observers, and new observers versus year for 2008-2019. 

 

 ln(observations) ln(unique observers) ln(new observers) 

 slope r2 sig slope r2 sig slope r2 sig 

All data 0.56 0.92 *** 0.52 0.94 *** 0.52 0.93 *** 

Observer behavior          

Resident - enthusiastic 0.85 0.93 *** 0.39 0.88 *** 0.18 0.55 * 

Resident - moderate 0.88 0.86 *** 0.78 0.97 *** 0.76 0.97 *** 

Resident - short-term 1.00 0.68 * 0.86 0.84 ** 0.86 0.84 ** 

Visiting - enthusiastic 0.45 0.88 *** 0.34 0.95 *** 0.31 0.95 *** 

Visiting - moderate 0.94 0.88 *** 0.8 0.87 *** 0.8 0.87 *** 

Visiting short-term -0.39 0.02 none -0.26 -0.12 none -0.26 -0.12 none 

Observation quality          

Research-grade 0.51 0.90 *** 0.5 0.95 ***    

Needs ID 0.69 0.90 *** 0.62 0.96 ***    

Casual 0.72 0.90 *** 0.63 0.91 ***    

Taxonomic group          

Amphibians 0.39 0.75 *** 0.42 0.83 ***    

Birds 0.49 0.93 *** 0.5 0.93 ***    

Fishes 0.40 0.85 *** 0.43 0.9 ***    

Fungi 0.59 0.78 *** 0.53 0.87 ***    

Invertebrates 0.59 0.85 *** 0.53 0.93 ***    

Mammals 0.51 0.87 *** 0.47 0.87 ***    

Plants & algae 0.63 0.92 *** 0.59 0.93 ***    

Reptiles 0.44 0.84 *** 0.46 0.93 ***    

Land cover          

Developed 0.62 0.95 *** 0.56 0.94 ***    

Agriculture 0.56 0.86 *** 0.49 0.91 ***    

Bare Ground 0.45 0.86 *** 0.46 0.91 ***    

Grassland 0.60 0.87 *** 0.53 0.9 ***    

Dry/Mesic Shrubland 0.55 0.81 *** 0.48 0.89 ***    

Dry/Mesic Forest 0.59 0.84 *** 0.52 0.94 ***    

Wet Forest/Shrubland 0.52 0.88 *** 0.49 0.92 ***    

Wetland 0.63 0.75 ** 0.64 0.98 ***    

Distance to road/trail 

≤ 150 m 0.57 0.90 *** 0.52 0.93 ***    

≤ 553.2 m 0.59 0.90 *** 0.55 0.95 ***    

≤ 1513.4 m 0.48 0.78 *** 0.48 0.91 ***    

> 1513.4 m 0.42 0.81 *** 0.46 0.94 ***    

Land designation          

None 0.55 0.88 *** 0.53 0.94 ***    

Limited protection 0.61 0.90 *** 0.56 0.95 ***    

Multi-use 0.58 0.92 *** 0.5 0.91 ***    

For biodiversity 0.52 0.8 *** 0.43 0.82 ***    
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Table A2 

Pair-wise comparison of observer behavior trends in log-transformed observations, unique observers, and 

new observers versus year for 2008-2019. Asterisks indicate significant difference (* p ≤ 0.05, ** p ≤ 

0.01, *** p <0.001). 

 
Observations 

Resident-Moderate -0.033 -    

Resident-Short-term -0.151 -0.118 -   

Visiting-Enthusiastic * 0.397 0.430 * 0.548 -  

Visiting-Moderate -0.093 -0.060 0.058 * -0.490 - 

Visiting-Short-term 1.236 1.269 * 1.387 0.839 * 1.329 

 
Resident -

Enthusiastic 
Resident -
Moderate 

Resident - 
Short-term 

Visiting-
Enthusiastic 

Visiting-
Moderate 

 

Unique Observers 

Resident-Moderate * -0.388 -    

Resident-Short-term * -0.471 -0.083 -   

Visiting-Enthusiastic 0.052 *** 0.440 *** 0.523 -  

Visiting-Moderate * -0.414 -0.026 0.057 *** -0.465 - 

Visiting-Short-term 0.651 ** 1.039 ** 1.122 0.599 ** 1.065 

 
Resident -

Enthusiastic 
Resident -
Moderate 

Resident - 
Short-term 

Visiting-
Enthusiastic 

Visiting-
Moderate 

 

New Observers 

Resident-Moderate *** -0.572 -    

Resident-Short-term *** -0.675 -0.103 -   

Visiting-Enthusiastic -0.131 *** 0.441 *** 0.544 -  

Visiting-Moderate *** -0.613 -0.041 0.062 *** -0.482 - 

Visiting-Short-term 0.447 * 1.019 ** 1.122 0.578 ** 1.060 

 
Resident -

Enthusiastic 
Resident -
Moderate 

Resident - 
Short-term 

Visiting-
Enthusiastic 

Visiting-
Moderate 
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Table A3 

Difference, by quarter, between observed and predicted observations in 2020-2021, based on linear 

models of log-transformed observations from 2008-2019. Significant differences (*) determined by 95% 

confidence interval. 

 

 2020 2021 

 JFM AMJ JAS OND JFM AMJ JAS OND 

All observations 20.5 -57.7 -65.8 -74.8 -22.5 -7.1 -17.9 -57.5 

Observer behavior                 

Resident - Enthusiastic -75.1 -40.5 -40.7 -77.0 -71.0 -12.4 -22.5 -74.4 

Resident - Moderate -63.0 -61.8 -42.7 -25.1 -62.3 -74.8 -67.2 -32.1 

Resident - Short-term -75.1 34.7 -85.3 -80.4 -58.7 406.8 -82.4 -92.2 

Visiting - Enthusiastic 113.1 *-92.6 *-94.7 -84.0 -9.6 54.0 -32.8 -46.4 

Visiting - Moderate -68.4 -93.4 *-93.2 -56.1 -92.8 -77.5 -73.6 -24.2 

Observation quality                 

Casual 2.5 -57.2 -66.0 -78.8 -48.6 -40.6 -45.6 -70.4 

Needs ID -32.4 -58.8 -72.5 -74.5 -44.7 -7.5 -44.6 -56.3 

Research-grade 51.8 -53.9 -66.9 -71.2 -11.5 16.6 -2.4 -49.0 

Taxonomic group                 

Amphibians 447.0 -68.3 -80.5 -40.3 55.1 55.2 -49.8 16.1 

Birds 51.6 -80.3 -79.2 -77.7 -35.4 -42.0 0.6 -44.4 

Fishes 241.0 -52.0 -77.4 -0.7 37.1 69.4 -11.8 129.0 

Fungi 44.5 -37.5 -42.6 -36.8 32.7 -15.3 -31.4 -44.9 

Invertebrates 22.9 -47.5 -73.6 -70.6 -29.1 6.0 -49.0 -46.2 

Mammals 22.6 -59.1 -50.0 *-87.3 -37.2 -9.3 65.7 -63.5 

Plants and algae 1.9 -51.7 -72.2 -74.4 -28.1 1.3 -42.7 -59.8 

Reptiles 96.2 *-70.4 -54.7 -72.3 -23.3 -28.6 29.4 -52.9 

Land cover                 

Developed 9.5 -62.8 -56.3 -80.4 -34.7 -47.3 -22.1 -69.7 

Agriculture -2.4 -47.6 -24.5 -52.6 -43.7 -22.9 49.7 -39.7 

Bare Ground 86.9 -68.9 *-86.9 -58.9 -9.0 66.0 -38.1 11.8 

Grassland 40.2 -53.9 -60.2 -55.7 -0.1 18.4 -6.9 -51.8 

Dry/Mesic Shrubland 36.6 -79.7 -73.3 -79.1 6.1 -16.8 86.2 -65.8 

Dry/Mesic Forest 61.0 -65.5 -80.8 -59.5 7.0 1.4 -56.0 -14.7 

Wet Forest/Shrubland -19.0 -33.7 -72.9 -27.1 -6.8 166.9 15.0 50.8 

Wetland -21.9 -40.8 *-89.4 -70.7 *-77.5 290.3 -31.7 -67.7 

Distance to road/trail                 

≤ 150 m 12.5 -53.6 -64.3 -74.4 -29.5 -2.6 -19.3 -60.1 

≤ 553.2 m 94.0 -79.6 *-82.7 -48.9 16.5 -46.9 -46.5 5.4 

≤ 1513.4 m 68.3 -31.0 -71.3 -51.4 136.6 79.5 -32.4 190.6 

> 1513.4 m 19.6 -49.8 -52.2 -23.1 7.3 91.2 -5.8 57.4 

Land designation                 

None 68.3 -31.2 -59.7 -69.6 10.9 18.8 -15.2 -53.4 

Limited protection -31.9 -62.2 -63.2 -63.5 -59.5 -14.3 -9.0 -23.8 

Multi-use -5.8 -59.3 -61.6 -53.5 -12.0 66.6 8.8 -15.2 

For biodiversity 94.3 -90.2 -88.8 -72.7 -50.8 8.5 -33.3 -18.0 

 



131 

Table A4 

Difference, by quarter, between the number of observed and predicted unique observers in 2020-2021, 

based on linear models of log-transformed unique observers from 2008-2019. Significant differences (*) 

determined by 95% confidence interval. 

 

 2020 2021 

 JFM AMJ JAS OND JFM AMJ JAS OND 

All unique observers 34.0 -60.3 -44.4 -56.5 -24.9 -25.9 9.5 -42.5 

Observer behavior                 

Resident - Enthusiastic -0.9 -12.7 -39.1 -52.1 -35.4 -16.6 -44.6 *-66.5 

Resident - Moderate -31.3 -26.5 -39.1 -47.4 -48.6 -49.9 -66.2 -71.3 

Resident - Short-term -50.7 14.7 -74.1 -81.1 -45.7 141.4 -64.5 -86.2 

Visiting - Enthusiastic 39.2 *-90.7 *-88.9 *-83.2 -58.2 -17.3 -6.1 -43.5 

Visiting - Moderate -53.2 *-95.3 *-90.0 -59.6 -89.0 *-80.1 -66.2 -22.4 

Observation quality                 

Casual 75.2 -61.0 -41.2 -70.8 -1.3 -42.3 8.8 -63.2 

Needs ID 33.5 -63.4 -55.4 -62.9 -16.5 -40.1 -31.8 -58.5 

Research-grade 22.7 -59.5 -50.5 -60.2 -41.1 -19.6 11.6 -44.7 

Taxonomic group                 

Amphibians 253.7 -68.1 -78.0 -37.4 22.6 38.1 -61.1 14.2 

Birds 46.7 *-75.1 -67.7 -71.5 -34.8 -22.6 36.5 -41.5 

Fishes 38.1 -30.0 -41.4 -24.6 6.4 83.5 68.6 56.6 

Fungi 178.1 -51.3 -20.9 -27.4 118.6 2.4 21.6 -30.2 

Invertebrates 63.3 -48.2 -53.5 -59.2 1.3 -0.8 -17.6 -54.8 

Mammals 71.5 -66.3 -48.5 *-86.8 -1.1 -28.6 81.4 -56.6 

Plants and algae 79.0 -62.3 -45.6 -42.0 2.5 -38.6 1.4 -24.6 

Reptiles 62.0 -53.7 -54.9 -63.7 -22.2 8.1 15.6 -38.9 

Land cover                 

Developed 34.0 -62.1 -36.9 -61.6 -28.0 -35.6 17.3 -49.7 

Agriculture 90.9 -47.0 -37.3 -37.4 -9.4 -4.6 51.2 -32.1 

Bare Ground 119.1 -64.2 -71.3 -55.2 14.5 31.6 23.6 14.6 

Grassland 96.0 -54.7 -46.2 -57.9 5.8 9.1 36.6 -52.8 

Dry/Mesic Shrubland 56.8 -70.1 -42.6 -58.7 -0.9 -26.3 193.2 -34.9 

Dry/Mesic Forest 69.1 -65.8 -64.2 -47.6 -20.4 -16.5 -15.0 -22.4 

Wet Forest/Shrubland 36.4 -57.7 -56.4 -46.9 -19.3 0.3 9.1 -12.6 

Wetland -20.5 -64.2 -73.3 -60.6 -68.5 61.6 12.0 -32.5 

Distance to road/trail                 

≤ 150 m 37.4 -57.2 -44.0 -55.0 -22.8 -20.0 11.9 -39.9 

≤ 553.2 m 82.1 -71.9 *-79.1 -64.3 -9.2 -38.2 -41.9 -47.1 

≤ 1513.4 m 63.0 -42.4 -54.7 -48.0 -13.3 -2.7 -42.4 -15.7 

> 1513.4 m -7.4 -53.0 -44.7 -44.8 -47.4 -9.8 4.5 -5.6 

Land designation                 

None 58.8 -54.2 -40.0 -57.0 -10.1 -14.5 16.1 -48.1 

Limited protection 11.0 -65.4 -52.8 *-74.7 -36.5 -25.4 21.7 -59.3 

Multi-use 55.9 -59.6 -58.9 -59.1 -25.6 -11.2 21.6 -34.6 

For biodiversity 131.1 -84.7 -64.5 -35.9 -5.0 2.1 43.9 55.8 
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Figure A4 

Relative change from 2019 in observations and unique observers by observation quality, taxonomic 

group, land cover class, land designation, and distance to roads/trails. Unique observers were those who 

made at least one observation of a given quality. 
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Figure A5 

Relative change from 2019 in observations, unique observers, and new observers by observer behavior. 

Unique observers were those who made at least one observation of a given quality. Visiting-short-term 

observers were excluded due to low sample size. 
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Supplementary Material for Chapter 3. Citizen science plant observations complement 

professional monitoring and improve estimates of invasive species habitat 

 

 

 
Figure B1 

Distribution of iNaturalist and professional management agency observations along elevation and annual 

rainfall gradients. Despite little overlap in geographic space (Fig. B1), the datasets captured some similar 

environments. 
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(a) Hedychium gardnerianum 

 
 

Figure B2 

Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana 

camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class, 

where 0 signifies no overlap and 1 is complete overlap. 
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(b) Lantana camara 

 
 

Figure B2 continued 

Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana 

camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class, 

where 0 signifies no overlap and 1 is complete overlap.  
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(c) Leucaena leucocephala 

 
 

Figure B2 continued 

Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana 

camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class, 

where 0 signifies no overlap and 1 is complete overlap.  
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(d) Psidium cattleianum 

 
 

Figure B2 continued 

Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana 

camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class, 

where 0 signifies no overlap and 1 is complete overlap.  
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Figure B3 

Similarity or overlap (pairwise Schoener’s D index) between single-source habitat suitability models 

(iNaturalist- and agency-only) and the combined model, calculated within site classes.  
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Figure B4 

Similarity or overlap (pairwise Schoener’s D index) between filtered/thinned iNaturalist habitat suitability 

models and the unfiltered iNaturalist model of each study species, calculated within site classes. 
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Figure B5 

Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium 

gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable 

areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white. 
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Figure B5 continued 

Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium 

gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable 

areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white. 
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Figure B5 continued 

Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium 

gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable 

areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white. 
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Figure B5 continued 

Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium 

gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable 

areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white. 
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Figure B6 

Percent contribution of predictors (excluding aspect and precipitation seasonality, which contributed less 

than 15% to any model) to each habitat suitability model.  
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(a) 

 
 

(b) 

 
 

(c) 
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(d) 
 

 
 

 

Figure B7 

Range of values predicted suitable for the top continuous predictor of (a) Hedychium gardnerianum, (b) 

Lantana camara, (c) Leucaena leucocephala, and (d) Psdium cattleianum. Median labeled in gray, 

outliers removed from plot. 
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Supplementary Material for Chapter 4. Monitoring native and restored tropical dry forests with 

Landsat NDVI time series. 

 

 

 

 
 

Figure C1 

Elevation and annual rainfall characteristics of the dry forest (DF) and grassland sites. 
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Table C1 

Results of Wilcoxon rank sum tests comparing seasonal median NDVI and RCV of NDVI within each 

vegetation class or restoration site (pre- and post-restoration for Keaau, Makauwahi, and Ohikilolo) over 

the full 1999-2022 series. p-values shown for significant results only. 

 

  Median NDVI RCV of NDVI 

 Season FMA MJJ ASO FMA MJJ ASO 

Native dry forest 

MJJ <.05   --   

ASO <.05 --  <.01 <.01  

NDJ -- <.01 <.01 -- -- <.01 

Non-native dry 

forest 

MJJ --   --   

ASO -- --  -- <.05  

NDJ <.01 <.001 <.001 -- -- <.05 

Non-native 

grassland 

MJJ <.001   <.05   

ASO <.001 <.05  <.001 <.001  

NDJ <.01 <.001 <.001 -- <.01 <.001 

Auwahi 

MJJ <.001   <.001   

ASO <.001 --  <.05 <.001  

NDJ <.001 -- -- <.001 <.001 <.001 

Keaau  

Pre-restoration 

MJJ <.01   <0.05   

ASO <.01 --  <0.05 --  

NDJ <.01 <.01 <.01 -- <0.05 <0.05 

Keaau  

Post-restoration 

MJJ <.01   --   

ASO <.01 <.01  -- --  

NDJ -- <.01 <.01 -- -- -- 

Makauwahi  

Pre-restoration 

MJJ --   <.05   

ASO <.01 --  <.001 --  

NDJ <.01 -- -- <.01 -- -- 

Makauwahi 

Post-restoration 

MJJ <.01   <.05   

ASO <.01 --  <.01 --  

NDJ <.001 <.001 <.001 -- <.01 <.01 

Ohikilolo 

Pre-restoration 

MJJ <.001   --   

ASO <.001 <.001  -- --  

NDJ <0.05 <.001 <.001 -- -- -- 

Ohikilolo 

Post-restoration 

MJJ <.001 -- -- <.001 -- -- 

ASO <.001 -- -- <.001 <.01 -- 

NDJ <0.05 <.001 <.001 -- <0.05 <.001 
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Table C2 

Change in pixel-wise NDVI parameters after restoration at Makauwahi, Ohikilolo, and Keaau. p-values 

shown for significant increases (blue) and decreases (orange) as determined by Wilcoxon rank sum tests. 

Pre- and post-restoration periods determined by the year that native outplanting began. 

 

 Median NDVI RCV of NDVI 

Season FMA MJJ ASO NDJ FMA MJJ ASO NDJ 

Makauwahi < 0.05 < 0.05 < 0.01 < .001 < .001 < .001 < .001 < .001 

Ohikilolo < 0.05 < 0.01 < .001 -- -- -- < 0.05 -- 

Keaau -- < 0.05 -- < 0.05 -- < 0.05 < 0.05 -- 
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Table C3 

Seasonal median NDVI (and interquartile range) and RCV of NDVI of each study site, calculated over 

the 1999-2022 study period. 

 

  Median NDVI (IQR) RCV of NDVI 

 Site FMA MJJ ASO NDJ FMA MJJ ASO MDJ 

N
at

iv
e 

d
ry

 f
o

re
st

 

Waianae 0.83 (0.06) 0.81 (0.06) 0.81 (0.08) 0.84 (0.07) 0.06 0.06 0.07 0.05 

Nanakuli 0.81 (0.05) 0.8 (0.05) 0.81 (0.05) 0.82 (0.04) 0.05 0.05 0.04 0.04 

Kokee-1 0.78 (0.08) 0.77 (0.06) 0.77 (0.09) 0.8 (0.09) 0.07 0.06 0.09 0.08 

Kokee-2 0.78 (0.06) 0.76 (0.08) 0.78 (0.05) 0.8 (0.06) 0.06 0.08 0.05 0.05 

Manuka-1 0.77 (0.16) 0.74 (0.08) 0.69 (0.23) 0.8 (0.15) 0.15 0.08 0.26 0.12 

Kanepuu-1 0.77 (0.13) 0.72 (0.13) 0.67 (0.2) 0.74 (0.16) 0.10 0.11 0.21 0.16 

Kanepuu-2 0.68 (0.15) 0.64 (0.16) 0.56 (0.17) 0.64 (0.19) 0.13 0.17 0.22 0.20 

Manuka-2 0.66 (0.14) 0.59 (0.08) 0.61 (0.19) 0.7 (0.14) 0.12 0.11 0.24 0.14 

Kanaio 0.49 (0.16) 0.41 (0.13) 0.4 (0.12) 0.48 (0.14) 0.23 0.24 0.23 0.23 

N
o

n
-n

at
iv

e 
d

ry
 f

o
re

st
 

Hanapepe 0.86 (0.06) 0.87 (0.04) 0.89 (0.04) 0.91 (0.03) 0.04 0.04 0.03 0.02 

Kuaokala 0.85 (0.07) 0.83 (0.09) 0.85 (0.08) 0.86 (0.07) 0.06 0.08 0.07 0.06 

Mokihana 0.84 (0.08) 0.79 (0.07) 0.78 (0.09) 0.88 (0.06) 0.07 0.06 0.08 0.04 

Kailua-1 0.82 (0.15) 0.85 (0.08) 0.87 (0.1) 0.83 (0.11) 0.12 0.07 0.08 0.10 

Kalaoa 0.79 (0.1) 0.8 (0.09) 0.79 (0.1) 0.81 (0.09) 0.09 0.06 0.10 0.08 

Keokea 0.76 (0.14) 0.72 (0.18) 0.62 (0.26) 0.81 (0.17) 0.12 0.14 0.31 0.13 

Lualualei 0.71 (0.2) 0.54 (0.23) 0.52 (0.25) 0.75 (0.23) 0.20 0.30 0.35 0.18 

South Point-1 0.71 (0.2) 0.57 (0.19) 0.51 (0.32) 0.76 (0.22) 0.20 0.24 0.38 0.20 

Kanaio Rd 0.71 (0.19) 0.69 (0.19) 0.69 (0.24) 0.81 (0.17) 0.19 0.20 0.21 0.12 

N
o

n
-n

at
iv

e 
gr

as
sl

an
d

 

Kalaheo 0.72 (0.14) 0.66 (0.18) 0.67 (0.2) 0.78 (0.12) 0.14 0.20 0.21 0.09 

Kailua-2 0.7 (0.24) 0.52 (0.24) 0.53 (0.3) 0.77 (0.23) 0.23 0.35 0.42 0.16 

Piilani Hwy 0.67 (0.22) 0.55 (0.25) 0.44 (0.39) 0.76 (0.23) 0.24 0.35 0.59 0.17 

Kula Hwy 0.67 (0.15) 0.63 (0.14) 0.61 (0.26) 0.71 (0.22) 0.15 0.16 0.32 0.19 

Kapaa Byp 0.61 (0.17) 0.55 (0.16) 0.51 (0.19) 0.69 (0.17) 0.21 0.20 0.25 0.18 

South Point-2 0.58 (0.33) 0.42 (0.21) 0.36 (0.25) 0.65 (0.35) 0.43 0.34 0.45 0.37 

Waimea 0.55 (0.25) 0.39 (0.25) 0.32 (0.19) 0.53 (0.31) 0.33 0.49 0.41 0.42 

Makaha 0.42 (0.27) 0.29 (0.14) 0.26 (0.16) 0.43 (0.28) 0.48 0.36 0.36 0.47 

Pohakuloa 0.39 (0.13) 0.35 (0.18) 0.32 (0.19) 0.43 (0.18) 0.25 0.39 0.42 0.31 

R
es

to
ra

ti
o

n
 Keaau 0.69 (0.14) 0.49 (0.19) 0.46 (0.23) 0.7 (0.21) 0.15 0.28 0.36 0.21 

Makauwahi 0.67 (0.19) 0.6 (0.21) 0.58 (0.25) 0.72 (0.24) 0.19 0.25 0.32 0.21 

Auwahi 0.62 (0.16) 0.69 (0.13) 0.66 (0.22) 0.67 (0.16) 0.20 0.13 0.22 0.16 

Ohikilolo 0.6 (0.17) 0.41 (0.17) 0.38 (0.22) 0.67 (0.2) 0.20 0.30 0.42 0.21 
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Table C4 

Kendall rank correlation coefficients of seasonal long-term (PAt) and cumulative precipitation anomalies 

(CPAt) from 1978-2019. Orange shading = statistically significant negative relationships (*p < 0.05, **p 

< 0.01). 

 

  PAt CPAt 

 Site FMA MJJ ASO NDJ FMA MJJ ASO NDJ 

N
at

iv
e 

d
ry

 f
o

re
st

 

Waianae -0.09 -0.21 * -0.08 -0.2 -0.16 -0.37 * -0.15 -0.29 

Kanaio -0.03 -0.03 0.06 -0.2 -0.08 -0.08 0.04 -0.25 * 

Kanepuu-1 0.03 0.07 -0.02 -0.17 0.01 -0.02 -0.07 -0.23 

Kanepuu-2 0.03 0.05 -0.02 -0.17 0 -0.05 -0.07 -0.23 

Kokee-1 0.01 -0.07 -0.07 -0.17 -0.02 -0.09 -0.11 -0.25 

Kokee-2 0.13 -0.04 0.01 -0.1 0.11 0.01 0 -0.14 

Manuka-1 -0.19 -0.32 ** -0.19 -0.15 -0.32 * -0.52 ** -0.23 -0.27 

Manuka-2 -0.19 -0.31 ** -0.19 -0.16 -0.32 -0.52 ** -0.23 -0.26 

Nanakuli 0.06 -0.07 -0.03 -0.13 0.06 -0.06 -0.15 -0.23 

N
o

n
-n

at
iv

e 
d

ry
 f

o
re

st
 

Mokihana 0.14 -0.03 -0.05 -0.09 0.14 -0.17 -0.13 -0.13 

Hanapepe 0.08 -0.07 0 -0.05 0.14 -0.13 -0.05 -0.1 

Kuaokala -0.1 -0.17 -0.07 -0.24 * -0.16 -0.3 -0.17 -0.32 

Lualualei 0.06 -0.01 -0.06 -0.14 0.08 -0.05 -0.2 -0.24 

Keokea 0.02 0.06 0.14 -0.22 * -0.01 -0.02 0.2 -0.26 

Kanaio Rd -0.05 -0.06 0.01 -0.18 -0.1 -0.12 0.06 -0.27 

Kalaoa -0.23 * -0.15 -0.14 -0.15 -0.27 -0.23 -0.19 -0.25 

Kailua -0.19 -0.12 -0.09 -0.15 -0.23 -0.2 -0.16 -0.21 

South Point -0.05 0.01 -0.12 -0.17 -0.12 -0.1 -0.11 -0.22 

N
o

n
-n

at
iv

e 
gr

as
sl

an
d

 

Kapaa Byp 0.09 -0.12 -0.13 -0.08 0.07 -0.18 -0.2 -0.18 

Kalaheo 0.08 -0.09 0.01 -0.02 0.13 -0.15 -0.04 -0.07 

Makaha -0.05 -0.11 -0.12 -0.17 -0.07 -0.23 -0.22 -0.24 

Kailua -0.01 -0.19 -0.04 -0.17 -0.09 -0.3 -0.09 -0.27 

Kula Hwy -0.01 -0.01 0.09 -0.2 -0.03 0 0.13 -0.28 

Piilani Hwy -0.09 -0.26 * 0.08 -0.12 -0.13 -0.29 0.06 -0.2 

Waimea -0.02 0.05 0.21 -0.08 -0.08 0.1 0.2 -0.14 

Pohakuloa -0.13 -0.02 0 -0.23 * -0.2 -0.1 -0.06 -0.35 * 

South Point -0.07 -0.01 -0.13 -0.17 -0.15 -0.15 -0.1 -0.21 

R
es

to
ra

ti
o

n
 

si
te

 

Auwahi -0.01 0.01 0.02 -0.21 * -0.05 0.01 0.06 -0.27 

Keaau -0.07 -0.16 -0.11 -0.18 -0.12 -0.3 -0.22 -0.26 

Makauwahi 0.02 -0.21 -0.13 -0.09 0.08 -0.26 -0.17 -0.18 

Ohikilolo -0.14 -0.24 * -0.11 -0.21 * -0.2 -0.34 * -0.22 -0.3 
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Table C5 

Spearman correlation coefficient and statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001) 

between PAt and CPAt and median NDVI from 1999-2019. Blue/orange shading = significant 

positive/negative relationships. 

 

  PAt  median NDVI CPAt  median NDVI 

 Site FMA MJJ ASO NDJ FMA MJJ ASO NDJ 

N
at

iv
e 

d
ry

 f
o

re
st

 

Waianae 0.04 0.53 * 0.28 -0.32 -0.15 0.52 0.14 -0.61 ** 

Kanaio 0.81 *** 0.43 0.65 ** 0.16 0.75 *** 0.6 ** 0.49 * 0.18 

Kanepuu-1 0.38 0.36 0.65 ** -0.11 0.51 * 0.57 * 0.56 * 0.02 

Kanepuu-2 0.59 * 0.46 0.47 * 0.15 0.69 ** 0.61 ** 0.35 0.27 

Kokee-1 0.24 0.32 0.57 ** 0.21 0.4 0.42 0.63 ** 0.4 

Kokee-2 0.3 0.29 0.52 * -0.02 0.29 0.39 0.58 * 0.17 

Manuka-1 0.07 -0.57 0.05 -0.21 0.17 -0.25 -0.11 -0.31 

Manuka-2 -0.09 -0.45 0.19 -0.06 0.14 -0.23 0.18 -0.01 

Nanakuli 0.26 0.21 0.29 0.1 0.06 0.14 0.1 0.38 

N
o

n
-n

at
iv

e 
d

ry
 f

o
re

st
 

Mokihana 0.15 0.33 0.48 * 0.18 0.07 0.41 0.62 ** 0.05 

Hanapepe 0.41 0.81 *** 0.49 * -0.26 0.29 0.66 ** 0.43 -0.05 

Kuaokala -0.06 0.37 0.1 -0.14 -0.01 0.26 0.19 -0.09 

Lualualei 0.5 * 0.57 * 0.34 0.26 0.32 0.26 0.48 * 0.2 

Keokea 0.71 *** 0.61 * 0.36 0.05 0.62 ** 0.8 *** 0.52 * -0.01 

Kanaio Rd 0.59 ** 0.32 0.58 ** 0.02 0.67 ** 0.61 ** 0.6 ** -0.12 

Kalaoa 0.36 0.34 0.44 0.13 0.34 0.36 0.36 -0.11 

Kailua 0.38 0.2 0.45 0.01 0.36 0.09 0.63 ** -0.18 

South Point 0.53 * 0.36 0.53 * 0.26 0.42 0.44 0.65 ** 0.29 

N
o

n
-n

at
iv

e 
gr

as
sl

an
d

 

Kapaa Byp 0.13 0.64 ** 0.71 *** 0.46 * 0.4 0.51 * 0.58 ** 0.36 

Kalaheo 0.49 * 0.73 *** 0.69 *** 0.08 0.32 0.47 * 0.51 * -0.13 

Makaha 0.79 *** 0.53 * 0.47 * 0.44 * 0.6 ** 0.43 0.42 0.1 

Kailua 0.68 ** 0.34 0.71 *** 0.51 * 0.48 * 0.46 * 0.49 * 0.25 

Kula Hwy 0.74 *** 0.67 ** 0.69 ** 0.08 0.67 ** 0.67 ** 0.64 ** -0.09 

Piilani Hwy 0.52 * 0.06 0.78 *** 0.44 * 0.4 0.26 0.66 ** 0.2 

Waimea 0.42 0.38 0.56 ** 0.59 ** 0.38 0.5 * 0.59 ** 0.33 

Pohakuloa 0.6 ** 0.54 * 0.61 ** -0.17 0.42 0.25 0.62 ** -0.61 ** 

South Point 0.54 * 0.33 0.65 ** 0.59 ** 0.39 0.41 0.65 ** 0.32 

R
es

to
ra

ti
o

n
 

si
te

 

Auwahi 0.42 0.3 0.59 * -0.22 0.45 0.46 0.58 * -0.18 

Keaau 0.78 *** 0.33 0.27 0.58 ** 0.61 ** 0.07 0.36 0.35 

Makauwahi 0.51 * 0.77 *** 0.61 ** 0.18 0.41 0.59 ** 0.49 * -0.26 

Ohikilolo 0.27 0.67 ** 0.52 * 0.39 0.48 * 0.41 0.59 ** 0.05 
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Table C6 

Spearman correlation coefficient and statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001) 

between PAt and CPAt and RCV of NDVI from 1999-2019. Blue/orange shading = significant 

positive/negative relationships. 

 

  PAt  RCV of NDVI CPAt  RCV of NDVI 

 Site FMA MJJ ASO NDJ FMA MJJ ASO NDJ 

N
at

iv
e 

d
ry

 f
o

re
st

 

Waianae 0.43 0.12 0.21 0.22 0.33 0.21 0.31 0.29 

Kanaio -0.18 0.02 -0.11 0.1 0.01 0.08 0.07 -0.26 

Kanepuu-1 -0.24 0.26 0.26 0.36 -0.27 0.18 0.31 0.21 

Kanepuu-2 -0.35 -0.3 -0.01 -0.17 -0.26 -0.26 0.13 -0.23 

Kokee-1 0.22 0.21 -0.04 -0.17 0.1 0.27 0.01 -0.44 * 

Kokee-2 0.04 -0.17 -0.4 -0.08 0.04 0.1 -0.56 * 0.02 

Manuka-1 0.18 0.15 0.23 0.22 0.31 0.72 * 0.19 0.27 

Manuka-2 -0.34 -0.5 -0.08 -0.18 -0.13 -0.22 -0.29 -0.31 

Nanakuli -0.04 0.14 -0.25 0.37 -0.04 0.26 -0.36 0.13 

N
o

n
-n

at
iv

e 
d

ry
 f

o
re

st
 

Mokihana -0.13 -0.17 -0.04 -0.64 ** -0.16 -0.12 -0.34 -0.49 * 

Hanapepe -0.28 0.03 -0.25 -0.05 -0.32 -0.16 -0.1 0.1 

Kuaokala -0.04 -0.16 -0.01 0.01 -0.21 0.13 0.19 -0.05 

Lualualei -0.48 * 0.01 0.49 * -0.06 -0.59 ** -0.01 0.42 -0.23 

Keokea -0.29 -0.16 0.08 0.16 -0.27 -0.32 -0.05 -0.01 

Kanaio Rd -0.22 -0.27 -0.23 0.02 -0.19 -0.14 -0.34 0.11 

Kalaoa -0.62 ** 0.45 -0.38 -0.14 -0.58 * 0.53 -0.3 0.03 

Kailua -0.14 0.25 0.34 0 -0.05 0.06 0.03 0.18 

South Point -0.2 0.22 -0.24 -0.17 -0.39 0.43 -0.07 -0.34 

N
o

n
-n

at
iv

e 
gr

as
sl

an
d

 

Kapaa Byp 0.28 0.24 0.21 -0.36 0.06 0.56 * 0.11 -0.23 

Kalaheo -0.09 -0.58 ** -0.24 0.13 -0.15 -0.17 -0.12 0.14 

Makaha 0.05 0.59 ** 0.53 * -0.07 0.27 0.48 * 0.43 -0.12 

Kailua -0.22 -0.17 0.28 -0.34 -0.2 -0.12 0.08 -0.23 

Kula Hwy -0.28 0.23 -0.22 -0.08 -0.18 0.05 0.14 -0.28 

Piilani Hwy -0.4 -0.05 -0.21 -0.34 -0.14 -0.24 -0.15 0.06 

Waimea -0.29 -0.21 0.28 -0.31 -0.45 0.09 0.11 -0.32 

Pohakuloa -0.12 -0.07 0.14 0.36 0.14 0.03 0.2 0.28 

South Point -0.34 0.02 0.03 -0.63 ** -0.27 0.11 0.04 -0.44 * 

R
es

to
ra

ti
o

n
 

si
te

 

Auwahi -0.19 -0.21 -0.11 0.14 -0.3 -0.34 -0.08 -0.01 

Keaau -0.27 0.01 0.64 ** -0.43 -0.11 0.29 0.54 * -0.12 

Makauwahi -0.44 -0.6 ** 0.16 -0.1 -0.2 -0.34 -0.01 0.28 

Ohikilolo -0.24 0 0.29 -0.14 -0.08 -0.03 0.22 0.27 

 

 




