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ABSTRACT OF THE DISSERTATION

Geospatial Approaches to Biodiversity Monitoring:

Applications in Hawai‘i

by

Monica J. Dimson
Doctor of Philosophy in Geography
University of California, Los Angeles, 2022

Professor Thomas Welch Gillespie, Chair

Human activity continues to drive global biodiversity change and loss. Comprehensive
biodiversity monitoring is critical to evaluating and informing conservation policy and
management, and diverse data sources that can enhance the spatial and temporal coverage of
conventional field monitoring are needed. In this dissertation, | explore the potential
contributions of broad-scale, publicly accessible geospatial datasets to biodiversity monitoring in
the Hawaiian Islands. This region supports exceptional levels of endemism but continues to
experience significant native habitat loss. Non-native plant species outnumber the native flora,
and ecosystems like tropical dry forest are unlikely to recover without active restoration.

Though citizen science data are abundant, they are often collected opportunistically, and

potential biases must be understood before utilizing observations. | examined citizen science



participation patterns from 2008-2021 using over 93,000 species observations from iNaturalist.
The majority of observations were made by visitors to Hawaii, who were more likely to access
remote locations and make research-grade observations. However, during the COVID-19
pandemic, visitor activity declined significantly, demonstrating the importance of sustained,
local participation for consistent monitoring. | then evaluated the utility of iNaturalist in invasive
plant monitoring, and found that non-native species represented a high proportion of iNaturalist
plant observations. Comparison of iNaturalist and professional agency observations for four
example invasive species showed that iNaturalist data were biased toward accessible, disturbed
sites, and professional data toward less accessible, native-dominated sites. Habitat suitability
models built with the two datasets often produced distinct results, whereas combining the data
provided a more comprehensive estimate of invasive species habitat. Finally, | used a Landsat
Normalized Difference Vegetation Index (NDVI, a proxy of vegetation productivity) time series
to evaluate changes in dry forest from 1999-2022. Despite regional declines in rainfall, native
and restored dry forest NDVI increased during this period. Previous, coarser-scale studies have
reported negative NDVI trends in the region, but Landsat resolution or finer is better suited to
capturing conditions in fragmented dry forests and monitoring progress at restoration sites.
Together, these studies illustrate the value of utilizing and integrating multiple, complementary

data sources to improve the breadth and continuity of biodiversity monitoring.
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Chapter 1. Introduction

Anthropogenic activity continues to drive global biodiversity loss and change. Habitat
fragmentation and loss, climate change, pollution, and species invasions have led to substantial
declines in ecosystem functioning, in turn compromising the provision of essential ecosystem
services (Isbell et al., 2017). Biodiversity monitoring is critical to the effective implementation
and evaluation of biodiversity policy and environmental management. Yet few coordinated
national or global monitoring systems exist, and explicit monitoring targets are often lacking in
policy and program design, including in the UN Convention on Biological Diversity post-2020
global biodiversity framework (Lindenmayer et al., 2012; Perino et al., 2022).

The collection of high-quality species data is a perpetual challenge in conservation
biogeography (Richardson & Whittaker, 2010). Formal, systematic surveys are resource-
intensive and therefore often limited in geographic or temporal extent (Hochachka et al., 2012),
restricting the utility of the data in broad-scale conservation planning or applications such as
habitat suitability modeling (Meyer et al., 2016). Monitoring has been particularly deficient in
regions of high species endemism and for invertebrates, plants, and fungi (Hochkirch et al.,
2021). Invasive species have been notably neglected, despite being a major driver of biodiversity
loss, and existing databases remain difficult to access, share, and integrate (Foxcroft et al., 2017,
Reaser et al., 2020; Wallace et al., 2020). In ecological restoration—a valuable and increasingly
necessary component of biodiversity management—monitoring has been rare or insufficient, and
an unfortunate emphasis is placed on short-term, potentially misleading results due in part to the
perceived costliness of monitoring activities (Stanturf et al., 2014).

It has been widely acknowledged that diverse data streams are needed to improve our

understanding of biodiversity trends (Perino et al., 2022; Richardson & Whittaker, 2010).



Integrating data sources can yield spatial, temporal, or taxonomic complementarity in
biodiversity monitoring, while increasing longevity and resilience during periods of
sociopolitical instability (Kihl et al., 2020). For example, lockdowns during the COVID-19
pandemic, which halted human mobility (as well as regular research activities) in an
unprecedented way, highlighted the gaps in current field-monitoring programs (Bates et al.,
2020). Perino et al. (2022) highlighted several opportunities for enhancing monitoring capacity,
including citizen science monitoring networks and advancements in remote sensing methods.
Citizen science, often defined as public participation in the collection or processing of
scientific data, has supported several long-term, large-scale monitoring programs that have been
used to inform environmental management and policymaking (Kuhl et al., 2020). In addition to
enabling data collection on scales that often exceed those of professional research, citizen
science programs can increase participants’ scientific literacy (Bonney et al., 2016) and improve
trust between professional scientists, natural resource managers, and the public (Vann-Sander et
al., 2016). In biodiversity citizen science, participants often record species observations and a
number of attributes, including location data. Programs vary greatly in scale and structure, which
typically has consequences for data quality (Freitag et al., 2016). Formalized structures entail
more rigorous, standardized data collection that could potentially deter participants. Low-
structure programs are often more accessible, but lead to uneven, opportunistic sampling and
thus observations that are biased in space, time, or taxonomically. Because the majority of
observations are produced by the latter (Di Cecco et al., 2021), it is necessary to investigate and
understand sampling bias patterns so that citizen science data can be meaningfully used.
Remote sensing provides consistent, repeatable measurements over large spatial extents,

and remotely-sensed variables can be used to map species, habitats, and functional or spectral



diversity (Wang & Gamon, 2019). Though issues of data access and affordability have limited
the use of remote sensing products to some extent, the value of remote sensing in biodiversity
monitoring has long been recognized (e.g. the Essential Biodiversity Variables framework). It
has the potential to enhance invasive species mapping (Foxcroft et al., 2017) as well as augment
and improve the efficiency of conventional in situ forest restoration monitoring (de Almeida et
al., 2020). Satellite systems like Landsat and Sentinel-2 offer long archives at site-level spatial
resolutions that can be accessed on a number of platforms, whereas application of products from
Light Detection and Ranging (LIDAR) methods, despite their promise in monitoring canopy
structure, is constrained by cost and availability.

The goal of this dissertation was to explore the utility of large-scale, public geospatial
datasets in monitoring biodiversity in the Hawaiian Islands. Formed by volcanic hot spots nearly
4,000 kilometers away from the nearest continent, Hawaii is the world’s most isolated
archipelago and supports a wide range of habitats across elevation and moisture gradients
(Fleischer et al., 1998). The native flora of Hawaii is derived from approximately 270 wind-,
water-, and bird-dispersed original colonizing species (Price, 2004), and is currently estimated to
include over 1,300 vascular plants, 90% of which are endemic to one or more islands (Imada,
2012). Today, however, native Hawaiian plants are outnumbered by non-native species whose
introduction can be linked to two main waves of human colonization. Beginning in 1000-1200
AD, Polynesian settlers introduced many non-native crop plants that they cultivated in extensive
agricultural systems, clearing and greatly altering Hawaii’s lowland vegetation (Cuddihy &
Stone, 1990; Kirch, 2011). Over two dozen Polynesian introductions still occur in Hawaii.
European colonists first arrived in the early 18th century, but it was during the mid-19th century,

following the Great Mahele of 1848, that rapid, large-scale land changes began taking place



(Cuddihy & Stone, 1990). Forest clearance for commercial agriculture, cattle ranching, and
logging expanded, particularly in dry habitats (Price, 2004), and the rate of non-native
introductions increased, eventually totaling over 5,000 species and varieties (Nagata, 1985).
Due to the combination of high rates of endemism and significant native vegetation loss,
Hawaii has been included in the Polynesia-Micronesia biodiversity hotspot (Myers et al., 2000)
(Figure 1.1). The impacts of deforestation and species invasions persist long after fields and
pastures are abandoned. Many non-native plant species are now naturalized, with self-sustaining
populations, while others have become highly invasive and pose significant threats to native
ecosystems by disrupting native plant regeneration, limiting resource acquisition, and altering
wildfire regimes (Cuddihy & Stone, 1990; Ellsworth et al., 2014). Hawaii’s native plants, having
evolved in isolation, without herbivores, and largely without broad-scale disturbances like
wildfire, are highly vulnerable to displacement by invasive species (Gillespie et al., 2008). Much
of the land area of the main Hawaiian Islands is now dominated by non-native vegetation (42-
99%) (Hughes et al., 2017), and Hawaii has the highest rates of species extinction and
endangerment in the United States (Sakai et al., 2002). Native ecosystem recovery thus requires
intensive, active restoration and continuous monitoring (Dimson & Gillespie, 2020).
The guiding questions of this dissertation are:
1. How has participation in low-structure citizen science in Hawaii varied in space and over
time?
2. Does low-structure citizen science increase the extent of non-native plant monitoring in
Hawaii, and, consequently, contribute to improved estimates of invasive plant habitat?
3. How can site-level, remotely sensed indices be used to enhance monitoring of tropical

dry forest fragments and restoration sites?
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Figure 1.1

The study area of the dissertation included islands in the younger, southeastern range of the Hawaiian
archipelago, which is part of the Polynesia-Micronesia biodiversity hotspot (inset adapted from Myers et
al., 2000; hillshade layer from State of Hawaii Office of Planning).

Each question is addressed in one of the following three chapters of the dissertation.
Chapter 2, Who, where, when: Observer behavior influences spatial and temporal patterns
of iNaturalist participation, uses observation trends on the iNaturalist citizen science platform
to examine who tends to participate in low-structure biodiversity citizen science, where
observations tend to be made, and how this has changed over time, particularly after COVID-19
lockdowns were instated. Chapter 3, Citizen science enhances invasive plant monitoring and
estimates of habitat, focuses on sampling biases in non-native plant observations from
iNaturalist. Using four example invasive species, | compare the environmental distribution of
iNaturalist data to professional data from regional management agencies in Hawaii, and build a
series of habitat suitability models with each dataset. In Chapter 4, Landsat NDVI time series

capture greening trends in Hawaiian dry forest, | use a common remote sensing vegetation



index to observe changes in native species-dominated, non-native species-dominated, and
actively restored (or in-progress) dry forest sites in order to assess the utility of open access
Landsat imagery in increasing the longevity and frequency of ecosystem monitoring.

While each chapter focuses on regions of or sites in the Hawaiian Islands (Figure 1.1),
the iNaturalist and Landsat datasets have global spatial coverage. Management implications are
discussed that may be applicable in other regions where conventional field survey data are
scarce. The studies in this dissertation illustrate potential applications for freely accessible
datasets in monitoring biodiversity, and demonstrate the value of utilizing multiple,

complementary data sources to expand the breadth and continuity of monitoring.
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Chapter 2. Who, where, when: Observer behavior influences spatial and temporal

patterns of iNaturalist participation

This chapter has been submitted in its current form to Applied Geography as Dimson, M. and
Gillespie, T.W. Who, where, when: Observer behavior influences spatial and temporal patterns
of iNaturalist participation. Applied Geography (in revision). Supplementary materials for this

chapter are provided in Appendix A.

Abstract

Citizen science can expand professional biodiversity monitoring through the contributions of
volunteers. Lockdowns during the COVID-19 pandemic, however, impacted participation in
various ways. We investigated how observer behaviors and spatial biases influenced iNaturalist
participation in the Hawaiian Islands from 2008-2021. Overall, participation grew exponentially
until 2019, then decreased after implementation of COVID-19 travel restrictions. Sampling was
consistently biased toward developed areas, sites near roads or trails, and areas with fewer
protections, while Hawaii’s most diverse and remote habitats tended to be underrepresented.
Observer behaviors, defined by activity level and primary location (i.e. Hawaii resident or
visitor), were associated with different sampling patterns. The decrease in 2020 was largely
driven by a decline in visitors, who represented nearly two-thirds of participants, were generally
more active, and made more research-grade observations. Meanwhile, resident observers
continued to participate at relatively steadier rates, but tended to be short-term participants and
more restricted to human-impacted landscapes. The majority and spatial diversity of observations

therefore relied on the participation of a small fraction of observers, most of whom were unlikely



to live in the region. Fostering sustained participation from local communities could improve the
consistency and quality of iNaturalist monitoring data and thus its utility in biodiversity

conservation.

2.1. Introduction

Biodiversity citizen science is a significant source of the broad-scale species data needed
to inform conservation science and policymaking (McKinley et al., 2017; Theobald et al., 2015).
Citizen science is public participation in the collection or processing of scientific data, often in
collaboration with professional scientists (Kullenberg & Kasperowski, 2016). In addition to
enabling data collection on scales that often exceed those of professional researchers, citizen
science programs can increase participants’ scientific literacy (Bonney et al., 2016), improve
trust between professional scientists, natural resource managers, and the public (Vann-Sander et
al., 2016), and confer mental health benefits through purposeful, outdoor activities for
participants (Coventry et al., 2019).

The tradeoff between citizen science program structure and participant engagement often
has consequences for data quality or credibility (Freitag et al., 2016). More formal structures
have protocols that standardize data collection, but may be less approachable for participants,
while low-structure programs attract more participants but often result in opportunistic
observations. Uneven sampling effort can result in biased data and produce skewed estimates of
biodiversity. Several sampling biases have been documented in citizen science data, including
taxonomic biases (Boakes et al., 2016; Mair & Ruete, 2016) and spatial biases toward protected
areas (Botts et al., 2011; Tulloch et al., 2013), sites with open water (Boakes et al., 2016), and

areas with a higher human footprint, such as population centers, parks, agriculture, and roadsides
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(Geldmann et al., 2016; Lloyd et al., 2020; Mair & Ruete, 2016; Pernat et al., 2021). These data
quality issues may discourage professional scientists from using or acknowledging citizen
science sources (Riesch & Potter, 2014; Theobald et al., 2015; Vann-Sander et al., 2016).
However, similar biases have been recorded in data collected by professionals (Boakes et al.,
2010; Martin et al., 2012; Meyer, Weigelt, & Kreft, 2016), and the quality of biased data can be
significantly improved by collecting information about the observation process (Kelling et al.,
2019). For example, species distribution modeling studies have demonstrated that estimates of
observer expertise or survey effort can be used to mitigate bias (Johnston et al., 2021; Steen et
al., 2019; van Strien et al., 2013). It is thus important to characterize observer behavior to the
extent possible, particularly when utilizing data from low-structure programs that contribute the
majority of citizen science observations (Di Cecco et al., 2021).

In spring 2020, lockdown measures were implemented across the globe in an attempt to
slow the spread of SARS-CoV-2 coronavirus and prevent significant loss of human life. These
necessary restrictions constrained human mobility in an unprecedented way, and, by limiting
regular research activities, highlighted the importance of considering diverse data streams like
citizen science for monitoring biodiversity (Bates et al., 2020). Several papers have examined
how citizen science participation changed during COVID-19 lockdowns. Participation decreased
during the City Nature Challenge in Tokyo (Kishimoto & Kobori, 2021) and for several
programs in the United States (Crimmins et al., 2021), but remained steady in programs in
Colombia (Sanchez-Clavijo et al., 2021), Australia (Stenhouse et al., 2022), and Italy, Spain, and
the United Kingdom (Basile et al., 2021). However, even if the overall number of observations
was consistent with previous years, a relative increase in urban activity was sometimes observed,

indicating a potential loss of data in natural areas (Basile et al., 2021; Crimmins et al., 2021;
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Sanchez-Clavijo et al., 2021). Additionally, Kishimoto & Kobori (2021) found steadier
participation among more enthusiastic observers, and Crimmins et al. (2021) observed that
though total observations were less impacted during lockdowns, fewer participants were active.
In short, citizen science participation in many regions became spatially restricted to more
accessible sites, and was sustained by relatively smaller groups of more active observers. The
latter may be concerning if we wish to broaden participation in and build more inclusive citizen
science communities, which are often disproportionately white and/or male (Cooper et al., 2021;
Pateman et al., 2021; Sanchez-Clavijo et al., 2021). Understanding the impact of COVID-19
restrictions on participation is important for data users, but is also an opportunity to explore who
participates in citizen science and where.

This study examined changes in iNaturalist participation in the Hawaiian Islands from
2008 to 2021. Located in the Polynesia-Micronesia biodiversity hotspot, a region of exceptional
species endemism as well as ongoing habitat loss (Myers et al., 2000), the Hawaiian Islands are a
unique place to examine trends in citizen science biodiversity monitoring as well as the effects of
COVID-19 protocols. The region relies heavily on tourism as a source of income and
employment (Agrusa et al., 2021) and received over 10.2 million visitors in 2019, i.e. seven
times as many visitors as residents (Chun et al., 2019). Yet as the world’s most geographically
isolated archipelago (Fleischer et al., 1998), travel to the islands could be feasibly restricted
during the COVID-19 pandemic, coinciding with a 73.9% decrease visitor arrivals in 2020
(Chun et al., 2020). The primary restriction was a 14-day quarantine for travelers to Hawalii,
instated on March 17, 2020 (Office of the Governor, 2020a). Quarantine requirements were
adjusted amid developments in testing, vaccination, and new variants, and ultimately lifted on

July 8, 2021 for fully vaccinated, domestic travelers (Office of the Governor, 2021). A state-by-
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state analysis by Crimmins et al. (2021) noted significantly fewer iNaturalist observations and
active observers in Hawaii than expected in spring 2020. As previous studies have demonstrated,
this decrease in participation likely varied in space and among participants.

Our analysis investigated how iNaturalist participation trends from 2008 to 2021 were
influenced by observer behavior (characterized by participants’ primary location and activity
level) and anthropogenic site attributes that often affect sampling, including land cover,
proximity to roads and trails, and land designation. Our primary research questions were: 1) How
do observer behaviors influence iNaturalist participation patterns in Hawaii? 2) Are iNaturalist
observations spatially biased toward human-impacted landscapes, and does sampling bias vary
according to observer behavior? 3) How have spatial and observer behavior trends varied over
time, particularly before and after the implementation of COVID-19 travel restrictions?

2.2. Materials and methods
2.2.1. iNaturalist observations and attributes

iNaturalist is a popular, web-based citizen science platform and joint initiative of the
California Academy of Sciences and the National Geographic Society that aims to connect
participants to nature while producing scientifically valuable biodiversity data. The app has an
unstructured survey format that makes it possible for users of any experience level to post
species observations from their smartphone or computer. Observations are therefore largely
opportunistic, but abundant; over 87 million have been made by over 2.5 million users since the
program’s launch in 2008 (iNaturalist, 2022b).

From the iNaturalist website (www.inaturalist.org), we downloaded georeferenced

observations made in Hawaii (place_id=11) between 01-01-2008 and 12-31-2021. Our analysis

included 93,160 observations with some level of taxonomic identification, a positional accuracy
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of <30 meters, and coordinates within the land area of Hawaii’s six largest islands (Hawai‘i,
Maui, O‘ahu, Kaua‘i, Moloka‘i, and Lana‘i; access to and iNaturalist data for Ni‘thau and
Kaho*‘olawe being limited). We did not include observations with obscured locations in this
analysis. iNaturalist automatically obscures coordinates for threatened, endangered, and other at-
risk taxa, and observers may also choose to obscure locations of observations made at their
homes. The removal of these records could potentially result in spatial bias as well, but this is not
possible to confirm given that the true coordinates are obscured within a 0.2 x 0.2 degree cell.

Each observation was classified by quality and taxonomic group. For the quality classes,
we used iNaturalist’s Data Quality Assessment statuses: research-grade, needs ID, and casual.
Research-grade observations are dated, georeferenced, non-captive records uploaded with a
photo or sound, whose identification has been agreed upon by 2/3 of iNaturalist identifiers.
Needs ID refers to observations that possess research-grade criteria but have not yet been
identified. Observations lacking any of the research-grade criteria are classified as casual.

Taxonomic groups included amphibians, birds, fishes, fungi, invertebrates, mammals,
plants and algae, and reptiles. Classification was based primarily on the iconic_taxa iNaturalist
attribute. Observations for which iconic_taxa=NA were manually classified using the scientific
or common name information provided. Protozoa represented a small percentage of observations
in the study extent (<0.001%) and were excluded from analysis.
2.2.2. Defining observer behavior

Variables used to define observer primary location and activity level were derived from
observations made in Hawaii from 2008-2021 (i.e. regardless of accuracy, species identification,

etc.) and additional data acquired through the Observation Histogram operation in the iNaturalist
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Application Program Interface version 1.3.0 (https://api.inaturalist.org). This operation yields the

unique dates that a user was active and the number of observations they made that day.

As location information is not available for iNaturalist observers, we inferred primary
location from the proportion of each individual’s activity in Hawaii. We scored activity in
Hawaii on a scale of 0 to 1 as: h = 0.4(o0p,) + 0.6(d},), where on is the proportion of
observations the observer made in Hawaii, and dn is the proportion of all active days (unique
dates on which an observer recorded at least one observation on the app) that they made an
observation in Hawaii from 2008-2021. For h > 0.5, the observer was classified as likely to be
resident (hereafter, ‘residents”). Otherwise, they were considered likely to be visiting (hereafter,
‘visitors’). While this classification method is limited by the assumption that the majority of an
observer’s activity will occur where they live, it is better suited to an isolated region like Hawaii,
which has clear geophysical boundaries and to which travel requires a substantial investment of
time and resources. Previous studies have also shown that citizen science participants are
typically active closer to home (Dennis & Thomas, 2000; Farias et al., 2022; Gratzer &
Brodschneider, 2021; McGoff et al., 2017).

Three engagement metrics were used to define activity level. Activity ratio is the
observer’s active days divided by their active period (date of their first observation minus date of
last observation, in days) (Ponciano & Brasileiro, 2014). Relative activity duration is the ratio of
the observer’s active days to total days in our study period (i.e. 01-01-2008 to 12-31-2021)
(Boakes et al., 2016). Activity ratio describes how engaged an observer was while active on the
app, while relative activity duration describes their engagement relative to other iNaturalists.
Lastly, the total number of observations made by each observer provides a measure of the extent

of their engagement (Boakes et al., 2016). This last metric was normalized using a natural log
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transformation given that values were highly skewed, then scaled to span 0 to 1 like the other
two metrics.

To group observers by these metrics, we used a clustering analysis approach similar to
that of Boakes et al. (2016) and Ponciano & Brasileiro (2014). We began by identifying a
suitable number of clusters with Ward’s minimum variance, a bottom-up hierarchical clustering
analysis that requires no predefined number of clusters (k). We then calculated Average
Silhouette Width (ASW) with the pamk() function in the R package cluster to test the strength of
the clustering structure for k = 2 through 10. ASW ranges from -1 to 1; we selected k with ASW
> 0.51, which indicates a reasonable structure has been found (Struyf et al., 1996). Using this k
value, we partitioned observers into activity levels using K-means clustering, a centroid-based,
unsupervised algorithm that classifies data into a pre-defined number of clusters. A random
number of centroids is given at the start, and data points are assigned to their closest centroid in
order to form k groups.
2.2.3. Spatial attributes

We examined the spatial distribution of iNaturalist activity by land cover, land
designation, and distance to roads and trails. Activity was measured by number of observations
and number of visits by unique observers. Land cover was derived from the Carbon Assessment
of Hawaii Land Cover map (Jacobi et al., 2017) by reclassifying the biome_unit attribute into
eight general classes (Table 2.1a). Land designation was based on Gap Analysis Project (GAP)
status codes for areas in the U.S. Geological Survey Protected Areas Database (U.S. Geological
Survey Gap Analysis Project, 2018), (Table 2.1b). GAP codes serve as a measure of
management intent to conserve biodiversity. Though protected areas are often well-sampled by

citizen science (Stenhouse et al., 2022; Tulloch et al., 2013), the distribution of participant

16



activity may be influenced by infrastructure and management at a given site (Walden-Schreiner
et al., 2018). To calculate distance to roads and trails, we compiled a vector layer using U.S.
Census Bureau TIGER/Line Shapefiles for all roads in Hawaii, the Na Ala Hele Trail system
(State Department of Land and Natural Resources, DOFAW, updated 2018), and AllTrails, a
web and mobile outdoor recreation app for sharing trail information. We included 135 heavily
trafficked AllTrails routes with at least 100 reviews that were not already accounted for in the Na
Ala Hele system. Euclidean distance to road/trail was calculated across a 30-meter resolution
raster that matched the extent and resolution of the land cover layer. This grid was divided into
quartiles to create four classes (Table 2.1c).

Observations were assigned to spatial classes via the Spatial Join tool in ArcMap 10.7 or
the extract() function in the R package raster. Statistical significance of bias was estimated by
comparing the observed distribution of observations or unique observers to the expected
distribution, assuming that the probability of occurrence in a given spatial class is proportional to

the area that the class occupies. We use the index from Kadmon et al. (2004): Bias; = (ng —

palN) / pa(1 — pa)N , where na is the number of observations or observers per class d, pd is
the probability that the observation or observer is located in class d given its area, and N is the
total number of possible observations or observers. Values are distributed like a standard normal
variable (Z) and statistically significant (o = 0.05) for values greater than 1.64. We calculated
spatial bias in observations and unique observers per year and for the entire study period.

Table 2.1

Descriptions of land cover (a), land designation (b), and distance to road/trail (c) classes and the
proportion of the study area each class occupies.

a) Land cover Description % Area
Developed Low to high intensity development; developed open space 6.3%
Agriculture Cultivated agriculture; plantation forests 7.3%
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Bare ground Very sparse vegetation to unvegetated areas 19.0%
Grassland Native and alien dry, mesic, and wet grasslands 16.9%
Dry/mesic shrubland  Dry and mesic shrublands; coastal strand vegetation 14.1%
Dry/mesic forest Dry and mesic forests 15.3%
Wet forest/shrubland  Wet forests, shrublands, ferns, and cliff communities 21.0%
Wetland/water Native bogs, wetlands, and water 0.2%
b) Land designation Description % Area
None Area is not included in the USGS Protected Areas Database 46.4%
Limited protection Prot.ected area thh no known mandates to prevent natural 17.5%
habitat conversion (GAP status 4)
Some protection from habitat conversion, but multiple
Multi-use extractive uses permitted (e.g. logging, mining, off-highway 20.4%
vehicle recreation) (GAP status 3)
- . Area has permanent protection from natural habitat
F t 15.89
or biodiversity conversion (GAP status 1 or 2) >-8%
c) Distance to road/trail  Description % Area
Q1 <150 meters 25.3%
Q2 <553.2 meters 24.9%
Q3 <1513.4 meters 24.9%
Q4 > 1513.4 meters 25.0%

2.2.4. Participation over time

Pre-COVID growth in iNaturalist participation (2008 to 2019) was estimated using linear
models of observations, unique observers, and new observers (i.e. first-time participants in
Hawaii) versus year. Participation metrics were log transformed (In x) to improve fit and
distribution of residuals. Analysis of covariance (ANCOVA) was used to test for significant
differences in growth among observer behavior, observation quality, taxonomic, and spatial
classes. To determine whether participation varied by quarter (January-March (JFM), April-June
(AMJ), July-September (JAS), October-December (OND)), we first used ANCOVA to check for
significant differences among quarterly regression slopes. As quarter did not have a significant
effect, linear models were fitted with annual data. ANCOVA assumptions were checked using

Shapiro-Wilk normality tests and Bartlett tests of homogeneity of variances. When ANCOVA
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indicated significant differences for a given factor, post-hoc interaction analysis was performed
using the emtrends() function in the R package emmeans.

The effect of travel restrictions in 2020-2021 was evaluated in two ways. Expected values
for 2020-2021 participation metrics were predicted using annual and quarterly 2008-2019 linear
models. We then calculated the difference between the observed and predicted values in each
quarter, and determined significance using predicted 95% confidence intervals (Crimmins et al.,
2021). Second, we calculated percent change in participation metrics from 2019 to 2020 and
2021 on annual and quarterly bases. We calculated overall percent change as well as change
within each observer behavior, observation quality, taxonomic, and spatial class.

2.3. Results
2.3.1. Observer behavior

The clustering analysis included 10,265 iNaturalist observers who had made at least one
observation meeting spatial and taxonomic requirements (section 2.2.2). Though Average
Silhouette Width was higher for k = 2 (0.70) than k = 3 (0.58), k = 2 only distinguished the least
active observers. We thus chose 3 clusters in order to describe more variation in activity:
enthusiastic, moderate, and short-term. Enthusiastic observers made relatively high numbers of
observations (median = 601) and had the highest mean relative activity duration (63.3% of the
study period). Short-term observers made the fewest observations (median = 2) and had high
activity ratios (median = 1) because they were only active on the app for an average of 1.7 days.
The moderate group represented activity in between these two extremes (median = 20
observations/observer) and included the majority of observers.

Observers likely to be Hawaii residents represented 36.7% of participants, and nearly half

(49.0%) were classified as short-term (Figure 2.1). The majority of enthusiastic observers were
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classified as visitors, while only 4.1% were residents. Enthusiastic observers from either location
represented just 14.1% of all participants but made 47.9% of observations. Enthusiastic
observers were the most likely to make research-grade observations, while short-term observers
were the least likely (Table 2.2). Only 52.1% of short-term observers made at least one research-
grade observation, compared to 77.0% of moderate and 95.0% of enthusiastic observers. Most
residents were short-term, and were thus more likely to make casual observations (50.5% of

residents submitted at least one casual observation, versus 35.5% of visitors).

Residents Visitors

Enthusiastic |y L
I Unique observers
I Observations
Short-term F ‘

(n=93160)
00 01 02 03 04 05 00 01 02 03 04 05
Proportion of total
Figure 2.1

Proportion of unique observers and observations per observer behavior, as defined by location (resident or
visitor in Hawaii) and activity level (enthusiastic, moderate, or short-term).

Visiting-short-term observers were most likely to equally split their activity between
Hawaii and elsewhere (Appendix A, Figure Al). It is thus possible that some short-term observer
locations were misclassified; for instance, a one-time observer who was visiting Hawaii during
their brief active period on the app would be classified as resident. However, the low number of
visiting-short-term observers that we identified was a logical outcome of classification given that
citizen scientists more often participate close to where they live.

Most observers only recorded one taxonomic group (Table 2.2), which was typically
plants and algae. Plants and algae represented the majority of observations in every observer

behavior class, at least 51.3% (visiting-enthusiastic observers) and as much as 75.9% (resident-
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short-term observers) (Appendix A, Figure A2). Birds and invertebrates were the next most-
observed taxonomic groups among all observers. Mammals and amphibians were the least likely
to be observed. Taxonomic diversity was highest in observations made by resident-enthusiastic
observers, who were most likely to record multiple groups (Appendix A, Figure A3).

Table 2.2

Sampling characteristics of individual observers, including the quality of the observations they recorded
and the number of taxonomic groups or spatial classes they sampled at least once. Values provided are the
mean and standard deviation of each observer behavior class.

Resident - Resident - Resident - Visiting - Visiting - Visiting -
Enthusiastic  Moderate Short-term Enthusiastic  Moderate Short-term
Observation quality
% research-grade 64.9 (23.2) 47.2 (34.2) 37.6 (42.4) 76.6 (27.6) 60.4 (40.6) 37.5 (45.4)
% needs ID 25.4 (19.7) 26.5 (29.4) 28.9 (39.9) 15.7 (22.5) 18.3 (31.4) 16.3 (33.9)
% casual 9.8 (14.9) 26.2 (32.2) 33.5(42.8) 7.7 (18.2) 21.3(34.8) 46.2 (49.7)

# of taxonomic groups or spatial classes

Taxonomic groups 4.7 (2.2) 1.9(1.2) 1.2 (0.6) 2.7 (1.8) 1.6 (1) 1.3(1.2)
Land cover classes 5.5(2.2) 2.1(1.4) 1.3(0.7) 2.9(2.1) 1.7 (1.2) 1.3(1.2)
Land designation

dlasses 3.2(1) 1.7 (0.8) 1.1 (0.4) 2.1(1.1) 1.4 (0.7) 1.2 (0.5)
Distance to 2.7(1.2) 1.4(0.7) 1.1 (0.4) 1.7 (1) 1.2 (0.5) 1.1(0.3)

road/trail classes

2.3.2. Overall spatial bias

iNaturalist activity was most strongly biased towards developed and wetland/water land
cover types, non-designated sites, and sites within 150 meters of a road or trail (Figure 2.2).
Wetland/water observations were primarily clustered in highly accessible, coastal sites. The most
significantly underrepresented classes in terms of observations were grassland and wet
forest/shrubland land cover types, areas managed for biodiversity, and sites further than 150
meters from roads and trails. These classes, except for grassland, were also where observers

tended to be less active. Prior to 2016, there was greater spatial variability in sampling patterns.
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But observations and unique observers have been consistently concentrated in certain sites,
including those closest to roads and trails, in developed areas, and wetlands and open water,

throughout the study period.
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Figure 2.2

Sampling bias in iNaturalist observations and unique observer visits by a) land cover, b) land designation,
and c) distance to road/trail. Gray area represents the percent area occupied by each class. +/- indicates
significant over-/under-representation.

Overrepresentation of areas with a higher human impact (developed, more accessible,
and non-designated) was strongest in casual observations, and relatively lower in observations
made by visiting-enthusiastic observers. Enthusiastic observers, particularly residents, were more

likely to sample a greater diversity of land cover types, land designations, and sites further from
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roads and trails than less active observers (Table 2.2). All taxonomic groups showed the same
biases toward developed areas, non-designated sites, and sites closest to roads and trails, with a
few exceptions. Bias toward developed sites was relatively lower among fishes and fungi, which
were highly represented in coastal bare ground areas and dry/mesic forest, respectively. Fungi
observations were also skewed toward multi-use areas.
2.3.3. Pre-COVID participation trend

We found statistically significant positive relationships (p<0.001) between year and
observations, unique observers, and new observers from 2008-2019 (Appendix A, Table Al).
Annual observations and unique observers increased in all observation quality, taxonomic, and

spatial classes, with no significant differences among classes indicated by one-way ANCOVA.
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Figure 2.3

Participation by observer location, estimated using linear models of log-transformed observations, unique
observers, and new observers versus year. Participation among residents increased at a significantly
higher rate than visitors from 2008-2019.

When observers were grouped by location only, all three variables increased at a higher
rate among residents (p<0.001 for observations and unique observers; p<0.01 for new observers)
(Figure 2.3). When grouped by location and activity, all observer behavior classes showed

positive trends except for the visiting-short-term group, for which no significant relationship was
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detected. This is likely due to the low number of samples available for this group. One-way
ANCOVA and post-hoc comparison of slopes showed that observations by resident-enthusiastic,
resident-short-term, and visiting-moderate observers increased at a significantly higher rate than
the visiting-enthusiastic group (Appendix A, Table A2). Annual increases in new and unique
observers were significantly higher for resident-moderate, resident-short-term, and visiting-
moderate observers than for both enthusiastic groups.

2.3.4. 2020-2021 changes in participation

Participation was lower than expected in AMJ, JAS, and OND 2020 (Appendix A, Tables
A3-4). Observations, unique observers, and new observers were 32.4%, 33.2%, and 40.1% lower
in 2020 than in 2019, respectively, with declines primarily occurring from AMJ to OND (Figure
2.4). From 2019 to 2020, decreases in needs ID and research-grade observations were double
that of casual-grade, and the number of unique observers who made research-grade observations
decreased by 37.1% (Appendix A, Figure A4). Among taxonomic groups, fishes and fungi were
the least impacted in 2020 relative to 2019 (observations of fish increased by 2.8%), while birds
and reptiles had the largest percent decreases in both observations and unique observers.

Visitors and residents showed distinct trends. In 2020, observations, unique observers,
and new observers declined by 52.7%, 50.1%, and 64.2%, respectively, in the visiting-
enthusiastic group and 47.3%, 52.3%, and 57.6% in the visiting-moderate group. Certain metrics
were significantly lower than expected during the AMJ, JAS, and OND quarters (Figure 2.5).
Resident participation was also lower than expected (with a few exceptions, see Figure 2.5), but
to a lesser extent; participation in 2020 still exceeded that of 2019 during certain quarters (Figure

2.4) and for some groups, like resident-moderate observers (Appendix A, Figure A5).
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Spatial bias did not change significantly from 2019 to 2020, and activity in all spatial
classes was less than expected (Appendix A, Tables A3-4). Relative changes in participation did
vary somewhat among spatial classes. Compared to 2019, declines were less pronounced in
agricultural land cover and more pronounced in dry/mesic shrubland (Appendix A, Figure A4).
Areas managed for biodiversity experienced a larger decrease in observations from 2019 to 2020
compared to other land designation classes, particularly during AMJ. Certain changes only
occurred during specific quarters: in AMJ 2020, bare ground sites saw a relative decrease in

observations, and dry/mesic forest—a class usually sampled in proportion to its area—was
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significantly underrepresented. The magnitude of observation bias increased in developed areas

during the AMJ and JAS quarters and in non-designated areas during AMJ 2020.
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Figure 2.5

Difference between the number of observed and predicted observations, unique observers, and new
observers in 2020-2021, calculated by observer behavior. Significant differences (*) determined using
95% confidence interval. Visiting short-term group excluded due to low number of samples.

In 2021, total observations lower than expected based on 2008-2019 linear models, albeit
statistically non-significant (Appendix A, Table A3). The number of unique observers was also

lower than expected, except during JAS (Appendix A, Table A4). Results were more variable
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within quarters and observer, observation quality, taxonomic, and spatial classes. Fishes and
amphibians were the only taxonomic groups that exceeded expected values for 2021. Wetland
observations were significantly lower than expected in JFM. In AMJ, resident-short-term
participation greatly exceeded expected values, while unique and new moderate visitors were
significantly lower than expected (Figure 2.5). When calculated over the entire year, visiting-
enthusiastic participation metrics were closest to expected values, followed by those of the
visiting-moderate group.

All metrics surpassed 2019 values in 2021: observations increased by 85.9%, unique
observers by 56.9%, and new observers by 54.1%. Growth in unique observers was highest for
casual observations (Appendix A, Figure A4). Among taxonomic groups, fishes had the highest
increase in both observations and unique observers compared to 2019 (Appendix A, Figure A4).
Spatial bias did not statistically differ from previous years, though 2021 growth in observations
was relatively higher in wet forest/shrub, lands managed for multiple uses, and sites up to 1,513
meters from a road or trail (Appendix A, Figures A4). Growth in unique observers was highest in
wetland/water and bare ground land cover types, and areas with limited protections. For
observers, the highest growth in participation often occurred among resident-short-term
observers (Appendix A, Figure A5). Resident-enthusiastic observers also experienced high
growth in observations, while unique observers increased in both moderate groups.

2.4. Discussion
2.4.1. Bias toward highly impacted landscapes

iNaturalist observations in Hawaii were skewed toward sites with a higher human impact

(i.e. areas that are developed, closer to roads or trails, and have fewer protections). This is a

common bias in citizen science projects, including the global iNaturalist dataset (Di Cecco et al.,
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2021; Fletcher et al., 2019; Mair & Ruete, 2016). Though the magnitude of bias varied somewhat
from year to year, more accessible, developed sites have been consistently overrepresented since
the app’s launch in 2008 and throughout the COVID-19 pandemic.

Annual land designation trends were more variable, but observations over the full study
period were biased toward non-designated sites and those with limited protections. Previous
studies indicate that citizen science bias toward protected areas varies regionally, and may be
influenced by site characteristics of the protected areas themselves (Johnston et al., 2020; Tang et
al., 2021; Tulloch et al., 2013). In separating designated lands by GAP status, we found that
protected areas more explicitly managed for biodiversity were undersampled in Hawaii, while
those that permit intensive anthropogenic use and disturbance were sampled more intensely.

If observers are primarily active in more ‘convenient’ or accessible locations, they may
be more likely to record common, easily-detected species (Callaghan et al., 2020; Di Cecco et
al., 2021). For example, an increase in urban observations during COVID-19 lockdowns in
Colombia coincided with fewer reports of threatened and endemic species (Sanchez-Clavijo et
al., 2021). An exceptionally high proportion of native Hawaiian species are endemic and prone
to endangerment due to their relatively narrow ranges and low population densities (Pratt, 2009;
Sakai et al., 2002). Our land cover analysis suggests that iNaturalist data may have limited
capacity to capture rare or at-risk taxa (Lloyd et al., 2020), particularly in native wetlands and
wet and dry forests, which were sampled much less than developed areas despite being some of
the islands’ most diverse ecosystems with high rates of endemism (Javar-Salas et al., 2020; Sakai
et al., 2002). Though wetlands were overrepresented relative to their area, well-sampled sites
were largely concentrated in coastal areas near roads and trails, rather than in high-elevation

native bogs.
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The skew toward human-impacted sites could potentially be influenced by the high
number of non-native species in Hawaii, which have significantly altered native patterns of
diversity (Craven et al., 2019; Cuddihy & Stone, 1990). Concentrations of invasive and non-
native species would not be unexpected on disturbed road- and trail-sides or in developed and
less-protected areas. A species-level analysis would be needed to distinguish the effects of true
non-native species occurrence versus observer bias. However, land-use change, habitat
fragmentation, and species invasions are more often associated with a loss in species richness
(Flaspohler et al., 2010; Martinez-Ramos et al., 2016; Murphy & Romanuk, 2014), and the
relatively low abundance of observations in Hawaii’s most diverse habitats indicates at least
some degree of observer bias.

While spatial bias limits the inferences that can be made about species distributions or
population changes (Kamp et al., 2016), particularly in more remote locations, the observations
are not without utility. Many statistical approaches can be employed to address sampling bias
(Fletcher et al., 2019; Steen et al., 2021; Varela et al., 2014), and spatially biased observations
may be less problematic when used to complement professional, structured data in low-priority
habitats (Martin et al., 2012) or areas that have not been surveyed yet or as extensively
(Lehtiniemi et al., 2020; Robinson et al., 2020). Observations can also be filtered by quality; the
Global Biodiversity Information Facility (www.gbif.org) and many papers have exclusively used
research-grade iNaturalist data (e.g. Crimmins et al., 2021; Jacobs & Zipf, 2017; Pearman-
Gillman et al., 2020; Smith & Nimbs, 2022), which show less spatial bias toward human-
impacted areas than casual observations. Finally, monitoring in human-impacted landscapes has
value in and of itself. Citizen science in urban areas provides long-term data collection on the

response of biodiversity to urbanization (Callaghan et al., 2018, 2019; Hawthorne et al., 2015),
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and gives participants the opportunity to connect with local natural history and contribute to
biodiversity research with local implications (Ballard et al., 2017).
2.4.2. Preference vs. accessibility

It is difficult to determine the degree to which sampling bias is driven by observer
preference or site accessibility (Leonard, 2008; Tulloch & Szabo, 2012), but spatial patterns
during the COVID-19 lockdown may offer some insight in Hawaii. Though spatial biases in
2020-2021 did not differ significantly from previous years, certain trends were amplified in the
quarters immediately after the onset of the pandemic. Participation decreased in dry/mesic forest,
bare ground sites, and areas managed for biodiversity, while developed and non-designated areas
saw a relative increase in activity. Shelter-in-place mandates (Office of the Governor, 2020b),
coupled with spring and summer closures of state parks and beaches (Division of State Parks,
2020; HNN Staff, 2020), suggest that this spatial shift was largely driven by access. Previous
studies have noted that urban activity increased in regions where COVID-19 lockdowns
restricted movement and park access (Basile et al., 2021; Crimmins et al., 2021; Sanchez-Clavijo
et al., 2021), while urban and non-urban observations were similar in regions where residents
were less confined to cities (Sweet et al., 2022).

In 2021, participation rebounded more strongly in underrepresented sites (e.g. wet
forest/shrub, protected and more intensely managed lands, sites further from roads and trails), a
possible indication of observer interest in these sites once barriers to access were lifted. Whether
this trend will persist into the future is uncertain. Additionally, sampling bias toward developed
and non-designated areas differs among observer behavior groups. Bias toward human-impacted

sites was relatively lower for enthusiastic observers prior to the pandemic, and did not increase in
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2020. Future research could explore whether this difference among participants is due to
preference for or unequal access to more “natural” sites.
2.4.3. Data quality implications of observer trends

Nearly half of the iNaturalist observations in Hawaii have been contributed by very
active, enthusiastic observers who represent a minority of participants. Short-term observers
outnumbered enthusiastic observers, and sampling patterns between them differed beyond sheer
volume. Observations made by short-term and moderate observers showed higher spatial bias
and were less likely to include the attributes required to become research-grade. These data are
more difficult to use, as species identifications cannot be verified and true spatial patterns may be
obscured. Perhaps unsurprisingly, enthusiastic observers were the most likely to make research-
grade observations; as the participants who have invested the most time on the app, they might
also be expected to document more observation attributes. We also found greater taxonomic and
spatial diversity in sampling by enthusiastic observers, who were more likely to visit sites
outside of highly impacted, overrepresented areas. In essence, the breadth, as well as the bulk, of
iNaturalist sampling was carried out by a small percentage of observers.

While a small percentage of highly active users has been observed in other citizen science
datasets (Boakes et al., 2016; Larson et al., 2020), we also found that the majority of Hawaii’s
most active iNaturalist observers were unlikely to live in the state. Visitors represented nearly
two-thirds of observers in this study and the majority of enthusiastic (95.9%) and moderate
(73.6%) observers. This may be expected given that Hawaii’s relatively small population has
been consistently outnumbered by tourists for several decades (Trask, 1992), and observers who

elect to participate while traveling are likely to be more experienced or active on the app in
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general (Hobbs & White, 2012). Investigating citizen science participation in other regions with
significant tourism sectors may reveal similar trends.

Meanwhile, short-term resident observers represented nearly half of all residents and were
exhibiting the highest growth in participation prior to 2020. These briefly-active participants may
have initially encountered iNaturalist by chance or through short-term events like bioblitzes,
which can be hosted through iNaturalist projects and are effective at drawing in new, albeit
episodic or one-time, participants (Ballard et al., 2017; Rochester, 2006; Rotman et al., 2014).
Spikes in new short-term observers in 2015-2016 coincided with the launch of new iNaturalist
projects by the Bishop Museum (Hawaii Biological Survey, 2018) and Hawai‘i Volcanoes
National Park (Ferracane, 2015).

A high proportion of one-time participants is not uncommon in citizen science projects of
this scale and structure (Boakes et al., 2016; Di Cecco et al., 2021), but the differences between
short-term and enthusiastic observers accordingly apply to residents and visitors. Resident-short-
term observers were the least likely to sample outside of highly human-impacted sites,
suggesting a disparity in site access between residents and visitors. Residents were also more
likely to make casual observations. This could also result in resident-collected data representing
an even smaller percentage of the iNaturalist data used in research (Di Cecco et al., 2021).
Improved retention and engagement of locally-based participants is needed to address these
potential gaps, and could have benefits for biodiversity monitoring as well. We found that
resident-enthusiastic observers, though few in number, were the group most likely to record
multiple taxonomic groups and sample a diversity of site types.

In order to expand the scope of monitoring via low-structure but accessible platforms, it

is important to consider how to retain and encourage existing participants (Boakes et al., 2016;
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Maund et al., 2020). To be clear, citizen science participation yields benefits beyond data
collection for researchers, and all engagement is valuable (Bonney et al., 2016; Coventry et al.,
2019). In the context of biodiversity monitoring, however, long-term participation is particularly
useful for understanding changes in species populations dynamics. Though iNaturalist has been
extremely successful in attracting new users (iNaturalist, 2022a), the majority are inactive and
participate very infrequently; many have submitted just one observation (Di Cecco et al., 2021).
Even if overall engagement on a platform is consistently growing, high-quality, representative
datasets may be more difficult to assemble if participation by individual observers is sporadic
(Kamp et al., 2016; McKinley et al., 2017). Encouraging sustained, local participation may thus
help to improve the quality, utility, as well as stability of iNaturalist data collection.
2.4.4. Impact of COVID-19 on residents and visitors

The COVID-19 pandemic made evident one consequence of the high proportion of
visiting iNaturalist observers. Though participation in all observer groups was lower than
expected in 2020, the drop in visiting-moderate and visiting-enthusiastic observer activity was
significant throughout much of the year. Thus, total iNaturalist observations decreased, in spite
of relatively steady participation among residents. While resident-moderate observers were
generally the most active, the number of resident-short-term observers and observations were
greater than expected during AMJ 2020. Shelter-in-place orders during this time may have
motivated new participants to sign up for the app (Sanderfoot et al., 2022). If so, the effect was
short-lived and the new observers were only briefly active.

Quarantine restrictions were relaxed and COVID-19 testing became more widely
available toward the end of 2020. By JFM 2021, participation among observer groups began to

rise (Figure 2.4). However, it was still lower than expected, particularly for resident observers.
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Resident-short-term observers experienced another AMJ spike (Figure 2.5), which may be
related to several bioblitzes that take place during the spring (e.g. City Nature Challenge,
Hawai‘i Intertidal Bioblitz). Despite this gain, the enthusiastic and moderate visitors were the
closest to achieving expected rates of participation in 2021. Continued study could clarify
whether COVID-19 had temporary or lasting effects on resident versus visitor activity in Hawaii.

COVID-19 lockdowns disrupted long-term professional data collection by halting field
research and travel (Corlett et al., 2020). In some regions, monitoring via citizen science
increased (Sweet et al., 2022) or was less affected than professional surveying (Stenhouse et al.,
2022). In Hawaii, iNaturalists still collected thousands of observations in 2020. But the greatest
declines in observations (from 2019) occurred for enthusiastic and visiting observers. This
coincided with greater relative decreases in research-grade-eligible observations, and, as
previously discussed, increased sampling of human-impacted sites. If collection of spatially
diverse, high-quality observations primarily depends on the mobility of a small group of
participants, then broad-scale citizen science via programs like iNaturalist appears vulnerable to
the same events that disrupt professional research.
2.4.5. Other considerations

Long-term participation is often motivated by trust, mentorship, and relationships
between participants and professional scientists, or participants and their communities (Rotman
et al., 2014). Though iNaturalist can certainly be used to support these interactions, the app can
also be easily used in solitude, and many biodiversity citizen science projects are shifting toward
this independent format that may put more distance between researchers and volunteers (Maund
et al., 2020). On their own, such projects may be insufficiently engaging for new participants

without pre-existing interests or personal motivations. Opportunities for feedback, learning,
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training, and collaboration with researchers are needed as well, and could be provided through
institutions (e.g. museums) that can work with community-based groups to foster a more
collective and inclusive experience (Ballard et al., 2017; Chesser et al., 2020; Pandya, 2012).
These efforts are especially important for ensuring that audiences who have been historically
underrepresented in or excluded from citizen science are able to participate in biodiversity
conservation.

Our results demonstrated that an active, local participant base is invaluable for consistent
data collection, particularly during extraordinary circumstances like the COVID-19 pandemic. In
order to ask relevant questions and produce relevant outcomes, citizen science projects must aim
to increase inclusivity and prioritize local participation and perspectives (Cooper et al., 2021;
Pocock et al., 2018). Our study can infer little about iNaturalist demographics in Hawaii, but
there is a clear imbalance between residents and visitors who have the means to travel, perhaps
regularly, to this isolated region. An in-depth investigation of citizen science participants—in
iNaturalist or one of the many other projects in Hawaii (Grossman, 2022; Sherwood, 2020)—
would be needed to identify specific ethnic or socioeconomic disparities. However, citizen
science participants are rarely representative of the general population, and instead tend to be
white, male, and older, with higher levels of income and/or education (Hobbs & White, 2012;
Larson et al., 2020; Maund et al., 2020; Pateman et al., 2021; Trumbull et al., 2000; West et al.,
2016), i.e. the demographics that have traditionally dominated professional science (Soleri et al.,
2016). This may intensify the disconnect between researchers and the communities in which they
operate, particularly since many citizen science projects (like iNaturalist) are supported by
academic institutions, government agencies, or other professional organizations (Rotman et al.,

2014), and thus do not challenge existing power dynamics between these formal centers of
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expertise and the volunteers who are critical to sustaining data collection (Pocock et al., 2018).
Important recommendations for engaging a more diverse citizen science community have been
made elsewhere, but it is important to also acknowledge that many barriers to participation for
marginalized groups are symptoms of larger socioeconomic disparities (Pandya, 2012).
2.5. Conclusions

Our analysis of iNaturalist participation in Hawaii corroborated some of the general
patterns described in previous studies: sampling grew exponentially until 2020, decreased during
COVID-19 lockdowns, and rebounded in 2021. Spatial biases toward human-impacted
landscapes have remained relatively constant over time and increased somewhat during the early
stages of the pandemic. A small percentage of observers contributed a large proportion of
observations. However, we also found that that these trends varied by observer behavior, and that
iNaturalist biodiversity monitoring in Hawaii was primarily driven by highly active visitors.
Visitors were generally more active and greater in number. Residents were the minority of
iNaturalists in Hawaii, and because many were short-term participants, their observations tended
to be casual and more biased toward human-impacted landscapes. Yet enthusiastic residents,
while small in number, made the most spatially and taxonomically diverse observations. The
COVID-19 pandemic further demonstrated the particular importance of local participation, for
though visitor activity decreased sharply at the onset of travel restrictions, participation by
residents remained relatively steady, and several spikes in new resident observers occurred. By
2021, however, visiting observers were closest to reaching expected rates of participation. In
order to achieve more consistent, higher quality biodiversity monitoring via citizen science, it is

important to encourage sustained and local participation.
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Chapter 3. Citizen science enhances invasive plant monitoring and estimates of

habitat

A version of this chapter has been submitted to Diversity and Distributions as Dimson, M.,
Fortini, L. B., Tingley, M. W., and Gillespie, T.W. Citizen science and professional surveys offer
complementary data for understanding invasive plant distributions. Diversity and Distributions

(in review). Supplementary materials for this chapter are provided in Appendix B.

Abstract

Aim: Citizen science offers a cost-effective means of acquiring non-native species data.
However, data quality issues due to unstructured sampling approaches may discourage the use of
citizen science data by conservationists and professional scientists. To evaluate the utility of low-
structure iNaturalist data in non-native species monitoring, we examined vascular plant data for
environmental sampling bias and bias toward native versus non-native species. Using four
example invasive species, we then compared sampling bias in iNaturalist and professional
agency observations and used the data to estimate suitable habitat for each species.

Location: Hawaii, USA

Methods: To assess observer preference for native versus non-native plants, we compared the
number of species and observations recorded in iNaturalist to the total number of known species
in Hawaii. We quantified environmental sampling biases with respect to site accessibility, status,
and disturbance using a bias index. Habitat suitability for four invasive species was modeled in
Maxent, using observations from iNaturalist, from agencies, from both sources, and iNaturalist

observations that had been spatially and environmentally stratified.
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Results: iNaturalist plant observations were biased toward invasive species, which were
frequently recorded in areas with greater road/trail density and vegetation disturbance. For the
example species, professional agencies tended to sample less accessible and native-dominated
sites. Invasive plant models often produced distinct projections with iNaturalist versus agency
data, particularly when predicting habitat in disturbed versus native vegetation-dominated sites.
Stratifying the iNaturalist data had little impact on how suitable habitat was distributed for the
example species.

Main conclusions: Invasive species represented a high proportion of iNaturalist plant
observations in Hawaii. Citizen science data from iNaturalist has the potential to complement
professional invasive plant monitoring and expand estimates of habitat suitability. Each dataset
captured unique environmental conditions, and combined models using both datasets provided a

more comprehensive estimate of the species distribution.

3.1. Introduction

A major challenge in conservation biogeography is the collection of high-quality,
comprehensive species occurrence data (Richardson & Whittaker, 2010). Monitoring data are
essential to early detection, risk analysis, and effective management of non-native species,
especially environmentally or economically harmful invasive species (Reaser et al., 2020).
However, systematic surveys by trained experts are typically resource-intensive and limited in
geographic scale (Hochachka et al., 2012), restricting the utility of the data in broad-scale
applications, such as estimating species distributions (Meyer et al., 2016). Non-native species in
particular have been historically neglected in biodiversity monitoring, and the databases that do

exist remain difficult to access, share, and integrate (Reaser et al., 2020; Wallace et al., 2020).

47



Biodiversity citizen science, in which volunteers participate in species data collection,
offers a cost-effective means of addressing data limitations, as the observations are often greater
in spatial and temporal extent as well as more readily accessible (McKinley et al., 2017;
Theobald et al., 2015). The availability and relative accessibility of citizen science data has great
potential to expand existing information systems for non-native species (Johnson et al., 2020).

Citizen science programs differ in scale and structure in order to balance participant
recruitment and experience with data credibility (Freitag et al., 2016). This can result in varying
levels of identification accuracy as well as geographic and taxonomic completeness, particularly
when observations are collected on an incidental basis (Dickinson et al., 2010). Nonrandom
variation in observer ability, preferences, or search effort can produce sampling bias in the
observations due to the mismatch between participants’ sampling patterns and actual species
richness or abundance across space (van Strien et al., 2013). Sampling effort by citizen scientists,
for example, is likely to be motivated by accessibility (i.e. roads or other human infrastructure)
or interest in species and areas of conservation concern (Botts et al., 2011; Steger et al., 2017;
Stolar & Nielsen, 2015; Tulloch et al., 2013). Thus, it is often assumed that there is a trade-off
between the quality and quantity of citizen science data (Robinson et al., 2020).

However, sampling biases are not unique to citizen science. Sampling by both
professional and citizen scientists is taxonomically biased toward vertebrate species (Theobald et
al., 2015). Herbarium data exhibit biases toward roadsides and more accessible, lower elevation
areas, as well as seasonal bias toward spring and summer (Daru et al., 2018). In scientific
literature, distribution data for ground-feeding birds are biased toward threatened species and
protected areas (Boakes et al., 2010). The biases in different datasets can be complementary, and

when combined with professional data, citizen science has increased the spatial coverage of
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monitoring efforts for shorebirds (Robinson et al., 2020), insects (Hochmair et al., 2020; Wilson
et al., 2020; Zapponi et al., 2017), large mammals (Farhadinia et al., 2018), and easily
recognizable non-native aquatic species (Lehtiniemi et al., 2020). Following brief training,
citizen scientists have produced similar field estimates of species cover and occurrence as
professional scientists (Crall et al., 2011; Danielsen et al., 2014). Crall et al. (2015) demonstrated
that citizen science can expand invasive plant monitoring in Wisconsin and lead to more realistic
estimates of habitat through local and regional programs that involve identification training or
collaboration with botanists. Nevertheless, the vast majority of citizen science plant data are
incidental observations from low-structure programs (Di Cecco et al., 2021). Evaluation of the
differences between low-structure citizen science data and professional plant surveys is needed
to address assumed disparities in quality, which may otherwise limit the use of citizen science
observations in conservation and scientific applications, such as habitat suitability modeling
(Lewandowski & Specht, 2015; Riesch & Potter, 2014; Theobald et al., 2015).

Habitat suitability models (HSMs) use the relationship between species occurrence
records and the environmental conditions at those locations to predict the species’ potential
distribution across sampled and un-sampled space. In invasive species management, HSMs have
several applications, including predicting potential spread, disease risk, or range shifts under
climate change (Guisan & Thuiller, 2005; Newbold, 2010; Srivastava et al., 2019). Model
predictions can be used to identify areas vulnerable to invasion and to guide survey and
monitoring efforts that are critical to early detection (Guisan et al., 2013). Though the use of
citizen science observations in habitat suitability modeling has increased steadily over the last

decade, plant data specifically is currently under-used (Feldman et al., 2021).
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The quality of model training and evaluation data is critical to the accuracy of the
predictions, and, ideally, species records should be representative of the entire modeled
environment (Kramer-Schadt et al., 2013). Predictions based on biased data are often fitted to
survey effort rather than the true potential distribution of suitable habitat (Phillips et al., 2009)
and may inaccurately estimate species ranges (Beck et al., 2014; Bjorklund et al., 2016).
Sampling bias can be addressed using data filtering treatments (e.g. spatial thinning or
subsampling of records, culling by survey effort or observer expertise, or balancing presence and
absence data) which can produce more accurate models that match the performance of those
based on more structured survey data, though treatments typically do not have a consistent effect
across the species modeled (Robinson et al., 2018; Steen et al., 2019, 2021) and will not address
a complete lack of occurrence data in a region. Additionally, studies comparing filtered eBird
observations to professional data have demonstrated that each dataset contributes unique biases
and environmental conditions (Coxen et al., 2017; Robinson et al., 2020; Tanner et al., 2020).
Modeling approaches that combine multiple datasets have thus become increasingly common;
these range from data pooling to more formal integration techniques that can account for
sampling issues (Fletcher et al., 2019).

This research focused on the Hawaiian Islands, a biodiversity hotspot with both
exceptionally high levels of endemism and ongoing habitat loss (Myers et al., 2000). Native
plant species have become outnumbered by non-native species, some of which are highly
invasive and pose significant threats to native ecosystems (Cuddihy & Stone, 1990). Native
Hawaiian plants, having evolved in isolation, without herbivores, and largely without broad-scale
disturbances like wildfire, are highly vulnerable to habitat loss to and competition with invasive

species (Carlquist, 1974; Gillespie et al., 2008; Richardson & Pysek, 2006). The study has two
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primary components: a citizen science sampling bias analysis of all vascular plant observations
in Hawaii to provide context for non-native species observations, and a species-specific
comparison of citizen and professional science data for four example invasive species. Citizen
science data were acquired from the global, multi-taxa citizen science platform iNaturalist

(www.iNaturalist.org), which we selected for its potential to support monitoring of a diversity of

regions and taxonomic groups.

We aimed to address three main questions. First, how do sampling biases in iNaturalist
observations of native versus non-native plant species differ in Hawaii? Given that previous
studies have found citizen science bias toward rare or threatened species (Matteson et al., 2012;
Tulloch et al., 2013), we investigated whether non-native species are well-represented in
Hawaii’s iNaturalist plant data, then compared environmental sampling bias (with respect to site
accessibility, status, and disturbance) in native versus non-native plant observations. Second,
how do environmental sampling biases in iNaturalist compare to patterns in professional surveys
of invasive plant species? We selected four species that were well-sampled by both iNaturalist
citizen scientists and professional regional agencies for this comparison. Third, how do data
source, sampling biases, and data filtering treatments influence HSM predictions for the selected
study species? We examined relationships between single-source models (i.e. iNaturalist- versus
agency-based HSMs); single-source models and combined models (i.e. an HSM using data from
both sources); and unfiltered and filtered iNaturalist models.

3.2. Methods
3.2.1. Species data
iNaturalist has a flexible, low-commitment structure with a participant base of over 4

million observers worldwide. Over 200,000 iNaturalist observations have been recorded in
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Hawaii since the project launched in 2008. We acquired iNaturalist research-grade observations
for vascular plant species on the four largest Hawaiian Islands (Hawai‘i, Maui, O‘ahu, and
Kaua‘i) through the Global Biodiversity Information Facility (GBIF.org, 2020). Research-grade
observations are dated, georeferenced, and photographed sightings of non-captive organisms
whose identification is agreed upon by at least two-thirds of the iNaturalist community.
Kaho‘olawe, Lana‘i, Moloka‘i, and Ni‘ihau were excluded from this analysis due to restricted
access to and limited data on the islands (less than 0.7% of iNaturalist plant records occurred on
these four islands).

There are a number of regional agencies that work to control and prevent establishment
of invasive species in Hawaii. We used invasive plant observations shared by the Big Island
Invasive Species Committee, Consortium of Pacific Herbarium, Kaua‘i Invasive Species
Committee, Ko‘olau Mountains Watershed Partnership, O‘ahu Army Natural Resource Program,
O‘ahu Invasive Species Committee, and Pacific Island Ecosystems Research Center. To compare
iNaturalist and agency observations, we selected invasive species with relatively large sample
sizes (>100 observations) in both datasets. Four species met this threshold (Fig. 3.1; for overlap
in environmental space, see Appendix B, Figure B1). They included long-established species that
are close to reaching equilibrium in their Hawaiian range (\Vorsino et al., 2014): Hedychium
gardnerianum Sheph. ex Ker Gawl. [established 1940], an understory species common in
rainforests between 0-1,700 m (Minden et al., 2010); Psidium cattleianum Sabine [est. 1825], a
tree found primarily in rainforests between 150-1,300 m (Smith, 1985); and the shrubs Lantana
camara L. [est. 1858] and Leucaena leucocephala (Lam.) de Wit [est. 1837], which colonize
disturbed, dry and mesic lowland habitats up to 1,000 m and 700 m, respectively (Smith, 1985;

Wagner et al., 1999).
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Figure 3.1

Distribution of iNaturalist and professional agency observations for Hedychium gardnerianum, Lantana
camara, Leucaena leucocephala, and Psidium cattleianum.

3.2.2. Sampling bias

In order to evaluate the potential of iNaturalist as a source of invasive species
observations, we compared the establishment means—i.e. the process by which a species came
to occur in Hawaii (Groom et al., 2019)—of all vascular plants observed in iNaturalist to the
species composition of Hawaii overall. Species were divided into three native and three non-
native classes (Table 3.1). Endemic, indigenous, and naturalized species occurring on Hawaii’s
four largest islands were identified from vascular plant checklists (Imada, 2012, 2019). As there
is currently no regulatory list of invasive species in Hawaii, invasive and potentially invasive
species lists were compiled using the Hawaii-Pacific Weed Risk Assessment (Daehler et al.,
2004) and Hawaii’s Most Invasive Horticultural Plants list (Hawaii State Alien Species
Coordinator, 2017).

We investigated three environmental biases that are likely to influence citizen science
sampling, including accessibility bias (clustering near roads and trails), status bias (preference

for sites in or near areas of conservation interest), and disturbance bias (disproportionate
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sampling in more heavily disturbed sites and vegetation communities, where there are likely to
be more opportunities for recreation). Accessibility was defined by road and trail density
(kilometers per square kilometer), calculated using 2019 TIGER/Line Shapefiles for all roads
(prepared by the U.S. Census Bureau 2019) and the Na Ala Hele Trail system (State Department
of Land and Natural Resources, DOFAW, updated 2018). Status bias was derived from distance
to open and restricted access areas in the U.S. Geological Survey Protected Areas Database
(USGS GAP, 2018), an inventory of lands set aside for the preservation of biodiversity,
recreation, resource extraction, and other management purposes. To avoid confusion, we refer to
these lands as “open space,” as designation as “protected” does not necessarily signify that the
area is currently managed to mitigate impacts of invasive species or other threats. Vegetation
disturbance was determined using the Habitat Status classes defined in the Carbon Assessment of
Hawaii: heavily disturbed (including agricultural and developed lands), mixed native-alien
dominated plant communities (defined as non-native dominated in this paper), native dominated
plant communities, and bare or sparsely vegetated (<5% plant cover) (Jacobi et al., 2017).

A 250-meter resolution grid was used to partition the study area into four classes for each
bias type (Table 3.2). For the accessibility and status biases, class | was comprised of grid cells
with a value of 0, and classes I1-1V were determined by splitting the remaining cells into terciles.
For the disturbance bias classes, we resampled the Habitat Status layer to 250-meter resolution
based on the majority class in each 250-meter grid cell. Clustering of 1) all iNaturalist plant
records and 2) the iNaturalist and 3) professional agency records for the four study species
within these classes was quantified using a bias index as in Kadmon, Farber, & Danin (2004),
which compares the observed distribution of records in space to the expected distribution as:

ng — palN
vV pPa(1 —pq)N
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where nq is the number of species records per class d, pq is the probability that a record is located
in class d given its area, and N is the total number of species records. The index assumes that the
probability of a species being observed in a particular class is proportional to the area that the
class occupies. Values are distributed like a standard normal variable (Z) and statistically
significant (o = 0.05) for values greater than 1.64.

Table 3.1
Definitions of native and non-native species status classes.

Class Definition

Native Naturally occurring in Hawaii without human assistance
Endemic Native to and occurring only in Hawaii
Endemic-listed State and Federally Listed Endangered and Threatened endemic species
Indigenous Native to Hawaii and occurring elsewhere

Non-native Introduced to Hawaii by humans (intentional or accidental)
Naturalized Introduced and now established; not currently considered invasive
Invasive-potential Introduced and likely to become invasive
Invasive Introduced and documented to cause significant ecological or economic harm;

includes species on the Most Invasive Horticultural Plants list

Table 3.2
Site sampling bias classes, their definitions, and the percentage of the study area that each occupies.

Accessibility Bias Status Bias Disturbance Bias
Class Roao_l/trail , % Area Distance to % Area Disturbar_u_:e to plant % Area
density (km/km*?) open space (m) communities
I 0 79.0% 0 435%  Heavily disturbed 16.9%
I <63 7.0% <579.1 18.8%  Non-native dominated 34.1%
i <148 7.0% <1729.5 18.8%  Native dominated 31.8%
v >148 7.0% >1729.5 18.8%  Bare ground 17.2%

3.2.3. Habitat suitability modeling

Model parameters

HSMs were built using observations from iNaturalist and professional agencies with the

maxent function in the R package dismo v 1.3-3 (Hijmans et al., 2020). Maxent is a popular

presence/background correlative modeling method (Guillera-Arroita et al., 2015) that contrasts
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true species presences with pseudo-absences generated from background data. Restricted
background grids can be used to specify areas that were more likely to be surveyed, so that
pseudo-absences will theoretically have the same sampling biases as the presences (Merow et al.,
2013; Phillips et al., 2009; Syfert et al., 2013). For models based on a single data source, we
created restricted backgrounds that included grid cells within 500 meters of a) any research-
grade iNaturalist vascular plant species observation or b) any agency record. These two grids
were merged to create a restricted background for the combined HSM series. The dismo function
randomPoints was used to select 10,000 pseudo-absence points from the iNaturalist and
combined background grids and 6,000 points from the agency grid (maximum number that could
be extracted). All models used logistic output, a regularization multiplier of 2.0, and default
settings for remaining parameters.

Models used 250-meter resolution environmental predictors that included the islands of
Hawai‘i, Maui, O‘ahu, and Kaua‘i. We initially considered 28 predictors for modeling.
Topographic predictors included slope variables (mean, minimum, maximum, range), elevation,
and aspect derived from 10-meter resolution digital elevation models (U.S. Geological Survey
3D Elevation Program) and resampled to 250-meters. Nineteen bioclimatic variables were
calculated from 250-meter resolution mean monthly temperature and rainfall grids (Giambelluca
etal., 2013, 2014). Two normalized difference vegetation index (NDVI) variables, dry-season
NDVI (JJA 2020) and NDVI amplitude (the difference between the maximum and minimum
NDVI1 values per pixel in 2020) were derived from the global 250-meter MODIS/Terra product
MOD13Q1 v006. NDVI is often used as a proxy of photosynthetic activity, vegetation density,
or productivity (Pettorelli, 2013). Finally, a categorical soil great group variable was created by

converting survey data from the U.S. Department of Agriculture, Natural Resources
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Conservation Service (2020) to raster based on maximum combined area. Correlation analysis
was performed to identify and remove highly collinear continuous variables (|r|> 0.7), which
narrowed the final set of predictors down to ten: elevation, mean slope, aspect, isothermality,
temperature annual range, precipitation seasonality, precipitation of the warmest quarter, dry-
season NDVI, NDVI amplitude, and soil great group.

Model series and filtering treatments

To examine the effect of data source and spatial filtering on estimates of suitable habitat,
we produced seven models for each of the four invasive study species (Table 3.3). All models
used the Maxent default setting for removing duplicate observations that occur within a single
grid cell (determined by the 250-meter resolution of the environmental layers). iNaturalist
unfiltered and agency unfiltered HSMs used all available records from their respective sources,
while the combined unfiltered HSM used all available records for a given species from both
sources.

We applied four filtering treatments to the iNaturalist data, one targeting clustering in
geographic space and three targeting the environmental biases described previously.
Subsampling for the iNaturalist thinned HSM was similar in concept to the Maxent removal of
duplicate records, but further reduced spatial clustering by selecting iNaturalist records at a
coarser resolution than that of the predictor layers (one record per 1-kilometer cell). For the
iNaturalist accessibility-stratified, iNaturalist status-stratified, and iNaturalist disturbance-
stratified HSMs, we created environmentally stratified subsamples proportionate to the area of
each site class. These stratified treatments aimed to remove potentially redundant records in
oversampled site classes (Varela et al., 2014). Pseudo-absence points for filtered models were

drawn from the iNaturalist background grid.
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Table 3.3

Total observations available from each data source (shaded columns) and the number of records used in
each habitat suitability model (HSM) series. iNat = iNaturalist unfiltered HSM, iNat_1km = iNaturalist
thinned HSM, iNat_access = iNaturalist accessibility-stratified HSM, iNat_status = iNaturalist status-
stratified HSM, iNat_disturb = iNaturalist disturbance-stratified HSM, Agency = agency HSM, Combined
= combined HSM.

Total . . . . Total
. . . . iNat_ iNat_ iNat_ iNat_ .
Species INaturalist iNat 9 ™ access status disturb  29NCY  Agency  Combined
records records
Hedychium 152 110 9% 47 57 92 215 126 235
gardnerianum
Lantana 165 131 124 80 109 76 230 154 282
camara
Leucaena 206 246 228 112 149 31 497 104 345
leucocephala
Psidium 167 129 116 64 57 76 937 527 656
cattleianum
Comparing predictions

The objective of model comparison and evaluation was to observe the effects of data
source and filtering treatment on predictions, rather than to identify the “best” or most accurate
model. We were particularly interested in observing similarity between single-source models (i.e.
iNaturalist-only versus agency-only, where high similarity would suggest that observations
represented similar environments), single-source and combined models (if the combined HSM
were more similar to either the iNaturalist-only or agency-only HSM, that could indicate that that
source contained more comprehensive environmental information), and unfiltered and filtered
iNaturalist models (high similarity between these models would suggest limited ability of this
practice to reduce sampling bias).

We used Schoener’s D, an index that measures overlap between potential species
distributions with values ranging from 0 (no overlap) to 1 (complete overlap) (Warren et al.,
2008), to estimate similarity among the HSM predictions. It has been shown to outperform other
similarity metrics such as Warren’s | (Brown & Carnaval, 2019; Rédder & Engler, 2011).
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Pairwise Schoener’s D values were calculated between full models and within each site sampling
bias class using the R package ENMeval (Muscarella et al., 2014).

Models were also compared using threshold-dependent measures and predictor
contributions. The maximum sum of sensitivity and specificity threshold, recommended because
it minimizes omission and commission errors and its selection is less affected by the use of
pseudo-absences (Liu et al., 2005, 2013, 2016), was used to calculate total suitable area predicted
by each HSM series (as a percentage of study area). In order to observe whether bias in the
species records would lead to similar biases in model predictions, we also calculated the
distribution of suitable cells among site classes. Finally, Maxent tracks the contribution of each
environmental predictor to model gain and reports their relative contributions as percentage
(Phillips, 2017). We used the predictors’ percent contribution to each HSM as another indicator
of how independent sets of observations influenced model training. The maximum sum of
sensitivity and specificity threshold was then used to identify the range of suitable values for top
contributing predictors.

3.3. Results
3.3.1. Native status sampling bias

We obtained 13,186 iNaturalist research-grade records for 253 vascular plant species that
were collected by 1,506 unique users. Though non-native species represent just 54.9% (n =
1620) of Hawaiian plant taxa, they represented 74.7% (n = 189) of species observed by
iNaturalist observers (Fig. 3.2). Endemic species, particularly those that are State or Federally
listed, were under-sampled in terms of both number of taxa and total records, and just three
species accounted for 59.0% of all endemic plant records: Metrosideros polymorpha (664

records), Argyroxiphium sandwicense (198), and Vaccinium reticulatum (186). Among non-
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native taxa, iNaturalist observers were more likely to record Polynesian introductions and
species classified as invasive (Fig. 3.2). Invasive plant species represent only 7.9% of all

Hawaiian plants, but 20.6% of the observed species and 24.7% of total iNaturalist records.
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Figure 3.2

Endemic native, indigenous native, and non-native species as a proportion of all plant species occurring
on Hawaii’s four largest islands, and their representation in iNaturalist research-grade observations.
Endemic - listed refers to species listed as Threatened or Endangered at the state or federal level. Non-
native species are further classified by invasiveness. (P) = Polynesian introduction.

3.3.2. Site sampling bias

iNaturalist plant observations were generally biased toward road/trail accessible
locations, sites in or near designated open spaces, and sites with heavily disturbed or non-native
dominated vegetation. Bias toward areas with road or trail access (classes 11-1V) was particularly
strong among non-native species (Fig. 3.3a). These sites represented 21.0% of the study area, but
contained 57.9% of iNaturalist records. Sites further from open space (111-1V) were significantly
underrepresented for all plant species (Fig. 3.3b). Overrepresentation of open space was
particularly strong for endemic species, for which 59.4% of records occurred in status class I.

Record distribution among disturbance classes (Fig. 3.3c) was rather unsurprising: all species
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were underrepresented in the bare or sparsely vegetated class (V) and, with the exception of
endemic species, biased toward the heavily disturbed and non-native classes (I-11). Endemic
species were most intensely sampled in the native class (I11).

iNaturalist records for the four study species consistently demonstrated the same site
sampling biases as the overall dataset: significant underrepresentation of road/trail-free cells
(Fig. 3.4a), cells furthest away from open space (Fig. 3.4b), and the native dominated class (with
the exception of H. gardnerianum) (Fig. 3.4c). Records collected by agencies showed similar
status bias, but different patterns for accessibility and disturbance. Agency data for H.
gardnerianum and P. cattleianum exhibited a sampling pattern opposite those of iNaturalist:
overrepresentation of the road/trail-free class and underrepresentation of more accessible sites.
The majority of L. camara and L. leucocephala agency records also came from the road/trail-free
class, though it was not significantly oversampled. Among disturbance classes, agency sampling
was more strongly skewed toward the native dominated class (I11) for all four species, with
significant undersampling in heavily disturbed sites. However, L. camara and L. leucocephala

agency sampling was similar to iNaturalist in the non-native dominated class (l1).
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Figure 3.3

Distribution of iNaturalist records by (a) accessibility (class | = no roads), (b) status (I = within
designated open space), and (c) disturbance. Gray bars indicate % area represented by each class. +/-
indicate significant over/underrepresentation.
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(a) Accessibility bias (class | = no roads or trails), (b) status bias (I = within designated open space), and
(c) disturbance bias in iNaturalist vs. management agency records for four invasive species. +/- indicate
significant over/underrepresentation.

3.3.3. Model comparison

Model similarity

Overlap was lowest between iNaturalist- and agency-only models (i.e. single-source

HSMs) (D = 0.42-0.74) (Fig. 3.5), with relatively lower D scores within site classes depending
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on the species (Appendix B, Fig. B2). For H. gardnerianum, L. camara, and P. cattleianum,
overlap between the single-source HSMs was lowest in the bare ground class. For L. camara and
L. leucocephala, there were greater differences between the single-source HSMs within the

native-dominated class and in sites with low to zero road/trail density.
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Figure 3.5

Similarity or overlap (pairwise Schoener’s D index) between habitat suitability models (HSMs), where 0
signifies no overlap and 1 is complete overlap. inat = iNaturalist unfiltered HSM, inat_1km = iNaturalist
thinned HSM, inat_access = iNaturalist accessibility-stratified HSM, inat_status = iNaturalist status-
stratified HSM, inat_disturb = iNaturalist disturbance-stratified HSM, agency = agency HSM, combined
= combined HSM.

Similarity between single-source and combined models also varied by species. The L.
leucocephala combined HSM had higher overlap with the iNaturalist model across all site
classes, while the P. cattleianum combined HSM was more similar to the agency HSM,

particularly in open spaces and road-free, native-dominated, and bare ground sites (Appendix B,
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Fig. B3). Single-source HSMs for both H. gardnerianum and L. camara had similar, moderate
overlap with their respective combined HSMs (Fig. 3.5).

The highest overlap occurred between unfiltered and thinned iNaturalist models (D >
0.89), with high D scores observed across all site classes (Appendix B, Fig. B4). Moderate to
high overlap was also observed between the unfiltered and filtered models, with D ranging from
0.59 to 0.94. Within site classes, the filtering treatments did not consistently reduce similarity
between unfiltered and filtered/thinned iNaturalist models.

Suitable area

Predictions of percent suitable area varied among HSMs by as little as 10.4 percentage
points (H. gardnerianum) and as much as 29.2 percentage points (P. cattleianum) (Fig. 3.6).
Neither the iNaturalist unfiltered nor agency models consistently predicted higher estimates of
suitable area, and the two datasets produced different estimates of suitable area across the four
islands (Appendix B, Fig. B5). The distribution of suitable area among disturbance classes was
similar to that of the iNaturalist and agency observations, most notably for P. cattleianum and L.
leucocephala. However, suitable area was similarly distributed among accessibility and status
classes (with the exception of P. cattleianum) regardless of sampling patterns in the

observations.
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Figure 3.6

Predicted suitable area (as a percentage of the study area) for each HSM series.
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The iNaturalist thinning treatment produced slight increases in predictions of suitable
area (2.2-7.4 percentage points), but the effect of stratified filtering was less consistent across
species. Though total estimates differed between unfiltered and filtered iNaturalist HSMs, the
distribution of suitable area among site classes was often similar (Fig. 3.7). For example, though
the status-stratified HSM increased total estimates of suitable area for species that had been
significantly oversampled in open spaces (status class 1), there was no significant difference in
how that suitable area was distributed. There were a few exceptions in which stratified
iNaturalist HSMs increased predicted suitable area in undersampled classes, such as the
disturbance-stratified HSMs for L. camara, L. leucocephala, and P. cattleianum (Fig. 3.4c),
which increased estimates of suitable area in native-dominated sites.

Environmental predictors

Environmental predictors made different relative percent contributions to models of the
same species (Appendix B, Fig. B6). Climate variables (rainfall of the warmest quarter and
temperature annual range) made higher contributions to the L. camara and P. cattleianum agency
and combined models, and were less important in iNaturalist-based HSMs for these species.
Models of H. gardnerianum and L. leucocephala shared some top predictors (elevation and soil
great group), but there were still differences in the percent contribution of these variables.

Predictor values classified as suitable varied among models of the same species
(Appendix B, Fig. B7). For example, the L. camara agency HSM predicted a wider range of
suitable elevation values, but a narrower range of rainfall values than the iNaturalist HSM.
Filtering treatments had a similar effect that varied by species. Accessibility-stratified HSMs
produced narrower ranges of suitable elevation values for H. gardnerianum and L. leucocephala,

but wider ranges for L. camara and P. cattleianum.
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Distribution of each HSM’s suitable cells by site accessibility, status, and disturbance. +/- indicate
significant over/underrepresentation.

3.4. Discussion
3.4.1. iNaturalist bias toward non-native species
Observer preference for rare species has been observed in studies of other taxonomic

groups. Citizen scientists have been more motivated to survey areas where threatened bird
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species are known to occur (Tulloch et al., 2013), and tend to underreport more common
butterfly species (Matteson et al., 2012). However, we found that non-native species represented
the majority of iNaturalist plant species and observations, while endemic Hawaiian plants were
underrepresented. Though a high proportion of Hawaiian plants are threatened or endangered,
only four species were recorded (Fig. 3.2).

This is perhaps unsurprising in Hawaii, where non-native species currently dominate
native Hawaiian flora both in terms of species richness and land area (with the exception of the
Big Island) (Hughes et al., 2017). Frequent encounters with rare, threatened, or endangered
plants would be unexpected given the more restricted ranges and smaller population sizes of
native island species in general (Paulay, 1994). Furthermore, species-level plant identification
can be difficult (Roman et al., 2017), and citizen scientists may be more likely to record larger
and more widely distributed plant species that are easier to identify (Boakes et al., 2016). For
iNaturalist in Hawaii, the most-recorded plants were ‘Ghi‘a (Metrosideros polymorpha), an
abundant endemic tree; beach naupaka (Scaevola sericea), a common coastal native also used in
commercial and residential plantings; and noni (Morinda citrifolia), a Polynesian introduction
with numerous cultural uses. Each of these woody species would be familiar to local observers,
and, for plants, this familiarity may be as motivating as rarity for other taxa (Boakes et al., 2016).

Species considered invasive or potentially invasive were recorded at a higher rate than
other non-native plants. They represented 12.3% of all plant species in Hawaii, but 26.9% of the
species recorded by iNaturalists and 29.8% of the observations. This could indicate that invasive
species are more common than native species in areas surveyed by iNaturalists, but a fuller
analysis of native vs. non-native species bias would need to account for prevalence, which this

study did not do. It may also suggest that iNaturalist observers are more motivated or able to
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record these taxa. While invasive species have received a fair amount of media coverage in
Hawaii, a 2003 survey showed that the general public is relatively unconcerned about invasive
plants (Daehler, 2008). Residents may also have positive associations with certain species. Kukui
(Aleurites moluccana), for example, is the Hawaiian state tree and a Polynesian introduction with
invasive potential (Daehler et al., 2004). Other invasive trees have gained emotional or cultural
value as well, including P. cattleianum (Warner & Kinslow, 2013) and the early 20th century
introduction Falcataria moluccana (Niemiec et al., 2017). Whatever the motivation, the relative
abundance of non-native plant records on iNaturalist is encouraging for invasive species
management purposes.
3.4.2. Spatial sampling bias

The iNaturalist data showed significant sampling biases toward open space and cells with
higher road/trail density, which is consistent with other citizen science datasets (Botts et al.,
2011; Mair & Ruete, 2016; Tulloch et al., 2013). Observations were also skewed toward heavily
disturbed and non-native dominated sites. These sampling patterns were not unexpected,
especially for non-native plant species, and it is possible that they reflect the species actual
distribution or abundance rather than observation bias. Roads often serve as a dispersal pathway
(Pauchard et al., 2009) and source of ignition for fire-prone invasive species (Ellsworth et al.,
2014), and L. camara presence has been shown to be positively associated with roadside
disturbance (August-Schmidt et al., 2015).

Yet, if that were the case, one might expect the independent records from the professional
agencies to corroborate the iNaturalist data. But accessibility sampling patterns in the agency
records were either less pronounced than (L. camara, L. leucocephala) or the inverse (H.

gardnerianum, P. cattleianum) of those in iNaturalist. Both datasets were similarly skewed
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toward open space and adjacent sites, but differed in the proportion of records observed in each
status class, particularly for L. leucocephala and H. gardnerianum (Fig. 3.4b). iNaturalists made
far fewer observations in native-dominated sites compared to agencies, which in turn tended to
undersample heavily disturbed sites (Fig. 3.4c). This disagreement indicates some degree of bias
in at least one of the two sources, and that each dataset represents distinct environments.

These biases could affect HSM accuracy if the oversampled classes do not include a
range of environmental conditions occupied by the species. This appeared to be the case for
disturbance bias, as oversampling in the heavily disturbed, non-native dominated, and native
dominated classes was associated with disagreement between single-source models in how
suitable area was distributed. But we did not find a consistent relationship between accessibility
and status sampling bias patterns and distribution of suitable habitat. Rather, models for H.
gardnerianum, L. camara, and L. leucocephala generally agreed with each other regardless of
the sampling bias in the training records. This suggests that open space and road/trail networks in
Hawaii encompass a range of environmental gradients relevant to the study species, and thus
observer preference for these sites does not necessarily restrict the utility of those observations
(Kadmon et al., 2004; McCarthy et al., 2012). However, it may be important to investigate
filtering treatments and/or complementary datasets when sampling data is biased with respect to
vegetation disturbance.

3.4.3. Effect of filtering treatments on iNaturalist HSMs

The thinning treatment produced HSMs that were highly similar to unfiltered iNaturalist
HSMs, and had limited impact on predictions of suitable area and variable contributions. Other
papers have observed that similar thinning treatments can either improve model performance by

reducing overfitting (Boria et al., 2014; Fourcade et al., 2014) or decrease performance due to
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the random approach as well as loss of information (Steen et al., 2021; Varela et al., 2014). In
this study, it is possible that thinning to a 1-kilometer resolution was not coarse enough to impact
the models beyond small increases in estimated suitable area. Relatively few records were
removed from training at this resolution, especially compared to the other filtering treatments.

Targeting clusters in environmental space, rather than thinning records geographically, is
believed to have a more positive effect on model performance, but smaller datasets may also
produce less consistent results (Varela et al., 2014). The effects of stratified filtering treatments
in this study varied by bias type, with the most notable impact observed for disturbance bias.
Disturbance-stratified HSMs increased relative predictions of suitable area in the native-
dominated class for the three species that were undersampled in that class. The accessibility-
stratified HSM of H. gardnerianum also produced a small increase in the proportion of suitable
area in the undersampled road/trail-free class. These examples imply that stratified filtering can
influence target biases in model predictions and increase habitat estimates in undersampled
environments, but this outcome was not consistent. For the most part, filtered HSMs maintained
similar distributions of suitable area as well as moderate to high overlap with the unfiltered
iNaturalist HSM. This could indicate that the stratified treatments were not effective a given
species, or, in conjunction with our previously discussed results, that certain sampling biases do
not correspond to biases in more meaningful environmental variables.

Reduced sample sizes due to filtering were often associated with greater divergence from
the unfiltered model. While a smaller, evenly-sampled dataset has been found to be more
effective than a larger, biased one (Bean et al., 2012; Varela et al., 2014), sample size does have
a significant effect on HSM performance (Gabor et al., 2020), and thus small samples may be

further negatively impacted by environmental filtering. We observed a strong negative
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correlation between percent decrease in sample size and overlap with the unfiltered HSM, i.e. the
more records were filtered out, the less similar the iNaturalist models became. It is thus difficult

to determine whether the departures from the unfiltered HSMs are due to targeted filtering or the
loss of training data. Future work should control for sample size (e.g. as in Boria et al., 2014), to
more clearly distinguish between the effects of filtering, data source, and information loss.

3.4.4. Complementary monitoring

Though often fewer in number, iNaturalist observations covered a similarly broad range
of conditions and were a valuable supplement to the relatively more structured, professional data
for the example invasive species in this study. iNaturalist observers and professional agencies
also appeared to capture unique environmental conditions, as demonstrated by the suitable
predictor values and moderate overlap between single-source HSMs. Neither source appeared to
consistently provide more comprehensive information or have greater similarity to the combined
HSM, despite the higher number of agency records for three of the species (Table 3.3). When
agency and iNaturalist sample sizes differed greatly, it is possible that the combined HSM was
simply more similar to the source that contributed more training records. For example, there
were four times as many agency observations for P. cattleianum. However, iNaturalists sampled
P. cattleianum more evenly across the islands and contributed to greater predictions of suitable
area on O‘ahu and Kaua‘i in the combined HSM (Appendix B, Fig. B5).

Previous studies have noted that well-designed citizen science programs can collect data
comparable to that of professional scientists (Chandler et al., 2017), and that combining
structured survey data with eBird records improves model accuracy (Robinson et al., 2020). We
found that incidental iNaturalist observations are useful in filling the gaps in professional survey

data, particularly with respect to vegetation disturbance. Citizen science bias toward disturbed
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and non-native dominated sites and professional bias toward native-dominated sites were
reproduced in model predictions, which, in addition to highlighting the limitations of correlative
HSMs in approximating species niches, has practical implications for HSMs as a management
tool. Underestimates of invasive species distributions could limit land managers’ ability to
identify vulnerable areas and prioritize monitoring efforts. Citizen science data could be critical
in monitoring areas that have not been officially surveyed.

Conversely, remote areas of the Hawaii region were poorly sampled in iNaturalist.
Kaho‘olawe, Lana‘i, Moloka‘i, and Ni‘ihau were excluded from this analysis, but the extremely
low number of iNaturalist plant observations on these smaller, sparsely populated islands
demonstrates an obvious limitation of low-structure citizen science data, which is that sampling
is largely restricted to public access areas. Management agencies seeking to utilize citizen
science as a complementary data source may use this known bias to prioritize their own survey
resources. Additionally, when citizen science observations are the only monitoring data available
for a region, care should be taken when interpreting the significance of unsampled space.

Though we did not seek to identify the “best” model for each species, it is evident that
iNaturalist and professional observations, on their own, produced differing estimates of suitable
habitat (Appendix B, Fig. B5). To take advantage of biased yet complementary survey efforts,
we simply combined or ‘pooled’ all available data. However, more formal integrated modeling
approaches may be able to better address sampling biases while more fully preserving the
specific strengths of each dataset (Dorazio, 2014; Fletcher et al., 2019; Isaac et al., 2020; Miller
et al., 2019; Pacifici et al., 2017). Utilizing additional attributes of the iNaturalist data could also
improve the modeling process. Though absence records are lacking in iNaturalist, observer

records of non-target species could be used to infer absence and select more meaningful pseudo-
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absences (Bradter et al., 2018; Milanesi et al., 2020). This observer data is readily accessible in
iNaturalist and could improve model accuracy.
3.5. Conclusion

iNaturalist observers have made thousands of plant observations in Hawaii and
preferentially record non-native and invasive species. These observations are not free of
sampling biases that affect other citizen science databases; records were more likely to be made
in open spaces and relatively more accessible, disturbed areas. However, occurrence data from
regional agencies exhibited similar or inverse sampling patterns. When these datasets were used
to build HSMs, each data source appeared to sample distinct environments, yet neither
consistently produced more comprehensive predictions. Low-structure citizen science programs
like iNaturalist thus provide a valuable source of species occurrence data, however opportunistic
or incidental, that can complement geographically limited surveys of expert scientists. Filtering
may increase estimates of suitable habitat in undersampled sites, but may not be necessary if
features of interest, like the road/trail network and open spaces examined here, are inclusive of a
range of environmental conditions important to the species in question. We recommend
examining and including all available data regardless of suspected anthropogenic sampling

biases.
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Chapter 4. Landsat NDVI time series capture greening trends in Hawaiian dry forests

Supplementary materials for this chapter are provided in Appendix C.

Abstract

Tropical dry forests are highly threatened and fragmented in the Hawaiian Islands, and
restoration requires intensive, active management and long-term monitoring. Remote sensing
imagery has the potential to improve the consistency and longevity of ecosystem monitoring. We
used a 1999-2022 Landsat time series of the Normalized Difference Vegetation Index (NDVI) to
examine whether site-level trends in Hawaiian dry forest reflect the browning patterns observed
at coarser spatial scales in the region. NDVI trends in active dry forest restoration sites were
examined in order to test the utility of Landsat-resolution imagery in restoration monitoring. As
dry forest is strongly influenced by rainfall and vegetation productivity has been previously
linked to drying trends in Hawaii, we also compared NDV1 trends to precipitation anomalies
calculated from the Rainfall Atlas of Hawaii. Trends in median NDVI and robust coefficient of
variation of NDVI were estimated in Hawaii’s dry and wet seasons, and breakpoint analysis was
used to detect trend departures. We found that median NDVI increased significantly in native
and non-native dry forest sites. Greening occurred in spite of declines in rainfall and a positive
correlation between median NDVI and precipitation anomalies, but was less common in non-
native grasslands. Two well-established restoration sites, Auwahi and Makauwabhi, have
experienced significant increases in median NDVI, and seasonal variation in NDVI at
Makauwahi has significantly declined. Breakpoints in NDVI trends coincided with the start of

restoration at Makauwahi. These results demonstrate that, given adequate spatial scale and
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establishment time, freely accessible, global Landsat imagery has the potential to enhance
monitoring in dry forest restoration sites. They also highlight the need for site-level remote

sensing imagery for more accurate estimation of vegetation trends in heterogeneous landscapes.

4.1. Introduction

Tropical dry forests are highly threatened ecosystems that continue to experience high
rates of cover loss worldwide (Hansen et al., 2013; Murphy & Lugo, 1986; Sanchez-Azofeifa et
al., 2005), yet they are under-protected and under-studied compared to temperate and tropical
rainforests (Hoekstra et al., 2004; Quesada et al., 2009; Sunderland et al., 2015). In the Hawaiian
Islands, over 25% of endangered plants are dry forest or dry scrub species (Cabin et al., 2000),
and it is estimated that 90% of the region’s original dry forest has been lost since the arrival of
humans (Falk et al., 1996). Ongoing sources of disturbance include fire, feral ungulate activity,
and non-native plant dispersal (Stone et al., 1992). Invasive pasture grasses have significantly
altered Hawaii’s natural fire regime, further reducing the cover of native species that are not
adapted to increased fire intensity and frequency (Ellsworth et al., 2014). This has resulted in a
patchwork of highly flammable grasslands and small, isolated dry forest fragments that are
highly likely to experience further fragmentation (Balzotti et al., 2020; Cabin et al., 2000; Friday
etal., 2015).

Advancements in the accessibility and processing of remote sensing data can be utilized
to expand ecosystem monitoring over greater spatial and temporal scales (Secades et al., 2014).
Satellite-derived vegetation indices, such as the Normalized Difference Vegetation Index
(NDVI), have long been used to evaluate vegetation health and change (Xue & Su, 2017). Global
and large-scale regional studies have used time series of NDVI and other indices to demonstrate

the varying, often region-specific responses of vegetation greenness to long-term climatic trends,
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including increases driven by warming and COz fertilization (Xu et al., 2020; Zhu et al., 2016)
and decreases due to drought or declines in rainfall (Hilker et al., 2014; Zhou et al., 2014). The
Hawaiian Islands have experienced significant warming and drying trends during the last century
(Frazier & Giambelluca, 2017; McKenzie et al., 2019), and two recent remote sensing studies
have found associations between drier climate conditions and declines in forest productivity.
Barbosa & Asner (2016) showed that drying has driven a decrease in forest greenness (using
Enhanced Vegetation Index anomalies) in mesic to wet zones on the island of Hawai‘i from 2002
to 2016, with particularly strong declines in photosynthetic activity and canopy volume on the
drier, leeward side. Madson et al. (2022) examined monthly NDVI time series and found
significant browning in both native and non-native vegetation across the archipelago from 1984
to 2019, and evidence of higher sensitivity to drought in leeward areas (Madson et al. 2022).
Remote sensing may also be used to improve the longevity and efficiency of
conventional in situ restoration monitoring (de Almeida et al., 2020; Friday et al., 2015; Hausner
et al., 2018; Reis et al., 2019). Studies in tidal marsh (Tuxen et al., 2008), grassland (Zhang et al.,
2012), lagoon (Kim et al., 2015), and riparian (Sun et al., 2011) ecosystems have shown that
NDVI can be used to monitor various post-restoration changes in vegetation cover and plant
productivity. This particular application of remote sensing is an important area of research in
Hawaiian dry forest management (Cordell et al., 2017; Friday et al., 2015). In Hawaii, dry forest
conservation requires intensive restoration—e.g. ungulate exclusion, invasive grass control,
supplemental irrigation, native species reintroduction and outplanting, etc. (Ammondt et al.,
2013; Cabin et al., 2002; Ellsworth et al., 2015)—as well as sufficient monitoring (Holl, 2017,
Stanturf et al., 2014). Regular evaluation at intermediate intervals provides data that can guide

potential remediation and adaptive management (Dey & Schweitzer, 2014; Suding, 2011; Tuxen
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et al., 2008), while overall longer monitoring periods are needed to avoid misleading, short-term
results (Herrick et al., 2006; Menges, 2008). Certain indicators of recovery, such as self-
recruitment by introduced native plant material (Drayton & Primack, 2012), may progress at
slower rates that cannot be adequately captured in shorter monitoring time frames, and others
may not follow a linear trajectory (Matthews et al., 2009). The active restoration literature
indicates that monitoring is generally insufficient, due in part to perceived costliness, unclear
objectives or criteria for success, and limited time, resources, or expertise (Dey & Schweitzer,
2014; Stanturf et al., 2014; Suding, 2011). Though a few long-term examples have been shared
in the literature (Faucette et al., 2008; Medeiros et al., 2014), a review of dry forest active
restoration publications found that studies in Hawaii have been monitored for an average of three
years (Dimson & Gillespie, 2020).

To our knowledge, a site-level remote sensing time series analysis has not been
conducted in Hawaiian dry forest. The previously mentioned studies in Hawaii used 500-meter
resolution Moderate Resolution Imaging Spectroradiometer (MODIS) and 0.05-degree (~5
kilometer) Advanced Very High Resolution Radiometer (AVHRR) data to detect negative trends
in vegetation indices (J. M. Barbosa & Asner, 2016; Madson et al., 2022). But it is important to
measure patterns across multiple spatial scales; remote sensing metrics can be highly influenced
by pixel size, and there is often a mismatch between the spatial scale of imagery and the
processes being monitored on the ground (Anderson, 2018).

We thus used a 23-year Landsat time series to examine dry forest NDVI trends in Hawaii,
where small dry forests remnants are isolated over a heterogeneous landscape. Landsat imagery
can be freely accessed through multiple platforms, and its 30-meter spatial resolution permits

monitoring at the site-level. Though Landsat has a less frequent revisit interval of 16 days, it may
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be able to capture spatial trends that are obscured in coarser imagery. We estimated NDVI trends
in native species-dominated and non-native species-dominated dry forest sites to investigate
whether the browning trends detected elsewhere in Hawaii are also occurring in remaining dry
forests. We examined the relationship between NDVI and rainfall anomaly trends, given recent
drying trends in the state (Frazier & Giambelluca, 2017) and the strong influence of precipitation
on tropical dry forest NDVI (Pau et al., 2010). We expected that NDV1 and rainfall would be
positively associated. Finally, we tested the utility of Landsat in detecting vegetation changes at
active dry forest restoration sites, where non-native grasses were previously dominant and
woody non-native species also occurred. We therefore estimated NDVI1 trends in non-native
grassland sites as well. We hypothesized that, pre-restoration, typical NDVI values and NDVI
seasonality would be similar to that of non-native grassland. At sites where native vegetation
recovery was reported, post-restoration NDVI was expected to increase, become less variable,
and approach values characteristic of dry forest.

This research examined three questions: 1) How have seasonal NDVI parameters
changed in native Hawaiian dry forests from 1999 to 2022? 2) Are seasonal changes in NDVI
associated with precipitation anomalies?; and 3) Do trends in Landsat-derived NDVI reflect
reported changes in vegetation at dry forest restoration sites?

4.2. Methods
4.2.1. Native dry forest sites

Native Hawaiian dry forests are extremely rare, fragmented, and limited in extent. We
identified nine native dry forest plots on Hawai‘i, Kaua‘i, Lana‘i, and Maui (Gillespie et al.,
2011) and O‘ahu (Knight and Barton, 2012, unpublished data) using OpenNahele, a community-

level forest plot database for the Hawaiian Islands (Craven et al., 2018). We selected plots with
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an area of > 1000 m? in which a minimum of 80% of inventoried plants were native species and
at least 30 total plants were inventoried. For each site, a 3x3 Landsat pixel window centered on
the point location provided in OpenNahele was included in analysis.

4.2.2. Restoration sites

We identified four dry forest restoration sites—Auwahi, Makauwahi, Keaau, and
Ohikilolo—greater than the area of a single Landsat pixel (> 0.1 hectare). A pixel was included
in analysis if the majority (>50%) of its footprint was located inside the restored area.

Auwahi forest is located on private ranch land on the leeward side of Maui. The native
understory was degraded by 19th-century grazing and burning practices and became densely
covered by kikuyu grass (Cenchrus clandestinus) by the mid-20th century (see Medeiros et al.,
2014 for site history). Restoration of a 4-hectare plot began in 1997 and included the
construction of a perimeter fence to exclude feral ungulates, mass outplanting of Dodonaea
viscosa and other natives, and two herbicide treatments spaced several months apart (1.5%
glyphosate). Treated kikuyu mats were left on site. By 2012, native plant cover had increased by
57.6%. Since then, several thousand additional native plants have been planted, with ongoing
minimal weed management (hand pulling and occasional herbicide application) (Erica von
Allmen, personal communication).

Makauwahi Cave is a non-profit coastal reserve in Kaua‘i. Prior to restoration, the
property supported few native species and was dominated by invasive species, including guinea
grass (Urochloa maxima) and the small woody tree Leucaena leucocephala (see Burney &
Burney, 2016 for site history). Restoration of an abandoned sugar cane field on the property
began in 2005 with the reintroduction of 3,000 native and Polynesian outplants. Invasive

vegetation control included hand removal and rotary tillage; no herbicides were used. Weeding
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took place from 2005 to 2010, after which it was required less frequently. Supplemental water
was provided from 2005-2007 via drip irrigation for most of the site, then completely withdrawn
in 2010. In 2012, a fence was constructed around most of the site to exclude feral pigs. Mean
survival rate for tree and shrub species was 64.3% after 5 years, with most mortality occurring
immediately after outplanting or withdrawal of supplemental irrigation.

Keaau and Lower Ohikilolo are located in the Waianae range of O‘ahu and managed by
the Department of Forestry and Wildlife and the O‘ahu Army Natural Resources Program
(OANRP). Lower Ohikilolo is highly fire-prone and dominated by invasive grasses (including
guinea grass and Melinis repens), L. leucocephala, and various herbaceous non-natives
(OANRP, 2022). A fence was constructed in 2000 to separate the area from a large goat
population to the south, and invasive vegetation control began in 2001. Control currently occurs
on a quarterly basis and emphasizes fuel load reduction by targeting invasive grasses through a
combination of weed whacking and occasional post-emergent herbicide applications. Periodic
outplanting of rare and common native species began in 2014, and native shrub cover doubled in
certain parts of Ohikilolo after just three years.

In 2014, the Keaau management unit was fenced after the discovery of endangered native
plant species in the area (OANRP, 2020). Several invasive species are widespread on the rocky
terrain, including guinea grass, L. leucocephala, and the shrub Mesosphaerum pectinatum.
Regular weed management began in 2015 and entails hand removal, weed whacking, and pre-
emergent herbicide applications along fences and trails. Areas within 50 meters of rare taxa are
prioritized. Reintroductions of native species began in 2016, followed by a mass outplanting
(500 outplants) of common natives in 2017. We limited analysis to areas of Keaau and Ohikilolo

where outplanting has occurred.
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4.2.3. Non-native vegetation classes

Native and restored dry forest sites were compared to non-native species-dominated dry

forest (non-native dry forest) and non-native species-dominated dry grassland (non-native

grassland). The potential extent of dry forest includes areas with mean annual temperature

>17°C, mean annual precipitation of 250-2000 mm, and a potential evapotranspiration (PET) to

precipitation ratio >1 (Murphy & Lugo, 1986). We used this definition and gridded temperature,

precipitation, and PET data (Giambelluca et al., 2013, 2014) to estimate a climatic envelope for

dry forest in Hawaii, from which the non-native study sites were selected (Figure 4.1).

The Carbon Assessment of Hawaii land cover map (Jacobi et al., 2017) was used to

identify continuous areas (> 10 ha) of non-native grassland and non-native dry forest within the

potential dry forest extent and elevation range of the native and restored sites (Appendix C,

Figure C1). For each non-native vegetation class, we selected nine 3x3 Landsat pixel windows

for analysis. At least two plots were located on each of Hawaii’s four largest islands (Hawai‘i,

Maui, O‘ahu, and Kaua‘i).
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Figure 4.1

Study site locations and potential dry forest zone, defined using Murphy and Lugo (1986). Hillshade layer
from State of Hawaii Office of Planning.
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4.2.4. NDVI

NDVI is an indicator of vegetation productivity and photosynthetic capacity and is
calculated as a difference ratio between red and near-infrared (NIR) reflectance [(NIR - Red) /
(NIR + Red)], as chlorophyll absorbs visible light while the cell structure of healthy leaf tissue
strongly reflects near-infrared light (Gamon et al., 1995; Pettorelli et al., 2005). Values range
from +1 to -1, with negative values corresponding to clouds or water and higher values
signifying denser vegetation and greater photosynthetic activity.

Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+),
Landsat 8 Operational Land Imager (OLI), and Landsat 9 OLI Tier 1 collections were accessed
through Google Earth Engine, a cloud computing platform that facilitates the processing and
analysis of remote sensing data (Gorelick et al., 2017). We used the Collection 2, Level-2 surface
reflectance product, which is atmospherically corrected and meets the solar zenith angle
constraint of <76 degrees. NDVI values were computed from cloud-masked red and near-
infrared bands, then extracted for the study pixels and exported for analysis. Only values greater
than zero were retained, in order to reflect the typical NDVI of soil and vegetated surfaces (Roy
et al., 2016). As consistent, clear Landsat 5 TM images were not available for the region,
analysis utilized Landsat 7 ETM+, Landsat 8 OLI, and Landsat 9 OLI data only.

Landsat data spanned July 1999 to September 2022. Though individual Landsat sensors
have a revisit interval of 16 days, temporal coverage was inconsistent, mainly due to cloud cover.
The median number of image dates per pixel per year ranged from 1 (primarily in 1999) to 54
with a median of 9 (Table 4.1). NDVI observations were aggregated into seasonal time series of
NDVI parameters. We aligned quarterly seasons—November-January (NDJ), February-April

(FMA), May-July (MJJ), and August-October (ASO)—with Hawaii’s wet (November-April) and
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dry seasons (May-October) (Frazier & Giambelluca, 2017), and consequently excluded
observations before August 1999 and after July 2022 from time series analysis.

NDVI parameters included median NDVI and robust coefficient of variation (RCV) of
NDVI. We chose median rather than mean NDVI because the annual distribution of NDVI
values was often moderately to highly skewed for most sites (Bulmer, 1979). RCV of NDVI is
calculated by dividing the median absolute deviation by the median, and is a more suitable
alternative to the mean-based coefficient of variation for skewed data (Arachchige et al., 2022).
RCV provides a measure of seasonality and may capture the response of NDVI to climatic
variations and other potential disturbances that cannot be detected by the median (H. A. Barbosa
et al., 2006). A higher RCV signifies greater variability.

Table 4.1
Per study site, the number of Landsat pixels, number of unique Landsat image dates, and mean (+
standard deviation) percentage of valid pixels (i.e. no cloud cover, NDVI > 0) per image date.

Class Site Island # pixels # image dates % valid pixels
Manuka-1 Hawai‘i 9 166 89.8 £22.8
Manuka-2 Hawai‘i 9 163 87.3£25.0
Kokee-1 Kaua‘i 9 208 90.9 +22.6
. Kokee-2 Kaua‘i 9 214 91.1+£21.9
Native dry .
Kanepuu-1 Lana‘i 9 222 88.5+25.2
forest i
Kanepuu-2 Lana‘i 9 211 89.8 £22.1
Kanaio Maui 9 325 91.3+21.5
Nanakuli O‘ahu 9 213 86.9 +24.2
Waianae O‘ahu 9 165 87.3+24.9
Kailua-1 Hawai‘i 9 247 93.7 £18.0
Kalaoa Hawai‘i 9 216 90.6 +21.7
South Point-1 Hawai‘i 9 404 92.7 £19.6
. Hanapepe Valley Kaua‘i 9 575 91.5+21.0
Non-native . .
Mokihana Kaua‘i 9 243 91.9 +21.0
dry forest . .
Kanaio Rd Maui 9 245 88.3 £25.8
Keokea Maui 9 233 90.7 +22.7
Kuaokala O‘ahu 9 197 90.4 +23.0
Lualualei O‘ahu 9 401 86.6 +26.1
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Pohakuloa Hawai‘i 9 372 94.2 +17.4
South Point-2 Hawai‘i 9 411 92.3+19.5
Waimea Hawai‘i 9 343 93.2 £20.1
) Kalaheo Kaua‘i 9 551 91.5+21.0
Non-native .
Kapaa Bypass Kaua‘i 9 567 92.4 £19.7
grassland ) .
Kula Highway Maui 9 222 89.51+23.6
Piilani Highway Maui 9 434 93.9+17.6
Kailua-2 O‘ahu 9 293 90.9 +21.3
Makaha O‘ahu 9 314 92.1+20.4
Makauwahi Kaua‘i 14 775 85.7+27.4
Restoration Auwahi Maui 42 230 76.2 £33.2
site Keaau O‘ahu 5 257 81.6 £25.7
Ohikilolo O‘ahu 10 345 71.4 £28.9

4.2.5. NDVI analysis

To characterize general NDVI conditions in native dry forest, non-native dry forest, non-
native grassland, and the four restoration sites, pixel-wise summaries of median NDVI and RCV
of NDVI were calculated per season over the 1999-2022 study period. Pre- and post-restoration
NDVI parameters were calculated for Makauwahi, Keaau, and Ohikilolo, using the year that
native outplanting began as a threshold. NDVI parameters in the vegetation classes were also
calculated for pre- and post-restoration periods for comparison. Kruskal-Wallis and post-hoc
Wilcoxon rank sum tests were used to make pairwise comparisons and identify significant
differences between groups.

NDVI trends in each vegetation class and restoration site were characterized by 1)
estimating the slope and strength of potential monotonic trends within seasons, and 2) identifying
potential breakpoints, i.e. changes within the full time series. Sen’s slope estimator was used to
evaluate trends in median NDVI and RCV of NDVI per season. The significance of the trend
was determined using the Mann-Kendall test, a non-parametric test suitable for the detection of

upward or downward monotonic trends in environmental data that may not necessarily be linear
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(Hirsch et al., 1982; Kendall, 1975; Mann, 1945). Autocorrelation and partial autocorrelation
functions were applied to time series of each vegetation class and restoration site; if serial
correlation was observed, Mann-Kendall tests were used with the block bootstrap method to
improve estimates of significance.

Though all study sites were located in the potential dry forest zone (Figure 4.1), mean
elevation ranged from 7 to 1156 meters (mean 466 +339) and annual rainfall from 650 to 1385
millimeters (mean 907 £202). We therefore used Pearson’s correlations to assess the relationship
between site variables (mean elevation and mean annual rainfall) and median NDVI, RCV of
NDVI, and the Kendall coefficient of each parameter over time.

Breakpoints signify shifts in a time series and divide it into segments. The Breaks for
Additive Seasonal and Trend (BFAST) framework has been used to detect vegetation changes,
including forest disturbances and NDVI response to drought, with minimal influence from
seasonal amplitudes and in spite of time series irregularity (DeVries et al., 2015; Forkel et al.,
2013; Verbesselt, Hyndman, Newnham, et al., 2010; Xu et al., 2020). In this study, we tested the
utility of BFAST in monitoring post-restoration changes in Landsat-derived NDV1 parameters,
and examined whether breakpoints in restoration time series coincided with changes in a site’s
management history, without concurrent breaks in climatically similar vegetation classes. The
bfast() function in the R package ‘bfast’ was applied using a frequency of 4 and the harmonic
seasonal model, which requires fewer observations and is less sensitive to short-term variations
(Verbesselt, Hyndman, Zeileis, et al., 2010). We tested two minimum segment sizes of 0.08 and
0.13 (i.e. trend departures of at least 2 and 3 years, respectively). Overlap was determined using

each breakpoint’s 95% confidence interval.
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4.2.6. Precipitation data and analysis

The relationship between NDVI and precipitation trends was examined using the Rainfall
Atlas of Hawaii, a 250-meter resolution, gridded monthly and annual rainfall product that was
recently expanded to span 1920-2019 (Giambelluca et al., 2013). Total rainfall was extracted
using the center of each study site, and seasonal time series were created by summing monthly
precipitation for the NDJ, FMA, MJJ, and ASO periods. We chose mean precipitation from
1978-2007 as a baseline as per Frazier and Giambelluca (2017). We then calculated the seasonal

long-term precipitation anomaly (PA:) and cumulative precipitation anomaly (CPA:) as:

Precipitation; - Precipitation;g7g.2907
t =

Precipitationyg97g.2007
CPA, = PA, + PA.;
PA: is precipitation change in the year ‘t’ relative to the baseline mean, calculated using
Precipitation: (total rainfall in the year ‘t”) and Precipitationiezs-2007 (mean precipitation of the
1978-2007 baseline period). CPA: depicts the accumulation of relative changes in precipitation
by summing PA in the year ‘t’ and ‘t-1’. The significance of 1978-2019 seasonal precipitation
trends at each study site were determined using Sen’s slope estimator and the non-parametric
Mann-Kendall test (Frazier & Giambelluca, 2017).

To evaluate the relationship between changes in seasonal rainfall and greenness from

1999 to 2019, correlation coefficients were calculated between PA: and CPA:and median and
RCV of NDVI in each vegetation class and restoration site. As Shapiro-Wilk tests determined
that PAt, CPAt, median NDVI, and RCV of NDVI were not normally distributed, we used the

non-parametric Spearman rank correlation.
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4.3. Results
4.3.1. NDVI by site and vegetation class

Wilcoxon rank sum tests found significant differences (p < 0.05) in native dry forest,
non-native dry forest, and non-native grassland median NDVI over the 1999-2022 study period.
Among these vegetation classes, median NDVI was highest in non-native dry forest and lowest
in non-native grassland (Figure 4.2). It was significantly higher in the NDJ quarter than during
the dry season (MJJ and ASO) (p < 0.01, Appendix C, Table C1). There was no statistical
difference between RCV of NDVI of native and non-native dry forest sites, and RCV of NDVI
was highest in non-native grassland in all seasons (p < 0.001). RCV peaked in the late dry season
(ASO) and showed the most variation across quarters in non-native grassland.

Study site mean annual rainfall was positively associated with median NDVI and
negatively associated RCV of NDVI in all three vegetation classes. This relationship was
strongest for native dry forest (r = 0.74, p <0.001; r =-0.79, p < 0.001). Mean elevation of
native dry forest sites was also moderately positively correlated with median NDVI (r = 0.47, p
< 0.01) and negatively correlated with RCV of NDVI (r =-0.63, p < 0.001). In the restoration
site class, there was no correlation between site environment and NDVI parameters.

Pre- and post-restoration median NDVI was generally lower than that of native and non-
native dry forest (p < 0.05), with a few exceptions where there was no statistical difference
(Figure 4.2). Non-native grassland and pre- and post-restoration Ohikilolo median NDV1 were
statistically similar in all seasons. Keaau median NDVI was also similar to non-native grassland,
except during FMA pre-restoration, when it was slightly higher. At Makauwabhi, pre-restoration
median NDVI was higher, lower, or similar to that of non-native grassland depending on the

season, but after restoration, Makauwahi’s median NDVI was consistently significantly higher (p
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< 0.05). At Auwahi, median NDVI was similar to that of non-native grassland during the wet

season (FMA and NDJ) and higher during the dry season (MJJ and ASO, p < 0.001).
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Figure 4.2

Pixel-wise NDVI parameters summarized within pre- and post-restoration periods (determined by the
year that native outplanting began; Auwahi’s post restoration period includes 1999-2022). Error bars
show 95% confidence interval of the median. For significant differences between restoration sites before
and after outplanting, see Appendix C, Table C2. 1999-2022 summary statistics for native dry forest
(DF), non-native DF, and non-native grassland sites can be found in Appendix C, Table C3.
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Pre- and post-restoration RCV of NDVI was significantly higher or statistically similar to
that of native and non-native dry forest (p < 0.05). Compared to non-native grasslands, Auwahi
and post-restoration Makauwahi had significantly lower RCV of NDVI (p < 0.05), while pre-
restoration Makauwahi had higher RCV of NDVI in every season except FMA (p < 0.001).
There was usually no statistical difference between RCV of NDVI in non-native grassland and
pre- and post-restoration Keaau or Ohikilolo, wiith a few exceptions (Figure 4.2).

The clearest post-restoration shift in NDVI occurred at Makauwahi. After restoration, the
site’s median NDVI increased (p < 0.05) and RCV of NDVI1 decreased (p < 0.001) in all seasons,
resulting in higher median NDVI and lower RCV of NDVI than non-native grassland (Figure
4.2; Appendix C, Table C2). Post-restoration changes at Keaau and Ohikilolo were similar in
some ways, but less consistent. Keaau experienced significant increases in median NDVI during
MJJ and NDJ (p < 0.05) as well as significant decreases in RCV of NDVI (p < 0.05) during the
dry quarters (MJJ and ASO). At Ohikilolo, median NDVI increased significantly in FMA, MJJ,
and ASO (p < 0.05), but RCV of NDVI increased during ASO (p < 0.05).

4.3.2. NDVI time series

Seasonal trends in median NDVI over time were primarily positive, and more common in
forest classes than in non-native grassland (Figure 4.3). The strength and significance of the
correlation varied by site and season, but the mean slope of each class did not differ significantly.
Relatively high slopes were observed at Makauwahi and Auwabhi. At Ohikilolo, a significant
increase in median NDVI only occurred during the ASO quarter, while Keaau’s median NDVI
showed a significant negative trend during NDJ.

The slope of median NDVI was positively associated with site elevation (r = 0.60, p <
0.001) and negatively associated with site mean annual rainfall (r = -0.34, p < 0.05) in non-

native dry forest. Otherwise, site environment was not correlated with changes in NDVI.
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Aside from significant increases in RCV of NDVI at Makauwahi, the direction of the
RCV of NDVI trend was more variable across sites and seasons (Figure 4.4). In the majority of
cases, there was no strong association, though increases were more common in forest sites and

decreases more common in grassland sites.
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Figure 4.3

Correlation of seasonal median NDVI and year from 1999-2022 (*p < 0.05, **p < 0.01). Sens slope given
for significant relationships. Brown and green tiles indicate a decrease or increase in median NDVI over
time, respectively. DF = dry forest.

Breakpoints were detected in median NDVI and/or RCV of NDVI time series at each
restoration site, as well as in median NDV|1 of native and non-native dry forest (Figure 4.5). Both
breakpoints in median NDVI at Auwahi coincided with breakpoints in native dry forest, and the
direction of the trend departures was similar. Median and RCV of NDVI breakpoints at

Makauwahi had the clearest overlap with the site’s restoration start date. The 95% confidence
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interval of the Ohikilolo break, estimated to occur in 2005, was wide and overlapped a native dry
forest breakpoint. Restoration at Keaau began after breaks detected in RCV of NDVI, which

highlighted a steep rise in RCV between NDJ 2012 and MJJ 2014.

FMA MJJ ASO NDJ FMA MJJ ASO NDJ FMA MJJ ASO NDJ
Kanaio Hanapepe Kailua-2
Kanepuu-1 Kailua-1 Kalaheo
Kanepuu-2 Kalaoa Kapaa Byp
Kokee-1 Kanaio Rd Kula Hwy
Kokee-2 Keokea Makaha
Manuka-1 Kuaokala % Piilani Hwy
Manuka-2 Lualualei Pohakuloa m
Nanakuli m Mokihana South Point-2
Waianae South Point-1 Waimea
Native DF Non-native DF Non-native grassland
Auwahi Kendall coefficient
Keaau M o08--06 -01-01
B o402 M 020
Ohikilolo 02--01 M 04-06
Restored

Figure 4.4

Correlation of seasonal RCV of NDVI and year from 1999-2022 (*p < 0.05, **p < 0.01, ***p < 0.001).
Sens slope given for significant relationships. Blue and red tiles indicate a decrease or increase in RCV
over time, respectively. DF = dry forest.
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Significant breakpoints (dotted lines) and trends in median and RCV of NDVI time series indicated by
BFAST, for minimum trend departure lengths of 2 and 3 years. Red dashed lines show initial outplanting
dates at restoration sites. DF = dry forest.
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4.3.3. Precipitation anomalies

Mann-Kendall tests indicated weak to moderate negative trends in the seasonal long-term
precipitation anomaly (PA:) and cumulative precipitation anomaly (CPA:) from 1978 to 2019,
and statistically significant trends at 11 out of 31 study sites (Appendix C, Table C4). Some
positive trends occurred during the FMA, MJJ, and ASO quarters, but these were not significant
and coefficients were low (mean r = 0.07 £0.05). During the dry season, the PA: and CPA: trends
were positively correlated with site elevation (MJJ CPA:r = 0.39, p < 0.05; ASO CPA: r =0.49,
p <0.01; ASO PA:r =0.43, p <0.05) and negatively correlated with site rainfall (MJJ PA:r = -
0.37, p <0.05; ASO CPA: r =-0.39, p <0.05). During the NDJ quarter, PA: coefficients were
positively associated with site rainfall (r = 0.40, p < 0.05).

At the majority of study sites, seasonal PAt: and CPA: were positively associated with
median NDVI (Figure 4.6; Appendix C, Table C5). The strength and significance of the
correlation were most consistent in non-native grassland sites and during the ASO quarter.
Native and non-native dry forest study sites and the NDJ quarter in general showed more
variation. The relationship between each seasonal precipitation anomaly and RCV of NDV1 was
primarily negative, but varied widely among study sites and seasons (Appendix C, Table C6).

Trends were relatively weak, and statistical significance was observed for only a few sites.
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Figure 4.6
Spearman correlation of PA; and median NDVI (*p < 0.05, **p < 0.01, ***p < 0.001) from 1999-2019.
Pink and blue tiles indicate a negative or positive relationship, respectively. DF = dry forest.

4.4. Discussion

Native dry forest became greener over the study period, a finding that differs from
previous studies in this region at coarser spatial scales. Increases in median NDVI occurred in
spite of a positive correlation between site mean annual rainfall and median NDVI, and despite
negative precipitation trends. Non-native grassland NDVI was most strongly associated with
precipitation anomalies. Restoration sites also greened during this time period, especially the
larger, more established sites of Makauwahi and Auwahi. At Makauwahi, significant breakpoints
in both median NDVI1 and RCV of NDVI coincided with the start of restoration. Keaau and
Ohikilolo were outplanted relatively recently and likely require additional time before restoration

results can be detected at Landsat resolution.
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4.4.1. NDVIin native dry forest

In the native dry forest plots in this study, vegetation greenness was lower and more
variable at drier sites and during dry periods. We observed significantly higher median NDVI
during the wet season (NDJ and FMA) compared to the dry season (MJJ and ASO). Native dry
forest sites exhibited the strongest positive correlation between mean annual rainfall and median
NDVI, with the highest median NDVI occurring at the wettest sites (Waianae and Nanakuli) and
the lowest values occurring at the driest (Kanaio). Mean rainfall at native sites was also strongly
negatively associated with RCV of NDVI, which was highest during the late dry season.

Native dry forests had lower median NDVI than non-native dry forests. The greatest
difference occurred in the dry ASO quarter, during which native RCV of NDVI was also
significantly higher. This is not unprecedented in Hawaiian rainforest: stands of invasive Morella
faya exhibit higher NDVI than stands of the common native Metrosideros polymorpha,
particularly during periods of lower rainfall (Asner et al., 2006). M. polymorpha has also shown
more conservative growth and resource use than invasive tree species in wet environments
(Cavaleri et al., 2014). Our results offer evidence that dry forests dominated by non-native
species may also experience less stress during the peak dry season.

Over the last two decades, median NDVI showed significant, albeit low magnitude,
increases at the majority of native and non-native dry forest sites in one or more seasons.
Greening in tropical forest, due to factors such as elevated atmospheric CO2, has been observed
in other regions (Xu et al., 2020; Zhu et al., 2016), but our Landsat results diverge from other
studies in the Hawaiian Islands, which have attributed negative vegetation index trends to
declines in precipitation and or worsening drought conditions (J. M. Barbosa & Asner, 2016;

Madson et al., 2022). The MODIS-based analysis of Barbosa & Asner (2016) focused on mesic
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to wet forests, which may help to explain the difference in our results. While Madson et al.
(2022) did not differentiate between forests and other vegetation types in their AVHRR analysis,
they found significant browning in both native and non-native vegetation during every month but
January. Forest NDVI trends are known to vary across datasets of different spatial resolutions
(Arjasakusuma et al., 2018; Fensholt & Proud, 2012), and discrepancies between Landsat- and
AVHRR-derived trends could be partially attributed to spatial aggregation of multiple vegetation
types within larger pixels (Munyati & Mboweni, 2013). Dry forests, being fragmented, limited in
distribution, and a small percentage of land cover on the main Hawaiian Islands (Jacobi et al.,
2017), are unlikely to occupy the area of an AVHRR pixel. It is thus possible that a) native and
non-native dry forests are exceptions to broader browning trends, b) our study sites occur in the
AVHRR pixels in which Madson et al. (2022) found no significant change in NDVI, and so are
not representative of broader trends that are indeed affecting dry forests. In native sites where
greening was not observed (Kanepuu-1 and Nanakuli), significant trends in RCV of NDVI
suggest that variation in dry season productivity has been increasing. Additional samples, and
likely a longer time series, would be needed to explore these trends further.

The strength of the NDVI trends in this study is limited by the length and temporal
resolution of the Landsat time series. Sparse coverage prior to 1999 truncated the time series,
limiting detection of trends that might become more apparent over a longer observation period.
The AVHRR analysis by Madson et al. (2022), for instance, spanned 1984 to 2019. Additionally,
the Landsat spatial resolution allows us to capture site-level variations in NDVI, but its revisit
interval required observations to be seasonally aggregated. Coupled with missing data values due
to cloud cover, this could potentially bias median NDVI values and obscure seasonal site

variations.
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4.4.2. Precipitation trends and NDVI

Though only a few significant trends were detected, seasonal trends in both precipitation
anomalies were primarily negative from 1978-2019. Across the Hawaiian Islands, dry season
rainfall has declined more rapidly at locations above 1500 meters elevation (Frazier &
Giambelluca, 2017). We found that the strength of the negative dry season PA: and CPA: trends
was greater at lower elevations; however, all of the sites in this study were below 1200 meters,
and may constitute an insufficient number of samples. We also observed weak but significant
correlations between site mean annual rainfall and the precipitation anomaly trends in certain
quarters, suggesting that drying trends have been relatively stronger at historically wetter sites
during the dry season, and at drier sites during the wet season.

Warmer, drier conditions in the Hawaiian Islands have been previously associated with
declines in NDVI (J. M. Barbosa & Asner, 2016). At the majority of study sites, median NDVI
was positively correlated with precipitation anomalies in at least one season, usually ASO
(Figure 4.6). Yet in spite of the overall downward trend in rainfall, median NDVI at 22 of 31
study sites increased significantly, depending on the season, over the last two decades. While it
seems counterintuitive that sites should become greener while the climate is drying, the
precipitation trends in Hawaii have not been consistent through time (Frazier & Giambelluca,
2017). The response of different vegetation types also varied somewhat. The class showing the
fewest increases in median NDVI, non-native grassland (Figure 4.3), had the strongest and most
consistent relationship with precipitation anomalies (Figure 4.6). Shallow-rooted invasive
grasses like Cenchrus setaceus are opportunistic and able to exploit shallow water sources, but
are less productive in the absence of rainfall events (Cordell & Sandquist, 2008). Native woody

species have deeper root systems that can access soil water during the dry season (Calder & Dye,
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2001), and also perhaps when anomalous dry periods occur. This may explain why native sites
like Manuka-1 and Manuka-2 have become greener, despite being situated in a region of Hawai‘i
that has experienced the most significant drying trends (Frazier & Giambelluca, 2017).

Should rainfall in Hawaii continue to decline, non-native grasslands will become drier,
and will likely exacerbate the risk of wildfire and loss of existing dry forest (Trauernicht, 2019).
Hotter, drier conditions are also expected to reduce forest productivity, increase tree mortality
rates, and impede recovery of native species (Allen et al., 2015; Anderson-Teixeira et al., 2013).
The productivity of native and restored dry forests sites, amid anomalous declines in
precipitation, is an encouraging testament to the value of restoration efforts and of dry forests
themselves, though this is not to say that dry forests are invulnerable to extended periods of
drought. The 2007-2011 departure from the positive trend in native dry forest median NDVI
coincides with Hawaii’s longest and most intense period of drought since 2000
(droughtmonitor.unl.edu). A concurrent trend was not detected in non-native dry forest, which
may be less sensitive to dry periods (Asner et al., 2006). Further analysis of drought and other
potential drivers is needed to understand the response of site greenness to long-term climate
trends in Hawaii.
4.4.3. Post-restoration NDVI trends

Makauwahi experienced the most significant and apparent changes in NDVI parameters
over the study period. Seasonal NDVI patterns at the site initially resembled those of non-native
dry grassland, but greenness increased and became less variable after restoration activities began
(Figure 4.2). These shifts were visible in the Makauwahi NDVI time series as well, which were
positive for median NDVI and negative for RCV of NDVI (Figures 4.3-4.4). BFAST analysis

detected breakpoints in NDVI trends that coincided with the restoration start date in 2005 (Figure
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4.5): median NDV1 briefly dropped, then increased, while RCV of NDVI rose, then decreased.
Native dry forest greenness is significantly higher than non-native grassland, and seasonal and
annual variation in NDVI is significantly lower. The breaks and trends at Makauwahi likely
reflect the removal of non-native guinea grass and L. leucocephala and the subsequent, gradual
establishment and unassisted recruitment of outplanted native species (Burney & Burney, 2016).
A second breakpoint in RCV of NDVI occurred in 2010, after which the decline in RCV was
more gradual. This may be another indication of native species progress at the site; Burney and
Burney (2016) reported that by 2010, native plant size and dominance had increased to the point
that less intense weeding was needed and all supplemental water was withdrawn.

Median NDVI at Auwahi, the most established of the restoration sites, experienced an
approximately five-year departure from the positive trend from late 2007-2012 (Figure 4.5).
These breakpoints coincided with those of native dry forest and the aforementioned period of
prolonged drought, which was more severe on Maui and Hawai‘i than on Kaua‘i and O‘ahu
(droughtmonitor.unl.edu). Nonetheless, greenness has increased significantly at Auwabhi since
1999, and NDVI is approaching values typical of native dry forest, particularly in the dry season.
Though additional plantings have been conducted at the site since 2014, unassisted recruitment
has also occurred for the majority of native woody species (Medeiros et al., 2014).

The management of Keaau and Ohikilolo sites differs from restoration of Auwahi and
Makauwahi in several ways. Native outplanting began more recently, and has occurred in waves
and in relatively smaller patches; the outplanted area at Keaau was the smallest in this study, and
Ohikilolo’s outplanted areas are dispersed over a larger management unit (Oahu Army Natural
Resources Program, 2020; O‘ahu Army Natural Resources Program, 2021). Removal of non-

native vegetation, though extensive, has been performed more gradually and did not always
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consist of complete eradication. Results of these efforts may be more difficult to track at the
Landsat resolution, making interpretation of the NDVI time series less straightforward.

Dry season median NDVI has increased at Ohikilolo, but seasonal variation in greenness
has not much changed. Median NDVI values were still similar to non-native grassland, and no
breakpoints were detected near or after the start of outplanting. Though OANRP surveys
observed a significant increase in native shrub cover at the oldest outplanted area, the Ohikilolo
plantings may need additional time before changes can be detected at a 30-meter spatial scale
(O‘ahu Army Natural Resources Program, 2021). Furthermore, invasive Myoporum thrips were
discovered at the site in 2020, which may affect the establishment of Myoporum sandwicensis
outplants. One median NDV1 breakpoint was identified in 2005, which had a relatively wide
confidence interval (Figure 4.5). Several disturbance events occurred during the study period,
including a 2003 fire in the northern region of the site, and fence breaches by feral goats multiple
times from 2003-2008. Significant drying also occurred at the site during MJJ and NDJ
(Appendix C, Table C4), but it is uncertain whether disturbance or climate factors influenced the
trend departure.

Though pre- and post-restoration NDVI summaries for Keaau indicated that dry season
RCV of NDVI has declined, Keaau was also one of six sites at which RCV of NDVI shows a
significant positive monotonic trend. BFAST analysis indicated that this increase was steepest
between 2012-2014 (Figure 4.5). These results are somewhat unsurprising, as outplanting did not
begin until 2016 and the site burned in 2018. Recruitment by native species was observed after
the fire, and outplanting has continued since then. Like Ohikilolo, continued monitoring of

Keaau may reveal clearer post-restoration trends in NDVI.
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4.4.4. Management implications

Trends at Makauwahi and Auwahi demonstrate the potential of Landsat NDVI time series
to aid long-term restoration monitoring. The slopes of median NDVI at both sites, and of RCV at
Makauwahi, were greater than those that occurred in native and non-native vegetation classes.
Results at Makauwahi in particular highlight the utility of Landsat in capturing management-
related breaks in greenness trends over a >20 year time series. In many regions, recovery of
tropical dry forest is impeded by invasive grasses (Griscom & Ashton, 2011; Sanchez-Azofeifa
et al., 2005). Landsat imagery, which is freely accessible and global in coverage, could provide a
cost-effective, efficient means of extending restoration monitoring periods at a global scale
where high resolution plot data are available.

One key shortcoming of the parameters used here is a limited ability to distinguish native
species recovery from existing non-native woody vegetation. At Auwahi, for example, invasive
Bocconia frutescens was common in restoration plots (Medeiros et al., 2014). While the
transition from grassland to dry forest was more evident from the Landsat time series,
hyperspectral band analysis at a finer spatial resolution would likely be needed to identify
species-level differences (Somers & Asner, 2013).

4.5. Conclusion

Using a 1999-2022 Landsat time series, we examined seasonal NDVI trends in native dry
forest, non-native dry forest, and non-native grassland, and monitored changes in productivity at
dry forest restoration sites. We found significant increases in median NDVI in each vegetation
class, but more often in the forest classes. Median NDV1 was positively associated with
precipitation anomalies, particularly in non-native grassland, but positive NDVI trends have

occurred in dry forest despite long-term declines in precipitation, highlighting the ability of dry
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forest to remain productive when non-native grasslands are not. However, persistent dry
conditions can have more substantial effects, as suggested by breaks in positive median NDVI
trends in Auwahi and native dry forest, which coincided with a prolonged period of drought
across the Hawaiian Islands. Further investigation of drought and other potential drivers is
needed to better understand the relationship between NDVI and long-term climatic trends.
These results underscore the need for consistent and more accurate dry forest monitoring
in Hawaii. Previous NDVI studies in the Hawaiian Islands have observed browning trends at
coarser spatial scales (e.g. 500 m, 5 km), but finer resolution imagery is needed to differentiate
trends in fragmented dry forest patches from the surrounding landscape. Our results also
highlight the potential of site-level remote sensing to aid and extend restoration monitoring
efforts. We observed significant greening trends at the larger and more established restoration
sites, Makauwahi and Auwahi. At Makauwahi, NDVI increased and became more stable after
restoration, and trend breakpoints coincided with the start of outplanting and other management
actions. Trends were more variable at Keaau and Ohikilolo, where ouplanting began relatively
more recently and several disturbance events have occurred. However, extended time series of

Landsat or finer resolution imagery could facilitate long-term monitoring efforts at these sites.
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Chapter 5. Conclusions

Continuous, large-scale monitoring is necessary to evaluate biodiversity conservation
policy and to inform adaptive management strategies. However, monitoring is generally
deficient, particularly for plant taxa, invasive species, and in areas with high rates of endemism
(Hochkirch et al., 2021). Alternatives to conventional, standardized surveys, which are valuable
but limited in spatial and temporal extent, must be considered (Kuhl et al., 2020). This
dissertation examined biodiversity monitoring applications for publicly accessible geospatial
datasets, including iNaturalist citizen science observations and Landsat imagery, in the Hawaiian
Islands, a biodiversity hotspot.

Understanding the citizen science observation process can help data users to account for
biases generated by low-structure sampling schemes (Kelling et al., 2019). Chapter 2 of the
dissertation asked how participation in the citizen science app iNaturalist has changed over time.
iNaturalist activity has been spatially biased toward developed and more accessible sites,
particularly among the least active observers. Participation grew exponentially until early 2020,
then decreased immediately after COVID-19 travel restrictions began. This was most likely due
to a decline in visitors, who were more active and numerous than residents, made the majority of
species observations, and were more likely to make research-grade observations. Resident
activity was relatively more stable, and existing spatial biases in the data increased slightly.

COVID-19 lockdowns in other regions were associated with similar effects, including
spatial restrictions to more accessible sites and greater reliance on more active citizen science
participants (Crimmins et al., 2021; Kishimoto & Kobori, 2021; Sdnchez-Clavijo et al., 2021).
This study corroborates those findings, but also highlights the role of travel in citizen science

data collection in Hawaii. The majority of Hawaii’s iNaturalist observers, and the most active
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ones, are unlikely to live in Hawaii. When tourism was restricted, fewer species observations
were made. Thus, local participation is needed to support stable, continuous biodiversity
monitoring via citizen science, particularly under extraordinary social circumstances.
Furthermore, differing sampling patterns between more and less active observers suggest that
encouraging more sustained participation could improve the spatial and taxonomic diversity of
observations. Additional work is needed to explore why observer characteristics (visitor vs.
resident, more vs. less active) are associated with different spatial sampling patterns in particular,
and whether those patterns are driven by unequal access or actual preference.

Chapter 3 focused on iNaturalist plant observations, and asked whether citizen science
could increase the extent of professional invasive plant monitoring and be used to improve
estimates of habitat. Though iNaturalist spatial bias toward more accessible, disturbed sites was
greater in non-native species observations, non-native plants—and invasive species especially—
were disproportionately well-sampled compared to endemic and indigenous species. Analysis of
four example invasive species showed that professional agency observations exhibit similar or
inverse spatial bias patterns. Habitat suitability models for the four invasive species often
produced distinct predictions with iNaturalist vs. agency data, particularly in disturbed vs. native
vegetation-dominated sites. Stratifying or filtering the iNaturalist observations before modeling,
however, had little effect on predictions of habitat suitability.

Though preferences for threatened or rarer species have been observed in citizen science
data for other taxonomic groups (Matteson et al., 2012; Tulloch et al., 2013), my results suggest
that iNaturalist is a promising source of non-native and invasive plant monitoring data in Hawaii.
While data stratification was limited in its capacity to improve habitat suitability models based

on iNaturalist observations alone, the spatial biases in iNaturalist and professional agency data
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can be complementary, and combining data from both sources led to more comprehensive
estimates of suitable habitat. Citizen science could thus be used to fill monitoring gaps in areas
excluded from official surveys. In Hawaii, this often means more disturbed areas. But agencies
in other regions could use known biases to guide their own survey resources and utilize citizen
science as a complementary data source for modeling and other applications. Future work could
observe broader-scale patterns by considering additional species or regions, or explore the effects
of more targeted data integration methods (Fletcher et al., 2019).

Chapter 4 asked how remotely sensed Normalized Difference Vegetation Index (NDVI)
time series could be used to facilitate tropical dry forest and restoration site monitoring.
Significant increases in Landsat-derived median NDV1 were observed at the majority of native,
non-native, and restored dry forest study sites from 1999-2022. Median NDVI trends were more
variable at smaller restoration sites where management began more recently, but corresponded
with reported outcomes at the more established Makauwahi and Auwahi restoration sites.
Additionally, breakpoints in NDVI trends at Makauwahi aligned with major management
activities. A positive relationship was detected between median NDVI and the long-term
precipitation anomaly at most sites, but was stronger in non-native dry grassland.

The positive NDVI trends in this chapter deviate from coarser spatial resolution studies
(e.g. 250-meter and 5-kilometer resolution), which have reported declines in NDVI driven by
long-term drying in Hawaii (Barbosa & Asner, 2016; Madson et al., 2022). It is likely that 30-
meter resolution Landsat imagery is more appropriate for monitoring Hawaii’s highly
fragmented dry forest patches. At this scale, dry forest trends appear to be discernible from those
of adjacent vegetation types, such as non-native grassland, that are more closely linked to

anomalous precipitation conditions. Further study of drought and other potential climate factors
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is needed to better understand the drivers behind these site-level NDVI trends. However, these
results highlight the value of Hawaii’s remaining dry forests, which appear to be increasing in
productivity despite downward rainfall trends, as well as the importance of dry forest restoration.
Time series of NDVI parameters and other remotely sensed metrics at Landsat or finer resolution
have great potential to aid and extend monitoring efforts in this rare and threatened ecosystem.
This research investigated biodiversity monitoring applications for geospatial datasets in
the Hawaiian Islands. Though these datasets do not serve as direct substitutes for standardized, in
situ biodiversity monitoring, they are readily accessible, offer near global coverage, and could
support monitoring schemes in other regions where resources for conventional surveys are
limited. The results of this dissertation demonstrate that utilizing multiple data sources can
enhance the breadth and continuity of biodiversity monitoring in understudied areas and during

periods of sociopolitical uncertainty.
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Appendix A

Supplementary Material for Chapter 2. Who, where, when: Observer behavior influences spatial

and temporal patterns of iNaturalist participation.
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Median proportion of activity (observations and active days) in Hawaii for residents versus visitors (lines
show interquartile range).
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Observations of each taxonomic group by observer behavior (classified by location x activity).
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Table Al

Slope of regression, adjusted r, and statistical significance (sig; * p < 0.05, ** p < 0.01, *** p <0.001) for
log-transformed observations, unique observers, and new observers versus year for 2008-2019.

In(observations)

In(unique observers)

In(new observers)

2

2

2

slope r sig slope r sig slope r sig
All data 0.56 0.92 HAkx 0.52 0.94 Hokk 0.52 0.93 HkE
Observer behavior
Resident - enthusiastic 0.85 0.93 *Ex 0.39 0.88 *Ak 0.18 0.55 *
Resident - moderate 0.88 0.86 *kx 0.78 0.97 *Ak 0.76 0.97 *kx
Resident - short-term 1.00 0.68 * 0.86 0.84 *k 0.86 0.84 *E
Visiting - enthusiastic 0.45 0.88 *okk 0.34 0.95 *Ak 0.31 0.95 Hokx
Visiting - moderate 0.94 0.88 *ok* 0.8 0.87 *Ak 0.8 0.87 Hokx
Visiting short-term -0.39 0.02 none -0.26 -0.12 none -0.26 -0.12 none
Observation quality
Research-grade 0.51 0.90 kX 0.5 0.95 *Ak
Needs ID 0.69 0.90 Hkk 0.62 0.96 HkE
Casual 0.72 0.90 kX 0.63 0.91 *Ak
Taxonomic group
Amphibians 0.39 0.75 kX 0.42 0.83 HokE
Birds 0.49 0.93 *E* 0.5 0.93 Hokk
Fishes 0.40 0.85 *E* 0.43 0.9 Hokk
Fungi 0.59 0.78 *E* 0.53 0.87 Hokk
Invertebrates 0.59 0.85 *E* 0.53 0.93 HokE
Mammals 0.51 0.87 *E* 0.47 0.87 Hokk
Plants & algae 0.63 0.92 *E* 0.59 0.93 Rk
Reptiles 0.44 0.84 il 0.46 0.93 Hokk
Land cover
Developed 0.62 0.95 il 0.56 0.94 Hokk
Agriculture 0.56 0.86 il 0.49 0.91 Hokok
Bare Ground 0.45 0.86 il 0.46 0.91 HokE
Grassland 0.60 0.87 il 0.53 0.9 Rk
Dry/Mesic Shrubland 0.55 0.81 okk 0.48 0.89 *okk
Dry/Mesic Forest 0.59 0.84 HEx 0.52 0.94 ook
Wet Forest/Shrubland 0.52 0.88 ok ok 0.49 0.92 *ok ok
Wetland 0.63 0.75 *k 0.64 0.98 oAk
Distance to road/trail
<150 m 0.57 0.90 HEx 0.52 0.93 ok
<553.2m 0.59 0.90 *kk 0.55 0.95 Rk
<15134m 0.48 0.78 *kk 0.48 0.91 *kE
>1513.4m 0.42 0.81 Hkk 0.46 0.94 *kE
Land designation
None 0.55 0.88 Hkk 0.53 0.94 *kE
Limited protection 0.61 0.90 *Ex 0.56 0.95 *Ak
Multi-use 0.58 0.92 Hkk 0.5 0.91 *kE
For biodiversity 0.52 0.8 Hkx 0.43 0.82 *Ak
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Table A2
Pair-wise comparison of observer behavior trends in log-transformed observations, unique observers, and
new observers versus year for 2008-2019. Asterisks indicate significant difference (¥ p <0.05, ¥* p <

0.01, *** p <0.001).

Observations

Resident-Moderate -0.033 -
Resident-Short-term -0.151 -0.118 -
Visiting-Enthusiastic *0.397 0.430 *0.548 -
Visiting-Moderate -0.093 -0.060 0.058 *-0.490 -
Visiting-Short-term 1.236 1.269 *1.387 0.839 *1.329
Resident - Resident - Resident - Visiting- Visiting-
Enthusiastic Moderate  Short-term Enthusiastic Moderate
Unique Observers
Resident-Moderate *-0.388 -
Resident-Short-term *-0.471 -0.083 -
Visiting-Enthusiastic 0.052 **%0.440 **%0.523 -
Visiting-Moderate *-0.414 -0.026 0.057 *** _0.465 -
Visiting-Short-term 0.651 **1.039 **1.122 0.599 **1.065
Resident - Resident - Resident - Visiting- Visiting-
Enthusiastic Moderate  Short-term  Enthusiastic Moderate
New Observers
Resident-Moderate *** .0.572 -
Resident-Short-term ***.0.675 -0.103 -
Visiting-Enthusiastic -0.131 **%0.441 **%0.544 -
Visiting-Moderate ***.0.613 -0.041 0.062 **%.0.482 -
Visiting-Short-term 0.447 *1.019 **1.122 0.578 **1.060
Resident - Resident - Resident - Visiting- Visiting-
Enthusiastic Moderate  Short-term  Enthusiastic Moderate
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Table A3

Difference, by quarter, between observed and predicted observations in 2020-2021, based on linear

models of log-transformed observations from 2008-2019. Significant differences (*) determined by 95%

confidence interval.

2020 2021
JFM AMJ JAS OND JFM AMJ JAS OND
All observations 20.5 -57.7 -65.8 -74.8 -22.5 -7.1 -17.9 -57.5
Observer behavior
Resident - Enthusiastic -75.1 -40.5 -40.7 -77.0 -71.0 -12.4 -22.5 -74.4
Resident - Moderate -63.0 -61.8 -42.7 -25.1 -62.3 -74.8 -67.2 -32.1
Resident - Short-term -75.1 34.7 -85.3 -80.4 -58.7 406.8 -82.4 -92.2
Visiting - Enthusiastic 1131 *-92.6 *-.94.7 -84.0 -9.6 54.0 -32.8 -46.4
Visiting - Moderate -68.4 -93.4 *.93.2 -56.1 -92.8 -77.5 -73.6 -24.2
Observation quality
Casual 2.5 -57.2 -66.0 -78.8 -48.6 -40.6 -45.6 -70.4
Needs ID -32.4 -58.8 -72.5 -74.5 -44.7 -7.5 -44.6 -56.3
Research-grade 51.8 -53.9 -66.9 -71.2 -11.5 16.6 -2.4 -49.0
Taxonomic group
Amphibians 447.0 -68.3 -80.5 -40.3 55.1 55.2 -49.8 16.1
Birds 51.6 -80.3 -79.2 -77.7 -354 -42.0 0.6 -44.4
Fishes 241.0 -52.0 -77.4 -0.7 37.1 69.4 -11.8 129.0
Fungi 44.5 -37.5 -42.6 -36.8 32.7 -15.3 -31.4 -44.9
Invertebrates 22.9 -47.5 -73.6 -70.6 -29.1 6.0 -49.0 -46.2
Mammals 22.6 -59.1 -50.0 *.87.3 -37.2 -9.3 65.7 -63.5
Plants and algae 1.9 -51.7 -72.2 -74.4 -28.1 13 -42.7 -59.8
Reptiles 96.2 *.70.4 -54.7 -72.3 -23.3 -28.6 29.4 -52.9
Land cover
Developed 9.5 -62.8 -56.3 -80.4 -34.7 -47.3 -22.1 -69.7
Agriculture -2.4 -47.6 -24.5 -52.6 -43.7 -22.9 49.7 -39.7
Bare Ground 86.9 -68.9 *-86.9 -58.9 -9.0 66.0 -38.1 11.8
Grassland 40.2 -53.9 -60.2 -55.7 -0.1 18.4 -6.9 -51.8
Dry/Mesic Shrubland 36.6 -79.7 -73.3 -79.1 6.1 -16.8 86.2 -65.8
Dry/Mesic Forest 61.0 -65.5 -80.8 -59.5 7.0 1.4 -56.0 -14.7
Wet Forest/Shrubland -19.0 -33.7 -72.9 -27.1 -6.8 166.9 15.0 50.8
Wetland -21.9 -40.8 *.89.4 -70.7 *.77.5 290.3 -31.7 -67.7
Distance to road/trail
<150m 125 -53.6 -64.3 -74.4 -29.5 -2.6 -19.3 -60.1
<553.2m 94.0 -79.6 *-82.7 -48.9 16.5 -46.9 -46.5 54
<15134m 68.3 -31.0 -71.3 -51.4 136.6 79.5 -32.4 190.6
>1513.4m 19.6 -49.8 -52.2 -23.1 7.3 91.2 -5.8 57.4
Land designation
None 68.3 -31.2 -59.7 -69.6 10.9 18.8 -15.2 -53.4
Limited protection -31.9 -62.2 -63.2 -63.5 -59.5 -14.3 -9.0 -23.8
Multi-use -5.8 -59.3 -61.6 -53.5 -12.0 66.6 8.8 -15.2
For biodiversity 94.3 -90.2 -88.8 -72.7 -50.8 8.5 -33.3 -18.0
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Table A4

Difference, by quarter, between the number of observed and predicted unique observers in 2020-2021,
based on linear models of log-transformed unique observers from 2008-2019. Significant differences (*)
determined by 95% confidence interval.

2020 2021
JFM AMJ JAS OND JFM AMJ JAS OND
All unique observers 34.0 -60.3 -44.4 -56.5 -24.9 -25.9 9.5 -42.5
Observer behavior
Resident - Enthusiastic -0.9 -12.7 -39.1 -52.1 -354 -16.6 -44.6 -66.5
Resident - Moderate -31.3 -26.5 -39.1 -47.4 -48.6 -49.9 -66.2 -71.3
Resident - Short-term -50.7 14.7 -74.1 -81.1 -45.7 141.4 -64.5 -86.2
Visiting - Enthusiastic 39.2 *-90.7 *-88.9 *-83.2 -58.2 -17.3 -6.1 -43.5
Visiting - Moderate -53.2 *-95.3 *-90.0 -59.6 -89.0 *-80.1 -66.2 -22.4
Observation quality
Casual 75.2 -61.0 -41.2 -70.8 -1.3 -42.3 8.8 -63.2
Needs ID 335 -63.4 -55.4 -62.9 -16.5 -40.1 -31.8 -58.5
Research-grade 22.7 -59.5 -50.5 -60.2 -41.1 -19.6 11.6 -44.7
Taxonomic group
Amphibians 253.7 -68.1 -78.0 -37.4 22.6 38.1 -61.1 14.2
Birds 46.7 *.75.1 -67.7 -71.5 -34.8 -22.6 36.5 -41.5
Fishes 38.1 -30.0 -41.4 -24.6 6.4 83.5 68.6 56.6
Fungi 178.1 -51.3 -20.9 -27.4 118.6 2.4 21.6 -30.2
Invertebrates 63.3 -48.2 -53.5 -59.2 1.3 -0.8 -17.6 -54.8
Mammals 71.5 -66.3 -48.5 *-86.8 -1.1 -28.6 814 -56.6
Plants and algae 79.0 -62.3 -45.6 -42.0 2.5 -38.6 1.4 -24.6
Reptiles 62.0 -53.7 -54.9 -63.7 -22.2 8.1 15.6 -38.9
Land cover
Developed 34.0 -62.1 -36.9 -61.6 -28.0 -35.6 17.3 -49.7
Agriculture 90.9 -47.0 -37.3 -37.4 9.4 -4.6 51.2 -32.1
Bare Ground 119.1 -64.2 -71.3 -55.2 14.5 31.6 23.6 14.6
Grassland 96.0 -54.7 -46.2 -57.9 5.8 9.1 36.6 -52.8
Dry/Mesic Shrubland 56.8 -70.1 -42.6 -58.7 -0.9 -26.3 193.2 -34.9
Dry/Mesic Forest 69.1 -65.8 -64.2 -47.6 -204 -16.5 -15.0 -22.4
Wet Forest/Shrubland 36.4 -57.7 -56.4 -46.9 -19.3 0.3 9.1 -12.6
Wetland -20.5 -64.2 -73.3 -60.6 -68.5 61.6 12.0 -32.5
Distance to road/trail
<150m 37.4 -57.2 -44.0 -55.0 -22.8 -20.0 11.9 -39.9
<553.2m 82.1 -71.9 *.79.1 -64.3 -9.2 -38.2 -41.9 -47.1
<15134m 63.0 -42.4 -54.7 -48.0 -13.3 -2.7 -42.4 -15.7
>1513.4m -7.4 -53.0 -44.7 -44.8 -47.4 -9.8 4.5 -5.6
Land designation
None 58.8 -54.2 -40.0 -57.0 -10.1 -14.5 16.1 -48.1
Limited protection 11.0 -65.4 -52.8 *.74.7 -36.5 -254 21.7 -59.3
Multi-use 55.9 -59.6 -58.9 -59.1 -25.6 -11.2 21.6 -34.6
For biodiversity 1311 -84.7 -64.5 -359 -5.0 2.1 43.9 55.8
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Relative change from 2019 in observations and unique observers by observation quality, taxonomic
group, land cover class, land designation, and distance to roads/trails. Unique observers were those who

made at least one observation of a given quality
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Appendix B

Supplementary Material for Chapter 3. Citizen science plant observations complement

professional monitoring and improve estimates of invasive species habitat
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Figure B1

Distribution of iNaturalist and professional management agency observations along elevation and annual

rainfall gradients. Despite little overlap in geographic space (Fig. B1), the datasets captured some similar
environments.
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(a) Hedychium gardnerianum
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Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana
camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class,
where 0 signifies no overlap and 1 is complete overlap.
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(b) Lantana camara
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Figure B2 continued

Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana
camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class,
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where 0 signifies no overlap and 1 is complete overlap.

136

inat_disturb
inat_status

inat_access

inat_disturb
inai_status

inat_access

inat_disturb
inat_status

inat_access

Class
m

agency

nat_1km

inat

agency

0.910.87|0.74/0.83

0.890.94/0.87|0.76/0.84

inat_1km

0.96| 0.9 0.940.89/0.76/0.86]

inat

& P o
o ;="°k & &é“ @‘}ﬁ
& &‘5'/ \,\(b- \@/ &

Class
m

agency

inat_1km

inat

agency
inat_disturb
inat_status
inat_access
inat_1km

inat

agency
inat_disturb
inat_status
inat_access
inat_1km

inat

agency
inat_disturb
inat_status
inat_access

inat_1km




(c) Leucaena leucocephala
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Figure B2 continued
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Similarity or overlap (pairwise Schoener’s D index) between (a) Hedychium gardnerianum, (b) Lantana
camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum model series within each site class,
where 0 signifies no overlap and 1 is complete overlap.
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(d) Psidium cattleianum
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where 0 signifies no overlap and 1 is complete overlap.
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Figure B3

Similarity or overlap (pairwise Schoener’s D index) between single-source habitat suitability models
(iNaturalist- and agency-only) and the combined model, calculated within site classes.
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Figure B4

Similarity or overlap (pairwise Schoener’s D index) between filtered/thinned iNaturalist habitat suitability
models and the unfiltered iNaturalist model of each study species, calculated within site classes.
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Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium
gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable
areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white.
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Figure B5 continued

Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium
gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable
areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white.

142



(c) Leucaena
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Figure B5 continued

Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium
gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable
areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white.
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(d) Psidium Habitat suitability A
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Figure B5 continued
Habitat suitability predicted by iNaturalist unfiltered, agency, and combined models for (a) Hedychium

gardnerianum, (b) Lantana camara, (c) Leucaena leucocephala, and (d) Psidium cattleianum. Unsuitable
areas (cells below the maximum sum of sensitivity and specificity threshold) shown in white.
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Percent contribution of predictors (excluding aspect and precipitation seasonality, which contributed less
than 15% to any model) to each habitat suitability model.
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Range of values predicted suitable for the top continuous predictor of (a) Hedychium gardnerianum, (b)
Lantana camara, () Leucaena leucocephala, and (d) Psdium cattleianum. Median labeled in gray,
outliers removed from plot.
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Appendix C

Supplementary Material for Chapter 4. Monitoring native and restored tropical dry forests with

Landsat NDVI time series.
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Figure C1

Elevation and annual rainfall characteristics of the dry forest (DF) and grassland sites.
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Table C1

Results of Wilcoxon rank sum tests comparing seasonal median NDVI and RCV of NDVI within each
vegetation class or restoration site (pre- and post-restoration for Keaau, Makauwahi, and Ohikilolo) over
the full 1999-2022 series. p-values shown for significant results only.

Median NDVI RCV of NDVI
Season FMA MmJJ ASO FMA MJJ ASO
MJJ <.05 -
Native dry forest ASO <.05 -- <.01 <.01
NDJ - <.01 <.01 - - <.01
MJJ - -
Non-native dry
ASO - -- - <.05
forest
NDJ <.01 <.001 <.001 - - <.05
MlJJ <.001 <.05
Non-native
ASO <.001 <.05 <.001 <.001
grassland
NDJ <.01 <.001 <.001 - <.01 <.001
MJJ <.001 <.001
Auwabhi ASO <.001 -- <.05 <.001
NDJ <.001 -- -- <.001 <.001 <.001
MJJ <.01 <0.05
Keaau
. ASO <.01 -- <0.05 -
Pre-restoration
NDJ <.01 <.01 <.01 - <0.05 <0.05
MJJ <.01 -
Keaau
. ASO <.01 <.01 - -
Post-restoration
NDJ - <.01 <.01 - - -
MJJ - <.05
Makauwahi
. ASO <.01 -- <.001 -
Pre-restoration
NDJ <.01 -- -- <.01 - --
MmJJ <.01 <.05
Makauwahi
. ASO <.01 -- <.01 -
Post-restoration
NDJ <.001 <.001 <.001 - <.01 <.01
MJJ <.001 -
Ohikilolo
. ASO <.001 <.001 - -
Pre-restoration
NDJ <0.05 <.001 <.001 - - --
MJJ <.001 -- -- <.001 - -
Ohikilolo
. ASO <.001 -- -- <.001 <.01 -
Post-restoration
NDJ <0.05 <.001 <.001 - <0.05 <.001
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Table C2

Change in pixel-wise NDVI parameters after restoration at Makauwahi, Ohikilolo, and Keaau. p-values
shown for significant increases (blue) and decreases (orange) as determined by Wilcoxon rank sum tests.
Pre- and post-restoration periods determined by the year that native outplanting began.

Median NDVI RCV of NDVI
Season FMA MJJ ASO NDJ FMA MJJ ASO NDJ
Makauwabhi <0.05 <0.05 <0.01 <.001 <.001 <.001 <.001 <.001
Ohikilolo <0.05 <0.01 <.001 -- -- -- <0.05 --
Keaau -- <0.05 -- <0.05 -- <0.05 <0.05 --
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Table C3
Seasonal median NDVI (and interquartile range) and RCV of NDVI of each study site, calculated over
the 1999-2022 study period.

Median NDVI (IQR) RCV of NDVI
Site FMA MJJ ASO NDJ FMA M) ASO MD)J
Waianae 0.83(0.06) 0.81(0.06) 0.81(0.08) 0.84(0.07) | 0.06 0.06 0.07 0.05
Nanakuli 0.81(0.05)  0.8(0.05)  0.81(0.05) 0.82(0.04) | 0.05 0.05 0.04 0.04
& Kokee-1 0.78(0.08)  0.77(0.06)  0.77(0.09) 0.8 (0.09) 0.07 0.06 0.09 0.08
E Kokee-2 0.78(0.06)  0.76(0.08)  0.78(0.05) 0.8 (0.06) 0.06 0.08 0.05 0.05
£ Manuka-1 0.77(0.16)  0.74(0.08)  0.69(0.23)  0.8(0.15) 0.15 0.08 0.26 0.12
2 Kanepuu-1 0.77(0.13)  0.72(0.13)  0.67(0.2)  0.74(0.16) | 0.10 0.11 0.21 0.16
2 Kanepuu-2 0.68(0.15)  0.64(0.16)  0.56(0.17)  0.64(0.19) | 0.13 0.17 0.22 0.20
Manuka-2 0.66(0.14)  0.59(0.08)  0.61(0.19) 0.7 (0.14) 0.12 0.11 0.24 0.14
Kanaio 0.49(0.16)  0.41(0.13)  0.4(0.12)  0.48(0.14) | 0.23 0.24 0.23 0.23
Hanapepe 0.86(0.06) 0.87(0.04)  0.89(0.04) 0.91(0.03) | 0.04 0.04 0.03 0.02
Kuaokala 0.85(0.07) 0.83(0.09) 0.85(0.08) 0.86(0.07) | 0.06 0.08 0.07 0.06
% Mokihana 0.84(0.08) 0.79(0.07) 0.78(0.09)  0.88(0.06) | 0.07 0.06 0.08 0.04
“C:; Kailua-1 0.82(0.15) 0.85(0.08)  0.87(0.1)  0.83(0.11) | 0.12 0.07 0.08 0.10
g Kalaoa 0.79 (0.1) 0.8 (0.09) 0.79(0.1)  0.81(0.09) | 0.09 0.06 0.10 0.08
& Keokea 0.76(0.14)  0.72(0.18)  0.62(0.26)  0.81(0.17) | 0.12 0.14 0.31 0.13
ZS Lualualei 0.71(0.2)  0.54(0.23)  0.52(0.25)  0.75(0.23) | 0.20 0.30 0.35 0.18
South Point-1 0.71(0.2)  057(0.19) 0.51(0.32) 0.76(0.22) | 0.20 0.24 0.38 0.20
Kanaio Rd 0.71(0.19)  0.69(0.19)  0.69(0.24)  0.81(0.17) | 0.19 0.20 0.21 0.12
Kalaheo 0.72(0.14)  0.66(0.18)  0.67(0.2)  0.78(0.12) | 0.14 0.20 0.21 0.09
Kailua-2 0.7(0.24)  0.52(0.24)  053(0.3)  0.77(0.23) | 0.23 0.35 0.42 0.16
E Piilani Hwy 0.67(0.22) 0.55(0.25) 0.44(0.39) 0.76(0.23) | 0.24 0.35 0.59 0.17
g Kula Hwy 0.67(0.15)  0.63(0.14) 0.61(0.26) 0.71(0.22) | 0.15 0.16 0.32 0.19
a°>f Kapaa Byp 0.61(0.17)  0.55(0.16) 0.51(0.19)  0.69(0.17) | 0.21 0.20 0.25 0.18
®  South Point-2 0.58(0.33)  0.42(0.21) 0.36(0.25)  0.65(0.35) | 0.43 0.34 0.45 0.37
;S Waimea 0.55(0.25)  0.39(0.25) 0.32(0.19) 0.53(0.31) | 0.33 0.49 0.41 0.42
Makaha 0.42(0.27) 0.29(0.14) 0.26(0.16)  0.43(0.28) | 0.48 0.36 0.36 0.47
Pohakuloa 0.39(0.13)  0.35(0.18)  0.32(0.19)  0.43(0.18) | 0.25 0.39 0.42 0.31
. Keaau 0.69(0.14)  0.49(0.19) 0.46(0.23)  0.7(0.21) 0.15 0.28 0.36 0.21
% Makauwahi 0.67(0.19)  0.6(0.21)  0.58(0.25) 0.72(0.24) | 0.19 0.25 0.32 0.21
é Auwahi 0.62(0.16)  0.69(0.13)  0.66(0.22)  0.67(0.16) | 0.20 0.13 0.22 0.16
£ Ohikilolo 0.6(0.17)  0.41(0.17) 038(0.22)  0.67(0.2) 0.20 0.30 0.42 0.21
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Table C4

Kendall rank correlation coefficients of seasonal long-term (PA:) and cumulative precipitation anomalies
(CPA,) from 1978-2019. Orange shading = statistically significant negative relationships (*p < 0.05, **p
<0.01).

PAt CPAt
Site FMA MJJ ASO NDJ FMA M) ASO NDJ
Waianae -0.09 -0.21 * -0.08 -0.2 -0.16 -0.37 * -0.15 -0.29
Kanaio -0.03 -0.03 0.06 -0.2 -0.08 -0.08 0.04 -0.25*
2 Kanepuu-1 0.03 0.07 -0.02 -0.17 0.01 -0.02 -0.07 -0.23
:B_J Kanepuu-2 0.03 0.05 -0.02 -0.17 0 -0.05 -0.07 -0.23
.g Kokee-1 0.01 -0.07 -0.07 -0.17 -0.02 -0.09 -0.11 -0.25
.% Kokee-2 0.13 -0.04 0.01 -0.1 0.11 0.01 0 -0.14
2 Manuka-1 -0.19 -0.32 ** -0.19 -0.15 -0.32 * -0.52 ** -0.23 -0.27
Manuka-2 -0.19 -0.31 ** -0.19 -0.16 -0.32 -0.52 ** -0.23 -0.26
Nanakuli 0.06 -0.07 -0.03 -0.13 0.06 -0.06 -0.15 -0.23
Mokihana 0.14 -0.03 -0.05 -0.09 0.14 -0.17 -0.13 -0.13
Hanapepe 0.08 -0.07 0 -0.05 0.14 -0.13 -0.05 -0.1
§ Kuaokala -0.1 -0.17 -0.07 -0.24 * -0.16 -0.3 -0.17 -0.32
"i;J Lualualei 0.06 -0.01 -0.06 -0.14 0.08 -0.05 -0.2 -0.24
E Keokea 0.02 0.06 0.14 -0.22 * -0.01 -0.02 0.2 -0.26
E Kanaio Rd -0.05 -0.06 0.01 -0.18 -0.1 -0.12 0.06 -0.27
é Kalaoa -0.23 * -0.15 -0.14 -0.15 -0.27 -0.23 -0.19 -0.25
Kailua -0.19 -0.12 -0.09 -0.15 -0.23 -0.2 -0.16 -0.21
South Point -0.05 0.01 -0.12 -0.17 -0.12 -0.1 -0.11 -0.22
Kapaa Byp 0.09 -0.12 -0.13 -0.08 0.07 -0.18 -0.2 -0.18
Kalaheo 0.08 -0.09 0.01 -0.02 0.13 -0.15 -0.04 -0.07
-r% Makaha -0.05 -0.11 -0.12 -0.17 -0.07 -0.23 -0.22 -0.24
g Kailua -0.01 -0.19 -0.04 -0.17 -0.09 -0.3 -0.09 -0.27
; Kula Hwy -0.01 -0.01 0.09 -0.2 -0.03 0 0.13 -0.28
E Piilani Hwy -0.09 -0.26 * 0.08 -0.12 -0.13 -0.29 0.06 -0.2
zg Waimea -0.02 0.05 0.21 -0.08 -0.08 0.1 0.2 -0.14
Pohakuloa -0.13 -0.02 0 -0.23 * -0.2 -0.1 -0.06 -0.35*
South Point -0.07 -0.01 -0.13 -0.17 -0.15 -0.15 -0.1 -0.21
c Auwahi -0.01 0.01 0.02 -0.21* -0.05 0.01 0.06 -0.27
';9-,; o Keaau -0.07 -0.16 -0.11 -0.18 -0.12 -0.3 -0.22 -0.26
g @ Makauwahi 0.02 -0.21 -0.13 -0.09 0.08 -0.26 -0.17 -0.18
& Ohikilolo -0.14 -0.24 * -0.11 -0.21* -0.2 -0.34 * -0.22 -0.3
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Table C5

Spearman correlation coefficient and statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001)
between PA: and CPA; and median NDVI from 1999-2019. Blue/orange shading = significant
positive/negative relationships.

PA: x median NDVI CPA: x median NDVI
Site FMA MJJ ASO NDJ FMA MJJ ASO NDJ
Waianae 0.04 0.53 * 0.28 -0.32 -0.15 0.52 0.14 -0.61 **
Kanaio 0.81 *** 0.43 0.65 ** 0.16 0.75 *** 0.6 ** 0.49 * 0.18
= Kanepuu-1 0.38 0.36 0.65 ** -0.11 0.51 * 0.57 * 0.56 * 0.02
:B_J Kanepuu-2 0.59 * 0.46 0.47 * 0.15 0.69 ** 0.61 ** 0.35 0.27
.g Kokee-1 0.24 0.32 0.57 ** 0.21 0.4 0.42 0.63 ** 0.4
.% Kokee-2 0.3 0.29 0.52 * -0.02 0.29 0.39 0.58 * 0.17
2 Manuka-1 0.07 -0.57 0.05 -0.21 0.17 -0.25 -0.11 -0.31
Manuka-2 -0.09 -0.45 0.19 -0.06 0.14 -0.23 0.18 -0.01
Nanakuli 0.26 0.21 0.29 0.1 0.06 0.14 0.1 0.38
Mokihana 0.15 0.33 0.48 * 0.18 0.07 0.41 0.62 ** 0.05
Hanapepe 0.41 0.81 *** 0.49 * -0.26 0.29 0.66 ** 0.43 -0.05
g Kuaokala -0.06 0.37 0.1 -0.14 -0.01 0.26 0.19 -0.09
qg. Lualualei 0.5 * 0.57 * 0.34 0.26 0.32 0.26 0.48 * 0.2
; Keokea 0.71 *** 0.61 * 0.36 0.05 0.62 ** 0.8 *** 0.52 * -0.01
E Kanaio Rd 0.59 ** 0.32 0.58 ** 0.02 0.67 ** 0.61 ** 0.6 ** -0.12
é Kalaoa 0.36 0.34 0.44 0.13 0.34 0.36 0.36 -0.11
Kailua 0.38 0.2 0.45 0.01 0.36 0.09 0.63 ** -0.18
South Point 0.53 * 0.36 0.53 * 0.26 0.42 0.44 0.65 ** 0.29
Kapaa Byp 0.13 0.64**  0.71***  0.46* 0.4 0.51* 0.58**  0.36
Kalaheo 0.49 * 0.73 *** 0.69 *** 0.08 0.32 0.47 * 0.51 * -0.13
-r% Makaha 0.79 *** 0.53 * 0.47 * 0.44 * 0.6 ** 0.43 0.42 0.1
g Kailua 0.68 ** 0.34 0.71 *** 0.51 * 0.48 * 0.46 * 0.49 * 0.25
; Kula Hwy 0.74 *** 0.67 ** 0.69 ** 0.08 0.67 ** 0.67 ** 0.64 ** -0.09
E Piilani Hwy 0.52 * 0.06 0.78 *** 0.44 * 0.4 0.26 0.66 ** 0.2
Zg Waimea 0.42 0.38 0.56 ** 0.59 ** 0.38 0.5 * 0.59 ** 0.33
Pohakuloa 0.6 ** 0.54 * 0.61 ** -0.17 0.42 0.25 0.62 ** -0.61 **
South Point 0.54 * 0.33 0.65 ** 0.59 ** 0.39 0.41 0.65 ** 0.32
c Auwabhi 0.42 0.3 0.59 * -0.22 0.45 0.46 0.58 * -0.18
';9-'; o Keaau 0.78 *** 0.33 0.27 0.58 ** 0.61 ** 0.07 0.36 0.35
g @ Makauwahi 0.51 * 0.77 *** 0.61 ** 0.18 0.41 0.59 ** 0.49 * -0.26
& Ohikilolo 0.27 0.67 ** 0.52 * 0.39 0.48 * 0.41 0.59 ** 0.05
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Table C6

Spearman correlation coefficient and statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001)
between PA: and CPA; and RCV of NDVI from 1999-2019. Blue/orange shading = significant
positive/negative relationships.

PA: x RCV of NDVI CPA; x RCV of NDVI
Site FMA MJJ ASO NDJ FMA MJJ ASO NDJ
Waianae 0.43 0.12 0.21 0.22 0.33 0.21 0.31 0.29
Kanaio -0.18 0.02 -0.11 0.1 0.01 0.08 0.07 -0.26
= Kanepuu-1 -0.24 0.26 0.26 0.36 -0.27 0.18 0.31 0.21
jB_J Kanepuu-2 -0.35 -0.3 -0.01 -0.17 -0.26 -0.26 0.13 -0.23
E Kokee-1 0.22 0.21 -0.04 -0.17 0.1 0.27 0.01 -0.44 *
.% Kokee-2 0.04 -0.17 -0.4 -0.08 0.04 0.1 -0.56 * 0.02
2 Manuka-1 0.18 0.15 0.23 0.22 0.31 0.72 * 0.19 0.27
Manuka-2 -0.34 -0.5 -0.08 -0.18 -0.13 -0.22 -0.29 -0.31
Nanakuli -0.04 0.14 -0.25 0.37 -0.04 0.26 -0.36 0.13
Mokihana -0.13 -0.17 -0.04 -0.64 ** -0.16 -0.12 -0.34 -0.49 *
Hanapepe -0.28 0.03 -0.25 -0.05 -0.32 -0.16 -0.1 0.1
g Kuaokala -0.04 -0.16 -0.01 0.01 -0.21 0.13 0.19 -0.05
qcé. Lualualei -0.48 * 0.01 0.49 * -0.06 -0.59 ** -0.01 0.42 -0.23
Z Keokea -0.29 -0.16 0.08 0.16 -0.27 -0.32 -0.05 -0.01
§ Kanaio Rd -0.22 -0.27 -0.23 0.02 -0.19 -0.14 -0.34 0.11
ZS Kalaoa -0.62 ** 0.45 -0.38 -0.14 -0.58 * 0.53 -0.3 0.03
Kailua -0.14 0.25 0.34 0 -0.05 0.06 0.03 0.18
South Point -0.2 0.22 -0.24 -0.17 -0.39 0.43 -0.07 -0.34
Kapaa Byp 0.28 0.24 0.21 -0.36 0.06 0.56 * 0.11 -0.23
Kalaheo -0.09 -0.58 ** -0.24 0.13 -0.15 -0.17 -0.12 0.14
-(% Makaha 0.05 0.59 ** 0.53 * -0.07 0.27 0.48 * 0.43 -0.12
g Kailua -0.22 -0.17 0.28 -0.34 -0.2 -0.12 0.08 -0.23
E;JD Kula Hwy -0.28 0.23 -0.22 -0.08 -0.18 0.05 0.14 -0.28
E‘ Piilani Hwy -0.4 -0.05 -0.21 -0.34 -0.14 -0.24 -0.15 0.06
Zg Waimea -0.29 -0.21 0.28 -0.31 -0.45 0.09 0.11 -0.32
Pohakuloa -0.12 -0.07 0.14 0.36 0.14 0.03 0.2 0.28
South Point -0.34 0.02 0.03 -0.63 ** -0.27 0.11 0.04 -0.44 *
- Auwahi -0.19 -0.21 -0.11 0.14 -0.3 -0.34 -0.08 -0.01
',*9; o Keaau -0.27 0.01 0.64 ** -0.43 -0.11 0.29 0.54 * -0.12
g “ Makauwahi -0.44 -0.6 ** 0.16 -0.1 -0.2 -0.34 -0.01 0.28
& Ohikilolo -0.24 0 0.29 -0.14 -0.08 -0.03 0.22 0.27
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