UC Davis

Recent Work

Title

Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey中國之機動化暨交通工具購買及使用行為:上海調研及案例分析

Permalink

https://escholarship.org/uc/item/9kn849h1

Author

Ni, Jason

Publication Date

2008-09-01

Peer reviewed

Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey

By

NI, MENG-CHENG (JASON)

B.S. (National Taiwan University) 1998M.S. (University of California, Berkeley) 2003M.C.P. (University of California, Berkeley) 2003

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

TRANSPORTATION TECHNOLOGY AND POLICY

in the

OFFICE OF GRADUATE STUDIES

of the

UNICERSITY OF CALIFORNIA, DAVIS

Approved

Professor Daniel Sperling, Co-chair

Dr. Ken Kurani, Co-chair

Professor Patricia Mohktarian

Dr. Tom Turrentine

Committee in Charge

2008

中國之機動化暨交通工具購買及使用行為: 上海調研及案例分析

ABSTRACT

Motorization is the transition from non-motorized travel means (e.g., walk) to motorized travel means (e.g., car). China, as the most populous country in the world, has started the motorization process, and its results will have huge impact on the whole world in terms of transportation, energy, environment and automobile market.

At the national level, motorization is usually measured by the growth of auto ownership, and average income (GDP per capita) is usually considered the major driving force. However, this dissertation is focused on studying motorization at the individual or household. To do so, a pilot survey of 122 residents of Shanghai was conducted in late 2005, and a final survey of 1,037 people was conducted in mid-2006.

Research methodology, motorization pathway, and vehicle purchase (and use) behavior are three topics of this dissertation. Basically, this dissertation attempts to answer the following three questions: How to conduct survey research in China? What are motorization pathways in China? What is the vehicle purchase and use behavior in China? Regarding the first, trust from respondents is an important factor affecting people's motivation to participate in the study. A short, straight-forward questionnaire and a team speaking the local dialect help to facilitate survey research. In terms of motorization pathways, the survey shows that motorization pathways in Shanghai are diverse, complicated (multi-staged), and as one would expect at this point, do not include cars for many households and individuals. About half of the respondents don't simply follow my hypothetical motorization direction. In terms of the purchase and use behavior, variables

such as gender, perceptions of different aspects of the utility of different travel means, as well as personal or household income are significant. Purchasing a car may be considered a "family decision" as it is positively associated with household income; however, weekday car use seems to be a more personal choice as it is positively associated with personal income.

Last, although Shanghai itself can not represent the whole China, the results (motorization pathways; choice models) of the Shanghai study may be generalizable to other Chinese cities experiencing rapid economic growth and with various transportation alternatives.

(350 words)

KEY WORDS:

Motorization, China, Shanghai, Survey, Pathway, Choice Model

ACKNOWLEDGEMENTS

This is the most challenging "chapter" of the whole dissertation, because I have to thank so many people. First, I would like to thank Professor Dan Sperling (my dissertation co-chair) for giving me this opportunity to involve in such interesting and important topic. I would also like to express my gratitude to Dr. Ken Kurani, my dissertation co-chair, for working with me in the past several years. From Ken, I learned not only the "knowledge" but also "how to develop the knowledge". Professor Patricia Mokhtarian is the third person I would like to specially thank to. Again, not only the knowledge learned from the class, but also her serious attitude on doing research impresses me very much. Also, I want to thank Dr. Tom Turrentine for sharing me so many great ideas in my proposal writing phase. There is an old Chinese saying: "一日為師,終身為父". It means that a teacher sometimes can become almost like people's father/mother, because he/she can teach people not only the book, but also the *life*. This Chinese saying is the best example for my five-year learning and working experiences in the Institute of Transportation Studies at UC Davis (ITS-Davis). Other than professors, many people at the ITS-Davis also play important role to make the China project happened, including Joe Krovoza, Ernie Hoftyzer, and especially, Mr. Yunshi Wang, Director of China Center of Energy and Transportation at ITS-Davis.

December 2004 was the start of my China *adventure*. From 2004 to 2006, I spent about one and half year in China, including Shanghai and Beijing. During my stay in China, I would like to thank Professor Chen XiaoHong (School of Transportation Engineering, Tongji University) and Professor Ma Jun (School of Automobile, Tongji University) for

their comments and student helpers (Joyce Fu, Frances Fan and Huang Rui, etc.) In addition to Tongji University, Ford China (Mr. Mei-Wei Chen, Mr. Keith Davey) also gave me lots of local help during my survey implementation. Also, I would like to thank Professor Jason Chang (National Taiwan University) for sharing me his China experiences and help me familiarized with Shanghai in a short time. The last, I need to say *thank you* to Dr. Jonathan Weinert, my classmate and the one (and only one) who went to China with me at the very beginning (December, 2004).

After returning from China to US, the data analysis and dissertation writing was a long process. I would like to thank many of my friends in China and US for the kindly advice and help, especially Ms. Raymos Au, who spend lots of time helping me in the data cleaning phase.

When I prepare this acknowledgement, a lot of good memories emerge. I will never forget how much help I received and will always be grateful. The last, I would like to dedicate this work to my mother, who supported and encouraged me from my first study abroad (from Taiwan to USA in 2000) to my second study abroad (from USA to China in 2004)!

博士論文的撰寫,對我而言,不但是知識求取的過程,更是自我的探索與實現。本人在此,對所有曾幫助過我,或曾參與其中的人,再次表達由衷的感謝!

倪孟正

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENT	v
CHAPTER 1: INTRODUCTION	1
Motorization: Definition and World Studies	1
Motorization in China	4
Definition of a "Car" in China	7
Shanghai: City of Wealth, Diversity and Car Debate	12
Shanghai vs. Beijing	21
Goal and Outline of the Dissertation	23
CHAPTER 2: LITERATURE AND KEY STATISTICS	25
Survey Research in China	25
Motorization in China	31
Vehicle Purchase Behavior in China	38
CHAPTER 3: METHODOLOGY.	43
Methodology Overview	43
Pilot Survey	45
Final Survey	53
Lesson Learned from Local Implementation	65
Findings based on Survey Results	70
CHAPTER 4: MOTORIZATION PATHWAY	87
Question Design	87
Data Cleaning	89

Data Validation	90
Common Motorization Pathway	104
Direction of Motorization.	107
CHAPTER 5: VEHICLE PURCHASE AND USE MODELS	143
Factor Analysis	143
Dependent Variables	167
Explanatory Variables	169
Data Preparation	172
Model Specification	178
Model Estimation	186
Independence from Irrelevant Alternatives Test (IIA)	193
Interpretation of Model Results	202
CHAPTER 6: CONCLUSION.	222
Q1: How to conduct survey research in China?	222
Q2: What is the motorization pathway in China?	226
Q3: What is the vehicle purchase and use behavior in China?	229
Future Research	232
REFERENCES	234
APPENDICES	238

TABLE OF FIGURES

Figure 1: Income and Motor Vehicle Ownership (1970 vs. 1996)	3
Figure 2: Income and Passenger Vehicle Ownership in Seven Asian Cities (1980 -	- 2002)
	3
Figure 3: Estimated Bicycle Ownership in China	5
Figure 4: Private vs. Non-Private Car in China (1985 – 2003)	12
Figure 5: Geographical Location of Shanghai in China	13
Figure 6: City Map of Shanghai (Urban vs. Suburb)	14
Figure 7: Regional Distribution of GDP/capita (PPP adjusted) in China	16
Figure 8: GDP/capita vs. Vehicle Ownership in China Cities (2002)	19
Figure 9: Private Motor Vehicle Ownership Share in Shanghai (2001 vs. 2003)	21
Figure 10: Distance-based Mode Shares of Shanghai (1986, 1995, 2000, 2020)	37
Figure 11: Car Purchase Criteria (Shanghai, Beijing, Guangzhou, Shenzhen)	41
Figure 12: Hypothetical Motorization Direction	43
Figure 13: Pilot Survey on Ferry	46
Figure 14: Pilot Survey at Old Town Shanghai (Lao Ximen)	47
Figure 15: Survey Locations (Pilot Survey)	48
Figure 16: Survey Reward (Pilot Survey)	51
Figure 17: Survey Locations (Final Survey)	54
Figure 18: Survey Reward (Taxi Coupon, Final Survey)	61
Figure 19: Survey Reward (i-Pod, Final Survey)	62
Figure 20: Type 1 and Type 2 Validation	92
Figure 21: Type 3Validation	93
Figure 22: Hypothetical Motorization Direction	127
Figure 23: Final Stage of Motorization vs. Hypothetical Motorization Direction	141
Figure 24: The F1 Life-style Store in Shanghai	153
Figure 25: Internet Commercial of Family-oriented and Green Life	163
Figure 26: Internet Commercial about Vehicle Status in China	165
Figure 27: Official Car Used in Important Government Meeting in China	
Figure 28: Internet Café in Shanghai	
Figure 29: Flow Charts of Data Preparation	
Figure 30: Model Development Procedures	
Figure 31: Subway of Shanghai (weekday)	

TABLE OF TABLES

Table 1: Vehicle (motorized and non-motorized) Growth in China (1990 – 2000)4
Table 2: China Car Category (GB/T3730.1-2001)10
Table 3: China Car Category (China Statistical Yearbook)
Table 4: Car Penetration and GDP growth in China (1990 – 2000)
Table 5: Nominal vs. PPP-adjusted GDP/capita in China and Shanghai (2000)16
Table 6: Foreign People in Shanghai
Table 7: Shanghai vs. Beijing – Assumed Factors Affecting Car Purchase
Table 8: Comparison of Survey Research Projects in China
Table 9: Numbers of Vehicles Owned per 100 Urban Households [China, 1996 - 2005] 32
Table 10: Numbers of Vehicles Owned per 100 Rural Households [China, 1996 – 2005]
32
Table 11: Numbers of Vehicles Owned per 100 Urban Households [Shanghai, 1996 –
2005]
Table 12: Numbers of Vehicles Owned per 100 Rural Households [Shanghai, 1996 –
2005]
Table 13: Numbers of Vehicles Owned per 100 Urban Households [Beijing, 1996 – 2005]
Table 14: Numbers of Vehicles Owned per 100 Rural Households [Beijing, 1996 – 2005]
35
Table 15: Five most Important Car Purchase Criteria (Beijing)
Table 16: Deterrence Factors of Driving (Hong Kong)
Table 17: Survey Locations and Response Rates (Pilot Survey)
Table 18: Survey Locations and Response Rate (Final Survey)
Table 19: Household Survey Locations (Final Survey)65
Table 20: Original Questions about Factors of Survey Participation
Table 21: Comparison between Face-to-Face and On-line Survey
Table 22: Factors of Survey Participation (Face-to-Face Survey Type, 1037 Respondents,
Five-Point Importance Scale)72
Table 23: Factors of Survey Participation (On-line Survey Type, 78 Respondents,
Five-Point Importance Scale)72
Table 24: Factors of Survey Participation (Face-to-Face Survey Type, 1037 Respondents,
Three-Point Importance Scale)74
Table 25: Factors of Survey Participation (On-line Survey Type, 78 Respondents,
Three-Point Importance Scale)

Table 26: Cross-tabulation: Survey Type x Time Cost	76
Table 27: Cross-tabulation: Survey Type x Research Topic	77
Table 28: Cross-tabulation: Survey Type x Authorization	77
Table 29: Cross-tabulation: Survey Type x Confidentiality	78
Table 30: Cross-tabulation: Survey Type x Reward (Guaranteed, Non-Cash)	79
Table 31: Cross-tabulation: Survey Type x Reward (Guaranteed, Cash)	79
Table 32: Cross-tabulation: Survey Type x Reward (Drawing, Non-Cash)	80
Table 33: Cross-tabulation: Survey Type x Reward (Drawing, Cash)	81
Table 34: Cross-tabulation: Survey Type x Friend's Referral	81
Table 35: Reclassification of Location Type	82
Table 36: Cross-tabulation: Location Type x Most Expensive Vehicle	84
Table 37: Cross-tabulation: Location Type x Most Frequently Used Travel Means	
(weekday)	85
Table 38: Cross-tabulation: Location Type x Most Frequently Used Travel Means	
(weekend)	86
Table 39: Vehicle Purchase and Use Questions	91
Table 40: Three Types of Validation	92
Table 41: Walk Experience vs. Most Frequently Used Travel Means (weekday)	95
Table 42: Walk Experience vs. Most Frequently Used Travel Means (weekend)	95
Table 43: Bicycle Use vs. Bicycle Ownership	96
Table 44: Bicycle Use vs. Most Expensive Vehicle Owned	96
Table 45: Bicycle Use vs. Most Frequently Used Travel Means (weekday)	96
Table 46: Bicycle Use vs. Most Frequently Used Travel Means (weekend)	97
Table 47: Public Transportation Use vs. Most Frequently Used Travel Means (weekda	ay)
	97
Table 48: Public Transportation Use vs. Most Frequently Used Travel Means (weeker	nd)
	97
Table 49: Motorized Two-wheeler / Motorcycle Use vs. Motorized Two-wheeler	
Ownership	98
Table 50: Motorized Two-wheeler / Motorcycle Use vs. Motorcycle Ownership	98
Table 51: Motorized Two-wheeler / Motorcycle Use vs. Most Expensive Vehicle Own	ned
	98
Table 52: Motorized Two-wheeler / Motorcycle Use vs. Most Frequently Used Travel	
Means (weekday)	
Table 53: Motorized Two-wheeler / Motorcycle Use vs. Most Frequently Used Travel	1
Means (weekend)	99

Table 54: Taxi / Rented Car Use vs. Most Frequently Used Travel Means (weekday)	.100
Table 55: Taxi / Rented Car Use vs. Most Frequently Used Travel Means (weekend)	.100
Table 56: Car Use vs. Car Ownership	.100
Table 57: Car Use vs. Most Expensive Vehicle Owned	.101
Table 58: Car Use vs. Most Frequently Used Travel Means (weekday)	.101
Table 59: Car Use vs. Most Frequently Used Travel Means (weekend)	.101
Table 60: Company Car Use vs. Most Frequently Used Travel Means (weekday)	.102
Table 61: Company Car Use vs. Most Frequently Used Travel Means (weekend)	.102
Table 62: Single Stage (with Single Mode) Pathway Groups and Top Answers to Three	ee
Validation Questions	.103
Table 63: Top 30 Motorization Pathway Patterns (50% of the cases)	.106
Table 64: Number of Motorization Stages (100% of the cases)	.107
Table 65: Partial and Complete Motorization Pathway (Looking Forward)	.108
Table 66: Tree Diagram (Start with "Walk", Look Forward)	.109
Table 67: Tree Diagram (Start with "Bicycle", Look Forward)	. 111
Table 68: Tree Diagram (Start with "Public Transportation", Look Forward)	.112
Table 69: Tree Diagram (Start with "Motorized Two-wheeler or Motorcycle", Look	
Forward)	.113
Table 70: Tree Diagram (Start with "Taxi or Rented Car", Look Forward)	.114
Table 71: Tree Diagram (Start with "Car", Look Forward)	.115
Table 72: Tree Diagram (Start with "Company Car", Look Forward)	.115
Table 73: Partial and Complete Motorization Pathway (Looking Backward)	.116
Table 74: Tree Diagram (End with "Walk", Look Backward)	.117
Table 75: Tree Diagram (End with "Bicycle", Look backward)	.118
Table 76: Tree Diagram (End with "Public Transportation", Look Backward)	.119
Table 77: Tree Diagram (End with "Motorized Two-wheeler or Motorcycle", Look	
Backward)	.120
Table 78: Tree Diagram (End with "Taxi or Rented Car", Look Backward)	.121
Table 79: Tree Diagram (End with "Car", Look Backward)	.123
Table 80: Tree Diagram (End with "Company Car", Look Backward)	.124
Table 81: Summary of Tree Diagrams	.126
Table 82: Check of Hypothetical Motorization Direction	.128
Table 83: Tree Diagram (End with "Walk", Look Backward, Don't Follow Hypothetic	cal
Direction)	.129
Table 84: Tree Diagram (End with "Bicycle", Look Backward, Don't Follow	
Hypothetical Direction)	.130

Table 85: Tree Diagram (End with "Bicycle", Look Backward, Follow Hypothetical	
Direction)	.130
Table 86: Tree Diagram (End with "Public Transportation", Look Backward, Don't	
Follow Hypothetical Direction)	.131
Table 87: Tree Diagram (End with "Public Transportation", Look Backward, Follow	
Hypothetical Direction)	.131
Table 88: Tree Diagram (End with "Motorized Two-wheeler or Motorcycle", Look	
Backward, Don't Follow Hypothetical Direction)	.132
Table 89: Tree Diagram (End with "Motorized Two-wheeler or Motorcycle", Look	
Backward, Follow Hypothetical Direction)	.132
Table 90: Tree Diagram (End with "Taxi or Rented Car", Look Backward, Don't followers)W
Hypothetical Direction)	.133
Table 91: Tree Diagram (End with "Taxi or Rented Car", Look Backward, Follow	
Hypothetical Direction)	.134
Table 92: Tree Diagram (End with "Car", Look Backward, Don't follow Hypothetica	1
Direction)	.135
Table 93: Tree Diagram (End with "Car", Look Backward, Follow Hypothetical	
Direction)	.136
Table 94: Tree Diagram (End with "Company Car", Look Backward, Don't follow	
Hypothetical Direction)	.137
Table 95: Tree Diagram (End with "Company Car", Look Backward, Follow	
Hypothetical Direction)	.137
Table 96: Summary of Tree Diagrams (Follow vs. Don't Follow Hypothetical	
Motorization Direction)	.138
Table 97: Patterns against Three Hypothetical Rules of Motorization Direction	.140
Table 98: Cross-tabulation: Final Stage of Motorization vs. Hypothetical Motorization	n
Direction	.141
Table 99: Original Design of Survey PART III	.144
Table 100	.145
Table 101	.145
Table 102	.146
Table 103	.147
Table 104	.147
Table 105	.148
Table 106	.148
Table 107	148

Table 108: Original Communalities (4-factor solution, PART III)	149	
Table 109: Communalities after Removing V132, V137, V138 (4-factor solution, P.	ART	
III)	149	
Table 110: Final 4-Factor Solution of PART III (Rotated Factor Matrix)	150	
Table 111: Final 4-Factor Solution of PART III (Factor Name)	151	
Table 112: Original Design of Survey PART IV	155	
Table 113	156	
Table 114	156	
Table 115	157	
Table 116	158	
Table 117	158	
Table 118	158	
Table 119	158	
Table 120	159	
Table 121: Original Communalities (4-factor solution, PART IV)	160	
Table 122: Communalities after Removing V155 (4-factor solution, PART IV)	160	
Table 123: Final 4-Factor Solution of PART IV (Rotated Factor Matrix)	160	
Table 124: Final 4-Factor Solution of PART IV (Factor Name)		
Table 125: Categorization of Explanatory Variables	172	
Table 126: Distribution of Missing Data (Dependent Variable = Most Expensive Ve	hicle	
Owned)	173	
Table 127: Distribution of Missing Data (Dependent Variable = Most Frequently Us	sed	
Travel Means on Weekday)	174	
Table 128: Distribution of Missing Data (Dependent Variable = Most Frequently Us	sed	
Travel Means on Weekend)	174	
Table 129: 25 Data Imputation Groups	177	
Table 130: 10 Subsets of Explanatory Variables to Determine the Significant Variab	oles	
	181	
Table 131: Significant Variables of 10 Subsets of Variables [Dependent Variable = N		
Expensive Vehicle Owned]		
Table 132: Initial Model Specification [Dependent Variable = Most Expensive Veh		
Owned]		
Table 133: Significant Variables of 10 Subsets of Variables [Dependent Variable = N	Most	
Frequently Used Travel Means (weekday)]		
Table 134: Initial Model Specification [Dependent Variable = Most Frequently Use	d	
Travel Means (weekday)]	184	

Table 135: Significant Variables of 10 Subsets of Variables [Dependent Variable = Most
Frequently Used Travel Means (weekend)]
Table 136: Initial Model Specification [Dependent Variable = Most Frequently Used
Travel Means (weekend)]
Table 137: Estimation of MNL Model [Dependent Variable = Most Expensive Vehicle
Owned]
Table 138: Goodness-of-fit Statistics for Estimated MNL Model [Dependent Variable =
Most Expensive Vehicle Owned]
Table 139: Estimation of MNL Model [Dependent Variable = Most Frequently Used
Travel Means (weekday)]
Table 140: Goodness-of-fit Statistics for Estimated MNL Model [Dependent Variable =
Most Frequently Used Travel Means (weekday)]
Table 141: Estimation of MNL Model [Dependent Variable = Most Frequently Used
Travel Means (weekend)]
Table 142: Goodness-of-fit Statistics for Estimated MNL Model [Dependent Variable =
Most Frequently Used Travel Means (weekend)]
Table 143: 10 Nested Logit Model Structures Tested [Dependent Variable = Most
Expensive Vehicle Owned]
Table 144: Summary of Nest Logit Model Test [Dependent Variable = Most Expensive
Vehicle Owned]
Table 145: 10 Nested Logit Model Structures Tested [Dependent Variable = Most
Frequently Used Travel Means (weekday) (weekend)]
Table 146: Summary of Nest Logit Model Test [Dependent Variable = Most Frequently
Used Travel Means (weekday)]
Table 147: Summary of Nested Logit Model Test [Dependent Variable = Most Frequently
Used Travel Means (weekend)]
Table 148: Nested Logit Model of Most Expensive Vehicle Owned
Table 149: Cross-tabulation: "Car as the Most Expensive Vehicle Owned" x "Car is a
symbol of success" (Utility Perception)
Table 150: Nested Logit Model of Most Expensive Vehicle Owned (without "license"
variables)
Table 151: Nested Logit Model of Most Frequently Used Travel Means (weekday)210
Table 152: Nested Logit Model of Most Frequently Used Travel Means (weekday)
(without "license" variables)
Table 153: Multinomial Logit Model of Most Frequently Used Travel Means (weekend)
216

Table 154: Cross-tabulation: "Car as the Most Frequently Used Means" x "Car	has
Carrying Capacity" (Utility Perception)	218
Table 155: Multinomial Logit Model of Most Frequently Used Travel Means (w	eekend)
(without "license" variables)	219
Table 156: Correlation between Personal and Family Income	220
Table 157: Comparison of Three Models	230

CHAPTER 1: INTRODUCTION

Motorization: Definition and World Studies

This dissertation starts by defining the term "motorization" as the changing of

transportation from non-motorized means to motorized means. Others, such as Schipper

et al. (2004) discuss "motorization" and Cherry et al. (2007) discuss "motorization

pathway", but a discussion of the definition of motorization is usually missing or

insufficient. The motorized means are transportation tools powered by fuel (gasoline,

electricity, LPG, etc.) instead of human effort. At the individual level, motorization can

be understood as a substitution from walk and bicycle to motorcycle and automobile,

complicated by collective motorized modes such as taxi, bus, and transit. At the national

level, motorization is usually reflected by the growth of the automobile fleet or per capita

auto ownership. Instead of a single event, motorization usually takes place as a series of

transitions over time, and these transitions at an individual, household, business

enterprise, or other micro decision-making units are that unit's "motorization pathway."

In this dissertation, I take the larger, and usually national, collection of motorization

pathways to be motorization.

In human history, motorization plays an important role, as it is not merely about the

substitution of automobiles and trucks for non-motorized travel modes; it further affects

people's travel pattern, work and housing location choice at the individual level and

brings in impacts on transportation, energy and environment at the world or national level.

1

Since the 1960s, many studies have been conducted to explain motorization in different countries around the world. "At the national level, income alone typically explains more than 90 percent of the variation in motorization levels, and at the urban level more than 80 percent. The growth of national motor vehicle fleets parallels that of income: a 1 percent increase in income is associated with a 1 percent increase in motor vehicles, and this relationship has been relatively stable for the past 30 years" (U.S. National Research Council and Chinese Academy of Engineering, 2003). Clearly, income is correlated with motorization at the aggregate national level. Figure 1 shows average income (measured as per capita GDP) versus motor vehicle ownership in 50 selected countries. Seven countries are labeled (including China) with the GDP per capita transformed to 1995 US dollars. For each country in Figure 1, a line segment connects the country's position in 1970 with its position in 1996. Clearly, for many countries, the slope (compare 1970 with 1996) between income and motor vehicle ownership (vehicle/1000 people) is close to 45 degrees. Focusing on similar measures in seven Asian cities in Figure 2, we see many cities are exceptions to the national scale generalization, for example, Bangkok and Jakarta. Therefore, I believe an "income-auto ownership" linear relationship will be further challenged at a more disaggregate level, e.g., individual, even if it holds at the aggregate level, e.g., nation. The main effort of this dissertation is to describe motorization pathways and vehicle purchase and use behavior at the individual level in Shanghai, China.

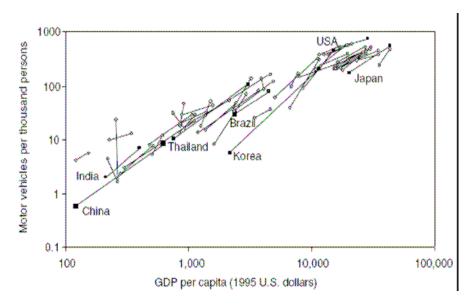


Figure 1: Income and Motor Vehicle Ownership (1970 vs. 1996)

Sources: U.S. National Research Council and Chinese Academy of Engineering, Personal Cars and China (Washington, DC: National Academies Press, 2003); Motorization data: International Road Federation (2001 and earlier); Other data: World Bank (2001 and earlier)

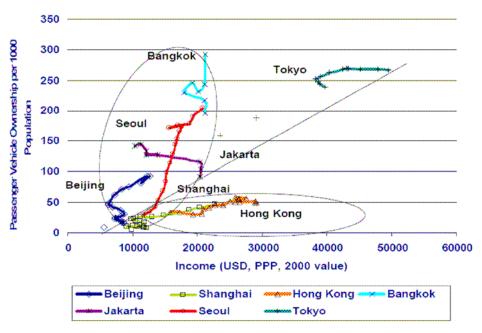


Figure 2: Income and Passenger Vehicle Ownership in Seven Asian Cities (1980 – 2002)

Source: Naoko Doi, APERC Database, 2005

Motorization in China

China, with a population of 1.3 billion people, is starting its motorization process. Although the level of motorization is still low compared to many other countries, China's growth of motorization is startlingly rapid – with local and regional implications for personal mobility, urban development, land use, and air quality and global implications for energy use and climate change. China had a 300 percent growth in auto ownership from 1999 to 2002 (National Bureau of Statistics of China: 1999, 2002). In 2001, the motor vehicle fleet size in China reached 18 million motor vehicles¹ (National Bureau of Statistics of China, 2001) versus 220 million in the US. However, from 1980 to 2002, the total number of motor vehicles in China grew ten-fold compared to a one-third increase in the US. To examine the "income vs. motorization" relationship in China, I notice that, from 1990 to 2000, the growth rate of automobiles (2.9 times) is slightly faster than the growth rate of GDP (2.6 times) as shown in Table 1 (Shen et al., 2002).

	1990	2000	2000/1990
GDP	100	262.3	2.6
Automobile (10,000 vehicles)	551.4	1,609	2.9
Bicycles/Others (10,000 vehicles)	421.3	3,772	9.0

Table 1: Vehicle (motorized and non-motorized) Growth in China (1990 – 2000)

Source: Shen et al., 2002

¹ Motor vehicles (or cars) include: private car, truck, and bus.

4

The fleet of non-motorized vehicles appears to have grown even faster than the fleet of motorized vehicles. We note in Table 1 that the number of "bicycles/others" grew 9-fold, from 4.21 million to 37.72 million over the 1990 to 2000. However, the true size of the bicycle population is estimated as over 50 million in 2000 (Figure 3) (Shen et al., 2002).

According to a recent study (Weinert, 2007), bicycles still remain the dominant two-wheeled vehicle in Chinese cities, mainly due to low income, high population density (and thus short trips), and extensive bicycle infrastructure (e.g., lanes, parking).

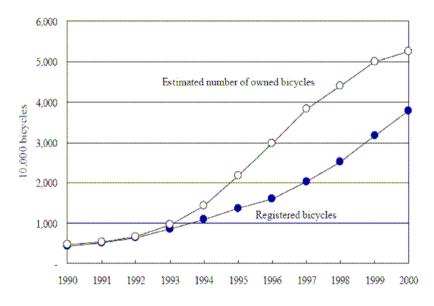


Figure 3: Estimated Bicycle Ownership in China

Source: Shen et al., 2002

In addition to the automobile and bicycle, the motorized two-wheeler (powered by electricity or LPG) and motorcycle are two types of personal mobility options for Chinese people. Take motorized two-wheeler for example, the shift from bicycles to electric bicycle (E-bike, a type of electric two-wheeler) also occurs at rapid pace

throughout China, especially in large cities. E-bike sales reached 10 million/year in 2005 as more bike and public transit users shifted to this mode (Weinert, 2007). Similar study indicated that the sales of the electric powered vehicle exceeded 16 million/year in 2006 (Cherry, 2007). According to one study (Weinert, 2007), over 30 million electric two-wheelers are now in regular use on Chinese streets, and the electric two-wheelers in China are called: "the world's most successful electric-drive vehicle".

Motorization also affects the auto industry of China. In 2002, China underwent a car-buying craze with more than 50 percent sales growth. In 2003, the Chinese automobile market grew by about 20 percent to reach a value of \$23.9 billion and a volume of 1,528,200 units (Datamonitor, 2004). In 2004, data showed that the China automotive market still had the fastest growth rate in the world (PaoHua Economic Research Institute, 2005).

Several factors facilitated China's car buying craze. One major factor is the manufacturer's price-cut due to the cut-throat competition and the over-estimation of the China market. Another factor is that the Agriculture Bank of China offered 10 billion RMB (1.2 billion USD) in loan for car buyers in 2002. Although the car loan system is still at an initial phase, the availability of loans is expected to be a driving force for car purchases by many Chinese people with low but rising income. Moreover, the over 50 percent reduction of tariffs on imported cars after China's accession to WTO also makes the car purchase much easier than before. On January 1, 2006, the quota control of imported cars was abandoned, and the tariff on imported cars was further lowered to 25 percent on July 1, 2006. In addition, another important reason for the car buying craze is

the rapid increase of personal income (GDP/capita), which is usually considered a prerequisite of car purchase. As predicted in a study about the Chinese middle class (Farrell et al., 2007), the emergence of a Chinese "lower middle-class" (with annual household income of 25,001 – 40,000 RMB) will happen around 2010, and the "upper middle-class" (with annual household income of 40,001 – 100,000 RMB) will emerge around 2020. The increase of purchasing power suggests that more and more Chinese will be able to enjoy personal motorized transport and the "third consumer revolution" (cars) after bicycles and electronic goods is going to begin (*The Economist*, 2003).

To meet rising domestic demand, joint-ventures between foreign automobile makers and domestic automakers² dominate the Chinese auto industry, accounting for 97 percent of the entire China market (*China Automotive Industry Yearbook*, 2000). Foreign companies bring the car as not only a commercial good but also a "culture" into China. Thus, for many Chinese people, owning a car symbolizes a step toward a western modern life. "Development has brought more interaction with the developed world and its culture, giving China's population greater exposure to Western values, ideas, and lifestyles" (Gould, 2000).

Definition of a "Car" in China

Due to the reforms and "open-door policies" of 1978, China gradually made a transition from a state-planned economy to a market economy. According to the National Bureau of Statistics of China, from 1978 to 2004, the Chinese economy grew at an annual average

² Under current policies, foreign companies have to find local partners in order to enter the China market.

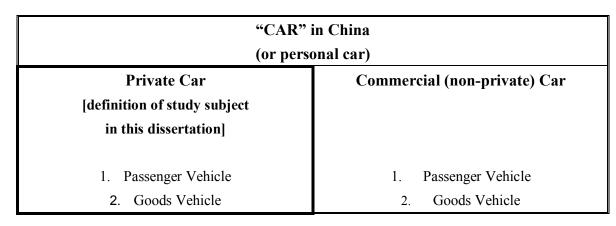
rate of 9.4 percent. China's spectacular economic growth over the past two decades, together with its population growth (especially the increase in the urban population), has resulted in high rates of industrialization, urban development, and most importantly – motorization (Shipper et al., 2004).

To describe the phenomenon, studies have been conducted to compare China's level of motorization with other countries in the world. For example: in 2002, the total number of motorized vehicles of all kinds was less than 100 per 1,000 people versus about 700 per 1,000 people in Europe and 900 per 1,000 people in the United States (Schipper et al., 2004). In addition, as indicated in the same study, China had approximately the same number of "cars" per capita in 2003 as the United States in 1910 (Shipper et al., 2004). However, such comparisons will only make sense if the definitions of "car" are the same in both Chinese and Western contexts.

The definition of a "car" (*qi che*) in official Chinese statistics is sometimes misleading, as it means "motor vehicles" in the English context. (Shipper et al., 2004) That is, the so-called "car" in China covers a wide variety of "motor vehicles" such as taxis, buses, vans, minibuses, trucks, as well as automobiles. As we can notice, the automobile, which is usually considered as a "car" in Western context, is merely a sub-category of the China-defined "car". Nevertheless, there are at least two major national definitions of a car in China, as in the following:

[Definition 1: GB/T3730.1-2001 Standard]

According to the Chinese national standard (GB/T3730.1-2001) of the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, the definition of a car is: "motor vehicle, non-railed, with 4 or more wheels."; "... used for carrying or trailing passengers and goods, or for other special purposes". It has two basic categories – passenger car and commercial vehicle. Table 2 describes in detail the "car" under GB/T3730.1-2001 Standard.


[Definition 2: China Statistical Yearbook]

GB/T3730.1-2001 Standard has two limitations for my research. First, it is a categorization based on vehicle function (not ownership). Second, this standard is so new few data have been collected or reported using this definition. Therefore, I refer to the *China Statistical Year book* which defines cars as "personal cars" in two basic categories, private and commercial. This is a categorization (Table 3) based on vehicle ownership, and it is more relevant to the purchase behavior theme of this study. In a nutshell, this dissertation will focus on the individual-level purchase behavior of the "private car" under the definition of the China Statistical Yearbook.

"CAR" in China		
(or motor vehicle)		
Passenger Car	Commercial Vehicle	
(less than 9 seating capacity)		
1. Saloon (sedan)	BUS (more than 9 seats)	
2. Convertible saloon	1. minibus	
3. Pullman saloon (pullman sedan, executive	2. City-bus	
limousine)	3. Interurban coach	
4. Coupe	4. Touring coach	
5. Convertible (open tourer, roadster, spider)	5. Articulated bus	
6. Hatchback	6. Trolley bus	
	7. Off-road bus	
(1~6 are usually called "Sedan" in China)	8. Special bus	
	9. Semi-Trailer Towing Vehicle	
7. Station wagon		
8. Multipurpose passenger car	GOODS VEHICLE	
9. Forward control passenger car	10. General purpose goods vehicle	
10. Off-road passenger car	11. Multipurpose goods vehicle	
11. Special purpose passenger car	12. Trailer towing vehicle	
12. Motor caravan	13. Off-road goods vehicle	
13. Armoured passenger car	14. Special goods vehicle	
14. Ambulance	15. Specialized goods vehicle	
15. Hearse		

Table 2: China Car Category (GB/T3730.1-2001)

Source: GB/T3730.1-2001 Standard, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China

Table 3: China Car Category (China Statistical Yearbook)

Source: China Statistical Yearbook

It seems that growth in the number of private cars is driving the growth in the number of "cars" in China. "At one time, most of the vehicles on Chinese roads were commercial vehicles, accounting for 85% of the total. This composition changed little even in 1990, or ten years after reforms & opening-up began being implemented. It did, however, change drastically due to the emergence of private cars in the last decade, which caused the share of commercial vehicles to decline to 60 percent by 2000" (Shen et al., 2002, p. 3) (Figure 4). By further examining GDP growth versus car penetration, I find that the 2.6-fold GDP growth (1990 – 2000) brought a 2.1-fold increase in commercial cars, while the private car grew 7.7-fold. Noticeably, private passenger car had an even higher growth – 15.2 times (Table 4).

Car Growth in China

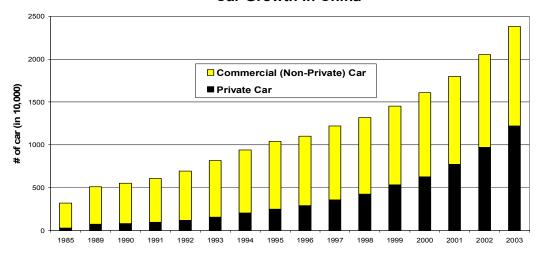


Figure 4: Private vs. Non-Private Car in China (1985 – 2003)

Source: China Statistical Yearbook, 1985 – 2003

	1990	2000	2000/1990	Annual
				Growth
				(%)
GDP (1990 = 100)	100	262.3	2.6	10.0
Total number of personal cars*	551.4	1,608.9	2.9	11.2
1. Commercial cars	469.8	983.6	2.1	7.7
2. Private cars	81.6	625.3	7.7	22.6
Private passenger cars	24.1	365.1	15.2	31.3

^{*} In 10000 of cars

Table 4: Car Penetration and GDP growth in China (1990 – 2000)

Source: China Statistical Yearbook, 1990 and 2000

Shanghai: City of Wealth, Diversity and Car Debate

Established more than 700 years ago at the tip of the Changjiang River Delta on the East China Sea (Figure 5), Shanghai is the commercial hub and one of the most populous

cities in China. Growing from 5.7 million people in 1950³, the number of official registered residents in Shanghai was 17.4 million in 2005. In addition to the registered residents, there are more than 5 million un-registered people as the "floating population" (Shanghai Bureau of Statistics, 2006).

Figure 5: Geographical Location of Shanghai in China

Source: Wikipedia

The Shanghai metropolitan area has a total area of 6,340.5 km², of which the city's suburbs cover 6,000 km². These suburbs are estimated to be the home of 6.8 million people. (Shanghai Bureau of Statistics, 2006) That is, 70 percent of the population is clustered in 5 percent of the urban area. There are currently 18 districts plus one county in Shanghai, as in Figure 6: the "suburbs" refer to Chongming county; eight districts (Nanhui, Fengxian, Baoshan, Minghang, Jiading, Jinshan, Songjiang, Qingpu) and the Pudong New Area. The "urban" area includes the remaining nine districts.

-

³ Shanghai's rapid population growth in the 1950's was due to natural increase and unregulated in-migration from the outskirts of the city.

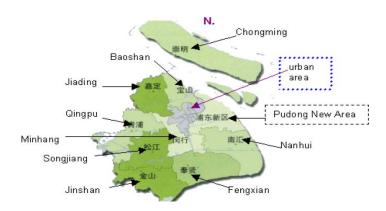


Figure 6: City Map of Shanghai (Urban vs. Suburb)

Source: Wikipedia

The average population density of Shanghai is 2,116 (people/km²), however, the density distribution is uneven – from as high as 49,854 (people/km²) in Huangpu district (urban area) to as low as 610 (people/km²) in Chongming county (suburb area) (Shanghai Bureau of Statistics, 2004). In light of the high population density of the urban districts, current planning policy seeks to decentralize Shanghai by building seven satellite suburbs. As a result, massive new public transportation investments planned for the next two decades are aimed at lowering Shanghai's extremely high population density, supporting economic growth, and enhancing the quality of life (U.S. National Research Council and Chinese Academy of Engineering, 2003). In 2005, Shanghai had more than one thousand bus lines and the Shanghai Metro (subways and light rail) had four lines. According to the development plan of the city government, by 2010, another eight subway lines will be built.

In spite of the development of the public transportation system, from 1990 to 2000, the number of motor vehicles in Shanghai increased 2.5 times. At the end of 2006, the total number of automobiles in Shanghai reached 1.1 million plus 1.02 million motorcycles

and 0.27 million gas auxiliary-powered vehicles (Department of Traffic Police, City of Shanghai, 2006). As a consequence, the city, especially the urban area, has suffered from serious traffic congestion and air pollution problem.

Based on the above, an investigation of vehicle purchase behavior is timely and important for Shanghai. Generally speaking, the reasons we selected Shanghai for our case study are that it is experiencing high economic growth and rapid motorization, yet is attempting to shape the motorization process through local policies such as vehicle licensing and limits on the types of vehicles within the city. In the following, we discuss three important aspects motivating the Shanghai case study.

Wealth

No single city or region can represent the whole of China due to significant regional differences in climate, level of urbanization, demographic composition, culture, languages⁴, and most importantly, income.

Accurate comparisons of income are always challenging. One way is to use GDP/capita. We can compare the GDP/capita in "nominal" terms or in "purchase power parity (PPP)" terms. Usually, the PPP-adjusted GDP/capita makes more sense, since the same dollar has different purchasing powers in different countries/regions. Therefore, the nominal GDP/capita will be overestimated for a place whose currency is strong, but be underestimated for a place whose currency is weak. (Chi Hung Kwan, 2002) The following table shows the nominal versus PPP-adjusted GDP/capita in China and

15

⁴ Although Mandarin is the official language in China, there are more than 50 local dialects.

Shanghai, 2000. For comparison, the PPP-adjusted GDP/capita in the US in 2000 was \$36,200 (US CIA, *World Factbook*, 2001).

China	Shanghai	
GDP/capita [nominal]	GDP/capita [nominal]	
= \$840 (USD ⁵)	= \$1415 (USD)	
GDP/capita	GDP/capita	
[PPP, USA as benchmark]	[PPP, USA as benchmark]	
= \$3940 (USD) (4.7 times the nominal)	= \$4245 (USD) (3 times the nominal)	

Table 5: Nominal vs. PPP-adjusted GDP/capita in China and Shanghai (2000)

Source: World Bank, World Development Report, 2002

Figure 7 illustrates the big regional GDP/capita differences across China. East Coastal regions are the wealthiest with an average of almost \$2,000 USD GDP/capita (PPP adjusted). Shanghai is at the top of the East Coastal region. If personal income is a prerequisite to personal vehicle purchase, Shanghai is a good place to study motorization pathways.

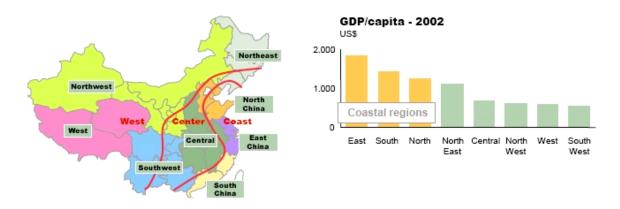


Figure 7: Regional Distribution of GDP/capita (PPP adjusted) in China

Source: Mercer Management Consulting, 2004. Data: China Statistical Yearbook

-

⁵ 1 USD = 8.28 RMB (or Chinese Yuan), 2000 conversion rate

Diversity

As mentioned, there are about five million floating (non-registered) people in Shanghai (Shanghai Bureau of Statistics, 2003) In terms of spatial distribution, there are one million floating people living in the urban area versus four million in the suburbs⁶. Among those floating people, 98.5 percent are actually Chinese from nearby (e.g., Jiangsu, Zhejiang) or remote rural (e.g., Anhui, Jiangxi) provinces. The remaining 1.5 percent is from other countries.

Japan	17,409		
Taiwan	11,818		
USA	8,248		
S. Korea	7,135		
Hong Kong	3,505		
Singapore	3,263		
Germany	2,541		
Australia	2,499		
Canada	2,352		
Malaysia	1,955		
U.K.	1,627		
TOTAL Foreign	72895 (people)		

Table 6: Foreign People in Shanghai

Source: Shanghai Statistical Yearbook, 2003

Historically, Shanghai has been China's commercial hub; it attracts people from different regions of China and different countries (Table 6). The former foreign-occupied⁷ urban districts and newly developed suburban areas have already formed clusters of people

17

⁶ The Pudong district itself attracted more than 1 million foreign residents.

⁷ Many districts were occupied by foreign countries during WWII.

from different origins. Thus, Shanghai is very diverse, and this diversity can be realized by examining the vehicle purchase and use behavior (or motorization groups). In a nutshell, the diversity of Shanghai provides us a good opportunity to test hypotheses on explanatory variables of vehicle choice.

• The "Car Debate"

As mentioned, at aggregate national levels motorization is correlated to income. Past experiences of developed countries show that as consumers become wealthier, they tend to purchase automobiles. While this relationship generally holds throughout the world, there are significant variations among nations, and even among cities within the same nation. (U.S. National Research Council and Chinese Academy of Engineering et al., 2003) Today's China is a good example. As in Figure 8, we see a rather scattered distribution when plotting the GDP/capita versus vehicle ownership over different Chinese cities. Noticeably, Shanghai has a relatively low vehicle ownership given its high GDP/capita.

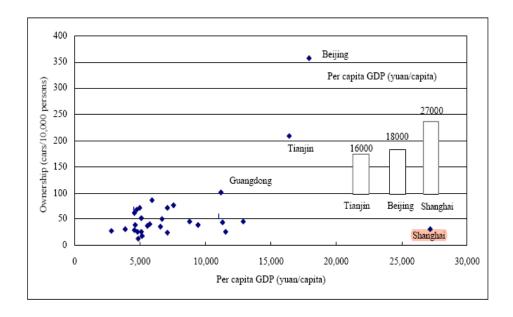


Figure 8: GDP/capita vs. Vehicle Ownership in China Cities (2002)

Source: Shen et al., 2002

Several reasons explain the relatively low car-ownership in Shanghai. One is government control: "Shanghai is not a typical Asian city, given its surging economy and its world-class planning capabilities and strong government institutions" (U.S. National Research Council and Chinese Academy of Engineering et al., 2003, Appendix B, p. 224). In the 1990s, Shanghai began to promote public transportation as one solution for decentralization. To match the "pro-public transportation" planning theme, motorization in Shanghai is regulated to some extent by car-restricting policies including: tight standards on fuel economy and emissions, as well as quota control of license plates⁸.

However, Shanghai government's car-restricting policies are not consistent with the central (Beijing) government's "household car" idea. That is, in order to make the auto

-

⁸ There is a "license auction" system held by the Shanghai Vehicle Management Bureau.

industry a pillar industry of China, Beijing expects that eventually every Chinese family will have one car. In fact, some scholars argue that the auto industry should also be the pillar industry of Shanghai (Wang et al., 2000). In addition to the policy conflicts, there are other factors challenging the car-restricting concepts of Shanghai. For example, local car companies usually lobby the city government to loosen controls on motor vehicle purchase to stimulate sales. As a consequence, government officials have begun to discuss the idea of separating the car use from purchase – for example, using congestion pricing to replace the existing license control. Besides, as many local people are employed in car companies (Shanghai VW, Shanghai GM); their car purchase is encouraged to some extent by the subsidy⁹ from their employers. In fact, the so-called "transportation subsidy" (in terms of vehicle purchase, parking, fuel, etc.) is not unusual. In China, people sometimes don't bear all the costs of motor vehicle ownership, which causes difficulty to accurately estimate the effects of cost on people's vehicle purchase. Last, even within the Shanghai City government, there is a debate on car restricting policies. Instead of public transportation, some officials consider automobile-oriented development as a way to decentralize the city. A free license plate for people who purchase a house in the suburb has been considered (Wang et al., 2000).

Despite the "car debate", there was still a significant growth in the number of private cars in Shanghai over the past two decades. A study (Schipper et al., 2004) shows that, by comparing the trip mode shares for Shanghai between 1986 and 2001, Shanghai has decreasing shares of trips by walk and collective transit (bus and ferry), but rising shares for bike and private car.

⁹ They can either get direct monetary subsidy or can purchase the car at a discounted price.

Focusing on the ownership of all kinds of private motor vehicles in Shanghai, comparing 2001 with 2003, I notice an increased share of private car and a decreased share of motorcycle, as indicated in Figure 9. I conclude from the aforementioned that although Shanghai's current private car ownership is relatively low compared to other mega-cities in China, it is growing at a rapid rate. How people make their vehicle purchase choices in a city with an on-going "car debate" is the last but not least reason motivating the Shanghai case study.

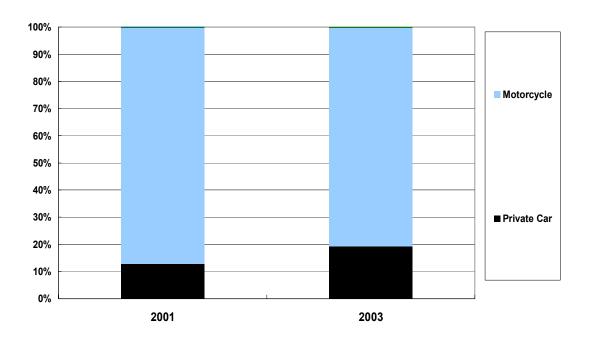


Figure 9: Private Motor Vehicle Ownership Share in Shanghai (2001 vs. 2003)

Source: Shanghai Statistical Yearbook, 2002 and 2004

Shanghai vs. Beijing

Shanghai and Beijing are two big cities in China; one is the commercial hub, the other is the nation's capital. In Figure 8, we see that Beijing has almost ten times the auto ownership of Shanghai, but lower GDP/capita. Based on interviews ¹⁰, Table 7 summarizes and compares factors believed to affect differences in private car ownership between Shanghai and Beijing. (Signs indicate a negative or positive effect on car purchase, number of signs means the level of influence):

	Shanghai	Beijing
Car Restricting Policy		-
Zoning Regulation	+	++
Public Transportation		-
Population Growth	+	+
Personal Income (GDP/capita)	++	+

Table 7: Shanghai vs. Beijing – Assumed Factors Affecting Car Purchase

As discussed, Shanghai has many policies to restrict car purchases – the license quota-control is one famous example. People who wish to license an automobile must bid for a fixed number of license plates (usually 4,000 to 6,000) issued each month. In 2005, the auction price for a private car license was as high as \$4,300 USD (with an additional \$12 USD registration fee). However, there is no such restrictive car licensing policy in Beijing. On the contrary, in Beijing, bicycle lanes and sidewalks have been sacrificed in many places to allow more road space for autos. Moreover, as discussed, the central government in Beijing promotes the "household car" concept to demonstrate the government's resolution to make the auto industry a pillar industry in China.

 $^{^{10}}$ Several interviews have been done with local Chinese people including people from academia, car companies and others (e.g., taxi drivers).

In addition, some current zoning regulations in Beijing also make car purchases "necessary" – the Beijing city government doesn't allow new high-rise buildings in the central business district (CBD) to protect many historic sites in Beijing (Beijing is officially defined as the cultural and political center of China) and to save the skyline for the 2008 Olympics. A consequence of such zoning is urban sprawl and a car-oriented city. More and more people who cannot afford to live in the urban area choose to move to the suburbs and buy a car for the reason of convenience – based on personal interviews with staff of Energy Foundation of China and BMW China. Nevertheless, what is covered in Table 7 are merely factors mentioned by interviews in Shanghai and Beijing, there are presumably other factors affecting the vehicle purchase behavior in different regions of China. In the last part of this chapter, I discuss the goal of the Shanghai case study and outline of this dissertation.

Goal and Outline of the Dissertation

As discussed, the linear positive correlation at national levels between average income and motorization has been confirmed by past studies. However, I would like to explore and test if this relationship holds at the disaggregate level – that is, one major objective of this dissertation research is to ask what underlies the aggregate measures at the individual level of personal travel. To fulfill this objective, a questionnaire was designed and distributed to Shanghai residents in different phases of motorization, i.e., with different motorization pathways, including those who may not have yet acquired or used motorized modes. In addition to income, issues related to local policies, cultural beliefs, and socioeconomic context are discussed as they relate to Shanghai residents'

motorization pathways. All above aspects will be included as explanatory variables in the vehicle purchase and use models and tested statistically. The goal of this dissertation is to draw policy implications and sketch future perspectives for motorization in China from the case study of the wealthy and seemingly "under-motorized" City of Shanghai. 11

There are six chapters of this dissertation. Chapter 1 is the introduction, and Chapter 2 is a literature review, which covers previous studies related to motorization, vehicle purchase behavior, and general survey research methodology in China. Hypotheses, survey techniques, and lessons learned from local survey implementation will be addressed as methodology in Chapter 3. Chapter 4 is a chapter about motorization pathway analyses, which explores the progression of vehicle use in Shanghai. Common pathway patterns and the direction of motorization will be discussed in that chapter. Chapter 5 first defines the dependent and independent variables of the discrete choice model. The attempt and results of developing discrete choice models of vehicle purchase (and use) will also be documented in the same chapter. Chapter 6 summarizes conclusions from my pilot and final surveys and aim to answer three important questions – How to conduct survey research in China? What is the motorization pathway in China? What is the vehicle purchase (and use) behavior in China? Policy implications and suggestions of future research directions will also be presented in Chapter 6.

¹¹ Clearly, calling Shanghai "under-motorized" may seem farcical to anyone who has traveled in that city. The description refers to the fact that Shanghai has far fewer automobiles than the simple aggregate motorization-income correlation would predict.

CHAPTER 2: LITERATURE AND KEY STATISTICS

Survey Research in China

As Chinese society underwent significant changes following the economic reforms of 1978, survey research became more common in China. In this chapter, I discuss eight prior transportation studies conducted in China based on survey research – the list is by no means complete. The eight are not all related to motorization in Shanghai, but were chosen for their discussion of survey techniques applied in Chinese contexts. I developed the survey methods for the pilot and final surveys by referring to these past studies. For example, by referring to previous case studies of Shanghai and Hong Kong (a city of similar motorization level as Shanghai), I developed some of my location-based sampling concepts. In Table 8, the eight studies are summarized and compared with my pilot and final surveys. Detailed methodology of the pilot and final surveys will be discussed in Chapter 3.

Survey Topic	Year	Location	Sampling Scheme	Distribution Method	Reward (promised in advance)
Vehicle Use Characteristic and Mode Choice Behavior	2006	Shanghai	Location-based convenience sampling	On-street	Yes
Vehicle Use Characteristic and Mode Choice Behavior	2006	Kunming	Location-based convenience sampling	On-street	Yes
Bicycle and Electric Two-wheeler User Survey	2006	Shijiazhuang	Location-based convenience sampling	On-street	No
Public Transportation Use and Transfer	2006	Shanghai	Convenience sampling	On-street	No
Shanghai Master Transportation Survey	2004	Shanghai	Random & Convenience sampling	Household, GPS, etc.	N/A
Vehicle Use Behavior	2002	Shanghai	Convenience sampling	On-street	No
Car Dependence	2001	Hong Kong	Location-based convenience sampling	On-street	N/A
Motorization and Obesity	1989 1991 1993 1997	Shangdong, Jiangsu, Hunan, Hubei, Henan, Guizhou, Guangxi, Liaoning	Multi-stage, random cluster sampling	Household	N/A
My Present Study: Vehicle Purchase and Use Behavior (Pilot Survey)	2005	Shanghai	Location-based and other convenience sampling	On-street	Yes
My Present Study: Vehicle Purchase and Use Behavior (Final Survey)	2006	Shanghai	Location-based and other convenience sampling	On-street, auto dealership, household, cell phone message	Yes

Table 8: Comparison of Survey Research Projects in China

• Shanghai: Vehicle Use Characteristic and Mode Choice Behavior Survey

In late May 2006, UC Berkeley researcher Chris Cherry conducted a survey on vehicle use characteristics and mode choice behavior in Shanghai. The survey targeted electric bike, bicycle and LPG scooter users. Travel diary, demographic information and attitudinal questions were included in the questionnaire. The survey was conducted during the periods of daily activity, from mid-morning to evening and during the middle of the week, from Tuesday to Friday, so that the previous day travel diary would represent a "typical" weekday (Monday to Thursday). Location-based convenience sampling was chosen:

"Conducting a random household survey in China is logistically and institutionally difficult. As a result, targeted intercept surveys were conducted at locations that contain a representative sample of urban two-wheel vehicle users, specifically centralized parking facilities of major activity centers and trip generators throughout the urban area. These activity centers contain employment, social activities, and shopping that serve all demographic groups." (Cherry, 2007)

After the survey, the participants were offered rewards (parking fee payment, as promised in advance) as tokens of appreciation. A total of 696 responses were collected in Shanghai.

• Kunming: Vehicle Use Characteristic and Mode Choice Behavior Survey

Similarly, another vehicle use characteristic and mode choice behavior survey was

conducted in Kunming, a mid-size Chinese city, by Chris Cherry in early April 2006. The same questionnaire was used as in the Shanghai survey, and the sampling scheme was also a convenience sample based on locations – "These locations included major shopping centers that cater to all demographics of users as well as centralized bike parking facilities surrounding a large pedestrian mall in the center of the city that contains shopping, entertainment, and employment. Importantly, most of the survey sites were within the gas motorcycle restricted zone" (Cherry, 2007). However, the Kunming survey differs from the Shanghai survey by only targeting electric bicycle and bicycle users (without the LPG scooter users). Small gifts were promised in advance and offered at the end of the survey, and a total of 502 responses were collected.

• Shijiazhuang: Bicycle and Electric Two-wheeler User Survey

In June 2006, UC Davis researcher Jonathan Weinert conducted a survey targeting the bicycle and electric two-wheeler (E2W) users in Shijiazhuang, a mid-size city located in the south-central Hebei province of China. The sampling plan is location-based convenience – "Because of the institutional and logistical difficulty in conducting random household surveys in China... The survey was administered at bicycle and E2W parking lots along the main travel corridor (Zhongshan Lu) in Shijiazhuang in order to capture a diverse range of respondents from many different parts of the city" (Weinert, 2007). According to the author, the survey was implemented on both a workday and weekend day 7:30am – 11:30am and 3:00pm – 6:00pm to collect as broad a range of respondent types as possible. Besides, separate surveys were given to bicycle and E2W riders to identify differences between their travel behavior and attitudes. Finally, 751 responses were collected for bicycle users and 460 responses were collected for E2W users.

• Shanghai: Public Transportation Use and Transfer Survey

Tongji University implemented a survey of public transportation users in August 2006. The study sought to understand the trip purpose of subway/light rail riders and their attitudes toward making transfers to local bus systems. Convenience sampling was used: people waiting on eleven pre-selected subway/light rail platforms were interviewed. The survey was conducted during the morning and evening peak hours, i.e., 7:00am to 10:00am and 4:00pm to 7:00pm. A total of 7,816 surveys were collected with a response rate of 14.2 percent.

• Shanghai: Master Transportation Survey

The Shanghai city government and Shanghai City Comprehensive Transport Planning Institute (SCCTPI) implemented a large transportation survey in 2004. The survey covered the entire metropolitan area, divided into 309 transportation analysis zones (TAZ). It involved 40,000 surveyors; a total of 200,000 surveys were randomly (except for a convenience sample described later) distributed to 30,000 households, 20,000 organizations, and 70,000 car drivers. The population to be sampled consisted of multiple groups of people, thus, several sampling procedures and survey instruments were used. For example, Shanghai residents' travel behavior was measured through a household survey, while the origin-destination patterns of 2,300 taxis were gathered with GPS devices. A convenience sample was used, in part, as city employees were automatically selected for the survey regardless of their prevalence in the city's population.

• Shanghai: Vehicle Use Behavior Survey

Another survey in Shanghai was conducted by Tongji University in 2002 on vehicle use

behavior. The purpose of this study was to support the road planning of the central city of Shanghai. Convenience sampling was used to survey drivers (or car users). Questionnaires were distributed in five "road fee" collection areas in central Shanghai. 1,630 surveys were returned over a two-week period. The questionnaire included a simple vehicle use diary and questions about vehicle ownership.

• Hong Kong: Car Dependence Survey

In summer 2001, a survey on car dependence has been conducted in Hong Kong (Cullinane, 2003). 401 car-owning Hong Kong residents were interviewed. Their sampling scheme was a convenience sample based on locations. They used convenience sampling because "... it proved impossible to obtain the contact details of car owners in Hong Kong" (Cullinane, 2003). And they designed their location-based sampling in residential and commercial areas of Hong Kong to balance the probability of finding car owners with any "bias associated with approaching only car owners who were using their cars at the time."

• China: Motorization and Obesity Survey

Other researchers have asked whether motorization causes obesity. In 1989, Bell et al. (2002) conducted an initial survey in eight Chinese provinces (Shangdong, Jiangsu, Hunan, Hubei, Henan, Guizhou, Guangxi, and Liaoning) as well as follow-up surveys in 1991, 1993, and 1997. They used a multi-stage, random cluster sampling process in which four counties were selected in each province, within which neighborhoods were randomly selected from suburbs, townships, and villages. Finally, within in each of these neighborhoods, twenty households were selected at random.

Motorization in China

In Chapter 1, motorization is defined as the changing of transportation from non-motorized means to motorized means. At the national or province level, motorization is usually reflected by the growth of the automobile fleet or per capita auto ownership. Therefore, longitudinal data on vehicle ownership (or use) is necessary to describe motorization. In the following, the change of vehicle ownership in Shanghai, Beijing, and China over a 10-year period (1996 to 2005) will be presented. In addition, distance-based mode shares of Shanghai in 1986, 1995, 2000, and a forecast for 2020 will also be presented to provide another view of motorization.

• China: Change of Vehicle Ownership (Urban vs. Rural, 1996 – 2005)

The major source for vehicle ownership data is the China Statistical Yearbook published each year by the National Bureau of Statistics of China. In the China Statistical Yearbook, there are data about the "number of durable consumer goods owned per 100 urban/rural households". In Table 9, I present the ownership data for "urban households" in China from 1996 to 2005 for: bicycle, motorized two-wheeler, motorcycle and car, which are also the four major alternatives in my vehicle purchase choice model. Ownership of bicycle decreases over the 10-year period, whereas car ownership increases, especially from 2002 to 2005. There were no official data for the motorized two-wheeler until 2002; there was no data for car ownership until 1997.

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Bicycle	193.23	179.10	182.05	183.03	162.72	165.42	142.71	143.55	140.21	120.04
Motorized Two-wheeler	N/A	N/A	N/A	N/A	N/A	N/A	2.72	4.25	6.50	9.54
Motorcycle	7.94	11.60	13.22	15.12	18.83	20.40	22.19	24.00	24.84	25.00
Car	N/A	0.19	0.25	0.34	0.51	0.60	0.88	1.36	2.18	3.37

Table 9: Numbers of Vehicles Owned per 100 Urban Households [China, 1996 – 2005]

Source: China Statistical Yearbook, 1997 – 2006

Table 10 shows the ownership data for "rural households" in China from 1996 to 2005. The data for motorized two-wheeler and car are missing.

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Bicycle	139.82	141.95	137.15	136.85	120.48	120.83	121.32	118.50	118.15	98.37
Motorized Two-wheeler	N/A	N/A								
Motorcycle	8.45	10.89	13.52	16.49	21.94	24.71	28.07	31.80	36.15	40.70
Car	N/A	N/A								

Table 10: Numbers of Vehicles Owned per 100 Rural Households [China, 1996 – 2005]

Source: China Statistical Yearbook, 1997 – 2006

• Shanghai: Change of Vehicle Ownership (Urban vs. Rural, 1996 – 2005)

Table 11 presents the ownership data for "urban households" in Shanghai from 1996 to 2005 for bicycle, motorized two-wheeler, motorcycle and car. There were no official data for the motorized two-wheeler until 2002; and there was no data available for car ownership until 1998. Similar to the case of China, the ownership of bicycle decreases, but the ownership of motorized two-wheeler, motorcycle and car all increase in those ten

years. Besides, a big jump of car ownership happens in the end of 2002 reflecting the car buying craze in China (mentioned in Chapter 1).

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Bicycle	124.00	125.40	132.60	138.80	125.60	123.80	123.60	125.40	125.60	119.10
Motorized Two-wheeler	N/A	N/A	N/A	N/A	N/A	N/A	12.65	17.80	20.30	23.50
Motorcycle	1.00	1.20	1.40	2.00	1.20	1.40	2.88	3.80	3.00	2.70
Car	N/A	N/A	0.00	0.00	0.00	0.20	0.25	1.80	3.60	3.80

Table 11: Numbers of Vehicles Owned per 100 Urban Households [Shanghai, 1996 – 2005]

Source: China Statistical Yearbook, 1997 – 2006

In terms of the vehicle ownership for rural households in Shanghai, a trend of decreasing numbers of bicycles and increasing numbers of motorcycles is shown in Table 12. This trend is similar to what I found for the rural households in the previous China case.

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Bicycle	244.17	245.50	238.50	235.33	218.83	212.67	215.67	210.67	202.17	173.50
Motorized Two-wheeler	N/A									
Motorcycle	33.17	45.50	54.83	60.67	72.67	73.17	82.83	87.67	90.67	72.00
Car	N/A									

Table 12: Numbers of Vehicles Owned per 100 Rural Households [Shanghai, 1996 – 2005]

Source: China Statistical Yearbook, 1997 – 2006

• Beijing: Change of Vehicle Ownership (Urban vs. Rural, 1996 – 2005)

The numbers of vehicles owned per 100 urban households (1996 – 2005) in Beijing are

shown in Table 13. Data for motorized two-wheelers before 2001 and data for car ownership before 1997 are not available. Similar to the case of China and Shanghai, the trend of motorization of Beijing is also the decrease of bicycle ownership and the increase of motorcycle; motorized two-wheeler, and car ownership. However, I found two aspects differentiating Beijing's motorization from previous cases. First, the growth rate of car ownership in Beijing is significantly faster than for Shanghai and China as a whole, especially after 2002. Second, although the growth of motorized vehicles (motorcycle, motorize two-wheeler, and car) is fast, bicycle is still the mainstream vehicle in urban Beijing. Moreover, the urban households of Beijing have the highest percentage of bicycle ownership as compared to urban households in Shanghai and China.

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Bicycle	249.00	209.40	221.00	220.10	230.70	230.60	201.15	202.06	191.83	193.71
Motorized	N/A	N/A	N/A	N/A	N/A	N/A	3.19	4.61	3.99	5.08
Two-wheeler	1 4/ 2 1	14/71	14/71	14/71	14/71	14/71	3.17	4.01	3.77	3.00
Motorcycle	3.40	4.20	3.80	6.00	5.70	5.00	5.54	5.59	5.65	6.32
Car	N/A	0.80	1.00	2.50	2.50	2.60	4.05	6.60	12.64	14.06

Table 13: Numbers of Vehicles Owned per 100 Urban Households [Beijing, 1996 – 2005]

Source: China Statistical Yearbook, 1997 – 2006

Table 14 present the vehicle ownership of rural households in Beijing (1996 – 2005). Data for motorized two-wheeler and car ownership are not available. A trend of decreasing ownership of bicycle and increasing ownership of motorcycle are identified as in previous cases of Shanghai and China, although the bicycle still remains the dominant

vehicle. Besides, compared to rural Shanghai and China, the rural households of Beijing generally have a higher percentage of bicycle ownership over the period of 1996 to 2005.

	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Bicycle	260.40	261.60	258.40	248.67	219.20	216.80	208.13	212.80	208.67	196.00
Motorized	N/A									
Two-wheeler	IV/A	IN/A	1 V /A							
Motorcycle	17.47	23.33	27.60	36.67	36.67	36.00	41.33	41.87	42.93	45.33
Car	N/A									

Table 14: Numbers of Vehicles Owned per 100 Rural Households [Beijing, 1996 – 2005]

Source: China Statistical Yearbook, 1997 – 2006

To summarize the above tables, different motorization patterns can be indentified for Shanghai, Beijing and China as a whole. Further, the motorization patterns are also slightly different for urban and rural households within the same city or country. Nevertheless, one trend in common is the decreasing ownership of non-motorized vehicles, e.g., bicycle; and the growth of motorized vehicles, e.g., car – although bicycle is still the dominant vehicle type for (urban and rural) Shanghai, Beijing and China.

Shanghai: Change of Distance-based Mode Shares (1986, 1995, 2000, and 2020 forecast)

In addition to vehicle ownership, motorization can also be studied by understanding the change of distance-based mode shares, which are discussed in terms of "passenger-km" in this section. The distance-based mode share data include not only the "purchasable" vehicles but also travel means, which cannot be purchased and owned by individuals, e.g.,

public transportation.

According to data from the Energy Foundation and the Shanghai City Comprehensive Transportation Planning Institute (SCCTPI) (Figure 10), in the 1980's, walk and public transportation were the two major transportation modes, followed by bicycle. However, because of decreasing of government subsidies¹² of public transportation, urban sprawl, change of commute pattern, etc.; the "private" modes (including bicycle, motorcycle and car) became the mainstream in the 1990's. In 2000, public transportation again took a large share due to the completion of several new networks. However, the motorcycle and, especially car, also grew hugely. As a result, the walk share shrank to only seven percent. Basically, it shows a "non-motorized (walk) to motorized (car)" motorization pattern. For the future (2020), as an effort to solve the urban congestion and pollution problem, the policy of the Shanghai government is to promote sustainable transportation – walk, bicycle, and public transportation are major options. However, the share of car is still expected to be 20 percent under the 2020 scenario of SCCTPI.

In addition to SCCTPI's forecast, in the book "Personal Cars and China" (U.S. National Research Council and Chinese Academy of Engineering, 2003), two future motorization scenarios of Shanghai are explored – a "high motorization" scenario is based on market forces playing a greater role in the economy, and government playing a lesser role. Therefore, Shanghai will follow the path of fast-growing cities in Asia with high car ownership such as Bangkok and Jakarta. A "low motorization" scenario assumes that the government plays an active role in restraining vehicle purchases and use. Thus, Shanghai

-

¹² One reason is to improve the competitiveness of transit operators.

will follow the path of cities such as Singapore, Tokyo, and Hong Kong. Both high and low motorization scenarios are shown in terms of distance-based mode shares (passenger-km) in Figure 10.

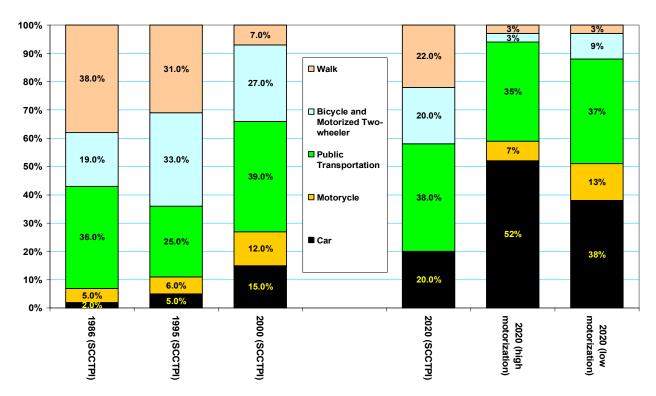


Figure 10: Distance-based Mode Shares of Shanghai (1986, 1995, 2000, 2020)

Source: Energy Foundation, SCCTPI, U.S. National Research Council and Chinese Academy of Engineering, *Personal Cars and China* (Washington, DC: National Academies Press, 2003)

The above discussion on vehicle ownership or distance-based mode share basically reflects the aggregate level of motorization at different time points. However, there are not many studies focusing on the "transition" or "motorization pathway" at the individual level. One attempt of my dissertation is to describe the motorization pathway at the individual level through a survey of Shanghai residents.

Vehicle Purchase Behavior in China

• Concepts of the Discrete Choice Model

A choice model is a quantitative method to estimate the level of influence and statistical significance of attributes affecting people's purchase behavior. Basically, the discrete choice model includes the decision-makers (individuals), alternatives, and variables describing the choice context.

Two common discrete choice model structures are the multinomial logit model (MNL), and the nested logit model (NL), which has MNL as a special case. Both models are utility-based, assuming $U_{in} = V_{in} + \epsilon_{in}$, where U_{in} is the utility of individual n for alternative i, V_{in} is the deterministic part of U_{in} and can be expressed as a linear-in-parameters function of observed explanatory variables (X_{in}) ; ϵ_{in} is the error term. The logit model is derived from the assumption that the error terms are independent and identically Gumbel distributed. If the error terms are independent and identically Gumbel distributed (with location parameter 0 and scale parameter μ), the probability that a given individual chooses alternative i within choice set C is given by:

$$\mathrm{P}_{\mathcal{C}}(i) = rac{e^{\mu V_i}}{\sum_{k \in \mathcal{C}} e^{\mu V_k}}$$

An important property of the MNL model is the Independence of Irrelevant Alternatives (IIA), which states that the ratio of the probabilities (i.e., the relative *odds*) of any two alternatives is independent from the "choice set". That is, for any choice sets S and T, and $S \subseteq T \subseteq C$, for any alternative α_I and α_2 in S, we can find:

$$rac{ ext{P}_{\mathcal{S}}(a_1)}{ ext{P}_{\mathcal{S}}(a_2)} = rac{ ext{P}_{\mathcal{T}}(a_1)}{ ext{P}_{\mathcal{T}}(a_2)}$$

Defined by Ben-Akiva and Lerman (1985) as: "The ratio of the choice probabilities of any two alternatives is entirely unaffected by the systematic utilities of any other alternatives", the IIA property sometimes becomes a limitation for practical application, as illustrated by the famous red bus/blue bus paradox (Ben-Akiva and Lerman, 1985).

The nested logit (NL) model provides a solution to partly overcome the limitation of the multinomial logit model (NL does not require IIA to hold). First derived by Ben-Akiva (1973), the NL model is an extension of the MNL model designed to capture the unmeasured correlations 13 among alternatives. The NL model is based on the partitioning of the choice set into several nests (k=1, 2 ... n):

$$C = \bigcup_{k=1}^{n} Ck$$

The utility function of an alternative is now composed of a term "specific to the alternative", and a term "associated with the nest". That is, for alternative $i \in C_k$:

$$U_i = V_i + \varepsilon_i + V_{\mathcal{C}_{\mathbf{L}}} + \varepsilon_{\mathcal{C}_{\mathbf{L}}}$$

The two error terms ε_i and ε_{Ck} are independent. For the multinomial logit model, error terms ε_i are supposed to be independent and identically Gumbel distributed, with scale parameter σ_k . The distribution of ε_{Ck} is such that the random variable $\max_{j \in C_k} U_j$ is Gumbel distributed with scale parameter μ .

39

¹³ For example, shared unobserved attributes (error terms), which violate the independent and identically Gumbel distribution assumption.

The probability that a given individual chooses alternative *i* within choice set *C* is:

$$P_{\mathcal{C}}(i) = P_{\mathcal{C}}(\mathcal{C}_k)P_{\mathcal{C}_k}(i)$$

Obviously, this is a product of two probabilities. First, the probability of choosing C_k among C is denoted as:

$$\mathrm{P}_{\mathcal{C}}(\mathcal{C}_k) = rac{e^{\mu V_{\mathcal{C}_k}^I}}{\sum_{l=1}^n e^{\mu V_{\mathcal{C}_l}^I}}$$

The V'_{ck} is called the "composite utility¹⁴" of nest k. The μ is the scale parameter of ε_{Ck} , which is Gumbel distributed. The composite utility for nest C_k is:

$$V_{C_k}' = V_{C_k} + \frac{1}{\sigma_k} \ln \sum_{j \in C_k} e^{\sigma_k V_j}$$

 (V_{ck}) is the component of the utility common to all alternatives in the nest C_k)

Similarly, the probability of choosing i among C_k is denoted as:

$$\mathrm{P}_{\mathcal{C}_k}(i) = rac{e^{\sigma_k V_i}}{\sum_{j \in \mathcal{C}_k} e^{\sigma_k V_j}}$$

The σ_k is the scale parameter of $\epsilon_{i,}$ which is also supposed to be independent and identically Gumbel distributed.

Above is a very simple introduction to two discrete choice models; details about the model development process will be presented in Chapter 5.

• Studies of Vehicle Purchase Behavior in China

In China, few studies have attempted to develop sophisticated choice models of vehicle

¹⁴ It is also called "pseudo-utility", "expected maximum utility", "inclusive value".

purchase behavior. Nevertheless, the auto market survey of the Mercer Group (2004) provides one example of vehicle purchase behavior study in general¹⁵. Figure 11 presents the purchase criteria of Level 1 city car buyers¹⁶. Interestingly, instead of price, most people (96 percent) consider "safety" and "reliability" as the most important criteria for their car purchase.

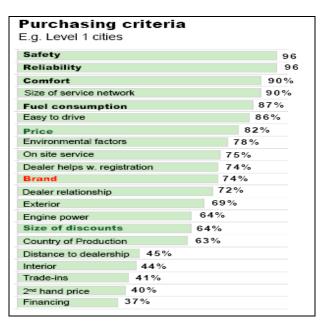


Figure 11: Car Purchase Criteria (Shanghai, Beijing, Guangzhou, Shenzhen)

Source: Mercer Consulting Group, 2004

However, another survey in Beijing (Energy Foundation, 2005) asked 150 potential car buyers to rank five most important considerations in their car purchase. As shown in Table 15, "price" is the top-ranked one for this sample.

-

¹⁵ There were more than 2,000 participants in seven cities of China, including existing and potential car buyers.

¹⁶ Shanghai, Beijing, Guangzhou, Shenzhen – as categorized by Mercer.

Importance Rank	Attribute
1 st	Price
2 nd	Brand
3 rd	Fuel Economy
4 th	Model/Style
5 th	Power

Table 15: Five most Important Car Purchase Criteria (Beijing)

Source: Energy Foundation, 2005

Instead of analyzing vehicle purchase criteria as in the previous two cases, one survey in Hong Kong (Cullinane, 2003) focused on the deterrence factors of driving, which is related to the exogenous environment deterring vehicle purchase. Traffic congestion and parking availability at destination were the top two deterring of driving.

	Very much	Quite a lot	Neutral	Not very much	Not at all	Average (rank in brackets)
Traffic congestion	129 (32)	118 (29)	20 (5)	63 (16)	71 (18)	3.43 (1)
Parking costs at destination	60 (15)	138 (34)	19 (5)	93 (23)	91 (23)	2.96 (4)
Parking availability at destination	88 (22)	142 (35)	21 (5)	73 (18)	77 (19)	3.23 (2)
Unreliability of parking availability	54 (13)	146 (36)	32 (8)	85 (21)	84 (21)	3.00(3)
Tunnel costs	21 (5)	75 (19)	37 (9)	119 (30)	148 (37)	2.26 (5)
Petrol costs	18 (5)	71 (18)	27 (7)	135 (34)	149 (37)	2.19 (6)
Route unfamiliarity	19 (5)	69 (17)	25 (6)	116 (29)	170 (43)	2.13 (7)
Stress of driving	2(1)	24 (6)	14 (4)	125 (31)	5 (59)	1.01(8)

Table 16: Deterrence Factors of Driving (Hong Kong)

Developing a robust model to represent Chinese car buyers is a challenging task due to huge regional variation. Nevertheless, "Shanghai Vehicle Purchase (and Use) Models" are proposed and developed in this dissertation. The models are supposed to address the influence and statistical significance of attributes of vehicle purchase and use behaviors in Shanghai.

CHAPTER 3: METHODOLOGY

Methodology Overview

In this chapter, I report on the design and implementation of the data collection to test to my hypothesis of motorization (pathway) in China. This chapter starts with the discussion of the hypothetical motorization pathway.

By hypothesis, motorization is a sequential transition from non-motorized to motorized travel modes at a national (or some other large aggregate) level. While the process can be thought of as adding to the modes people have available to them for daily travel, it also implies changes in the distribution of use of travel modes by individuals, e.g., if I get a bicycle, I walk less, and longer term changes in where people travel, e.g., if I get a car, I can eventually move to a suburb — which may not have good transit service. I characterize the personal transitions as a motorization pathway, and I hypothesize the direction of the motorization pathways is from non-motorized to motorized, from low cost to high cost, and from shared to private-owned (Figure 12).

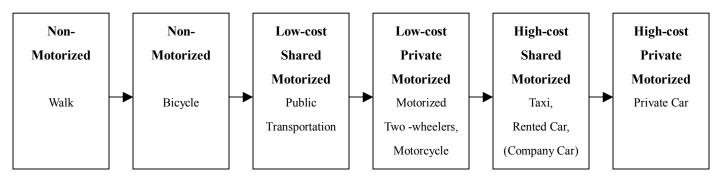


Figure 12: Hypothetical Motorization Direction

This survey research is designed to include people from all the steps of the hypothetical motorization pathway. Because we were unable to generate a single probability-based sampling frame for the residents of Shanghai, and because it is not necessary for the purposes of my research to accurately characterize Shanghai according to the distribution of its residents across the motorization pathway, I did not implement a probability-based sample. Rather, I hoped to insure that I had respondents in each step of the motorization pathway through the use of multiple convenience samples. I conducted the survey at several specific locations — a location-based variant of convenience sampling. For example, I conducted the surveys in subway stations for the subway riders. With respect to step in the motorization pathway, it was not exactly a choice-based sample, because any given subway rider might own a car, but still be using the subway. Still, by sampling at subway stations, I expected to interview some respondents who are no further along in their motorization pathways than low-cost, shared, motorized modes.

Two surveys – a pilot and a final – were designed and implemented. A pilot survey of 122 residents of Shanghai was conducted in late 2005, and a final survey of 1,037 people was conducted in mid-2006. The pilot survey was not merely a pre-test of the final survey, but included the additional goal of getting a basic sense of the geographical and socioeconomic context of Shanghai, which was important for determining sampling locations for the final survey. The final survey, containing substantially more questions than the pilot study, was used to test the idea of motorization pathways in Shanghai (Chapter 4) and provide the data for the vehicle choice model (Chapter 5). For instance, in the final survey, there are questions regarding the utility-based comparison of different travel modes. In addition, questions about personality, lifestyle and the exogenous

environment are included as they are considered to be variables affecting vehicle purchase behavior.

The primary goals of this chapter are to relate the survey design to my motorization pathway assumption, to document the research methods step by step, and to describe for others who may wish to conduct survey research in China what worked and what did not. In the following, there will be detailed discussion about both pilot and final survey. I will discuss sampling, survey instruments, and incentives. Implementation issues such as determining the survey time of day, and survey team selection and training are also discussed. The last part of this chapter will be focused on lessons learned from local implementation, and findings (about the research methodology) based on survey results.

Pilot Survey

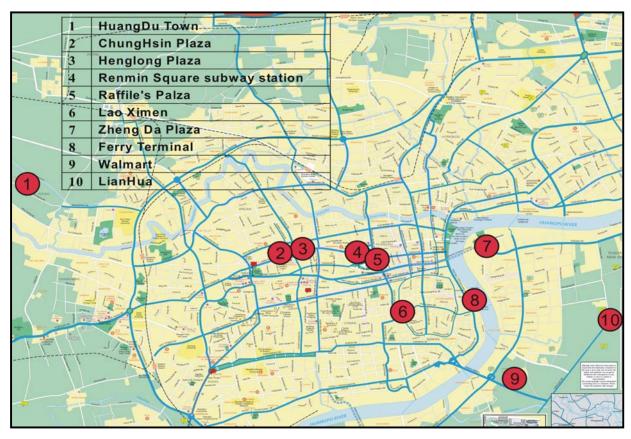
• Sampling

As mentioned, one major objective of the pilot survey was to interview people at different steps of the hypothesized motorization pathway (Figure 12). To fulfill this objective, location-based sampling was selected – that is, I surveyed different locations related to travel modes (or purchased vehicle) as well as people's mobility characteristics including: income and transit access.

In the design of the sampling scheme, I first referred to the estimates of the true shares of vehicle purchase or use in Shanghai; I used data on distance-based mode share as a proxy (discussed in Chapter 2). The Shanghai City Comprehensive Transport Planning Institute

(SCCTPI, 2000) published distance-based mode share data for Shanghai. These data showed trip shares of 7 percent walk, 27 percent bicycle, 39 percent public transportation, 12 percent motorcycle, and 15 percent private car. Considering the shares of walk, motorcycle, and car trips are relatively small, I intentionally sampled from certain locations for the purpose of enriching those mode shares. That is, since I knew the total sample size of the pilot study would be small, I wanted to be sure that I had people from all steps of the motorization pathway in the sample. For instance, I surveyed onboard the ferry across the Yangtze River to sample people riding motorcycles or motorized two-wheelers. The ferry is their most common way to travel across the Yangtze River.¹⁷ In the pilot sample, 75 percent of people surveyed in the ferry terminal or on the ferry were people using motorcycles or motorized two-wheelers (Figure 13).

Figure 13: Pilot Survey on Ferry


_

 $^{^{17}}$ People are not allowed to ride motorcycles and motorized two-wheelers on bridges or to bring those vehicles onto the subway.

People with different mobility characteristics, i.e., people at different steps of the motorization pathway, are conceived as different market segments. In order to cover the whole range of segments, I chose to sample at places where I expected to find people in certain segments. For example, I sampled at high-end shopping malls for high-income people who have the capability to purchase automobiles, whether they have done so or not; at Walmart stores for middle-income people or the so-called "salary class", whose income is more likely to afford them motorcycles, use of public transportation, or taxis; and in the old town Shanghai (Lao Ximen, Figure 14) for the lower-income people who are more likely to walk or ride bicycle. Further, where a respondent is in their mobility pathway may vary according to location and access to different travel modes. Such differences as between the central city and suburbs relate to people's living and working location and possible modes of travel. So we sampled at the Huang Du town outside the metropolitan area of Shanghai to compare to results from the other locations within the city. According to the above guidelines just discussed, ten locations were selected for the pilot survey (Figure 15).

Figure 14: Pilot Survey at Old Town Shanghai (Lao Ximen)

Figure 15: Survey Locations (Pilot Survey)

The pilot survey was conducted from October 14th to November 20th 2005. I distributed 164 questionnaires at the ten locations. In addition, 28 questionnaires were distributed through a (pure) convenience sample, i.e., not location-based, of colleagues and friends. A total of 122 questionnaires were returned for an overall response rate of 63.5 percent. Details about the survey locations and the response rates are provided in Table 17. High response rates were associated with locations where people were generally less busy or rushed. In the old town Shanghai (Lao Ximen), the many elderly people walking on the streets may have been less busy than people on their way home from work. The high response rates of the pure convenience sample may be due to their high level of trust for the survey-givers as this sample was made up of friends and colleagues.

ID	Survey Location	Survey Date (2005)	Distribution Method	# of Survey Distributed	# of Valid Response	Response Rate (percent)
1	Huang Du Town	11/20	On-street	13	8	61.5
2	Chung Hsin Plaza	10/21	On-street	9	4	44.4
3	Heng Long Plaza	10/21	On-street	10	5	50.0
4	Renmin Square subway station	10/28	On-street	27	11	40.7
5	Raffle's Plaza	10/16	On-street	18	10	55.6
6	Lao Ximen	10/16	On-street	5	5	100.0
7	Zheng Da Plaza	10/14	On-street	21	12	57.1
8	Ferry	10/28	On-street	17	16	94.1
9	Walmart	10/22	On-street	20	12	60.0
10	Lian Hua Supermarket	10/22	On-street	24	12	50.0
11	Peer Network	10/12 to 11/4	In person, e-mail	28	27	96.4

Table 17: Survey Locations and Response Rates (Pilot Survey)

• Distribution Method

In the pilot survey, I used on-street intercept methods except for some questionnaires sent by e-mail to known associates. There are two reasons for using on-street distribution. First, the on-street method can better facilitate the location-based sampling. Second, by actually visiting various places in Shanghai, I gained a better geographical and cultural understanding of this city. This was important since I planned to also use location-based sampling for the final survey. The pilot survey not only tested questions and sampling procedures, but was also an opportunity to comprehensively "picture" the metropolitan area of Shanghai.

• Questionnaire Design

Because the pilot study was mostly conducted as a street intercept survey, the questionnaire had to be simple and short to increase the probability that people would agree to take the questionnaire, and complete it once they agreed to take it. The questionnaire consisted of 20 questions, printed on three pages, double-sided. I estimated it could be finished in less than ten minutes. The questions asked about modes of travel owned and used, motivation for vehicle purchases, vehicle use patterns, and demographic data. I asked people to respond to questions about their past, present, and expectations for the future in order to observe transitions along the motorization pathway. I used both factual, e.g., "Do you currently own any vehicle?" and attitudinal, e.g., "Please rank three most important reasons for your vehicle purchase." questions (See Appendix for the questionnaire of the pilot survey).

Incentive

Due to budget constraints for the pilot study, I initially did not plan to provide any incentives. However, in Chinese culture, it is better to offer something, even a token, when asking people for a favor – and I viewed respondents' participation as a favor they were doing for me. Therefore, I prepared caps with the Tongji University logo as incentives. (Figure 16) The cap is not expensive – \$8 RMB or about \$1 USD. Another reason for selecting this specific reward was to enhance a sense of trust that people were not being sold a product and that as the study was connected to an academic, not a commercial, study, their participation would have some public benefit. In practice, a few people declined the reward but still participated in the survey, especially respondents in the high-end shopping malls.

Figure 16: Survey Reward (Pilot Survey)

• Local Implementation

One major part of this research is the first-hand data collection in Shanghai. The "all-in-one" process of survey design and implementation conducted by myself (with the help of professors in Tongji University and UC Davis) provided the advantage of asking questions pertinent to what I am most interested in. In the following, three issues of local implementation will be discussed.

Finalizing the Survey Team and Training

The survey team consisted of three people – one from UC Davis (myself) and two graduate students from the Automobile Marketing and Management School, Tongji University. Each team member was required to be familiar with the topic. The team was chosen to provide a mix of males and females and the ability to communicate in both Mandarin and the local Shanghainese dialect. The language ability was crucial in certain circumstances. For example, some elderly people we surveyed in old town Shanghai only spoke Shanghainese. Further, even Mandarin-speaking residents of Shanghai appeared to trust the survey-givers more when they noticed the team also speaking Shanghainese.

Team members were provided with a standard introduction to inform people who we were, what this was survey about, how long it would take to finish, and about the incentive. Also, the surveyors needed to be able to provide adequate but not leading (or misleading) assistance when people had questions or had trouble understanding a question. Finally, to minimize selection bias due to an affinity for certain types of people, the surveyors were instructed to use an "every fifth-person" rule – that is, to approach every fifth person passing by.

Finalizing the Time of Day for Survey Distribution

In Shanghai, the typical working day is from 9:00am to 5:00pm. I used two time slots – from 12:00pm to 2:00pm and 5:00pm to 7:00pm – during weekdays to capture people coming out for lunch and leaving work. I also surveyed on weekend afternoons, especially at shopping locations. The idea was to be at our locations during times of higher foot traffic.

Finalizing the Survey Spot

The team determined the general survey locations shown in Figure 15. However, upon arriving at each general location, we first spent up to 30 minutes looking around the survey area, discussing strategies for how to approach people, and finalizing the exact survey spots. For example, after arriving at the Renmin Square subway station, the team decided to survey near the bookstores at the station because we noticed that people there appeared to not be in a hurry. Similarly, once at the shopping malls, we observed the upper level of the mall was a better place to intercept people as they generally appeared to be less hurried than those on lower levels. Although surveying at those "less hurried"

spots may under-sample people with a high value of time or under high time pressure, our goal is to maximize the possibility of people taking our survey.

Final Survey

• Sampling

The population for the final survey was people over 18 years old, living in Shanghai, distributed along the motorization pathway¹⁸. Similar to the pilot survey, location-based convenience sampling was used, with oversampling of people at certain steps of the pathway. In particular, since car ownership is still relatively rare in Shanghai, the survey team went to Ford dealerships, a car show place, and a driving school to sample more car owners than could be sampled from pure on-street intercepts. As shown in Figure 17, there were 24 survey locations (13 on-street locations, 3 automobile dealerships, and 8 communities) all over the seven districts in Shanghai, including Yangpu, Jing'an, Huangpu, and Xuhui in the center city, as well as Minhang, Jiading and Pudong in suburban areas.

¹⁸ People need to be at least 18 years old to have driver's license in Shanghai.

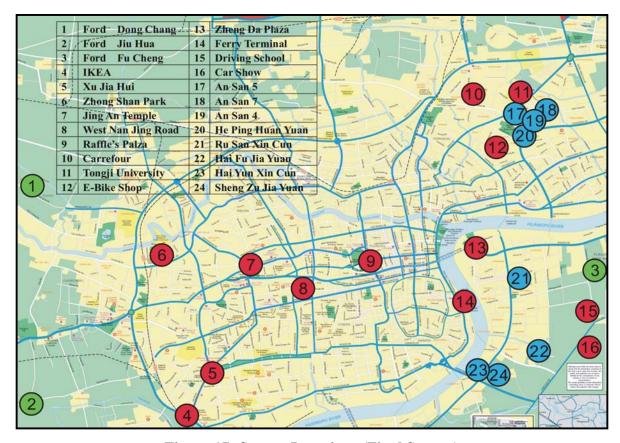


Figure 17: Survey Locations (Final Survey)

The final survey was administered between July 28th and October 27th, 2006. We distributed 1,569 questionnaires, and a total of 1,037 responses were collected including: 442 from on-street locations, 201 from the Ford dealerships, 316 from households, and 78 from a pure convenience sample of peer network. The overall response rate was 66 percent, which is slightly improved compared to the 63.5 percent response rate in the pilot survey. Details of locations, dates, and response rates by locations are shown in Table 18.

[D	Survey Location	Survey Date (2006)	Distribution Method	# of Surveys Distributed	# of Valid Responses	Response Rate (percent)
1	Ford Dong Chang	8/2 8/4 8/5	Dealership	53	40	75.5
2	Ford Jiu Hua	7/28 7/30 10/15 10/22	Dealership	285	133	47.0
3	Ford Fu Cheng	9/30	Dealership	59	28	47.5
4	IKEA	8/8	On-street	83	39	47.0
5	Xu Jia Hui	10/9	On-street	81	39	48.1
6	Zhong Shan Park Subway	10/22	On-street	82	40	48.8
7	Jing An Temple	9/23 9/24	On-street	71	40	56.3
8	West Nan Jing Rd.	8/5 8/12	On-street	69	38	55.0
9	Raffle's Plaza	9/24	On-street	50	35	70.0
10	Carrefour	8/13	On-street	66	41	62.1
11	Tongji University	10/13	On-street	68	40	58.8
12	E-bike Shop	10/26	On-street	15	8	53.3
13	Zheng Da Plaza	9/30	On-street	22	10	45.5
14	Ferry	10/24	On-street	69	35	50.7
15	Driving School	8/7	On-street	40	37	92.5

[D	Survey Location	Survey Date (2006)	Distribution Method	# of Survey Distributed	# of Valid Response	Response Rate (percent)
16	Car Show Place	8/20	On-street	58	40	69.0
17	An San 5	10/26	Household	40	40	100.0
18	An San 7	10/25	Household	40	40	100.0
19	An San 4	10/26	Household	40	40	100.0
20	He Ping Hua Yuan	10/25	Household	40	37	92.5
21	Ru San Xin Cun	9/12 9/22	Household	41	41	100.0
22	Hai Fu Jia Yuan	9/14 9/20	Household	41	41	100.0
23	Hai Yun Xin Cun	9/21	Household	37	37	100.0
24	Shen Zu Jia Yuan	9/21	Household	40	40	100.0
25	Peer Network	8/8 to 10/27	In person	79	78	98.7
26	All over Shanghai	9/1 to 10/27	Cell phone Message	41,754	78	0.18

Table 18: Survey Locations and Response Rate (Final Survey)

• Distribution Method

I used multiple methods to distribute the final questionnaire. I drew on lessons learned from the pilot survey to rewrite the questionnaire, to refine the on-street location selection, and to conduct additional experimentation with survey distribution techniques.

On-street: I re-visited some places from the pilot survey such as: Zheng Da Plaza and Raffle's Plaza, as these are near major subway lines and have high foot traffic. Also, I applied experiences from the pilot survey to determine additional locations that would improve the response rate. For example, Jing An temple was selected because there was a park nearby. Thus, it was considered a comfortable and convenient location and people in that area appeared to be less hurried.

<u>Car dealership</u>: One way I ensured the overall sample contained (enough) car owners was to distribute the final questionnaire at automotive sales dealerships. With cooperation from Ford China, the survey team was able to distribute questionnaires to car owners waiting while their cars were repaired or serviced. The waiting area was a comfortable and convenient place, and people tended to show trust toward us when they were informed that the survey was supported by Ford China. Note that other car-related sample locations were designed to expand the sample beyond owners of Ford vehicles, for example, the driving school and automotive show.

<u>Household</u>: Pre-arrangement to complete a questionnaire was important to ensure the success of the household surveys, since people need to have more trust to let survey-givers into their houses. Neighborhood Committees, which function like a rental or property management office, were enlisted to introduce us to households. The Neighborhood Committee is a semi-governmental organization and the smallest unit of the Communist Party in China. The professor I cooperated with has good connections with the Neighborhood Committee and helped to arrange the survey. With their aid, we surveyed households in eight different communities, attaining high response rates.

<u>Peer network</u>: Distributing the questionnaire in person to a network of peers of the survey-givers – a form of convenience sampling – was an efficient approach. We were able to solicit questionnaires from many people in a short time and the response rate was high (98.7 percent). However, to avoid possible selection bias in the overall sample, only a small portion of the surveys (n = 79) was distributed through the peer network.

Cell Phone Message/On-line: In addition to the above distribution methods, an on-line survey (www.china.v33.org) was implemented to expand the sample and test the current viability of a common survey research sampling medium in the U.S. A cell phone text message was the major tool to recruit people for the on-line survey. Cell phone users were contacted via random digit dialing covering all registered cell phone users in Shanghai metropolitan area¹⁹. However, it was not effective. The research team sent out 41,754 text messages during a 2-month time window, but only 78 people (in addition to the above 1,037 respondents) participated in the on-line survey. Considering the on-line survey as a fundamentally different survey type as well as its very low response rate, those 78 cases are excluded from analyses in this dissertation, except for the discussion of survey participation.

Nevertheless, the potential advantages of an on-line survey are that people may complete it in an anonymous situation and at a time of their choosing. The cell phone text message recruiting was originally considered efficient as it can reach a large group of people in a short time. To gain more trust from respondents, I posted the questionnaire with the official cooperation documents between UC Davis and Tongji University on the survey

-

¹⁹ I purchased the machine to do the random digital dialing for about 2,000 RMB.

website (www.china.v33.org). However, the low response rate suggested several potential problems. The text message may have been lost in the large number of text messages Shanghai cell phone users may receive, and even if read may have been too impersonal and untrustworthy. The lack of personal access to computers in peoples' homes and work places could be another factor that limited people's willingness or ability to participate.

• Questionnaire Design

The questionnaire contained 73 questions organized into six parts (See Appendix for the questionnaire of the final survey):

Part 1 asked for background on vehicle use and purchase. Respondents were asked eight questions about what kind of travel tools they own, the most expensive currently-owned vehicle, the use conditions, purchase cost, and operation cost, etc. A question about their motorization pathway was also included:

Please sort the sequence of the travel means you have used from the very past (in your memory) till now. Please fill in the numbers inside the boxes.

(Skip the box if you never use that travel mean)

Ex: [1] Bicycle, [2] Motorcycle, [3] Car = Bicycle → Motorcycle → Car

Bicycle
Walk
Personal Car
Public Transportation
Auxiliary Power Vehicle²⁰, Motorcycle
Taxi, Rented car

²⁰ In my survey, the original wording for motorized two-wheeler is "auxiliary power vehicle".

Shared Company's Car	
NO, there is no such "pathway". (WHY?)

Basically, respondents sorted their personal history of travel means to trace their motorization pathway, or absence of one. More detailed discussion about the motorization pathway analysis will be presented in Chapter 4.

Part 2 asked respondents to rate six attributes (status, speed, availability, capacity, price, comfort) of nine different travel means, including: walk, bicycle, motorized two-wheeler, motorcycle, taxi, rented car, public transportation, company car, and private car.

Part 3 asked about exogenous environmental factors affecting peoples' decisions whether to use or buy a travel mode, i.e., to advance a step on the motorization pathway. This part included 18 questions covering issues about policy, regulations, social environment, etc.

Part 4 asked another 18 questions to triangulate six underlying lifestyles hypothesized to be related to vehicle purchase in Shanghai. The six lifestyles are: "status-seeking," "bandwagon," "happiness as the first priority," "freedom and control of life," "environmental concern," and "family-oriented."

Part 5 asked 12 questions regarding demographic and socio-economic information about the respondents, including: age, gender, education, income (personal and family), occupation, possession of driver's license, residence area and duration, and experience of living in foreign country.

Part 6 asked 11 questions about respondents' participation in the survey itself, including what aspects of the survey process affected their willingness to initiate and complete the questionnaire.

• Incentive

To attract people to our survey, I offered rewards that varied by the method of questionnaire distribution. In each case, I attempted to match the incentive to the people and the setting in which I surveyed them. For example, people who took the survey immediately (including on-street, at an automobile dealership, and in-home) were given taxi coupons worth 20 RMB (i.e., \$2.5 USD) (Figure 18). People who finished the questionnaire on-line were eligible to enter a drawing for an i-Pod with value of 2,000 RMB (i.e., \$250 USD) (Figure 19). Considering that people taking the on-line survey may be mostly students or young professionals, the chance to win an i-pod was considered an attractive reward for them. The total cost of incentives was about \$2,000 USD – we gave out two i-pods, and about 60 percent of our respondents eventually took the taxi coupons as rewards.

Figure 18: Survey Reward (Taxi Coupon, Final Survey)

Figure 19: Survey Reward (i-Pod, Final Survey)

• Local Implementation

Finalizing the Survey Team and Training

The accuracy of the data is the goal. Especially in survey methods involving direct personal interaction with survey-givers, quality depends on whether survey-givers are responsible and professional in their approach to potential respondents and in their assistance to interviewees. Based on these requirements, I selected a group from transportation engineering students at Tongji University. These students are developing professional backgrounds in transportation. They understand the need for high quality data, and they are full of passion.

I distributed training materials to survey-givers and trained them as teams. Various scenarios were simulated in the training. They were told to be polite, patient, warmhearted and persevering. All the survey work should be finished in a harmonious and friendly manner. As in the pilot survey, the team members were trained to avoid

selection bias, for example by applying the "fifth-person" rule in approaching potential respondents.

Finalizing the Time of Day for Survey Distribution

Choosing a proper time to distribute questionnaires differed for the various means of distributing questionnaires. For example, as the on-street survey was conducted outdoors, successful implementation might be dependent on weather, especially in the summer time. So I chose weekend late afternoons, usually 5:00pm to 7:00pm, when it was not so hot in Shanghai for the on-street survey. As a trade-off, surveying during those specific time windows might introduce some potential sampling bias; however, our goal was to increase the response rate and facilitate the survey. As another example, during weekday work hours fewer people would be at home for the in-home household survey, therefore the team used weekdays from 7:00pm to 9:00pm for the household survey.

Finalizing the Survey Spot

As described above, on-street locations, car dealerships, and respondents' households were three major distribution methods in the final study. Due to the fact I had only one automotive sponsor for the study, I was able to distribute questionnaires only at the three Ford dealerships in Shanghai. Nevertheless, the following describes some guidelines about finalizing the survey spots for the on-street and household distribution.

On-street: Similar to the pilot survey, I first considered locations that would increase the probability I would be able to sample for motorization-segments. This meant locations that had both certain types of people and many of them who could be easily approached.

Therefore, I chose some shopping malls and supermarkets in Shanghai. Within this type of location, my selection procedure is illustrated by this example of how I chose a Carrefour store (the Quyang branch store). First, I reviewed all the addresses of Carrefour supermarkets in Shanghai. Carrefour supermarkets attract many people in their neighborhoods. In fall 2006, there were ten Carrefour markets in Shanghai: Lianyang, Wanli, Jinqiao, Qibao, Gubei, Wuning, Quyang, Nanfang, Baoshan and Zhongshan Park. The Lianyang, Gubei, Jinqiao and Wuning stores are located in neighborhoods where foreigners are the majority of residents, so these would not be good places to survey Chinese people. The Qibao and Zhongshan Park stores are close to Shanghai's most famous tour sites – high traffic, but many travelers from outside Shanghai, both Chinese and foreign. I judged the Nanfang, Baoshan and Jinqiao stores were not big enough to have enough foot traffic to make them viable locations for intercept surveys. The best option was the Quyang store because the residents are mostly local Shanghainese people and it was a large store with many customers. No government permission was needed for distributing surveys on-street.

Household: There are 17.4 million residents of Shanghai living in numerous residential districts spread over 6,341km² (Shanghai Bureau of Statistics, 2006). Sampling specific communities from within this large city was crucial to our research. I attempted to sample according to differences in household income cross-classified by access to public transportation. These were expected to affect the respondents' ability to buy automobiles (moving to the high cost, privatized end of the motorization pathway) and to use transit (which might facilitate some people moving from non-motorized modes to collective, motorized modes and to moderate the effect of higher income people moving to high-cost,

private modes). Locations chosen according to these criteria are listed in Table 19, and the identifying numbers correspond to those in Figure 17.

	Near Transit: less than 5	Far from Transit: more than 5		
minutes walking distance to subway minutes walking distance to s				
Low Income	Location 21	Locations 17, 18, 19, 23		
Mid- to High Income	Location 24	Locations 20, 22		

Table 19: Household Survey Locations (Final Survey)

Since it is not possible to know household income without first asking respondents for this information, I used publicly available housing prices as a proxy measure of wealth that would differentiate people according to their financial ability to buy an automobile. Suggested by the Tongji professors I worked with, people whose house price was below 8,000 RMB/m² were classified as low level of wealth; people whose house price was between 8,000 RMB/m² and 15,000 RMB/m² were classified in a middle level of wealth; and people whose house price was higher than 15,000 RMB/m² were classified in the high level of wealth. For transit access, I used proximity to subway as the criterion. I considered a place within a five-minute walking distance to the subway as "near" transit.

Lesson Learned from Local Implementation

The following describes several important lessons from the pilot and final surveys.

• Lesson from Pilot Survey

Lesson #1: "Dream life" is vague for most people

In pilot survey, questions about the future proved the most difficult for the respondents. I wanted people to imagine a "dream life" as a way for them to think about how they would want their life to be, including, how they would travel. A series of questions asked people to imagine a scenario of their dream life including income, vehicle, etc. 11 percent of respondents declined to answer at all; another 54 percent provided either vague or partial answers. Frequently, respondents needed further explanation. Even after the explanation, common comments were: "I have never thought about that," and "This does not relate to me, since I don't think I can change my life." The difficulty people had in answering these questions suggested this line of questioning would not be useful in the final survey. The comments suggest that many people in Shanghai may not be ready yet to imagine a future very different from their past and present, raising difficulties for studying many hypothetical topics.

Lesson #2: Trust, convenience, and comfort are keys to success

Based on the pilot survey experience, trust is the number one factor affecting people's willingness to participate. That is why I got the lowest response rate (40.7 percent) in the Renmin Square subway station. It is not only because people are busy, but also people tended to confuse the survey team with street venders, or possibly scams. When potential respondents don't trust the surveyors, we usually cannot stop them to ask for their participation. To remedy this situation, surveyors began to show their student IDs when approaching people. Besides, a convenient and comfortable environment will yield a better response rate. A convenient environment means a place where people can quickly and easily complete their questionnaire. For example, a street corner with public chairs or tables is a more convenient location for people to take the survey. A comfortable

environment could be a place with air-conditioning in the hot summer time. However, it can also be a location where people feel mentally comfortable. Some of our respondents stated that a place with more privacy was a more comfortable place – for example, the little bookstore inside the subway station.

Lesson #3: "Getting to know the place" is also important

In addition to the experience gained directly from the design and implementation of the pilot survey, I learned a lot by traveling around Shanghai. As a researcher who conducts survey research in a new place for the first time, orientation to the setting is important to develop a basic sense of the people and the area. The implementation of on-street interviewing in the pilot phase helped me finalize the sample design and location selection for the final phase.

• Lesson from Final Survey

Lesson #1: A complicated and long survey is challenging

The most difficult and critical step was to design a questionnaire that I could reasonably expect people to complete in the generally short time available. However, as there are many aspects of a motorization pathway I want to research, the questionnaire necessarily requires some complexity. I attempted to balance time demands on respondents and questionnaire complexity so that people would agree to participate and not lose patience. However, many people refused to participate when they realized the survey was seven double-sided pages.

Moreover, some individual questions proved difficult. A few of these are classic problems

in questionnaire design, i.e., respondents confusing rating and ranking tasks. For example, in Part 2 of the questionnaire I asked people to rate their agreement or disagreement with how expensive they perceive different travel modes to be. A table listing nine travel modes, each of which I wanted them to rate followed this. Unfortunately, many people ranked the items instead.

Besides, I did not separate the category of public transportation into bus and metro (including subway and light rail). This may have led to some misunderstanding of this rating task, because in Shanghai the metro system and bus system are not organized and operated by a single centralized manager. The price of metro is generally much higher than bus. The ratings of travel speed (asked in another question) of transit may also be affected by the income of respondents, since different income groups may have been responding to different "public transportation" systems. Thus despite our exploration of Shanghai as part of the survey, I did not accurately characterize transit in the final survey.

Lesson #2: Anonymity/confidentiality, authorization, and study topic are the top three factors affecting people's motivation to participate

As mentioned, Part 6 of the survey is designed specifically to identify the factors affecting people's motivation to participate in the survey. The original Part 6 questions are shown in Table 20.

	How important to you is each of the following affecting your motivation of taking a survey?	Not at all	Slightly Important	Medium Important (Neutral)	Moderately Important	Extremely Important
1.	How much time it will take					
2.	The topic (e.g., commercial vs. academic)					
3.	Authorization letter					
4.	My answer will be anonymous or kept confidential.					
5.	Guaranteed reward (non-cash)					
6.	Guaranteed reward (cash)					
7.	Drawing reward (non-cash)					
8.	Drawing reward (cash)					
9.	My friend refers me this survey.					
10.	Other, please specify					

Table 20: Original Questions about Factors of Survey Participation

According to the survey results of 1,037 respondents (those 78 on-line survey participants were excluded), anonymity/confidentiality, authorization, and study topic were the top three considerations in whether people initiated and completed a questionnaire. 55 percent of respondents considered that "my answer will be anonymous and confidential" to be moderately or extremely important. Similarly, 46 percent said that the "authorization letter" and 41 percent said "the survey topic" were moderately or extremely important.

• Factors of Survey Participation: Face-to-Face vs. On-line Survey

Important and Not Important Factors

The final survey was conducted face-to-face interview. 1,037 people responded on-street, at the car dealership, household, or by peer network. A further 78 people were recruited by cell phone text messages to an on-line version of the questionnaire. The two surveys are compared in Table 21.

SURVERY TYPE	Face-to-Face	On-line		
Sampling	Location-based and other convenience sampling	Random digital dialing		
Survey Distribution	On-street, auto dealership, household, in person (peer network)	Cell phone text message		
Survey Collection	 Same method as survey distribution. Distribution and collection is usually one-step process 	 Internet Distribution and collection can be separate steps 		
In-survey Process	 Less privacy, less time flexibility More assistance and interaction 	 More privacy, more time flexibility Less assistance and interaction 		

Table 21: Comparison between Face-to-Face and On-line Survey

Three important factors affecting the willingness to participate of 1,037 people taking part in the face-to-face interviews have been discussed briefly as the lesson of final survey implementation. However, I believe that people attracted by cell phone text messages to an on-line survey might view other factors as important to their participation. Table 22 and Table 23 show the importance distribution (on a five-point Likert scale) of nine factors affecting participation for face-to-face and on-line surveys. The values in the

cells are the percentage of sample (1,037 for face-to-face survey, 78 for on-line survey). The highest percentage for each factor is in bold-face. As I expected, "medium important/neutral" is the most frequent answer for many questions, especially for the people taking face-to-face survey. This response pattern, to certain extent, reflects the Chinese culture, which encourages people to be conservative, or, to be in the "middle". However, for the on-line survey respondents, more people express their attitude without placing themselves in the middle. "Medium important/neutral" is the most frequent answer to five questions for the on-line respondents compared to being most frequent for seven questions for people taking survey face-to-face. Besides, no one skipped a single question in the on-line survey, although the "no comment/skip" was an option provided equally for both face-to-face and on-line survey participants. This discussion suggests that the on-line survey respondents, compared to people taking the survey face-to-face, are more willing to express a "not-in-the-middle" attitude.

How important to you is each of the following	N/A (no	Not at all important	Slightly Important	Medium Important	Moderately Important	Extremely Important
affecting your motivation of taking a survey?	comment)			(Neutral)		
How much time it will take	2.16%	1.75%	16.87%	43.59%	26.59%	9.04%
The topic, e.g., commercial vs. academic study	2.70%	0.94%	15.92%	39.54%	34.55%	6.34%
Authorization letter	3.91%	1.08%	12.55%	36.57%	37.92%	7.96%
My answer will be anonymous and confidential.	2.16%	1.48%	12.42%	28.88%	35.22%	19.84%
Guaranteed reward (non-cash)	2.56%	7.15%	34.14%	42.78%	9.99%	3.37%

Guaranteed reward (cash)	2.29%	7.56%	34.01%	41.70%	11.47%	2.97%
Drawing reward (non-cash)	2.16%	7.56%	39.00%	42.65%	6.75%	1.89%
Drawing reward (cash)	2.83%	8.10%	37.92%	41.70%	7.69%	1.75%
My friend refers me this survey.	4.72%	6.34%	34.28%	41.03%	11.20%	2.43%

Table 22: Factors of Survey Participation (Face-to-Face Survey Type, 1037 Respondents, Five-Point Importance Scale)

How important to you is each of the following affecting your motivation of taking a survey?	N/A (no comment)	Not at all important	Slightly Important	Medium Important (Neutral)	Moderately Important	Extremely Important
How much time it will take	0.00%	3.85%	12.82%	29.49%	32.05%	21.79%
The topic, e.g., commercial vs. academic study	0.00%	2.56%	7.69%	33.33%	35.90%	20.51%
Authorization letter	0.00%	3.85%	6.41%	32.05%	34.62%	23.08%
My answer will be anonymous and confidential.	0.00%	1.28%	10.26%	28.21%	29.49%	30.77%
Guaranteed reward (non-cash)	0.00%	6.41%	11.54%	48.72%	20.51%	12.82%
Guaranteed reward (cash)	0.00%	7.69%	7.69%	44.87%	28.21%	11.54%
Drawing reward (non-cash)	0.00%	12.82%	7.69%	55.13%	16.67%	7.69%
Drawing reward (cash)	0.00%	12.82%	6.41%	57.69%	12.82%	10.26%
My friend refers me this survey.	0.00%	7.69%	11.54%	39.74%	26.92%	14.10%

Table 23: Factors of Survey Participation (On-line Survey Type, 78 Respondents, Five-Point Importance Scale)

To identify the important and not important factors of survey participation, I collapsed the five importance scales into three – "not-at-all to slightly important" (considered basically as not-important), "medium important/neutral", and "moderately to extremely important" (considered basically as important). As seen in Table 24, the top three important factors of participation (within red box) for face-to-face survey participants are: "confidentiality" (55.06 percent), "authorization letter" (45.88 percent), and "survey topic" (40.89 percent)²¹. Likely, the top three not-important factors of participation (within blue box) for the same group are: "drawing reward (non-cash)" (46.56 percent), "drawing reward (cash)" (46.02 percent), and "guaranteed reward (cash)" (41.57 percent)²².

How important to you is	N/A	Not at all	Medium	Moderately	Relative
each of the following	(no	important	Important	Important	Importance
affecting your motivation of	comment)	to	(Neutral)	to	Check
taking a survey?		Slightly		Extremely	
		Important		Important	
		(-)		(+)	
How much time it will take	2.16%	18.62%	43.59%	35.63%	-<+
The topic, e.g., commercial vs. academic study	2.70%	16.86%	39.54%	40.89%	-<+
Authorization letter	3.91%	13.63%	36.57%	45.88%	-<+
My answer will be anonymous and confidential	2.16%	13.90%	28.88%	55.06%	-<+
Guaranteed reward (non-cash)	2.56%	41.29%	42.78%	13.36%	->+
Guaranteed reward (cash)	2.29%	41.57%	41.70%	14.44%	->+

²¹ I determined the top "important factor" by comparing the combined percentage of "moderately to extremely important" across all nine factors listed.

Top "not-important" factors were identified by comparing the combined percentage of "not-at-all to slightly important" across all nine factors listed.

Drawing reward (non-cash)	2.16%	46.56%	42.65%	8.64%	->+
Drawing reward (cash)	2.83%	46.02%	41.70%	9.44%	->+
My friend refers me this survey.	4.72%	40.62%	41.03%	13.63%	->+

Table 24: Factors of Survey Participation (Face-to-Face Survey Type, 1037 Respondents, Three-Point Importance Scale)

How important to you is each of the following affecting your motivation of taking a survey?	N/A (no comment)	Not at all important to Slightly Important (-)	Medium Important (Neutral)	Moderately Important to Extremely Important (+)	Relative Importance Check
How much time it will take	0.00%	16.67%	29.49%	53.84%	-<+
The topic, e.g., commercial vs. academic study	0.00%	10.25%	33.33%	56.41%	-<+
Authorization letter	0.00%	10.26%	32.05%	57.70%	-<+
My answer will be anonymous and confidential	0.00%	11.54%	28.21%	60.26%	-<+
Guaranteed reward (non-cash)	0.00%	17.95%	48.72%	33.33%	-<+
Guaranteed reward (cash)	0.00%	15.38%	44.87%	39.75%	-<+
Drawing reward (non-cash)	0.00%	20.51%	55.13%	24.36%	-<+
Drawing reward (cash)	0.00%	19.23%	57.69%	23.08%	-<+

My friend refers me this survey.	0.00%	19.23%	39.74%	41.02%	-<+
----------------------------------	-------	--------	--------	--------	-----

Table 25: Factors of Survey Participation (On-line Survey Type, 78 Respondents, Three-Point Importance Scale)

In Table 25, the top three important factors of participation (within red box) for on-line survey respondents are: "confidentiality" (60.26 percent), "authorization letter" (57.7 percent), and "survey topic" (56.41 percent) – the same three factors as for face-to-face survey participants. The top three not-important factors of participation (within blue box) for on-line survey respondents are: "drawing reward (non-cash)" (20.51 percent), "drawing reward (cash)" (19.23 percent), and "friends' referral" (19.23 percent). In addition, in order to see the relative importance, I compared the combined percentage of "not-at-all to slightly important (negative)" with "moderately to extremely important (positive)" and found out that, for *each* question, more positive answers than negative ones were provided by people taking on-line survey.

To summarize, on-line respondents, being surveyed without personal contact but with privacy and freedom, are more willing to reveal "positive" attitudes. However, people involved in conventional face-to-face interviews, tend to skip questions or show "negative to middle" attitude. Besides, anonymity/confidentiality, authorization, and study topic were the top three important factors for both on-street and on-line respondents. Drawing rewards (cash and non-cash) were two not-important factors for both groups — no "guaranteed" reward could be one reason. However, it is also possible that people don't want to admit they took the survey for a reward (considered *not* socially-desirable in China). According to the initial findings, I assumed that the importance distribution

differs by the survey type, and chi-square analyses (for each single factor) were conducted to test my hypothesis, as in the following:

Time Cost vs. Survey Type

"Time cost" is the first factor of participation I test. "Not-at-all important" and "slightly important" are combined to reduce the number of cells with an expected count of less than five. However, the trade-off of this combination is the decrease of sensitivity of the original question at the negative end. The Pearson chi-squared test suggests that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). In Table 26, "neutral" is the most frequent answer (44.7 percent, highlighted in red) for people taking face-to-face survey. "Moderately important" (32.1 percent) is the most popular selection for on-line respondents, although the "neutral" also has similar frequency (29.5 percent) in that group.

				TIME	COST		
			Not at all ~ Slightly		Moderately	Extremely	
			Important	Neutral	Important	Important	Total
SURVEY	Face-to-	Count	211	459	269	88	1027
TYPE	Face	% within SURVEY TYPE	20.5%	44.7%	26.2%	8.6%	100.0%
	On-line	Count	13	23	25	17	78
		% within SURVEY TYPE	16.7%	29.5%	32.1%	21.8%	100.0%
Total		Count	224	482	294	105	1105
		% within SURVEY TYPE	20.3%	43.6%	26.6%	9.5%	100.0%

Table 26: Cross-tabulation: Survey Type x Time Cost

Research Topic vs. Survey Type

Similarly, "not-at-all important" and "slightly important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test suggests that there are significant differences in the distributions of importance scale

across survey types (p-value = 0.000 < 0.05). Again, "neutral" (41.1 percent) is the most frequent answer for people taking face-to-face survey, and "moderately important" (35.9 percent) is the most frequent answer for on-line respondents (Table 27).

				RESEAF	RCH TOPIC		
			Not at all ~ Slightly		Moderately	Extremely	
			Important	Neutral	Important	Important	Total
SURVEY	Face-to-	Count	180	419	357	64	1020
TYPE	Face	% within SURVEY TYPE	17.6%	41.1%	35.0%	6.3%	100.0%
	On-line	Count	8	26	28	16	78
		% within SURVEY TYPE	10.3%	33.3%	35.9%	20.5%	100.0%
Total		Count	188	445	385	80	1098
		% within SURVEY TYPE	17.1%	40.5%	35.1%	7.3%	100.0%

Table 27: Cross-tabulation: Survey Type x Research Topic

Authorization Letter vs. Survey Type

"Not-at-all important" and "slightly important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test indicates that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). In Table 28, "neutral" (39.1 percent) is the most frequent answer for face-to-face survey group, and "moderately important" (34.6 percent) is the top answer for on-line respondents.

				AUTHO	RIZATION		
			Not at all ~ Slightly Important	Neutral	Moderately Important	Extremely Important	Total
SURVEY	Face-to-	Count	158	396	381	79	1014
TYPE	Face	% within SURVEY TYPE	15.6%	39.1%	37.6%	7.8%	100.0%
	On-line	Count	8	25	27	18	78
		% within SURVEY TYPE	10.3%	32.1%	34.6%	23.1%	100.0%
Total		Count	166	421	408	97	1092
		% within SURVEY TYPE	15.2%	38.6%	37.4%	8.9%	100.0%

Table 28: Cross-tabulation: Survey Type x Authorization

Confidentiality vs. Survey Type

Similarly, "not-at-all important" and "slightly important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test shows that there are significant differences in the distributions of importance scale across survey types (p-value = 0.021 < 0.05). In Table 29, "extremely important" is the top choice for on-line respondents; however, "moderately important" is the most frequent choice for people taking the survey face-to-face. In contrast to the previous three cases, most people, whether in the face-to-face or the on-line survey group, consider confidentiality as important "in general".

				CONFID	ENTIALITY		
			Not at all ~ Slightly		Moderately	Extremely	
			Important	Neutral	Important	Important	Total
SURVEY	Face-to-	Count	184	309	356	176	1025
TYPE	Face	% within SURVEY TYPE	18.0%	30.1%	34.7%	17.2%	100.0%
	On-line	Count	9	22	23	24	78
		% within SURVEY TYPE	11.5%	28.2%	29.5%	30.8%	100.0%
Total		Count	193	331	379	200	1103
		% within SURVEY TYPE	17.5%	30.0%	34.4%	18.1%	100.0%

Table 29: Cross-tabulation: Survey Type x Confidentiality

Reward (Guaranteed, Non-cash) vs. Survey Type

In contrast to the previous cases, "moderately important" and "extremely important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test suggests that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). "Neutral" is the most frequent answer for both face-to-face (43.1 percent) and on-line survey groups (48.7 percent). However, the second most frequent answer is "slightly important" (37.7 percent) for the face-to-face group but "moderately to extremely important" (33.3 percent) for the

on-line survey group. (Table 30)

			RE\	WARD (GUARA	NTEED, NON-C	ASH)	
			Not at all	Slightly		Moderately ~ Extremely	
			Important	Important	Neutral	Important	Total
SURVEY	Face-to-	Count	74	386	441	122	1023
TYPE	Face	% within SURVEY TYPE	7.2%	37.7%	43.1%	11.9%	100.0%
	On-line	Count	5	9	38	26	78
		% within SURVEY TYPE	6.4%	11.5%	48.7%	33.3%	100.0%
Total		Count	79	395	479	148	1101
		% within SURVEY TYPE	7.2%	35.9%	43.5%	13.4%	100.0%

Table 30: Cross-tabulation: Survey Type x Reward (Guaranteed, Non-Cash)

Reward (Guaranteed, Cash) vs. Survey Type

"Moderately important" and "extremely important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test shows that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). Similar to previous case, "neutral" is the most frequent answer for both face-to-face (40.3 percent) and on-line survey groups (44.9 percent). (Table 31)

			RE\	NARD (GUAF	RANTEED, C	ASH)	
			Not at all Important	Slightly Important	Neutral	Moderately ~ Extremely Important	Total
SURVEY	Face-to-	Count	78	389	413	146	1026
TYPE	Face	% within SURVEY TYPE	7.6%	37.9%	40.3%	14.2%	100.0%
	On-line	Count	6	6	35	31	78
		% within SURVEY TYPE	7.7%	7.7%	44.9%	39.7%	100.0%
Total		Count	84	395	448	177	1104
		% within SURVEY TYPE	7.6%	35.8%	40.6%	16.0%	100.0%

Table 31: Cross-tabulation: Survey Type x Reward (Guaranteed, Cash)

Reward (Drawing, Non-cash) vs. Survey Type

"Moderately important" and "extremely important" are combined to reduce the number

of cells with an expected count of less than five. The Pearson chi-squared test indicates that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). "Neutral" is the most frequent answer for both face-to-face (41.6 percent) and on-line groups (55.1 percent) (Table 32). However, compared to people taking survey in person, more people in the on-line group consider the drawing non-cash reward as "not-at-all important" (12.8 percent).

			RE'	WARD (DRAW	/ING, NON-C	ASH)	
			Not at all	Slightly		Moderately ~ Extremely	
			Important	Important	Neutral	Important	Total
SURVEY	Face-to- Face	Count	85	420	427	94	1026
TYPE		% within SURVEY TYPE	8.3%	40.9%	41.6%	9.2%	100.0%
	On-line	Count	10	6	43	19	78
		% within SURVEY TYPE	12.8%	7.7%	55.1%	24.4%	100.0%
Total		Count	95	426	470	113	1104
		% within SURVEY TYPE	8.6%	38.6%	42.6%	10.2%	100.0%

Table 32: Cross-tabulation: Survey Type x Reward (Drawing, Non-Cash)

Reward (Drawing, Cash) vs. Survey Type

Likely, "moderately important" and "extremely important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test shows that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). "Neutral" is the top selection for both face-to-face (42.1 percent) and on-line survey groups (57.7 percent) (Table 33). Besides, a noticeable 12.8 percent of on-line survey respondents consider the drawing cash reward as not-at-all important compared to 7.9 percent in the group taking face-to-face survey.

			R	EWARD (DR	AWING, CAS	SH)	
			Not at all	Slightly		Moderately ~ Extremely	
			Important	Important	Neutral	Important	Total
SURVEY	Face-to-	Count	81	412	430	98	1021
TYPE	Face	% within SURVEY TYPE	7.9%	40.4%	42.1%	9.6%	100.0%
	On-line	Count	10	5	45	18	78
		% within SURVEY TYPE	12.8%	6.4%	57.7%	23.1%	100.0%
Total		Count	91	417	475	116	1099
		% within SURVEY TYPE	8.3%	37.9%	43.2%	10.6%	100.0%

Table 33: Cross-tabulation: Survey Type x Reward (Drawing, Cash)

Friend's Referral vs. Survey Type

"Friend's Referral" is the last factor I test. "Moderately important" and "extremely important" are combined to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test suggests that there are significant differences in the distributions of importance scale across survey types (p-value = 0.000 < 0.05). "Neutral" is the most frequent answer for both face-to-face (41.6 percent) and on-line survey groups (39.7 percent). However, the second most frequent answer is "slightly important" (35.9 percent) for the face-to-face group but "moderately to extremely important" for the on-line survey group (41 percent) (Table 34).

				FRIEND'S	REFERRAL		
			Not at all Important	Slightly Important	Neutral	Moderately ~ Extremely Important	Total
SURVEY	Face-to-	Count	70	362	419	157	1008
TYPE	Face	% within SURVEY TYPE	6.9%	35.9%	41.6%	15.6%	100.0%
	On-line	Count	6	9	31	32	78
		% within SURVEY TYPE	7.7%	11.5%	39.7%	41.0%	100.0%
Total		Count	76	371	450	189	1086
		% within SURVEY TYPE	7.0%	34.2%	41.4%	17.4%	100.0%

Table 34: Cross-tabulation: Survey Type x Friend's Referral

Effectiveness of Sampling: Revisiting the Location-based Idea

Reclassifying the Survey Location

As discussed, in the final survey, I did not implement a probability-based sample. Rather, in order to insure enough respondents in each step of the motorization pathway, I conducted the survey at several specific locations — a location-based variant of convenience sampling. That is, many of my survey locations are directly (or indirectly) related to vehicle purchase or use. For example, the auto dealership is for interviewing car owners, and the ferry place is for surveying the motorized two-wheeler or motorcycle riders. In Table 35, I reclassify the 26 final survey locations into six types as related to vehicle purchase or use.

LOCATION TYPE	Survey Locations			
On-street (general)	IKEA, Xu Jia Hui, Zhong Shan Park Subway, Jing An Temple, West Nan Jing Rd., Raffle's Plaza, Carrefour, Zheng Da Plaza, Peer Network			
Bicycle-related	Tongji University			
Motorized Two-wheeler/ Motorcycle-related	Ferry, E-bike Shop			
Car-related	Ford Dong Chang, Ford Jiu Hua, Ford Fu Cheng, Driving School, Car Show Place			
Household	An San 4, An San 5, An San 7, He Ping Hua Yuan, Ru San Xin Cun, Hai Fu Jia Yuan, Hai Yun Xin Cun, Shen Zu Jia Yuan			
On-line	All over Shanghai Metropolitan Area			

Table 35: Reclassification of Location Type

In this research, the "effectiveness" of sampling is defined in terms of how well (or diversely) the sample is distributed across different motorization pathway steps.

Therefore, "How effective was my sampling idea? For example, did I really sample more car owners in auto dealerships?" are questions of interest. According to the results of the pilot survey, 75 percent of people surveyed in the ferry terminal or on the ferry were people using motorcycles or motorized two-wheelers. In the following, cross-tabulation and chi-square analyses are conducted to test the relationship between final survey location (six types) and: "most expensive vehicle owned", "most frequently used travel means (weekday)", and "most frequently used travel means (weekday)", and "most frequently used travel means (weekend).

Most Expensive Vehicle Owned vs. Location Type

The original choices for most expensive vehicle in the final survey are: no vehicle, bicycle, motorized two-wheeler, motorcycle and car. However, to reduce the number of cells with an expected count of less than five, "motorized two-wheeler" and "motorcycle" are combined. The Pearson chi-squared test suggests that there are significant differences in the distributions of most expensive vehicle owned across location types (p-value = 0.000 < 0.05). Based on Table 36, not to my surprise, "bicycle (as the most expensive vehicle)" is over-represented (61.4 percent) in the sample of bicycle-related locations. However, "bicycle" is also the most frequent answer for people sampled from: general on-street locations (29.3 percent), household (42.3 percent), and on-line (38.7 percent). Besides, 92.7 percent of people sampled from motorized two-wheeler/motorcycle-related locations reported "motorized two-wheeler/motorcycle" as their most expensive vehicle owned. 61.8 percent of sample at car-related locations reported "car" as the most expensive vehicle owned. The above findings basically confirm the effectiveness of my location-based sampling scheme to interview people owning specific types of vehicles.

			Mo	OST EXPEN	SIVE VEHICL	E	
					Motorized		
					Two-wheeler		
			No Vehicle	Bicycle	/Motorcycle	Car	Total
LOCATION	On-street (general)	Count	84	103	89	76	352
TYPE		% within LOCATION TYP	23.9%	29.3%	25.3%	21.6%	100.0%
	Bicycle-related	Count	7	27	5	5	44
		% within LOCATION TYP	15.9%	61.4%	11.4%	11.4%	100.0%
	Motorized Two-wheeler/Motorcycle-relate	Count	0	2	38	1	41
		% within LOCATION TYP	.0%	4.9%	92.7%	2.4%	100.0%
	Car-related	Count	39	20	43	165	267
		% within LOCATION TYP	14.6%	7.5%	16.1%	61.8%	100.0%
	Household	Count	89	129	55	32	305
		% within LOCATION TYP	29.2%	42.3%	18.0%	10.5%	100.0%
	On-line	Count	26	29	5	15	75
		% within LOCATION TYP	34.7%	38.7%	6.7%	20.0%	100.0%
Total		Count	245	310	235	294	1084
		% within LOCATION TYP	22.6%	28.6%	21.7%	27.1%	100.0%

Table 36: Cross-tabulation: Location Type x Most Expensive Vehicle

Most Frequently Used Travel Means (weekday) vs. Location Type

Originally, there are a total of nine choices for the question of most frequently used travel means (weekday). To reduce the number of cells with an expected count of less than five, "walk" and "bicycle" are combined; "taxi", "rented car", "company car" are combined, and "motorized two-wheeler" and "motorcycle" are combined. The Pearson chi-squared test shows that there are significant differences in the distributions of most frequently used travel means (weekday) across location types (p-value = 0.000 < 0.05). As expected, the most frequently used travel means (weekday) is "walk/bicycle" for most people surveyed in bicycle-related locations (47.7 percent) (Table 37). "Motorized two-wheeler/motorcycle" is over-represented (86 percent) in the sample of motorized two-wheeler/motorcycle-related locations. Similarly, "car" is over-represented (50.9 percent) for the people sampled from car-related locations. Besides, "public transportation (as the most frequently used vehicle during weekday)" is the top answer

for people sampled from general on-street (33.4 percent) and household (42.5 percent) locations. In the on-line sample, "walk/bicycle" (46.2 percent) is considered as the most frequently used vehicle during weekday by most respondents. Again, the survey results suggest the effectiveness of location-based sampling at capturing specific groups of people based on their most frequently used travel means (weekday).

			MOST F	REQUENT	USED TRAVE	L MEAN (wee	kday)	
				Public	Taxi/Rented	Motorized		
				Transport	Car/Company	Two-wheeler		
			Walk/Bicycle	ation	Car	/Motorcycle	Car	Total
	On-street (general)	Count	84	116	40	49	58	347
TYPE		% within LOCATION TY	24.2%	33.4%	11.5%	14.1%	16.7%	100.0%
	Bicycle-related	Count	21	15	0	3	5	44
_		% within LOCATION TY	47.7%	34.1%	.0%	6.8%	11.4%	100.0%
	Motorized	Count	4	2	0	37	0	43
	Two-wheeler/Motorcycle-relate	% within LOCATION TY	9.3%	4.7%	.0%	86.0%	.0%	100.0%
	Car-related	Count	21	46	41	26	139	273
_		% within LOCATION TY	7.7%	16.8%	15.0%	9.5%	50.9%	100.0%
	Household	Count	107	133	33	19	21	313
_		% within LOCATION TY	34.2%	42.5%	10.5%	6.1%	6.7%	100.0%
	On-line	Count	36	23	6	1	12	78
		% within LOCATION TY	46.2%	29.5%	7.7%	1.3%	15.4%	100.0%
Total		Count	273	335	120	135	235	1098
		% within LOCATION TY	24.9%	30.5%	10.9%	12.3%	21.4%	100.0%

Table 37: Cross-tabulation: Location Type x Most Frequently Used Travel Means (weekday)

Most Frequently Used Travel Means (weekend) vs. Location Type

As in the previous case, I combine original choice categories to reduce the number of cells with an expected count of less than five. The Pearson chi-squared test shows that there are significant differences in the distributions of most frequently used travel means (weekend) across location types (p-value = 0.000 < 0.05). Reasonably, "motorized two-wheeler/motorcycle" is over-represented (62.8 percent) in the sample of motorized two-wheeler/motorcycle-related locations, and "car" is over-represented (51.8 percent) in

the sample of car-related locations. "Public transportation (as the most frequently used vehicle during weekend)" is the top answer for respondents sampled from general on-street locations (40.8 percent), household (47.9 percent), and on-line (61.5 percent) (Table 38). However, instead of "walk/bicycle", the answer of "public transportation" stands out (53.5 percent) in the sample of bicycle-related locations. Therefore, the results suggest that the location-based sampling might not work perfectly to capture specific groups based on their most frequently used travel means on weekends.

			MOST FREQUENT USED TRAVEL MEAN (weekend)					
				Public	Taxi/Rented	Motorized		
				Transport	Car/Company	Two-wheeler		
			Walk/Bicycle	ation	Car	/Motorcycle	Car	Total
LOCATION TYPE .	On-street (general)	Count	55	141	61	30	59	346
		% within LOCATION TYP	15.9%	40.8%	17.6%	8.7%	17.1%	100.0%
	Bicycle-related	Count	7	23	7	1	5	43
		% within LOCATION TYP	16.3%	53.5%	16.3%	2.3%	11.6%	100.0%
	Motorized	Count	4	10	1	27	1	43
	Two-wheeler/Motorcycle-relate	% within LOCATION TYP	9.3%	23.3%	2.3%	62.8%	2.3%	100.0%
	Car-related	Count	14	56	43	18	141	272
		% within LOCATION TYP	5.1%	20.6%	15.8%	6.6%	51.8%	100.0%
	Household	Count	52	150	70	9	32	313
		% within LOCATION TYP	16.6%	47.9%	22.4%	2.9%	10.2%	100.0%
	On-line	Count	11	48	6	2	11	78
		% within LOCATION TYP	14.1%	61.5%	7.7%	2.6%	14.1%	100.0%
Total		Count	143	428	188	87	249	1095
		% within LOCATION TYP	13.1%	39.1%	17.2%	7.9%	22.7%	100.0%

Table 38: Cross-tabulation: Location Type x Most Frequently Used Travel Means (weekend)

CHAPTER 4: MOTORIZATION PATHWAY

Question Design

An important part of my survey is to explore Chinese people's motorization pathway. In this research, motorization pathway is defined as the transition which individual people make among different travel means. As the name states, motorization is taken to mean a general likeliness to make a transition from non-motorized to motorized travel. I assume that Chinese people can accurately self-identify their motorization stages, from the past to current – for example, "I took bus before, but I am basically a bicycle person now" or "I started with walk, and now I use bus and bicycle interchangeably." Based on this assumption, I want to explore the motorization pathway in terms of patterns and direction of progression.

Sometimes, longitudinal studies are used to understand the progression of vehicle use (or purchase). However, as this survey was conducted only once, I used the following question to capture respondents' motorization pathways:

Please sort the sequence of the travel means you have used from the very past (in your memory) till now. Please fill in the numbers inside the boxes.

(Skip the box if you never use that travel means)

Ex: [1] Bicycle, [2] Motorcycle, [3] Car = Bicycle \rightarrow Motorcycle \rightarrow Car

BicycleWalkPersonal Car

Public Transportation	
Auxiliary Power Vehicle ²³ , Motorcycle	
Taxi, Rented car	
Shared Company's Car	
NO there is no such "nathway" (WHY?)

Basically, respondents sorted their personal history of travel means to trace their motorization pathway, or their lack of one. People respond to this question by assigning numbers (representing the sequence) to seven groups of travel means as shown above. Based on the experiences of a pilot survey, some travel means, e.g., motorized two-wheeler and motorcycle, or taxi and rented car, were combined to ensure a large enough sample (in the combined groups) for analysis. According to my definition of motorization pathway, people were encouraged to respond to this question as long as they have experience with "using" (not necessarily with purchasing) each travel means.

The goal of this analysis is two-fold. First, I want to see if a few common pathways are followed out of the many possible pathways. If so, what are those common patterns? Second, I would like to examine if the direction of motorization of Shanghai residents correspond to what I hypothesized. That is, is the daily experience of individual travelers one of increasing likeliness to rely on motorized means? The motorization pathway analysis will provide information about "What motorization stages are Shanghainese people currently (2006) in?" and "How do Shanghainese people get into their current motorization stages?" Thus, the pathway analysis is an introduction for further study on the vehicle purchase and use behavior of Shanghai (discussed in Chapter 5).

²³ In my survey, the original wording for motorized two-wheeler is "auxiliary power vehicle".

Modifying the Out-of-Range Responses

In the survey, people can only assign one number (or leave it blank) to one travel means. That is, one travel means can only show up once in people's motorization pathway (but two different means can be assigned the same sequence number). The first reason is that, although there may be some people who have moved to a more motorized stage and then went back, I am more interested in understanding the motorization pathway before the "loop back" for a developing country like China, where I believe that most people are still *upgrading* their level of motorization. Secondly, by doing so, the complexity of possible answers can be greatly reduced − as a tradeoff of preventing this question from identifying a loop-back pattern, such as "walk → car → walk."

According to the question design, the biggest number associated with one travel means is 7, if people have experiences with using all seven listed travel means, and none of them is classified into the same motorization stage. However, in reviewing the survey results, I found three cases with out-of-range responses. Two people assigned "10" to private car, and one person assigned "8" to the group of motorized two-wheelers and motorcycles. I considered those values as the last travel means they used and changed them to the next highest values in the sequence of consecutive numbers given by the respondents.

• Discarding and Recoding the Missing Data

In addition to the out-of-range values, I noticed missing data, which would generate non-response errors. There are two types of missing data – people refused to comment on

all seven listed travel means (i.e., section non-response), or people refused to answer certain specific travel means (i.e., item non-response).

First, there are 45 respondents who didn't provide any answers to this question. That is, no sequence number was assigned to any of the seven travel means. I discarded these "section non-responses" from the analysis. Thus, the final sample for the pathway analysis consists of 992 cases (instead of the original 1,037).

Secondly, I recoded the "item non-responses" as "0." The reason I selected "0" to represent the item non-responses is that according to the original question, people *should* skip checking the box if they don't have experience of using that travel means. However, even with this instruction, we are still unable to distinguish the "should-be missing" (i.e., no use experience) from the "truly missing" (i.e., people overlooked or skipped the question for whatever reason). Eventually, I treated such item non-response as "should-be missing" in view of the survey instruction.

Data Validation

Based on the pre-test of similar questions in the pilot survey, the idea of a motorization pathway was considered an ambiguous topic for Chinese survey-takers. Therefore, a series of data validation processes have been conducted before the analysis to see if people really understand the questions and provide answers that are plausible and consistent throughout the survey.

• Vehicle Use and Vehicle Purchase

The first step of data validation is checking answers to the pathway questions against other questions about vehicle use or purchase. There are four questions related to people's vehicle purchase or use, as shown in Table 39.

	Vehicle Purchase (Ownership)		Vehicle Use		
	1. Vehicle Ownership	2. Most Expensive	3. Vehicle Use Experience	4. Most Frequently Used Travel Means	
	(An Inventory)	Vehicle Owned	(Motorization Pathway)	(weekday/weekend)	
Question	Multiple	Single	Multiple	Single	
Туре	Choice	Choice	Choice (ranking)	Choice	
	No Vehicle,	No Vehicle,	Walk, Bicycle, Public	Walk, Bicycle, Public	
	Bicycle,	Bicycle,	Transportation,	Transportation,	
Choice	Motorized	Motorized	Motorized Two-wheeler /	Motorized	
Set	Two-wheeler,	Two-wheeler,	Motorcycle,	Two-wheeler,	
	Motorcycle,	Motorcycle,	Taxi / Rented Car,	Motorcycle, Taxi,	
	Car	Car	(shared) Company Car,	Rented Car,	
			Car	Company Car, Car	
	(5 choices)	(5 choices)	(7 choices)	(9 choices)	

Table 39: Vehicle Purchase and Use Questions

Before validation, it is useful to explain the relationship between vehicle purchase and use in this survey; one typical case is illustrated in the following:

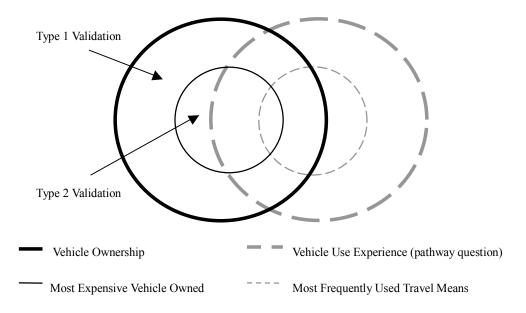


Figure 20: Type 1 and Type 2 Validation

The motorization question is shown as the big grey dashed circle in Figure 20. In Table 40, I describe my three types of validation.

Type 1	How many people reported ownership of a vehicle but didn't report any experience
Validation	using it?
Type 2	How many people reported ownership of a vehicle (as the most expensive one) but
Validation	didn't report any experience using it?
Type 3	How many people reported the most frequently travel means but didn't report any
Validation	experience using that travel means?

Table 40: Three Types of Validation

My assumption for the Type 1 and Type 2 validation is there will be very few (or zero) cases falling into the areas pointed out in Figure 20. For example, if a person has no past experience using (defined as *driving* in the original survey) a car, it is unlikely that such a person owns a car or reports car as his/her most expensive vehicle owned. Besides,

according to the original survey questions (see Appendix), people responded to questions in Table 39 based on their *personal* experiences (without considering their family). Thus, in principle, people should not report owning a car if it is owned by spouse or parents but never driven by the respondent.

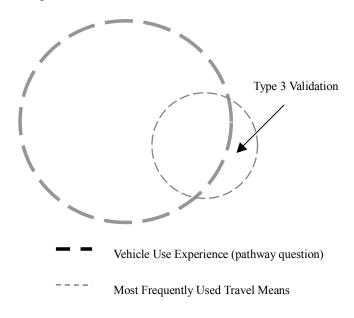


Figure 21: Type 3Validation

In addition, Figure 21 shows the Type 3 Validation. Similarly, I expect very few (or zero) cases to be in the indicated area. For example, if a person doesn't even have past experience of using a car, it is logically impossible for this person to report car as the most frequently used travel means during the weekday or weekend. Last, the selection of these three types of validation was arbitrary for a quick check on the internal consistency of data. Other validations such as: "how many people reported ownership of a vehicle (as the most expensive one) but didn't report the ownership of it?" can be conducted for a more thorough check.

• Internal Consistency: Use Experiences

Based on the above three types of validation, I first checked the internal consistency by cross-tabulating vehicle use experience by: vehicle ownership, most expensive vehicle owned, and most frequently used travel means during weekday and weekend.

Walk Experience

"Walk" is a tricky choice in our pathway question. Although it is not a "vehicle" which can be "purchased" per se, I still considered walk as a valid mode that can be identified into a stage of people's motorization pathway. Strictly speaking, everybody's first transportation mode should be walk, except for some special cases such as people with impaired personal mobility. However, the inclusion of walk as a choice was for the purpose of ensuring that everyone had an appropriate response to select (at a tradeoff of adding to the complexity). In this survey, interestingly, not everybody listed walk as the first motorization stage – there are 143 people (out of 992) who reported walk, but not as the first travel means; in addition, there are another 229 people (out of 992) who didn't rank walk at all. I didn't consider those abnormal answers on the walk mode as "implausible" because people who provided those answers might still tell true stories – based on their memory and judgment. For example, maybe they grew up in a household that had already moved beyond walking, so that even as children they had access to bike, bus, transit, or even car. Since "walk" cannot be owned, Table 41 and Table 42 show the results of the Type 3 Validation only. There were only six cases (in both Table 41 and Table 42) with a Type 3 violation (identified in red) indicating that most people provided consistent answers in this respect.

				Most	Frequently	y Used Trav	el Means	(weekday)			
			Public Rented Company Motorized								
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Walk	None	6	56	18	5	7	29	24	9	70	224
	YES	72	239	52	1	28	114	77	19	145	747
Total		78	295	70	6	35	143	101	28	215	971

Table 41: Walk Experience vs. Most Frequently Used Travel Means (weekday)

Count

				Most F	requently	Used Trave	l Means (v	veekend)				
			Public Rented Company Motorized									
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total	
Walk	None	6	60	49	1	1	15	14	5	75	226	
	YES	58	300	114	7	2	45	45	19	155	745	
Total		64	360	163	8	3	60	59	24	230	971	

Table 42: Walk Experience vs. Most Frequently Used Travel Means (weekend)

In the cross-tabulation tables, I put "none" instead of "NO" because "none" represents missing data, which can be no comment or NO. Nevertheless, for the pathway question specifically, I have assumed the missing data to be "no," i.e., 0, according to the original survey instruction.

Last, I didn't conduct another data cleaning for those "abnormal (red) cases" in Table 41 and Table 42 (and for all the following validation checks) because those cases are not absolutely incorrect. Taking "walk" as an example for Type 3 violation, people might self-identify their motorization stage as "beyond walk" in general; while still report walk as the most frequently used travel means during weekday. For Type 1 or 2 violation, some people might own luxury car for displaying only (as personal collection) without really using it.

Bicycle Use Experience

Table 43 and Table 44 show the Type 1 and Type 2 Validations for bicycle use and ownership. As we can see, not many cases fall into the disallowed categories.

Count				
		Bicycle O		
		None	YES	Total
Bicycle	None	181	17	198
Use	YES	376	418	794
Total		557	435	992

Table 43: Bicycle Use vs. Bicycle Ownership

Count							_					
			Most Expensive Vehicle Owned									
		No		Motorized								
		Vehicle	Bicycle	Two-wheeler	Motorcycle	Car	Total					
Bicycle	None	95	6	27	11	55	194					
Use	YES	113	258	146	39	214	770					
Total		208	264	173	50	269	964					

Table 44: Bicycle Use vs. Most Expensive Vehicle Owned

Table 45 and Table 46 are the results of the Type 3 Validation; there are *no* inconsistent responses.

Count													
			Most Frequently Used Travel Means (weekday)										
			Public		Rented	Company		Motorized					
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total		
Bicycle	None	22	82	16	2	5	0	15	7	48	197		
Use	YES	56	213	54	4	30	143	86	21	167	774		
Total		78	295	70	6	35	143	101	28	215	971		

Table 45: Bicycle Use vs. Most Frequently Used Travel Means (weekday)

			Most Frequently Used Travel Means (weekend)									
			Public		Rented	Company		Motorized				
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total	
Bicycle	None	18	78	32	3	2	0	12	5	46	196	
Use	YES	46	282	131	5	1	60	47	19	184	775	
Total		64	360	163	8	3	60	59	24	230	971	

Table 46: Bicycle Use vs. Most Frequently Used Travel Means (weekend)

Public Transportation Use Experience

For public transportation I did not check the answers against vehicle ownership, since public transportation is defined as a travel means not owned by an individual. However, I found 39 cases (Type 3 violation) in Table 47; and 58 cases (Type 3 Violation) in Table 48. Those cases suggest that this specific group of people didn't provide consistent answers between the pathway and most frequently used travel means questions.

Count

Odditt											
		Most Frequently Used Travel Means (weekday)									
		Public		Rented	Company		Motorized				
	Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total	
Public None		39	20	2	5	42	40	16	85	265	
Transportation Us YES	62	256	50	4	30	101	61	12	130	706	
Total	78	295	70	6	35	143	101	28	215	971	

Table 47: Public Transportation Use vs. Most Frequently Used Travel Means (weekday)

Count

		N	∕lost Fi	requently	Used Trav	el Means	(weekend)			
		Public		Rented	Company		Motorized			
	Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Public Transportatic None	13	58	47	4	1	20	26	13	87	269
Use YES	51	302	116	4	2	40	33	11	143	702
Total	64	360	163	8	3	60	59	24	230	971

Table 48: Public Transportation Use vs. Most Frequently Used Travel Means (weekend)

Motorized Two-wheeler or Motorcycle Use Experience

This is a combined group with experiences using either motorized two-wheelers or motorcycles. I checked against the ownership data for the Type 1 and Type 2 Validations. Table 49, Table 50 and Table 51 show that the answers provided by the motorcycle owner group are more consistent than the motorized two-wheeler owner group, because there are fewer cases of violations (Type 1 and Type 2) in the motorcycle owner group.

Count				
		Motorized T Owne		
		None	YES	Total
Motorized Two-wheeler	None	538	24	562
& Motorcycle Use	YES	234	196	430
Total		772	220	992

Table 49: Motorized Two-wheeler / Motorcycle Use vs. Motorized Two-wheeler Ownership

Count				
		Motorcycle	Ownership	
		None	YES	Total
Motorized Two-wheeler	None	561	1	562
& Motorcycle Use	YES	361	69	430
Total		922	70	992

Table 50: Motorized Two-wheeler / Motorcycle Use vs. Motorcycle Ownership

Count

			Most Ex	pensive Vehicle	Owned		
		No		Motorized			
		Vehicle	Bicycle	Two-wheeler	Motorcycle	Car	Total
Motorized Two-wheeler	None	161	213	19	1	154	548
& Motorcycle Use	YES	47	51	154	49	115	416
Total		208	264	173	50	269	964

Table 51: Motorized Two-wheeler / Motorcycle Use vs. Most Expensive Vehicle
Owned

Table 52 and Table 53 are results of Type 3 Validation. I was satisfied with the data quality since there are very few cases with the Type 3 problem.

Count										
		Most Frequently Used Travel Means (weekday)								
		Public		Rented	Company		Motorized			
	Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Motorized Two-wheel None	55	197	48	2	19	107	4	0	124	556
& Motorcycle Use YES	23	98	22	4	16	36	97	28	91	415
Total	78	295	70	6	35	143	101	28	215	971

Table 52: Motorized Two-wheeler / Motorcycle Use vs. Most Frequently Used Travel
Means (weekday)

Count										
		Most Frequently Used Travel Means (weekend)								
		Public		Rented	Company		Motorized			
	Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Motorized Two-whe None	43	228	98	5	2	42	1	0	132	551
& Motorcycle Use YES	21	132	65	3	1	18	58	24	98	420
Total	64	360	163	8	3	60	59	24	230	971

Table 53: Motorized Two-wheeler / Motorcycle Use vs. Most Frequently Used Travel Means (weekend)

Taxi or Rented Car Use Experience

Similar to public transportation, taxi or rented car can not be "purchased or owned" by individual. Therefore, the following tables are focused on the consistency between vehicle use experiences and the most frequently used travel means. Based on Table 54 and Table 55, we see that people with taxi or rented car experience (in their motorization pathway) basically provide answers consistent with their most frequently used travel means.

			Most Frequently Used Travel Means (weekday)										
			Public		Public		Rented	d Company		Motorized			
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total		
Taxi & Rente N	lone	25	101	13	1	13	58	57	19	93	380		
Car Use Y	⁄ES	53	194	57	5	22	85	44	9	122	591		
Total		78	295	70	6	35	143	101	28	215	971		

Table 54: Taxi / Rented Car Use vs. Most Frequently Used Travel Means (weekday)

Count

		Most Frequently Used Travel Means (weekend)								
		Public		Rented	Company		Motorized			
	Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Taxi & Rente None	22	156	33	4	2	25	36	14	87	379
Car Use YES	42	204	130	4	1	35	23	10	143	592
Total	64	360	163	8	3	60	59	24	230	971

Table 55: Taxi / Rented Car Use vs. Most Frequently Used Travel Means (weekend)

Car Use Experience

Table 56 and Table 57 represent the results of Type 1 and Type 2 Validation against the ownership data. Table 58 and Table 59 are the Type 3 Validation against vehicle use frequency data. As I found, there were not many cases showing the violations. Therefore, I believed the basic data quality of this group of respondents.

Count

		Car Ow		
		None	YES	Total
Car Use	None	615	16	631
	YES	97	264	361
Total		712	280	992

Table 56: Car Use vs. Car Ownership

			Most Ex	pensive Vehicle (Owned		
		No		Motorized			
		Vehicle	Bicycle	Two-wheeler	Motorcycle	Car	Total
Car Use	None	173	225	155	46	16	615
	YES	35	39	18	4	253	349
Total		208	264	173	50	269	964

Table 57: Car Use vs. Most Expensive Vehicle Owned

Count

				Most	Frequent	ly Used Tra	vel Means	(weekday)			
			Public		Rented	Company		Motorized			
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Car Use	None	60	239	45	4	19	121	90	27	10	615
	YES	18	56	25	2	16	22	11	1	205	356
Total		78	295	70	6	35	143	101	28	215	971

Table 58: Car Use vs. Most Frequently Used Travel Means (weekday)

Count

		Most Frequently Used Travel Means (weekend)								
		Public		Rented	Company		Motorized			
	Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Car Use None	55	300	123	8	3	47	51	21	11	619
YES	9	60	40	0	0	13	8	3	219	352
Total	64	360	163	8	3	60	59	24	230	971

Table 59: Car Use vs. Most Frequently Used Travel Means (weekend)

Company Car Use Experience

I checked the Type 3 problem for people who have ever used (shared) company cars. As shown in Table 60 and Table 61, the small number of cases with Type 3 violation indicated the consistency between questions.

			Most Frequently Used Travel Means (weekday)								
			Public		Rented	Company		Motorized			
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Company	None	61	229	44	5	5	116	88	26	162	736
Car Use	YES	17	66	26	1	30	27	13	2	53	235
Total		78	295	70	6	35	143	101	28	215	971

Table 60: Company Car Use vs. Most Frequently Used Travel Means (weekday)

Count

			Most Frequently Used Travel Means (weekend)								
			Public		Rented	Company		Motorized			
		Walk	Transportation	Taxi	Car	Car	Bicycle	Two-wheeler	Motorcycle	Car	Total
Company	None	53	279	116	7	0	46	49	20	166	736
Car Use	YES	11	81	47	1	3	14	10	4	64	235
Total		64	360	163	8	3	60	59	24	230	971

Table 61: Company Car Use vs. Most Frequently Used Travel Means (weekend)

• Plausibility: Single Stage (with Single Mode) Pathway

After the validation based on internal consistency, the next step of validation was to check the plausibility of certain answers. People reporting single stage (with single mode) pathway, e.g., the motorization pathway is walk only, were selected for plausibility check – *Did respondents who self-reported such pathways appear to provide plausible answers?* I first selected respondents with single stage (with single mode) pathways; then checked their top (most frequent) answers to three other questions – most expensive vehicle owned, license ownership, and occupation. Occupation was selected because it was considered as a demographic attribute related to motorization pathway. Besides, in my survey, there was less missing data on occupation than on other demographic attributes such as income.

	Single	e Stage (with S	ingle Mode) Mot	orization Pathway Gro	ups
	Walk	Bicycle	Public	Motorized	Car
			Transportation	Two-wheeler, or	
				Motorcycle	
	[7]*	[25]	[5]	[4]	[3]
Most Expensive	No vehicle	Bicycle	No vehicle	Motorized Two-wheeler	Car
Vehicle Owned?					
	(70%)	(84%)	(60%)	(75%)	(100%)
License	No	No	No	Both Motorcycle	Car
Ownership?	license	license	license	and Car	Only
	(86%)	(92%)	(80%)	(75%)	(67%)
Occupation?	Other	Factory	N/A**	Private-owned	N/A**
		Worker		Company Worker	
	(60%)	(30%)		(50%)	

Table 62: Single Stage (with Single Mode) Pathway Groups and Top Answers to

Three Validation Questions

Table 62 shows people with different types of single stage (with single mode) pathway and their top (most frequent) answers to three validation questions. One thing to be noted is that such motorization pathway is not applicable for every travel means in the choice set. For example, no one has "taxi or rented car only" and "company car only" pathway. The total cases of single stage (with single mode) pathway are only 44 (out of 992). Judging from people's most frequent answers to the three validation questions, I didn't find anything unreasonable or counter-intuitive — it suggested that the single stage (with single mode) pathway was a plausible, even if infrequent, answer. In conclusion, based

103

^{*} Numbers in brackets indicate the number of cases.

^{**} All answers are with equal frequency.

on the results of both internal consistency and plausibility checks, I am more confident about the fundamental validity of the motorization pathway data.

Common Motorization Pathway

• Frequency Distribution of Actual Patterns

As mentioned, one goal of the motorization pathway analysis is to identify whether there are common pathway patterns out of the many possible pathways. The answer is no: a total of 331 motorization pathways were reported by 992 survey respondents (see Appendix for the complete distribution). Since people reported pathway patterns of different sequences and number of stages, generalizing common pathway patterns is challenging. In this research, I first try to identify the common motorization pathways according to the top (based on frequency) patterns.

In Table 63, 498 (more than 50% of the sample) respondents' motorization pathways are consolidated into the top 30 most frequent patterns. The codes W, B, P, M, T, S, and C stand for: Walk, Bicycle, Public Transportation, Motorized Two-wheeler or Motorcycle, Taxi or Rented Car, (share) Company Car, and (private) Car. The most frequent pathway, reported by 6.5 percent of sample, is: "Walk (W) \rightarrow Bicycle (B) \rightarrow Public Transportation (P) \rightarrow Taxi or Rented Car (T)." Private car didn't appear until it appeared as the last mode in the 3rd most frequent pathway (W \rightarrow B \rightarrow P \rightarrow T \rightarrow C). Among the top 30 patterns, there are only eight patterns (covering 11% of the sample) that include car, which confirms car is not yet a widely used mobility option. In terms of the sequence, pathways all start with non-motorized means (walk, bicycle, etc.), and mostly end with

motorized means (taxi, car, etc.). In terms of number of stages, pathways generally have three or four stages (within the top 30 patterns). However, the "bicycle only" and "walk only" pathways ranked as the 5^{th} and 26^{th} most frequent.

Motorization Pathway (Top 30 Patterns, sorted by frequency)	Frequency	Percentage of 992 cases
WBPT	64	6.5%
WPT	33	3.3%
WBPT <u>C</u>	32	3.2%
WBP	30	3.0%
В	25	2.5%
WB	25	2.5%
BM	22	2.2%
WBM	20	2.0%
WBPTM	19	1.9%
WBPM	18	1.8%
ВРТ	17	1.7%
WP	17	1.7%
B <u>C</u>	15	1.5%
WBPMTS <u>C</u>	15	1.5%
WBP <u>C</u>	12	1.2%
WBPMT	12	1.2%
WBPTS	12	1.2%
WPBT	11	1.1%
WPT <u>C</u>	11	1.1%
BM <u>C</u>	10	1.0%
BWPT	10	1.0%
WBPMT <u>C</u>	10	1.0%
BWP	9	0.9%
WBMPT	8	0.8%
WPTS	8	0.8%
W	7	0.7%

TOTAL	498	50.2%
WBMP	6	0.6%
BP	6	0.6%
WBMPTS	7	0.7%
WBM <u>C</u>	7	0.7%

Table 63: Top 30 Motorization Pathway Patterns (50% of the cases)

• Number of Motorization Stage

In addition to the frequency distribution, reviewing the number of motorization stages is another way to define common motorization patterns. Table 64 classifies 992 respondents based on number of motorization stages. Pathways of three or four stages are the most common, accounting for more than half of the sample pathways (52%). In the remaining half, 18% people are simple pathways with one or two stages, and 30% are longer pathways with five, six or seven stages.

One thing to be noted is that, in addition to the previous 44 single stage (with single mode) cases, two cases with "single stage but multiple/concurrent modes²⁴" – (BWCP) and (BWPTS) – were also considered in Table 64, thus making the total counts 46.

_

²⁴ Travel modes within the parentheses means those modes were reported in the same position of respondents' motorization pathway.

Number of Motorization Stages	Counts	Percentage of 992 cases
1 (with 7 patterns)	46	5%
2 (with 26 patterns)	130	13%
3 (with 77 patterns)	255	26%
4 (with 81 patterns)	254	26%
5 (with 58 patterns)	162	16%
6 (with 36 patterns)	68	7%
7 (with 46 patterns)	77	8%
TOTAL	992	100%

Table 64: Number of Motorization Stages (100% of the cases)

Concluding from above, a *common* motorization pathway can be pictured as a series of three (or more) transitions in the types of travel means that a Shanghainese person has used for their daily travel. This result is not surprising for Shanghai – a city with rising income and various transportation options available.

Direction of Motorization

• Motorization Pathway: Looking Forward

After the search for common motorization pathways, I wanted to understand if pathways are in the direction of motorization. Tree diagrams of the first two, three and four motorization stages were developed to examine the pathway in the "forward" direction (i.e., from past to current)²⁵. In the tree diagram, pathway patterns were basically truncated and combined. For example, by considering the first two stages, patterns of "W \rightarrow B \rightarrow C" and "W \rightarrow B \rightarrow M \rightarrow T" will be combined as two cases of "W \rightarrow B". The

_

 $^{^{25}}$ Since about 2/3 of the motorization pathways ended within four stages in my survey, analyzing the first two to four stages is considered sufficient.

partial look at motorization patterns can greatly reduce the data complexity, as in Table 65.

Only first 2 stages	Only first 3 stages	Only first 4 stages	Consider all stages
60 Patterns	152 Patterns	236 Patterns	331 Patterns
(100% cases)	(100% cases)	(100% cases)	(100% cases)
take 2 patterns	take 5 patterns	take 14 patterns	take 30 patterns
to reach 50%	to reach 50%	to reach 50%	to reach 50%

Table 65: Partial and Complete Motorization Pathway (Looking Forward)

In the following, tree diagrams of seven stages are presented. The top (most frequent) branch and pattern are identified²⁶, and the progression of motorization is reviewed.

Motorization Pathway Starts with "Walk" (613 cases)

108

 $^{^{26}}$ In this research, branches are specifically defined as the consolidated patterns of the first (or last) two stages.

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
W	7	W	7	W	7
W(BP)	2	W(BP)(MT)	1	W(BP)(MT)C	1
W(BPS)	11	W(BP)C	1	W(BP)C	1
WB	416	W(BPS)(MT)	1	W(BPS)(MT)C	1
WC	7	WB(BM)	25 3	WB WB(PM)	25 1
WM WP	16 146	WB(PM) WB(PMT)	1	WB(PM)T	2
WS	2	WB(PT)	2	WB(PMT)(CS)	1
WT	11	WBC	9	WB(PT)S	2
(WM)B	2	WBM	82	WBC	4
(WP)B	2	WBP	276	WBCM	1
(WP)T	1	WBS	3	WBCP	2
(***):		WBT	15	WBCS	1
		WC	2	WBCT	1
		WCB	2	WBM	20
─		WCP	3	WBM(PT)	2
(consider stages forward)		WM	6	WBMC	7
		WMB	2	WBMP	34
		WMC	2	WBMS	2
		WMP	3	WBMT	17
		WMT	3	WBP	30
		WP	17	WBP(MT)	2
		WPB	50	WBPC	17
		WPC	4	WBPM	72
		WPM	5	WBPS	8
		WPS	6	WBPT	147
		WPT	64	WBSC	2
		WS WSM	1	WBST WBT	2
		WT	3	WBTC	3
		WTB	2	WBTM	2
		WTC	5	WBTP	3
		WTP	1	WBTS	5
		(WM)BP	2	WC	2
		(WP)BT	2	WCBP	2
		(WP)T	1	WCPB	2
		(/ .		WCPT	1
				WM	6
				WMBP	2
				WMC	2
				WMP	1
				WMPB	2
				WMT	2
				WMTC	1
				WP	17
				WPB	6
				WPBC	1
				WPBM	19
				WPBS	3
				WPBT	21
				WPC	4
				WPM	2
				WPMT WPS	3 4
				WPST	2
				WPT	33
				WPTB	7
				WPTC	11
				WPTM	2
				WPTS	11
				WS	1
				WSM	1
				WT	3
				WTBC	1
				WTBM	1
				WTC	5
				WTPS	1
				(WM)BPT	2
				(WP)BT	1
				(WP)BTC	1
				(WP)T	1
V (2+ stages) = 606		N (3+ stages) = 551		N (4+ stages) = 431	
N (1 stage) = 7		N (2 stages) = 55		N (3 stages) = 120	
		N (1 stage) = 7		N (2 stages) = 55	
		, ,		N (1 stage) = 7	

Table 66: Tree Diagram (Start with "Walk", Look Forward)

Not surprisingly, most of our respondents start their motorization pathways with "walk" (613 cases; 62% sample). In Table 66, the color-coding represents different branches. The most frequent branch is also shown under bold-faced font. "W \rightarrow B \rightarrow P \rightarrow T" is the most frequent pattern (147 cases) within this group. In addition, "W \rightarrow B \rightarrow P \rightarrow M" is also considered a frequent pattern (72 cases). The branch starting with "WB" is the most frequent branch (416 cases).

At the bottom of the table, we can see the *tree expansion* based on cases. Most people in this group have complicated patterns, i.e., four stages or more. Besides, the total number of patterns grows quickly from 12 (first 2 stages) to 71 (first 4 stages). Both findings above suggest that this is a diverse group.

Motorization Pathway Starts with "Bicycle" (246 cases)

People with "bicycle" as the initial motorization stage (246 cases; 25% sample) make up the second biggest group. The branch starting with "BM" is the most frequent (60 cases) within this group (Table 67). It is reasonable to see the "motorized two-wheeler or motorcycle" as the next immediate motorization stage of bicycle, because the "motorized two-wheeler or motorcycle" is similar to bicycle by basic features but more motorized. Single stage "B" is the top pattern (25 cases); however, "B \rightarrow M" (22 cases), "B \rightarrow W \rightarrow P \rightarrow T" (18 cases) and "B \rightarrow P \rightarrow T" (17 cases) are also with high frequency.

This is a diverse group, since the total numbers of patterns increase rapidly with the tree expansion. Besides, I noticed some singular patterns that cannot be classified into any branch. These are cases of unique motorization pathways.

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
(BC)T	1	(BC)TP	1	(BC)TP	1
(BM)T	1	(BM)T	1	(BM)T	1
(BW)(PM)	1	(BM)(PM)T	1	(BW)(PM)T	1
(BW)(PMT)	1	(BW)(PMT)(CS)	1	(BW)(PMT)(CS)	1
(BW)C	1	(BW)C(PT)	1	(BW)C(PT)	1
(BW)M	1	(BW)MS	1	(BW)MSC	1
(BW)P	2	(BW)PC	1	(BW)PCT	1
(BWCP)	1	(BW)PT	1	(BW)PTS	1
(BWPTS)	1	(BWCP)	1	(BWCP)	1
В	25	(BWPTS)	1	(BWPTS)	1
B(PT)	1	В	25	В	25
B(WC)	1	B(PT)C	1	B(PT)C	1
BC	23	B(WC)(PM)	1	B(WC)(PM)(TS)	1
вм	60	BC	15	BC	15
BP	59	BCM	5	BCM	5
			2		
BS	5	BCP		BCP	1
ВТ	15	BCW	1	BCPT	1
BW	47	вм	22	BCW	1
		BM(CS)	2	вм	22
		ВМС	12	BM(CS)	2
		ВМР	10	BMC	10
/		BMS	5	BMCS	1
(consider stages forward)		ВМТ	6	ВМСТ	1
		BMW	3	ВМР	2
		BP	6	ВМРС	3
		BP(CT)	1	BMPT	4
		BPC	4	BMPW	1
		BPM	12	BMS	3
		BPT	28	BMSC	1
		BPW	8	BMST	1
		BSC	2	BMT	3
		BST	2	BMTC	1
		BSW	1	ВМТР	1
		BT	3	BMTS	1
		BTC	4	BMWP	1
		BTM	2	BMWS	1
		BTP	2	BMWT	1
		BTS	4	BP	6
		BW	4	BP(CT)	1
		BWC	3	BPC	4
		BWM	5	BPM	3
		BWP	32	BPMC	2
		BWT	3	BPMT	5
				BPMW	2
				BPT	17
				BPTC	4
				BPTM	1
				BPTS	4
				BPTW	2
				BPW	5
				BPWM	1
				BPWT	2
		1		BSC	2
		1		BST	2
					1
				BSW	
				BT	3
				BTC	4
				ВТМ	1
				BTMC	1
		1		BTP	1
				BTPC	1
				BTS	1
				BTSC	2
		1		BTSW	1
		1		BW	4
				BWC	2
				BWCP	1
				BWM	1
		1		BWMP	3
				BWMT	1
				BWP	9
				BWPC	1
				BWPM	4
		1		BWPT	18
				BWT	1
				BWTC	1
		1		BWTS	1
N (2+ stages) = 219		N (3+ stages) = 168		N (4+ stages) = 81	
				N (3 stages) = 87	
N (1 stage) = 27		N (2 stages) = 51			
		N (2 stages) = 51 N (1 stage) = 27		N (2 stages) = 51 N (1 stage) = 27	

Table 67: Tree Diagram (Start with "Bicycle", Look Forward)

Motorization Pathway Starts with "Public Transportation" (52 cases)

There are 52 respondents starting their motorization pathway with "public transportation" (6% sample). The most frequent branch within this group is "PT" (16 cases). Single stage "P" and "P \rightarrow W \rightarrow T" are both top patterns (5 cases); but "P \rightarrow T \rightarrow C" and "P \rightarrow T \rightarrow W" are also popular (4 cases). Compared to previous two groups, this is a less diverse group with less tree expansion. (Table 68)

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
Р	5	Р	5	Р	5
PB	14	PB	2	PB	2
PC	3	PBC	2	PBC	1
PM	4	PBM	2	PBCT	1
PS	2	PBS	1	PBM	1
PT	16	PBT	2	PBMT	1
PW	8	PBW	5	PBS	1
		PC	1	PBT	2
		PCW	2	PBWC	1
		PMB	1	PBWM	1
─		PMT	2	PBWT	3
(consider stages forward)		PMW	1	PC	1
		PSC	1	PCWB	1
		PST	1	PCWT	1
		PT	1	PMBW	1
		PTB	3	PMT	2
		PTC	4	PMWT	1
		PTM	1	PSC	1
		PTS	2	PST	1
		PTW	5	PT	1
		PWB	1	PTB	2
		PWT	7	PTBW	1
				PTC	4
				PTMS	1
				PTS	1
				PTSC	1
				PTW	4
				PTWM	1
				PWB	1
				PWT	5
				PWTS	2
N (2+ stages) = 47		N (3+ stages) = 43		N (4+ stages) = 17	
N (1 stage) = 5		N (2 stages) = 4		N (3 stages) = 26	
		N (1 stage) = 5		N (2 stages) = 4	
				N (1 stage) = 5	

Table 68: Tree Diagram (Start with "Public Transportation", Look Forward)

Motorization Pathway Starts with "Motorized Two-wheeler or Motorcycle" (36 cases)

36 respondents' starting stages of motorization pathway are "motorized two-wheeler or motorcycle" (4% sample). Branches starting with "MB" and "MW" are both listed as most frequent (8 cases). Likely, the top patterns within this group are "M → B" and "M" (4 cases). This is a less diverse group without rapid pattern growth. (Table 69)

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
M	4	M	4	М	4
MB	8	MB	4	MB	4
MC	1	MBP	1	MBPW	1
MP	6	MBW	3	MBW	2
MS	2	MC	1	MBWP	1
MT	7	MP	3	MC	1
MW	8	MPB	2	MP	3
		MPT	1	MPBT	1
		MS	1	MPBW	1
		MSW	1	MPTW	1
 		MT	1	MS	1
(consider stages forward)		MTB	2	MSW	1
		MTP	1	MT	1
		MTS	1	MTB	2
		MTW	2	MTP	1
		MW	3	MTSP	1
		MWB	1	MTW	1
		MWP	3	MTW(CS)	1
		MWT	1	MW	3
				MWBP	1
				MWP	1
				MWPB	1
				MWPC	1
				MWTP	1
N (2+ stages) = 32		N (3+ stages) = 19		N (4+ stages) = 11	
N (1 stage) = 4		N (2 stages) = 13		N (3 stages) = 8	
		N (1 stage) = 4		N (2 stages) = 13	
		, ,		N (1 stage) = 4	

Table 69: Tree Diagram (Start with "Motorized Two-wheeler or Motorcycle", Look
Forward)

Motorization Pathway Starts with "Taxi or Rented Car" (9 cases)

There are only nine respondents starting motorization pathway with "taxi or rented car" (1% sample). The branch of "TP" is the top one with three cases. However, in this small group, no top pattern can be properly identified when considering first four stages, because every pattern ends up with the same number of case. (Table 70)

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
ТВ	1	TBP	1	TBP	1
TC	2	TC	1	TC	1
TM	1	TCB	1	TCBW	1
TP	3	TMB	1	TMBW	1
TS	1	TPB	1	TPB	1
TW	1	TPC	1	TPC	1
		TPS	1	TPS	1
─		TSW	1	TSW	1
(consider stages forward)		TWC	1	TWC	1
N (2+ stages) = 9		N (3+ stages) = 8		N (4+ stages) = 2	
N (1 stage) = 0		N (2 stages) = 1		N (3 stages) = 6	
		N (1 stage) = 0		N (2 stages) = 1	
				N (1 stage) = 0	

Table 70: Tree Diagram (Start with "Taxi or Rented Car", Look Forward)

Motorization Pathway Starts with "Car" (32 cases)

This is a group with 32 cases (2% sample). The top branch is "CT" (11 cases), and the top pattern is exactly the two-stage "C \rightarrow T" (4 cases). Thus, for people start motorization with car, taxi is their next immediate stage although most people eventually end the pathways with public transportation or even walk (Table 71). One possible explanation for this "backward motorization" is that people who grow up in an affluent (car) family choose to establish on their own later in their life. Another possible explanation is that people who start with the car phase choose to downgrade their motorization because they realize that those low-motorized travel modes (taxi, public transportation) are sometimes more convenience for them to get around Shanghai.

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
С	3	С	3	С	3
СВ	1	CBW	1	CBW	1
CM	5	CM	1	CM	1
CP	6	CMP	1	CMPT	1
CS CT	1	CMT	1	CMTW	1
СТ	11	CMW	2	CMW	2
CW	5	CPB	2	CPBW	2
		CPM	1	CPMW	1
		CPS	1	CPST	1
		CPT	1	CPT	1
─		CPW	1	CPWT	1
(consider stages forward)		CSW	CSW 1 CSW		1
		СТ	4	СТ	4
		CTP	2	CTPW	2
		CTS	2	CTSP	2
		CTW	3	CTW	2
		CWB	1	CTWP	1
		CWP	2	CWBT	1
		CWT	2	CWPT	2
				CWT	2
N (2+ stages) = 29 N (1 stage) = 3		N (3+ stages) = 24 N (2 stages) = 5 N (1 stage) = 3		N (4+ stages) = 15 N (3 stages) = 9 N (2 stages) = 5 N (1 stage) = 3	

Table 71: Tree Diagram (Start with "Car", Look Forward)

Motorization Pathway Starts with "Company Car" (4 cases)

Very few people start motorization with "company car" (4 case, close to 0% sample). The *top* branch "ST" is relatively large with two cases. Similar to group of people starting with taxi or rented car, no top pattern can be identified when taking first four stages in to account. (Table 72)

Within First 2 Stages	Counts	Within First 3 Stages	Counts	Within First 4 Stages	Counts
SC	1	SCP	1	SCPT	1
ST	2	STC	1	STCW	1
SW	1	STP	1	STPW	1
		SW	1	SW	1
(consider stages forward)					
N (2+ stages) = 4 N (1 stage) = 0		N (3+ stages) = 3 N (2 stages) = 1 N (1 stage) = 0		N (4+ stages) = 3 N (3 stages) = 0 N (2 stages) = 1 N (1 stage) = 0	

Table 72: Tree Diagram (Start with "Company Car", Look Forward)

• Motorization Pathway: Looking Backward

Similar to examining the forward direction, tree diagrams of the last two, three and four motorization stages were developed to understand the motorization pathway in the "backward" direction (i.e., from now to past). Basically, I want to start with the ending stage of a motorization pathway, and then trace back where it comes from. This partial look of motorization patterns (backward) can reduce the data complexity, as in Table 73.

Only last 2 stages	Only last 3 stages	Only last 4 stages	Consider all stages
66 Patterns	174 Patterns	281 Patterns	331 Patterns
(100% cases)	(100% cases)	(100% cases)	(100% cases)
take 8 patterns	take 17 patterns	take 26 patterns	take 30 patterns
to reach 50%	to reach 50%	to reach 50%	to reach 50%

Table 73: Partial and Complete Motorization Pathway (Looking Backward)

In the following, tree diagrams of seven ending stages are presented. The most frequent branches and patterns are identified and the progression of motorization is reviewed.

Motorization Pathway currently Ends with "Walk" (60 cases)

60 respondents (6% sample) reported "walk" as their final motorization stage. If consider the last four stages, single-stage pattern "W" is the most frequent (7 cases) within this group. However, patterns such as "B \rightarrow P \rightarrow W" (5 cases), "B \rightarrow W" (4 cases), "P \rightarrow T \rightarrow W" (4 cases) are also with relatively high frequency (Table 74).

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
MBW	2	MBW	5	BW	14
PMBW	2	BW	4	TW	13
TMBW	1	PBW	2	PW	10
BW	4	CBW	2	W	7
CPBW	1	TBW	1	MW	7
MPBW	1	PTW	9	SW	7
CBW	1	CTW	2	CW	2
TCBW	1	MTW	2		
PTBW	1	BPW	6		
PTW	4	TPW	2		
BPTW	2	MPW	1	←—	
MPTW	2	SPW	1	(consider stages backward)	
CPTW	1	W	7		
CTW	2	MW	3		
CMTW	1	CMW	2		
MTW	1	PMW	2		
BPW	5	MSW	2		
MBPW	1	TSW	2		
CTPW	1	BSW	1		
STPW	1	CSW	1		
BMPW	1	SW	1		
TSPW	1	BCW	1		
W	7	TCW	1		
MW	3				
CMW	2				
BPMW	1				
CPMW	1				
MSW	1				
TMSW	1				
BTSW	1				
TSW	1				
BSW	1				
CSW	1				
SW	1				
BCW	1				
STCW	1				
N (4+ stages) = 23		N (3+ stages) = 45		N (2+ stages) = 53	
N (3 stages) = 22		N (2 stages) = 8		N (1 stage) = 7	
N (2 stages) = 8		N (1 stage) = 7			
N (1 stage) = 7					

Table 74: Tree Diagram (End with "Walk", Look Backward)

Pathways ending with "BW" are the most frequent (14 cases). That is, for most people currently walking, their immediate previous stage was bicycle. This result is not surprising, since both bicycle and walk are non-motorized travel means. People who used to be in a biking stage can easily transfer to walking.

Motorization Pathway currently Ends with "Bicycle" (82 cases)

There are 82 respondents (8% sample) whose motorization pathway currently ends with bicycling. "WB" (27 cases) is the most frequent branch at the two-stage level. By expanding the tree diagram, "B" and "W \rightarrow B" are both the top patterns (25 cases). Similar to previous group, this result suggests the transfer between two non-motorized travel means (W and B). Judging from the tree expansion, this group is less diverse compared to previous group (Table 75).

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WB	25	WB	25	WB	27
PWB	1	PWB	2	В	25
TPWB	1	В	25	PB	10
В	25	WPB	6	ТВ	9
WPB	6	PB	2	MB	7
РВ	2	MPB	1	СВ	2
WMPB	1	TPB	1	(CS)B	1
TPB	1	PTB	6	SB	1
WPTB	4	MTB	2		
РТВ	2	WTB	1		
MTB	2	MB	4		
PWTB	1	SMB	2	(consider stages backward)	
MB	4	СМВ	1		
TSMB	2	SCB	2		
SCMB	1	W(CS)B	1		
MSCB	1	PSB	1		
TSCB	1				
TW(CS)B	1				
TPSB	1				
N (4+ stages) = 13		N (3+ stages) = 26		N (2+ stages) = 57	•
N (3 stages) = 12		N (2 stages) = 31		N (1 stage) = 25	
N (2 stages) = 31		N (1 stage) = 25			
N (1 stage) = 25					

Table 75: Tree Diagram (End with "Bicycle", Look backward)

Motorization Pathway currently Ends with "Public Transportation" (97 cases)

97 respondents end their motorization pathways with "public transportation" (9% sample).

"W \rightarrow B \rightarrow P" (30 cases) is the most frequent pattern, and this pattern arises from the top branch "BP" (38 cases) at the two-stage level. (Table 76)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WBP	30	WBP	30	BP	38
BP	6	BP	6	WP	29
WMBP	1	MBP	1	MP	13
TBP	1	TBP	1	TP	6
WP	17	WP	17	Р	5
BWP	9	BWP	10	SP	3
MBWP	1	MWP	1	СР	2
MWP	1	TWP	1	(BWCP)	1
CTWP	1	ВМР	8		
WBMP	6	MP	3		
ВМР	2	SMP	1		
MP	3	WMP	1	←	
TSMP	1	MTP	3	(consider stages backward)	
WMP	1	ВТР	2		
BMTP	2	(BC)TP	1		
MTP	1	P	5		
BTP	1	TSP	3		
WBTP	1	BCP	1		
(BC)TP	1	WCP	1		
Р	5	(BWCP)	1		
BTSP	1				
CTSP	1				
WTSP	1				
ВСР	1				
BWCP	1				
(BWCP)	1				
N (4+ stages) = 18		N (3+ stages) = 65		N (2+ stages) = 91	
N (3 stages) = 47		N (2 stages) = 26		N (1 stage) = 6	
N (2 stages) = 26		N (1 stage) = 6			
N (1 stage) = 6					

Table 76: Tree Diagram (End with "Public Transportation", Look Backward)

Motorization Pathway currently Ends with "Motorized Two-wheeler or Motorcycle" (130 cases)

There are 130 (13% sample) respondents having "motorized two-wheeler or motorcycle" as the final motorization stage. At the two-stage level, "BM" is the top branch (50 cases); likely, at the four-stage level, the "B \rightarrow M" is the top pattern (22 cases). Besides, "W \rightarrow B \rightarrow M" (20 cases); "B \rightarrow P \rightarrow T \rightarrow M" (19 cases) and "W \rightarrow B \rightarrow P \rightarrow M" (18 cases) are nearly as frequent as the top pattern (Table 77).

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
ВМ	22	ВМ	22	ВМ	50
WBM	20	WBM	20	PM	28
WPBM	6	PBM	7	TM	23
PBM	1	TBM	1	СМ	8
PTBM	1	BPM	22	SM	8
WBPM	18	WPM	6	WM	88
ВРМ	3	PTM	21	М	4
СВРМ	1	ВТМ	1	B(PM)	1
BWPM	4	CTM	1		
WPM	2	ВСМ	5		
BPTM	19	SCM	2		
WPTM	2	СМ	1	←	
BTM	1	TSM	5	(consider stages backward)	
PCTM	1	CSM	2		
BCM	5	WSM	1		
TSCM	2	WM	6		
CM	1	BWM	2		
PTSM	3	M	4		
CTSM	1	WB(PM)	1		
WTSM	1				
TCSM	2				
WSM	1				
WM	6 1				
BWM	1				
PBWM M	4				
WB(PM)	1				
N (4+ stages) = 62	'	N (3+ stages) = 97		N (2+ stages) = 126	
N (3 stages) = 62		N (3+ stages) = 97 N (2 stages) = 29		N(2+ stages) = 126 N(1 stage) = 4	
N (3 stages) = 33		N (2 stages) = 29 N (1 stage) = 4		N (1 Stage) - 4	
, , ,		iv (1 staye) - 4			
N (1 stage) = 4					

Table 77: Tree Diagram (End with "Motorized Two-wheeler or Motorcycle", Look

Backward)

Motorization Pathway currently Ends with "Taxi or Rented Car" (245 cases)

There are 245 respondents with final motorization stage as "taxi or rented car" (25% sample). Going back to include four stages, "W \rightarrow B \rightarrow P \rightarrow T" (64 cases) is the most frequent pattern within this group. Moreover, the branch ending with "PT" is the most frequent branch if considering only the last two stages. This branch suggests that most people in "taxi or rented car" stage come from "public transportation". Compared to all groups discussed before, this is by far the most diverse one with many complicated patterns and rapid tree expansion (Table 78).

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WBPT	64	ВРТ	83	PT	146
ВРТ	17	WPT	45	MT	32
(WM)BPT	1	MPT	12	ВТ	21
MBPT	1	СРТ	3	WT	17
WPT	33	SPT	2	ST	13
BWPT	10	PT	1	СТ	9
CWPT	1	PMT	19	P(MT)	2
MWPT	1	BMT	10	(BM)T	1
ВМРТ	11	WMT	2	(PM)T	1
WMPT	1	MT	1	(WP)T	1
ВСРТ	2	PBT	14	C(PT)	1
СРТ	1	ВТ	3	P(CT)	1
MSPT	2	WBT	3		
PT	1	(WP)BT	1		
BPMT	14	PWT	7		
PMT	2	BWT	3	←	
WPMT	2	WT	3	(consider stages backward)	
SPMT	1	CWT	2	l	
PBMT	4	MWT	2		
BMT	3	PST	7		
WBMT	3	BST	3		
WMT	2	MST	3		
MT	1	СТ	4		
WPBT	12	PCT	4		
PBT	2	MCT	1		
BT	3	BP(MT)	2		
WBT	2	(BM)T	1		
CWBT	1	(BW)(PM)T	1		
(WP)BT	1	(WP)T	1		
PWT	5	(BW)C(PT)	1		
BPWT	2	BP(CT)	1		
PBWT	2				
BWT	1				
WT	3				
CWT	2				
BMWT	1				
PMWT	1				
BPST	3				
WPST	2				
MPST	1				
PST	2				
BST WBST	1				
BMST	2				
CMST	1				
CIVIST	4				
BPCT	2				
(BW)PCT	1				
MPCT	1				
PMCT	1				
WBP(MT)	2				
(BM)T	1				
(BW)(PM)T	1				
(WP)T	1				
(BW)C(PT)	1				
BP(CT)	1				
N (4+ stages) = 155		N (3+ stages) = 231		N (2+ stages) = 245	
N (3 stages) = 76		N (2 stages) = 14		N (1 stage) = 0	
N (2 stages) = 14		N (1 stage) = 0		(! 3.293)	
N (1 stage) = 0		(. 5.235)			
11 (1 Stage) 10					

Table 78: Tree Diagram (End with "Taxi or Rented Car", Look Backward)

Motorization Pathway currently Ends with "Car" (259 cases)

The biggest group contains 259 respondents with final motorization stage as "car" (27% sample). The "B \rightarrow P \rightarrow T \rightarrow C" (36 cases) is the most frequent pattern, and the branch ending with "TC" (94 cases) is the largest one within this group.

It is not surprising that most people who are currently in the "car" stage come from a "taxi or rented car" stage. As a matter of fact, taxi or rent car can be considered a type of car in terms of basic functionality. However, car is a private mode and can be owned. The idea of ownership causes a major difference between private car and the taxi or rented car. Thus, I assume the transfer (or upgrade) from taxi to private car may involve certain attributes such as vehicle status. Last, according to Table 79, this is a large and diverse group. Apparently, there are many complicated patterns and the tree expansion is also complicated.

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
BPTC	36	PTC	55	тс	94
WPTC	12	MTC	18	SC	54
PTC	4	BTC	7	MC	39
MPTC PMTC	3 10	STC WTC	<u>7</u>	PC BC	36 24
BMTC	7	TC	1	WC	5
WMTC	1	TSC	33	C	3
ВТС	4	MSC	11	(PT)C	2
WBTC	2	BSC	5	(BP)C	1
РВТС	1	PSC	4	(MT)C	1
MSTC	5	(PT)SC	1		
PSTC	2	BMC	20		
WTC	5	PMC	9		
BWTC	1	TMC	7	, 1	
TC MTSC	1 18	WMC	2 1	(consider stages backward)	
PTSC	10	MC BPC	16		
BTSC	3	MPC	7		
WTSC	2	TPC	6	1	
TMSC	7	WPC	5	1	
BMSC	3	PC	1	1	
(BW)MSC	1	SPC	1		
BSC	2	BC	15		
WBSC	2	WBC	4		
PBSC	1	PBC	2		
MPSC	2	TBC	2		
BPSC	1	SBC	1		
PSC P(PT) 00	11	BWC	2		
B(PT)SC	1	WC	2 1	1	
BMC WBMC	10 7	TWC C	3		
PBMC	2	B(PT)C	1		
SBMC	1	M(PT)C	1		
BPMC	8	W(BP)C	1		
SPMC	1	(BPS)(MT)C	1		
PTMC	5	, , ,		1	
ВТМС	1				
STMC	1				
WMC	2				
MC	1				
WBPC	12				
BPC BMPC	<u>4</u> 5				
SMPC	2				
BTPC	3				
MTPC	2				
TPC	1				
WPC	4				
BWPC	1				
PC	1				
TSPC	1				
BC	15				
WBC	4				
PBC	1				
WPBC PTBC	<u>1</u> 1				
WTBC	1				
TSBC	1				
BWC	2				
WC	2				
TWC	1				
С	3				
B(PT)C	1				
BM(PT)C	1				
W(BP)C	1				
W(BPS)(MT)C	1	N1 (6 : -		N. (2	
N (4+ stages) = 189		N (3+ stages) = 236		N (2+ stages) = 256	
N (3 stages) = 47		N (2 stages) = 20		N (1 stage) = 3	
N (2 stages) = 20 N (1 stage) = 3		N (1 stage) = 3			
iv (i stage) = 3					

Table 79: Tree Diagram (End with "Car", Look Backward)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
BPTS	15	PTS	40	TS	59
WPTS	13	MTS	11	CS	14
MPTS	9	BTS	8	MS	14
(BW)PTS	1	TCS	9	PS	12
CPTS	1	MCS	2	BS	4
PTS	1	PCS	2	WS	4
PMTS	6	(MT)CS	1	T(CS)	2
BMTS	4	TMS	7	(PT)S	2
WMTS	1	BMS	4	M(CS)	2
PBTS	6	CMS	1	T(CMS)	2
BTS	1	MS	1	(PMT)(CS)	2
WBTS	1	PMS	1	(BWPTS)	1
MTCS	5	TPS	4	(PM)(TS)	1
PTCS	3	WPS	4		
BTCS	1	BPS	2		
BMCS	1	MPS	2		
TMCS	1	PBS	3		
TPCS	2	TBS	1	(consider stages backward)	
(BP)(MT)CS	1	TWS	2		
PTMS	4	MWS	11		
BTMS	1	WS	1		
CTMS	1	(PM)T(CS)	2		
WTMS	1	B(PT)S	1		
BMS	3	M(PT)S	1		
WBMS	1	BM(CS)	2		
TCMS		PT(CMS)	2		
MS	1	(BW)(PMT)(CS)	1		
CPMS		B(PMT)(CS)	<u>1</u> 1		
MTPS TPS	3 1	(BWPTS) (WC)(PM)(TS)	1		
		(WC)(PM)(1S)	ı		
WPS WBPS	4 2				
BMPS	1				
TMPS	1				
WPBS	2				
PBS	1				
CTBS	1				
BTWS	1				
CTWS	1				
BMWS	1				
WS	1				
B(PM)T(CS)	2				
WB(PT)S					
BM(PT)S	1				
BM(CS)	2				
WPT(CMS)	1				
BPT(CMS)	1				
(BW)(PMT)(CS)	1				
WB(PMT)(CS)	1				
(BWPTS)	1				
B(WC)(PM)(TS)	1				
N (4+ stages) = 102		N (3+ stages) = 116		N (2+ stages) = 118	
N (3 stages) = 14		N (2 stages) = 2		N (1 stage) = 1	
N (2 stages) = 2		N (1 stage) = 1		, ,	
N (1 stage) = 1					

Table 80: Tree Diagram (End with "Company Car", Look Backward)

As from Table 80, 119 respondents reported their final motorization stage as "company car" (12% sample). The "B \rightarrow P \rightarrow T \rightarrow S" (15 cases) and "W \rightarrow P \rightarrow T \rightarrow S" (13 cases) are top two patterns within this group, and they are both associated with the top branch ending with "TS" (59 cases)

This is a diverse group. Various pathways are observed at the four stage level. Beside, most of the respondents (102 out of a total of 119 cases) have motorization pathways involve four stages or more, as shown at the bottom of Table 80.

• Hypothetical Direction

Looking	Forward	Looking Backward		
Starting Stage	Most Frequent <u>Branch</u> and Pattern within Group	Ending Stage	Most Frequent <u>Branch</u> and Pattern within Group	
Walk # [613 cases]	$\frac{W \rightarrow B}{W \rightarrow B} * [416]$ $W \rightarrow B \rightarrow P \rightarrow T * [147]$	Walk [60 cases]	[14] <u>B → W</u> [7] W	
Bicycle [246 cases]	$\frac{B \to M}{B [25]} [60]$	Bicycle [82 cases]	[27]	
Public Transportation [52 cases]	$P \to T [16]$ $P [5]$ $P \to W \to T [5]$	Public Transportation [97 cases]	[38] $\underline{B} \rightarrow \underline{P}$ [30] $W \rightarrow B \rightarrow \underline{P}$	
Motorized Two-wheeler / Motorcycle [36 cases]	$ \underline{M \to B} [8] $ $ \underline{M \to W} [8] $ $ M [4] $ $ M \to B [4] $	Motorized Two-wheeler / Motorcycle [130 cases]	[50] <u>B → M</u> [22] B → M	
Taxi / Rented Car [9 cases]	$\frac{T \to P}{N/A} $ (no top pattern)	Taxi / Rented Car [245 cases]	$[146] * P \rightarrow T$ $[64] * W \rightarrow B \rightarrow P \rightarrow T$	

Car	$C \rightarrow T$ [11]	Car [#]	[94] <u>T →C</u>	
[32 cases]	$C \rightarrow T[4]$	[259 cases]	[36] B \rightarrow P \rightarrow T \rightarrow C	
Company Car	$\underline{S \to T}[2]$	Company Car	[59] <u>T</u> →S	
[4 cases]	N/A (no top pattern)	[119 cases]	[15] B \rightarrow P \rightarrow T \rightarrow S	
#: Largest group (consider fin	rst 1 stage) across sample	#: Largest group (consider last 1 stage) across sample		
*: Largest branch (consider f	irst 2 stages) across sample	*: Largest branch (consider last 2 stages) across sample		
s: Largest pattern (consider t	irst 4 stages) across sample	s: Largest pattern (consider last 4 stages) across sample		
[] Numbers in bracket indi	cate the number of cases	[] Numbers in bracket indicate the number of cases		

Table 81: Summary of Tree Diagrams

Table 81 summarizes the top patterns (within group and across sample) under different levels of data consolidation (forward and backward). The tradeoff of the data consolidation is that the more I combine the stages, the easier it is to identify the most frequent pathway; however, I will lose more detail of the actual motorization stages. As mentioned, the term "group" and "branch" stand for the patterns consolidated into the first or last one and two stages. The reason for consolidating data into the groups is to understand the sample distribution based on people's starting and ending stages. The reason for identifying the branches is to focus on the immediate next (or previous) step of people's starting and ending stages.

Based on the top branches in Table 81, I found that certain travel means are mutually interchangeable. For example, for people start motorization with walk, bicycle is their next stage. However, for people whose last stage in their pathway is walk, bicycle also shows up as their previous stage. Similar situation happens on that pairs of "BM", "TP", "TC", and "TS". Besides, the Table 81 revealed some hints on the direction of motorization. For example, patterns of "W \Rightarrow B" and "B \Rightarrow M" appeared not only when

looking forward, but also when looking backward.

In addition to the partial look at motorization direction of Table 81, in Chapter 3, I have proposed a hypothetical direction of motorization pathway (Figure 22).

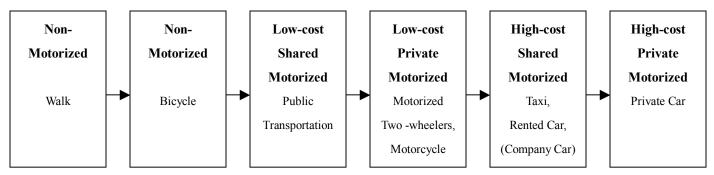


Figure 22: Hypothetical Motorization Direction

Based on my assumption, each travel mode of my motorizations pathway question is placed into a specific box in Figure 22, except for the company car. I assume company car can happen either after or at the same stage as the taxi or rented car, since company car basically serves as an intermediate stage between "taxi or rented car" and "car".

To understand the motorization direction, I checked the motorization pathway patterns of the entire sample (992 cases) to see if they match with the hypothetical direction of "W \rightarrow B \rightarrow P \rightarrow M \rightarrow T \rightarrow S \rightarrow C" or "W \rightarrow B \rightarrow P \rightarrow M \rightarrow T / S \rightarrow C.²⁷" Table 82 shows that basically more than half (53% if including single-stage pathway, 55% if not) of the sample follow my hypothetical motorization direction. However, there are also considerable people (43% if including single-stage pathway, 45% if not) not having the motorization pathway as I expected.

-

²⁷ No need to have the same number of stages; only need to match with the sequence.

Follow "Hypothetical Motorization Direction?"	Counts	Percentage of 992 cases	Percentage of 992 cases (without single-stage Pathway)
Single-stage and Single-mode Pathway (with 5 patterns)	44	4%	_
Yes (with 78 patterns)	523	53%	55%
No (with 248 patterns)	425	43%	45%

Table 82: Check of Hypothetical Motorization Direction

In order to understand more about the two groups (follow vs. not follow the hypothetical direction), I developed the pathway tree diagrams for each group. The looking-backward scenario was used to examine the pathways last two to four stages. Compared to looking-forward, the looking-backward scenario is favorable because it starts from what people currently do, then traces backward. The looking-backward scenario also focuses on the recent history of motorization in Shanghai, which I am more interested in.

Motorization Pathway currently Ends with "Walk"

I re-examined the group who end motorization with "walk". Since I hypothesized walk as the initial stage of pathway, all the cases in this groups (53 cases, excluding the single-stage pathway) are considered not following the expected direction. As in Table 83, "B \rightarrow P \rightarrow W" (5 cases) is the top pattern, and branch ending with "BW" (14 cases) is the most frequent at the two-stage level. Based on my hypothetical motorization direction, "walk" is the very basic, non-motorized mode and should be at the beginning of pathway. Therefore, any pattern ending with "walk" (if not single-stage) is considered "not following" the hypothetical direction. Different types of "not following direction" are summarized at the end of this chapter.

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
MBW	2	MBW	5	BW	14
PMBW	2	BW	4	TW	13
TMBW	1	PBW	2	PW	10
BW	4	CBW	2	MW	7
CPBW	1	TBW	1	SW	7
MPBW	1	PTW	9	CW	2
CBW	1	CTW	2		
TCBW	1	MTW	2		
PTBW	1	BPW	6		
PTW	4	TPW	2	←	
BPTW	2	MPW	1	(consider stages backward)	
MPTW	2	SPW	1	,	
CPTW	1	MW	3		
CTW	2	CMW	2		
CMTW	1	PMW	2		
MTW	1	MSW	2		
BPW	5	TSW	2		
MBPW	1	BSW	1		
CTPW	1	CSW	1		
STPW	1	SW	1		
BMPW	1	BCW	1		
TSPW	1	TCW	1		
MW	3				
CMW	2				
BPMW	1				
CPMW	1				
MSW	1				
TMSW	1				
BTSW	1				
TSW	1				
BSW	1				
CSW	1				
SW	1				
BCW	1				
STCW	1				
N (4+ stages) = 23		N (3+ stages) = 45		N (2+ stages) = 53	
N (3 stages) = 22		N (2 stages) = 8		` ,	
N (2 stages) = 8		, 5 -, -			

Table 83: Tree Diagram (End with "Walk", Look Backward, Don't Follow

Hypothetical Direction)

Motorization Pathway currently Ends with "Bicycle"

Table 84 and Table 85 show the patterns of people who have "bicycle" as the final motorization stage, but they are separated into groups of following and not-following the hypothetical motorization direction. Unlike previous tree diagrams, the total numbers of cases change under different levels of data consolidation. For example, the only pattern

(or branch) following the direction is "WB" at the two-stage level with 27 cases (Table 85). However, at the three-stage level, the total cases with the expected direction become 25 – two cases of pattern "P \rightarrow W \rightarrow B" are screened out. In Table 84, "PB" (10 cases) and "TB" (9 cases) are two big branches; and "W \rightarrow P \rightarrow B" (6 cases), "W \rightarrow P \rightarrow T \rightarrow B" (4 cases), "M \rightarrow B" (4 cases) are three frequent patterns.

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
PWB	1	PWB	2	РВ	10
TPWB	1	WPB	6	ТВ	9
WPB	6	РВ	2	MB	7
PB	2	MPB	1	СВ	2
WMPB	1	ТРВ	1	(CS)B	1
ТРВ	1	PTB	6	SB	1
WPTB	4	MTB	2		
РТВ	2	WTB	1		
MTB	2	MB	4		
PWTB	1	SMB	2	←	
МВ	4	СМВ	1	(consider stages backward)	
TSMB	2	SCB	2		
SCMB	1	W(CS)B	1		
MSCB	1	PSB	1		
TSCB	1				
TW(CS)B	1				
TPSB	1				
N (4+ stages) = 14		N (3+ stages) = 26		N (2+ stages) = 30	
N (3 stages) = 12		N (2 stages) = 6			
N (2 stages) = 6					

Table 84: Tree Diagram (End with "Bicycle", Look Backward, Don't Follow
Hypothetical Direction)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WB	25	WB	25	WB	27
				←	
				(consider stages backward)	
N (2 stages) = 25		N (2 stages) = 25		N (2+ stages) = 27	

Table 85: Tree Diagram (End with "Bicycle", Look Backward, Follow Hypothetical

Direction)

Motorization Pathway currently Ends with "Public Transportation"

In Table 86, I found the most frequent branch is "MP" (13 cases); however, the two popular pattern are "B \rightarrow W \rightarrow P" (9 cases) and "W \rightarrow B \rightarrow M \rightarrow P" (6 cases). Likely, in Table 87, the most frequent branch is "BP" (38 cases) and the top pattern is "W \rightarrow B \rightarrow P."

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WMBP	1	MBP	1	MP	13
TBP	1	TBP	1	TP	6
BWP	9	BWP	10	SP	3
MBWP	1	MWP	1	СР	2
MWP	1	TWP	1		
CTWP	1	ВМР	8		
WBMP	6	MP	3		
ВМР	2	SMP	1	←—	
MP	3	WMP	1	(consider stages backward)	
TSMP	1	MTP	3		
WMP	1	BTP	2		
BMTP	2	(BC)TP	1		
MTP	1	TSP	3		
BTP	1	BCP	1		
WBTP	1	WCP	1		
(BC)TP	1				
BTSP	1				
CTSP	1				
WTSP	1				
ВСР	1				
BWCP	1				
N (4+ stages) = 18		N (3+ stages) = 35		N (2+ stages) = 24	
N (3 stages) = 17		N (2 stages) = 3			
N (2 stages) = 3					

Table 86: Tree Diagram (End with "Public Transportation", Look Backward, Don't Follow Hypothetical Direction)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WBP	30	WBP	30	ВР	38
BP	6	ВР	6	WP	29
WP	17	WP	17		
				(consider stages backward)	
N (3 stages) = 30 N (2 stages) = 23		N (3+ stages) = 30 N (2 stages) = 23		N (2+ stages) = 67	

Table 87: Tree Diagram (End with "Public Transportation", Look Backward,
Follow Hypothetical Direction)

Motorization Pathway currently Ends with "Motorized Two-wheeler or Motorcycle" Considering people who don't follow expected direction, Table 88 shows a big branch of "TM" (23 cases) and top pattern "B \rightarrow P \rightarrow T \rightarrow M" (19 cases). For people following the direction, Table 89 presents top branch of "BM" (50 cases) and the most frequent pattern "B \rightarrow M" (22 cases).

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WPBM	6	PBM	7	TM	23
PBM	1	TBM	1	СМ	8
PTBM	1	PTM	21	SM	8
СВРМ	1	BTM	1	B(PM)	1
BWPM	4	СТМ	1		
BPTM	19	ВСМ	5		
WPTM	2	SCM	2		
ВТМ	1	СМ	1	←	
PCTM	1	TSM	5	(consider stages backward)	
BCM	5	CSM	2		
TSCM	2	WSM	1		
CM	1	BWM	2		
PTSM	3	WB(PM)	1		
CTSM	1				
WTSM	1				
TCSM	2				
WSM	1				
BWM	1				
PBWM	11				
WB(PM)	1				
N (4+ stages) = 39	·	N (3+ stages) = 49	·	N (2+ stages) = 40	
N (3 stages) = 10		N (2 stages) = 1			
N (2 stages) = 1					

Table 88: Tree Diagram (End with "Motorized Two-wheeler or Motorcycle", Look

Backward, Don't Follow Hypothetical Direction)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
ВМ	22	ВМ	22	BM	50
WBM	20	WBM	20	PM	28
WBPM	18	ВРМ	22	WM	8
ВРМ	3	WPM	6		
WPM	2	WM	6		
WM	6				
-				←	
				(consider stages backward)	
N (4+ stages) = 18		N (3+ stages) = 48		N (2+ stages) = 86	
N (3 stages) = 25		N (2 stages) = 28			
N (2 stages) = 28					

Table 89: Tree Diagram (End with "Motorized Two-wheeler or Motorcycle", Look

Backward, Follow Hypothetical Direction)

Motorization Pathway currently Ends with "Taxi or Rented Car"

In Table 90, many patterns with small cases represent a diverse group. The top branch is "ST" (13 cases), and the "W \Rightarrow P \Rightarrow B \Rightarrow T" (12 cases), "B \Rightarrow M \Rightarrow P \Rightarrow T" (11 cases), "B \Rightarrow W \Rightarrow P \Rightarrow T" (10 cases) are all frequent patterns. For people who follow the hypothetical direction, it is a less diverse group. Branch "PT" dominates at the two-stage level with 146 cases. "W \Rightarrow B \Rightarrow P \Rightarrow T" is the most frequent pattern at the four-stage level with 64 cases. (Table 91)

(WM)BPT	1	MPT	12	ST	13
MBPT	1	СРТ	3	СТ	9
BWPT	10	SPT	2	P(MT)	2
CWPT	1	PBT	14	(BM)Ť	1
MWPT	1	(WP)BT	1	(PM)T	1
BMPT	11	PWT	7	(WP)T	1
WMPT	1	BWT	3	C(PT)	1
ВСРТ	2	CWT	2	P(CT)	1
СРТ	1	MWT	2		
MSPT	2	PST	7		
SPMT	1	BST	3		
PBMT	4	MST	3	─	
WPBT	12	CT	4	(consider stages backward)	
PBT	2	PCT	4		
CWBT	1	MCT	1		
(WP)BT	1	BP(MT)	2		
PWT	5	(BM)T	1		
BPWT	2	(BW)(PM)T	1		
PBWT	2	(WP)T	1		
BWT	1	(BW)C(PT)	1		
CWT	2	BP(CT)	1		
BMWT	1				
PMWT	1				
BPST	3				
WPST	2				
MPST	1				
PST	1				
BST	2				
WBST	1				
BMST	2				
CMST	1				
СТ	4				
BPCT	2				
(BW)PCT	1				
MPCT	1				
PMCT	1				
WBP(MT)	2				
(BM)T	1				
(BW)(PM)T	1				
(WP)T	1				
(BW)C(PT)	1				
BP(CT)	1				
N (4+ stages) = 69		N (3+ stages) = 69		N (2+ stages) = 29	
N (3 stages) = 20		N (2 stages) = 6			
N (2 stages) = 6					

Table 90: Tree Diagram (End with "Taxi or Rented Car", Look Backward, Don't follow Hypothetical Direction)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
WBPT	64	BPT	83	PT	146
ВРТ	17	WPT	45	MT	32
WPT	33	PT	1	BT	21
PT	1	PMT	19	WT	17
BPMT	14	BMT	10		
PMT	2	WMT	2		
WPMT	2	MT	1		
BMT	3	ВТ	3	←	
WBMT	3	WBT	3	(consider stages backward)	
WMT	2	WT	3		
MT	1			1	
ВТ	3				
WBT	2				
WT	3				
N (4+ stages) =124		N (3+ stages) =162		N (2+ stages) = 216	
N (3 stages) = 20		N (2 stages) = 8			
N (2 stages) = 6					

Table 91: Tree Diagram (End with "Taxi or Rented Car", Look Backward, Follow Hypothetical Direction)

Motorization Pathway currently Ends with "Car"

Two groups presented in the following have similar number of patterns (even at different levels of data consolidation). However, in terms of number of cases, people who follow the expected direction certainly form a larger group. Table 92 show the top branch as "(PT)C" (2 cases) and the most frequent patterns as " $T \to M \to S \to C$ " (7 case). Besides, " $M \to S \to T \to C$ ", " $P \to T \to M \to C$ ", and " $B \to M \to P \to C$ " are all popular patterns with 5 cases.

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
MPTC	3	STC	7	(PT)C	2
PBTC	1	(PT)SC	1	(BP)C	1
MSTC	5	TMC	7	(MT)C	1
PSTC	2	MPC	7		
BWTC	1	TPC	6		
TMSC	7	SPC	1		
(BW)MSC	1	PBC	2	←—	
PBSC	1	TBC	2	(consider stages backward)	
MPSC	2	SBC	1		
B(PT)SC	1	BWC	2		
PBMC	2	TWC	1		
SBMC	1	B(PT)C	1		
SPMC	1	M(PT)C	1		
PTMC	5	W(BP)C	1		
BTMC	1	(BPS)(MT)C	1		
STMC	1				
BMPC	5				
SMPC	2				
BTPC	3				
MTPC	2				
TPC	1				
BWPC	1				
TSPC	1				
PBC	1				
WPBC	1				
PTBC	1				
WTBC	1				
TSBC	1				
BWC	2				
TWC	1				
B(PT)C	1				
BM(PT)C	1				
W(BP)C	1 1				
W(BPS)(MT)C	Į.	N (2) stance) 44		N (O) stantal A	
N (4+ stages) = 55		N (3+ stages) = 41		N (2+ stages) = 4	
N (3 stages) = 7		N (2 stages) = 0			
N (2 stages) = 0					

Table 92: Tree Diagram (End with "Car", Look Backward, Don't follow Hypothetical Direction)

For people following the expected direction, Table 93 indicates the top branch of "TC" (94 cases), which expands into the top pattern "B \rightarrow P \rightarrow T \rightarrow C" (36 cases)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
ВРТС	36	PTC	55	TC	94
WPTC	12	MTC	18	SC	54
PTC	4	ВТС	7	MC	39
PMTC	10	WTC	6	PC	36
ВМТС	7	TC	1	BC	24
WMTC	1	TSC	33	WC	5
ВТС	4	MSC	11		
WBTC	2	BSC	5		
WTC	5	PSC	4		
TC	1	BMC	20	←	
MTSC	18	PMC	9	(consider stages backward)	
PTSC	10	WMC	2		
BTSC	3	MC	1		
WTSC	2	BPC	16		
BMSC	3	WPC	5		
BSC	2	PC	1		
WBSC	2	BC	15		
BPSC	1	WBC	4		
PSC	1	WC	2		
BMC	10				
WBMC	7				
BPMC	8				
WMC	2				
MC	1				
WBPC	12				
BPC	4				
WPC	4				
PC	1				
BC	15				
WBC	4				
WC	2				
N (4+ stages) = 154		N (3+ stages) = 210		N (2+ stages) = 252	
N (3 stages) = 35		N (2 stages) = 5		(=	
N (2 stages) = 5		(= 3330)			

Table 93: Tree Diagram (End with "Car", Look Backward, Follow Hypothetical Direction)

Motorization Pathway currently Ends with "Company Car"

Table 94 shows a diverse group of people who are: currently at the "company car" stage but without having an expected motorization pathway. "CS" is the top branch (14 cases), indicating the interchangeability between company car and private car. " $M \rightarrow P \rightarrow T \rightarrow S$ " (9 cases) is the top pattern.

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
MPTS	9	TCS	9	CS	14
(BW)PTS	1	MCS	2	T(CS)	2
CPTS	1	PCS	2	(PT)S	2
PBTS	6	(MT)CS	1	M(CS)	2
MTCS	5	TMS	7	T(CMS)	2
PTCS	3	CMS	1	(PMT)(CS)	2
BTCS	1	TPS	4	(BWPTS)	1
BMCS	1	MPS	2	(PM)(TS)	1
TMCS	1	PBS	3		
TPCS	2	TBS	1		
(BP)(MT)CS	1	TWS	2		
PTMS	4	MWS	1	←	
BTMS	1	(PM)T(CS)	2	(consider stages backward)	
CTMS	1	B(PT)S	1		
WTMS	1	M(PT)S	1		
TCMS	1	BM(CS)	2		
CPMS	1	PT(CMS)	2		
MTPS	3	(BW)(PMT)(CS)	1		
TPS	1	B(PMT)(CS)	1		
BMPS	1	(BWPTS)	1		
TMPS	1	(WC)(PM)(TS)	1		
WPBS	2				
PBS	1				
CTBS	1				
BTWS	1				
CTWS	1				
BMWS	1				
B(PM)T(CS)	2				
WB(PT)S	1				
BM(PT)S	1				
BM(CS)	2				
WPT(CMS)	1				
BPT(CMS)	1				
(BW)(PMT)(CS)	1				
WB(PMT)(CS)	1				
(BWPTS)	1				
B(WC)(PM)(TS)	1				
N (4+ stages) = 60		N (3+ stages) = 46		N (2+ stages) = 25	
N (3 stages) = 4		N (2 stages) = 0		N (1 stage) = 1	
N (2 stages) = 0		N (1 stage) = 1			
N (1 stage) = 1					

Table 94: Tree Diagram (End with "Company Car", Look Backward, Don't follow Hypothetical Direction)

Within Last 4 Stages	Counts	Within Last 3 Stages	Counts	Within Last 2 Stages	Counts
BPTS	15	PTS	40	TS	59
WPTS	13	MTS	11	MS	14
PTS	1	BTS	8	PS	12
PMTS	6	BMS	4	BS	4
BMTS	4	MS	1	WS	4
WMTS	1	PMS	1		
BTS	1	WPS	4		
WBTS	1	BPS	2		
BMS	3	WS	1	←	
WBMS	1			(consider stages backward)	
MS	1				
WPS	4				
WBPS	2				
WS	1				
N (4+ stages) = 43		N (3+ stages) = 70		N (2+ stages) = 93	
N (3 stages) = 9		N (2 stages) = 2			
N (2 stages) = 2					

Table 95: Tree Diagram (End with "Company Car", Look Backward, Follow Hypothetical Direction)

Table 95 presents a bigger (in terms of cases) but less diverse group of people who follow hypothetical direction. "TS" is the biggest branch (59 cases); the "B \rightarrow P \rightarrow T \rightarrow S" (15 cases) and "W \rightarrow P \rightarrow T \rightarrow S" (13 cases) are both frequent patterns.

Looking 1	Backward	Looking Backward		
Follow Hypoth	etical Direction	Don't Follow Hypothetical Direction		
	Most Frequent		Most Frequent	
Ending Stage	Branch and Pattern	Ending Stage	Branch and Pattern	
	within Group		within Group	
Walk		Walk	[14] <u>B</u> → W	
vv aik	_	waik	$[5] B \rightarrow P \rightarrow W$	
	[27] <u>W</u> → B		$[10] \ \underline{P} \rightarrow \underline{B}$	
Bicycle	[25] B	Bicycle	$[25] \ ^{\$} W \rightarrow P \rightarrow B$	
Dublic Transportation	[38] <u>B → P</u>	Dublic Transportation	[13] $M \rightarrow P$	
Public Transportation	$[30] \text{ W} \rightarrow \text{B} \rightarrow \text{P}$	Public Transportation	$[9] B \rightarrow W \rightarrow P$	
Motorized Two-wheeler	[50] <u>B → M</u>	Motorized Two-wheeler	$[23]^* \xrightarrow{T \rightarrow M}$	
/ Motorcycle	[22] B → M	/ Motorcycle	[19] B \rightarrow P \rightarrow T \rightarrow M	
Taxi	[146] * <u>P → T</u>	Taxi	[13] <u>S → T</u>	
/ Rented Car	[64] $^{\$}$ W \rightarrow B \rightarrow P \rightarrow T	/ Rented Car	[12] W \rightarrow P \rightarrow B \rightarrow T	
Car	[94] <u>T →C</u>	Car	[2] <u>(PT)</u> →C	
Cai	[36] B \rightarrow P \rightarrow T \rightarrow C	Cai	$[7] T \rightarrow M \rightarrow S \rightarrow C$	
Company Car	[59] <u>T →S</u>	Company Car	[14] <u>C</u> →S	
Company Car	[15] B \rightarrow P \rightarrow T \rightarrow S	Company Car	[9] M \rightarrow P \rightarrow T \rightarrow S	
*: Largest branch (consider fir	est 2 stages) across sample	*: Largest branch (consider last 2 stages) across sample		
§: Largest pattern (consider fir	rst 4 stages) across sample	§: Largest pattern (consider last 4 stages) across sample		
[] Numbers in bracket indic	ate the number of cases	[] Numbers in bracket indic	ate the number of cases	

Table 96: Summary of Tree Diagrams (Follow vs. Don't Follow Hypothetical Motorization Direction)

Table 96 summaries the results of tree diagrams under the looking-backward scenario.

The entire sample were classified by ending motorization stage and "follow vs. don't

follow the hypothetical motorization direction". Number of cases, most frequent patterns and branches (within the group and across the sample) were presented.

As shown in Table 96, the most frequent patterns and branches for people who follow the expected motorization direction are basically the same as what I identified for the pooled data in Table 81. Reasonably, for people who do not follow the expected direction, their motorization patterns are more complicated compared to people who follow the expected direction. This situation matches with the finding in Table 82, that is, given the similar number of cases (follow vs. don't follow the direction), people who don't follow the motorization direction have three times more patterns than people who follow. Both findings above indicate that people who do not follow the hypothetical motorization direction is a more diverse group.

Table 97 shows the check of top patterns and branches (for people who do not follow the hypothetical motorization direction) against my three assumed rules of transition in Figure 22 – from non-motorized to motorized, from low cost to high cost, and from shared to private-owned. For example, bicycle is considered "higher cost" compared to walk, although both are non-motorized travel means. Thus, the branch "B \rightarrow W" violates the rule of low cost to high cost. Apparently, based on the following table, most people's *unexpected* motorization pathways involve the violation of low cost to high cost. There are two possible explanations: first, the definition of so-called high-cost means and low-cost means may not be as I assumed. That is, walk may be perceived as a higher *cost* travel means by respondents than bicycle since walking requires more time (assuming that people have a non-zero value of time) and effort involved. Second, even if the cost

definition of travel means is what I assumed; the direction of transition may not be as hypothesized. Taking the "S \rightarrow T" as an example, a company car may be purchased (and shared) for status purpose, i.e., to represent the company, before the company staff go for the taxi – a lower (purchase, operating) cost travel means. In a developing city like Shanghai, I assume that the status-seeking is a factor affecting the motorization pathway as well as the vehicle purchase/use behavior.

Look Backward Don't Follow Hypothetical Direction		Against Three Hypothetical Rules of Motorization Direction?			
Ending Stage	Most Frequent Branch and Pattern within Group	"Non-motorized"→ "Motorized"	"Low-cost" → "High-cost"	"Shared" → "Private-owned"	
Walk	$[14] \xrightarrow{B \to W}$ $[5] \xrightarrow{B \to P \to W}$		X X		
Bicycle	$[10] \xrightarrow{P \to B}$ $[25] \text{ W} \to P \to B$				
Public Transportation	[13] $\underline{M} \rightarrow \underline{P}$ [9] $B \rightarrow W \rightarrow \underline{P}$		x	х	
Motorized Two-wheeler / Motorcycle	$[23] \xrightarrow{T \to M}$ $[19] B \to P \to T \to M$		x x		
Taxi / Rented Car	[13] $\underline{S \rightarrow T}$ [12] $W \rightarrow P \rightarrow B \rightarrow T$		Х		
Car	[2] $(PT) \rightarrow C$ [7] $T \rightarrow M \rightarrow S \rightarrow C$		x x		
Company Car	[14] $\underline{C \rightarrow S}$ [9] $M \rightarrow P \rightarrow T \rightarrow S$			x x	

Table 97: Patterns against Three Hypothetical Rules of Motorization Direction

The last analysis of this chapter is to understand about – Who are those people following (and not following) the hypothetical motorization direction?

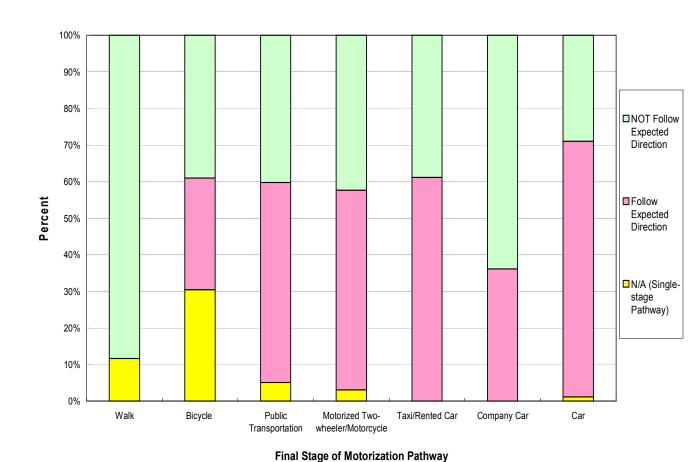


Figure 23: Final Stage of Motorization vs. Hypothetical Motorization Direction

Count									
Final Stage of Motorization									
					Motorized	Taxi &			
				Public	Two-wheeler	Rented	Company		
		Walk	Bicycle	Transportation	& Motorcycle	Car	Car	Car	Total
Follow Motorization	on Yes	0	25	53	71	150	43	181	523
Direction	No	53	32	39	55	95	76	75	425
	N/A	7	25	5	4	0	0	3	44
Total		60	82	97	130	245	119	259	992

Table 98: Cross-tabulation: Final Stage of Motorization vs. Hypothetical Motorization Direction

Figure 23 and Table 98 show the bar chart and cross-tabulation of the "Final Stage of Motorization *vs.* Hypothetical Motorization Direction." A Pearson chi-squared test indicates that there are significant differences in the distributions of "following the hypothetical direction or not" across groups with different final motorization stages (p-value = 0.000 < 0.05). The group ending motorization with car has the highest percentage of people following the hypothetical motorization direction. However, for people currently in the walk or bicycle stage, most of them (in terms of percentage) did not experience a motorization as I expected. Basically, most of the highly-motorized people, i.e., people who are currently in advanced motorized means such as car, come from a typical (or expected) pathway²⁸, except for people currently using company car. Although company cars sometimes are considered functionally-similar to private-owned cars, people currently using company cars are more likely to have experienced different (or more diverse) pathways from people driving their own car.

_

²⁸ On the other hand, people who did not experience a typical motorization pathway may also have had car as one stage in their pathway (just not the final stage).

CHAPTER 5: VEHICLE PURCHASE AND USE MODELS

In this chapter I develop the vehicle purchase and use choice models based on the survey data. Factor analysis (as a pre-step of the model development), data preparation and model estimation are documented, and the implication of model results is discussed.

Factor Analysis

The main purpose of factor analysis is to reduce the number of variables to be used in the purchase and use models. Based on the pilot survey and my understanding of Chinese culture, Chinese people tend to avoid responding (or provide vague answers) to lifestyle-related questions as such questions are usually considered too personal, especially some sensitive topics, such as: status seeking lifestyle. To better measure lifestyle-related concepts, several questions were asked in the survey. I conducted factor analysis on these several measures in order to reduce the number of variables. By triangulating lifestyle and exogenous environment concepts, I attempt to measure them from several points of view in an effort to get a better overall assessment of these potentially sensitive ideas.

• Questions about Exogenous Environment

In PART III, 18 statements were presented to the respondents about the exogenous environment as related to vehicle purchase. People were asked to rate each exogenous item on a five-point (Likert) scale from "strongly disagree (1)" to "strongly agree (5)." In the questionnaire design phase, response to a pilot survey question "Why did you

purchase this vehicle?" was modified into 18 statement ratings in PART III. Some of these statements are related to similar underlying ideas expected to form potential factors resulting from a factor analysis. The statements and their expected factors are color-coded in (Table 99). Numbers in the first column of Table 99, Table 111, Table 112, and Table 124 represent the variable IDs.

PART III (original designed)	Statement	Possible Factors
125	The subsidy is important for my vehicle purchase	
126	The loan is important for my vehicle purchase	Cost-related Factor
131	The fuel price is what I care for my vehicle purchase	
127	The government fees affect my vehicle purchase	
128	The new transportation law is what I need to consider	Government Policy
140	Policy restrictions (e.g. ban of van using expressway) affect my vehicle purchase	
130	Owning a car is a pre-requisite for marriage	
132	Buying a house should be prior to vehicle purchase.	Culture Belief
135	Saving is a virtue, and we should always not spend too much	
133	Transportation environment in Shanghai is dangerous for "pedestrians"	Dangerous
134	Transportation environment in Shanghai is dangerous for "drivers"	Transportation Environment
123	The F-1 game and promotion in Shanghai affect my vehicle purchase decision	
124	I consider buying a vehicle for infrequent need.	
129	Buying a (domestic) car shows a direct support to China's auto industry.	
136	A vehicle which makes me look "better" will also bring me better career and social life	
137	Vehicle is just a business tool	
138	Vehicle (especially car) can depreciate very quickly	
139	In peak hours or rainy day, I wish I have personal vehicle	

Table 99: Original Design of Survey PART III

Determine the Number of Factors

Factor analysis includes creating and interpreting factors. Table 100 shows the descriptive statistics; the working sample (N) is 969 (instead of the original 1,037) due to the selection of "Exclude Cases Listwise." In addition, the Sig. (p-value) of the "Bartlett's

Test of Sphericity" is 0.00, and the "Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy" is 0.718²⁹ (Table 101). These imply that there exists underlying factors (Bartlett's Test of Sphericity) in these input scales and that the sample size of this input is acceptable (KMO Measure of Sampling Adequacy).

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
III_V123	2.28	.872	969
V124	2.33	.916	969
V125	3.16	1.066	969
V126	2.88	1.031	969
V127	3.47	1.052	969
V128	3.19	1.000	969
V129	3.19	1.067	969
V130	2.45	.989	969
V131	3.54	.960	969
V132	3.58	1.112	969
V133	3.19	1.013	969
V134	3.14	1.019	969
V135	3.69	.987	969
V136	3.31	.986	969
V137	2.73	.967	969
V138	3.22	.945	969
V139	3.97	.855	969
V140_III	3.36	.944	969

Table 100

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Adequacy.	.718	
Bartlett's Test of Sphericity	Approx. Chi-Square df Sig.	2662.800 153 .000

Table 101

Principal axis factoring (common factor analysis) was conducted to extract factors with

²⁹ "KMO Test of Sampling Adequacy": 0.8 = meritorious; 0.7 = middling

maximum iterations for convergence = 100. I first tried the "Eigenvalues > 1" as the criterion of factor extraction. The Total Variance Explained (Table 102) shows that there are six "initial Eigenvalues" greater than 1, while there are only two "final Eigenvalues" (referred by SPSS as "Extraction Sums of Squared Loadings") greater than 1.

Total Variance Explained

		Initial Eigenvalue	es	Extracti	on Sums of Square	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.174	17.635	17.635	2.552	14.181	14.181
2	1.912	10.624	28.259	1.448	8.047	22.227
3	1.519	8.439	36.698	.900	4.998	27.226
4	1.196	6.642	43.340	.583	3.238	30.463
5	1.158	6.433	49.772	.423	2.352	32.815
6	1.050	5.831	55.603	.339	1.881	34.696
7	.958	5.320	60.923			
8	.911	5.062	65.985			
9	.839	4.660	70.646			
10	.754	4.187	74.833			
11	.737	4.094	78.927			
12	.694	3.855	82.782			
13	.640	3.556	86.338			
14	.589	3.273	89.611			
15	.556	3.089	92.701			
16	.502	2.790	95.491			
17	.491	2.730	98.221			
18	.320	1.779	100.000			

Extraction Method: Principal Axis Factoring.

Table 102

The initial (suggested six factors) and final (suggested two factors) Eigenvalues over 1 are criteria purely based on the statistical consideration. However, in order to check the possible solutions more thoroughly, factor analysis was re-run by pre-specifying the number of factors to be, respectively, two through six; and each solution was examined individually for both statistical consideration and conceptual strength.

Table 103 through Table 107 present the factor loading matrices with Varimax rotation³⁰. In the following Factor Matrices, high loading values were highlighted; however, I suppressed absolute loadings less than 0.25 (as a rule of thumb). If a given variable has no loadings greater than 0.25, the variable is not contributing much to common factor space and could be discarded from the factor analysis, even if retained for other purposes such as inclusion as an explanatory variable in its own right. Similarly, if a factor has no loadings greater than 0.25, it is a rather weak factor, and we might look for a solution containing fewer factors.

Rotated Factor Matrix^a

	Fac	ctor
	1	2
III_V123	.347	
V124	.301	
V125	.590	
V126	.555	
V127	.541	
V128	.525	
V129		
V130	.271	
V131	.500	
V132		
V133		.714
V134		.810
V135		.350
V136	.280	
V137		
V138		.262
V139		.253
V140_III	.356	

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

Rotated Factor Matrix a

	Factor			
	1	2	3	
III_V123			.620	
V124			.605	
V125	.536			
V126	.483		.259	
V127	.629			
V128	.548			
V129				
V130			.357	
V131	.557			
V132				
V133		.711		
V134		.833		
V135		.331		
V136				
V137				
V138		.251		
V139	.273			
V140_III	.384			

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Table 103 Table 104

a. Rotation converged in 3 iterations.

a. Rotation converged in 6 iterations.

³⁰ Compared to the un-rotated solution, we always prefer the rotated solution because it provides more interpretable structure (the dimensions of factor space are more closely aligned with clusters of factors, resulting in more loadings that tend to be either high in magnitude, or close to zero).

Rotated Factor Matrix €

		Fac	ctor	
	1	2	3	4
III_V123			.601	
V124			.596	
V125	.541			
V126	.470			
V127	.679			
V128	.556			
V129				.328
V130			.367	.258
V131	.556			
V132				
V133		.707		
V134		.889		
V135				.325
V136				.419
V137				
V138				.262
V139				.425
V140_III	.348			

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

Rotated Factor Matrix

			Factor		
	1	2	3	4	5
III_V123			.590		
V124			.620		
V125	.540				
V126	.472			.295	
V127	.674				
V128	.548				
V129				.437	
V130			.307	.352	
V131	.569				
V132					
V133		.669			
V134		.939			
V135				.314	
V136				.376	
V137					.285
V138					.519
V139					.344
V140_III	.349				

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.

Table 105 Table 106

Rotated Factor Matrix^a

	Factor					
	1	2	3	4	5	6
III_V123			.603			
V124			.634			
V125	.495		.266			
V126	.467			.306		
V127	.686					
V128	.577					
V129				.454		
V130			.283	.352		
V131	.527				.263	
V132					.272	
V133		.710				
V134		.886				
V135				.292		
V136				.352		
V137						.457
V138						.426
V139					.613	
V140_III	.367					

Extraction Method: Principal Axis Factoring.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.

Table 107

As mentioned, statistical consideration and conceptual strength were main criteria for determination of number of factors. Based on the two criteria, the "4-factor solution" (Table 105) seems to be the most preferred because the loadings are generally high enough and distributed evenly across factors. And, more importantly, the "4-factor solution" is conceptually interpretable (will be discussed later).

After deciding on the "4-factor solution", I found out a number of the variables actually have low communalities, e.g. the V132, V137, and V138 (Table 108). Those variables have little in common with the rest of the variables, and they did not load heavily on any factor in the preferred 4-factor solution. Therefore, I removed them and re-did the factor analysis. Table 109 shows the communalities after removing V132, V137, V138, and Table 110 presents the final rotated factor matrix.

	Initial	Extraction
III_V123	.235	.385
V124	.226	.369
V125	.301	.353
V126	.273	.298
V127	.312	.465
V128	.261	.326
V129	.144	.137
V130	.170	.206
V131	.263	.320
V132	.074	.061
V133	.460	.533
V134	.474	.823
V135	.164	.176
V136	.151	.232
V137	.108	.095
V138	.114	.096
V139	.164	.240
V140_III	.178	.193

Extraction Method: Principal Axis Factoring.

Table 108: Original Communalities (4-factor solution, PART III)

Communalities

	Initial	Extraction
III_V123	.224	.365
V124	.220	.406
V125	.292	.347
V126	.268	.307
V127	.308	.495
V128	.262	.332
V129	.139	.191
V130	.169	.240
V131	.249	.305
V133	.458	.543
V134	.466	.821
V135	.158	.205
V136	.142	.211
V139	.130	.165
V140_III	.163	.182

Extraction Method: Principal Axis Factoring.

Table 109: Communalities after Removing V132, V137, V138 (4-factor solution, PART III)

Rotated Factor Matrix ^a

	Factor				
	1	2	3	4	
III_V123			.584		
V124			.629		
V125	.522				
V126	.446				
V127	.701				
V128	.558				
V129				.414	
V130			.356	.333	
V131	.544				
V133		.723			
V134		.897			
V135				.337	
V136				.410	
V139				.329	
V140_III	.355				

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Table 110: Final 4-Factor Solution of PART III (Rotated Factor Matrix)

Name the Factors

Table 111 shows the final 4-factor solution with factor loadings (in descending order within the factor), and the factors are presented in descending order by final Eigenvalues. The factor names (capturing the common meanings of the variables that load on each factor) are — "importance of cost-related policy/regulation", "dangerous transportation environment", "attraction of infrequent need/impromptu purchase", and "pro vehicle purchase cultural/social belief".

The factor solution in Table 111 can be compared to what I expected from the original questionnaire design (Table 99). Similarity and differences are discussed below. In order to better interpret future results of the choice model³¹, those four factors were named with signs embedded. For example, instead of being named as "cultural belief", the fourth

a. Rotation converged in 5 iterations.

³¹ The factor scores will be used as explanatory variables in the vehicle purchase choice model.

factor was named as "pro vehicle purchase cultural/social belief". Detailed explanation of the factor names follows.

PART III (factor analyzed)	Statement	Factor Loading	Factor Name
127	The government fees affect my vehicle purchase	0.701	
128	The new transportation law is what I need to consider	0.558]
131	The fuel price is what I care for my vehicle purchase	0.544	Importance of Cost-related
125	The subsidy is important for my vehicle purchase	0.522	Policy/Regulation
126	The loan is important for my vehicle purchase	0.446	[Final Eigenvalue = 1.801]
140	Policy restrictions (e.g. ban of van using expressway) affect my vehicle purchase	0.355	, ,
134	Transportation environment in Shanghai is dangerous for "drivers"		Dangerous Transportation Environment
133	Transportation environment in Shanghai is dangerous for "pedestrians"	0.723	[Final Eigenvalue = 1.414]
124	I consider buying a vehicle for infrequent need.	0.629	Attraction of Infrequent Need/
123	The F-1 game and promotion in Shanghai affect my vehicle purchase decision	0.584	Impromptu Purchase
130	Owning a car is a pre-requisite for marriage	0.356	[Final Eigenvalue = 1.056]
129	Buying a (domestic) car shows a direct support to China's auto industry.	0.414	
136	A vehicle which makes me look "better" will also bring me better career and social life	0.410	Pro Vehicle Purchase Social/Culture Factor
135	Saving is a virtue, and we should always not spend too much	0.337	
130	Owning a car is a pre-requisite for marriage	0.333	[Final Eigenvalue = 0.845]
139	In peak hours or rainy day, I wish I have personal vehicle	0.329	

Table 111: Final 4-Factor Solution of PART III (Factor Name)

Factor I: Importance of Cost-related Policy/Regulation

The first factor involves six variables related to: government fee, transportation law, fuel price, subsidy, loan, and policy restriction (e.g., vehicle license control). The government fee, with the highest loading (0.701), covered the concepts of all fees imposed by Shanghai government, especially the high vehicle license fee through the auction system. Explanations about the definition of the government fee were provided for respondents during the survey.

This factor was named "importance of cost-related policy/regulation" and it combined most of the variables that I originally expected to form two factors: one for cost and one for policy. People who score highly on this factor will tend to think exogenous cost-related policies/regulations are important. The "cost-related" policies/regulations factor, similar to the (monetary) operation cost, is assumed to have negative effect on vehicle purchase. The presence of this factor is not surprising as prices and costs are usually considered as a factor in conventional vehicle purchase model, especially in the developing countries. The "new transportation law" statement specifically means a new law in effect in 2006 saying that drivers have full financial responsibility whenever he/she is involved in an accident with a pedestrian. During the survey completion process, people received explanations if they were not clear about the definition of transportation law

Factor II: Dangerous Transportation Environment

As I expected, this factor includes two variables: dangerous transportation environment for driver and for pedestrian; both with high factor loadings (0.897 for driver-related variable, 0.723 for pedestrian-related variable). The extraction of this variable is statistically and conceptually reasonable. People who score highly on this factor will tend to consider the transportation environment in Shanghai as dangerous for drivers and/or pedestrians. Thus, this factor is assumed to have negative effect on vehicle purchase.

Factor III: Attraction of Infrequent Need/Impromptu Purchase

The factor of "attraction of infrequent need/impromptu purchase" was not expected during the initial survey design phase; however, this result is still conceptually

interpretable. This factor combines variables about "car for infrequent need", "F1 (Formula One racing) promotion" and "car as prerequisite of marriage". The "F1 promotion" is certainly an attraction for impromptu vehicle purchase because it stimulates people's desire beyond the basic mobility needs. The marketing of F1 is successful (especially in young generation) in Shanghai in creating not only a short-term craze but a long-term "lifestyle" (Figure 24). The variable "car as prerequisite of marriage" was loaded in this factor, although it was also loaded in the following cultural-related factor. According to an article from Singtao Daily (Chinese newspaper published in North America), the "prerequisite" of marriage for Shanghai people has changed from previous "big three items" (TV, washing machine and refrigerator) to "house, bank saving, and car". In general, people who score highly on this factor will tend to consider those attractions of infrequent need/impromptu purchase as important, and this factor is assumed to have positive effect on vehicle purchase.

Figure 24: The F1 Life-style Store in Shanghai

Factor IV: Pro Vehicle Purchase Cultural/Social Belief

This is the last and the weakest factor according to its low Eigenvalue. This factor includes several social/cultural variables which are positive toward vehicle purchase including: "car brings in a better social life," "car as prerequisite to marriage," etc. Basically, people who score highly on this factor tend to have "pro-auto" social/cultural beliefs identified by each variable that loads on this factor, and this factor is assumed to have positive effect on vehicle purchase. However, there were still exceptions. For example, "saving is a virtue, and we should always not spend too much" (V135) was grouped into this pro vehicle purchase factor; nevertheless, its loading (0.337) is not very high.

• Questions about Lifestyle

The survey PART IV contained another 18 statements designed to identify six vehicle purchase-related lifestyle factors (Table 112). The idea of 18 statements were developed based on the responses to a pilot survey question "Why did you purchase this vehicle [Personal Attribute]?", local auto advertising, and social studies about today's China. For instance, the statement of "I am the king in my own territory" (V148) was a popular advertising slogan, and the concept of "Pursue Freedom and Control of Life" was usually promoted by local automobile companies. Another example is, the "enjoy now" is an emerging lifestyle for the young generation in China, as reported in several local newspapers, such as Shanghai Daily. Besides, some statements (denoted by asterisks in Table 112) were (partially or completely) borrowed from (or inspired by) UC Davis professor Patricia Mokhtarian's class handouts (TTP 200, Transportation Survey Methods) and sample surveys (Telecommuting Survey, 1992; Mobility Survey, 1998; pre-test of

E-shopping Survey, 2006) distributed in class.

PART IV (original designed)	Statement	Possible Factors		
141	Traveling with family is a happy thing*			
156	Family is the most important in my daily life*	Family-oriented		
158	Going back home is such a joy after working a whole day*			
142	The vehicle that I own needs to be well-known. (brand, model, etc.)*			
152	I enjoy catching everybody's eyes*	Status-seeking		
154	For me, a lot of the fun of having something nice is showing it off*			
143	Life is so short; we should enjoy life as soon as we can			
147	I think about getting a loan for my vehicle purchase	Enjoy "NOW"		
149	Saving money is hard for me			
144	When many of my friends own certain type of vehicle, I will consider buying one*			
146	In the past (or now), I am crazy about some idol	Bandwagon Effect		
151	I pay attention on fashion			
145	Eventually, everybody will pay the price for the pollution on earth*			
153	I am aware of the information about new fuel/fuel efficient vehicles*	Environmental- concerned		
157	For environmental protection, I am willing to use walk/bike to replace the motor vehicle use			
148	"I am the king in my own territory" is a good concept.	B		
150	Freedom and the control of life is what I pursue*	Pursue Freedom & Control of Life		
155	I don't like to share things with others*	Control of Life		

Table 112: Original Design of Survey PART IV

The survey asked respondents to rate each statement on a five-point (Likert) scale from "strongly disagree (1)" to "strongly agree (5)." Our respondents found it difficult to comment on certain statements because those statements have negative implications or were too personal. For example, people tend to not reveal opinions toward the "status-seeking" and "enjoy now" lifestyles, because they are sometimes related to negative images of "being greedy" and "living without a goal". To remedy this problem, three statements (instead of one) were used to triangulate one factor.

Determine the Number of Factors

Similar to PART III, the working sample (N) is 968 (instead of the original 1,037) due to the selection of "Exclude Cases Listwise" (Table 113). The Sig. (p-value) of the "Bartlett's Test of Sphericity" is 0.00, indicating that there *are* underlying factors. The "Kaiser-Meyer-Olkin Measure of Sampling Adequacy" is 0.790, showing that the sample size of this input is acceptable (Table 114).

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
VI_V141	4.26	.743	968
V142	3.26	.984	968
V143	3.21	1.022	968
V144	3.14	.892	968
V145	3.92	.890	968
V146	2.93	1.017	968
V147	3.02	1.042	968
V148	3.10	1.002	968
V149	2.83	.941	968
V150	3.80	.789	968
V151	3.50	.883	968
V152	3.04	.881	968
V153	3.27	.900	968
V154	2.56	.947	968
V155	2.95	.977	968
V156	4.02	.765	968
V157	3.45	1.003	968
V158_VI	4.20	.738	968

Table 113

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Madequacy.	.790	
Bartlett's Test of Sphericity	Approx. Chi-Square df Sig.	2530.511 153 .000

Table 114

To extract factors, the principal axis factoring (common factor analysis) was performed with maximum iterations for convergence = 100. The "Eigenvalues over 1" was initially

selected as the criterion of factor extraction. Table 115 indicates that there are five "initial Eigenvalues" over 1, while there are two "final Eigenvalues" (Extraction Sums of Squared Loadings) over 1.

Total Variance Explained

		Initial Eigenvalues			on Sums of Squar	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.308	18.378	18.378	2.671	14.841	14.841
2	2.195	12.194	30.572	1.572	8.734	23.575
3	1.217	6.762	37.334	.503	2.795	26.370
4	1.168	6.491	43.825	.483	2.682	29.053
5	1.077	5.985	49.811	.387	2.150	31.203
6	.996	5.531	55.342			
7	.879	4.883	60.225			
8	.842	4.678	64.903			
9	.795	4.417	69.320			
10	.786	4.366	73.686			
11	.697	3.874	77.559			
12	.690	3.834	81.393			
13	.651	3.617	85.011			
14	.629	3.497	88.508			
15	.556	3.088	91.596			
16	.539	2.992	94.588			
17	.502	2.788	97.375			
18	.472	2.625	100.000			

Extraction Method: Principal Axis Factoring.

Table 115

In order to review more possible solutions, I re-ran the factor analysis by pre-specifying the number of factors to be two through six. Table 116 through Table 120 present the factor loading matrices after Varimax rotation. Like PART III, high loading values were highlighted in red; and the absolute loadings less than 0.25 were suppressed in the following factor matrices.

Rotated Factor Matrix^a

	Factor		
	1	2	
VI_V141		.600	
V142	.412		
V143	.390		
V144			
V145		.458	
V146	.375		
V147	.457		
V148	.459		
V149	.313		
V150	.348	.393	
V151	.484		
V152	.663		
V153	.286		
V154	.518		
V155	.257		
V156		.565	
V157		.282	
V158_VI		.710	

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Rotated Factor Matrix^a

	Factor		
	1	2	3
VI_V141	.594		
V142		.296	.292
V143		.479	
V144		.305	
V145	.461		
V146		.305	
V147		.343	.293
V148		.405	
V149		.435	
V150	.381	.262	
V151			.643
V152		.361	.602
V153			.371
V154		.408	.304
V155			
V156	.565		
V157	.287		
V158_VI	.705		

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Table 116

Rotated Factor Matrix

	Factor			
	1	2	3	4
VI_V141	.525			.269
V142		.253		.286
V143			.392	.353
V144			.361	
V145	.431			
V146			.302	
V147		.280	.309	
V148			.304	.387
V149			.407	
V150				.615
V151		.596		.308
V152		.609	.342	
V153		.405		
V154		.338	.441	
V155			.256	
V156	.630			
V157	.352			
V158_VI	.678			

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

Table 117

Rotated Factor Matrix^a

	Factor				
	1	2	3	4	5
VI_V141	.512				.286
V142					.547
V143			.401	.295	
V144			.357		
V145	.465				
V146			.298		
V147		.305	.297		
V148			.294	.382	
V149			.404		
V150				.624	
V151		.594		.288	
V152		.621	.318		
V153		.399			
V154		.341	.435		
V155			.253		
V156	.615				
V157	.380				
V158_VI	.666				

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Table 118

Table 119

a. Rotation converged in 3 iterations.

a. Rotation converged in 5 iterations.

a. Rotation converged in 6 iterations.

a. Rotation converged in 6 iterations.

Rotated Factor Matrix

	Factor					
	1	2	3	4	5	6
VI_V141	.516				.329	
V142					.616	
V143			.372	.303		
V144						.442
V145	.448					
V146		.274				
V147		.348				
V148			.433			
V149						
V150	.298		.622			
V151		.592				
V152		.638				
V153		.401				
V154		.349		.425		
V155				.411		
V156	.650					
V157	.339					
V158_VI	.685					

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Table 120

Taking into account both statistical and conceptual strength, the "4-factor solution" seems to be the most preferred solution (Table 118). The "2-factor solution" and "3-factor solution" both have factors containing too many variables, thus making them hard to interpret. However, the "5-factor solution" and "6-factor solution" both have "weak" factors with too few variables.

Given the "4-factor solution," V155 (with a low communality of 0.082, Table 121) has little in common with the rest of the variables, and it did not load heavily on any factor in the preferred 4-factor solution. Therefore, I removed V155 and re-did the factor analysis. Table 122 shows the communalities after removing V155, and Table 123 presents the final rotated factor matrix.

a. Rotation converged in 11 iterations.

Communalities

	Initial	Extraction
VI_V141	.281	.364
V142	.233	.224
V143	.204	.293
V144	.117	.172
V145	.189	.224
V146	.132	.148
V147	.179	.202
V148	.211	.273
V149	.115	.185
V150	.281	.461
V151	.295	.464
V152	.346	.511
V153	.119	.178
V154	.241	.329
V155	.089	.082
V156	.272	.398
V157	.106	.154
V158_VI	.347	.499

Extraction Method: Principal Axis Factoring.

Communalities

	Initial	Extraction
VI_V141	.271	.355
V142	.228	.223
V143	.198	.275
V144	.115	.201
V145	.189	.229
V146	.129	.150
V147	.180	.213
V148	.211	.280
V149	.113	.181
V150	.278	.463
V151	.296	.464
V152	.345	.516
V153	.118	.175
V154	.226	.297
V156	.267	.382
V157	.108	.170
V158_VI	.347	.502

Extraction Method: Principal Axis Factoring.

Table 121: Original Communalities (4-factor solution, PART IV)

Table 122: Communalities after
Removing V155 (4-factor solution, PART
IV)

Rotated Factor Matrix ^a

	Factor			
	1	2	3	4
VI_V141	.529		.251	
V142		.273	.302	
V143			.369	.350
V144				.391
V145	.440			
V146		.252		.282
V147		.309		.297
V148			.389	.298
V149				.392
V150			.619	
V151		.594	.311	
V152		.642		.274
V153		.406		
V154		.375		.361
V156	.617			
V157	.360			
V158_VI	.682			

Extraction Method: Principal Axis Factoring.

Rotation Method: Varimax with Kaiser Normalization.

Table 123: Final 4-Factor Solution of PART IV (Rotated Factor Matrix)

a. Rotation converged in 9 iterations.

Name the Factor

To appropriately name the underlying factors, I examine the factor loadings, which indicate the correlation between the underlying factors and the original variables/statements. Table 124 shows the final 4-factor solution with factor loadings sorted in descending order within the factor, and the factors are presented in descending order by final Eigenvalues. Four lifestyle factors were extracted and named based on the loading patterns: "family-oriented and *green*," "status-seeking," "pursue freedom and control of life," and "enjoy now."

PART IV (factor analyzed)	Statement		Factor Name
158	Going back home is such a joy after working a whole day	0.682	
156	Family is the most important in my daily life	0.617	Family-oriented and "Green"
141	Traveling with family is a happy thing	0.529	
145	Eventually, everybody will pay the price for the pollution on earth	0.440	(Final Financhy = 4.6361
157	For environmental protection, I am willing to use walk/bike to replace the motor vehicle use	0.360	[Final Eigenvalue = 1.636]
152	l enjoy catching everybody's eyes.	0.642	
151	l pay attention on fashion	0.594	
153	I am aware of the information about new fuel/fuel efficient vehicles	0.406	Status-seeking
154	For me, a lot of the fun of having something nice is showing it off	0.375	
147	l think about getting a loan for my vehicle purchase	0.309	[Final Eigenvalue = 1.383]
142	The vehicle that I own needs to be well-known. (brand, model, etc.)	0.273	[i iliai Eigenvalde – 1.303]
146	In the past (or now), I am crazy about some idol	0.252	
150	Freedom and the control of life is what I pursue	0.619	
148	"I am the king in my own territory" is a good concept.	0.389	Pursue Freedom and Control
143	Life is so short; we should enjoy life as soon as we can	0.369	of Life
151	l pay attention on fashion	0.311	
142	The vehicle that I own needs to be well-known. (brand, model, etc.)	0.302	[Final Eigenvalue = 1.072]
141	Traveling with family is a happy thing	0.251	[g
149	Saving money is hard for me	0.392	
144	When many of my friends own certain type of vehicle, I will consider buying one	0.391	
154	For me, a lot of the fun of having something nice is showing it off	0.361	Enjoy "NOW"
143	Life is so short; we should enjoy life as soon as we can	0.350	
148	"I am the king in my own territory" is a good concept.	0.298	[Final Eigenvalue = 0.986]
147	l think about getting a loan for my vehicle purchase	0.297	
146	In the past (or now), I am crazy about some idol	0.282	
152	l enjoy catching everybody's eyes.	0.274	

Table 124: Final 4-Factor Solution of PART IV (Factor Name)

Basically, the factor (names) in Table 124 differed from what I expected in constructing the questionnaire design (Table 112). Only four factors, instead of the originally expected six factors, were identified. A distinct "bandwagon effect" was not indentified: most of the variables expected to be related to a bandwagon effect instead loaded onto the factor of status-seeking. Also, the "environmental-concerned" and "family-oriented" lifestyles were combined as the "family-oriented and *green*." Details about the factor interpretation and naming process follow.

Factor I: Family-oriented and Green

According to the factor loadings, the top three variables in this factor were the variables originally designed to triangulate the family-oriented lifestyle. The statement (variable): "Going back home is such a joy after working whole day" had the highest loading (0.682). The remaining two variables in this factor were related to the awareness of environmental protection, thus making the factor name "family-oriented and green".

The combination of the concepts of family-oriented and "green" is conceptually interpretable. In fact, as one example in Figure 25, Ford China attempted to link the two concepts – family-oriented and "love green" – and to market it in an internet commercial of SUV (an event of "driving your family to a nice country-side"). Basically, people who score highly on this factor are assumed to have a "compound" characteristic of being family-oriented and environmental-concerned.

Figure 25: Internet Commercial of Family-oriented and Green Life
Source: www.ford.com.cn

Factor II: Status-seeking

"The idea that individuals are motivated by status considerations is a very old one in economics and can be traced back to thinkers such as David Hume (1978) and Thorstein Veblen (1899)" (Fisher, 2001). Basically, by consuming (or owning) luxurious goods or services, people show off their wealth, power over others, or confirm certain social membership (e.g., the uniform cars for Chinese government officials) in order to obtain/secure more resources.

In my research, the status-seeking purchase was defined as the "consumption of luxurious goods for displaying" and modeled as lifestyle-related. As the result of factor analysis, three variables (V142, V152 and V154) originally designed for triangulating the

status-seeking lifestyle were all included in this factor, and the statement (V152) "I enjoy catching everybody's eyes" was assigned the highest loading (0.642). However, two variables (V146, V151) for testing the "bandwagon effect" were also included in this factor. The bandwagon effect indicated that people often do (or believe) things when they see many other people do (or believe) the same thing. One possible explanation for the bandwagon effect is that in a society in which culture and values are being redefined, people tend to "follow the crowd" before they finally come to a clear realization of their own (new) values. To certain extent, the bandwagon effect is similar to the status-seeking; for example, "following the crowd" can be considered similar to "confirming social membership". Besides, some variables originally designed for testing other factors were also combined into this factor, such as: V153 was for the environmental-concerned and V147 for the "enjoy now" lifestyle. Instead of naming one factor with compound concepts like in Factor I, the name "status-seeking" was eventually used because of the high loadings of (all three) status-seeking variables

The finding about the status-seeking lifestyle is not surprising, both Figure 26 and Figure 27 imply a status-seeking social environment. Figure 26 is the internet commercial of Lexus in China. The image and the Chinese slogan convey not only the functionality of the car, i.e., being sporty and powerful, but also the vehicle status, i.e., being on the top of peak. Figure 27 shows the official cars used for important government meeting in China. It is common to see the use of official (or uniform) cars to represent certain status, e.g., the Communalist Party, or to confirm social membership. Although the official government cars may not be purchased by common people, owning (or being assigned) such car can be a status symbol and a way to get special attention from the society.

Figure 26: Internet Commercial about Vehicle Status in China Source: www.lexus.com.cn

Figure 27: Official Car Used in Important Government Meeting in China Source: autos.cn.yahoo.com

Factor III: Pursue Freedom and Control of Life

This factor contains two variables/statements (V148, V150) originally designed for the

lifestyle of pursuing freedom³². The variables with the highest loading is "Freedom and the control of life is what I pursue" (V150, 0.619) and the variable with the second highest loading is "I am the king in my own territory is a good concept" (V148, 0.389). Although this factor also included other variables with lower loadings, I named this factor as "Pursue Freedom and Control of Life" based on statistical and conceptual considerations. This variable is assumed to have positive effect in the vehicle purchase.

Factor IV: Enjoy Now

The "Enjoy Now" is a recent, complicated but influential lifestyle in China. According to information from local media (TV, newspapers) during my stay in Shanghai, this type of lifestyle exists more among the young generation and has become a social phenomenon. One usually-cited example is certain young people's craze (or abuse) of the on-line games. Figure 28 is a picture of an internet café in Shanghai. Most such internet cafés are open 24 hours a day; and people (especially students) usually play on-line games there day and night. One explanation is that the young generation has difficulty finding a long-term life goal in a society undergoing rapid change. Therefore, the instant happiness; or even "virtual" instant happiness, became important in their lives. People with such an attitude or lifestyle tend to spend most of their money to just "enjoy now" without following the traditional Chinese virtue to save money. Sometimes, people with this type of lifestyle even borrow money (loan, credit card) to make their dreams, e.g., a car, happen faster.

-

³² The third variable (V155) for the freedom-pursuing lifestyle was discarded due to the low communality.

Figure 28: Internet Café in Shanghai

Source: cn.yahoo.com

The factor analysis results show all three variables (V143, V147, and V149) originally designed for the "enjoy now" lifestyle were assigned to this factor. The variable with the highest loading is "Saving money is hard for me" (V149, 0.392). Many variables were not taken into account in the naming process due to low factor loadings. Basically, people who score highly on this factor will tend to have a characteristic of "enjoy now" or a "loose" spending habit.

Dependent Variables

In this chapter, the major work is to develop choice models for vehicle use and purchase. There is big overlap between vehicle use and purchase; however, some exceptions exist. For example, wealthy people may purchase a "status" car for displaying to friends but seldom drive it. Or, some people just want to use a vehicle without purchasing it, e.g.,

taking taxi. There were three questions in my survey about vehicle purchase and use as in the following.

Most Expensive Vehicle Owned

The original question was "Among all vehicle(s) you own, which one is the MOST EXPENSIVE? (check one)". The frequency distribution of responses was: bicycle (27.1%), motorized two-wheeler (17.26%), motorcycle (4.92%), car (26.9%), no vehicle owned (21.12%) and missing data (2.7%). Although the motorcycle was considered a small group (less than 5%), I still included it into the choice set based on some of its distinct mobility characteristics. Five choices (including purchase nothing) were the dependent variables in the model of most expensive vehicle owned.

• Most Frequently Used Travel Means (weekday)

In addition to vehicle purchase, vehicle use was modeled by considering both weekday and weekend travel patterns. The original question of weekday travel was "Which type of transportation means below do you use mostly during week days? (check one)", and the frequency distribution of answers was: walk (8.58%), public transportation (29.89%), taxi (6.85%), rented car (0.68%), shared company car (3.47%), bicycle (14.37%), motorized two-wheeler (10.03%), motorcycle (2.89%), car (21.22%), other (0.39%) and missing data (1.64%). In the model estimation, choices with less than 5% cases were combined. Thus, the choice of rented car, taxi, and shared company car were combined, and motorcycle was combined with motorized two-wheeler. This "reasonable" combination was based on the motorization pathway hypothesized in Chapter 4 – from non-motorized to motorized, from low cost to high cost, and from shared to private-owned. Eventually,

the weekday vehicle use was modeled under six dependent variables.

• Most Frequently Used Travel Means (weekend)

The original question of weekend travel was "Which type of transportation means below do you use mostly during weekend? (check one)", and the frequency distribution of answers was: walk (6.85%), public transportation (36.74%), taxi (16.30%), rented car (0.77%), shared company car (0.48%), bicycle (5.88%), motorized two-wheeler (5.69%), motorcycle (2.51%), car (22.76%), other (0.10%) and missing data (1.92%). The weekend vehicle use has a different pattern from the weekday; for instance, the less use of bicycle and the more use of taxi. Similar scheme was used to combine alternatives with less than 5% cases. As a result, the same six alternatives (as in the weekday case) were modeled for the weekend vehicle use.

Explanatory Variables

This section describes the explanatory variables used in the vehicle choice model. A total of 36 explanatory variables were used, including variables drawn directly from the survey and variables defined based on the post-processing of the survey data, e.g., factors. In general, the 36 explanatory variables were categorized into the following five groups.

• General Vehicle Use/Purchase Background (4 variables)

This group contains four variables from the survey PART I. The original questions are: "Do you own any parking space AT WORK? (Y/N)", "Do you own any parking space AT HOME? (Y/N)", "How far is your WORKING PLACE to the closest subway line? (1=

Within 500 meters, $2 = 500 \sim 1000$ meters, 3 = More than 1001 meters, 4 = N/A, I don't work, I don't know, etc)", and "How far is your HOME to the closest subway line? (1 = Within 500 meters, $2 = 500 \sim 1000$ meters, 3 = More than 1001 meters, 4 = N/A, I don't know)". The YES and NO were coded as 1 and 0 for the first two questions (and also throughout the whole survey). For the last two questions, the answers were treated as ordinal and coded as it were in the survey. Answers of N/A were replaced by the geographical mean (detail will be discussed in the data imputation section).

• Perceived Utility of Travel Means (6 variables)

In PART II of the survey, a series of statements were designed to understand respondents' perceived utility of various travel means. One sample statement is: "I think the following travel means is – a 'SYMBOL OF SUCCESS' (I = Strongly Disagree; 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree)". In PART II, people rated (in Likert scale) six types of utility (symbol of success/status, speed, availability, capacity, price, and comfort) for nine travel means (walk, public transportation, taxi, rented car, shared company car, bicycle, motorized two-wheeler, motorcycle, and car). Each type of utility rating was considered a *generic* variable, that is, one whose values could differ by alternative, but whose coefficient in the utility function could be equal across alternatives. In the event of data consolidation, certain utility ratings were combined using the "mean utility" in order to match with the dependent variables actually used in the model³³.

• Exogenous Environment Factor (4 variables)

_

³³ The modeling program (Limdep) requires the explanatory variables to be entered into the dataset for each alternative. Therefore, the numbers of sets of utility ratings and dependent variables have to match each other.

As discussed in the factor analysis, 18 variables (survey PART III) were factor-analyzed to generate four factors – "importance of cost-related policy/regulation", "dangerous transportation environment", "attraction of impromptu/infrequent purchase", and "pro vehicle purchase cultural/social belief". The factor scores were used as explanatory variables.

• Lifestyle Factor (4 variables)

Similarly, four types of lifestyle were extracted from 18 original variables (survey PART IV) – "family-oriented and green", "status-seeking", "pursue freedom and control of life", and "enjoy now". The factor scores were used as explanatory variables.

• Demographics (18 variables)

Demographic variables were drawn from the original 12 questions in the survey PART V. However, dummy variables were created for certain variables with nominal values. For example, "factory worker (dummy)" and "boss (dummy)" were derived from the nominal variable of "employment". Eventually, 18 demographical variables were used in the choice model – age, motorcycle license (dummy), car license (dummy), motorcycle and car license (dummy), male, education, not working/retired (dummy), student (dummy), factory worker (dummy), office worker (dummy), boss (dummy), personal income, household income, household size, urban³⁴ (dummy), Shanghai resident, year of living in Shanghai, and experience of living abroad. Table 125 presents the categorization of 36 explanatory variables used in the modeling process.

_

³⁴ This dummy variable (living in urban Shanghai) was created from the variable of living locations (by district).

General Vehicle	parking at work, parking at home, distance from work to closest subway,
Use/Purchase Background	distance from home to closest subway (4 variables)
Donosinod HARA	perceived utility in terms of: symbol of success, speed, availability,
Perceived Utility	capacity, price, comfort (6 variables for each of 9 travel means)
Evaganaus	importance of cost-related policy/regulation, dangerous transportation
Exogenous Exprises mont Factor	environment, attraction of impromptu/infrequent purchase,
Environment Factor	pro vehicle purchase cultural/social belief (4 variables)
Lifestule Freder	family-oriented and green, status-seeking,
Lifestyle Factor	pursue freedom and control of life, enjoy now (4 variables)
	age, motorcycle license*, car license*, motorcycle and car license*,
	male, education, not working/retired*, student*, factory worker*, office
Demographics	worker*, boss*, personal income, family income, household size,
	urban*, Shanghai resident, year of living in Shanghai, experience of
	living abroad (* indicates dummy variables) (18 variables)

Table 125: Categorization of Explanatory Variables

Data Preparation

• Distribution of Missing Data

Before running the model, data cleaning, imputation, and consolidation were required. Understanding the distribution of missing data is the first step. Table 126, Table 127, and Table 128 show the distribution of missing data for three datasets (one for each dependent variable). The first two columns (in Table 126, Table 127, and Table 128) show the "missing-valid pattern". A total of 79 responses will be provided (in each case) if no data is missing. Columns 3 to 6 show the (cumulative) frequency and (cumulative) percent associated with a specific missing-valid pattern. Columns 7 and 8 show the cumulative frequency and percent for the "remaining" cases; that is, the sum of frequency and "remaining" frequency should be 1,037 (total number of cases).

For data cleaning purposes, a cut-off threshold (missing more than eight responses) was selected by considering two criteria: the percentage of data left after excluding cases beyond the threshold (the "cumulative percent") and the percentage of imputed data (% of data imputed). The percentage of imputed data was calculated by dividing "cumulative frequency of total missing (column 10)" by "total number of cells" (i.e., cumulative frequency x 79).

Missing	Valid	Frequency	Cumulative Frequency	Percent	Cumulative Percent	(Remaining) Cumulative Frequency	(Remaining) Cumulative Percent	TOTAL MISSING (frequency)	TOTAL MISSING (cumulative frequency)	% of Data Imputed
0	79	481	481	46.4%	46.4%	556	53.6%	0	0	0.00%
1	78	124	605	12.0%	58.3%	432	41.7%	124	124	0.26%
2	77	185	790	17.8%	76.2%	247	23.8%	370	494	0.79%
3	76	69	859	6.7%	82.8%	178	17.2%	207	701	1.03%
4	75	47	906	4.5%	87.4%	131	12.6%	188	889	1.24%
5	74	35	941	3.4%	90.7%	96	9.3%	175	1064	1.43%
6	73	18	959	1.7%	92.5%	78	7.5%	108	1172	1.55%
7	72	14	973	1.4%	93.8%	64	6.2%	98	1270	1.65%
8	71	9	982	0.9%	94.7%	55	5.3%	72	1342	1.73%
9	70	11	993	1.1%	95.8%	44	4.2%	99	1441	1.84%
10	69	6	999	0.6%	96.3%	38	3.7%	60	1501	1.90%
11	68	3	1002	0.3%	96.6%	35	3.4%	33	1534	1.94%
12	67	2	1004	0.2%	96.8%	33	3.2%	24	1558	1.96%
13	66	2	1006	0.2%	97.0%	31	3.0%	26	1584	1.99%
14	65	2	1008	0.2%	97.2%	29	2.8%	28	1612	2.02%
15	64	5	1013	0.5%	97.7%	24	2.3%	75	1687	2.11%
17	62	1	1014	0.1%	97.8%	23	2.2%	17	1704	2.13%
18	61	2	1016	0.2%	98.0%	21	2.0%	36	1740	2.17%
19	60	1	1017	0.1%	98.1%	20	1.9%	19	1759	2.19%
20	59	2	1019	0.2%	98.3%	18	1.7%	40	1799	2.23%
22	57	1	1020	0.1%	98.4%	17	1.6%	22	1821	2.26%
29	50	1	1021	0.1%	98.5%	16	1.5%	29	1850	2.29%
43	36	1	1022	0.1%	98.6%	15	1.4%	43	1893	2.34%
44	35	1	1023	0.1%	98.6%	14	1.4%	44	1937	2.40%
45	34	1	1024	0.1%	98.7%	13	1.3%	45	1982	2.45%
47	32	2	1026	0.2%	98.9%	11	1.1%	94	2076	2.56%
48	31	1	1027	0.1%	99.0%	10	1.0%	48	2124	2.62%
49	30	2	1029	0.2%	99.2%	8	0.8%	98	2222	2.73%
50	29	1	1030	0.1%	99.3%	7	0.7%	50	2272	2.79%
51	28	2	1032	0.2%	99.5%	5	0.5%	102	2374	2.91%
52	27	1	1033	0.1%	99.6%	4	0.4%	52	2426	2.97%
54	25	1	1034	0.1%	99.7%	3	0.3%	54	2480	3.04%
58	21	1	1035	0.1%	99.8%	2	0.2%	58	2538	3.10%
59	20	1	1036	0.1%	99.9%	1	0.1%	59	2597	3.17%
63	16	1	1037	0.1%	100.0%	0	0.0%	63	2660	3.25%

Table 126: Distribution of Missing Data (Dependent Variable = Most Expensive Vehicle Owned)

Missing	Valid	Frequency	Cumulative Frequency	Percent	Cumulative Percent	(Remaining) Cumulative Frequency	(Remaining) Cumulative Percent	TOTAL MISSING (frequency)	TOTAL MISSING (cumulative frequency)	% of Data Imputed
0	79	484	484	46.7%	46.7%	553	53.3%	0	0	0.00%
1	78	121	605	11.7%	58.3%	432	41.7%	121	121	0.25%
2	77	186	791	17.9%	76.3%	246	23.7%	372	493	0.79%
3	76	68	859	6.6%	82.8%	178	17.2%	204	697	1.03%
4	75	50	909	4.8%	87.7%	128	12.3%	200	897	1.25%
5	74	33	942	3.2%	90.8%	95	9.2%	165	1062	1.43%
6	73	18	960	1.7%	92.6%	77	7.4%	108	1170	1.54%
7	72	13	973	1.3%	93.8%	64	6.2%	91	1261	1.64%
8	71	10	983	1.0%	94.8%	54	5.2%	80	1341	1.73%
9	70	11	994	1.1%	95.9%	43	4.1%	99	1440	1.83%
10	69	5	999	0.5%	96.3%	38	3.7%	50	1490	1.89%
11	68	3	1002	0.3%	96.6%	35	3.4%	33	1523	1.92%
12	67	2	1004	0.2%	96.8%	33	3.2%	24	1547	1.95%
13	66	2	1006	0.2%	97.0%	31	3.0%	26	1573	1.98%
14	65	2	1008	0.2%	97.2%	29	2.8%	28	1601	2.01%
15	64	5	1013	0.5%	97.7%	24	2.3%	75	1676	2.09%
17	62	1	1014	0.1%	97.8%	23	2.2%	17	1693	2.11%
18	61	2	1016	0.2%	98.0%	21	2.0%	36	1729	2.15%
19	60	1	1017	0.1%	98.1%	20	1.9%	19	1748	2.18%
20	59	2	1019	0.2%	98.3%	18	1.7%	40	1788	2.22%
22	57	1	1020	0.1%	98.4%	17	1.6%	22	1810	2.25%
29	50	1	1021	0.1%	98.5%	16	1.5%	29	1839	2.28%
43	36	1	1022	0.1%	98.6%	15	1.4%	43	1882	2.33%
44	35	1	1023	0.1%	98.6%	14	1.4%	44	1926	2.38%
45	34	1	1024	0.1%	98.7%	13	1.3%	45	1971	2.44%
47	32	2	1026	0.2%	98.9%	11	1.1%	94	2065	2.55%
48	31	1	1027	0.1%	99.0%	10	1.0%	48	2113	2.60%
49	30	2	1029	0.2%	99.2%	8	0.8%	98	2211	2.72%
50	29	1	1030	0.1%	99.3%	7	0.7%	50	2261	2.78%
51	28	2	1032	0.2%	99.5%	5	0.5%	102	2363	2.90%
52	27	1	1033	0.1%	99.6%	4	0.4%	52	2415	2.96%
54	25	1	1034	0.1%	99.7%	3	0.3%	54	2469	3.02%
58	21	1	1035	0.1%	99.8%	2	0.2%	58	2527	3.09%
59	20	1	1036	0.1%	99.9%	1	0.1%	59	2586	3.16%
63	16	1	1037	0.1%	100.0%	0	0.0%	63	2649	3.23%

Table 127: Distribution of Missing Data (Dependent Variable = Most Frequently Used Travel Means on Weekday)

							• /			
Missing	Valid	Frequency	Cumulative Frequency	Percent	Cumulative Percent	(Remaining) Cumulative Frequency	(Remaining) Cumulative Percent	TOTAL MISSING (frequency)	TOTAL MISSING (cumulative frequency)	% of Data Imputed
0	79	485	485	46.8%	46.8%	552	53.2%	0	0	0.00%
1	78	121	606	11.7%	58.4%	431	41.6%	121	121	0.25%
2	77	185	791	17.8%	76.3%	246	23.7%	370	491	0.79%
3	76	68	859	6.6%	82.8%	178	17.2%	204	695	1.02%
4	75	49	908	4.7%	87.6%	129	12.4%	196	891	1.24%
5	74	34	942	3.3%	90.8%	95	9.2%	170	1061	1.43%
6	73	17	959	1.6%	92.5%	78	7.5%	102	1163	1.54%
7	72	14	973	1.4%	93.8%	64	6.2%	98	1261	1.64%
8	71	10	983	1.0%	94.8%	54	5.2%	80	1341	1.73%
9	70	11	994	1.1%	95.9%	43	4.1%	99	1440	1.83%
10	69	4	998	0.4%	96.2%	39	3.8%	40	1480	1.88%
11	68	4	1002	0.4%	96.6%	35	3.4%	44	1524	1.93%
12	67	2	1004	0.2%	96.8%	33	3.2%	24	1548	1.95%
13	66	2	1006	0.2%	97.0%	31	3.0%	26	1574	1.98%
14	65	2	1008	0.2%	97.2%	29	2.8%	28	1602	2.01%
15	64	3	1011	0.3%	97.5%	26	2.5%	45	1647	2.06%
16	63	2	1013	0.2%	97.7%	24	2.3%	32	1679	2.10%
17	62	1	1014	0.1%	97.8%	23	2.2%	17	1696	2.12%
18	61	2	1016	0.2%	98.0%	21	2.0%	36	1732	2.16%
19	60	1	1017	0.1%	98.1%	20	1.9%	19	1751	2.18%
20	59	2	1019	0.2%	98.3%	18	1.7%	40	1791	2.22%
22	57	1	1020	0.1%	98.4%	17	1.6%	22	1813	2.25%
29	50	1	1021	0.1%	98.5%	16	1.5%	29	1842	2.28%
43	36	1	1022	0.1%	98.6%	15	1.4%	43	1885	2.33%
44	35	1	1023	0.1%	98.6%	14	1.4%	44	1929	2.39%
45	34	1	1024	0.1%	98.7%	13	1.3%	45	1974	2.44%
47	32	2	1026	0.2%	98.9%	11	1.1%	94	2068	2.55%
48	31	1	1027	0.1%	99.0%	10	1.0%	48	2116	2.61%
49	30	2	1029	0.2%	99.2%	8	0.8%	98	2214	2.72%
50	29	1	1030	0.1%	99.3%	7	0.7%	50	2264	2.78%
51	28	2	1032	0.2%	99.5%	5	0.5%	102	2366	2.90%
52	27	1	1033	0.1%	99.6%	4	0.4%	52	2418	2.96%
54	25	1	1034	0.1%	99.7%	3	0.3%	54	2472	3.03%
58	21	1	1035	0.1%	99.8%	2	0.2%	58	2530	3.09%
59	20	1	1036	0.1%	99.9%	1	0.1%	59	2589	3.16%
63	16	1	1037	0.1%	100.0%	0	0.0%	63	2652	3.24%

Table 128: Distribution of Missing Data (Dependent Variable = Most Frequently Used Travel Means on Weekend)

Data Cleaning

As mentioned, the cases with more than eight missing responses were discarded. By using this cut-off, for all three datasets, I was able to keep about 95% of the original cases (after the data cleaning) and impute less than 2% of the responses for those cases. Figure 29 shows the flow chart of the data preparation; it also indicates the sample size after the data cleaning (982, 983, and 983 for three dependent variables). However, in the model estimation, same datasets (982 cases for three dependent variables) were eventually used for the benefit of comparing the vehicle purchase and use behavior of the same group of respondents.

Figure 29: Flow Charts of Data Preparation

Data Imputation

After discarding cases with too many missing data, the remaining missing data were

filled in by geographically-segmented means. Basically, the data imputation was used for the "real" missing (the blanks) and the N/A category. The imputation for N/A category was applied to only two questions of the survey, one is about the distance from home to the closest subway line, the other is about the distance from workplace to the closest subway line (as in the following):

How far is your working place to the "closest subway line"?

Within 500 meters

 $501 \sim 1000$ meters

More than 1001 meters

N/A (I don't work, I don't know, etc)

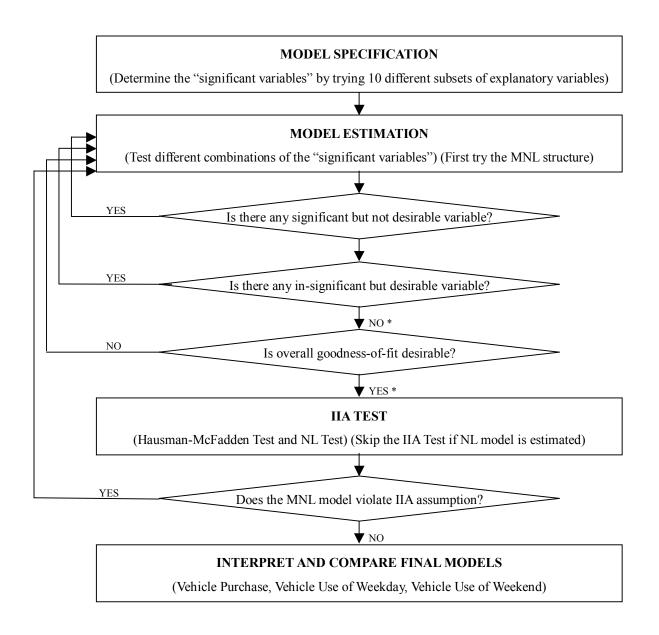
Originally, the N/A category was created to ensure that everyone has an appropriate response to select (e.g., try to differentiate the answer of "I don't work" from real missing data). However, since the answers of this question were treated as ordinal (1= Within 500 meters; 2= 501 ~ 1000 meters; 3= More than 1001 meters); the N/A was imputed (into ordinal measurement) based on geographically-segmented mean. For the "distance from workplace to the closest subway line", 67 N/A cells have been imputed; for the "distance from home to the closest subway line", 23 N/A cells have been imputed.

Instead of the housing location, the geographical means were actually calculated based on the sampling location for the following three reasons. First, I assume people within same sampling location are more homogeneous (in terms of variables related to vehicle purchase and use) than people within same housing location. This is actually the fundamental assumption when I designed the location-based sampling (see Chapter 3). In Table 129, we can see the sampling locations as related to people's vehicle purchase and mobility characteristics, represented by location types. Second, the "sampling locations" already include the idea of "housing locations" – the household survey, as one example. The sampling location stratification can actually be considered as a hybrid stratification of "on-street" and "housing" locations. Third, the sampling location variable itself contains no missing data because that information was recorded by surveyors. However, there are missing data in the housing location variable, which was provided by respondents.

Location Type	25 Data Imputation Groups: Sampling Locations						
On-street (general)	IKEA, Xu Jia Hui, Zhong Shan Park Subway, Jing An Temple, West Nan Jing Rd., Raffle's Plaza, Carrefour, Zheng Da Plaza, Peer Network						
Bicycle-related	Tongji University						
Motorized Two-wheeler/ Motorcycle-related	Ferry, E-bike Shop						
Car-related	Ford Dong Chang, Ford Jiu Hua, Ford Fu Cheng, Driving School, Car Show Place						
Household	An San 4, An San 5, An San 7, He Ping Hua Yuan, Ru San Xin Cun, Hai Fu Jia Yuan, Hai Yun Xin Cun, Shen Zu Jia Yuan						

Table 129: 25 Data Imputation Groups

In addition to the original data from the survey, the imputation was also conducted on data derived from the original data, like the factor scores. When missing data would have precluded the direct estimation of a factor score, I imputed the original variables and re-ran the factor analysis, instead of directly imputing the factor scores. Similar results of the factor analysis were obtained (number of factors, factor names, etc.) using the


imputed variables. The new factor scores were hence used as explanatory variables for model estimation.

• Data Consolidation

The last step of the data preparation is the data consolidation. Theoretically, I consolidated (without deleting) both explanatory and dependent variables containing small group (< 5% of the sample). However, in practice, I did not consolidate certain variables with small group which I was interested in studying, for example, the dependent variable of "motorcycle" (4.92% of the sample).

Model Specification

After the data preparation, a 4-step procedure has been conducted to develop the vehicle choice models. The first two steps involved model specification and estimation. In this phase, multinomial logit (MNL) model was developed to estimate the probability of purchasing and using different vehicles based on the collective effect of personal, vehicle, and exogenous environment variables. Conceptual and statistical robustness were considered to determine the final model specification. The third step was Independence from Irrelevant Alternative (IIA) Test. The MNL model has to fulfill the IIA assumption in order to be valid. If the MNL violates the IIA assumption, a nested logit (NL) model structure will be tested and considered as a superior (final) model. The last step was to interpret the results in terms of the final model specification and structures. Vehicle purchase and use behaviors were also compared, since three models were created using the same dataset. Figure 30 presents the flow chart of the model development procedures.

*: Arbitrary stopping rules were applied to avoid infinite loop.

Figure 30: Model Development Procedures

• MODEL 1: Most Expensive Vehicle Owned

Among all 36 explanatory variables, except the perceived utility (six variables), the values of remaining 30 variables doesn't change by alternative. For those 30 variables, each variable must be assigned a different weight for at least one subset of the

alternatives. Otherwise, those variables will not be able to distinguish the choices if they were entered into the model directly with the same coefficients across all alternatives. Intuitively, "no purchase" was selected as the base alternative with zero coefficients for all its variables.

Initially, I allowed the coefficients of each variable to vary by non-base alternatives (bicycle, motorized two-wheeler, motorcycle, and car). That is, each explanatory variable was entered into the model as alternative-specific variables (ASVs). Although parsimony (or model simplicity) could be one concern, the choice of creating all ASVs instead of variables with constant coefficients across alternatives was for the sake of flexibility – for example, family income was assumed to have different influences between "car purchase" and "bicycle purchase". However, if the model results eventually indicated that a certain variable has similar coefficients for some of its ASVs, those coefficients were constrained to be equal.

If all explanatory variables are modeled as ASVs, the model will contain $36 \times 4 = 144$ ASVs, plus another 4 alternative-specific constants (ASCs). However, Limdep 7 (the modeling software) has a limitation of estimating models containing a maximum of 90 variables at the same time. Therefore, I tested ten different subsets of variables (Table 130) to identify the "significant variables" (Table 131), which are the variables with p-value < 0.05, then pooled them across subsets as the initial model specification (53 candidate ASVs, Table 132).

PART I only	Model contains only variables (ASVs) from survey PART I
PART II only	Model contains only variables (ASVs) from survey PART II
PART III only	Model contains only variables (ASVs) from survey PART III
PART IV only	Model contains only variables (ASVs) from survey PART IV
PART V only	Model contains only variables (ASVs) from survey PART V
PART V + I	Model contains variables (ASVs) from survey PART V and PART I
PART V + II	Model contains variables (ASVs) from survey PART V and PART II
PART V + III	Model contains variables (ASVs) from survey PART V and PART III
PART V + IV	Model contains variables (ASVs) from survey PART V and PART IV
PART I ~IV + Sig. V	Model contains variables (ASVs) from survey PART I ~ IV and significant
	variables (ASVs) identified in the "PART V only" scenario.

Table 130: 10 Subsets of Explanatory Variables to Determine the Significant

Variables

Tested Scenario	PART I only	PART II only	PART III only	PART IV only	PART V only	PART V+I	PART V+II	PART V+III	PART V+IV	PART I∼IV+Sig. V
	N/A	USTA2	COST5	FAMILYG5	AGE2	WPARK2	USTA2	AGE2	AGE5	WPARK2
		USTA3	INFREQ4	FREEDOM2	AGE5	WPARK3	USTA3	AGE5	LICENM3	WPARK3
1 [UFAST2		FREEDOM3	LICENM3	HPARK2	UFAST2	LICENM3	LICENM4	WPARK4
		UAVAIL2			LICENM4	HPARK3	UAVAIL2	LICENM4	LICENC3	WPARK5
ا ۱۰۰۰		UAVAIL3			LICENC5	WSUB2	UAVAIL3	LICENC5	LICENC5	WSUB2
99		UAVAIL5			LICENMC3	WSUB3	UAVAIL5	LICENMC3	LICENMC3	WSUB3
0.05		UCAP2			LICENMC4	HSUB4	AGE5	LICENMC4	LICENMC4	WSUB5
v		UCOMF2			LICENMC5	AGE5	LICENM3	LICENMC5	LICENMC5	HSUB4
_ ∟		UCOMF3			MALE2	LICENM3	LICENM4	MALE2	MALE2	HSUB5
드					MALE3	LICENM4	LICENC5	MALE3	MALE3	USTA3
with					MALE4	LICENC5	LICENMC3	MALE4	MALE4	UFAST2
					MALE5	LICENMC4	LICENMC4	MALE5	MALE5	UAVAIL2
l &					EMPSTU2	LICENMC5	LICENMC5	EMPSTU2	EMPSTU2	UAVAIL3
Variables					EMPSTU5	MALE2	MALE2	EMPSTU5	EMPSTU5	UAVAIL5
<u>.a</u>					EMPFAC2	MALE3	MALE3	EMPFAC2	EMPFAC2	UCAP3
a⊾					EMPBOSS2	MALE4	MALE4	EMPBOSS2	EMPBOSS2	UCOMF2
					EMPBOSS3	MALE5	MALE5	EMPBOSS3	EMPBOSS3	INFREQ4
l i l					EMPBOSS5	EMPSTU2	EMPSTU2	EMPBOSS5	EMPBOSS5	FAMILYG5
					INCFAM5	EMPSTU5	EMPSTU3	INCFAM5	INCFAM5	MALE2
Significant"					URBAN5	EMPFAC2	EMPSTU5	URBAN5	HHSIZE2	MALE3
≝					SHRESI5	EMPBOSS2	EMPFAC2	SHRESI3	URBAN5	MALE4
1 5 1						EMPBOSS3	EMPBOSS2	SHRESI5	SHRESI3	MALE5
I ;ĕ' [EMPBOSS5	EMPBOSS3	COST5	SHRESI5	EMPSTU2
👸						INCFAM5	EMPBOSS5	INFREQ4	FAMILYG5	EMPFAC2
1 [URBAN5	INCFAM5	SOCIAL2	FREEDOM2	EMPBOSS2
						SHRESI5	URBAN5		FREEDOM3	EMPBOSS3
1 [SHRESI5		FREEDOM5	EMPBOSS5
1 [URBAN5
										SHRESI5

Table 131: Significant Variables of 10 Subsets of Variables [Dependent Variable = Most Expensive Vehicle Owned]

53 Candidate ASVs	Description
WPARK2	Parking Space at Work (for bicycle)
WPARK3	Parking Space at Work (for motorized two-wheeler)
WPARK4	Parking Space at Work (for motorcycle)
WPARK5	Parking Space at Work (for car)
HPARK2	Parking Space at Home (for bicycle)
HPARK3	Parking Space at Home (for motorized two-wheeler)
WSUB2	Distance from Work to Subway (for bicycle)
WSUB3	Distance from Work to Subway (for motorized two-wheeler)
WSUB5	Distance from Work to Subway (for car)
HSUB4	Distance from Home to Subway (for motorcycle)
HSUB5	Distance from Home to Subway (for car)
USTA2	Perceived Uitility of Status (for bicycle)
USTA3	Perceived Uitility of Status (for motorized two-wheeler)
UFAST2	Perceived Uitility of Speed (for bicycle)
UAVAIL2	Perceived Uitility of Availability (for bicycle)
UAVAIL3	Perceived Uitility of Availability (for motorized two-wheeler)
UAVAIL5	Perceived Uitility of Availability (for car)
UCAP2	Perceived Uitility of Carrying Capacity (for bicycle)
UCAP3	Perceived Uitility of Carrying Capacity (for motorized two-wheeler)
UCOMF2	Perceived Uitility of Comfort (for bicycle)
UCOMF3	Perceived Uitility of Comfort (for motorized two-wheeler)
COST5	[Factor] Cost-related Policy/Regulation (for car)
INFREQ4	[Factor] Attraction for Infrequent Use (for motorcycle)
SOCIAL2	[Factor] Pro-vehicle Purchase Cultural/Social Belief (for bicycle)
FAMILYG5	[Factor] Family-oriented and Green (for car)
FREEDOM2 FREEDOM3	[Factor] Pursue Freedom and Control of Life (for bicycle) [Factor] Pursue Freedom and Control of Life (for motorized two-wheeler)
FREEDOM5	[Factor] Pursue Freedom and Control of Life (for car)
AGE2	Age (for bicycle)
AGE5	Age (for car)
LICENM3	Own Motorized two-wheeler/Motorcycle License (for motorized two-wheeler)
LICENM4	Own Motorized two-wheeler/Motorcycle License (for motorcycle)
LICENC3	
	Own Car License (for motorized two-wheeler)
LICENC5	Own Car License (for car)
LICENMC3	Own Car + Motorized two-wheeler/Motorcycle Licenses (for motorized two-wheeler)
LICENMC4	Own Car + Motorized two-wheeler/Motorcycle Licenses (for motorcycle)
LICENMC5	Own Car + Motorized two-wheeler/Motorcycle Licenses (for car)
MALE2	Male (for bicycle)
MALE3	Male (for motorized two-wheeler)
MALE4	Male (for motorcycle)
MALE5	Male (for car)
EMPSTU2	Student (for bicycle)
EMPSTU3	Student (for motorized two-wheeler)
EMPSTU5	Student (for car)
EMPFAC2	Factory Worker (for bicycle)
EMPBOSS2	Business Owner (for bicycle)
EMPBOSS3	Business Owner (for motorized two-wheeler)
EMPBOSS5	Business Owner (for car)
INCFAM5	Family Income (for car)
URBAN5	Live in Urban Area (for car)
SHRESI3	Registered Shanghai Resident (for motorized two-wheeler)
SHRESI5	Registered Shanghai Resident (for car)
HHSIZE2	Household Size (for bicycle)

Table 132: Initial Model Specification [Dependent Variable = Most Expensive Vehicle Owned]

182

• MODEL 2: Most Frequently Used Travel Means (weekday)

With similar concept to previous model, "walk" was chosen as the base alternative with all variable coefficients equal to zero. Table 133 shows those significant variables identified from 10 subsets of explanatory variables. Significant variables were color-coded based on five base subsets/scenarios — "PART I only" to "PART V only". Table 134 indicates the initial model specification of weekday vehicle use model. As we can observe, all variables were modeled as ASVs, and 35 candidate ASVs were identified as the initial model specification.

Tested Scenario	PART I only	PART II only	PART III only	PART IV only	PART V only	PART V+I	PART V+II	PART V+III	PART V+IV	PART I∼IV+Sig. V
	WPARK2	USTA2	DANGER2	FAMILYG3	AGE2	AGE2	AGE2	AGE2	AGE2	AGE2
	WPARK4	USTA4	COST2	FAMILYG5	AGE3	AGE3	AGE3	AGE3	LICENC3	LICENC3
	WPARK5	UAVAIL2		FAMILYG6	LICENC3	LICENC3	LICENC3	LICENC3	LICENC6	LICENC6
	WPARK6	UAVAIL4		FREEDOM3	LICENC6	LICENC6	LICENC6	LICENC6	LICENM5	LICENM5
ا ما	HPARK6	UAVAIL5			LICENM5	LICENM5	LICENM5	LICENM5	LICENMC3	LICENMC3
0.05	WSUB6	UAVAIL6			LICENMC3	LICENMC3	LICENMC3	LICENMC3	LICENMC6	LICENMC6
0.	HSUB6				LICENMC6	LICENMC6	LICENMC6	LICENMC6	MALE4	MALE4
v					MALE4	MALE4	MALE4	MALE4	MALE5	MALE5
					MALE5	MALE5	MALE5	MALE5	EMPFAC5	EMPBOSS6
드					EMPNONE3	EMPFAC5	EMPNONE3	EMPNONE3	EMPBOSS4	INCPER6
with					EMPFAC5	EMPBOSS4	EMPFAC5	EMPFAC5	EMPBOSS6	WPARK2
					EMPBOSS4	EMPBOSS6	EMPBOSS4	EMPBOSS4	INCPER6	WPARK4
Variables					EMPBOSS6	INCFAM6	EMPBOSS6	EMPBOSS6	INCFAM6	WPARK5
⊡					INCPER6	WPARK2	INCPER6	INCPER6	FAMILYG6	WPARK6
<u>.a</u>					INCFAM6	WPARK4	USTA2	INCFAM6		USTA2
a l						WPARK5	USTA4			USTA4
>						WPARK6	UAVAIL2			UAVAIL2
%							UAVAIL4			UAVAIL4
🚊							UAVAIL5			UAVAIL5
'Significant"							UAVAIL6			UAVAIL6
! ≝										DANGER2
										INFREQ6
l ;ĕ′ [FAMILYG3
👸										FAMILYG6

Table 133: Significant Variables of 10 Subsets of Variables [Dependent Variable =

Most Frequently Used Travel Means (weekday)]

35 Candidate ASVs	Description
WPARK2	Parking Space at Work (for public transportation)
WPARK4	Parking Space at Work (for bicycle)
WPARK5	Parking Space at Work (for motorized two-wheeler, motorcycle)
WPARK6	Parking Space at Work (for car)
HPARK6	Parking Space at Home (for car)
WSUB6	Distance from Work to Subway (for car)
HSUB6	Distance from Home to Subway (for car)
USTA2	Perceived Uitility of Status (for public transportation)
USTA4	Perceived Uitility of Status (for bicycle)
UAVAIL2	Perceived Uitility of Availability (for public transportation)
UAVAIL4	Perceived Uitility of Availability (for bicycle)
UAVAIL5	Perceived Uitility of Availability (for motorized two-wheeler, motorcycle)
UAVAIL6	Perceived Uitility of Availability (for car)
DANGER2	[Factor] Dangerous Transportation Environment (for public transportation)
COST2	[Factor] Cost-related Policy/Regulation (for public transportation)
INFREQ6	[Factor] Attraction for Infrequent Use (for car)
FAMILYG3	[Factor] Family-oriented and Green (for taxi, rented car, share company car)
FAMILYG5	[Factor] Family-oriented and Green (for motorized two-wheeler, motorcycle)
FAMILYG6	[Factor] Family-oriented and Green (for car)
FREEDOM3	[Factor] Pursue Freedom and Control of Life (for taxi, rented car, share company car)
AGE2	Age (for public transportation)
AGE3	Age (for taxi, rented car, share company car)
LICENC3	Own Car License (for taxi, rented car, share company car)
LICENC6	Own Car License (for car)
LICENM5	Own Motorized two-wheeler/Motorcycle License (for motorized two-wheeler, motorcycle)
LICENMC3	Own Car + Motorized two-wheeler/Motorcycle Licenses (for taxi, rented car, share company car)
LICENMC6	Own Car + Motorized two-wheeler/Motorcycle Licenses (for car)
MALE4	Male (for bicycle)
MALE5	Male (for motorized two-wheeler, motorcycle)
EMPNONE3	No-work or Retired (for taxi, rented car, share company car)
EMPFAC5	Factory Worker (for motorized two-wheeler, motorcycle)
EMPBOSS4	Business Owner (for bicycle)
EMPBOSS6	Business Owner (for car)
INCPER6	Personal Income (for car)
INCFAM6	Family Income (for car)

Table 134: Initial Model Specification [Dependent Variable = Most Frequently Used
Travel Means (weekday)]

• MODEL 3: Most Frequently Used Travel Means (weekend)

In this model, "walk" was also set as the base alternative with all variable coefficients equal to zero. Table 135 shows those significant variables identified from 10 scenarios, and the same color-coding scheme was applied.

Tested Scenario	PART I only	PART II only	PART III only	PART IV only	PART V only	PART V+I	PART V+II	PART V+III	PART V+IV	PART I∼IV+Sig. V
	HSUB5	USTA2	COST6	FAMILYG6	AGE5	AGE5	LICENC5	AGE5	AGE5	LICENC5
	HSUB6	USTA4		STASEEK2	LICENC5	LICENC6	LICENC6	LICENC5	LICENC5	LICENC6
l [UFAST4		STASEEK3	LICENC6	LICENM5	LICENM5	LICENC6	LICENC6	LICENM5
		UAVAIL5		STASEEK6	LICENM5	LICENMC6	LICENMC6	LICENM5	LICENM5	LICENMC6
l [UAVAIL6		ENJOY6	LICENMC6	MALE4	MALE4	LICENMC6	LICENMC5	MALE4
0.05		UCAP3			MALE4	EMPOFF4	EMPNONE3	MALE4	LICENMC6	INCPER6
0.		UCOMF6			EMPOFF4	INCPER3	EMPOFF4	EMPOFF4	MALE4	INCFAM3
v					INCPER6	INCPER6	INCPER6	INCPER6	EMPNONE3	INCFAM6
<u> </u>					INCFAM3	INCFAM6	INCFAM3	INCFAM3	EMPOFF4	USTA2
with					INCFAM6		INCFAM6	INCFAM6	INCPER6	USTA4
#							USTA2	COST6	INCFAM3	UFAST4
S .							USTA4		INCFAM6	UFAST5
l &							UFAST4			UAVAIL6
효							UAVAIL6			UCAP3
<u>.a</u>										UCAP5
ä										COST6
>										SOCIAL5
%										STASEEK2
🚊										STASEEK3
ျ										
'Significant" Variables										
I <u>5</u> [
I 💥 [
",										
[
] [
1										
L [

Table 135: Significant Variables of 10 Subsets of Variables [Dependent Variable =

Most Frequently Used Travel Means (weekend)]

Table 136 indicates the initial model specification of weekend vehicle use model. Thirty-one candidate ASVs (parentheses were used to specify the alternatives which ASVs were associated with) were identified as the union of those significant variables in Table 135.

31 Candidate ASVs	Description
HSUB5	Distance from Home to Subway (for motorized two-wheeler, motorcycle)
HSUB6	Distance from Home to Subway (for car)
USTA2	Perceived Uitility of Status (for public transportation)
USTA4	Perceived Uitility of Status (for bicycle)
UFAST4	Perceived Uitility of Speed (for bicycle)
UFAST5	Perceived Uitility of Speed (for motorized two-wheeler, motorcycle)
UAVAIL5	Perceived Uitility of Availability (for motorized two-wheeler, motorcycle)
UAVAIL6	Perceived Uitility of Availability (for car)
UCAP3	Perceived Uitility of Carrying Capacity (for taxi, rented car, share company car)
UCAP5	Perceived Uitility of Carrying Capacity (for motorized two-wheeler, motorcycle)
UCOMF6	Perceived Uitility of Comfort (for car)
COST6	[Factor] Cost-related Policy/Regulation (for car)
SOCIAL5	[Factor] Pro-vehicle Purchase Cultural/Social Belief (for motorized two-wheeler, motorcycle)
FAMILYG6	[Factor] Family-oriented and Green (for car)
STASEEK2	[Factor] Status-seeking (for public transportation)
STASEEK3	[Factor] Status-seeking (for taxi, rented car, share company car)
STASEEK6	[Factor] Status-seeking (for car)
ENJOY6	[Factor] Enjoy Now (for car)
AGE5	Age (for motorized two-wheeler, motorcycle)
LICENC5	Own Car License (for motorized two-wheeler, motorcycle)
LICENC6	Own Car License (for car)
LICENM5	Own Motorized two-wheeler/Motorcycle License (for motorized two-wheeler, motorcycle)
LICENMC5	Own Car + Motorized two-wheeler/Motorcycle Licenses (for motorized two-wheeler, motorcycle)
LICENMC6	Own Car + Motorized two-wheeler/Motorcycle Licenses (for car)
MALE4	Male (for bicycle)
EMPNONE3	No-work or Retired (for taxi, rented car, share company car)
EMPOFF4	Office Worker (for bicycle)
INCPER3	Personal Income (for taxi, rented car, share company car)
INCPER6	Personal Income (for car)
INCFAM3	Family Income (for taxi, rented car, share company car)
INCFAM6	Family Income (for car)

Table 136: Initial Model Specification [Dependent Variable = Most Frequently Used

Travel Means (weekend)]

Model Estimation

MODEL 1: Most Expensive Vehicle Owned

In this phase of model estimation, variables in the initial specification were modeled under the MNL structure. However, MNL was only considered as the intermediate model, and the IIA test was conducted to tell if the NL is a superior model structure than MNL. Based on the IIA test, the NL might be selected as the best (final) model structure. By adding and subtracting variables, the final model was expected to have a slightly different

specification (from the initial one) but to achieve better statistical and conceptual robustness. Table 137 shows the estimated MNL model with four ASCs and 38 ASVs, representing 23 different types of explanatory variables. All the variables were conceptually interpretable and statistically significant with p-value less than 0.05 - except for the MALE5, which is considered as a "desirable" variable and is just slightly beyond the cut-off (at p-value = 0.504). As mentioned, the models (for three dependent variables) in this phase are considered intermediate. More sophisticated tables will be provided for the model results after the IIA tests (at the end of this chapter).

Table 138 presents the goodness-of-fit statistics. The ρ_o^2 (the Rho square value of estimated model with equally-likely model as the base) is 0.409, indicating that the estimated (full) model explains 40.9% (equally-likely model as the base) of the information in the survey data about Shanghai people's most expensive vehicle purchase. The ρ_c^2 (the Rho square value of estimated model with market-share model as the base) is 0.370, which means the estimated model can still explain 37% of the information in the data under a more strict (market-share model) base.

In addition, the χ_c^2 value of 1096.1 means there is a significant difference between the estimated model and the MS model at $\alpha << 0.005$. Similarly, the χ_o^2 value of 1294.2 shows that the estimated model also significantly differs from the equally-likely (EL) model (all coefficients are equal to zero) at $\alpha << 0.005$.

#	Variable	Coefficient	P-value		
1	ASC2	-2.519	0.0006		
2	ASC3	-3.214	0.0000		
3	ASC4	-3.234	0.0001		
4	ASC5	-8.575	0.0000		
5	WPARK2	-1.169	0.0003		
6	WPARK3	-1.428	0.0000		
7	WPARK4	-1.663	0.0002		
8	HPARK2	-1.008	0.0010		
9	WSUB2	0.362	0.0031		
10	WSUB3	0.401	0.0011		
11	HSUB4	0.535	0.0304		
12	USTA2	0.275	0.0047		
13	USTA3	0.448	0.0000		
14	UFAST2	0.359	0.0026		
15	UAVAIL2	0.587	0.0000		
16	UAVAIL3	0.468	0.0000		
17	UAVAIL5	0.380	0.0041		
18	AGE5	0.048	0.0000		
19	LICENM3	2.669	0.0000		
20	LICENM4	4.828	0.0000		
21	LICENC5	3.800	0.0000		
22	LICENMC3	1.482	0.0044		
23	LICENMC4	3.609	0.0000		
24	LICENMC5	4.193	0.0000		
25	MALE3	0.558	0.0044		
26	MALE4	1.164	0.0127		
27	MALE5	0.507	0.0504		
28	EMPSTU2	1.708	0.0000		
29	EMPSTU5	1.540	0.0049		
30	EMPFAC2	0.814	0.0009		
31	EMPBOSS2	1.517	0.0100		
32	EMPBOSS3	1.330	0.0155		
33	EMPBOSS5	2.628	0.0000		
34	INCFAM5	0.440	0.0000		
35	HHSIZE2	-0.215	0.0121		
36	URBAN5	-1.086	0.0024		
37	SHRESI5	0.940	0.0024		
38	COST5	-0.424	0.0048		
39	INFREQ4	0.530	0.0189		
40	FAMILYG5	-0.412	0.0050		
41	FREEDOM2	-0.336	0.0195		
42	FREEDOM3	-0.319	0.0217		

Table 137: Estimation of MNL Model [Dependent Variable = Most Expensive Vehicle Owned]

188

Number of observations (purchase nothing = 211, bicycle = 257, motorized	982	
two-wheeler = 195, motorcycle = 50, car = 269)		
Final log-likelihood, $L(\beta)$	-933.378	
Log-likelihood for market-share model, L (MS)	-1481.411	
Log-likelihood for equally-likely (EL) model, L (0)	-1580.468	
Total Number of Estimated Parameters = ASVs+ ASCs = 38 + 4	42	
${\rho_0}^2 = 1 - [L(\beta) / L(0)]$	0.409	
Adjusted $\rho_0^2 = 1 - \{ [L(\beta) - \text{Total } \# \text{ of Estimated Parameters}] / L(0) \}$	0.383	
$\rho_{c}^{2} = 1 - \left[L(\beta) / L(MS) \right]$	0.370	
Adjusted $\rho_c^2 = 1 - \{ [L(\beta) - \text{Total } \# \text{ of Estimated ASVs}] / L(MS) \}$	0.344	
χ_0^2 (between the final model and the EL model)	1294.2	
χ_c^2 (between the final model and the MS model)	1096.1	

Table 138: Goodness-of-fit Statistics for Estimated MNL Model [Dependent Variable

= Most Expensive Vehicle Owned]

• MODEL 2: Most Frequently Used Travel Means (weekday)

Table 139 presents the estimated MNL model with five ASCs and 21 ASVs, representing 12 different types of explanatory variables. All the variables were conceptually interpretable and statistically significant with p-values less than 0.05.

Table 140 indicates the goodness-of-fit statistics; the ρ_o^2 (the Rho square value of estimated model with equally-likely model as the base) is 0.299, indicating that the estimated (full) model explains 29.9% (equally-likely model as the base) of the information in the survey data. The ρ_c^2 (the Rho square value of estimated model with market-share model as the base) is 0.231, which means the estimated model can still explain 23.1% of the information in the data under a more strict (market-share model) base.

The χ_c^2 value of 773.8 means there is a significant difference between the estimated model and the MS model at α << 0.005. Similarly, the χ_o^2 value of 1100.1 shows that the estimated model also significantly differs from the equally-likely (EL) model at α << 0.005.

#	Variable	Variable Coefficient			
1	ASC2	1.163	0.0055		
2	ASC3	-0.117	0.4974		
3	ASC4	-1.896	0.0023		
4	ASC5	-1.638	0.0090		
5	ASC6	-4.492	0.0000		
6	WPARK2	-0.803	0.0016		
7	WPARK4	-1.095	0.0001		
8	WPARK5	-0.867	0.0060		
9	USTA2	0.221	0.0072		
10	USTA4	0.355	0.0002		
11	UAVAIL2	0.267	0.0012		
12	UAVAIL4	0.525	0.0000		
13	UAVAIL5	0.501	0.0002		
14	UAVAIL6	0.404	0.0011		
15	FAMILYG6	-0.258	0.0471		
16	FREEDOM3	0.456	0.0017		
17	AGE2	-0.018	0.0014		
18	LICENC3	1.461	0.0000		
19	LICENC6	3.734	0.0000		
20	LICENM5	2.257	0.0000		
21	LICENMC3	1.813	0.0000		
22	LICENMC6	3.416	0.0000		
23	MALE4	0.659	0.0009		
24	MALE5	1.299	0.0000		
25	EMPBOSS6	1.303	0.0000		
26	INCPER6	0.294	0.0000		

Table 139: Estimation of MNL Model [Dependent Variable = Most Frequently Used

Travel Means (weekday)]

Number of observations (walk = 80; public transportation = 291; taxi, rented	
car, shared company car = 118; bicycle = 142; motorized two-wheeler, motorcycle	982
= 137; car = 214)	
Final log-likelihood, $L(\beta)$	-1288.2
Log-likelihood for market-share model, L (MS)	-1675.1
Log-likelihood for equally-likely (EL) model, L (0)	-1838.2
Total Number of Estimated Parameters = ASVs+ ASCs = 21 + 5	26
$\rho_0^2 = 1 - [L(\beta) / L(0)]$	0.299
Adjusted $\rho_0^2 = 1 - \{ [L(\beta) - \text{Total } \# \text{ of Estimated Parameters}] / L(0) \}$	0.285
$\rho_{c}^{2} = 1 - \left[L(\beta) / L(MS) \right]$	0.231
Adjusted $\rho_c^2 = 1 - \{ [L(\beta) - \text{Total } \# \text{ of Estimated ASVs}] / L(MS) \}$	0.218
χ_0^2 (between the final model and the EL model)	1100.1
χ_c^2 (between the final model and the MS model)	773.8

Table 140: Goodness-of-fit Statistics for Estimated MNL Model [Dependent Variable

= Most Frequently Used Travel Means (weekday)]

• MODEL 3: Most Frequently Used Travel Means (weekend)

Similarly, Table 141 presents the estimated MNL model with five ASCs and 17 ASVs, representing 13 different types of explanatory variables. All the variables were conceptually interpretable and statistically significant with p-values less than 0.05.

Table 142 indicates the goodness-of-fit statistics; the ρ_o^2 (the Rho square value of estimated model with equally-likely model as the base) is 0.299, indicating that the estimated (full) model explains 29.9% (equally-likely model as the base) of the information in the survey data. The ρ_c^2 (the Rho square value of estimated model with market-share model as the base) is 0.209, which means the estimated model can still explain 20.9% of the information in the data under a more strict (market-share model) base.

The χ_c^2 value of 652.0 means there is a significant difference between the estimated model and the MS model at α << 0.005. Similarly, the χ_o^2 value of 1050.7 means that the estimated model significantly differs from the equally-likely (EL) model at α << 0.005.

#	Variable	Coefficient	P-value		
1	ASC2	1.194	0.0000		
2	ASC3	-2.165	0.0004		
3	ASC4	-3.106	0.0000		
4	ASC5	-1.321	0.0034		
5	ASC6	-5.210	0.0000		
6	HSUB5	0.442	0.0083		
7	USTA2	0.165	0.0238		
8	USTA4	0.345	0.0169		
9	UFAST4	0.480	0.0068		
10	UAVAIL6	0.301	0.0086		
11	UCAP3	0.290	0.0190		
12	COST6	-0.479	0.0002		
13	LICENC6	2.693	0.0000		
14	LICENM5	2.828	0.0000		
15	LICENMC5	1.623	0.0000		
16	LICENMC6	2.832	0.0000		
17	MALE4	0.848	0.0029		
18	EMPNONE3	0.885	0.0097		
19	INCPER3	0.271	0.0000		
20	INCPER6	0.384	0.0000		
21	INCFAM3	0.157	0.0204		
22	INCFAM6	0.263	0.0075		

Table 141: Estimation of MNL Model [Dependent Variable = Most Frequently Used

Travel Means (weekend)]

Number of observations (walk = 67; public transportation = 358; taxi, rented	
car, shared company car = 183; bicycle = 59; motorized two-wheeler, motorcycle	982
= 89; car = 226)	
Final log-likelihood, $L(\beta)$	-1234.2
Log-likelihood for market-share model, L (MS)	-1560.2
Log-likelihood for equally-likely (EL) model, L (0)	-1759.5
Total Number of Estimated Parameters = ASVs+ ASCs = 17 + 5	22
$\rho_0^2 = 1 - [L(\beta) / L(0)]$	0.299
Adjusted $\rho_0^2 = 1 - \{ [L(\beta) - \text{Total } \# \text{ of Estimated Parameters}] / L(0) \}$	0.286
$\rho_{c}^{2} = 1 - \left[L(\beta) / L(MS) \right]$	0.209
Adjusted $\rho_c^2 = 1 - \{ [L(\beta) - \text{Total # of Estimated ASVs}] / L(MS) \}$	0.198
χ_0^2 (between the final model and the EL model)	1050.7
χ_c^2 (between the final model and the MS model)	652.0

Table 142: Goodness-of-fit Statistics for Estimated MNL Model [Dependent Variable

= Most Frequently Used Travel Means (weekend)]

Independence from Irrelevant Alternatives Test (IIA)

• MODEL 1: Most Expensive Vehicle Owned

Hausman-McFadden test

The Independence from Irrelevant Alternatives (IIA) assumption states that "the relative odds of choosing one alternative over another should not differ with the presence or absence of other alternatives in the choice set."

The IIA assumption is a central condition for the MNL model structure to be valid. IIA will be violated when observed explanatory variables are correlated with unobserved ones, or when the unobserved variables for one alternative are correlated with those of another alternative. In my three models, certain alternatives could be considered similar

(e.g., motorized two-wheeler and motorcycle); therefore, it is very likely that IIA will be violated. However, if the IIA assumption is violated, MNL is not the appropriate model structure, and another model structure (such as NL) or specification must be applied.

In this research, I tested for IIA violations using two approaches. First, the Hausman-McFadden test (Hausman and McFadden, 1984) was conducted by comparing the coefficients of the model estimated on the full choice set with those of a model estimated on a subset of alternatives. Second, MNL model results were compared with several more general nested logit (NL) model formulations, which have the MNL model as a special case.

In terms of the Hausman-McFadden test, if the IIA property holds, the parameters of a model involving the full choice set should be the same as those involving only a subset of the full choice set. This test can be presented as in the following:

 $\mathbf{H_0}$ (Null hypothesis): $\beta^R = \beta^U$, where β^R is the vector of (true) parameters for the model involving the restricted choice set, and β^U is the vector of (true) parameters for the model involving the unrestricted or full choice set.

 $\mathbf{H_a}$ (Alternative hypothesis): $\beta^R \neq \beta^U$.

Test-statistic: $[\hat{\beta}^R - \hat{\beta}^U]'[V^R - V^U]^{-1}[\hat{\beta}^R - \hat{\beta}^U]$, where $\hat{\beta}^U$ and V^U are, respectively, the vector of coefficient estimates and the estimated variance-covariance matrix of $\hat{\beta}$ for the "unrestricted model"; and $\hat{\beta}^R$ and V^R are

the vector of estimated coefficients and variance-covariance matrix of $\hat{\beta}$ for the "restricted model". This statistic is asymptotically chi-squared distributed with the degrees of freedom equal to the number of identifiable parameters in $\hat{\beta}^R$.

The Hausman-McFadden test has been conducted on eight reduced choice sets of the MNL model of vehicle purchase, namely dropping alternatives: 2, 3, 4, 5, (2 & 3), (2 & 5), (3 & 4), and (4 & 5) respectively. In every case, the test statistic could not be computed. However, the inability to carry out the Hausman-McFadden test is quite common, since this test "requires inversion of the difference between two closely related matrices, which may be non-positive-definite or nearly singular and thus cause computational and inference problems" (Small and Hsaio, 1985). If IIA holds, by definition $\beta^R = \beta^U$, and therefore the variance-covariance matrices of the two vectors of parameter estimators, V^R and V^U , are also likely to be similar. If that is true, then their difference will be a matrix of relatively small numbers, and inverting such a matrix to compute the "test statistic" will be similar to division by zero. Nevertheless, the computational failures are only suggestive (but not conclusive) that IIA holds. The NL test needs to be conducted to further confirm.

NL Test

As mentioned, the nested logit (NL) model is a generalized format of MNL in which alternatives that are suspected of sharing unobserved characteristics are grouped together into nests. Within the nests, IIA is assumed to hold, but it is not necessary for IIA to hold between alternatives in different nests. When the NL model is estimated, the

decision-making involves both the choices of the nests and the alternatives within the nests.

The NL test of IIA is basically to see if the NL and MNL models are significantly different. First, to make the NL model theoretically consistent, the "inclusive value (IV) parameter" of each nest needs to be between 0 and 1. If any of the IV parameters are significantly less than one, the NL model is significantly different (and better) than the MNL model, and the NL should be used to fix the IIA violation of MNL. On the other hand, if the IV parameter of each nest is equal to 1, the NL model is equivalent to the MNL model as a special case of NL. Statistically, the NL test can be presented as:

 $\mathbf{H_o}$ (Null hypothesis): IV parameter $\theta = 1$.

 $\mathbf{H_a}$ (Alternative hypothesis): IV parameter $\theta \neq 1$.

Test-statistic: $\frac{\widehat{\theta}-1}{s.e.(\widehat{\theta})}$, where $\widehat{\theta}$ is the estimated IV parameter and $s.e.(\widehat{\theta})$ is the (estimated) standard error of the estimated IV parameter. This statistic asymptotically follows the t-distribution with degrees of freedom equal to the number of observations minus the number of estimated parameters in the model.

Table 143 shows ten NL model structures for the test. The assumption of those NL structures was based on simple conceptual grounds – for example, the combination of motorcycle and motorized two-wheeler (purchase), and the separation of car (purchase) from other alternatives.

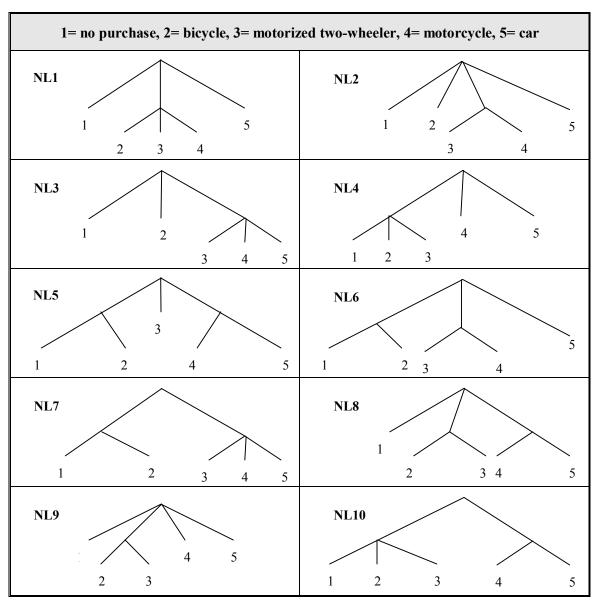


Table 143: 10 Nested Logit Model Structures Tested [Dependent Variable = Most

Expensive Vehicle Owned]

Table 144 summarizes the NL test results using the "initial model specification" (NL1 to NL10). Three models failed to reject the null hypothesis that the IV parameter was equal to one, indicating that NL is equivalent to the MNL model. There were seven NL models able to reject the null hypothesis; however, two of them were with the estimated IV parameter greater than one (highlighted in red), which is theoretically impermissible.

Only five NL models (highlighted in blue) had reasonable estimated IV parameter (less than one), and thus I am able to reject the null hypothesis, suggesting that they were superior models than the original MNL. By comparing the ρ_0^2 , NL4 was selected as the best model structure. However, different specifications were tested by adding (insignificant but desirable) and subtracting (significant but not desirable) variables. NL4-1 (shown in the last column of the table) was the final vehicle purchase model, with $\rho_0^2 = 0.466$.

	NL1	NL2	NL3	NL4	NL5	NL6	NL7	NL8	NL9	NL10	NL4-1 (Final)
1= no purchase 2= bicycle 3= motorized two-wheeler 4= motorcycle 5= car	tree = a(1), b(2,3,4), c(5)	tree =a(1), b(2), c(3,4), d(5)	tree = a(1), b(2), c(3, 4, 5)	tree = a(1,2,3) b(4), c(5)	tree = a(1,2), b(3), c(4,5)	tree = a(1,2), b(3,4), c(5)	tree = a(1,2), b(3,4,5)	tree = a(1), b(2,3), c(4,5)	tree = a(1), b(2,3), c(4), d(5)	tree = a(1,2,3), b(4,5)	tree = a(1,2,3) b(4), c(5)
ρ ²	0.429	0.391	0.438	0.489	0.426	0.407	0.409	0.423	0.444	0.431	0.466
IV parameter estimate	0.735	1.185	1.705	0.243	0.832	0.878	1.535	0.755	0.638	0.597	0.203
Standard Error of IV (tau)	0.116	0.347	0.207	0.116	0.132	0.183	0.180	0.104	0.122	0.096	0.095
Test statistic	-2.284	0.535	3.404	-6.546	-1.273	-0.665	2.979	-2.360	-2.978	-4.217	-8.353
Number of observations		4910						4910			
Estimated parameters			42							31	
Degrees of freedom			4868							4879	
95% critical value for t-distribution (two-tailed)			1.96						1.96		
Conclusion	Reject Ho	Fail to reject Ho	Reject Ho	Reject Ho	Fail to reject Ho	Fail to reject Ho	Reject Ho	Reject Ho	Reject Ho	Reject Ho	Reject Ho

Table 144: Summary of Nest Logit Model Test [Dependent Variable = Most

Expensive Vehicle Owned]

• MODEL 2: Most Frequently Used Travel Means (weekday)

Hausman-McFadden test

The Hausman-McFadden test has been conducted on eight reduced choice sets, namely dropping alternatives: 2, 3, 4, 5, 6, (2 & 3), (3 & 4), and (4 & 6) respectively. In every case, the test statistic could not be computed, which suggests (but is not conclusive) that

the IIA holds for the MNL model of weekday vehicle use.

NL Test

For the weekday and weekend vehicle use, I tried the same ten NL models (Table 145).

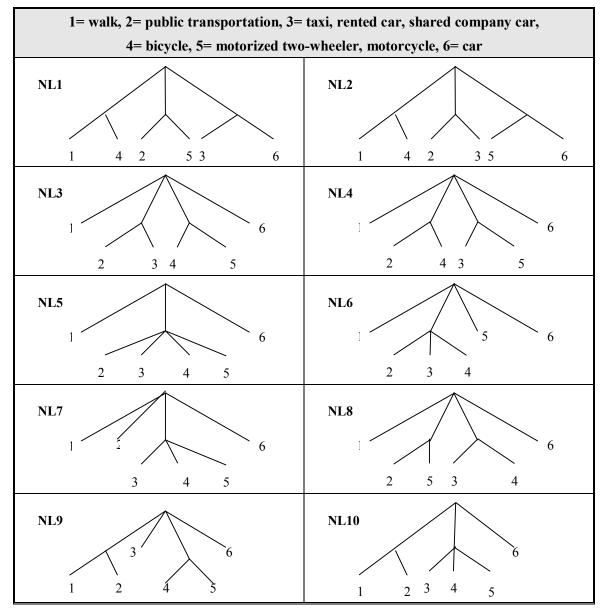


Table 145: 10 Nested Logit Model Structures Tested [Dependent Variable = Most Frequently Used Travel Means (weekday) (weekend)]

The assumption of those NL structures was based on the motorization pathway idea mentioned in Chapter 4 – for example, private type vehicles were combined into one nest, while the shared type vehicles were combined into the other.

Table 146 summarizes the ten tested NL models, two models failed to reject the null hypothesis (IV parameter = 1), indicating that NL is equivalent to the MNL model. Eight NL models rejected the null hypothesis, but three of them were with the estimated IV parameter greater than one (highlighted in red), which is theoretically impermissible. The remaining five NL models (highlighted in blue) were with estimated IV parameter less than one and able to reject the null hypothesis, suggesting that they were superior models than the original MNL. Similar to the MODEL 1, different model specifications were tested by adding (insignificant but desirable) and subtracting (significant but not desirable) variables. Eventually, the NL3 (circled) was selected as the final model of weekday vehicle use behavior. The ρ_o^2 of NL3 ($\rho_o^2 = 0.299$) is essentially equivalent to the highest one, of NL8 ($\rho_o^2 = 0.300$). I considered NL3 the better model because those two ρ_o^2 values (NL3, NL8) are close, but NL3 had a more interpretable model specification and NL structure.

	NL1	NL2	NL3 (Final)	NL4	NL5	NL6	NL7	NL8	NL9	NL10
1= walk 2= public transportation 3= taxi, rented car, shared company car 4= bicycle 5= motorized two-wheeler, motorcycle 6= car		tree = a(1,4), b(2,3), c(5,6)	tree = a(1), b(2,3), c(4, 5), d(6)	tree = a(1), b(2,4), c(3,5), d(6)	tree = a(1), b(2,3,4,5), c(6)	tree = a(1), b(2,3,4), c(5), d(6)	tree = a(1), b(2), c(3,4,5), d(6)	tree = a(1), b(2,5), c(3,4), d(6)	tree = a(1,2), b(3), c(4,5), d(6)	tree = a(1,2), b(3,4,5), c(6)
ρ^2	0.270	0.270	0.299	0.301	0.365	0.344	0.284	0.300	0.291	0.273
IV parameter estimate	1.772	1.531	0.675	1.710	0.996	1.299	0.667	0.575	0.507	0.709
Standard Error of IV (tau)	0.284	0.180	0.137	0.281	0.253	0.304	0.117	0.118	0.107	0.113
Test statistic	2.722	2.954	-2.363	2.524	-0.015	0.981	-2.839	-3.587	-4.612	-2.567
Number of o	bservations					58	92			
Estimated	parameters					2	6			
Degrees (of freedom		5866							
95% critical value for t-distribution (two-tailed)			1.96							
Conclusion	Reject Ho	Reject Ho	Reject Ho	Reject Ho	Fail to reject Ho	Fail to reject Ho	Reject Ho	Reject Ho	Reject Ho	Reject Ho

Table 146: Summary of Nest Logit Model Test [Dependent Variable = Most Frequently Used Travel Means (weekday)]

• MODEL 3: Most Frequently Used Travel Means (weekend)

Hausman-McFadden test

Similar to Model 2, the Hausman-McFadden test has been conducted on eight reduced choice sets dropping alternatives: 2, 3, 4, 5, 6, (2 & 3), (3 & 4), and (4 & 6) respectively. In every case, the test statistic could not be computed, suggesting that the IIA holds for the MNL model of weekend vehicle use.

NL Test

Table 147 presented the results of ten NL models (with initial model specification). Unlike previous two tests, most (eight out of ten) NL models failed to reject the null hypothesis (IV parameter = 1), which means NL was not a superior structure to MNL. Two NL models rejected the null hypothesis. However, they have the estimated IV parameter greater than one (highlighted in red), which is theoretically impermissible.

Thus, the IIA test results for the NL models strongly suggest that no NL models are superior to previous MNL model. That is, the IIA property of the MNL model holds, and the MNL model previously developed will be considered the final model of weekend vehicle use. More detail discussion will follow in the model interpretation section of this chapter.

	NL1	NL2	NL3	NL4	NL5	NL6	NL7	NL8	NL9	NL10
1= walk 2= public transportation 3= taxi, rented car, shared company car 4= bicycle 5= motorized two-wheeler, motorcycle 6= car		tree = a(1,4), b(2,3), c(5,6)	tree = a(1), b(2,3), c(4, 5), d(6)	tree = a(1), b(2,4), c(3,5), d(6)	tree = a(1), b(2,3,4,5), c(6)	tree = a(1), b(2,3,4), c(5), d(6)	tree = a(1), b(2), c(3,4,5), d(6)	tree = a(1), b(2,5), c(3,4), d(6)		tree = a(1,2), b(3,4,5), c(6)
ρ^2	0.299	0.304	0.330	0.329	0.394	0.391	0.285	0.330	0.298	0.290
IV parameter estimate	1.046	1.817	1.475	1.135	1.720	2.079	0.971	0.682	0.893	1.032
Standard Error of IV (tau)	0.172	0.253	0.344	0.239	0.537	0.548	0.187	0.172	0.231	0.190
Test statistic	0.267	3.235	1.382	0.564	1.342	1.970	-0.155	-1.850	-0.464	0.171
Number of c	observations					58	92			
Estimated	parameters					2	2			
Degrees (5870								
95% critical value for t-distribution (two-tailed)			1.96							
Conclusion	Fail to reject Ho	Reject Ho	Fail to reject Ho	Fail to reject Ho	Fail to reject Ho	Reject Ho	Fail to reject Ho	Fail to reject Ho	Fail to reject Ho	Fail to reject Ho

Table 147: Summary of Nested Logit Model Test [Dependent Variable = Most

Frequently Used Travel Means (weekend)]

Interpretation of Model Results

• MODEL 1: Most Expensive Vehicle Owned

As shown in Table 148, the NL model of most expensive vehicle owned was created with four ASCs and 27 ASVs, representing 16 different explanatory variables. All explanatory variables were statistically significant.

In term of goodness-of-fit statistics, the ρ_o^2 (the Rho square value of estimated model with equally-likely model as the base) is 0.47, indicating that the estimated (full) model explains 47% (equally-likely model as the base) of the information in the survey data. The ρ_c^2 (the Rho square value of estimated model with market-share model as the base) is 0.35, which means the estimated model can still explain 35% of the information in the data under a more strict (market-share model) base.

The χ_c^2 value of 1031.7 means there is a significant difference between the estimated model and the MS model at $\alpha << 0.005$. Similarly, the χ_o^2 value of 1683.3 means that the estimated model significantly differs from the equally-likely (EL) model at $\alpha << 0.005$.

To explain the model, in the following, I will first describe the model results by explanatory variables (by row), which are categorized based on different parts of the original survey. Thus, we can see how the variables' influences vary across different alternatives. Then, the model results will be interpreted by alternative (by column) so as to develop the profile of buyers/users of different type of vehicles.

	Altern	atives (Base Alterna	ative = Purchase N	othing)			
Explanatory Variables	Bicycle	Motorized Two- wheeler	Motorcycle	Car			
ASC	-1.15 (0.2937)	-1.83 (0.0794)	-12.98 (0.097)	-28.25 (0.0482)			
[PART I] Vehicle Purchase and Use Background							
Parking Space at Work	-3.1 (0.0003)	-3.47 (0.0001)	-5.9 (0.0283)				
Parking Space at Home	-1.08 (0.0018)						
Distance from Work to Subway	0.48 (0.0005)	0.56 (0.0001)					
[PART II] Perceived Utility							
Perceived Uitility of Status	0.3 (0.0051)	0.48 (0.0001)					
Perceived Uitility of Speed	0.41 (0.0011)						
Perceived Uitility of Availability	0.63 (0)	0.51 (0)					
[PART IV] Lifestyle Factor							
Pursue Freedom and Control of Life	-0.48 (0.0035)	-0.48 (0.0039)					
[PART V] Demographics							
Own Motorized two-wheeler/Motorcycle License		2.79 (0)	19.85 (0.0236)				
Own Car License				16.45 (0.0353)			
Own Car + Motorized two-wheeler/Motorcycle Licenses		1.8 (0.0016)	17.71 (0.0336)	18.41 (0.0291)			
Male		0.56 (0.005)					
Student	1.7 (0)						
Factory Worker	0.69 (0.0065)						
Business Owner	1.7 (0.0184)	1.59 (0.0241)		8.2 (0.0243)			
Family Income				2.26 (0.05)			
Household Size	-0.21 (0.021)						
Goodness-of-fit Statistic							
Number of observations (purchase nothing = 211, bicycle = 257, motorized two-wheeler = 195, motorcycle = 50, car = 269)		91	32				
Final log-likelihood, L (β)		-98	5.6				
Log-likelihood for market share model, L (MS)	-1481.4						
Log-likelihood for equally-likely (EL) model, L (0)	-1807.2						
Total Number of Estimated Parameters = ASVs+ ASCs = 27 + 4	31						
$\rho \circ ^2 = 1 - [L (\beta) / L (0)]$	0.47						
Adjusted $\rho o^2 = 1 - \{[L(\beta) - Total # of Estimated Parameters] / L(0)\}$	0.45						
ρc^2 = 1- [L (β) / L (MS)]			35				
Adjusted ρc^2 = 1- {[L (β) - Total # of Estimated ASVs] / L (MS)}			33				
Xo^2 (between the final model and the EL model)			33.3				
Xc^2 (between the final model and the MS model)		103	31.7				

Table 148: Nested Logit Model of Most Expensive Vehicle Owned

[Explanatory Variable] General Vehicle Use/Purchase Background

"(Own) Parking Space at Work", "(Own) Parking Space at Home", and "Distance from Work to Subway" are three variables identified as significant. Both variables related to parking show negative influences on non-car alternatives. One possible explanation is, although the "parking space" is originally defined to cover all type of parking (bicycle, motorized two-wheeler, motorcycle, and car), our respondents might tend to consider parking as "car parking only". For most of the non-car parking, there is no designated space in Shanghai, and people generally don't need to pay for using/owning it. Therefore,

people might not perceive the non-car parking as the "real" parking space. Finally, the model shows that people who own (car) parking space at work are less likely to purchase bicycle, motorized two-wheeler and motorcycle (as the most expensive vehicles); people who own (car) parking space at home are less likely to purchase bicycle (as the most expensive vehicle). The expected positive influence of having parking space at work/home for car purchase was not significant. Perhaps having (or not having) a work/home parking space will *not* affect the purchase decision for people who really want (and can afford) a car. The third variable indicates that the further people's workplaces are away from the main subway line, the more likely they will purchase bicycle and motorized two-wheeler (as the most expensive vehicle).

[Explanatory Variable]Perceived Utility of Travel Means

Three (out of six) types of perceived utility are identified as significant – status, speed, and availability; each type has positive sign as expected. The utility of status is significant for bicycle and motorized two-wheeler, indicating that the stronger perception of status people have for those two types of vehicle, the more likely they will purchase them as the most expensive vehicles. Similarly, the perception of utility of speed positively affects the purchase of bicycle (as the most expensive vehicle); and the perception of utility of availability positively affects the purchase of bicycle and motorized two-wheeler (as the most expensive vehicle). Surprisingly, none of the perceived utility, including status, was significant for car purchase. Perhaps the car purchase in Shanghai was less determined by people's utility perception but more by the "actual" constraints, such as income, license control. To further investigate (taking status perception as one example); the cross-tabulation between "car as the most expensive

vehicle owned" and the "car is a symbol of success" has been conducted (Table 149). The Pearson chi-squared test suggests that there are differences in the distributions of status perception between people who purchased cars as the most expensive vehicle and people who don't (p-value = 0.052). However, the statistical significance is borderline, and the fact that this variable is not significant in the model indicates that any explanatory power it might have has been adequately captured by other variables in the model.

			Car is a sym	bol of success	s (1=strongly d	isagree; 5=str	ongly agree)	
			1	2	3	4	5	Total
Car as the Most	NO	Count	11	57	137	291	217	713
Expensive Vehicle Owned		% within Car as the Most Expensive Vehicle Owned	1.5%	8.0%	19.2%	40.8%	30.4%	100.0%
	YES	Count	6	8	56	106	93	269
		% within Car as the Most Expensive Vehicle Owned	2.2%	3.0%	20.8%	39.4%	34.6%	100.0%
Total		Count	17	65	193	397	310	982
		% within Car as the Most Expensive Vehicle Owned	1.7%	6.6%	19.7%	40.4%	31.6%	100.0%

Table 149: Cross-tabulation: "Car as the Most Expensive Vehicle Owned" x "Car is a symbol of success" (Utility Perception)

[Explanatory Variable]Lifestyle Factor

"Pursue Freedom and Control of Life" is the only significant variable for bicycle and motorized two-wheeler identified from the lifestyle factors. Its negative sign indicates that people with freedom-pursuing type of lifestyle are less likely to buy bicycle and motorized two-wheeler.

[Explanatory Variable] Demographics

Nine demographic variables turn out to be significant, and three variables are related to

the ownership of drivers' licenses. As expected, owning motorized two-wheeler or motorcycle license is positively associated with the purchase of motorized two-wheeler and motorcycle. Similarly, the ownership of car drivers' license has positive sign and high magnitude (16.45) for car purchase. Gender (male) is positively associated with the ownership of motorized two-wheeler. Based on my experience conducting the pilot and final surveys in Shanghai, people riding motorized two-wheelers are mostly male and many of them use the vehicles to operate delivery services. However, safety can be another reason, compared to male, female might use public transportation more (if available) for short-distance travel. Three occupation variables are estimated to be correlated with the most expensive mode owned. Students and factory workers are more likely to own bicycles as their most expensive mode; business owners are more likely to own bicycles, motorized two-wheelers, and especially cars (coefficient = 8.2). Family income is significant and positively associated with the car purchase. To test various possible income effects, measures of personal and family income were tested; only family income is significant, and then only for car ownership. This result implies that car purchase, considered as a big expense for Chinese people, is not solely determined by personal income. Household size is negatively associated with the bicycle ownership, but not any other mode. Reasonably, people with big family might be more likely to own more expensive modes with greater passenger capacity and range constraint for their household travel needs (pick up kids, etc.).

The inclusion of ownership of drivers' licenses as explanatory variables may be confounding, because the ownership of drivers' licenses can be considered a pre-requisite of purchasing or using a vehicle. There will be little or no variation on mode-specific

license variables within each group of people who own that vehicle, and incorporating those variables in the model will not provide much behavioral insight. Therefore, I re-run the model with the same specification (as in Table 148) excluding those drivers' license variables (Table 150). As expected, Table 150 presents lower ρ_o^2 (0.34) than previous ρ_o^2 (0.47) in Table 148. However, the new ρ_o^2 value is still within the acceptable range. Besides, the coefficients and the p-values don't change for most the variables, except for "family income (for car)" (the new p-value is higher than 0.05, but it is still included as a borderline insignificant but desirable variable).

	Alternatives (Base Alternative = Purchase Nothing)							
Explanatory Variables	Bicycle	Motorized Two- wheeler	Motorcycle	Car				
ASC	-1.42 (0.1954)	-1.51 (0.1394)	-7.82 (0.1961)	-33.75 (0.0786)				
[PART I] Vehicle Purchase and Use Background								
Parking Space at Work	-3.04 (0.0006)	-3.38 (0.0001)	-7.33 (0.0365)					
Parking Space at Home	-1.06 (0.0014)							
Distance from Work to Subway	0.46 (0.001)	0.47 (0.0009)						
[PART II] Perceived Utility								
Perceived Utility of Status	0.29 (0.0055)	0.47 (0)						
Perceived Utility of Speed	0.46 (0.0002)							
Perceived Utility of Availability	0.66 (0)	0.48 (0)						
[PART IV] Lifestyle Factor								
Pursue Freedom and Control of Life	-0.48 (0.0031)	-0.44 (0.0056)						
[PART V] Demographics								
Male		0.72 (0.0002)						
Student	1.87 (0)							
Factory Worker	0.73 (0.0038)							
Business Owner	2.02 (0.0064)	2.01 (0.0044)		10.58 (0.0386)				
Family Income				4.29 (0.07)				
Household Size	-0.23 (0.0133)							
Goodness-of-fit Statistic								
Number of observations (purchase nothing = 211, bicycle = 257, motorized two-wheeler = 195, motorcycle = 50, car = 269)		90	32					
Final log-likelihood, L (β)		-118	36.1					
Log-likelihood for market share model, L (MS)			31.4					
Log-likelihood for equally-likely (EL) model, L (0)	-1807.2							
Total Number of Estimated Parameters = ASVs+ ASCs = 21 + 4	25							
ρο^2 = 1- [L (β) / L (0)]	0.34							
Adjusted $\rho o^2 = 1 - \{[L(\beta) - Total # of Estimated Parameters] / L(0)\}$			33					
$\rho c^2 = 1 - [L(\beta) / L(MS)]$			20					
Adjusted $\rho c^2 = 1 - \{[L(\beta) - Total # of Estimated ASVs] / L(MS)\}$			19					
Xo^2 (between the final model and the EL model)			12.3					
Xc^2 (between the final model and the MS model)		59	0.9					

Table 150: Nested Logit Model of Most Expensive Vehicle Owned (without "license" variables)

[Vehicle Alternative] "Who are the bicycle buyers?"

Looking at previous tables by column, 14 variables are related to whether bicycles are the most expensive vehicle owned by a respondent. People whose most expensive mode they own is a bicycle tend not to own parking space at work or home and their workplaces tend to be further from the main subway line. In addition, they perceive the utility of status, speed and the availability (convenience) of bicycle; however, they are less likely to have the freedom-pursuing lifestyle per se. Occupation cannot differentiate bicycle buyers very much; they can be factory workers, students or business owners. The last, people with big family are less likely to buy bicycle (as the most expensive vehicle).

[Vehicle Alternative] "Who are the motorized two-wheeler buyers?"

The buyers of motorized two-wheeler are somewhat similar to bicycle buyers. Their workplaces tend to be further away from major subway and without reserved parking spaces. They realize the utility of status and availability of the motorized two-wheeler. The last, they are more likely to be male, business owner and have motorized two-wheeler's licenses.

[Vehicle Alternative] "Who are the motorcycle buyers?"

Only three variables (as ASCs) are associated with the motorcycle purchase. People owning motorcycle tend to have the motorcycle license but don't have (car) parking at work.

[Vehicle Alternative] "Who are the car buyers?"

Four variables (as ASCs) influence the car purchase in this model. The profile for people

buying car (as the most expensive vehicle) in Shanghai is – having car driver's license, business owner and with high family income.

• MODEL 2: Most Frequently Used Travel Means (weekday)

In terms of the weekday vehicle use, the final (NL) model was developed with five ASCs and 21 ASVs, representing 12 different variables, as shown in Table 151. All explanatory variables were statistically significant.

	Alternatives (Base Alternative = Walk)							
Explanatory Variables	Public Transportation	Taxi, Rented Car, Shared Company Car	Bicycle	Motorized Two- wheeler, Motorcycle	Car			
ASC	2.16 (0.0072)	0.61 (0.2368)	-2.21 (0.0049)	-1.74 (0.0233)	-6.64 (0.0001)			
[PART I] Vehicle Purchase and Use Background								
Parking Space at Work	-1.04 (0.0017)		-1.48 (0.0007)	-1.23 (0.0066)				
[PART II] Perceived Utility								
Perceived Uitility of Status	0.25 (0.0129)		0.43 (0.0003)					
Perceived Uitility of Availability	0.27 (0.0062)		0.72 (0.0001)	0.69 (0.0002)	0.6 (0.0063)			
[PART IV] Lifestyle Factor								
Family-oriented and Green					-0.4 (0.0595)			
Pursue Freedom and Control of Life		0.46 (0.0042)						
[PART V] Demographics								
Age	-0.02 (0.0023)							
Own Motorized two-wheeler/Motorcycle License				2.86 (0)				
Own Car License		1.58 (0)			5.4 (0)			
Own Car + Motorized two-wheeler/Motorcycle Licenses		1.99 (0)			4.9 (0)			
Male			1.08 (0.0038)	1.72 (0)	4.05. (0.0047)			
Business Owner					1.95 (0.0017)			
Personal Income					0.44 (0.0009)			
Goodness-of-fit Statistic								
Number of observations (walk = 80; public transportation = 291; taxi, rented car, shared company car = 118; bicycle = 142; motorized two-wheeler, motorcycle = 137; car = 214)			982					
Final log-likelihood, L (β)			-1288.2					
Log-likelihood for market share model, L (MS)			-1675.1					
Log-likelihood for equally-likely (EL) model, L (0)	-1838.2							
Total Number of Estimated Parameters = ASVs+ ASCs = 21 + 5	26							
ρο^2 = 1- [L (β) / L (0)]	0.30							
Adjusted $\rho \circ ^2 = 1 - \{[L (\beta) - Total \# of Estimated Parameters] / L (0)\}$								
$\rho c^2 = 1 - [L(\beta) / L(MS)]$ Adjusted $\rho c^2 = 1 - \{[L(\beta) - Total \# of Estimated ASVs] / L(MS)\}$	0.23 0.22							
Xo^2 (between the final model and the EL model)			1100.1					
Xc^2 (between the final model and the MS model)			773.8					
No 2 (Notices) are una model and the mo model)			110.0					

Table 151: Nested Logit Model of Most Frequently Used Travel Means (weekday)

In term of goodness-of-fit statistics, the ρ_o^2 (the Rho square value of estimated model with equally-likely model as the base) is 0.30, indicating that the estimated (full) model explains 30% (equally-likely model as the base) of the information in the survey data. The ρ_c^2 (the Rho square value of estimated model with market-share model as the base) is 0.23, which means the estimated model can still explain 23% of the information in the data under a more strict (market-share model) base.

The χ_c^2 value of 773.8 means there is a significant difference between the final model and the MS model at $\alpha << 0.005$. Similarly, the χ_o^2 value of 1100.1 means that the estimated model significantly differs from the equally-likely (EL) model at $\alpha << 0.005$.

[Explanatory Variable] General Vehicle Use/Purchase Background

Like previous vehicle purchase model, owning (car) parking at work negatively influence the weekday use of public transportation, bicycle, motorized two-wheeler and motorcycle with similar magnitude.

[Explanatory Variable] Perceived Utility of Travel Means

Though the perceived status of motorized two wheelers and motorcycles, taxis, rented cars, shared company cars, and privately owned cars, is not significantly related to the use of any of these modes, the status of using public transit and bicycle is positively associated, respectively, with the use of public transportation and bicycle. Availability is positively associated with use of public transportation, bicycle, motorized two-wheeler, motorcycle and car, but not taxis, rented cars, and shared company cars.

[Explanatory Variable]Lifestyle Factor

The lifestyle factor I called "family oriented and green" could have different effects on the same mode for different reasons; therefore I did not have a simple hypothesis regarding this factor. For example, a family-oriented person might be more motivated to use a car to fulfill family needs that cannot be well served by other types of vehicles, e.g., driving the whole family out for a picnic. On the other hand, if a person is family-oriented and environmentally-concerned (green); he/she might choose to stay home more, intentionally reduce the car use, or use other modes more aligned with this factor. Based on the model results, the factor "family-oriented and green" turns out to be negatively associated with car use on weekdays. The freedom-pursuing lifestyle is positively associated with the use of taxi, rented car and shared company car. A freedom-pursuing person might be more likely to use some "ad hoc" type of vehicle such as taxi.

[Explanatory Variable] Demographics

According to the model results, age is slightly negatively associated with the use of public transportation (-0.02). Similar to previous vehicle ownership model, possession of drivers' licenses also positively affect vehicle use. Owning car drivers' license is positively related to not only the car use, but also the use of taxi, rented car and shared company car. Men are more likely to use bicycles, motorized two-wheelers and motorcycles during weekday. Business owners and people with high personal incomes are more likely to be weekday car users.

As mentioned in previous model, the inclusion of those "license" variables is debatable and does not provide much behavioral insight. I re-run the model with the same specification (as in Table 151) excluding those license variables. As expected, Table 152 shows lower ρ_0^2 (0.22) than previous ρ_0^2 (0.30) in Table 151. But the new ρ_0^2 value is within my acceptable range. The coefficients and the p-values don't change for most of the variables, and the variable "family-oriented and green" is still included as a borderline insignificant but desirable variable (p-value = 0.0832).

	Alternatives (Base Alternative = Walk)							
Explanatory Variables	Public Transportation	Taxi, Rented Car, Shared Company Car	Bicycle	Motorized Two- wheeler, Motorcycle	Car			
ASC	2.61 (0.0293)	2.05 (0.0424)	-2.44 (0.0067)	-1.73 (0.048)	-9.51 (0.0015)			
[PART I] Vehicle Purchase and Use Background								
Parking Space at Work	-0.93 (0.0069)		-1.62 (0.005)	-1.44 (0.0131)				
[PART II] Perceived Utility								
Perceived Utility of Status	0.3 (0.0043)		0.46 (0.0004)					
Perceived Utility of Availability	0.3 (0.0052)		0.93 (0)	0.89 (0.0001)	1.13 (0.0045)			
[PART IV] Lifestyle Factor								
Family-oriented and Green					-0.48 (0.0832)			
Pursue Freedom and Control of Life		0.5 (0.0023)						
[PART V] Demographics								
Age	-0.02 (0.0294)							
Male			1.35 (0.0281)	2.33 (0.0003)				
Business Owner					2.27 (0.0092)			
Personal Income					1.31 (0.0011)			
Goodness-of-fit Statistic								
Number of observations (walk = 80; public transportation = 291; taxi, rented car, shared company car = 118; bicycle = 142; motorized two-wheeler, motorcycle = 137; car = 214)			982					
Final log-likelihood, L (β)			-1433.9					
Log-likelihood for market share model, L (MS)			-1675.1					
Log-likelihood for equally-likely (EL) model, L (0)			-1838.2					
Total Number of Estimated Parameters = ASVs+ ASCs = 16 + 5	21							
ρο^2 = 1- [L (β) / L (0)]	0.22							
Adjusted ρo^2 = 1- {[L (β) - Total # of Estimated Parameters] / L (0)}								
ρc^2 = 1- [L (β) / L (MS)]	0.14							
Adjusted ρc^2 = 1- {[L (β) - Total # of Estimated ASVs] / L (MS)}	0.13							
Xo^2 (between the final model and the EL model)			808.6					
Xc^2 (between the final model and the MS model)			482.3					

Table 152: Nested Logit Model of Most Frequently Used Travel Means (weekday)

(without "license" variables)

[Vehicle Alternative] "Who are the public transportation riders?"

Public transportation riders in Shanghai don't own (car) parking space at work, but they perceive the utility of status and availability of using public transportation. Increasing age is associated with lower public transit use. It is possible that when people getting older, they are able to (possibly due to higher income) go for something "nicer." Further, the public transportation service in Shanghai (during weekday) may not be safe or comfortable enough for them (Figure 31).

Figure 31: Subway of Shanghai (weekday)

Source: cn.yahoo.com

[Vehicle Alternative] "Who are the taxi, rented car, and shared company car users?"

People using taxi, rented car and shared company car during weekday are more likely to have freedom-pursuing lifestyle. Owning car, motorized two-wheeler, or motorcycle drivers' license all positively affect the weekday use of these modes.

[Vehicle Alternative] "Who are the bicycle riders?"

Weekday cyclists in Shanghai don't own (car) parking space at work but perceive the

utility of status and availability of riding bicycle. They are more likely to be male.

[Vehicle Alternative] "Who are the motorized two-wheeler and motorcycle riders?"

People using these two types of two-wheeled vehicles during weekday don't own (car) parking space at work, perceive the utility of the availability of motorized two-wheelers and motorcycles, are more likely to be male, and have the appropriate vehicle drivers'

license (with the highest coefficient = 2.86).

[Vehicle Alternative] "Who are the car users?"

income.

People who drive a car on weekdays in Shanghai value its availability, i.e., using their car anytime, anywhere they want. In terms of lifestyle, they are less likely to be family-oriented or environmentally-concerned. They are more likely to be business owners, to have car drivers' license and high personal incomes. In contrast to purchasing car as the most expensive vehicle (which is positively associated with family income), weekday car use seems to be a more "personal" decision, associated with personal

• MODEL 3: Most Frequently Used Travel Means (weekend)

The final MNL model of weekend vehicle use was achieved with five ASCs and 17 ASVs. All explanatory variables in the model were statistically significant (Table 153).

		Alternativ	es (Base Alternati	ve = Walk)		
Explanatory Variables	Public Transportation	Taxi, Rented Car, Shared Company Car	Bicycle	Motorized Two- wheeler, Motorcycle	Car	
ASC	1.19 (0)	-2.16 (0.0004)	-3.11 (0)	-1.32 (0.0034)	-5.21 (0)	
[PART I] Vehicle Purchase and Use Background						
Distance from Home to Subway				0.44 (0.0083)		
[PART II] Perceived Utility						
Perceived Uitility of Status Perceived Uitility of Speed Perceived Uitility of Availability Perceived Uitility of Carrying Capacity	0.16 (0.0238)	0.29 (0.019)	0.35 (0.0169) 0.48 (0.0068)		0.3 (0.0086)	
[PART III] Exogenous Environment Factor		0.28 (0.018)				
Cost-related Policy/Regulation					-0.48 (0.0002)	
[PART V] Demographics						
Own Motorized two-wheeler/Motorcycle License Own Car License Own Car + Motorized two-wheeler/Motorcycle Licenses Male			0.85 (0.0029)	2.83 (0)	2.69 (0) 2.83 (0)	
No-work or Retired Personal Income Family Income		0.88 (0.0097) 0.27 (0) 0.16 (0.0204)	()		0.38 (0) 0.26 (0.0075)	
Goodness-of-fit Statistic						
Number of observations (walk = 67; public transportation = 358; taxi, rented car, shared company car = 183; bicycle = 59; motorized two-wheeler, motorcycle = 89; car = 226)			982			
Final log-likelihood, L (β)			-1234.2			
Log-likelihood for market share model, L (MS)	-1560.2					
Log-likelihood for equally-likely (EL) model, L (0) Total Number of Estimated Parameters = ASVs+ ASCs = 17 + 5			-1759.5			
po^2 = 1- [L (β) / L (0)]	22 0.30					
Adjusted $\rho \circ ^2 = 1 - \{[L(\beta) / L(0)]\}$			0.29			
$\rho_c^2 = 1 - [L(\beta) / L(MS)]$			0.21			
Adjusted $\rho c^2 = 1 - \{[L(\beta) - Total \# of Estimated ASVs] / L(MS)\}$			0.20			
Xo^2 (between the final model and the EL model)			1050.7			
Xc^2 (between the final model and the MS model)			652.0			

Table 153: Multinomial Logit Model of Most Frequently Used Travel Means (weekend)

In term of goodness-of-fit statistics, the ρ_o^2 (the Rho square value of estimated model with equally-likely model as the base) is 0.30, indicating that the estimated (full) model explains 30% (equally-likely model as the base) of the information in the survey data. However, the ρ_c^2 (the Rho square value of estimated model with market-share model as the base) is 0.21, which means the estimated model can still explain 21% of the

information in the data under a more strict (market-share model) base.

The χ_c^2 value of 652.0 means there is a significant difference between the final model and the MS model at $\alpha << 0.005$. Similarly, the χ_o^2 value of 1050.7 means that the estimated model significantly differs from the equally-likely (EL) model at $\alpha << 0.005$.

[Explanatory Variable] General Vehicle Use/Purchase Background

"Distance from Home to Subway" is the only significant variable associated with using motorized two-wheelers and motorcycles on weekends. Its positive sign suggests that the further people's home tend to be from the main subway line the more likely they are to use motorized two-wheeler or motorcycle on weekend.

[Explanatory Variable] Perceived Utility of Travel Means

The perception of the status of using these modes is positively associated with the use of public transportation and bicycle. In addition, the perception of speed, availability have positive effect on the use of bicycle, car. The carrying capacity, not being identified in previous models, is positively associated with the weekend use of taxi, rented car and shared company car. Surprisingly, the carrying capacity is not significant to car use. Perhaps a private car full of personal belongings is less considered "with capacity" than an always-empty taxi. Alternatively, perhaps car users and non-users alike have a similar perception of the carrying capacity of the car, in which case it cannot help distinguish users from non-users. To confirm, a cross-tabulation between "car as the most frequently used means" and the "car has carrying capacity" has been conducted (Table 154). The Pearson chi-squared test indicates that there is *no* difference in the distributions

of capacity perception between people who use car most frequently during weekend and people who don't (p-value = 0.263).

			Car has carr	Car has carrying capacity (1=strongly disagree; 5=strongly agree)						
			1	2	3	4	5	Total		
Car as the Most	NO	Count	5	31	96	363	261	756		
Frequently Used Means (weekend)		% within Car as Most Frequently Used Means (weekend)	.7%	4.1%	12.7%	48.0%	34.5%	100.0%		
	YES	Count	1	4	21	115	85	226		
		% within Car as Most Frequently Used Means (weekend)	.4%	1.8%	9.3%	50.9%	37.6%	100.0%		
Total		Count	6	35	117	478	346	982		
		% within Car as Most Frequently Used Means (weekend)	.6%	3.6%	11.9%	48.7%	35.2%	100.0%		

Table 154: Cross-tabulation: "Car as the Most Frequently Used Means" x "Car has

*Carrying Capacity" (Utility Perception)

[Explanatory Variable] Exogenous Environment Factor

The "Cost-related Policy/Regulation" is negatively associated with the car use. As expected, this result reflects some policy concepts in Shanghai, for example, the car "ownership" license control and the accompanying high cost of license plates.

[Explanatory Variable] Demographics

Similar to weekday vehicle use, the ownership of drivers' licenses positively affect the weekend vehicle use, and male is positively associated with the use of bicycle. People without job (or retired) are more likely to take taxi, rented car or shared company car during weekend. Personal and family income are both identified as significant and positively associated with the use of car-related travel means (taxi, rented car, shared company car, and private car).

Similar to the previous two cases, an alternative model with identical specification but no "license variables" is developed. As expected, Table 155 shows lower ρ_o^2 (0.23) than previous ρ_o^2 (0.30) of Table 153. However, the new ρ_o^2 value is within my acceptable range. Basically, the coefficients (signs and magnitudes) and the p-values don't change for most of the variables from the previous model to this alternative model.

	Alternatives (Base Alternative = Walk)							
Explanatory Variables	Public Transportation	Taxi, Rented Car, Shared Company Car	Bicycle	Motorized Two- wheeler, Motorcycle	Car			
ASC	1.07 (0)	-2.15 (0.0003)	-3.16 (0)	-0.71 (0.0798)	-5.85 (0)			
[PART I] Vehicle Purchase and Use Background								
Distance from Home to Subway				0.42 (0.0051)				
[PART II] Perceived Utility								
Perceived Utility of Status Perceived Utility of Speed Perceived Utility of Availability Perceived Utility of Carrying Capacity	0.21 (0.0033)	0.29 (0.019)	0.35 (0.0153) 0.52 (0.0036)		0.45 (0)			
[PART III] Exogenous Environment Factor								
Cost-related Policy/Regulation					-0.37 (0.0008)			
[PART V] Demographics								
Male			0.71 (0.0129)					
No-work or Retired		0.9 (0.0034)						
Personal Income		0.26 (0)			0.63 (0)			
Family Income		0.16 (0.0175)			0.32 (0.0005)			
Goodness-of-fit Statistic								
Number of observations (walk = 67; public transportation = 358; taxi, rented car, shared company car = 183; bicycle = 59; motorized two-wheeler, motorcycle = 89; car = 226)			982					
Final log-likelihood, L (β)			-1349.1					
Log-likelihood for market share model, L (MS)	-1560.2							
Log-likelihood for equally-likely (EL) model, L (0)			-1759.5					
Total Number of Estimated Parameters = ASVs+ ASCs = 13 + 5			18					
$\rho \circ ^2 = 1 - [L (\beta) / L (0)]$	0.23							
Adjusted $\rho o^2 = 1 - \{[L(\beta) - Total # of Estimated Parameters] / L(0)\}$	0.22							
ρc^2 = 1- [L (β) / L (MS)]	0.14							
Adjusted $\rho c^2 = 1 - \{[L(\beta) - Total # of Estimated ASVs] / L(MS)\}$			0.13					
Xo^2 (between the final model and the EL model)			820.8					
Xc^2 (between the final model and the MS model)			422.2					

Table 155: Multinomial Logit Model of Most Frequently Used Travel Means (weekend) (without "license" variables)

In fact, according to Table 156, the personal and family incomes are highly correlated (0.705). Such collinearity could be a concern if both variables appear in a model. There are common two ways to detect this problem – one variable may have the

counterintuitive sign, and/or one or both variables may have high standard errors (suggesting insignificant). However, in this model, the two highly-correlated variables are both significant and with the expected sign. Therefore, I keep both variables in, since the data are sensitive enough to successfully distinguish separate effects of personal and family income.

Symmetric Measures

		Value	Asymp. Std. Error ^a	Approx. T ^b	Approx. Sig.
Interval by Interval	Pearson's R	.694	.007	74.052	.000c
Ordinal by Ordinal	Spearman Correlation	.705	.008	76.344	.000 ^c
N of Valid Cases		5892			

a. Not assuming the null hypothesis.

Table 156: Correlation between Personal and Family Income

[Vehicle Alternative] "Who are the public transportation riders?"

In terms of weekend vehicle use, the perception of its status is the only significant (positive) variable for public transportation.

[Vehicle Alternative] "Who are the taxi, rented car, and shared company car users?"

People using those three types of vehicle realize the utility of carry capacity. In terms of demographic characteristics, they are retired (or without job) and with high personal or family income.

[Vehicle Alternative] "Who are the bicycle riders?"

The weekend bicycle riders are more likely to be male. Besides, the utility of bicycle status and speed are two variables positively affecting their weekend use behavior.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.

[Vehicle Alternative] "Who are the motorized two-wheeler and motorcycle riders?"

The people riding motorized two-wheeler or motorcycle live away from major subway lines and having the motorized two-wheeler or motorcycle drivers' licenses.

[Vehicle Alternative] "Who are the car users?"

Weekend car user is positively affected by the utility of availability and negatively affected by the cost-related policy and regulation. Owning the car drivers' license and high personal/family income are another two significant (and positive) variables toward the weekend car use.

CHAPTER 6: CONCLUSION

The last dissertation chapter recaps the answers to three key questions: How to conduct survey research in China? What is the motorization pathway in China? What is the vehicle purchase (and use) behavior in China? In addition, implications and recommendations are provided and future research directions are discussed.

Q1: How to conduct survey research in China?

Several lessons can be drawn from the pilot and final surveys about how to conduct survey research in China.

Lessons from Pilot Survey

Lesson #1: The concept of "dream life" is vague for most people

In pilot survey, there were a series of questions asking about a "dream life" as a way for respondents to think about how they would want their life to be, including, how they would travel. However, such questions about the future proved the most difficult for the respondents. 11 percent of respondents declined to answer at all; another 54 percent provided either vague or partial answers. Many people commented on this question with "I have never thought about that," and "This does not relate to me, since I don't think I can change my life." The comments suggest that some people (especially people surveyed in the lower-income neighborhood, like the old town Shanghai) may not be ready yet to imagine a future very different from their past and present, raising difficulties for studying hypothetical topics.

Lesson #2: Trust, convenience, and comfort are keys to success

Considering the pilot survey was mostly conducted on street, trust was the number one factor affecting people's willingness to participate. It is not only that people we approached were busy, but they also tended to confuse the survey team with street venders, or possibly scams. To remedy this situation, our team began to show student IDs when approaching people. Besides, we find out that a convenient and comfortable environment will increase people's motivation of participation. A convenient environment means a place where people can quickly and easily complete their questionnaire. A comfortable environment could be a place with air-conditioning in the hot summer time or a location where people feel mentally comfortable.

Lesson #3: Getting to know the place is also important

As a researcher who conducts survey research in a new place for the first time, orientation to the setting is important to develop a basic sense of the people and the area. The implementation of on-street interviewing in the pilot phase helped me finalize the sample design and location selection for the final phase.

Lessons from Final Survey

Lesson #1: A complicated and long survey is challenging

Due to the motorization pathway, vehicle purchase, and vehicle use I want to research, the final survey was long and complex. I attempted to balance time demands on respondents and questionnaire complexity so that people would agree to participate and not lose patience. However, many people refused to participate when

they realized the survey was seven double-sided pages. In terms of individual questions, most people complain about the PART II (utility rating) because it is vague, e.g., the term "symbol of success," and repetitive – requiring respondents to rate six types utility on nine different travel means.

Lesson #2: Anonymity/confidentiality, authorization, and study topic are top three factors affecting people's motivation to participate

According to the survey results of 1,037 respondents, anonymity/confidentiality, authorization, and study topic were the top three considerations in whether people initiated and completed a questionnaire. 55 percent of respondents considered that "my answer will be anonymous and confidential" to be moderately or extremely important. Similarly, 46 percent said that the "authorization letter" and 41 percent said "the survey topic" were moderately or extremely important.

• Implications and/or Recommendations

In the following, recommendations are provided about "how to conduct survey research in China?" in terms of survey type, sampling, questionnaire design, and local implementation.

Survey Type: Single survey type is recommended

Face-to-face and on-line are two survey types used in the final survey – 1,037 people responded to face-to-face interviews on-street, at car dealerships, in their households, or through the author's peer network. A further 78 people were recruited by cell phone text messages to an on-line version of the questionnaire. According to the interview

experiences and the analysis of factors affecting the willingness of participation, face-to-face respondents have different answers than the on-line respondents. The on-line respondents, surveyed without in-person contact but with better privacy and freedom, are more likely to reveal positive attitudes. People involved in a face-to-face interview tend to skip questions, e.g., sensitive or too-personal questions, or show negative-to-middle attitudes. It is recommended that single survey type should be used to ensure people respond to the same questionnaire under similar (if not standard) environment.

Sampling: Use location-based sampling strategically but carefully

Location-based, convenience sampling was used to overcome the inability to collect a random sample. According to the cross-tabulations and Chi-square tests (conducted in Chapter 3), the location-based sampling scheme used in this study was effective at capturing groups owning specific types of vehicles and using specific travel means during weekdays. However, based on the same tests, the location-based sampling might not work perfectly to capture specific groups based on their most frequent used travel mean on weekends. Understanding or estimating the true share of population is essential for the selection of sampling locations. Understanding the relationship between locations and sampling, for example, the relationship between car dealerships and car buyers is also important.

Questionnaire Design: Be short, straightforward, and clear. Avoid vague or sensitive questions

Although there is no specific definition of a long questionnaire, the final survey experiences suggest that my seven-page, double-sided questionnaire was too long for

many respondents. Based on my discussion with professors in the Department of Transportation Engineering of Tongji University, the survey they usually conduct is one-page, single-side containing less than ten questions, and requires less than ten minutes to finish (compared to my survey, which required at least 30 minutes). Moreover, in my survey, there are some vague or sensitive questions such as utility perception or income. Those questions require more effort and more trust from respondents and affect their motivation of participating or completing the survey. I recommend that, if the questionnaire cannot be shortened, the questions should be straightforward and clear, and the overall questionnaire structure should be easy to follow.

Local Implementation: Trust is the top factor

Gaining trust from people is the top factor of the local survey implementation. Without basic trust from people, a face-to-face interview cannot even start. Therefore, the cooperation with local, authorized organizations, e.g., university and government agency, is recommended to increase trust from potential respondents. In addition, finding a convenient and comfortable location, a team speaking local Shanghainese in this case, will all help to facilitate implementation.

Q2: What is the motorization pathway in China?

As defined in Chapter 4, a motorization pathway is the transition which individual people make among different travel means. In this dissertation, three aspects of motorization pathways were analyzed: common pathway patterns, total number of stages (without looping back through the same modes), and the sequence (motorization direction).

In the motorization pathways are diverse, complicated (multi-staged) and mostly without car

In the motorization pathway analysis, based on the location-based sample, the relative frequency of motorization pathways between people at different motorization stages is reviewed. Overall, motorization pathways in my sample of Shanghai residents are diverse – the 992 respondents reported 331 distinct pathways – and complicated – more than 50% of people have pathway involving more than three stages. Among the top 30 patterns, there are only eight patterns (covering 11% of the sample) that include car, which suggests car is not *yet* a widely used mobility option. Concluding from above, a common motorization pathway within my sample is a series of three (or more) transitions in the types of travel modes that a Shanghainese person has used for their daily travel.

Hypothetical motorization direction is challenged

A hypothetical motorization direction from non-motorized to motorized, from low cost to high cost, and from shared to private-owned was proposed. Only about half of respondents come to their current motorization stage by following the hypothetical motorization direction. There are two possible explanations: first, the definition of so-called high-cost and low-cost means may not be as I assumed. That is, walk (hypothesized as low-cost) may be perceived as a higher cost travel means by respondents than bicycle (hypothesized as high cost) due to potentially longer travel times (assuming that people has non-zero value of time) and more effort involved. Second, even if the cost definition of travel means is what I assumed; the direction of transition may not be as hypothesized. In conclusion, motorization pathways in Shanghai are diverse and complex.

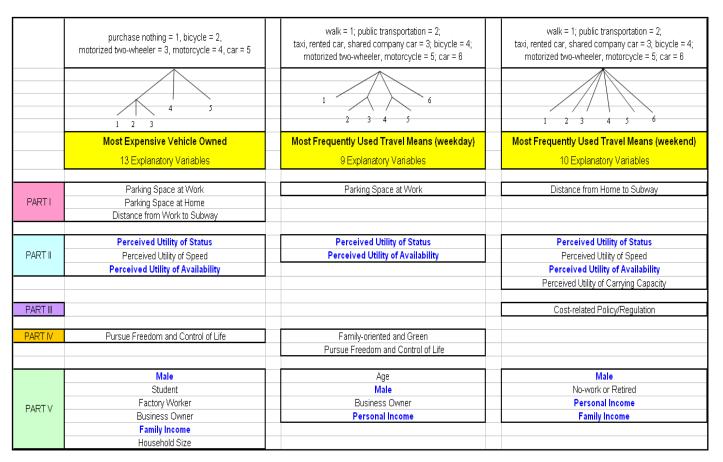
• Implications and/or Recommendations

Examining all patterns provides more insights

People experience motorization pathways with different sequences and number of stages. Therefore, listing out all the patterns (with the corresponding number of cases) provides more insights than simply observing or talking with people in Shanghai. For example, by examining the motorization in the backward direction (which cannot be developed unless we list all patterns), we understand that most people who are currently in the car stage come from a taxi or rented car stage. This result is interesting but not surprising. As a matter of fact, taxi or rent car can be considered a type of car in terms of basic functionality. However, car is a private mode and can be owned. The idea of ownership is a major difference between private car and the taxi or rented car. I assume the "upgrade" from taxi to private car may also involve certain attributes such as vehicle status.

Some policy can be considered based on the insights of motorization pathway analysis. For instance, a better taxi (or rental car) service *might* slow the growth of private car ownership (i.e., keep people stay in the taxi stage and from move to the car stage), since many people in the private car stage of motorization came from the taxi or rented car. Besides, Shanghai government should realize the diversity and complexity of motorization pathways happening in the city and have policies to guide those pathways toward a more sustainable future – innovative transportation, land use, or even energy policies should be considered as options.

Modified method to study the motorization pathway is recommended


Future research could build on this analysis by using a stratified sample based on people's

age, ownership of driver license or living location to create a more robust accounting of motorization pathways. It would also be useful to distinguish motorization stages that occurred prior to the respondent moving to Shanghai if they are immigrants from somewhere else. Finally, it would be good to extend the sample to residents of other regions besides Shanghai because their motorization pathways may be completely different from Shanghai residents due to the huge regional variation in China.

Q3: What is the vehicle purchase and use behavior in China?

Comparison of three models

In Table 157, I compare the results of three vehicle choice models (the versions without the debatable license-holding variables mentioned in Chapter 5) – most expensive vehicle owned, most frequently used travel means (weekday), and most frequently used travel means (weekend).

Table 157: Comparison of Three Models

Different variable specifications and even model structures (MNL and NL) were identified. However, some common variables (highlighted in blue) such as the perceived utility of status and income (personal or family) exist in all three models. By looking at those three models side-by-side, I conclude that they are not quite similar, although I originally expected three almost identical models for the vehicle purchase and use.

Income – revisiting at the individual level

A positive correlation between income and vehicle purchase has been confirmed at the aggregate (national, inter-national) level. In this dissertation, individual and household incomes have been analyzed as explanatory variables in modeling the most expensive vehicle owned and the most frequently used travel means for weekday and weekend.

Vehicle purchase and use behaviors are more complicated when considering the disaggregate level. For example, at national level, the cross-nation comparisons of GDP/capita show an almost linear increasing relationship with aggregate auto ownership. However, more variation are found when researching into disaggregate level – based on the model results, several variables, i.e., gender and utility perception of different travel modes, other than *just* income are significant. Moreover, different type (personal and family) of incomes are associated with different models, and the relationship between income and vehicle purchase/use would be different from the one identified at the national level.

The status of "bicycle" – utility of low/non-motorized travel means is recognized

One interesting finding about the utility perception is that most of the utility perceptions, e.g., status and availability, are identified as significant to low/non-motorized travel means, e.g., bicycle, walk, instead of the highly-motorized travel means, e.g., car. In their questionnaires, some people mentioned the status of riding a bicycle or walking as, "I have enough money and am retired, so I no more need to drive to work or commute everyday." Interestingly, we find out similar case as the "motorization backward" in the pathway analyses. That is, some people's most frequently used travel means change from car to bicycle or walk.

• Implications and/or Recommendations

Income is not the sole driving force and its effect can be further differentiated

According the conclusion of Chapter 5, income is not the sole driving force for vehicle
use or purchase. Variables such as gender, utility perception are also important. Besides,

the income effect can be further differentiated, for example, purchasing car is (so far) considered a "family decision" (positively associated with family income); whereas, the weekday car use seems to be a more "personal choice" (positively associated with personal income.)

Using vehicle choice model and motorization pathway to better forecast the future

Ideally, the results of vehicle choice model and motorization pathway should inform each other, and we did find such case as the "backward motorization vs. utility of low-motorized travel means." I suggest, for better describe current motorization and forecast the future, the pathway analysis and choice model should be conducted and analyzed at the same time. After all, the choice model can only present a "snap shot" of status quo and should be complemented with pathway analysis, which involves deeper understanding of the transition.

Future Research

Combining the results of motorization pathway and vehicle choice model analysis in Shanghai, an important and intriguing message from this dissertation is that the process of motorization is complicated; there are multiple pathways influenced by not only income but also utility perceptions of different modes, lifestyle orientations, and exogenous environment attributes.

Although Shanghai itself can not represent the whole China (actually, no single city or region can represent whole China), the Shanghai study is representative of a city

experiencing rapid economic growth and with various transportation alternatives. Thus, the results of the motorization pathways and choice models of the Shanghai study may be generalizable to certain cities which are expected to experience similar growth and diversity.

Using the Shanghai study to reflect on China, I speculate that motorization in China is an interaction between its internal development and the globalization. The term "half-globalization" was used by Dr. Y. T. Lee (1986, Nobel Laureate) in a speech on November, 2007. That is, when China leverages global resources to achieve its economic growth (and hence the increase of auto ownership), many issues (such as greenhouse gas emissions) are generated but not globally addressed. Because of the rapid change in developing countries, properly addressing global issues such as the environment, economy, and auto markets is necessary but challenging. Nevertheless, a general recommendation for future research direction is that a global perspective is needed, even for people conducting research locally in China. For example, in addition to the inventory check of vehicle ownership, issues about oil price, global warming (to understand how those issues affect the vehicle purchase) should be included in future motorization studies. Thus, the research is expected to provide not only a solution/recommendation to China, but also a "global solution." After all, the contribution of the China research should not only come from the how well it addresses the local issues, but also from how well it address the linkage between China-specific issues with the world.

REFERENCES

• Chapter 1

- [1] Schipper, Lee and Ng, Wei-Shiuen (2004) Rapid Motorization in China: Environmental and Social Challenges, EMBARQ, World Resource Institute, Washington D.C.
- [2] Christopher, Cherry R. (2007) Electric Two-Wheelers in China: Analysis of Environmental, Safety, and Mobility Impacts, Doctoral Dissertation, University of California, Berkeley.
- [3] Doi, Naoko (2005) APERC Database, Asia Pacific Energy Research Centre, The Institute of Energy Economics, Japan.
- [4] National Bureau of Statistics of China (1985 2006) China Statistical Yearbook.
- [5] Shen, Zhongyuan, Kokichi, Ito, and Li Zhidong (2002) Outlook for China's Motorization and Energy Consumption, Institute for Energy Economics Japan (IEEJ), p.3.
- [6] Weinert, Jonathan (2007) The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future, Doctoral Dissertation, University of California, Davis.
- [7] Datamonitor (2004) Automobile Manufacturers in China: Industry Profile.
- [8] PaoHua Economic Research Institute (2005) China Automotive Market Report.
- [9] *The Economist* (2003)
- [10] Farrell, Diana, Gersch, Ulrich A. and Stephenson, Elizabeth (2007) The value of China's emerging middle class, *The McKinsey Quarterly* (2006 special Edition).

- [11] China Automotive Industry Yearbook House (2000) China Automotive Industry Yearbook (中國汽車工業年鑒).
- [12] Gould, Stephen and Wong, Nancy Y. C. (2000) The Intertextual Construction of Emerging Consumer Culture in China as Observed in the Movie Ermo: A Postmodern, Sinicization Reading.
- [13] Chinese national standard (GB/T3730.1-2001) of the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.
- [14] Shanghai Bureau of Statistics (2002, 2003, 2004, 2006) Shanghai Statistical Yearbook
- [15] www.wikipedia.org (Accessed 2005)
- [16] Committee on the Future of Personal Transport Vehicles in China, National Research Council, National Academy of Engineering, Chinese Academy of Engineering (2003) *Personal Cars and China*, National Academy Press, p. 224. (Appendix B).
- [17] Department of Traffic Police, City of Shanghai (2006) Motor Vehicle Database.
- [18] Chi Hung Kwan (2002) How Far is Coastal China behind the Industrialized Countries? An Analysis Based on Purchasing Power Parity, *China In Transition*.
- [19] US CIA (2001), World Factbook.
- [20] World Bank (2002), World Development Report.
- [21] Mercer Management Consulting (2004), Chinese Automotive Market 2010: Facts, Trends and Strategic Challenges for Profitable Growth.
- [22] Wang Xia and Qi Fang (2000) The Coordinated Development of Housing and Transport and The Restructuring of Shanghai's Spatial Layout, *City Planning Review* Vol. 24, No. 3 (published in China).

• Chapter 2

- [23] Shanghai City Comprehensive Transport Planning Institute (2004) Master Transportation Survey
- [24] Cullinan, Sharon and Cullinane, Kevin (2003) Car Dependence in a Public Transport Dominated City: Evidence from Hong Kong, *Transportation Research* Part D8, pp. 129-138.
- [25] Bell, A. Colin, Ge, Keyou and Popkin, Barry M. (2002) The road to obesity or the path to prevention: motorized transportation and obesity in China. *Obes Res.* 2002; 10: p.p. 277–283.
- [26] Shanghai City Comprehensive Transport Planning Institute (2000) Distance-based Mode Share Data
- [27] Ben-Akiva, Moshe and Lerman, Steven R. (1985) Discrete Choice Analysis: Theory and Application to Travel Demand, *MIT Press*.
- [28] Energy Foundation (2005) Car Purchase Survey, Beijing

• Chapter 5

- [29] Mokhtarian, Patricia (2006) Class Handouts of TTP 200 (Transportation Survey Methods).
- [30] Fisher, Walter H. (2001) Status Preference, Wealth, and Dynamics in the Open Economy. *Economics Series*, Institute for Advanced Studies, Vienna, p. 1.
- [31] www.ford.com.cn (Accessed 2007).
- [32] www.lexus.com.cn (Accessed 2007).
- [33] autos.cn.yahoo.com (Accessed 2007).
- [34] cn.yahoo.com (Accessed 2007).

[35] Small, Kenneth A. and Hsiao, Cheng (1985) Multinomial logit specification tests, International Economic Review 26(3), 619-627.

APPENDICES

• Pilot Survey Questionnaire	
Survey Date:/	Survey Time:AM/PM
Survey Location:	Surveyor:
<u>PART 1</u> : Abo	out Current
1. Do you have any vehicle now? Please d	lescribe the vehicle you have purchased ³⁵
most recently. If you have one, what is the	nat? If NOT, to Q7
□ Bicycle	
☐ Auxiliary Power Vehicle ³⁶ [APV] (_	Powered by?)
\square Motorcycle ³⁷ (cc.?)	
□ Car (Year; Make;	Model)
☐ Other type of vehicle (pleas	e specify)
2. If not you, who owns (registered under) th	nis vehicle? ()
3. If not you, who uses this vehicle most often	en? ()
4. "When and where did you buy it?"	
35 Evaluding: Cotting valvials as a gift from others	

Excluding: Getting vehicle as a gift from others.

2- or 3-wheeler powered by electricity or LPG. The "APV" is called as "motorized two-wheeler" in my dissertation.

37 2- or 3-wheeler powered by gasoline

5.	"Wh	y did you purchase this vehicle?" (Please designate 1 st , 2 nd and 3 rd reasons in
	EAC	H attribute category)
	[Pe	rsonal Attribute]
		This vehicle makes me look "better"! And I think it will be a good tool for my
		career (finding job, get promotion) and social life.
		This is a cool stuff. I feel satisfied owning this vehicle.
		Many of my friends, colleagues have this vehicle.
		I have used this type of vehicle before and was satisfied.
		Freedom. For example, going out of the city to enjoy life, visiting family home.
		Basically, I can go anywhere anytime I want!
		I enjoy the time traveling with my vehicle
		I am saving money and I don't want to spend too much on transportation.
		Other (please specify)
	[Ve	hicle Attribute]
		This vehicle helps me to carry things. (e.g., goods, kids, friends)
		This vehicle is what I can afford right now. (purchase price?
		registration fee?license cost? operating
		cost/month?)
		This vehicle saves me time.
		This vehicle gives me safety
		This vehicle gives me comfort
		This vehicle gives me privacy
		This vehicle is green and clean

Ц	This vehicle is used for business purposes
	Other (please specify)
[Ex	ogenous Environment Attribute]
	Public transportation is not available where I work or live.
	Public transportation is not convenient (too slow, too many transfers) for my
	week day life (e.g., school, work)
	Public transportation is not comfortable (too crowded, too bumpy) for my week
	day life (e.g., school, work)
	Public transportation is not convenient (too slow, too many transfers) for my
	weekend life (e.g., shopping, going to movie, going outside Shanghai)
	Public transportation is not comfortable (too crowded, too bumpy) for my
	weekend life (e.g., shopping, going to movie, going outside Shanghai)
	There is no parking space near my house.
	Parking cost is too high for me.
	Gas cost is too high for me.
	Traffic congestion is too bad in Shanghai.
	Other (please specify)
Are y	you happy with the vehicle(s) you have now?
	YES
	NO
Pleas	se describe your current life?
	Personal Income (RMB/month)

6.

7.

	Household Income (RMB/month)
	Job
	Type of house
	Living location (address)
	Leisure: What you usually do when you have free time?
	PART 2: About Past
Did	you have any vehicle? Please describe last (one) vehicle you have purchased. If
you	have one, what is that? If NOT, to Q11.
	Bicycle
	Auxiliary Power Vehicle (Powered by?)
	Motorcycle (cc.?)
	Car (Year; Make; Model)
	Other type of vehicle (please specify)
Plea	ase describe your past life during that period?
	Personal Income (RMB/month)
	Household Income (RMB/month)
	Job
	Living location
	Leisure: What you usually do when you have free time?
	Did you

10. To your best memor	ory, please tell us all ve	hicles you have purchased	I in sequence by	
assigning numbers	s under the following l	boxes. (e.g., "1" = most p	past; "6" = most	
recent)				
No vehicle	Bicycle	Private Car	No vehicle	
But I take taxi, or			But I take public	
rent vehicles			transportation	
()	()	()	()	
Motorcycle	Auxiliary Power Vehicle	No vehicle	No vehicle	
		But I walk	But I use	
			company vehicle	
()	()	()	()	
	<u>PART 3:</u> Ab	out Future		
11. Do you have a <i>dre</i>	am life? How is would i	it be different from you cur	rent life?	
	Personal Income (RMF	3/month)		
	Household Income (RN	MB/month)		
	Job			
	Type of house			

Living location

	Leisure: What you usually do when you have	free time?
	Type of Vehicle	
	PART 4: About Yourself	
12. Wha	at is your age? ()	
13. Wha	at is your gender ?	
	Male	
	Female	
14. Wha	at is your education level ?	
	None	
	Elementary school	
	High school	
	College	
	Graduate School	
	Other (please specify)	
15. Are	you born in Shanghai?	
	YES	
	NO (from province)	
16. Do	you have experience living in other country? If YES,	which country?
Hov	v long?	

17. Please describe your typical "week day" trip :			
	Fro	om to	
	Rai	ng: (km)	
	Tri	p Purpose:	
18.	How	v do you get there? (check one you use most "frequently")	
		Walk	
		Public transportation (bus, Shanghai Metro, light rail, etc.)	
		Taxi or rented vehicle	
		I use company car or government vehicle	
		I use my own (or family) car	
		I use my own (or family) motorcycle	
		I use my own (or family) auxiliary power vehicle	
		I use my own (or family) bicycle	
		Others (please specify)	
19.	Plea	se describe your typical "weekend" trip.	
	Fro	om to	
	Rai	ng: (km)	
	Tri	p Purpose:	

20. How do you get there? (check one you use most "frequently")

Walk
Public transportation (bus, Shanghai Metro, light rail, etc.)
Taxi or rented vehicle
I use company car or government vehicle
I use my own (or family) car
I use my own (or family) motorcycle
I use my own (or family) auxiliary power vehicle
I use my own (or family) bicycle
Others (please specify)

END, thank you for taking the survey!!

• Final Survey Questionnaire

Dear Shanghai Resident,

Did you have experience in purchasing any vehicle? The Institute of Transportation Studies at the University of California, Davis (USA) working with Tongji University is conducting a survey on vehicle purchase behavior. Basically, we want to understand what factors affect your purchase decision on different type of vehicles.

The term "vehicle purchase" in this survey is specifically defined as: *vehicle purchased*, *owned/registered*, *and used by an individual*. In this study, there are four categories of "vehicle" – **private car, motorcycle, auxiliary power vehicle** (e.g., electric bicycle) and **bicycle** – together with a "**purchase nothing**" option, including: walking, taking public transportation or taxi, renting cars, and sharing company-owned vehicle.

You are eligible to participate this survey as long as you are **over 18** and have your **daily activities in Shanghai** metropolitan area. You are randomly chosen and there are two ways for you to participate:

I. Fill out the questionnaire on site \$20 RMB or gift with equal value	
	(guaranteed)
II. Internet	\$2000 RMB (draw) +
(<u>www.china.v33.org</u>)	Special prize for people refer 5+ friends.

If you choose to take the survey on-site, you can get \$20 RMB right after the survey. You can also log on: www.china.v33.org - once we receive your completed survey, you will be automatically enrolled a draw for cash prize of \$2000 RMB. We also draw people who refer 5+ friends for a special prize!

We will have the drawing every two weeks, your chances of wining can be high! To ensure your inclusion in the drawing, please complete the survey by **September 30th**, **2006**.

Six parts are included in this survey: 1) your vehicle use/purchase background, 2) your attitude toward various means of travel, 3) your opinions about vehicle purchase, 4) your lifestyle, 5) information about yourself, and 6) your opinions about survey research. This survey should take **less than 20 minutes**.

All information you provide will be kept in secure database to ensure your privacy and confidentiality. You will not be identified in any reports or data bases. This research will be used **only for academic purpose**.

Thank you in advance for participating in this valuable study, your answers are very important for our research. You opinion will also affect future policy-making in Shanghai. Results from the survey will be put on the survey website (www.china.v33.org) after May 2007.

If you have any question, feel free to contact me (mni@ucdavis.edu); you can also contact Professor Ma Jun (majun@gmx.net) or Professor Chen XiaoHong (chenxh@mail.tongji.edu.cn) of Tongji University.

Sincerely,

JASON NI [倪孟正] Ph.D. candidate, University of California, Davis

Su	rvey I	Pate:/ Survey Time:AM/PM
Su	rvey I	ocation: Surveyor: I.D.:
		PART 1: Vehicle Use/Purchase Background
		heck ONE answer for each question. (Unless it specifies "check all that
ap	ply")	
1.		
a.	Plea	se give us the list of ALL VEHICLES you currently own.
	(che	ck all that apply)
		I DON'T OWN ANY VEHICLE (if check this box, Go to Q2.)
		Bicycle
		Auxiliary Power Vehicle (electricity/LPG) Motorcycle
		Car (when you bought it? Make; New/Used
		Domestic/Imported)
		Other (please specify)
b.	Amo	ng all vehicle(s) you own, which one is the MOST EXPENSIVE? (check one)
		Bicycle
		Auxiliary Power Vehicle
		Motorcycle
		Car
		Other (please specify)
		FOLLOWING QUESTIONS (c. ~ h.) ARE ABOUT
		THE "MOST EXPENSIVE" VEHICLE CHECKED IN b.

c.	What is the purchase price of that vehicle?
	RMB (vehicle)
	RMB (license fee)
d.	Do you get any "subsidy" on the purchase/use of your vehicle?
	(check all that apply)
	☐ No, I don't get any subsidy
	☐ Purchase
	☐ Maintenance
	☐ Fuel
	☐ Parking
	☐ Government Fee (e.g., toll)
	Other (please specify)
e.	How often do you use it?
	days in a week.
f.	For what purpose do you purchase it? (check all that apply)
	☐ School
	☐ Work
	☐ Entertainment, Recreation (e.g., movie, travel)
	☐ Shopping
	Personal Business (e.g., see doctor, visit family members)
	☐ Taking others (family/friends) where they need to go
	Other (please specify)
g.	Do you own any parking space AT WORK?
	☐ YES
	☐ NO (Normally it takes how long to find parking?hr;min)
h.	Do you own any parking space AT HOME?
	☐ YES
	☐ NO (Normally it takes how long to find parking?hr;min)
	IF YOU OWN "PERSONAL CAR", PLEASE ANSWER ($i \sim l$)
i.	How many personal car(s) do you have?
j.	How far did you travel "yesterday"?
	Total km

k.	Your monthly operating cost: (RMB/month)		
	Fuel:		
	Maintenance and car fix:		
	Parking Fee (at home):		
	Parking Fee (not at home, e.g., office, shopping):		
	Road Fee (e.g., toll, road maintenance fee):		
	Insurance:		
	Other (please specify)		
1.	Your total mileage: (10000 km)		
	km/year; km/month		
2	W. C. : WODYNG DY AGE . 1. (()		
2.	How far is your WORKING PLACE to the "closest subway line"?		
	Within 500 meters		
	More than 1001 meters		
	N/A (I don't work, I don't know, etc)		
3.	How far is your HOME to the "closest subway line"?		
	☐ Within 500 meters		
	\Box 501 ~ 1000 meters		
	☐ More than 1001 meters		
	N/A (I don't know, etc)		
4			
4.	Which type of "transportation means" below do you use mostly during week days? (check one)		
	☐ Walk		
	☐ Public Transportation		
	Taxi		
	Rented car		
	Shared company car		
	Bicycle		
	☐ Auxiliary Power Vehicle		
	Motorcycle		
	Car		

		Other (please specify)
5.	What	is your purpose for most of your trips on week days ? (please skip if you
	seldo	m have trip during week days) (check one)
		School
		Work
		Entertainment, Recreation (e.g., movie, travel)
		Shopping
		Personal Business (e.g., see doctor, visit family members)
		Taking others (family/friends) where they need to go
		Other (please specify)
6.	Whic	h type of "transportation means" below do you use mostly during weekend?
	(chec	k one)
		Walk
		Public Transportation
		Taxi
	_	Rented car
		Shared company car
		Bicycle
		Auxiliary Power Vehicle
		Motorcycle
		Car
		Other (please specify)
7.		is your purpose for <i>most of your trips</i> on weekend? (please skip if you seldom
	have	trip during week days)
		School
		Work
		Entertainment, Recreation (e.g., movie, travel)
		Shopping
		Personal Business (e.g., see doctor, visit family members)
		Taking others (family/friends) where they need to go
		Other (please specify)

8. Please sort the sequence of the travel means you have used from the very past (in

you never use that travel mean)

Ex: [1] Bicycle, [2] Motorcycle, [3] Car = Bicycle → Motorcycle → Car

Bicycle
Walk
Personal Car
Public Transportation
Auxiliary Power Vehicle, Motorcycle
Taxi, Rented car
Shared Company's Car

your memory) till now. Please fill in the numbers inside the boxes. (Skip the box if

PART 2: What do you think about various means of travel?

Please indicate *how well* each of the *following characteristics* describes various means of travel by checking the boxes. (From Strongly Disagree to Strongly Agree). Please do your best to respond to all nine means of travel, even if you are less familiar with some of them than others

I think the following travel mean is – a "SYMBOL OF SUCCESS"

	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
Walk					
Bicycle					
Auxiliary Power Vehicle					
Motorcycle					

Taxi			
Rented Car			
Public Transportation			
Company Car			
Private Car			

I think the following travel mean is - "FAST"

1 think the following travel mean is - 17451							
	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree		
Walk							
Bicycle							
Auxiliary Power Vehicle							
Motorcycle							
Taxi							
Rented Car							
Public Transportation							
Company Car							
Private Car							

I think the following travel mean is – "AVAIABLE WHEN NEEDED"

	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
Walk					
Bicycle					
Auxiliary Power Vehicle					
Motorcycle					
Taxi					
Rented Car					
Public Transportation					
Company Car					
Private Car					

I think the following travel mean has – "MORE CARRYING CAPACITY"

T think the journals travel mean has		MORE CHARTITY CHARTETT			
	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
Walk					
Bicycle					
Auxiliary Power Vehicle					
Motorcycle					
Taxi					

Rented Car			
Public Transportation			
Company Car			
Private Car			

I think the following travel mean is – "PRICY"

Tunn the following travel mean is - TMC1						
	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree	
Walk						
Bicycle						
Auxiliary Power Vehicle						
Motorcycle						
Taxi						
Rented Car						
Public Transportation						
Company Car						
Private Car						

I think the following travel mean is – "COMFORTABLE"

Strongly	Disagree	Neutral	Agree	Strongly
Disagree	Disagree	reutrai	Agree	Agree

Walk			
Bicycle			
Auxiliary Power Vehicle			
Motorcycle			
Taxi			
Rented Car			
Public Transportation			
Company Car			
Private Car			

PART 3: Your Opinion about Vehicle Purchase

For each of the following statements, please check the response that best expresses your opinion.

		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
1.	The F-1 game and promotion in Shanghai affect my vehicle purchase decision.					
2	I consider buying a vehicle for infrequent need. (ex: visit rural family home, the travel once a year or airport pickup)					

3.	The subsidy is important for my vehicle purchase.			
4.	The loan is important for my vehicle purchase.			
5.	The government fees (e.g., license fee) affect my vehicle purchase decision			
6.	The new transportation law is what I need to consider before purchase vehicle.			
7.	Buying a (domestic-made) car shows a direct support to China's auto industry.			
8.	Owning a car is a pre-requisite for marriage.			
9.	The fuel price is what I care for my vehicle purchase.			
10.	Buying a house should be prior to vehicle purchase.			
11.	Transportation environment in Shanghai is dangerous for "pedestrians".			
12.	Transportation environment in Shanghai is dangerous for "drivers".			
13.	Saving is a virtue, and we should always not spend too much.			
14.	A vehicle which makes me look "better" will also bring me better career and social life.			
15.	Vehicle is just a business tool.			
16.	Vehicle (especially car) can depreciate very quickly.			

17.	In peak hours or rainy day, I wish I have personal vehicle.			
18.	Policy restrictions (e.g., ban of motorcycle entering CBD, ban of van using expressway) affect my vehicle purchase decision,			

PART 4: Your lifestyle as it related to vehicle purchase

In the following, there are some questions regarding your lifestyle as it related to vehicle purchase behavior. Please answer to your best.

		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
1.	For me, a lot of the fun of having something nice is showing it off.					
2	The vehicle that I own needs to be well-known. (brand, model, etc.)					
3.	I enjoy catching everybody's eyes.					
4.	When many of my friends/colleagues own a certain type of vehicle, I will consider purchasing one of it.					
5.	I pay attention on fashion.					
6.	In the past (or now), I am crazy about some idol.					
7.	Life is so short; we should enjoy life as soon as we can.					
8.	I think about getting a loan for my vehicle purchase.					
9.	Saving money is hard for me.					

10.	Freedom and the control of life is					
	what I pursue.					
11.	"I am the king in my own territory" is a good concept.					
12.	I don't like to share things with					
	others.					
13.	I am aware of the information					
	about new fuel or fuel efficient					
	vehicles.					
14.	For environmental protection					
	sake, I am willing to use	П	П	П		
	walk/bike to take place of the					
	motor vehicle use.					
15.	Eventually, everybody will pay					
	the price for the pollution on					
	earth.					
16.	Family is the most important in	_				
	my daily life.					
17.	Going back home is such a joy		_			
	after working a whole day.					
18.	Traveling with family is a happy	_	_	_	_	_
	thing,					

PART 5: About Yourself

1.	What is your age?
2.	Do you have driver's/rider's license?
	☐ No
	Yes, Motorcycle only
	Yes, Car only
	Yes, both motorcycle and car

3.	Wha	at is your gender?
		Male
		Female
4.	Wha	at is your education level?
		None
		Elementary school
		Junior High school
		Senior High school
		Some College (including community college)
		College graduate
		Graduate school
		Other (please specify)
5.	Wha	at is your occupation?
		None
		Student
		Teacher, orProfessor
		Factory Worker
		Office Worker (state-owned enterprise, or private-owned
		company, orforeign company]
		Business Owner
		Government
		Doctor/Medical care personals
		Show/Entertainment business
		Transportation/Delivery/Driver
		Other (please specify)
6.	How	w much is your personal income range (RMB per month, AFTER TAX)?
		Below 500
		501~1000
		$1001 \sim 2000$
		$2001 \sim 3000$
		$3001 \sim 4000$
		$4001 \sim 5000$
		$5000 \sim 10000$

Above 100	01						
7. How much is your family income range (RMB per month, AFTER TAX)? Below 500 501~1000 1001~2000 2001~3000 3001~4000 4001~5000 5001~10000 10001~20000 Above 20001							
8. How many mem	bers are in your house	hold? (live together, i	ncluding you)				
9. Which district in	Shanghai do you curr	rently live in?					
□ Huangpu	□ Luwan	□ Xuhui	□ Changning				
□ Jing'an	□ Putuo	□ Zhabei	□ Hongkou				
□ Yangpu	□ Baoshan	□ Jiading	□ Qingpu				
□ Songjiang	□ Minhang	□ Jinshan	□ Pudong				
□ Nanhui	□ Fengxian	□ Chonming					
10. Are you a registered Shanghai resident? ☐ YES ☐ NO							
11. How long do you live in Shanghai? Years; Months							
12. Have you ever		9 for how 1	long?				
☐ YES,	which country	IOF NOW	ion <i>g !</i>				

PART 6: You opinion about our survey

This is the last part; we would like to thank you for your patience. However, we certainly want to understand your opinion toward participating survey research. Your comment will be valuable for us as well as for future researchers conducting survey in China.

	How important to you is each of the following affecting your motivation of taking a survey?	Not at all important	Slightly Important	Neutral	Moderately Important	Extremely Important
1.	How much time it will take					
2.	The topic (e.g., commercial vs. academic)					
3.	Authorization letter					
4.	My answer will be anonymous or kept confidential.					
5.	Guaranteed reward (non-cash)					
6.	Guaranteed reward (cash)					
7.	Drawing reward (non-cash)					
8.	Drawing reward (cash)					
9.	My friend refers me this survey.					

10.	Other, please specify							
11.	11. How do you know about our survey? (please check all that apply) On-street Dealership Neighborhood Committee/Housing Property Management Cell phone message Email Colleagues/Friends/Classmates/Family members Other, please specify							
	END, thank	you for	taking	the su	rvey!!			
SPI	ECIAL PRIZE!!							
>	Please refer at least one pers	on you knov	w to particip	ate this in	nteresting sur	vey! If you		
	refer 5 or more people (inclu	ading 5, by	providing th	eir cell p	hone number	OR Email		
	address), you will automatica	ally join a di	rawing for o	ur special	prize!			
	☐ Yes, I will like to refer my friends:							
	Person 1:							
	Person 2:							
	Person 3:							
	Person 4:							
	Person 5:							
	(Please add your friends' ce	ll phone nu	mbers in the	followin	ng blank, if y	ou want to		

refer more than 5 people)

No, thanks

• Distribution of Motorization Pathway Patterns

Motorization Pathway (331 patterns, sorted by counts)	Counts	Percentage of 992 cases (The shaded cells cover more than 50% sample)	Follow Hypothetical Motorization Direction?	Number of Motorization Stages
WBPT	64	6.45%	Yes	4
WPT	33	3.33%	Yes	3
WBPTC	32	3.23%	Yes	5
WBP	30	3.02%	Yes	3
В	25	2.52%	N/A	1
WB	25	2.52%	Yes	2
ВМ	22	2.22%	Yes	2
WBM	20	2.02%	Yes	3
WBPM	18	1.81%	Yes	4
WBPTM	19	1.92%	No	5
BPT	17	1.71%	Yes	3
WP	17	1.71%	Yes	2
BC	15	1.51%	Yes	2
WBPMTSC*	15	1.51%	Yes	7
WBPC	12	1.21%	Yes	4
WBPMT	12	1.21%	Yes	5
WBPTS	12	1.21%	Yes	5
WPBT	11	1.11%	No	4
WPTC	11	1.11%	Yes	4
ВМС	10	1.01%	Yes	3
BWPT	10	1.01%	No	4
WBPMTC	10	1.01%	Yes	6
BWP	9	0.91%	No	3
WBMPT	8	0.81%	No	5

^{*} This is exactly the hypothetical motorization pathway pattern.

WPTS	8	0.81%	Yes	4
W	7	0.71%	N/A	1
WBMC	7	0.71%	Yes	4
WBMPTS	7	0.71%	No	6
BP	6	0.60%	Yes	2
WBMP	6	0.60%	No	4
WBPMC	6	0.60%	Yes	5
WBPTMSC	6	0.60%	No	7
WM	6	0.60%	Yes	2
WPB	6	0.60%	No	3
WPBM	6	0.60%	No	4
ВСМ	5	0.50%	No	3
BPW	5	0.50%	No	3
BWPTS	5	0.50%	No	5
P	5	0.50%	N/A	1
PWT	5	0.50%	No	3
WBMPTSC	5	0.50%	No	7
WBPTMC	5	0.50%	No	6
WPBTS	5	0.50%	No	5
WTC	5	0.50%	Yes	3
BPC	4	0.40%	Yes	3
втс	4	0.40%	Yes	3
BW	4	0.40%	No	2
BWPM	4	0.40%	No	4
СТ	4	0.40%	No	2
M	4	0.40%	N/A	1
MB	4	0.40%	No	2
PTC	4	0.40%	Yes	3
PTW	4	0.40%	No	3
WBC	4	0.40%	Yes	3
WBMTC	4	0.40%	Yes	5
WBPMTS	4	0.40%	Yes	6
WPBMT	4	0.40%	No	5
WPC	4	0.40%	Yes	3

WPS	4	0.40%	Yes	3
WPTB	4	0.40%	No	4
BMPC	3	0.30%	No	4
ВМРТ	3	0.30%	No	4
BMS	3	0.30%	Yes	3
ВМТ	3	0.30%	Yes	3
BPM	3	0.30%	Yes	3
ВРТС	3	0.30%	Yes	4
BPTS	3	0.30%	Yes	4
BT	3	0.30%	Yes	2
С	3	0.30%	N/A	1
MP	3	0.30%	No	2
MW	3	0.30%	No	2
WBMPTC	3	0.30%	No	6
WBMT	3	0.30%	Yes	4
WBMTPS	3	0.30%	No	6
WBPMSTC	3	0.30%	No	7
WBPMTCS	3	0.30%	No	7
WBPST	3	0.30%	No	5
WBPTMS	3	0.30%	No	6
WPBMTS	3	0.30%	No	6
WT	3	0.30%	Yes	2
BM(CS)	2	0.20%	No	3
ВМР	2	0.20%	No	3
ВРМС	2	0.20%	Yes	4
ВРМТ	2	0.20%	Yes	4
BPMTSC	2	0.20%	Yes	6
BPTW	2	0.20%	No	4
BPWT	2	0.20%	No	4
BSC	2	0.20%	Yes	3
BST	2	0.20%	No	3
BTSC	2	0.20%	Yes	4
BWC	2	0.20%	No	3
CMW	2	0.20%	No	3

CTW	2	0.20%	No	3
CWT	2	0.20%	No	3
MBW	2	0.20%	No	3
МТВ	2	0.20%	No	3
PB	2	0.20%	No	2
PBT	2	0.20%	No	3
PBWT	2	0.20%	No	4
PMT	2	0.20%	Yes	3
РТВ	2	0.20%	No	3
WB(PM)T(CS)	2	0.20%	No	5
WBMTP	2	0.20%	No	5
WBMTPCS	2	0.20%	No	7
WBP(MT)	2	0.20%	No	4
WBPCT	2	0.20%	No	5
WBPS	2	0.20%	Yes	4
WBPTSC	2	0.20%	Yes	6
WBSC	2	0.20%	Yes	4
WBT	2	0.20%	Yes	3
WBTC	2	0.20%	Yes	4
WBTPC	2	0.20%	No	5
WBTSMPC	2	0.20%	No	7
WC	2	0.20%	Yes	2
WMC	2	0.20%	Yes	3
WMT	2	0.20%	Yes	3
WPBMC	2	0.20%	No	5
WPBMSTC	2	0.20%	No	7
WPBS	2	0.20%	No	4
WPBTCSM	2	0.20%	No	7
WPM	2	0.20%	Yes	3
WPMT	2	0.20%	Yes	4
WPST	2	0.20%	No	4
WPTM	2	0.20%	No	4
(BC)TP	1	0.10%	No	3
(BM)T	1	0.10%	No	2

(DUI) (DIA) T	1	0.100/	N	2
(BW)(PM)T	1	0.10%	No	3
(BW)(PMT)(CS)	1	0.10%	No	3
(BW)C(PT)	1	0.10%	No	3
(BW)MSC	1	0.10%	No	4
(BW)PCT	1	0.10%	No	4
(BW)PTS	1	0.10%	No	4
(BWCP)	1	0.10%	No	1
(BWPTS)	1	0.10%	No	1
(WM)BPT	1	0.10%	No	4
(WM)BPTC	1	0.10%	No	5
(WP)BT	1	0.10%	No	3
(WP)BTCMS	1	0.10%	No	6
(WP)T	1	0.10%	No	2
B(PT)C	1	0.10%	No	3
B(WC)(PM)(TS)	1	0.10%	No	4
ВСР	1	0.10%	No	3
ВСРТ	1	0.10%	No	4
BCW	1	0.10%	No	3
BMCS	1	0.10%	No	4
BMCTPW	1	0.10%	No	6
BMPTS	1	0.10%	No	5
BMPW	1	0.10%	No	4
BMSC	1	0.10%	Yes	4
BMST	1	0.10%	No	4
ВМТС	1	0.10%	Yes	4
ВМТРС	1	0.10%	No	5
BMTS	1	0.10%	Yes	4
BMWPT	1	0.10%	No	5
BMWS	1	0.10%	No	4
BMWT	1	0.10%	No	4
BP(CT)	1	0.10%	No	3
BPMTS	1	0.10%	Yes	5
BPMW	1	0.10%	No	4
BPMWTSC	1	0.10%	No	7

BPTCS	1	0.10%	No	5
BPTMS	1	0.10%	No	5
BPTSC	1	0.10%	Yes	5
BPWMTCS	1	0.10%	No	7
BSW	1	0.10%	No	3
BTM	1	0.10%	No	3
ВТМС	1	0.10%	No	4
BTP	1	0.10%	No	3
ВТРС	1	0.10%	No	4
BTS	1	0.10%	Yes	3
BTSW	1	0.10%	No	4
BWCPMTS	1	0.10%	No	7
BWM	1	0.10%	No	3
BWMPCT	1	0.10%	No	6
BWMPT	1	0.10%	No	5
BWMPTS	1	0.10%	No	6
BWMTS	1	0.10%	No	5
BWPC	1	0.10%	No	4
BWPT(CMS)	1	0.10%	No	5
BWPTC	1	0.10%	No	5
BWPTSM	1	0.10%	No	6
BWT	1	0.10%	No	3
BWTC	1	0.10%	No	4
BWTSP	1	0.10%	No	5
CBW	1	0.10%	No	3
CM	1	0.10%	No	2
CMPTW	1	0.10%	No	5
CMTW	1	0.10%	No	4
CPBW	1	0.10%	No	4
CPBWTMS	1	0.10%	No	7
CPMW	1	0.10%	No	4
CPSTMBW	1	0.10%	No	7
СРТ	1	0.10%	No	3
CPWTB	1	0.10%	No	5

	ı	T		
CSW	1	0.10%	No	3
CTPWB	1	0.10%	No	5
CTPWBMS	1	0.10%	No	7
CTSP	1	0.10%	No	4
CTSPMBW	1	0.10%	No	7
CTWP	1	0.10%	No	4
CWBT	1	0.10%	No	4
CWPT	1	0.10%	No	4
CWPTSMB	1	0.10%	No	7
MBPW	1	0.10%	No	4
MBWP	1	0.10%	No	4
MC	1	0.10%	Yes	2
MPBTWS	1	0.10%	No	6
MPBW	1	0.10%	No	4
MPTW	1	0.10%	No	4
MS	1	0.10%	Yes	2
MSW	1	0.10%	No	3
MT	1	0.10%	Yes	2
MTP	1	0.10%	No	3
MTSPW	1	0.10%	No	5
MTW	1	0.10%	No	3
MTW(CS)B	1	0.10%	No	5
MWBPSTC	1	0.10%	No	7
MWP	1	0.10%	No	3
MWPBT	1	0.10%	No	5
MWPCTBS	1	0.10%	No	7
MWTPSB	1	0.10%	No	6
PBC	1	0.10%	No	3
PBCTWS	1	0.10%	No	6
PBM	1	0.10%	No	3
РВМТС	1	0.10%	No	5
PBS	1	0.10%	No	3
PBWCMST	1	0.10%	No	7
PBWM	1	0.10%	No	4

PBWTSM	1	0.10%	No	6
PC	1	0.10%	Yes	2
PCWBMST	1	0.10%	No	7
PCWTSCM	1	0.10%	No	7
PMBW	1	0.10%	No	4
PMWT	1	0.10%	No	4
PSC	1	0.10%	Yes	3
PST	1	0.10%	No	3
PT	1	0.10%	Yes	2
PTBW	1	0.10%	No	4
PTMSW	1	0.10%	No	5
PTS	1	0.10%	Yes	3
PTSC	1	0.10%	Yes	4
PTWMSCB	1	0.10%	No	7
PWB	1	0.10%	No	3
PWTSC	1	0.10%	No	5
PWTSCB	1	0.10%	No	6
SCPTW	1	0.10%	No	5
STCW	1	0.10%	No	4
STPW	1	0.10%	No	4
SW	1	0.10%	No	2
ТВР	1	0.10%	No	3
TC	1	0.10%	Yes	2
TCBW	1	0.10%	No	4
TMBWCP	1	0.10%	No	6
ТРВ	1	0.10%	No	3
TPC	1	0.10%	No	3
TPS	1	0.10%	No	3
TSW	1	0.10%	No	3
TWC	1	0.10%	No	3
W(BP)(MT)CS	1	0.10%	No	5
W(BP)C	1	0.10%	No	3
W(BPS)(MT)C	1	0.10%	No	4
WB(PM)	1	0.10%	No	3

WB(PMT)(CS)	1	0.10%	No	4
WB(PT)S	1	0.10%	No	4
WB(PT)SC	1	0.10%	No	5
WBCMSPT	1	0.10%	No	7
WBCPT	1	0.10%	No	5
WBCPTSM	1	0.10%	No	7
WBCSPMT	1	0.10%	No	7
WBCTSMP	1	0.10%	No	7
WBM(PT)C	1	0.10%	No	5
WBM(PT)S	1	0.10%	No	5
WBMPC	1	0.10%	No	5
WBMPS	1	0.10%	No	5
WBMPSC	1	0.10%	No	6
WBMPST	1	0.10%	No	6
WBMPTCS	1	0.10%	No	7
WBMSC	1	0.10%	Yes	5
WBMSPT	1	0.10%	No	6
WBMTPC	1	0.10%	No	6
WBMTSC	1	0.10%	Yes	6
WBMTSPC	1	0.10%	No	7
WBPCTM	1	0.10%	No	6
WBPCTMS	1	0.10%	No	7
WBPCTSM	1	0.10%	No	7
WBPMCT	1	0.10%	No	6
WBPSC	1	0.10%	Yes	5
WBPSTC	1	0.10%	No	6
WBPSTMC	1	0.10%	No	7
WBPT(CMS)	1	0.10%	No	5
WBPTCS	1	0.10%	No	6
WBPTMCS	1	0.10%	No	7
WBPTSCM	1	0.10%	No	7
WBST	1	0.10%	No	4
WBTCPMS	1	0.10%	No	7
WBTMPS	1	0.10%	No	6

WBTMPSC	1	0.10%	No	7
WBTP	1	0.10%	No	4
WBTS	1	0.10%	Yes	4
WBTSP	1	0.10%	No	5
WBTSPMC	1	0.10%	No	7
WCBPM	1	0.10%	No	5
WCBPTSM	1	0.10%	No	7
WCPBTMS	1	0.10%	No	7
WCPBTS	1	0.10%	No	6
WCPTS	1	0.10%	No	5
WMBP	1	0.10%	No	4
WMBPT	1	0.10%	No	5
WMP	1	0.10%	No	3
WMPB	1	0.10%	No	4
WMPBTSC	1	0.10%	No	7
WMTC	1	0.10%	Yes	4
WPBC	1	0.10%	No	4
WPBMTC	1	0.10%	No	6
WPBMTCS	1	0.10%	No	7
WPBSC	1	0.10%	No	5
WPBTC	1	0.10%	No	5
WPBTCS	1	0.10%	No	6
WPBTMSC	1	0.10%	No	7
WPMTSBC	1	0.10%	No	7
WPTBC	1	0.10%	No	5
WPTBM	1	0.10%	No	5
WPTBMSC	1	0.10%	No	7
WPTSBMC	1	0.10%	No	7
WPTSC	1	0.10%	Yes	5
WPTSMB	1	0.10%	No	6
WS	1	0.10%	Yes	2
WSM	1	0.10%	No	3
WTBC	1	0.10%	No	4
WTBMPC	1	0.10%	No	6

	1			
WTPSCMB	1	0.10%	No	7