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Abstract

Worldwide interest in the deployment of photovoltaic generation (PV) is rapidly increasing.
Operating experience with large PV plants, however, demonstrates that large, rapid changes
in the output of PV plants are possible. Early studies of PV grid impacts suggested that
short-term variability could be a potential limiting factor in deploying PV. Many of these
early studies, however, lacked high-quality data from multiple sites to assess the costs and
impacts of increasing PV penetration. As is well known for wind, accounting for the po-
tential for geographic diversity can significantly reduce the magnitude of extreme changes
in aggregated PV output, the resources required to accommodate that variability, and the
potential costs of managing variability. We use measured 1-min solar insolation for 23 time-
synchronized sites in the Southern Great Plains network of the Atmospheric Radiation Mea-
surement program and wind speed data from 10 sites in the same network to characterize the
variability of PV with different degrees of geographic diversity and to compare the variabil-
ity of PV to the variability of similarly sited wind. The relative aggregate variability of PV
plants sited in a dense 10 × 10 array with 20 km spacing is six times less than the variability
of a single site for variability on time scales less than 15-min. We find in our analysis of
PV and wind plants similarly sited in a 5 × 5 grid with 50 km spacing that the variability
of PV is only slightly more than the variability of wind on time scales of 5-15 min. Over
shorter and longer time scales the level of variability is nearly identical. Finally, we use a
simple approximation method to estimate the cost of carrying additional reserves to manage
sub-hourly variability. We conclude that the costs of managing the short-term variability
of PV are dramatically reduced by geographic diversity and are not substantially different
from the costs for managing the short-term variability of similarly sited wind in this region.
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1 Introduction

Worldwide interest in the deployment of photovoltaic generation (PV), both distributed
throughout the urban landscape and in large-scale plants, is rapidly increasing. PV plants
as large as 60 MW are operating in Europe, while 500 MW PV plants are in various stages
of development in the United States. Operating experience with large PV plants, however,
demonstrates that large, rapid changes in the output of PV plants are possible. The output
of multi-MW PV plants in the Southwest U.S., for example, are reported to change by more
than 70% in five to ten minutes on partly-cloudy days (NERC, 2009). The reliable integration
of generating plants with variable and uncertain output requires that power system operators
have adequate resources to ensure a balance between the load and generation. The variability
of PV output may create some concern about the ability of system operators to maintain
this balance.

Early studies of the power system impacts of PV highlighted the rapid ramping of PV
plants due to clouds, and the commensurate increased need for balancing resources, as a
potential limiting factor in the grid penetration of PV. Many of these early studies, however,
lacked high-quality data from multiple sites to assess the costs and impacts of increasing
PV penetration. Similar concerns were raised some years ago regarding the variability of
wind energy in studies that were often based on scaling the output of single wind turbines or
anemometers to hypothetical large scale deployment (Wan and Parsons, 1993). More recent
state-of-the-art studies of wind energy integration into the electric power system, however,
have demonstrated the significant smoothing effect of geographic diversity, particularly with
regards to rapid changes in the output of several interconnected wind plants. The lack
of correlation between rapid changes in the output of different wind turbines reduces the
variability of the aggregated wind output relative to the variability projected from simple
scaling of the output of a single turbine (Farmer et al., 1980; Beyer et al., 1990; Grubb, 1991;
McNerney and Richardson, 1992; Ernst et al., 1999; Persaud et al., 2000; Wan et al., 2003;
Nanahara et al., 2004; Wan, 2005; Holttinen, 2005; Sorensen et al., 2007; Holttinen et al.,
2009). A large body of experience with and analysis of wind energy demonstrates that this
geographic smoothing over short time scales results in only a modest increase in balancing
reserves required to manage the short-term variability of wind energy (Gross et al., 2006;
Smith et al., 2007; Holttinen et al., 2009; Wiser and Bolinger, 2010).

The objective of this study is to assess the potential impact of the short-term variability
of PV plants by exploring the short-term variability of PV output, the spatial and temporal
scales of geographic diversity of PV, and the implications for the cost of managing the
short time-scale, stochastic variability in the power system. Aside from the short-term
variability impacts of PV, there are additional important considerations that we do not
consider in the limited scope of this study. We do not evaluate the very-short time scale
variability (<1-min) of PV which may affect power quality and may require careful evaluation
in interconnection standards for PV. We do not consider the forecastability of PV and wind
over multiple hours to days ahead and therefore do not include an assessment of the unit-
commitment costs of PV and wind in this study (Tuohy et al., 2009; EnerNex Corp., 2009).
We do not consider the avoided energy costs of PV (or the energy value of PV) and the
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contribution of PV to long-term planning reliability or resource adequacy (or the capacity
value of PV). We also do not consider the flexibility of the conventional generation system
over multiple hour periods. We therefore do not assess the potential for curtailment of
PV at high penetrations due to minimum generation constraints (Denholm and Margolis,
2007) or for operational cost implications of large multiple hour ramps with systems that
have inflexible conventional generators. Finally we do not consider the potential value of
PV for transmission expansion deferral or the potential need to increase investments in
transmission/distribution infrastructure in areas where PV production exceeds the local
load. These broader issues are discussed in more detail elsewhere (U.S. DOE, Forthcoming).

To asses the potential impact of short-term variability of PV, the characteristics of short-
term variability of PV are compared to the characteristics of wind in a specific region of the
United States. As explained in further detail in the report, the data used in this analysis
are measured 1-min solar insolation and estimated 1-min clear sky insolation for 23 time-
synchronized sites in the Southern Great Plains network of the Atmospheric Radiation Mea-
surement program. Wind speed data from 10 of the sites in the same network are converted
into estimated wind power output to compare the variability of PV and wind. Variability
across different time scales is analyzed by calculating the step changes from one averaging
interval to the next over different averaging intervals from 1-min to three hours. Diversity
across these different time scales is measured by the degree of correlation of variability as a
function of distance between sites. The results of this analysis demonstrate that, at individ-
ual sites, PV is more variable than wind for sub-hourly time scales, but that the distances
between sites required to obtain diversity and therefore smooth the output for sub-hourly
variability are slightly less for PV than for wind. Overall, for similarly sited PV and wind
plants sited in a 5 × 5 grid with 50 km spacing, we find that the variability of PV is slightly
more than wind, particularly for variability on time scales of 5-15 min. Finally, we use a
simple approximation method to estimate the cost of carrying additional reserves to manage
short-term variability. We conclude that the costs of managing the short-term variability of
geographically distributed PV plants are not substantially different from the modest costs
to manage the short-term variability of similarly sited and geographically distributed wind
in this region.

The remainder of this paper is organized as follows:

• Section 2 provides an overview of the short-term variability impacts of PV plants
and the potential economic consequences of measures to maintain the same level of
reliability with and without PV.

• Section 3 reviews the methods used to quantify the variability of PV and wind while
accounting for the impacts of geographic diversity and the methods used to estimate
the costs of managing this variability.

• Section 4 summarizes the data sources used to quantify the short-term variability of
PV and wind using time-synchronized data from multiple sites in the same region.
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• Section 5 presents the results from the examination of the variability of PV on different
time scales and at different levels of geographic diversity.

• Section 6 summarizes a simple analysis of the potential cost implications of the vari-
ability of PV compared to wind.

• Section 7 presents our conclusion that for a particular arrangement of similarly sited
PV and wind, the variability of PV is only slightly greater than the variability of
wind for sub-hourly time scales. We therefore expect that the costs to manage short-
term variability of PV will not be substantially different from the costs to manage the
short-term variability of wind energy in this region.

2 Power System Impacts Due to Short-term Variabil-

ity of PV Plants

The short-term variability of PV generation will impact the power system in a variety of ways.
Our analysis focuses only on the operational integration impacts of stochastic (i.e. cloud-
induced rather than deterministic changes due to the movement of the sun) PV variability
over short time scales. Namely, our analysis is focused on the need for power system operators
to maintain a short-term balance between generation and loads.

The North American Electric Reliability Corporation (NERC) sets mandatory reliabil-
ity standards for balancing authorities within the U.S. Balancing authorities (BAs) are the
entities responsible for maintaining a balance between load, generation, and scheduled im-
ports and exports across transmission lines that tie multiple balancing authorities together.
NERC reliability standards for generation and demand balancing require that each BA main-
tain adequate balancing performance as measured by a 12-month rolling average of the 1-min
contributions of that BA to interconnection-wide frequency deviations (Control Performance
Standard 1 or CPS1), a 1-month count of the number of 10-min periods for which adequate
balance was maintained within the period (CPS2), and the ability to recover from the single
largest contingency1 within 15 minutes (Disturbance Control Standard, or DCS) (NERC,
2008). Although it is not a reliability requirement, BAs in the U.S. schedule power transfers
with other BAs generally using hourly schedules. The BA is responsible for maintaining
the scheduled power transfers irrespective of changes in generation or load (generally called
imbalances or hour-ahead forecast errors). BAs that use hourly schedules therefore must
also have sufficient resources to maintain the schedules in order to meet the NERC stan-
dards. Numerous initiatives are underway in North America to enable shorter scheduling
periods, some as short as five minutes, between BAs to reduce the burden on BAs to manage
imbalances.

Though NERC enforces these balancing standards, it does not specify how a BA must
meet the standards. The rules and practices used to maintain reliability therefore vary from

1A typical contingency might include the loss of a tie-line to another balancing authority or a large power
plant tripping off-line due to a forced outage.
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one area to another. In general, system operators rely on several resources and methods to
maintain reliability, including:

• Holding dispatchable resources in reserve. Operating reserves are used to recover from
the near instantaneous change in the system due to a large contingency. Regulating
reserves are used to rapidly respond to changes in the balance between load and gen-
eration on the time scale of minutes. BAs may also hold resources in reserve to be
available when inaccurate forecasts or schedules leave insufficient resources available
to follow changes in the load minus the actual output of any variable generators, or
the net-load. Reserves are generally composed of spinning reserves that are online and
synchronized with the grid (and following an automatic generation control (AGC) sig-
nal in the case of regulation reserves) or non-spinning reserves that are available to
provide response with short notice.

• Economic dispatch or load following to adjust the output of units to follow longer
minutes-to-hour trends in the net-load.

• Unit-commitment to schedule units to be available and on-line in the hours to days
ahead time scale.

The additional variability and uncertainty introduced by PV plants will, to some degree,
increase the use of these resources and methods to maintain balance, which will impose costs
to the power system. Additional uncertainty and variability over time scales shorter than the
time it takes to start and synchronize fast-start units, for instance, must be met by balancing
reserves from spinning resources. An increase in spinning resources held in reserve leads to
more units dispatched to “part load” levels, which leads to an efficiency penalty and higher
costs than dispatching units to optimal set points (Mills et al., 2009b). Increased ramps in
the net-load over the time scale of the economic dispatch may also require out-of-merit order
dispatch whereby a fast ramping, but higher cost, unit is dispatched to produce more power
while a slow ramping, but lower cost, unit is slowly moved to its higher set point (Kirby and
Milligan, 2008).

To some extent, previous studies have evaluated the balancing resources required to
accommodate the short-term variability of PV. Unlike the extensive body of work on the
operational integration impacts of wind, however, these (often-dated) studies generally lack
high-time resolution PV data from multiple sites. Many of the conclusions are instead based
on scaling PV data from single sites or simple cloud models (Table 1). These studies often
conclude that the economic value of PV is significantly reduced at increasing levels of PV
penetration due to the additional need for reserves or that the high variability of PV and
the limited ramp rates of conventional generation limit the feasible penetration of PV. The
conclusions of these studies are questionable due to the lack of high time-resolution data
from multiple PV sites. Studies that have evaluated sub-hourly PV data from multiple sites,
on the other hand, do not separate the impacts of PV from the impacts of much larger
quantities of wind and solar thermal plants (Piwko et al., 2007, 2010).

System operators only need to balance the variability of the load net the aggregated
output of PV sites in the balancing area (while respecting transmission capacity limits).
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Table 1: Sample of PV operational integration studies that focus on short-term
variabilitya

Reference PV Variability Conclusions

Lee and Ya-
mayee (1981)

100% change in 10-min assumed
for PV

Dispatch and operating reserve
penalties for PV can eliminate
economic value.

Chalmers et al.
(1985)

Simple uniform cloud model gen-
erates worst case ramps

Variability exceeds ramp-rate ca-
pability of on-line generation at
low PV penetration.

Chowdhury and
Rahman (1988)

Simulated 10-min data for single,
750 MW PV plant

Out-of-merit order dispatch due
to limited ramp rates of ther-
mal units can eliminate economic
value of PV.

Jewell and Un-
ruh (1990)

Cumulus cloud model and syn-
thetic 1-min PV data assumed to
have different magnitude fluctua-
tions

PV penetration limited by ramp-
rates of dispatchable generation.
Limit is relaxed as PV is increas-
ingly dispersed.

Bouzguenda and
Rahman (1993)

Scaled 10-min data from single 20
kW PV plant

PV penetration limited by ramp-
rates of dispatchable generation.

Asano et al.
(1996)

Scaled 10-sec data from a single
location

PV increases required capacity
and ramp-rates of units used to
balance 5-30 min variability.

Piwko et al.
(2007)

15-min PV production data from
multiple sites overlaid with syn-
thesized short-term data assumed
to be uncorrelated between sites

Operational integration impacts
are modest.b

Piwko et al.
(2010)

Hourly satellite-derived PV pro-
duction overlaid with synthesized
10-min PV production data from
multiple sites

Operational integration impacts
are modest.b

a - EnerNex Corp. (2009) evaluates unit commitment costs but does not address
short-term variability
b - Impacts of PV were not separately identified in scenarios with much more wind
and solar thermal
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The degree to which PV increases the demand for resources to balance the net load therefore
depends on the amount of smoothing offered by geographic diversity.

Previous research demonstrates that smoothing from geographic diversity for solar does
occur. Jewell and Ramakumar (1987) and Kern and Russell (1988) develop cloud models to
estimate the smoothing effect of geographic diversity. Jewell and Ramakumar (1987) consider
regions ranging from 10 km2 to 100,000 km2, while Kern and Russell (1988) consider an area
of 0.2 km2 (50-acres). Wiemken et al. (2001) use data from actual PV sites in Germany
to demonstrate that 5-min ramps in normalized PV power2 at one site may exceed +/-50%
but that 5-min ramps in the normalized PV power from 100 PV sites spread throughout the
country3 never exceed +/- 5%. Results from Curtright and Apt (2008) based on three PV
sites in Arizona indicate that 10-min step-changes in output can exceed 60% of PV capacity
at individual sites, but that the maximum of the aggregate of three sites is reduced.4 Otani
et al. (1997) demonstrate that the variability of sub-hourly irradiance even within a small area
of 4 km × 4 km can be reduced from geographic diversity. Kawasaki et al. (2006) similarly
analyze the smoothing effect within a small 4 km × 4 km network of irradiance sensors
and conclude that the smoothing effect is most effective during times when the irradiance
variability is most severe—particularly days characterized as partly cloudy. Murata et al.
(2009) develop and validate a method for estimating the variability of PV plants dispersed
over a wide area5 that is very similar to the methods we use in the next section (and to
methods used for wind by Ilex Energy Consulting Ltd et al. (2004) and Holttinen (2005)).
Their analysis shows that the aggregate variability of PV plants sited over a wide area
depends on the correlation of the variability between plants. The correlation of variability,
in turn, is a function both of the time scale and distance between plants. Variability is
less correlated for plants that are further apart and for variability over shorter time scales.6

2Normalized PV power is measured PV power divided by the installed capacity of PV.
3The area covered by the sites is about 600 km × 750 km, or about 450,000 km2.
4In contrast to the other studies reviewed in this paragraph, Curtright and Apt (2008) state that their

PV data “imply that site diversity over a ∼280 km range does not dampen PV intermittency sufficiently
to eliminate the need for substantial firm power or dispatchable demand response. The high correlation
between geographically dispersed arrays may indicate that high, widespread clouds are responsible for a
portion of the intermittency.” These results do not agree with the conclusions from the other literature
cited in this paragraph because Curtright and Apt (2008) (1) consider only a limited number of sites (three)
and (2) their calculation of correlation coefficients between the three sites uses the full time-series across all
time scales rather than isolating the variability across particular shorter time scales. The high correlation
coefficients (0.5-0.73) they find between distant sites (110 km to 290 km apart) are in part due to the
correlated, deterministic change in the position of the sun at the three sites and changes in insolation over
multiple hour time scales. Our results, presented in later sections, find diversity over multiple sites within a
∼280 km range can dramatically reduce variability over sub-hourly time scales.

5They consider 52 sites across the country of Japan from 2 km to 923 km apart.
6The results of the study by Murata et al. (2009) are unfortunately not directly comparable to our results,

however, because they do not separate changes in PV output that occur from clouds from the deterministic
changes that occur due to changes in the position of the sun. As a result, variability over time scales longer
than 20-min or so in their results do not drop to zero with increasing distance due in part to the deterministic
changes in the position of the sun. As explained in the next section, our analysis separates this deterministic
component from the stochastic component due to the movement of clouds through the use of the clear sky
index.
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Interestingly, Murata et al. (2009) find nearly zero correlation between 1-min and 5-min
fluctuations at all distances between sites, even distances as close as 2 and 9 km apart,
respectively. Even different inverters within a single 13.2 MW PV plant in Nevada can have
very low correlations in 1-min changes on a highly variable day (Mills et al., 2009a). Hoff and
Perez (2010) develop a simple model to predict the relative variability of a fleet of PV plants
to the variability of individual plants using the number of plants and a parameter they define
as the dispersion factor. The dispersion factor is based on the ratio of the time required for
a cloud to pass over the entire fleet of PV plants to the time scale of interest. The average
variability of the fleet over the time scale of interest is estimated to equal only 1/

√
N of the

variability of a single site if the dispersion factor is larger than the number of plants in the
fleet, but approaches the variability at a single site as the dispersion factor decreases to one.
Hoff and Perez (2010) predict that the average variability of the fleet reaches a minimum
when the dispersion factor is equal to the number of plants in the fleet.

Overall, the clear conclusion from this body of previous research is that with “enough”
geographic diversity the sub-hourly variability due to passing clouds can be reduced to the
point that it is negligible relative to the more deterministic variability due to the changing
position of the sun in the sky. It is not necessarily clear how dispersed PV will be in the
future, however. Siting considerations including available land or rooftop area or available
transmission capacity may naturally lead to a high degree of dispersion. On the other hand,
if plants would naturally be more densely sited, obtaining more geographic diversity will
introduce additional costs. Increasing the spacing between PV plants may require additional
transmission capacity or increased transmission losses. Similarly, increasing the spacing
between plants may require moving some plants out of the highest quality solar resource
areas. Since the quality of the solar resource dictates the capacity factor of a PV plant,
a reduction in the quality of the solar resource will increase the generation cost of the
repositioned PV. Also breaking up a large PV plant into smaller dispersed PV plants may
forgo economies of scale available to the larger PV plant.

The tradeoff between the costs to increase geographic dispersion and the benefits of the
reduced variability seen by the system operators is a complex problem that will generally
be site and system specific. Instead of determining the best deployment of PV plants, we
therefore only focus on understanding key drivers of this tradeoff for both PV and wind:
the characteristics of variability and the spatial and temporal scales of geographic diversity.
Specifically, we investigate the short-term variability of similarly sited PV and wind plants.

3 Methodology

3.1 Estimation of the Variability from Dispersed Photovoltaic Plants

The operational integration impacts of PV plants will depend on the characteristics of the
variability over various time scales. Variability over short time scales, for example a rapid
change in the net-load that must be met by conventional generation, is relatively more
challenging and more expensive to accommodate than similar sized changes over longer time
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periods.
A common method for characterizing the variability of a resource over different time

scales is to calculate the “deltas” or “step changes”, which refers to the difference in the
output of a plant from one averaging interval to another. The duration of the averaging
interval is t. Given minute by minute output data at a single site, P1, a step change at a
single site with a sixty minute averaging interval, for example, is calculated as:

∆P 60
1 (t) = P 60

1 (t)− P 60
1 (t− 60) =

(
1

60

59∑
i=0

P1(t+ i)

)
−

(
1

60

−1∑
i=−60

P1(t+ i)

)
(1)

The overall average variability of the resource at a single point over an averaging in-
terval can then be characterized by the standard deviation of the step changes over a long
observation period or by some percentile of the step changes. A common metric is the
99.7th percentile (Holttinen et al., 2008), which corresponds to three standard deviations
from the mean for a normally distributed random variable.7 The standard deviation of the
step changes with a sixty minute averaging interval at a single site, σ60

∆P1
is:

σ60
∆P1

=

√
Var

(
∆P 60

1

)
(2)

The 99.7th percentile may be more or less than three standard deviations from the mean
depending on the shape of the distribution of the step changes. A distribution with relatively
“fat tails” will have a 99.7th percentile that exceeds three standard deviations. We follow
nomenclature and definitions slightly different from Murata et al. (2009) and refer to the
ratio of the 99.7th percentile to the standard deviation of the step changes over different
averaging intervals as κ3σ:

κt3σ =
99.7th percentile of |∆P t

1|
σt∆P1

(3)

For maintaining compliance with NERC reliability standards, however, system operators
need only to balance the load net of all generation rather than the output of individual

7There are, of course, a multitude of different ways to characterize variability over different time scales.
We choose to use the standard deviation and 99.7th percentile of step changes from data averaged over
different time-averaging periods because this method is commonly used in wind integration studies. Murata
et al. (2009) apply a slightly different metric based on the ramps generated using different lag times (rather
than data averaging times). Woyte et al. (2007) characterize variability over different time scales using a
localized spectral analysis based on wavelets. This method isolates the magnitude of the fluctuations that
occur according to their persistence time scale. Both of these methods are perhaps more mathematically
accurate and concise relative to the manner used in the present study, but the method used here is often
used in practice. Curtright and Apt (2008) use spectral analysis to characterize the variability of PV over
different time scales. In contrast to the localized spectral analysis employed by Woyte et al. (2007), however,
the approach used by Curtright and Apt (2008) implicitly assumes that fluctuations across all time scales
are periodic. A comprehensive review of methods used to characterize variations in solar insolation at a
single site is available from Tovar-Pescador (2008).
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plants. More important than the variability of a single variable generation plant, therefore,
is the variability of the sum of all variable generation plants. N plants each with an output
of Pi(t) leads to an aggregate output, P (t), of:

P (t) = P1(t) + P2(t) + P3(t) + P4(t) + ...+ Pn(t) (4)

Using the standard deviation of the step changes metric, the total variability of the
aggregate of all PV plants for a particular averaging interval, σt∆P , is:

σt∆P =
√

Var
(
∆P t

)
=

√√√√ N∑
i=1

N∑
j=1

Cov
(
∆P t

i ,∆P
t
j

)
(5)

The role of geographic diversity is to reduce the variability of the aggregate of multiple
plants relative to scaling the output of a single plant (even though the absolute level of
variability of N plants in aggregate will be larger than the absolute level of variability at an
individual site). This benefit is called a “diversity factor” (Farmer et al., 1980), a “space
filter” (Healey, 1984), an “equivalent filter” (Nanahara et al., 2004), or as we call it, a
“diversity filter.” As mentioned in the introduction, the benefit of geographic diversity has
been analyzed in detail for wind energy. For our purposes, we define a diversity filter as
a process that changes the variability of multiple sites relative to summing the variability
of each site independently. The impact of diversity is demonstrated by the ratio of the
aggregated variability of all sites to the sum of the variability of each individual site.

Diversity Filter = Dt =
σt∆P∑N
i=1 σ

t
∆Pi

(6)

For purposes of simplification, if it is assumed that all N plants are similar in that they
have the same variability, then the diversity filter over different time scales reduces to:

Dt =

(
σt∆P/N

)
σt∆P1

=
1

N

√√√√ N∑
i=1

N∑
j=1

ρt
(
∆P t

i ,∆P
t
j

)
(7)

Where ρt
(

∆P t
i ,∆P

t
j

)
is the correlation coefficient of the t-min step changes between

sites i and j. The diversity filter (the ratio of the variability of PV at the system level to
the variability of PV at all sites individually) therefore depends on the correlation of the
step changes for each time scale, which is a function of both the spatial and temporal scales.
For sites located very close to each other, such that they are perfectly correlated over a
time scale of t (and therefore ρt = 1), the diversity filter is equal to 1: the variability at
the system level is equivalent to the sum of the variability of PV at all sites individually.
When plants are sited such that they are perfectly uncorrelated over a time scale of t (and
therefore ρt = 0) the diversity filter is equal to 1√

N
: the variability at the system level is

√
N

times the variability at a single site (again assuming all sites have similar size and variability
characteristics).
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Based on relationships developed by Nanahara et al. (2004) and Glasbey et al. (2001),
and results from Murata et al. (2009), it is expected that the correlation of deltas between
two sites will decrease exponentially with increasing distance, dij, and will similarly decrease
with shorter averaging intervals, t. A functional form that captures both this spatial and
temporal behavior of correlation is:

ρt
(

∆P t
i ,∆P

t
j

)
=

1

2

(
e−

C1
t
d
b1
ij + e−

C2
t
d
b2
ij

)
(8)

Where C1, C2, b1 and b2 are constant parameters that can be estimated from a fit to
solar data in a particular region. At zero distance the correlation is one and as the distance
between sites increases the correlation reduces to zero. Similarly, for very long time scales
the correlation increases to one and over very short time scales falls to zero.

Assuming this particular functional form and that all plants are similar in their ramping
characteristics and size allows the diversity filter to be specified in terms of the distance
between PV plants and two model constants.

Dt
∆ =

1

N

√√√√ N∑
i=1

N∑
j=1

(
1

2

(
e−

C1
t
d
b1
ij + e−

C2
t
d
b2
ij

))
(9)

According to this formula and the assumption that all plants are similarly sized and
have similar variability characteristics, the variability of all plants aggregated to the system
level can be determined based on the variability of a PV plant at a single site, the model
constants, and the location of each PV plant.

For PV, rapid output changes are largely driven by fast moving clouds. PV output also
changes based on diurnal cycles of the sun, but this variability can be perfectly forecasted.
The variability due to changes in the position of the sun can therefore be evaluated by
system operators without consideration of geographic diversity. Because of the relative lack
of understanding of the short-term variability due to fast moving clouds we focus on the
stochastic component of the variability of PV output. This stochastic component due to
cloud movement can be separated from the deterministic component due to changes in the
position of the sun in the sky by focusing only on the clear sky index, k(t), in place of the
overall change in power output, P (t). The clear sky index is the ratio of the actual global
insolation measured at the site to the global insolation expected if the sky were clear (Figure
1). Since PV plant output is generally proportional to solar insolation, the variability of
the clear sky index is similar to the variability of the ratio of actual PV plant output to
PV plant output if the sky were clear. The stochastic variability in solar insolation is not
exactly equivalent to the stochastic variability in actual PV plants due to “within-plant”
smoothing that can occur relative to variability of insolation at a point (Mills et al., 2009a),
changes in PV plant efficiency with temperature, PV tracking systems, and diverse PV
panel orientations other than horizontal for non-tracking PV systems.8 We focus on the

8Mills et al. (2009a) summarize comparisons between variability of point insolation measurements and
PV plant output. Within-plant smoothing reduces variability on time scales shorter than about 10-min for
a 13.2 MW PV plant.
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variability of the clear sky index from insolation measurements rather than the variability of
the clear sky index from actual PV plants for the bulk of this study because of the relative
higher quality of the insolation dataset available at the time of this study. The variability,
particularly over shorter time scales, in our results will most likely provide an upper bound
to the stochastic variability expected from actual PV plants.

3.2 Estimation of the Cost to Manage Short-Term Variability at
the System Level

Determining the cost of managing sub-hourly variability is a complex problem that is gener-
ally evaluated through detailed integration studies. Without performing a detailed integra-
tion study we still want to understand in general terms the relative difference in cost between
managing variability at a single site and variability estimated for an aggregate of multiple
sites. Similarly, we want to understand the cost of managing short-term variability of PV
relative to the more-well-known cost of managing the stochastic short-term variability of
wind. Based on these broad objectives, we provide a simple estimate of the costs to manage
short-term variability that is largely based on methods and assumptions from Farmer et al.
(1980), Grubb (1991), Milborrow (2001), Wan (2005), and EnerNex Corp. and Windlogics
Inc. (2006). These simple estimates are only meant to illustrate relative changes in costs; the
cost impact of short-term variability should in the future be evaluated with more detailed
methods.

To estimate the costs of managing sub-hourly variability we make the following simpli-
fying assumptions:
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• Only the net of the variability of load and variable generation is managed by the system
operator.

• The incremental variability above the variability of the load is managed with additional
balancing reserves.

• The capacity of the variable generation added is assumed to have a nameplate total
that is 10% of the peak load.

• As a proxy for resources required to maintain a balance between load and generation,
we characterize the additional variability on different time scales using the following
deltas:

– As a proxy for the NERC CPS1 standard, we use the 1-min deltas

– As a proxy for the NERC CPS2 standard, we use the 10-min deltas

– As a proxy for the imbalance or hour ahead forecast error we use the 60-min
deltas9

• Over these short time scales we assume that load deltas are uncorrelated with the
deltas from the variable generators. The variance of the net load deltas is therefore
assumed to be the sum of the variance of the load deltas and the variance of the variable
generator deltas.10

• We assume that the variability from the 1-min and 10-min deltas can only be met with
resources that are spinning, or on-line and synchronized with the grid.

9Our use of the deltas as a proxy for the requirements to manage variability on different time scales
follows approaches used in other detailed integration studies. The authors of the 2006 Minnesota Wind
Integration Study estimate the increase in sub-hourly reserves for wind based on the 1-min deltas (regulation
requirement), the 5-min deltas (load following requirement), and the 60-min deltas (operating reserve margin
to cover forecast error using persistence forecast) (EnerNex Corp. and Windlogics Inc., 2006). The wind
deltas are combined with the deltas from load to estimate the increase in the total balancing reserves in high
wind scenarios relative to a base scenario. The authors of a 2004 study of the balancing reserves required to
manage wind in the Irish system (Ilex Energy Consulting Ltd et al., 2004) based reserve requirements on the
1.25 min deltas (fast reserves), 30-min deltas (slow reserves), and 1-hour deltas (replacement reserves). The
wind deltas are combined with the deltas from the load to estimate the increase in total balancing reserves
at various levels of wind penetration using an algorithm similar to one presented by Doherty and O’Malley
(2005). An earlier study of the costs of accommodating renewables in the UK used 30-min deltas (response)
and 4-hour deltas (reserve) to estimate the balancing costs for wind. The 4-hour reserve was assumed to be
met with a combination of standing reserve and spinning reserve, depending on the cost tradeoffs between
part-load efficiencies for spinning reserve and start-up costs for standing reserve (Ilex Energy Consulting Ltd
and Strbac, 2002).

10The 60-min variable generation and load deltas are likely to be correlated to some degree. The stochastic
changes in insolation due to clouds, as captured by the clear sky index, however, are less likely to be correlated
with changes in load than the changes in total solar insolation and load. Either way, we do not use time-
synchronized load and variable generation data to account for correlation between generation and load
deltas in our simple estimates. More detailed evaluations of the costs of managing short-term variability for
a specific load should account for the potential correlation of generation and load over the 60-min time-scale,
but the correlation is not expected to be significant.
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• The amount of spinning reserves required to manage the 1-min and 10-min deltas is
assumed to equal three times the standard deviation of the net load deltas. While we
explore the shape of the non-normal distributions of the deltas, the general form of
Eq. 7 does not provide information of how the shape of the distribution changes with
the aggregation of multiple sites. In addition, without actual 1-min time-synchronized
load data we do not know how the shape of the distribution of the net-load deltas will
compare to the shape of the distribution of the variable generation deltas and load
deltas. We therefore ignore the potential non-normal distributions of the net-load for
the purpose of a simple estimation of costs. Future work in specific regions should
directly evaluate the shape of the distribution of the net-load deltas.

• We assume that the variability from the 60-min deltas can be met with a combination
of spinning and non-spinning resources. The amount of spinning reserves to manage
the 60-min deltas is assumed to be half of the standard deviation of the 60-min deltas.
Deltas larger than half of the standard deviation of the 60-min deltas are assumed to
be met by deploying non-spinning resources.

• We assume that resources required to manage the 1-min, 10-min, and 60-min deltas are
held in reserve and therefore cannot simultaneously also be used to meet the peak net
load. The additional reserve requirement is therefore met with resources that cannot
also provide capacity. We therefore assume that there is an opportunity cost of capacity
associated with increasing these reserves.11

• The standard deviation of the deltas is assumed to be constant throughout the year
for load and wind deltas. For PV deltas we examine two cases:

– The standard deviation of the PV deltas is assumed to be constant and pro-
portional to the standard deviation of the deltas from the clear sky index. For
example, if the standard deviation of the clear sky index deltas is 0.1 then the
standard deviation of the PV deltas is assumed to be 0.1 times the nameplate
capacity of the installed PV.

– The standard deviation of the PV deltas is assumed to change throughout the
year in proportion to the clear sky insolation expected for any hour. Following
the previous example, if the standard deviation of the clear sky index deltas is
0.1 then the standard deviation of the PV deltas is assumed to be 0.1 times the
amount of power that would be produced by the PV plants if the sky were clear
in any particular hour. This assumption allows the amount of reserves procured
to manage PV variability to change with the position of the sun.12

11Note that the assumption that resources are held in reserve to meet 60-min deltas and that there is an
opportunity cost of capacity for these resources is driven by hourly scheduling periods between BAs. The
opportunity cost of capacity would be reduced if the solar and wind resources were integrated into BAs that
have shorter scheduling periods (Kirby and Milligan, 2008, 2009).

12In this case no reserves are held to manage short-term variability of solar in the middle of the night when
the clear sky insolation is zero. Similarly, fewer reserves are held during winter mornings with low clear sky
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– In either case, the opportunity cost of capacity is based on the peak reserve
requirement and is not assumed to change depending on whether reserves are
constant throughout the year or if they change with the position of the sun.

• The cost of spinning reserves is assumed to be based on an efficiency penalty for the
marginal plant that is part-loaded to provide spinning reserves.

• The cost of non-spinning reserves is assumed to be based on the higher cost of energy
from a quick starting plant that provides non-spinning reserve relative to the cost of
energy from the marginal plant that would have otherwise been used.

Additional details and the equations used to estimate the additional cost of managing
reserves are included in Appendix A.

3.3 Numerical Assumptions

In addition to the methodological assumptions, several numerical assumptions are required
to estimate the cost of additional reserves to manage additional short-term variability. The
assumptions used are listed in Table 2.

In the following sections we start by exploring the variability of PV at individual sites.
We then evaluate the correlation of deltas between geographically dispersed sites and use
real 1-min insolation data from multiple time-synchronized sites to develop the constants
for Eq. 8. We then demonstrate the effectiveness of the diversity filter for an array of sites,
and use a similar approach to compare the variability of an array of similarly sited solar and
wind sites. Finally, we estimate the increased costs associated with managing the sub-hourly
variability of solar and wind. Before presenting these results, however, Section 4 discusses
the data used in this analysis.

4 Data

We explore the short-term variability of PV across multiple time scales at a single site by
calculating the deltas in the clear sky index across an entire year. Variability is characterized
by the standard deviation of the deltas, the shape of the distribution of the deltas, and the
magnitude of the 99.7th percentile of the deltas. Then, using time-synchronized data from
multiple sites we examine the correlation of deltas between sites that are at varying distances
from one another.

The primary data required for this analysis are high time resolution solar and wind
data for multiple time-synchronized sites covering a broad geographic region. The only
readily available U.S. dataset that fit this need was one that contains historic data from the
Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains (SGP)

insolation than the reserves held in during summer afternoons when the clear sky insolation is at its peak.
For the same type of clouds, the aggregate variability will be less if the clouds pass on a winter morning
than if they pass during a summer afternoon.
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Table 2: Numerical assumptions to estimate cost of additional reserves

Assumption Value

Efficiency penalty of part loaded marginal plant, η 15%
Full-load variable cost of marginal plant, cm $55/MWh
Variable cost of standing plant, cg $85/MWh
Fixed cost of capacity, FCp $100/kW-yr
Standard deviation of 1-min load deltasa 0.3% of peak
Standard deviation of 10-min load deltas 0.8% of peak
Standard deviation of 60-min load deltas 3.7% of peak
Multiple of st. dev. of deltas kept in reserve, κ 3
Multiple of st. dev. of 1-10 min deltas from spin-
ning resources, γ1,10

3

Multiple of st. dev. of 60 min deltas from spinning
resources, γ60

0.5

Capacity factor of solar, CFS 20%
Capacity factor of wind, CFW 30%

a - The load deltas are illustrative values from a Minnesota utility
with a peak load of 6,000 MW (Wan, 2005)

network.13 The solar data are 1-min averaged global, direct, and clear sky insolation from 23
instrument sites14 from 2004. The sites are located 20 km to 440 km apart and are located
in the states of Oklahoma and Kansas. Data on clear sky insolation and the cosine of the
solar zenith angle data are provided with the SGP dataset. We use these data to calculate
the clear sky index at each point measurement, ki(t), as the ratio of the measured insolation
to the clear sky insolation. To avoid potential problems with calculating the clear sky index
when the sun is near the horizon and clear sky insolation is very low, we only calculate the
clear sky index for periods when the cosine of the solar zenith angle exceeds 0.15.

The SGP dataset also includes 1-min averaged wind speed data at 10 m from 15 instru-
ment sites15 in the SGP network. The wind speed data were extrapolated to the typical
hub height of wind turbines, 80 m, using a simple 1/7th power law extrapolation.16 The

13Gaps in the time-series data were filled using tools provided by the ARM program. The data collected
from the SGP site was run through a program called “nc fill” as part of the ARM NetCDF Tool Suite. The
option was set to use linear interpolation to fill gaps in the data sets. We synchronized the 23 datasets
by removing any data points that did not simultaneously occur at all sites in the network. Aside from the
quality control provided by the ARM Program, no other additional cleaning or error checking procedures
were performed on the data.

14The 23 sites with solar data are C1,E1-13, E15, E16, E18-22, E24, and E27.
15The 15 sites with wind data are E1, E3-9, E11, E13, E15, E20, E21, E24, and E27.
16The power law extrapolation is u80 = u10(80m/10m)

1
7 where u80 is the extrapolated wind speed at

80 m above the ground and u10 is the measured wind speed 10 m above the ground. Wind variability
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Figure 2: Generic multi-turbine power curve used to convert hub-height wind speed
to wind power from Holttinen (2005).

wind speed data were then converted into wind power output using a multi-turbine power
curve,17 recreated in Figure 2 (Holttinen, 2005). Wind speed data from five of the 15 sites
showed very low annual capacity factors (below 20%) and were therefore excluded from our
assessment of wind variability.18

5 Results

5.1 Deltas at Individual Sites

The anecdotes of extreme deltas from PV plants and the conclusions from many of the
previous solar integration studies described in Table 1 are based, in large measure, on data
from single sites. In this section we examine the deltas at individual sites within the SGP
network.

over short time scales may be greater at 10m than it is at 80m due to turbulence. We do not correct for
potential changes in variability with height and our results may therefore overestimate the variability of
wind, particularly over time-scales shorter than 10-min.

17Our conversion from wind speed to wind power using a multi-turbine curve only accounts for the reduc-
tion of the slope of the power curve at wind speeds lower than the rated wind speed and wind speeds around
the cut-out speed of a single turbine. Had we used only a single turbine power curve, small changes in wind
speed at wind speeds near the cut-out wind speed of the turbine would cause the wind power output data
to include changes from the full output to zero. The multi-turbine power curve is a better representation
of how the output of entire wind plants change at wind speeds around the cut-out wind speed. Aside from
this conversion of 1-min wind speed data into 1-min wind power data our analysis does not account for the
smoothing of wind power variability that occurs within a wind plant from geographic diversity. We also
do not apply any alterations to the 1-min data due to the inertia of the wind turbine. Multiple sources
indicate that wind turbine inertial dampening of wind speed variability impacts time-scales on the order of
20 seconds or less, but not 1-min variability (Sorensen et al., 2007; Apt, 2007).

18The sites where wind speeds were too low for development of wind power were E4, E7, E20, E21, and
E27. Capacity factors, based on the wind speed extrapolation and power curve conversion method outlined
in this section, for the excluded sites ranged from 4% to 19%. The remaining sites had estimated capacity
factors that ranged from 21% to 30%. The average capacity factor across the included sites was 25%. The
average wind speed and capacity factor results are included in the appendix.
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Figure 3: Cumulative probability distribution of 1-min, 10-min, and 60-min deltas of
the global clear sky index at individual sites in the SGP network. The thin
lines show the shape of normal distributions with similar standard deviations
as the actual data.

Consistent with previous anecdotes and literature, severe deltas are apparent in the point
insolation measurements from the SGP data. Large deltas greater than +/- 0.6 in the global
clear sky index were observed in one minute at individual sites. Similarly, large deltas
greater than +/- 0.6 were observed based on 10-min and 60-min averaging intervals (Figure
3). Figure 3 is a cumulative probability distribution plot of the deltas from the individual
sites where the magnitude of the deltas are smaller than the value on the x-axis for the
percent of the deltas shown on the y-axis. For reference cumulative distribution functions of
normal or “bell curve” distributions with the same standard deviations as the actual 1-min,
10-min, and 60-min deltas are included as thin lines in the figure. This chart shows that
extreme deltas occur very infrequently, but the shape of the distribution, particularly for
the 1-min deltas, shows a higher probability of extreme deltas than would be expected for
a normal distribution with a similar standard deviation. In other words, the distribution of
the deltas exhibits “fat tails” relative to a normal distribution.

The standard deviation of the deltas in the global clear sky index increase with longer
time scales from 1-min to 180-min (Figure 4a). The 180-min deltas have nearly double
the standard deviation of the 1-min deltas. Figure 4a shows the standard deviation and
99.7th percentile of the deltas averaged (but not aggregated) across the 23 sites in the SGP
network. The error bars represent +/- one standard error, but are small enough to fit within
the markers. The figure shows that 99.7% of the deltas are consistently below about 0.6 for
60-min and shorter deltas. For these time scales, deltas larger than 0.6 are therefore likely to
occur less than 0.3% of the year. Another way to interpret these results is that for a single
site, the average clear sky index over a 60-min period only has a probability of 0.3% of being
0.6 larger or smaller than the average clear sky index in the next 60-min period.

If the distribution of deltas was normally distributed, 99.7% of deltas would be within
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Figure 4: (a) Standard deviation and 99.7th percentile of deltas in global clear sky
index over different averaging intervals for the individual sites within the
SGP network. (b) The ratio of 99.7th percentile and standard deviation of
deltas in global clear sky index at individual sites. Error bars represent +/-
one standard error from the mean (N = 23).

three standard deviations. The “fat tails” evident in Figure 3, however, lead to the 99.7th

percentile being much larger than three standard deviations (Figure 4b). The 99.7th per-
centile of the 1-min deltas, for example, is seven standard deviations. The ratio is reduced
for deltas over longer time scales, but even the 99.7th percentile of the 180-min deltas remain
more than four standard deviations, demonstrating that the distribution of the deltas with
averaging intervals of 1-min to 180-min all have “fat tails” relative to a normal distribution.

The deltas at individual sites therefore demonstrate that severe changes are possible
and that they occur more frequently than expected if the deltas were assumed to have the
same standard deviation but be normally distributed. The balancing resources required to
accommodate 99.7% of the deltas therefore exceeds that which would be required were one
instead trying to manage variability based on three standard deviations. These deltas for
individual sites reflect behavior similar to the assumptions used in many of the previous
studies on PV integration. Jewell and Unruh (1990), for instance, simulated up to 50%
changes in 1-min output from PV. The electric system modeled in that study was shown to
incur inadvertent interchanges with other balancing areas if the penetration of PV was just
2% of the peak system load on a capacity basis. Assuming that the highest deltas in the SGP
dataset occurred while the clear sky radiation is sufficient for a PV system to be at its rated
capacity, the 1-min deltas in the SGP data could be as severe as 80% of the PV capacity were
there no smoothing in the PV plant itself. Deltas above 60% of the rated capacity would
be expected 0.3% time, again assuming no smoothing within the PV plant. Changes of this
magnitude are found to exist over all averaging intervals from 1-min to 60-min. Such severe
changes in PV output would be technically challenging and expensive to accommodate if
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they did in fact occur with large scale PV deployment.

5.2 Correlation of Deltas with Distance

We now turn to a consideration of the correlation of deltas in the clear sky index across
a region in order to understand the impact of aggregating the output of several PV sites.
Figure 5 shows the correlation of deltas across the time-scales of 1-min to 180-min for pairs
of sites at different distances from one another. In addition, the figure includes the line of
best fit to Eq. 8. As shown in the figure, we find nearly zero correlation of 1-min deltas
between all 23 sites in the SGP network. Even the closest sites in the network, separated
by 20.5 km, demonstrate zero correlation in 1-min deltas. Similar zero correlation for 1-min
deltas was found for sites as close as 2 km in Japan by Murata et al. (2009), and nearly zero
correlation was found for 1-min deltas on a highly variable day for different inverters within
a single 13.2 MW PV plant in the U.S. (Mills et al., 2009a). Clearly, even within a very
small region 1-min deltas are nearly uncorrelated.

The near zero correlation for sites as close as 20 km was similarly found for 5-min deltas in
the clear sky index. For 10-min deltas, however, a slight increase in the correlation between
deltas at the closest sites becomes apparent. Hourly deltas exhibit clearer correlation between
sites especially for sites that are closer than about 75 km apart. Three hour deltas are
correlated for sites that are even farther apart.

Our use of the clear sky index in this case avoids an issue that is apparent in the analysis
of the data used by Murata et al. (2009). Because Murata et al. (2009) use insolation or PV
production data to examine the correlation of ramps with distance, the correlation between
sites due to the deterministic component of the movement of the sun’s position in the sky
leads to correlation of ramps longer than about 15-min even for sites that are very far apart.19

The same problem is apparent in the correlations presented by Curtright and Apt (2008).
Because the clear sky index removes the influence of this deterministic portion of the data,
the correlations we present in Figure 5 approach zero with increasing distance.

The near zero correlation for 1-min and 5-min deltas implies that aggregating output
from PV sites at least 20 km apart20 will smooth, as measured by the standard deviation,
the 1-min and 5-min deltas by a factor of 1√

N
. Aggregating the output from sites 20 km

apart will smooth deltas over longer time scales to a lesser degree than the deltas for shorter
time scales due to the greater correlation of deltas with larger averaging intervals.

5.3 Aggregate Deltas from Geographically Dispersed Sites

In this section we consider the impact of aggregating geographically dispersed sites. We
begin by aggregating the actual point measurements of the clear sky index from the SGP

19For deltas 15-min and longer, the results from Murata et al. (2009) show non-zero correlation for sites
as far as 923 km apart. This is because Murata et al. (2009) include the deterministic portion of the PV
output in the data used for estimating correlations.

20Or at least 2 km apart for 1-min deltas and 9 km apart for 5-min deltas, according to the data from
Murata et al. (2009).
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Figure 5: Correlation of changes in global clear sky index between 23 geographically
dispersed solar insolation measurement sites in the SGP network. (—) Fit
to the correlation data to the relationship in Eq. 8.

sites and then project the smoothing that would occur from a denser array of PV sites.

5.3.1 Smoothing from Aggregating SGP Sites

We first aggregate clear sky index data from five close sites21 within the SGP network and
then aggregate the data from all 23 sites within the SGP network.22 Figure 6 shows an
example of smoothing from averaging of the global insolation across multiple sites on a
partly cloudy day. As expected, the aggregation of the simultaneous output of sites within
the SGP network leads to a reduction in the relative magnitude of the deltas for all time
scales compared to scaling the output of a single site across the entire year. This reduction
in the relative magnitude of the deltas is more pronounced for all sites (Figure 8) than for
five close sites (Figure 7). The distribution of the 1-min deltas from the aggregation of sites
also appears to be more normal in that the tails of the distribution are less pronounced than
the tails of the distribution of 1-min deltas from a single site (Figure 3). Aggregating the
output from 5 close sites in the SGP network, for example, reduces the magnitude of the
most extreme 1-min deltas to below +/- 0.4 from the observed +/-0.8 deltas shown for a
single site in the previous section. Aggregating all 23 sites further reduces the most extreme

21The sites are E9, E11-13, and E15. The closest two sites are about 50 km apart. The furthest two sites
are about 170 km apart. The area between the five sites is about 7,000 km2, just larger than the state of
Delaware.

22The 23 sites with solar data are C1,E1-13, E15, E16, E18-22, E24, and E27. The closest sites are 20 km
apart and the furthest sites are 440 km apart. The area of the SGP network is around 143,000 km2, similar
in area to the states of Wisconsin, Iowa, or Illinois.
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Figure 6: Example of 1-min global insolation from one site, the average of five close
sites, and the average of all 23 sites in the SGP network on a partly cloudy
day.

1-min deltas to below +/-0.2. Assuming that such a severe delta occurred while PV plants
were at their rated capacity would lead to a maximum 20% change in the output of all PV
plants in 1-min, far below the 80% change that could occur at a single site in 1-min under
the same assumptions. Because the reduction in the relative magnitude of the deltas with
aggregation is a key result of this analysis, we summarize the cumulative distribution of
deltas from individual sites and aggregated sites for convenience in Figure 9.

The 99.7th percentile and the standard deviation of the deltas for different averaging
intervals is also significantly lower for the five and 23 aggregated sites (Figure 10a) than for
individual sites (Figure 4a). For example, if all of the sites in the SGP network were to be
aggregated, the balancing resources required to manage 99.7% of the 1-min deltas of the clear
sky index would be only 16% of the resources required to manage 99.7% of the 1-min deltas if
the same level of PV capacity were developed at an individual site. The ratio of the standard
deviation of the 1-min deltas for an individual site to the standard deviation of the average of
the aggregated 23 sites is 22%, slightly greater than the ratio for the 99.7th percentiles.23 The
reduction in the 99.7th percentile is larger than the reduction in the standard deviation due to
the tightening of the distribution that also occurrs when aggregating the 1-min deltas (Figure
10b). While the ratio of the 99.7th percentile to the standard deviation of 1-min deltas at
an individual site is 7.1, the ratio of the same parameters for the aggregated sites falls to
4.9 (see Table 3). Comparison of the ratio of the 99.7th percentile to the standard deviation
shows that reductions in this ratio are apparent for all deltas, especially for those 60-min or
shorter. The distributions remain slightly “fat-tailed” relative to a normal distribution, but

23As described in Section 3, the ratio of the standard deviation of the deltas from the aggregate of
N uncorrelated sites to the standard deviation of the deltas from a single site is expected to be about
1√
N

= 1√
23

= 21%.
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Figure 7: Cumulative probability distribution of 1-min, 10-min, and 60-min deltas of
the global clear sky index for five close sites in the SGP network aggregated
together (N = 5). The thin lines show the shape of normal distributions
with similar standard deviations.
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Figure 9: Cumulative probability distribution of 1-min, 10-min, and 60-min deltas of
the global clear sky index for individual sites, five close sites, and all 23 sites
in the SGP network aggregated together.

are much less so than for individual sites.24

Whereas the deltas are uncorrelated between all sites in the SGP network for time scales
shorter than 5-min, Figure 5 shows that there is positive correlation for both 60-min and
180-min deltas between sites in the SGP network. Aggregating the sites that are positively
correlated therefore leads to a slightly lesser benefit of geographic diversity than if all of the
sites were uncorrelated. The balancing resources required to manage 99.7% of deltas from
the 23 aggregated SGP sites would be 31% and 54% of the resources required to manage
99.7% of the 60-min and 180-min deltas, respectively, from an individual site (this compares
to 16% for 1-min deltas, as reported earlier). The ratio of the standard deviation of the
60-min and 180-min deltas for an individual site to the standard deviation of the average of
the aggregated 23 sites is 32% and 49%, respectively.

Table 3: Summary of standard deviation and 99.7th percentile of global clear sky index
for individual, 5 close sites, and all 23 sites in the SGP network.

σt∆k 99.7th percentile κ3σ

Deltas 1-
min

10-
min

60-
min

1-
min

10-
min

60-
min

1-
min

10-
min

60-
min

Individual Sites 0.08 0.11 0.13 0.58 0.59 0.60 7.1 5.2 4.6
5 Close Sites 0.03 0.05 0.07 0.19 0.23 0.31 5.5 4.5 4.3
All 23 Sites 0.02 0.03 0.05 0.09 0.10 0.19 4.9 3.9 4.0

24Slightly “fat-tailed” distributions for wind variability have also been noted (e.g. Holttinen et al. (2008)).
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Figure 10: (a) Average standard deviation and 99.7th percentile of deltas in global
clear sky index from five close sites and all sites aggregated together in
the SGP network over different averaging intervals. (b) The ratio of 99.7th

percentile and standard deviation of deltas in global clear sky index from
five close sites and all sites aggregated together in the SGP network.

5.3.2 Smoothing from a Denser Array

The area covered by the SGP network is sizable. Aggregating sites over 400 km apart
to achieve the benefits of geographic diversity may not always be feasible, either because
individual balancing areas are smaller than this size or because solar resource conditions or
transmission costs support more dense spacing of solar plants. In this section we use the
fit to the correlation of deltas with distance (Eq. 8), the deltas observed at individual sites
(Figure 4a), and the “diversity filter” (Eq. 7) to predict the deltas that would be observed
from aggregating a much more dense array of sites. We estimate the maximum of the 99.7th

percentile of deltas by conservatively assuming that the ratio of the 99.7th percentile to the
standard deviation of the deltas does not change relative to an individual site (see Figure
4b). This assumption is conservative since the analysis of the SGP data did show a degree
of reduction in this ratio (Figure 10b) especially for shorter averaging intervals. We do not
know with certainty, however, how the ratio of the 99.7th percentile to the standard deviation
would change for a more dense array that includes sites with deltas that are more correlated
than the deltas from the sites in the more sparse SGP array.

The array that we simulate is purely to illustrate the potential broader use of the data
analyzed from the SGP network. We therefore restrict the array to sites spaced by at least
20 km so that we do not need to extrapolate from the fit in Figure 5. Specifically, we use a
10 × 10 site square array of 100 sites spaced by 20 km on a grid.25 As shown in Figure 11,

25The total area of the dense array would be 40,000 km2, smaller than the 52,000 km2 area of San
Bernardino County, an area in Southern California with a high solar resource potential.
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Figure 11: Comparison of the standard deviation and 99.7th percentile of deltas in
global clear sky index for the individual sites within the SGP network
compared to the same for a simulated array of 100 sites arranged in a more
dense 10 × 10 grid with 20 km spacing between sites.

for an array with these characteristics, we find that the maximum expected 99.7th percentile
of the 30-min or shorter deltas would be smaller than the deltas observed from the aggregate
of the 23 sites in the SGP network. The relative aggregate variability is reduced because of
the increase in the number of sites that are uncorrelated. For longer time scales, however,
the close sites within the dense array are more correlated than the sites in SGP network.
Over these time scales, therefore, the benefit of the greater number of sites in the dense array
is balanced by the fact that the deltas of the sites are more correlated over time scales of
60-min and 180-min. As a result of the counteracting trends, Figure 11 (in comparison to
Figure 4a) shows that the aggregate variability of the dense array with 100 sites is similar
to the aggregate variability of the sparse SGP network with 23 sites for longer time scales.

Across all time scales, the simulated dense array requires far fewer resources to manage
the aggregate variability than if the same amount of PV were to be installed at a single
site with no benefit of geographic diversity. The resources required to manage 99.7% of the
deltas for the dense array for time scales of 15-min and shorter are predicted to be less than
10% of the clear sky insolation, six times less than the resources required to manage the
variability of the same amount of PV if all solar were to be located at a single site. The
resources to manage 99.7% of the 60-min deltas for the dense array is 20% of the clear sky
insolation—three times less than if the same amount of PV were based at a single site.

5.4 Comparison of Solar and Wind Deltas from Similarly Sited
Plants

One way to put these results into perspective is to compare the expected variability from an
array of PV sites to a similarly spaced array of wind sites. We performed a similar analysis
for 1-min normalized wind power data estimated from 10 wind speed measurement sites
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Figure 12: (a) Standard deviation and 99.7th percentile of deltas in normalized wind
power over different averaging intervals for the individual sites within the
SGP network. (b) The ratio of 99.7th percentile and standard deviation of
deltas in normalized wind power at individual sites. Error bars represent
+/- one standard error from the mean (N = 10).

within the SGP network. Namely, we estimated the deltas of the normalized wind power at
individual sites (Figure 12a), the ratio of the 99.7th percentile to the standard deviation of
the deltas (Figure 12b), and the correlation of deltas as a function of the distance between
sites and the time scale of the deltas (Figure 13).

The standard deviation of 1-min deltas at individual wind sites was comparable to the
1-min deltas of the clear sky index at individual sites, but the standard deviation of deltas
over longer time scales were somewhat less for the wind sites. The 99.7th percentile was
significantly less for wind than for solar, especially for 60-min and shorter averaging intervals.
The tails of the 1-min and 5-min delta distributions were slightly less “fat” for wind than
for solar (Figure 12b). The correlation of wind deltas for dispersed sites in the SGP network
demonstrated similar behavior as found for solar and previous studies using actual wind
turbine output in Germany (Ernst et al., 1999). Overall, however, deltas for wind were
slightly more correlated than deltas for solar (the non-deterministic component measured
by the clear sky index) for any given distance, particularly for deltas longer than 30-min
(Figure 13). This comparison of the correlation with distance and variability at individual
sites suggests that wind is less variable than solar at individual sites, but wind in this region
benefits slightly less from geographic diversity than does solar.

Next we use the fit to the correlations in Figure 13 based on Eq. 8, the deltas observed
at individual sites (Figure 12a) and the “diversity filter” (described by Eq. 7) to predict the
deltas that would be observed from aggregating an array of wind sites for comparison to a
similarly arranged array of solar sites. The array we chose for this section was again based
on the constraint that we did not want to extrapolate from the data obtained from the SGP
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Figure 13: Correlation of changes in wind power between 10 geographically dispersed
wind speed measurement sites in the SGP network. (—) Fit to the corre-
lation data to the relationship in Eq. 8.

network. Since the closest wind measurement sites were 50 km apart, we simulate a 5 × 5
site square array of 25 sites spaced by 50 km on a grid for both solar and wind (see Figure
14 and note that the solar array included here is a different arrangement of sites than the
arrays evaluated in Section 5.3). The 99.7th percentile is again estimated for both solar and
wind by assuming that the ratio of the 99.7th percentile to the standard deviation for the
array is equivalent to the ratio for a single site.

The results of this simulation demonstrate that the standard deviation of the deltas
of similarly sited solar and wind plants in the 5 × 5 array are reasonably comparable,
particularly for 30-min and longer deltas. The 99.7th percentile of the 5 to 15-min deltas are
notably smaller for wind, however. If balancing resources were procured based on the 99.7th

percentile, for example, the 10-min deltas for solar would require nearly double the balancing
resources that wind requires.26 The results also show for both the aggregated solar and wind,
the longer time scale deltas are expected to be much larger in magnitude than the shorter
time scale deltas. The 60-min deltas, for instance, are double or greater the magnitude of
the 15-min and shorter deltas.

5.5 Potential Cost Impacts

Detailed studies of the changes in power system operations required to manage the short
time-scale variability of PV are required to fully understand the cost implications of short-

26We tested a variety of different spacings for the array of sites to determine if these conclusions depended
on our choice of array spacing. Although the overall shape of Figure 14 changes, the primary conclusions
still hold with other array orientations.
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Figure 14: Comparison of the simulated standard deviation and 99.7th percentile of
deltas in global clear sky index to normalized wind power from similarly
arranged array of 5 × 5 grid with 50 km spacing between sites.

term PV variability. As a first approximation, however, we can use a simple method and
set of assumptions to estimate the cost of managing the short time-scale variability of solar.
With this simple method, we examine the relative difference in cost of managing solar all
based at a single site, solar dispersed over multiple sites, and similarly sited solar and wind.
Our comparison lacks any consideration of within-plant smoothing based on geographic
diversity, which may be relatively more important for short time scales (1-10 min) for wind
in comparison to solar due to the lower areal density of wind plants.27 Regardless, we
rely on a simple method to estimate the additional cost of holding spinning or utilizing non-
spinning reserves to accommodate the short-term variability of PV and wind assuming a 10%
penetration of wind or solar (on a capacity basis). These costs only address the short-term
variability and do not address other costs (e.g., unit commitment costs due to day-ahead
forecast errors) or benefits (e.g., capacity value and energy value) of PV.

5.5.1 Estimated Cost of Reserves

The estimated increase in the cost of balancing reserves per unit of variable generation
relative to the cost of balancing reserves without variable generation is summarized in Table
4. The costs for a single site and five close sites of solar are based on the standard deviation
of the deltas for the different time scales observed in Figure 4a and Figure 10a, respectively.
The costs for a 25 site grid of solar and wind are based on the standard deviation of the

27Assuming a solar plant density of 20 W/m2 (Denholm and Margolis, 2008), a 100 MW plant would
cover an area of 5 km2 or a square 2.2 km long on a side. Wind plant density, on the other hand, is around
5W/m2 due to the spacing between turbines within a plant (DOE, 2008, p. 156). A 100 MW wind plant
would cover an area of 20 km2 or a square 4.4 km on a side.
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deltas for the different time scales projected in Figure 14. Again, the standard deviation
is used because we do not use 1-min time synchronized load data from the same region to
determine the shape of the distribution of the net load deltas. The results in the four leftmost
columns of Table 4 show the cost of balancing reserves assuming that, to accommodate the
increase in solar or wind, system operators conservatively increase reserves at a constant
level throughout the year (“Reserves Constant Throughout Year”). The column on the right
shows the increase in the cost of balancing reserves for the 25 site grid of solar assuming,
instead, that system operators set the additional reserves knowing that the variability of
the solar output will change with clear sky insolation (“Reserves Change with Position of
the Sun”). This captures the fact that system operators do not need to maintain reserves
for solar at night and fewer reserves are required when clear sky insolation is low. The
opportunity cost of capacity, however, is assumed to be based on only the peak net-load
hours of the year and therefore does not change from hour-to-hour.

Placing all of the solar at a single point and holding reserves constant throughout the
year leads to an increase in the cost of balancing reserves that is large enough to substantially
erode any value of adding solar to the power system. Adding the same quantity of solar to
the grid at the five locations that correspond to the five closest sites in the SGP network,
however, increases the cost of balancing reserves relative to load alone by only about a quarter
of the increase in costs from adding the solar at a single point. Further spreading the same
quantity of solar to 25 sites in a 5 × 5 grid leads to an increase in the cost of balancing
reserves that is only about 7% of the cost of adding the solar at a single site. Clearly, the
number and orientation of the solar systems added to the grid will have a substantial impact
on the overall increase in balancing reserves and the associated cost to manage the sub-hourly
variability of PV. The earlier studies listed in Table 1 that scaled the output of single sites
and found limits to the penetration of PV based on short-term variability may have come
to dramatically different conclusions had they accounted for the potential smoothing effects
of geographic diversity.

The cost of balancing reserves for geographically diverse solar sites is also not expected
to be substantially different than the cost for similarly sited wind. The slightly greater
variability of solar than of similarly sited wind for time scales shorter than 60-min projected
in Figure 14 leads to a slightly greater increase in the cost of balancing reserves for solar
than for wind if the increase in balancing reserves is constant throughout the year. If the
required increase in balancing reserves is in proportion to clear sky insolation, however, the
cost of balancing reserves for solar can be nearly identical to the cost of balancing reserves
for wind. The decrease in the cost of balancing reserves when reserves are held in proportion
to clear sky insolation is due to the fact that no reserves are needed for solar at night. The
increased costs of balancing reserves for similarly sited solar and wind in a 5 × 5 grid are
modest, but these results should be verified with more detailed solar and wind integration
studies.
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Table 4: Estimated unit cost of reserves to manage short-term variability

Time Scale

Increased Reserve Costs ($/MWh)

Reserves Constant Throughout Year Reserves Change with
Position of Sun

Solar Wind Solar

1 Site 5 Sites 25 Site Grid

1-min Deltas $16.7 $4.8 $1.2 $0.9 $0.8
10-min Deltas $17.3 $4.4 $1.0 $0.2 $0.7
60-min Deltas $5.0 $1.6 $0.6 $0.5 $0.5

Total Cost $39.0 $10.8 $2.7 $1.6 $1.9

6 Conclusions

Our analysis demonstrates that step-changes or deltas in solar insolation at individual points
can be severe. Infrequent step changes from one averaging interval to the next with averaging
times from 1-min to 180-min can exceed 60% of the clear sky insolation. The distributions
of sub-hourly deltas at individual sites are fat-tailed relative to a normal distribution. The
99.7th percentile of the deltas, therefore, is much larger than three standard deviations.

Previous studies of the integration of PV into the electric power system demonstrate that
scaling the output from an individual solar site leads to limits of the penetration of PV on
the grid. The limit is due to the additional balancing resources required to accommodate the
variability of PV plants, and the variability over short time scales (sub-hourly) is found to
be particularly challenging to accommodate. Increasing balancing reserves to accommodate
the variability of solar located at a single point is estimated to lead to a significant increase
in costs and, as suggested by earlier studies, could limit the amount of solar that can be
added to the power system.

As is well known for wind, however, accounting for the potential for geographic diversity
can significantly reduce the magnitude of extreme deltas, the resources required to accom-
modate variability, and the potential increase in balancing reserve costs. The aggregate of
just five close sites in the SGP network show that 99.7% of the 15-min and shorter deltas are
no larger than 25% of the expected clear sky output of the aggregated sites. Furthermore,
we estimate that 99.7% of the 15-min and shorter deltas from 100 sites in a 10 × 10 grid
with 20 km spacing would be no larger than 10% of the clear sky output of the aggregated
sites (this compares to 60% for an individual site). We also find that the sub-hourly deltas
from similarly sited solar and wind are expected to be within the same order of magnitude,
though deltas in the 5-15 min range are expected to be somewhat more severe for solar than
for wind.

The cost of accommodating the short-term variability of similarly sited solar and wind
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plants is expected to be comparable in this region, but further research is required to un-
derstand the costs of managing the variability and the within-plant smoothing for solar that
can occur on shorter time scales. Moreover, the non-normal distribution of deltas indicate
that more detailed studies may wish to focus on managing variability for a target maximum
percentile (i.e., directly estimate reserves to manage the 99.7th percentile events rather than
assume that the distribution is normal and three standard deviations is equivalent to the
99.7th percentile). Consideration of variability on time-scales of about 15-minutes or longer,
meanwhile, should be careful to account for the deterministic changes in PV plant output
due to changes of the position of the sun. Future studies should evaluate the spatial and
temporal scales of geographic diversity in regions where PV is expected to be deployed in
large quantities, particularly the desert Southwest. High time resolution (1-min or less),
time-synchronized data for multiple sites separated by a distances of 2km to 200 km is re-
quired for such future work. Finally, although it was not considered in this study, studies of
regions that expect both PV and wind deployment should evaluate the potential for the same
balancing reserves be used to accommodate variability of both PV and wind simultaneously.

35



A Approximating the Cost of Balancing Reserves

In this appendix we provide details of how our estimates of the cost of balancing reserves
were derived. The basic method follows an approach first described by Farmer et al. (1980),
then simplified by Grubb (1991), and then applied in practice by Milborrow (2001). The
objective of the analysis is to estimate the cost of providing additional balancing reserves to
manage the variability of wind or solar generators at the system level per unit of variable
energy generation, URC ($/MWh). The total cost of balancing reserves is assumed to be
the sum of the reserves required over various time scales. Following EnerNex Corp. and
Windlogics Inc. (2006), for instance, this would be the reserves based on the 1-min deltas
(regulation), 5-min deltas (load following),28 and 60-min deltas (operating reserve margin).
In this appendix, we simplify the notation for the deltas by simply referring to the standard
deviation of the deltas normalized by the peak as σ. Therefore, σL is the standard deviation
of the load deltas over a particular averaging interval divided by the peak load. Similarly,
σV is the standard deviation of the deltas of a variable generator over a particular averaging
interval divided by the nameplate capacity of the variable generator. The standard deviation
of the deltas from the load net variable generation normalized by the peak load (without
variable generation) is σL−V .

A.1 Unit Reserve Costs of Variable Generation

For all time scales, we assume that the increase in the unit reserve costs per MWh of variable
generation (URC) is the difference in the annual reserve costs for managing the net-load with
variable generation (ARCL−V ) relative to the annual reserve costs for load alone (ARCL)
per unit of energy produced by the variable generator (EV ).

URC =
ARCL−V − ARCL

EV
(10)

The annual energy produced by the variable generator (EV ) depends on the capacity
factor of the variable generator (CFV ) and can be written relative to the penetration of the
variable generator on a capacity basis (α = KV

KL
) and the peak load (KL).

EV = KLαCFV 8760 (11)

A.2 Reserve Costs for 1-10 min Deltas

For 1-min and 10-min variability, we assume that only on-line and synchronized resources
(or spinning balancing reserves) can be used to manage variability and that there is an op-
portunity cost of capacity that accompanies these reserves. The opportunity cost of capacity
for the reserves is the unit cost of capacity, FCp (in units of $/MW-h), multiplied by the

28We use the 10-min deltas in place of the 5-min deltas since the NERC CPS2 reliability performance
standard focuses on 10-min averages of the area control error (ACE).
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amount of balancing reserve during peak net-load hours. We assume that the amount balanc-
ing reserve is a multiple, κ, times the standard deviation of the load or net load deltas. The
multiple κ is assumed to be three for both the load and the net-load, corresponding to 99.7%
of the deltas if the load and net-load deltas were normally distributed.29 While the amount
of reserve procured in any hour (σLKL for load) can vary, the opportunity cost of capacity is
fixed throughout the year and only depends on the amount of reserve procured during peak
load periods. We always assume that even if the reserve procurement changes throughout
the year, the peak reserve requirement will correspond to the peak load requirement.

The hourly cost of keeping units positioned to provide spinning balancing reserve is the
product of the variable cost of the marginal unit (cm) and the part-load efficiency penalty (η)
times the amount of required spinning reserve in each hour. The part-load efficiency penalty
represents the increase in the variable costs for the rest of the energy that the spinning
unit generates relative to the variable cost if the plant were at its most efficient set point
(generally full capacity) (see Mills et al. (2009b) for additional discussion). The amount of
spinning balancing reserve in each hour is a multiple (γ) of the standard deviation of the
load or net load deltas in each hour. The multiple γ is also assumed to be three for both the
load and net load. The annual reserve costs to manage the 1-min or 10-min deltas for the
load is then:

ARCL =
∑
8760

ηcmγσLKL + 8760FCpκσLKL (12)

If the multiples κ and γ are assumed to be equivalent between the load and the net load
(in other words if the shape of the distribution of the deltas is assumed to be the same for
the load and the net load) and constant throughout the year then the unit reserve costs for
the 1-min or 10-min deltas simplifies to:

URC =
ηcmγ

1
8760

∑
8760 (σL−V − σL) + FCpκ (σL−V − σL)

αCFv
(13)

Assuming that the load deltas and the variable generator deltas are uncorrelated30 implies

29We know from the earlier analysis that the deltas of solar and wind are not normally distributed, but we
do not know how the distribution of the load deltas will compare to the distribution of the net-load deltas.
The shape of the distribution of net-load deltas may become closer or further from normally distributed
than the distribution of the load deltas alone or the variable generation deltas alone. Since we do not have
1-min time-synchronized load data that corresponds to the 1-min time-synchronized solar and wind data,
we cannot directly estimate the shape of the distribution of the net-load deltas. Instead, we rely on this
simplifying assumption, explicitly acknowledging that this is a simple analysis and is not meant to guarantee
that the result will be an accurate estimate of the cost to manage 99.7% of the deltas for the different time
scales.

30The 60-min variable generation and load deltas are likely to be correlated to some degree. The stochastic
changes in insolation due to clouds, as captured by the clear sky index, however, are less likely to be correlated
with changes in load than the changes in total solar insolation and load. Either way, we do not use time-
synchronized load variable generation data to account for correlation between generation and load deltas in
our simple estimates. More detailed evaluations of the costs of managing short-term variability for a specific
load should account for the potential correlation of generation and load over the 60-min time-scale, but
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that the standard deviation of the net load normalized by the peak load (σL−V ) can be
calculated as:

σL−V =

√
(σL)2 + (σV α)2 (14)

The unit reserve costs can then be simplified further to:

URC =

ηcmγσL
1

8760

∑
8760

[(
1 +

(
σV α
σL

)2
) 1

2

− 1

]
+ FCpκσL

[(
1 +

(
σV α
σL

)2
) 1

2

− 1

]
αCFv

(15)

A.3 Reserve Costs for 60-min Deltas

In the case of the reserves used to manage the 60-min deltas we assume that both spinning
and non-spinning resources can be used to meet these 60-min balancing reserve requirements.
Furthermore, we again assume that there is there is an opportunity cost of capacity associated
with these reserves. The total amount of balancing reserve is the multiple κ times the
standard deviation of the load or net load deltas and κ is again assumed to equal three.

The variable cost of non-spinning reserves is assumed to be equal to the product of the
difference between the variable cost of energy from the standing plant (cg) and the variable
cost of the marginal unit (cm). The amount of energy that is used from the standing plant to
provide energy is a multiple (U(γ)) of the standard deviation of the net load or load deltas.
The multiple is called the utilization function, U(γ), and it represents the amount of energy
that is expected to come from non-spinning reserves in each hour assuming that the amount
of spinning reserves is proportional to the multiple γ. The utilization function assumes that
the deltas are normally distributed and is given by:

U(γ) =

∫ ∞
γ

(x− γ)Z(x)dx (16)

Where Z(x) is the standard normal probability density.
The ratio of the spinning reserves to non-spinning reserves depends on the relative cost of

each resource. With the particular numerical assumptions we made in Table 2, the least cost
way to provide reserves is to manage 0.5 times the standard deviation of the load or net-load
deltas with spinning reserves (γ = 0.5 for 60-min deltas in contrast to γ = 3 when all of
the balancing reserves are met by spinning reserves as assumed for 1-min and 10-min deltas)
and to manage the remaining deltas with non-spinning reserves (U(γ = 0.5) = 0.198). The
annual reserve costs for the 60-min load deltas is therefore:

ARCL =
∑
8760

σLKL (ηcmγ + (cg − cm)U(γ)) + 8760FCpκσLKL (17)

the correlation is not expected to be significant. The equation below can account for correlation by adding
2ρL,V σLσV α under the square root, where ρL,V is the correlation between the deltas of the load and variable
generation. The other equations would need to be modified in a similar manner.
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Assuming that the portion of the 60-min deltas that is met with spinning reserves (γ) is
the same between the load and the net load, and that the 60-min deltas for the load and the
variable generator are not correlated, leads to unit reserve costs of:

URC =

σL (ηcmγ + (cg − cm)U(γ)) 1
8760

∑
8760

[(
1 +

(
σV α
σL

)2
) 1

2

− 1

]
+ FCpκσL

[(
1 +

(
σV α
σL

)2
) 1

2

− 1

]
αCFV

(18)

A.4 Changing Reserves with the Position of the Sun

As operators gain more experience with solar it will be clear that the level of reserves that
are needed to accommodate sub-hourly variability in the early morning, late evening, or
winter months when insolation is low are not the same as the amount of reserves required to
accommodate variability during summer midday hours when solar plants are near capacity.
Instead of assuming that reserves are constant throughout the year, in this section we as-
sume that reserve needs are proportional to clear sky insolation. The normalized standard
deviation of the deltas of the net-load in Eq. 15 and Eq. 18 is assumed to be a time-varying
quantity based on the clear sky insolation normalized by the peak clear sky insolation.

σV = σk
Gc(t)

Gp
c

(19)

Where σk is a constant parameter throughout the year and is equivalent to the σt∆k
notation used earlier. Unit reserve costs are then calculated by evaluating Eq. 15 and Eq.
18 with a time series of one year of clear sky insolation. The clear sky insolation is estimated
from a simple “no-sky” set of equations based on the time of year and the location using
standard methods available in the “Air-sea” time-series package from the United States
Geological Survey.31 We assume that the reserves during the peak period are planned to
accommodate a case where the clear sky insolation is at its maximum during the period of
capacity scarcity (i.e. we assume that Gc(t)

Gp
c

= 1 when estimating the capacity impacts of
additional reserves in Eq. 15 and 18).

The results of this analysis are summarized in Table 4 for deltas on each time scale. The
increase in the cost of reserves on each time scale is then summed to estimate the total cost
of the increase in balancing reserves across all sub-hourly time scales.

31The matlab code for the air-sea package, developed by Bob Beardlsley and Rick Pawlowicz, is available
from http://woodshole.er.usgs.gov/operations/sea-mat/.

39



B Estimated Capacity Factor of Modeled Wind Plants

at SGP Sites

The measured 1-min wind speed data at 10-m was scaled to 80-m using a 1/7th power law
then converted into 1-min wind power data using a wind power curve. The measured wind
speed, the scaled wind speed at 80-m, and the estimated capacity factor of the wind power
output are summarized in Table 5. The sites where the capacity factor was less than 20%
were excluded from this analysis and are not shown in this table.

Table 5: Measured wind speed at 10-m, projected wind speed at 80-m, and projected
capacity factor for wind sites in SGP network

Avg. Annual Wind Speed (m/s)

SGP Cluster 10 ma 80 mb Capacity
Factorc

E1 5.05 6.79 26.4%
E3 4.53 6.10 21.3%
E5 4.59 6.17 22.2%
E6 4.55 6.13 21.2%
E8 5.47 7.36 30.4%
E9 5.29 7.12 28.5%
E11 4.65 6.25 22.8%
E13 5.39 7.25 30.0%
E15 4.71 6.34 23.1%
E24 4.77 6.42 24.7%

a - Measured wind speed
b - Extrapolated wind speed using 1/7th power law
c - Annual average capacity factor based on 80 m wind speed
data and multi-turbine power curve from Holttinen (2005)
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