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Abstract— We propose a partitioning problem in a power 

system context that weighs the two objectives of minimizing cuts 
between partitions and maximizing the power imbalance between 
partitions.  We then pose the problem in a purely graph theoretic 
sense. We offer an approximate solution through relaxation of 
the integer problem and suggest refinement using stochastic 
methods.  Results are presented for the IEEE 30-bus and 118-bus 
electric power systems. 

Index Terms—Graph Partitioning, Extreme Events 
 

I. INTRODUCTION 
HIS work is motivated by extreme events in electric 
power systems that are caused by multiple contingencies.  

Anticipation of such events is made difficult by the 
fundamentally combinatorial nature of the problem. In this 
paper we study a class of extreme events that may occur in a 
power network – the partitioning of a network into separate 
areas with a disturbance severity measured as the power flow 
disrupted by the separation – using a graph-theoretic approach. 

In practice the power grid is operated to be at least “N-1” 
secure, where N-1 refers to the number of components in the 
model, i.e., a nominal number, N, less a single component. For 
example, in the WECC Operating Handbook this famous N-1 
criterion is stated as “the interconnected power system shall be 
operated at all times so that general system instability, 
uncontrolled separation, cascading outages, or voltage 
collapse, will not occur as a result of any single contingency 
or multiple contingencies of sufficiently high likelihood” [1].  
More specific operating polices are then employed to achieve 
this goal.   

The N-1 criterion is seemingly practical. In planning stages, 
engineers may use traditional tools to prepare for virtually all 
single contingencies and a number of more likely double and 
triple contingencies. Furthermore, we may expect that multiple 
random outages are unlikely, and we might argue they are of 
little concern. However, it is observed that the probabilities of 
component outages are not independent. A single contingency 
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may initiate a subsequent outage or at least serve as an 
indicator that additional outages may occur. A dramatic 
example of dependent outages occurred during the August 
14th, 2003 blackout in which the initiating events were 
multiple lines sagging into the trees. The common cause of 
failure of these lines suggests that their failures were not 
independent events. Furthermore, the word “security” has 
taken on an additional meaning in recent years, and we are 
concerned about malicious attacks on the power grid in which 
outages are entirely dependent. 

The mathematics involved in a brute-force enumeration of 
multiple contingencies is not practical, not even using 
supercomputers. This is easily demonstrated by direct 
calculation of the number of combinations required for N-3 
and N-4 analysis for a 10,000 component system. The N-3 
analysis involves approximately 1012/6 combinations and the 
N-4 analysis involves 1016/24. Assuming a supercomputer 
with 10,000 parallel processors and assuming that each 
processor can evaluate one combination in 1 second, the 
computation times will exceed 193 days and 103 years 
respectively. For a 100,000 component system the computing 
times would exceed 528 years and 107 years respectively. 
Clearly detailed analysis of all possible multiple contingencies 
is not computationally feasible. 

A sensible alternative to brute-force enumeration is to 
search intelligently for the contingencies that may lead to 
extreme events. In this paper we examine a reduced objective 
and simplified techniques for analysis that aid in the search for 
extreme events.  First, we limit the scope of our search to 
focus on events with severe consequences that may arise from 
relatively few component outages. The explicit trade-off 
between these two factors is made explicit in our objective 
model. Second, we employ a graph theoretic approach to find 
system partitions arising from a small number of component 
outages that result in a large disruption in power flow between 
the partitions. This is a measure of severity.   

This approach should be used as a screening step after 
which a more detailed analysis using appropriate power 
system models can be employed to evaluate outages of subsets 
of the identified components that may result in a severe event. 
In this way we can hope to identify contingencies that can 
cause severe outages without exhaustive search. We 
demonstrate in our prior work that this general approach does 
identify outages [2], [3]; we do not discuss the detailed-
analysis step further here. We limit this paper to the problem 
of finding undesirable partitions (causing severe power 
imbalance) with the least effort (fewest cuts). 

Power System Extreme Event Screening using 
Graph Partitioning 

Bernard C. Lesieutre, Sandip Roy, Vaibhav Donde, and Ali Pinar 

T 



 

In the next section, we provide basic background on 
spectral partitioning of graphs, since our analysis closely 
follows methods employed in this field. In Section III we 
formally state our problem and pose a solution technique, and 
in Section IV we provide illustrative examples. We conclude 
with a discussion of the benefits and weaknesses of this 
approach. 

II. GRAPH PARTITIONING – SPECTRAL METHOD 
This section is intended to be a tutorial and may be skimmed 
by those readers already familiar with this topic.  In keeping 
with the spirit of a tutorial we introduce terminology and 
concepts in reference to a small sample graph depicted in 
Figure 1. 

The four nodes and five branches are represented by circles 
and arrows respectively. This graph is “directed” in the sense 
that the arrows start at one node and point to another.  A 
branch/node incidence matrix, A, that mathematically 
represents the information in the graph (nodes and directed 
connections) is given by 
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where the rows represent the branches and the columns 
represent the nodes.  Matrix entry Amn is equal to 1 if branch m 
originates at node n, and it is equal to –1 if the branch 
terminates (points to) node n.  The entry is equal to zero if the 
branch is not incident (connected) to node n.   
 

A. Graph Partitioning 
The purpose of graph partitioning is to separate the nodes of a 
graph into two or more groups to satisfy a specified goal. In 
the power system context, this may be familiar to the reader in 
the “slow coherency” literature. Groups of generators are said 
to be coherent when they have identical dynamic responses to 

events originating outside their group. Theory supporting this, 
as well as certain techniques for identifying such groups, rely 
on identifying weak cutsets separating groups in the network. 

In computer and computational contexts, it is often the goal to 
form equal sized groups with the minimum number of edges 
crossing between different parts. It is commonly used as part 
of the divide-and-conquer paradigm to decompose problems 
into loosely coupled sub-problems. Three main areas that have 
driven the research on graph partitioning are parallel 
processing, sparsity preserving orderings for sparse matrix 
factorizations, and VLSI design. In parallel processing, the 
vertices represent computational tasks, and edges correspond 
to communication requirements between two tasks. Vertices 
are weighted with the estimated computational times of the 
associated tasks, and thus balance among total weights of parts 
grants computational load balance among processors.  
Minimizing the edge cut on the other hand, minimizes the total 
communication overhead in the system. In sparse matrix 
ordering, graph partitioning is used as the decomposition 
operator for nested dissection approach, which is an example 
of the divide-and-conquer paradigm. The performances of 
these approaches are determined by the sizes of the separators, 
and thus it is crucial to find good separators, that can 
decompose the problem into at least two smaller subproblems. 
Finally in VLSI design, partitioning approaches are used to 
decompose the problem into smaller tractable problems, again 
as part of the divide-and-conquer paradigm. For example, 
vertices can be used to represent circuit components, and 
edges represent circuit connections. A good layout can be 
achieved by decomposing this graph into smaller subgraphs, 
which give tractable size problems.  
 As we have seen in these practical examples, common 
criteria include minimizing the number of lines separating the 
groups (min cut), minimizing the cuts while creating groups of 
equal size (bisection), and more. Mathematically it is 
convenient to introduce an indicator vector associated with the 
nodes, the elements of which are assigned a value that is 
unique to each group.  For two groups the values are typically 
chosen to be –1 and 1. For example, if we choose to place 
nodes 1 and 2 in one group and nodes 3 and 4 in another, we 
can specify the partition with the indicator vector  
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T

x !!=        (2) 
Multiplying the incidence matrix by the indicator vector yields 
a vector that identifies the branches that separate the two 
groups: 
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The value of an entry in vector y is 0 if the branch is internal 
to a group and is ±2 if the branch connects the two groups.  
The sign depends on the direction of the arrow. From (3) it is 
obvious that  

( ) == xAAxyy
TTT 4 times # of separating branches.  (4) 

We will use this simple expression relating the incidence 
matrix, the indicator vector, and the number of cuts separating 
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Fig.   1.  A small 4 node, 5 branch reference graph. 



 

two groups shortly. First we comment on the matrix ATA that 
appears in (4). This matrix is called the “Laplacian” matrix 
associated with a graph and has the following properties: 

1. It is square and symmetric with dimension equal to the 
number of nodes. 

2. The off-diagonal entries are either 0 or –1. 
3. The diagonal entry in each row is equal to the negative 

of the sum of the off-diagonal entries. 
4. It is independent of the orientation of the branches in 

the graph. 
5. If the graph is connected, it has a single zero 

eigenvalue with a corresponding eigenvector equal to a 
vector with identical entries – typically expressed as 
vector of all ones.1 (Note the rows of A sum to zero.) 

6. Its other eigenvalues are all positive. (The matrix is 
obviously positive semi-definite from (4) in which 

0!yy
T  for all x.) 

7. The signs of the entries of the eigenvector associated 
with the smallest positive eigenvalue serve as an 
indicator vector that partitions the graph into two 
internally connected groups. 

 
Properties 1-6 in this list are easily verified. Property 7, 

which is less obvious, is attributed to Fiedler [4], and the 
smallest positive eigenvalue of the Laplacian matrix and 
corresponding eigenvector are often referred to as the Fiedler 
eigenvalue and Fiedler eigenvector.   These play a critical role 
in the spectral graph partitioning method we review in the next 
subsection. For reference, the Laplacian matrix for our 
example system is given by 
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The reader may verify the properties listed above for this 
matrix. 

 

B. Graph Partitioning – Spectral Approach 
 As discussed earlier, in many applications of graph 

partitioning, the goal is to partition a graph into two even parts 
so as to minimize the number branches connecting the parts. 
Denoting the Laplacian matrix by L= ATA and using (4) we 
can cast this problem as an optimization of a quadratic cost 
over all possible partition indicator vectors: 
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This is an integer programming problem. Though not NP-
complete (see Stoer [5] for a clever deterministic algorithm), it 
can be computationally costly to solve. One approach to 
quickly find a result is to “relax” the values of x to allow them 
to take on real values, i.e., to find 

 
1 If the graph comprises disconnected subgraphs, then they may be treated 

separately and the number of zero eigenvalues equals the number 
disconnected subgraphs. 
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and then obtain the partition according to the sign pattern of x. 
We note that this formulation admits the trivial solution x=1 
(vector of all ones). The trivial solution does not partition the 
graph since the indicator vector places all nodes in the same 
group! Excluding this solution temporarily (i.e., considering 
only the solutions orthogonal to the trivial solution), the next 
best vector is the Fiedler eigenvector since it  

• minimizes (7) subject to a scaling, or more precisely, 
it minimizes  

xx

Lxx

T

T

 where 1!x  

• and finds a partition whose two subgraphs are 
connected. 

 
Note that this spectral solution of (7) is not guaranteed to 

find the optimal solution for (6), but it works well in practice. 
We can extend this technique to the bisection problem, the 
problem of breaking the graph into two equally sized 
partitions.  To do so, we add the trivial solution to the Fiedler 
eigenvector.  Denoting the Fiedler eigenvector by vF , consider 

1!+= Fvx .         (8) 
By choosing α to equalize the number of positive and 

negative entries in x, and partitioning the graph according to 
the sign pattern of x, we obtain a good bisection of the graph.  
 

Spectral partitioning methods have been successfully 
applied to several partitioning problems. Pothen, Simon and 
Liou showed the first results for applying spectral methods to 
graph partitioning [10]. Spielman and Teng showed that 
provably good solutions can be achieved for partitioning finite 
elements meshes using spectral methods [18]. Pothen et al.  
applied spectral methods to nested dissection ordering for 
sparse matrices [11]. In the VLSI domain, Alpert and Yao  
showed  how multiple eigenvectors can be used for better 
results [17]. More recently, spectral methods gave way to 
multilevel graph partitioning methods initiated by 
Hendrickson and Leland [14]. Today tools based on multilevel 
graph partitioning such as Chaco [14], Metis [15], Party [16], 
Jostle [13], and Scotch [12] are widely used. However, 
spectral graph theory remains as a productive field for its 
flexibility to model a wide variance of problems, as we will 
see in this paper. The reader is referred to [6] for a survey on 
graph partitioning methods, including spectral methods. 

III. PROBLEM FORMULATION 
The underlying power network may be described by a 

graph. Network buses (nodes) are connected by transmission 
lines (branches); power is injected at certain nodes and 
extracted at others. The focus of this paper is to identify a 
small number of lines that if removed will partition the system 
and will cause a severe power imbalance. These are two, 
possibly competing, objectives: 

1. Minimize cuts 



 

2. Maximize directed power flow across the cutset. 
 

Surprisingly there have been few efforts to address this 
flow-based partitioning problem. Standard graph partitioning 
tools are constrained by forcing balance, and cannot support 
the producer/consumer roles for vertices as in the case of our 
problem. The max-flow/min-cut problem is similar and well-
known as one of the fundamental problems of combinatorial 
algorithms, but it is different than the problem posed here – 
despite the similarity in and usage of descriptive words! Here, 
the imbalance between the two parts is equally important as 
the cutsize, and its addition moves some versions of our 
problem to the NP-complete status, whereas maximum-flow 
algorithms can be solved efficiently in polynomial time. The 
complexity of our problem is sensitive to how the objective 
function is stated. We are currently working on our analysis of 
the complexities of various objective functions, and we 
postulate that the problem is NP-complete for two of the three 
versions considered here, and for many versions of the 
problem.  

To proceed we first describe these objectives in terms of an 
indicator vector that will describe the partitions. The cutsize 
cost was expressed in the previous section by (4) and (6). To 
obtain an expression for the power flows across a specific 
cutset of lines we might employ a power flow program to 
calculate the line flows given the power injections. By 
assuming a lossless network, as an approximation, we can 
avoid this added complexity. Let the vector p denote the bus 
power injections and let x be an indicator vector with entries 
equal to ±1.  Then, 

groups).between  flow(power  2=xpT     (9) 
To see why this is true, we note that the sum of power 
injections in the generation-rich partition must be equal to the 
power flow from that group to the generation-poor partition, 
for a lossless system. 

There are a number of ways (9) and (6) can be applied to 
approach our problem.  We consider three in this paper. 
 

A. Simple cuts less power imbalance 
The simplest, and arguably the most direct, mathematical 

representation for the objectives stated above is given by the 
following minimization problem: 

xcpLxxx
TT
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where the first term is equal to 4 times the number of cuts, the 
second term is proportional to the power flow disrupted by 
such cuts, and the positive scalar c explicitly represents the 
trade-off between these objectives. A small value for c favors 
minimizing cuts, while a large value of c favors maximizing 
power imbalance.   

To find a solution to the partitioning problem (10), we can 
use an approach similar to that used for spectral partitioning in 

the previous section2. In particular, we relax x in (10) to allow 
for any real valued entries: 
      .minargˆ xcpLxxx

TT

Rxi
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       (11) 

Direct application of calculus yields  
.02 =! cpLx           (12) 

with the following solution achieving the minimum of (11) 
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where the symbol “†” is used to represent the pseudo inverse. 
To understand the solution in (13), it is critical to note that 
vector p is orthogonal to the vector of all ones (since the 
elements of p sum to zero), and thus lies in the column space 
of L. The family of solutions parameterized by α in (13) 
satisfy (12) exactly.   
 To find a useful discrete indicator vector from the 
continuous solution (13), we recommend examining the n-1 
forms taken by the vector 
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as the parameter α is varied from a large negative number to  a 
large positive number, ignoring the cases when all elements 
are either positive or negative. (These indicate all nodes in a 
single group.) From these n-1 possibilities, we recommend the 
choice of the indicator vector that minimizes the objective 
(10).  As we will discuss through examples in Section V, this 
approach is not perfect, but it is simple and yields useful 
results. 

Substitution of (13) into (11) provides a lower bound on the 
minimization as a function of c, p, and L: 

      
pLp

c
xcpLxx
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This bound is potentially important for two reasons.  First, 
when we restrict elements of x to take on values equal to ±1 to 
create an indicator vector, (15) allows a comparison to the 
bound.  This can be used to gauge the quality of the integer 
indicator vector solution.  Secondly, the structure of the bound 
provides insight into robust design for a power grid in terms of 
the network structure and the power injections. The most 
robust system, requiring many outages to create a substantial 
disturbance, will have the eigenvector associated with the 
largest eigenvalue of L, aligned with the power injection 
vector to minimize the quantity pLp

T † . 
Continuing with our tutorial example introduced in the 

previous section, let us define the power injection vector 
       [ ] .1122

T
p !!=        (16) 

The n-1=3 candidate indicator vectors suggested by (15) are 

 
2 This formulation of the problem can be solved in polynomial time, and 

relatively quickly in practice. Here, for consistency with the remaining two 
formulations, we report on the use of the spectral approach. 
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For values of c less than 2, the minimum objective is 
obtained with x3.  For values of c greater than 2, the minimum 
objective is obtained with x2.  These are clearly the correct 
solutions of (10) for this example.  For the small c case, we 
place more emphasis on small cuts. The x3 solution contains 
the fewest cuts possible, 2, and has a greater power imbalance 
than x1, which also has 2 cuts.  For large c, we emphasize the 
power imbalance more, and the indicator vector given by x2 
maximizes this quantity in this example. 
 

B. Simple cuts less the square of power imbalance 
The objective (10) presented in the previous subsection is 

only one of the many possible objectives that trade off line 
outages and power imbalance. We will consider another in this 
section, but pause to mention two peculiarities with the results 
in the prior section. First, the candidate indicator vectors 
constructed from continuous solution (13) do not depend on 
the trade-off parameter c. The choice of indicator vector, 
following the suggested procedure, does depend on this 
parameter, but the set of n-1 candidate vectors does not.  
Second, the bound provided in (15) is not useful for large 
values of c. The issue is that the indicator vectors have a 
constant size, i.e., xTx=n. The unconstrained vectors in (13) 
that are used to calculate the bound in (15) may be arbitrarily 
large, especially for large c, and do not serve to evaluate the 
quality of a solution in these cases. One can find an 
approximate lower bound (which works reasonably well) by 
similarly rescaling the solution vector x as expressed in (13), 
but the result is only approximate, and might not be a true 
bound. (To properly follow this line of reasoning, one would 
constrain the optimization problem to require xTx=n, the same 
magnitude as any indicator vector, and the result can be used 
to calculate a true bound.3) 

In the absence of any compelling reason to restrict our 
studies to the objective posed in (10) we examine the slightly 
different problem 
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In (18) the power imbalance term is squared. The form of (18) 
is interesting and mathematically convenient. The matrix (L-
cppT) has a similar form as a (weighted) Laplacian matrix. It 
exhibits a trivial structural zero eigenvalue with corresponding 
eigenvector equal to the vector of all ones.  
 

The solution, subject to a scaling, is easily obtained using 
the spectral arguments we reviewed in Section II:  

 
3 Numerically, one can easily compute such a solution to provide a more 

accurate lower bound. 

11 !+= vx          (19) 
where v1 is the eigenvector associated with the smallest 
eigenvalue, excluding the trivial structural eigenvalue. The 
suggested procedure for choosing a discrete indicator vector is 
the same as the presented in the previous subsection.  In this 
case, however, a practical closed-form lower bound is 
obvious: 
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C. Ratio of squared power imbalance to cuts 
In formulation (18), a special case occurs when  
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The matrix (L-cppT) exhibits a nontrivial zero eigenvalue with 
corresponding eigenvector 

pLv
†

1 =           (22) 

This special solution is particularly interesting because it 
also maximizes the ratio of squared power imbalance to cut 
lines cost, and it may itself be considered a reasonable 
objective function: 
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While the relaxations of (23) and (18) yield identical 
results, the integer forms may not. Also, as we will see in one 
of our examples, when indicator vectors are chosen following 
the simple procedure described in this paper, different results 
may be obtained.  

Direct substitution of (22) into (23) yields a practical upper 
bound for this ratio: 
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Again we note the interpretation for this bound suggests that 
less likely extreme events or less severe extreme events may 
be achieved by designing the system such that the eigenvector 
associated with the largest eigenvalue of the Laplacian is 
aligned with the injection vector p. 

Examination of the tutorial example system yields the same 
partitions discussed in the previous subsections. 
 

IV. EXAMPLES 
In this section we examine two test systems: the IEEE 30 

bus and the IEEE 118 bus systems [7]. These are convenient 
because they are readily available and many researchers are 
familiar with them. We present the 30-bus system results in 
detail, and discuss the 118 bus results. 



 

 
The 30 bus system is shown in Fig. 2. The set of power 

injections used in this system were modified from the original 
data set to increase power flows and hence the imbalance in 
the network. (The original data contains 3 power-balanced 
areas.) The power injection data used is provided in the 
appendix. The value for the trade-off parameter c is specified 
as in (21). This allows us to compare results using the three 
optimization goals discussed in the Section III, (10), (18), and 
(23). 

For this system, the three approaches yield identical 
partitions. The shaded buses in Fig. 2 belong to one group, and 
the remaining buses belong to the other. The net power surplus 
in the generation-rich area (the shaded nodes) is 1253 MW 
and there are 5 lines separating the areas. The total generation 
is 1643 MW, so this imbalance represents 76% of the absolute 
maximum. We note that the result represents three separate 
internally connected groups. Shifting the generator at bus 13 
to the other group reduces the power imbalance to 843 MW 
and reduces the cuts by one. This is still significant but is sub-
optimal in terms of the bounds (20) and (24).  

Using the solution indicator vector, the bound relations for 
the different objectives (15), (20), and (24) are compared in 
Table 1. The bounds (15) and (20) are lower bounds, and 
bound (24) is an upper bound. In this table the bounds are 
compared to the calculation using the computed indicator 
vector. For reference we also compare them to the calculation 
using a randomly generated indicator vector to give a sense of 
the range the calculations may take. As we discussed in the 
text, a comparison to the bound for objective A, (15), is not 
likely to be close due to a scaling dependence.   

 
TABLE 1. COMPARISON OF OBJECTIVE BOUNDS TO CALCULATIONS USING THE 

CALCULATED INDICATOR VECTOR AND A RANDOM INDICATOR VECTOR FOR 
THE 30-BUS SYSTEM. 

 Objective A 
Bound (15) 
(lower) 

Objective B 
Bound (20) 
(lower) 

Objective C 
Bound (24) 
(upper) 

Bound  -0.45 0 0.55 
Calculated 
indicator x 

15.45 0.29 0.31 

Random 
indicator x 

113.45 3.69 0.01 

 
Next we examine the IEEE 118 bus system.  In this case the 

challenge of going from a relaxed continuous solution to a 
discrete indicator vector becomes apparent. Objective 
functions A and B yield a different partition from Objective C, 
using the approach suggested in previous sections and 
choosing c as defined in (21). 

We do not display this system in this paper but explain our 
results here. The continuous solution satisfying all objectives 
in this case is the same vector, but the process of varying the 
parameter α to optimize the objective yields different results. 
For Objectives A and B, it identifies a single generator 
connected to the grid through a single line. This is a 
reasonable result, given the objective of minimizing cuts and 

maximizing power imbalances, but it is not the type of 
multiple contingency problem we set out to investigate using 
this procedure. Increasing the parameter c succeeds in finding 
partitions with higher power imbalance at the cost of more 
cuts. 

The indicator vector given by Objective C allocates 80 
nodes to one group and 38 nodes to the other. The net power 
surplus in the generation rich group is 2.68 GW, or roughly 
73% of the total system 3.65 GW of generation. There are 25 
cuts separating the groups. The generation rich partition is 
internally connected, while the remainder of nodes comprises 
four distinct internally connected groups. Using (24) to 
compare the value of Objective C, 29, to the bound, 112, it 
appears that this solution may be suboptimal. Indeed, starting 
from this and applying some refinements, one may find a more 
optimal solution. From the initial solution we were able to find 
a solution with a power imbalance of 1.2 GW requiring 13 
cuts, which corresponds to an objective of 93. This is closer to 
the maximum 112 than 29. 

While 25 cuts and 13 cuts may seem like a large number, 
we remind the reader that in practice a subset of these cuts will 
likely cause infeasible operation of the grid. Also it is possible 
that some sequence of cascading events could lead to a 
separation represented by these lines. The results presented 
here are intended for screening purposes, to guide subsequent 
detailed analyses. 
 

V. DISCUSSION AND CONCLUSIONS 
In this paper we present some of our initial investigation 

into the use graph theoretic properties to identify power 
system vulnerabilities. We specifically consider the case of 
partitioning a network using the fewest cuts to cause the 
largest power imbalance. We examine the problem as an 
integer programming problem in terms of an indicator vector 
that assigns the nodes to groups.  Borrowing ideas employed 
in spectral partitioning, we relax the integer problem to solve a 
similar continuous problem, and then find an integer result 

 

 

 

 

 

 

 

Fig.  2.  IEEE 30-bus system: the solution places the 
shaded buses into one partition and the remaining buses 
in the other. 
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that is near to the relaxed solution. The continuous problem 
also provides bounds for the integer solution. 

These bounds cannot be achieved, except in the most 
contrived of cases. The elements of the indicator vector are 
restricted to take on the values –1 or 1. If there are n nodes, 
then the possible forms the vector may take may be 
geometrically described as the vertices of an n-dimensional 
hypercube. In contrast, the continuous approximation may be 
considered as a vector pointing anywhere in an n-dimensional 
space. Only when this vector is pointing directly at a vertex 
will this bound be met.  Generically, this will not occur. 

One can use similar arguments to explain why the nearest 
vertex to the continuous solution vector may not yield the 
optimal results. Moving away from the optimal solution in any 
direction (expect that aligned with the vector of all ones, 
which is accounted for in this paper’s calculation), will 
necessarily cause the objective function to evaluate further 
from the bound, but some directions are better/worse than 
others. It is entirely possible that the nearest vertex is in a 
costly direction while a more distant vertex corresponds to 
little change in the objective function.   

We are continuing our work in several directions. We are 
working on evaluating the objectives presented here and we 
seek other sensible objectives. We are developing refinement 
algorithms to aid in locating better choices for indicator 
vectors from the relaxed solutions for Objectives B and C. 
(Objective A can be solved exactly using other techniques.) 
We are seeking to employ directional information as 
mentioned above, and we are also experimenting with 
stochastic refinement algorithms motivated by randomized 
min-cut algorithms [8], by the influence model [9], and a 
randomized modification to Stoer’s algorithm. 

Finally, we are examining explicit use of the bound (24) as 
a metric for comparing the relative “brittleness” of different 
grids, and different operating conditions. We are also 
examining the use of this bound for quickly assessing the 
relative merits of line additions at specific locations. We will 
report on these findings in a separate publication. 
 

APPENDIX 
Table 2 lists the power injections that we used for the 30 

bus example shown in Fig. 2. The values are expressed in 
MW; calculations in the paper use per-unit values with the 
power base equal to 1000MW.  
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TABLE 2. POWER INJECTIONS USED FOR THE 30-BUS EXAMPLE. 
Bus P Bus P Bus P 

1 145.3 11 0 21 -175 

2 -7.3 12 -112 22 315.9 
3 -24 13 410 23 310 
4 -76 14 -62 24 -87 
5 0 15 -82 25 0 
6 0 16 -35 26 -35 
7 -228 17 -90 27 469.1 
8 -300 18 -32 28 0 
9 0 19 -95 29 -24 

10 -58 20 -22 30 -106 
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