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Binding free energy calculations based on molecular simulations provide predicted affinities for
biomolecular complexes. These calculations begin with a detailed description of a system, including
its chemical composition and the interactions between its components. Simulations of the system
are then used to compute thermodynamic information, such as binding affinities. Because of their
promise for guiding molecular design, these calculations have recently begun to see widespread
applications in early stage drug discovery. However, many challenges remain to make them a robust
and reliable tool. Here, we briefly explain how the calculations work, highlight key challenges, and
argue for the development of accepted benchmark test systems that will help the research community
generate and evaluate progress.

I. INTRODUCTION

Molecular simulations provide a powerful technique for
predicting and understanding the structure, function, dy-
namics, and interactions of biomolecules. Often, these
techniques are valued because they provide a movie of
what might be going on at the atomic level. However,
simulations also can be used to make quantitative predic-
tions of thermodynamic and kinetic properties, with ap-
plications in fields including drug discovery, chemical en-
gineering, and nanoengineering. A thermodynamic prop-
erty of particular interest is the binding affinity between
biomolecules and ligands such as inhibitors, modulators,
or activators. With accurate and rapid affinity predic-
tions, we could use simulations in varied health-related
applications, such as the prediction of biomolecular inter-
action networks in support of systems biology, or rapid
design of new medications with reduced side-effects and
drug resistance.

A. Imagining a tool for drug discovery

A major aim in the development of molecular simula-
tions is to create quantitative, accurate tools which will
guide early stage drug discovery. Consider a medicinal
chemist in the not-too-distant future who has just fin-
ished synthesizing several new derivatives of an existing
inhibitor as potential drug leads targeting a particular
biomolecule, and has obtained binding affinity or potency
data against the desired biomolecular target. Before leav-
ing work, he or she generates ideas for perhaps 100 new
compounds which could be synthesized next, then sets a
computer to work overnight prioritizing them. By morn-
ing, the compounds have all been prioritized based on
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reliable predictions of their affinity for the desired tar-
get, selectivity against alternative targets which should
be avoided, solubility, and membrane permeability. The
chemist then looks through the predicted properties for
the top few compounds and selects the next ones for syn-
thesis. If synthesizing and testing each compound takes
several days, this workflow compresses roughly a year’s
work into a few days.

While this workflow is not yet a reality, huge strides
have been made in this direction, with calculated bind-
ing affinity predictions now showing real promise [16,
17, 22, 24, 76, 101, 115, 120], solubility predictions
beginning to come online [65, 91, 99], and predicted
drug resistance/selectivity also apparently tractable [62],
with some headway apparent on membrane permeabil-
ity [20, 58]. A considerable amount of science and engi-
neering still remains to make this vision a reality, but,
given recent progress, the question now seems more one
of when rather than whether.

B. Increasing accuracy will yield increasing payoffs

Recent progress in computational power, especially
the widespread availability of graphics processing units
(GPUs) and advances in automation [67] and sampling
protocols, have helped simulation-based techniques reach
the point where they now appear to have sufficient ac-
curacy to be genuinely useful in guiding pharmaceuti-
cal drug discovery at least for a certain subset of prob-
lems [16, 22, 50, 72, 101, 115, 120]. Specifically, in some
situations, free energy calculations appear to be capable
of achieving RMS errors in the 1-2 kcal/mol range with
current force fields, even in prospective applications. As
a consequence, pharmaceutical companies are beginning
to use these methods in discovery projects. The most im-
mediate application of these techniques is to guide syn-
thesis for lead optimization, but applications to scaffold
hopping and in other areas also appear possible.

At the same time, it is clear that not all situations are
so favorable, so it is worth asking what level of accuracy
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is actually needed. It is often suggested that we need
binding free energy predictions accurate to within ∼ 1
kcal/mol, but we are not aware of a clear basis for this
figure beyond the fact it is a pleasingly round number
that is close to the thermal kinetic energy, RT . Instead
of setting a single threshold requirement for accuracy,
it is more informative to consider how accurate calcula-
tions must be to reduce the number of compounds syn-
thesized and tested by some factor, relative to the num-
ber required without computational prioritization. If one
targets a three-fold reduction, the answer appears to be
that calculations with a 2 kcal/mol RMS error will suf-
fice [76, 105]. Thus, one can gain substantial benefit from
simulations that are good yet still quite imperfect.

More broadly, this analysis does not address the net
value of computational affinity predictions in drug dis-
covery. Costs include those of the software, computer
time, and personnel required to incorporate calculations
into the workflow; while benefits include the savings, rev-
enue gains, and externalities attributable to reducing the
number of low-affinity compounds synthesized and arriv-
ing earlier at a potent drug candidate. In addition, with
sufficiently reliable predictions, chemists may choose to
tackle difficult synthesis efforts they otherwise might have
avoided, resulting in more novel and valuable chemical
matter.

C. Overview of free energy calculations

The present review focuses on a class of methods in
which free energy differences are computed with simu-
lations that sample Boltzmann distributions of molec-
ular configurations. These samples are usually gener-
ated by molecular dynamics (MD) simulations [56], with
the system effectively coupled to a heat bath at con-
stant temperature, but Monte Carlo methods may also
be used [19, 69, 70]. In either case, the energy of a given
configuration is provided by a potential function, or force
field, which estimates the potential energy of a system of
solute and solvent molecules as a function of the coordi-
nates of all of its atoms. Such simulations may be used
in several different ways to compute binding free ener-
gies or relative binding free energies, as detailed else-
where [15, 18, 70, 104] and summarized below. In all
cases, however, the calculations yield the free energy dif-
ference between two states of a molecular system, and
they do so by computing the reversible work for changing
the initial state to the final one. Two broad approaches
deserve mention.

The first general approach directly computes the stan-
dard free energy of binding of two molecules by comput-
ing the reversible work of transferring the ligand from
the binding site into solution. (This is sometimes called
an absolute binding free energy calculation.) The path-
way of this change may be one that is physically realiz-
able, or one that is only realizable in silico, in which case
it is sometimes called an “alchemical” pathway. Physi-

cal pathway methods provide the standard binding free
energy by computing the reversible work of, in effect,
pulling the ligand out of the binding site. Although,
by definition, the pathway used must be a physical one
that could occur in nature, it need not be probable, and
improbable pathways, governed by an order parameter
specifying how far the ligand is from the binding site, are
often used [7, 47, 51, 114, 124, 129]. In addition, artifi-
cial restraints may be useful to avoid sampling problems
in the face of often complex barriers along the pathway
[7, 47, 51, 114, 124]. By contrast, alchemical pathway
methods artificially decouple the ligand from the bind-
ing site and then recouple it to solution from the pro-
tein [8, 42, 48, 55, 73]. Although alchemical decoupling
methods may avoid clashes of the ligand with the protein
that might be problematic in pathway methods for a tight
binding site, they still can pose some of the same sam-
pling challenges. For example, sampling of the unbound
receptor must be adequate after the ligand is removed,
and water molecules must have time to equilibrate in the
vacated binding site. Given that free energy is a state
function, it is not surprising that alchemical and physical
pathway approaches yield apparently comparable results
when applied to the same systems [23, 46, 61, 127].

The second general approach computes the difference
between the binding free energies of two different ligands
for the same receptor, by computing the work of arti-
ficially converting one ligand into another, first in the
bound state and then free in solution [15, 18, 70, 111].
Because these conversions are not physically realizable,
such calculations are, again, called alchemical. These cal-
culations can be quite efficient if the two ligands are very
similar to each other, but they become more complicated
and pose greater sampling problems if the two ligands are
very different chemically or if there is a high barrier to
interconversion between their most stable bound confor-
mations [67]. In addition, there may be concerns about
slow conformational relaxation of the protein in response
to the change in ligand. Nonetheless, alchemical relative
free energy calculations currently are the best automated
and most widely used free energy methods [67, 76, 120].

Importantly, the accuracy and precision of all of these
methods are controlled by the same considerations. First,
many conformations typically need to be generated, or
sampled, in order to obtain an adequate representation
of the Boltzmann distribution. In the limit of infinite
sampling, a correctly implemented method would yield
the single value of the free energy difference dictated by
the specification of the molecular system and the chosen
force field. In reality, however, only finite sampling is
possible, so the reported free energy will differ from the
nominal value associated with infinite sampling. In addi-
tion, because sampling methods are typically stochastic
and the dynamics of molecular systems are highly sen-
sitive to initial conditions [2], repeated calculations, us-
ing different random number seeds or initial states, will
yield different results. The problem of finite sampling is
most acute for systems where low-energy (hence highly
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occupied) conformational states are separated by high ef-
fective barriers, whether energetic or entropic. Second,
even if adequate sampling is achievable, free energy dif-
ferences may disagree substantially with experiment if
the force field is not sufficiently accurate. Third, errors
may also arise if the representation of the system in the
simulation does not adequately represent the actual sys-
tem, e.g. if protonation states are assigned incorrectly
and held fixed.

D. Challenges and the domain of applicability

Thus, in order for a free energy calculation to be re-
liable, it must use an appropriate representation of the
physical system and an accurate force field, and it must
adequately sample the relevant molecular configurations.
In the case of the more widely used alchemical relative
free energy approach, this means that the best results are
expected when:

• a high quality receptor structure is available, with-
out missing loops or other major uncertainties

• the protonation state of the ligand and binding-site
residues (as well as any other relevant residues) can
reliably be inferred

• the ligand binding mode is defined by crystallo-
graphic studies and is not expected to change much
on modification

• the receptor does not undergo substantial or slow
conformational changes

• key interactions are expected to be well-described
by underlying force fields

Beyond this domain of applicability—whose dimen-
sions are, in fact, still somewhat vague — substantial
challenges may be encountered. For example, binding
free energy calculations for a cytochrome C peroxidase
mutant suggest limitations of fixed-charge force fields.
In this case, the strength of electrostatic interactions in
a buried, relatively nonpolar binding site appears to be
overestimated by a conventional fixed-charge force field,
likely due to underestimation of polarization effects [95].
Sampling problems are also common, with slow sidechain
rearrangements and ligand binding mode rearrangements
in model binding sites in T4 lysozyme posing timescale
problems unless enhanced or biased sampling methods
are carefully applied [10, 34, 53, 74, 75, 119]; and larger-
scale protein motions induced by some ligands also posing
challenges [10, 63].

Although such problems need not prevent free energy
calculations from being used, they can require specific
adjustment of procedures and parameters based on ex-
perience and knowledge of the system at hand. Thus,
a key challenge for the field is how to use insights from
well-studied cases to enable automation and reduce the
detailed knowledge of each system required to carry out
high quality simulations.

Troubleshooting is also a major challenge. In most
cases where calculations diverge substantially from ex-
periment, the reason for the discrepancy is not appar-
ent. Is the force field inaccurate? Would the results
improve with more sampling? Were protonation states
misassigned—or do they perhaps even change on bind-
ing? There might even be a software bug [27] or a human
error in the use of the software. As a consequence, it is
not clear what steps are most urgently needed to advance
the field as a whole.

II. THE NEED FOR WELL-CHOSEN
BENCHMARK SYSTEMS

Although tests of individual free energy methods are
not uncommon today [16, 22, 72, 115, 120], the use
of nonoverlapping molecular systems and computational
protocols makes it difficult to compare methods on a rig-
orous basis. In addition, few studies are designed to iden-
tify key sources of error and thereby focus future research
and development. A few molecular systems have now
emerged as de facto standards for general study (Sec-
tion III). These selections result in part from two se-
ries of blinded prediction challenges (SAMPL [84], and
CSAR [26] followed by D3R [37]), which have helped fo-
cus the computational chemistry community on a succes-
sion of test cases and highlighted the need for method-
ological improvements. However, broader adoption of a
larger and more persistent set of test cases is needed.
By coalescing around a compact set of benchmarks, well
chosen to challenge and probe free energy calculations,
practitioners and developers will be able to better assess
and drive progress in binding free energy calculations.

A. Benchmark types and applications

We envision two classes of benchmark cases: “hard”
benchmarks, which are simple enough that well-
converged results can readily be computed; and “soft”
benchmarks, for which convincingly converged results
cannot readily be generated, but which are still simple
enough that concerted study by the community can delin-
eate key issues that might not arise in the simpler “hard”
cases. The following subsections provide examples of how
hard and soft benchmark systems may be used to address
important issues in free energy simulations.

1. Hard benchmarks

a. Systems to test software implementations and us-
age It is crucial yet nontrivial to validate that a simu-
lation package correctly implements and applies the de-
sired methods [103], and benchmark cases can help with
this. First, all software packages could be tested for their
ability to generate correct potential energies for a single
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configuration of the specified molecular system and force
field. These results should be correct to within rounding
error and the precision of the physical constants used in
the calculations [103]. Similarly, different methods and
software packages should give consistent binding free en-
ergies when identical force fields are applied with identi-
cal simulation setups and compositions. The benchmark
systems for such testing can be simple and easy to con-
verge, and high precision free energies (e.g., uncertainty
≈ 0.1 kcal/mol) should serve as a reference. Test cal-
culations should typically agree with reference results to
within 95% confidence intervals, from established meth-
ods [32, 102], For this purpose, the correctly computed
values need not agree with experiment; indeed, experi-
mental results are unnecessary.

b. Systems to check sampling completeness and effi-
ciency As discussed above, free energy calculations re-
quire thorough sampling of molecular configurations from
the Boltzmann distribution dictated by the force field
that is employed. This sampling is typically done by run-
ning molecular dynamics simulations, and for systems as
large and complex as proteins, it is difficult to carry out
long enough simulations. Calculations with inadequate
sampling yield results that are imprecise, in the sense
that multiple independent calculations with slightly dif-
ferent initial conditions will yield significantly different
results, and these ill-converged results will in general be
poor estimates of the ideal result obtained in the limit
of infinite sampling. Advanced simulation methods have
been developed to speed convergence [104, 110], but it
is not always clear how various methods compare to one
another. To effectively compare such enhanced sampling
methods, we need benchmark molecular systems, param-
eterized with a force field that many software packages
can use, that embody various sampling challenges, such
as high dimensionality and energetic and entropic bar-
riers between highly occupied states, but which are just
tractable enough that reliable results are available via
suitable reference calculations. Again, experimental data
are not required, and the point of comparison may be, at
least in part, sampling measures.

c. Systems to assess force field accuracy Some
molecular systems are small and simple enough that
current technology allows thorough conformational sam-
pling, and hence well converged calculations of experi-
mental observables. This has long been feasible for liq-
uids [54]; for example, it is easy to precisely compute
the heat of vaporization of liquid acetone with one of the
standard force fields. More recently, advances in hard-
ware and software have made it possible to compute bind-
ing thermodynamics to high precision for simple molec-
ular recognition systems [47], as further discussed below.
In such cases, absent complications like uncertain pro-
tonation states, the level of agreement with experiment
reports directly on the accuracy of the force field. Thus,
simple molecular recognition systems with reliable ex-
perimental binding data represent another valuable class
of benchmarks. Here, of course, experimental data are

needed. Ideally, the physical materials will be fairly easy
to obtain so that measurements can be replicated or new
experimental conditions (such as temperature and sol-
vent composition) explored.

2. Soft benchmarks

a. Systems to challenge conformational sampling
techniques Enhanced sampling techniques (Section
II A 1 b), designed to speed convergence of free energy
simulations, may not be adequately tested by any hard
benchmark, because such systems are necessarily rather
simple. Thus, despite the fact that reliable reference re-
sults are not available for soft benchmarks, they are still
important for method comparisons. For example, it may
become clear that some methods are better at sampling
in systems with high energy barriers, and others in high-
dimensional systems with rugged energy surfaces. Devel-
opers should test methods on a standard set of bench-
mark systems for informative comparisons.

b. Direct tests of protein-ligand binding calculations
Although it is still very difficult to convincingly ver-
ify convergence of many protein-ligand binding calcula-
tions, it is still important to compare the performance
of various methods in real-world challenges. Appropri-
ate soft benchmarks are likely to be cases which are still
relatively tractable, involving small proteins and simple
binding sites. We need a series of benchmark protein-
ligand systems that introduce various challenges in a well-
understood manner. Systems should introduce none, one,
two, or N of the following challenges in various combina-
tions:

1. Sampling challenges
(a) Sidechains in the binding site rearrange on

binding different ligands
(b) Modest receptor conformational changes, such

as loop motion
(c) Large scale conformational changes, such as

domain motions and allostery
(d) Ligand binding modes change unpredictably

with small chemical modifications
(e) High occupancy water sites rearrange depend-

ing on bound ligand
2. System challenges

(a) Protonation state of ligand and/or protein
changes on binding

(b) Multiple protonation states of the ligand
and/or receptor are relevant

(c) Results are sensitive to buffer, salts or other
environmental factors

3. Force field challenges
(a) Strong electric fields suggest that omission of

explicit electronic polarizability will limit ac-
curacy

(b) Ligands interact directly with metal ions
(c) Ligands or co-factors challenge existing force

fields
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c. Progression of soft benchmarks We envision these
more complex benchmark systems proceeding through
stages, initially serving effectively as a playground where
major challenges and issues are explored, documented,
and become well-known. Eventually, some will become
sufficiently well characterized and sampled that they be-
come hard benchmarks.

B. Applications and limitations of benchmark
systems

Standard benchmark systems along the lines sketched
above will allow potential solutions to be tested in a
straightforward, reproducible manner. For example,
force fields may be assessed by swapping new parameters,
or even a new functional form, into an existing workflow
to see the impact on accuracy for a hard benchmark test.
Sampling methods may be assessed by using various en-
hanced sampling methods for either hard or soft sampling
benchmarks, here without focusing on accuracy relative
to experiment. And system preparation tools could be
varied to see how different approaches to assigning pro-
tonation states, modeling missing loops, or setting initial
ligand poses, affect agreement with experiment—with the
understanding that force field and sampling also play
a role. Such studies will be greatly facilitated by well-
characterized standard benchmarks.

At the same time, there is a possibility that that some
methods will inadvertently end up tuned specifically to
generate good results for the set of accepted benchmarks.
In such cases, the results for systems outside the bench-
mark set might still be disappointing. This means the
field will need to work together to develop a truly rep-
resentative set of benchmarks. This potential problem
can also be mitigated by sharing of methods to enable
broader testing by non-developers, and by participation
in blinded prediction challenges, such as SAMPL and
D3R, which confront methods with entirely new chal-
lenge cases.

III. BENCHMARK SYSTEMS FOR BINDING
PREDICTION

No molecular systems have been explicitly accepted by
the field as benchmarks for free energy calculations, but
certain host molecules (see below) and designed bind-
ing sites in the enzyme T4 lysozyme have emerged as
particularly helpful and widely studied test cases. Here,
we describe these artificial receptors and propose spe-
cific host-guest and T4 lysozyme-ligand combinations as
initial benchmark systems for free energy calculations.
We also point to several additional hosts and small pro-
teins that also have potential to generate useful bench-
marks in the future (Section IV). The present focus is
on cases where experimental data are available and add
value, rather than ones chosen specifically to test con-

formational sampling methods, where experimental data
are not required (Section II A).

A. Host-guest benchmarks

Chemical hosts are small molecules, often comprising
fewer than 100 non-hydrogen atoms, with a cavity or cleft
that allows them to bind other compounds, called guests,
with significant affinity. Hosts bind their guests via the
same basic forces that proteins used to bind their ligands,
so they can serve as simple test systems for computa-
tional models of noncovalent binding. Moreover, their
small size, and, in many cases, their rigidity, can make it
feasible to sample all relevant conformations, making for
“hard” benchmarks as defined above (Section II A). Fur-
thermore, experiments can often be run under conditions
that make the protonation states of the host and guest
unambiguous. Under these conditions, the level of agree-
ment of correctly executed calculations with experiment
effectively reports on the validity of the force field (Sec-
tion II A 1 c. For a number of host-guest systems, the use
of isothermal titration calorimetry (ITC) to characterize
binding provides both binding free energies and binding
enthalpies. Binding enthalpies can often also be com-
puted to good numerical precision [47], so they provide
an additional check of the validity of simulations.

Hosts fall into chemical families, such that all members
of each family share a major chemical motif, but individ-
uals vary in terms of localized chemical substitutions and,
in some families, the number of characteristic monomers
they comprise. For example, all members of the cyclodex-
trin family are chiral rings of glucose monomers; family
members then differ in the number of monomers and in
the presence or absence of various chemical substituents.
For tests of computational methods ultimately aimed at
predicting protein-ligand binding affinities in aqueous so-
lution, water soluble hosts are, arguably, most relevant.
On the other hand, host-guest systems in organic sol-
vents may usefully test how well force fields work in the
nonaqueous environment within a lipid membrane. Here,
we focus on two host families, the cucurbiturils [33, 78];
and the octa-acids (more generally, Gibb deep cavity cav-
itands) [38, 49], which have already been the subject of
concerted attention from the simulation community, due
in part to their use in the SAMPL blinded prediction
challenges [84, 86, 127].

1. Cucurbiturils

The cucurbiturils (Figure 1) are achiral rings of gly-
coluril monomers [33]. The first characterized fam-
ily member, cucurbit[6]uril, has six glycoluril units,
and subsequent synthetic efforts led to the five-,
seven-, eight- and ten-monomer versions, cucurbit[n]uril
(n=5,6,7,8,10) [66], which have been characterized to dif-
ferent extents. Of note, the n=6,7,8 variants accommo-
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CB7 OA TEMOA
FIG. 1. OA, TEMOA, and CB7 hosts. Shown are the hosts which are the focus of our host-guest benchmark sets – two
variants of the octa-acid GDCC, and CB7, a cucurbituril. Guest structures are available in the supplemental material.

date guests of progressively larger size, but are consistent
in preferring to bind guests with a hydrophobic core sized
to fit snugly into the relatively nonpolar binding cavity,
along with at least one cationic moiety (though neutral
compounds do bind [59, 125]) that forms stabilizing in-
teractions with the oxygens of the carbonyl groups fring-
ing both portals of the host [66]. Although derivatives of
these parent compounds, have been made [3, 21, 60, 116],
most of the binding data published for this class of hosts
pertain to the non-derivatized forms.

We propose cucurbit[7]uril (CB7) as the basis of one
series of host-guest benchmark systems (Figure 1, Ta-
bles I and II). This host is convenient experimentally,
because it is reasonably soluble in water; and computa-
tionally, because it is quite rigid and lacks acidic or basic
groups. In addition, it has attracted particular inter-
est because of the high binding affinities of some guests,
exceeding even the tightest-binding protein-ligand sys-
tems [13, 66, 79, 94]. Finally, CB7 is already familiar to
a number of computational chemistry groups, as it fig-

ured in two of the three SAMPL challenges that included
host-guest components [84, 86], and it is currently the fo-
cus of the “hydrophobe challenge” [100].

a. CB7 presents several challenges Despite the sim-
plicity of CB7, calculations of its binding thermodynam-
ics are still challenging, with several known complexities:

1. Tight exit portal: Guest molecules with bulky
hydrophobic cores, such as adamantyl or [2.2.2]bi-
cyclooctyl [79, 80] groups, do not fit easily through
the constrictive portals [113]. As a consequence,
free energy methods which compute the work of
binding along a physical dissociation pathway may
encounter a high barrier as the bulky core exits
the cavity, and this can lead to subtle convergence
problems [47, 114]. One way to solve this problem
is to reversibly add restraints that open the portal,
then remove the guest, and finally reversibly re-
move the restraints [47], including all of these con-
tributions in the overall work of dissociation.
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2. Water binding and unbinding: If one computes
the work of removing the guest from the host by a
nonphysical pathway, in which the bound guest is
gradually decoupled from the host and surround-
ing water [42], large fluctuations in the number of
water molecules within the host’s cavity can occur
when the guest is partly decoupled, and these fluc-
tuations can slow convergence [97].

3. Salt concentration and buffer conditions:
Binding thermodynamics are sensitive to the com-
position of dissolved salts, both experimentally [79,
80, 84] and computationally [51, 87]. As a con-
sequence, to be valid, a comparison of calculation
with experiment must adequately model the exper-
imental salt conditions.

4. Finite-size artifacts due to charge modifi-
cation: Because many guest molecules carry net
charge, it should be ascertained that calculations in
which guests are decoupled from the system do not
generate artifacts related to the treatment of long-
ranged Coulombic interactions [64, 92, 96, 106].

b. The proposed CB7 benchmark sets comprise two
compound series For CB7, we have selected two sets of
guests that were studied experimentally under uniform
conditions (50 mM sodium acetate buffer, pH 4.74, 298K)
by one research group [13, 66]. Each series is based on
a common chemical scaffold, making it amenable to not
only absolute but also alchemical relative free energy cal-
culations (Section I C). One set is based on an adaman-
tane core (Table I), and the other on an aromatic ring
(Table II). These systems can be run to convergence to
allow detailed comparisons among methods and with ex-
periment. Their binding free energies range from -5.99
to -17.19 kcal/mol, with the adamantane series spanning
a particularly large range of free energies.

c. Prior studies provide additional insight into CB7’s
challenges Sampling of the host appears relatively
straightforward in CB7 as it is quite rigid and its symme-
try provides for clever convergence checks [47, 81]. Due to
its top-bottom symmetry, flips of guests from “head-in”
to “head-out” configurations are not necessary to obtain
convergence [30]. However, sampling of the guest geome-
try can be a challenge, with transitions between binding
modes as slow as 0.07 flips/ns [81], and flexible guests
also presenting challenges [81]. As noted above, water
sampling can also be an issue, with wetting/dewetting
transitions occurring on the 50 ns timescale [97].

Salt and buffer conditions are also key. In addition
to the strong salt-dependence of binding [80], acetic
acid (such as in a sodium acetate buffer) can compete
with guests for the binding site [79]. This may par-
tially explain systematic errors in some computational
studies [51, 87]. Indeed, the difference between 50 mM
sodium acetate buffer and 100 mM sodium phosphate
buffer impacts measured binding free energies by 2.5-2.8
kcal/mol [84, 87]. Cationic guests could also have sub-
stantial and differing interactions with the counterions in
solution as well, potentially lowering affinity relative to

zero-salt conditions [84]. Thus, one group found a 6.4-6.8
kcal/mol dependence on salt concentration [51], possibly
impacting other studies as well [81]

Despite these issues, CB7 appears to be at the point
where careful studies can probe the true accuracy of our
force fields [36, 47, 126], and the results can be sobering,
with RMS errors in the binding free energies as high as
8 kcal/mol [47, 81]. More encouragingly, the values of
R2 values can be as high as 0.92 [47]. Some force fields
appear relatively worse than others [51, 85]. Calculated
values are in many cases quite sensitive to details of force
field parameters [80, 81, 85]. For example, modest mod-
ification of some Lennard-Jones parameters yielded dra-
matic improvements in calculated values [126], and host-
guest binding data has, accordingly, been suggested as
an input for force field development [36, 47, 126]. Water
structure around CB7 and calculated binding enthalpies
also appear particularly sensitive to the choice of water
model [30, 36, 97], and water is clearly important for
modulating binding [89]. The water model also impacts
the number of sodium ions which must be displaced (in
sodium-based buffer) on binding [36, 47].

Despite its apparent simplicity, CB7 is still a challeng-
ing benchmark that can put important issues into high
relief. For example, in SAMPL4, free energy methods
yielded R2 values from 0.1 to 0.8 and RMS errors of
about 1.9 to 4.9 kcal/mol for the same set of CB7 cases.
This spread of results across rather similar methods high-
lights the need for shared benchmarks. Potential expla-
nations include convergence difficulties, subtle method-
ological differences, and details of how the methods were
applied [84]. Until the origin of such discrepancies is
clear, it is difficult to know how accurate our methods
truly are.

2. Gibb Deep Cavity Cavitands (GDCC)

The octa-acids (OA) (Figure 1) are synthetic hosts
with deep, basket-shaped, hydrophobic binding sites [38].
The eight carboxylic acidic groups for which they were
originally named make these hosts water-soluble, but do
not interact directly with bound hosts; instead, they
project outward into solvent. Binding data have been
reported for the original form of this host (OA) [38] and
for a derivative with four added methyl groups at equiv-
alent locations in the entryway, where they can contact
a bound guest (TEMOA) [35, 108]. (Note that OA and
TEMOA have also been called OAH and OAMe, respec-
tively [127].) Additional family members with other sub-
stituents around the portal have been reported, as has a
new series in which the eponymic carboxylic groups are
replaced by various other groups, including a number of
basic amines [49]. However, we are not aware of binding
data for these derivatives. In view of these other hosts,
however, we propose the more general name Gibb deep
cavity cavitands (GDCCs) for this family of hosts. The
binding cavities of the GDCCs are fairly rigid, though
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TABLE I. Proposed CB7 Set 1 benchmark data

IDa name PC CIDb 2D SMILES ∆Gc (kcal/mol)

1 memantine 4054

NH2

CC12CC3CC(C1)(CC(C3)(C2)N)C −5.99± 0.05 d

3 1,3-Bis(trimethylaminio)adamantane 101379195

N+

N+

C[N+](C)(C)C12CC3CC(C1)CC(C3)(C2)[N+](C)(C)C −6.55± 0.05 d

5 N-(1-Adamantyl)ethylenediamine 303798 NH

NH2

C1C2CC3CC1CC(C2)(C3)NCCN −18.22± 0.09 e

17 adamantane-1,3-diamine 213512

NH2

NH2

C1C2CC3(CC1CC(C2)(C3)N)N −11.33± 0.05 d

18 1-Adamantanecarboxylic acid 13235

OOH

C1C2CC3CC1CC(C2)(C3)C(=O)O −11.59± 0.06 d

22 1-Adamantyltrimethylaminium 3010127
N+

C[N+](C)(C)C12CC3CC(C1)CC(C3)C2 −16.66± 0.08 d

23 amantadine 2130

NH2

C1C2CC3CC1CC(C2)(C3)N −17.19± 0.08 d

24 N-(1-Adamantyl)pyridinium 3848257
N+

C1C2CC3CC1CC(C2)(C3)[N+]4=CC=CC=C4 −16.75± 0.07 d

a Compound ID from original paper; b PubChem Compound ID; c Standard binding free energy, where all measurements were done via NMR in
50mM sodium acetate buffer in D2O at pH 4.74 and 298 K. Uncertainties are obtained by taking the reported standard deviations across

triplicate measurements [52] and dividing by
√

3; d drawn from [66]; e drawn from [13].

less so than the cucurbiturils. Some simulators report
“breathing” motions that vary the diameter of the en-
try by up to 8 Å[71]; and, in some studies, the benzoic
acid “flaps” around the entry occasionally flip upward
and into contact with the guest [112, 128], though this
motion has not been verified experimentally. Addition-
ally, the four priopionate groups protruding into solution
from the exterior base of the cavity are all flexible.

The octa-acids tend to bind guest molecules possess-
ing a hydrophobic moiety that fits into the host’s cavity
and a hydrophilic moiety that projects into the aqueous
solvent. Within these specifications, they bind a diver-
sity of ligands, including both organic cations and an-
ions, as well as neutral compounds with varying degrees
of polarity [39, 41]. Compounds with adamantane or no-
radamantane groups display perhaps the highest affini-
ties observed so far, with binding free energies ranging
to about -8 kcal/mol [109]. Much of the experimental
binding data comes from ITC, so binding enthalpies are
often available.

Two experimental aspects of binding are particularly
intriguing and noteworthy. First, the binding thermo-

dynamics of OA is sensitive to the type and concentra-
tion of anions in solution. Although NaCl produces rela-
tively modest effects, 100 mM sodium perchlorate, chlo-
rate and isothiocyanate can shift binding enthalpies by
up to about 10 kcal/mol and free energies by around 2
kcal/mol [40]. These effects are due in part to binding of
anions by the host; indeed, trichloroacetate is reported
to bind OA with a free energy of -5.2 kcal/mol [107], and
competition of other guests with bound anions leads to
entropy-enthalpy tradeoffs. Second, elongated guests can
generate ternary complexes, in which two OA hosts en-
capsulate one guest, especially if both ends of the guest
are not very polar [39].

a. The proposed GDCC benchmark sets are drawn
from SAMPL As a core benchmark series for this fam-
ily, we propose two sets which formed part of the
SAMPL4 and SAMPL5 challenges, based on adaman-
tane derivatives (Table III) and cyclic (aromatic and sat-
urated) carboxylic acids (Table IV) binding to hosts OA
and TEMOA with free energies of -3.7 to -7.6 kcal/mol.
These cases offer aqueous binding data with a reasonably
broad range of binding free energies, frequently along
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TABLE II. Proposed CB7 Set 2 benchmark data

IDa name PC CIDb 2D SMILES ∆Gc,d (kcal/mol)

2 dopamine 681

NH2

OH

OH

C1=CC(=C(C=C1CCN)O)O −6.31± 0.05

4 o-phenylenediamine 7243
NH2

NH2

C1=CC=C(C(=C1)N)N −6.68± 0.05

5 m-phenylenediamine 7935
NH2NH2

C1=CC(=CC(=C1)N)N −6.69± 0.02

7 4-(Aminomethyl)pyridine 77317

N

NH2

C1=CN=CC=C1CN −7.56± 0.06

8 p-phenylenediamine 7814
NH2

NH2

C1=CC(=CC=C1N)N −8.60± 0.06

9 p-toluidine 7813
NH2

CC1=CC=C(C=C1)N −9.43± 0.05

20 p-xylylenediamine 68315

NH2

NH2

C1=CC(=CC=C1CN)CN −12.62± 0.06

a Compound ID from original paper; b PubChem Compound ID; c Standard binding free energy, where all measurements were done via NMR in
50mM sodium acetate buffer in D2O at pH 4.74 and 298 K. Uncertainties are obtained by taking the reported standard deviations across

triplicate measurements [52] and dividing by
√

3; d drawn from [66].

with binding enthalpies; the hosts and many or all of
their guests are small and rigid enough to allow convinc-
ing convergence of binding thermodynamics with read-
ily feasible simulations; and, like the cucurbiturils, they
are already emerging as de facto computational bench-
marks, due to their use in the SAMPL4 and SAMPL5
challenges [84, 127].

b. OA introduces new challenges beyond CB7 Issues
deserving attention when interpreting the experimen-
tal data and calculating the binding thermodynamics of
these systems include the following:

1. Tight exit portal: The methyl groups of the
TEMOA variant narrow the entryway and can
generate a barrier to the entry or exit of guest
molecules with bulky hydrophobic cores, though
the degree of constriction is not as marked as for
CB7 (above). The TEMOA methyls groups can
additionally hinder sampling of guest poses in the
bound state, leading to convergence problems [127]
specific to TEMOA.

2. Host conformational sampling: Although the
flexible propionate groups are not proximal to the
binding cavity, they are charged and so can have
long-ranged interactions. As a consequence, it may
be important to ensure their conformations are well
sampled, though motions may be slow [71]. Simi-
larly, benzoic acid flips [112, 128] could potentially
be an important challenge in some force fields.

3. Water binding and unbinding: Water appears
to undergo slow motions into and out of the OA
host, on timescales upwards of 5 ns [29]. This poses
significant challenges for some approaches, such as
metadynamics, where deliberately restraining wa-

ter to stay out of the cavity when the host is not
bound (and computing the free energy of doing so)
can help convergence [7], and perhaps for other
methods as well.

4. Salt concentration and buffer conditions: As
in the case of CB7, binding to GDCCs is modulated
by the composition of dissolved salts, both exper-
imentally [40, 107] and computationally [90, 112].
As a consequence, to be valid, a comparison of cal-
culation with experiment must adequately model
the experimental salt conditions.

5. Finite-size artifacts due to charge modifica-
tion: As for CB7, it should be ascertained that
calculations in which charged guests are decoupled
from the system do not generate artifacts related to
long range Coulomb interactions. [64, 92, 96, 106].

6. Protonation state effects: Although experi-
ments are typically run at pH values that lead to
well-defined protonation states of the host and its
guests, this may not always hold [29, 84, 112], par-
ticularly given experimental evidence for extreme
binding-driven pKa shifts of 3-4 log units for some
carboxylate compounds [107, 118]. Thus, attention
should be given to ionization states and their mod-
ulation by binding.

c. Prior studies provide additional insight into the
challenges of OA As noted, two different host confor-
mational sampling issues have been observed, with dihe-
dral transitions for the proprionate groups occurring on
1-2 ns timescales [71]); motions of the benzoic acid flaps
were also relatively slow [112, 128] though perhaps ther-
modynamically unimportant. Guest sampling can also
be an issue, at least in TEMOA [127], and this hosts’s
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TABLE III. Proposed GDCC Set 1 benchmark data

IDa name PC CIDb 2D SMILES ∆Gc (kcal/mol) ∆Hd (kcal/mol)

Octa Acid binders

3 / OA-G1 5-hexynoic acid 143036
O

OH
C#CCCCC(=O)O −5.400± 0.003 −7.71± 0.05

4 / OA-G6 3-nitrobenzoic acid 8497 N+

O

O-O

OH C1=CC(=CC(=C1)[N+](=O)[O-])C(=O)O −5.340± 0.005 −5.67± 0.01

5 / OA-G2 4-cyanobenzoic acid 12087

N

O

OH

C1=CC(=CC=C1C#N)C(=O)O −4.73 ± 0.01 −4.45± 0.08

6 / OA-G4 4-bromoadamantane-1-carboxylic acid 12598766
BrO

OH

C1C2CC3CC(C2)(CC1C3Br)C(=O)O −9.37 ± 0.01 −14.78± 0.02

7 / OA-G3 N,N,N-trimethylhexan-1-aminium 84774
N +

CCCCCC[N+](C)(C)C −4.49 ± 0.01 −5.91± 0.10

8 / OA-G5 trimethylphenethylaminium 14108 N+

C[N+](C)(C)CCC1=CC=CC=C1 −3.72 ± 0.01 −9.96± 0.11

TEMOA/OAMe binders

3 / OA-G1 5-hexynoic acid 143036
O

OH
C#CCCCC(=O)O −5.476± 0.006 −9.961± 0.006

4 / OA-G6 3-nitrobenzoic acid 8497 N+

O

O-O

OH C1=CC(=CC(=C1)[N+](=O)[O-])C(=O)O −4.52 ± 0.02 −9.1 ± 0.1

5 / OA-G2 4-cyanobenzoic acid 12087

N

O

OH

C1=CC(=CC=C1C#N)C(=O)O −5.26 ± 0.01 −7.6 ± 0.1

6 / OA-G4 4-bromoadamantane-1-carboxylic acid 12598766
BrO

OH

C1C2CC3CC(C2)(CC1C3Br)C(=O)O NDe NDe

7 / OA-G3 N,N,N-trimethylhexan-1-aminium 84774
N +

CCCCCC[N+](C)(C)C −5.73 ± 0.06 −6.62± 0.20

8 / OA-G5 trimethylphenethylaminium 14108 N+

C[N+](C)(C)CCC1=CC=CC=C1 NDe NDe

a Compound ID from [108] and SAMPL5 ID from [127]; b PubChem Compound ID; c Standard binding free energy from [108], where all
measurements were done via ITC in 50 mM sodium phosphate buffer at pH 11.5 and 298 K. Uncertainties, drawn from the experimental paper,
were computed from triplicate measurements taken with freshly made solutions of host and guest. However, based on personal communication

with the authors, it may be advisable to regard the accuracy more conservatively, at ∼2% for ∆G and ∼6% for ∆H; d measured binding
enthalpy [108], subject to the same conditions/caveats as c. e not done.

tight cavity may also have implications for binding en-
tropy [128].

Salt concentration strongly modulates binding affin-
ity, at least for anions, and the nature of the salt also
plays an important role [14]. Co-solvent anions can also
increase or decrease binding depending on their iden-
tity [40]. Some salts even bind to OA themselves, with
perchlorate [40] and trichloroacetate [107] being particu-
larly potent, and thus will compete with guests for bind-
ing. Computationally, including additional salt beyond
that needed for system neutralization changed binding
free energies by up to 4 kcal/mol [112].

Naively, protonation states of the guests might seem
clear and unambiguous. But since OA can bind guests of
diverse net charges, the protonation state may not always
be clear. One study used absolute binding free energy cal-
culations for different guest charge states, coupled with
pKa calculations, and found that inclusion of pKa correc-
tions and the possibility of alternate charge states of the
guests affected calculated binding free energies by up to
2 kcal/mol [112]. As noted above, experimental evidence
also indicates major pKa shifts on binding so that species
such as acetate, formate and others would bind in neutral

form at neutral pH [107, 118]. Even the host protona-
tion state may be unclear; while OA is often assumed to
have all eight carboxylic acids deprotonated at the basic
pH of typical experiments, the four at the bottom are in
close proximity, and these might make hydrogen bonds
allowing retention of two protons [29]. Thus, there are
uncertainties as to the host protonation state [29, 84],
which perhaps also could be modulated by guest bind-
ing.

Several groups used different methods but the same
force field and water model in SAMPL5, with rather var-
ied levels of success because of discrepancies in calcu-
lated free energies [7, 9, 127]. However, some of these
issues were resolved in follow-up work [7], bringing the
methods into fairly good agreement for the majority of
cases [9, 128].

B. Protein-ligand benchmarks: the T4 lysozyme
model binding sites

Although we seek ultimately to predict binding in sys-
tems of direct pharmaceutical relevance, simpler protein-
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TABLE IV. Proposed GDCC Set 2 benchmark data

IDa name PC CIDb 2D SMILES Method ∆Gc (kcal/mol)

1 benzoic acid 243 O

OH

C1=CC=C(C=C1)C(=O)O NMR −3.72± 0.03

2 4-methylbenzoic acid 7470 O

OH

CC1=CC=C(C=C1)C(=O)O NMR −5.85± 0.06

3 4-ethylbenzoic acid 12086 O

OH

CCC1=CC=C(C=C1)C(=O)O ITC −6.27± 0.01

4 4-chlorobenzoic acid 6318 O

OH

Cl

C1=CC(=CC=C1C(=O)O)Cl ITC −6.72± 0.01

5 3-chlorobenzoic acid 447 Cl

O

OH C1=CC(=CC(=C1)Cl)C(=O)O NMR −5.24± 0.02

6 cyclohexanecarboxylic acid 7413 O

OH

C1CCC(CC1)C(=O)O NMR −5.62± 0.04

7 trans-4-methylcyclohexanecarboxylic acid 20330 O

OH

[C@@H]1(CC[C@@H](CC1)C(=O)O[H])C ITC −7.61± 0.04

a Compound ID from original paper [41]; b PubChem Compound ID; c Standard binding free energy from [41], where all measurements were
done in 10 mM sodium tetraborate buffer at pH 9.2 and 298 K. A quirk is that for the NMR measurements, the guest was titrated in from 50 mM
sodium tetraborate buffer, so the buffer concentration changed during the titration. Uncertainty is the standard error of the mean in free energy,
computed from the reported standard deviations in Ka. Again, based on personal communication with the authors, uncertainties of perhaps 10%

may be more appropriate.

L99A L99A/M102Q
FIG. 2. Benzene and hexylbenzene in the lysozyme L99A site, and phenol and 4,5,6,7-tetrahydroindole in the L99A/M102Q
site (PDBs 4W52, 4W59, 1LI2, and 3HUA, respectively). The binding site shape is shown as a semi-transparent surface, and
the protein shown with cartoons. In both cases, the structure with the smaller ligand is shown in green and that with the
larger ligand is shown in blue, and the larger ligand induces a motion of helix F bordering the binding site. Phenol and 4,5,6,7-
tetrahydroindole both also bind with an ordered water, though this does not occur for all ligands in the polar L99A/M102Q
site.
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ligand systems can represent important stepping stones
in this direction. Two model binding sites in T4
lysozyme have been particularly useful in this regard
(Figure 2). These two binding sites, called L99A [82, 83]
and L99A/M102Q [44, 121] for point mutations which
create the cavities of interest, are created in artificial mu-
tants of phage T4 lysozyme, and have been studied ex-
tensively experimentally and via modeling. As protein-
ligand systems, they introduce additional complexities
beyond those observed in host-guest systems, yet they
share some of the same simplicity. The ligands are gener-
ally small, neutral, and relatively rigid, with clear proto-
nation states. In many cases, substantial protein motions
are absent, allowing calculated binding free energies to
apparently converge relatively easily. However, like host-
guest systems, these binding sites are still surprisingly
challenging [10, 34, 53, 63, 73–75]. In addition, precise
convergence is sometimes difficult to achieve, and it is in
all cases essentially impossible to fully verify. As a con-
sequence, these are “soft benchmarks” as defined above
(Section II A). The importance of the lysozyme model
sites is also driven by the relative wealth of experimental
data. It is relatively easy to identify new ligands and ob-
tain high quality crystal structures and affinity measure-
ments, allowing two different rounds of blind predictions
testing free energy calculations [10, 75].

1. The apolar and polar cavities and their ligands

The L99A site is also called the “apolar” cavity. It
is relatively flat and elongated, and binds mostly non-
polar molecules such as benzene, toluene, p-xylene, and
n-butylbenzene: basically, a fairly broad range of nonpo-
lar planar five- and six-membered rings and ring systems
(such as indole). The polar version, L99A/M102Q, intro-
duces an additional point mutation along one edge of the
binding site, providing a glutamine that introduces polar-
ity and the potential for hydrogen bonding. It still binds
a variety of nonpolar ligands such as toluene (though not
benzene). One small downside of these binding sites is
that the range of affinities is relatively narrow: about -4.5
to -6.7 kcal/mol in the apolar site [75, 82], and about -4
to -5.5 kcal/mol in the polar site [10]. Thus, even the
strongest binders are not particularly strong, and the
weakest binders tend to run up against their solubility
limits. Still, these sites offer immensely useful tests for
free energy calculations.

For both sites, fixed charge force fields seem to yield
reasonably accurate free energies, with RMS errors be-
tween 1-2 kcal/mol, and some level of correlation with
experiment, despite limited dynamic range [10, 25, 34,
75, 117]. System composition/preparation issues also do
not seem to be a huge factor. Instead, sampling issues
predominate:

1. Ligand binding mode/orientational sampling: The
binding sites are buried and roughly oblong, with
ligands which are similar in shape. Ligands with

axial symmetry typically have at least two rea-
sonably likely binding modes, but broken sym-
metry can drive up the number of likely binding
modes. For example, phenol has two plausible
binding modes in the polar cavity [10, 45] but 3-
chlorophenol has at least four, three of which ap-
pear to have some population in simulations [34],
because the chlorine could point in either direction
within the site. Timescales for binding mode inter-
conversion are relatively slow, with in-plane transi-
tions on the 1-10 nanosecond timescale, and out-
of-plane transitions (e.g. between toluene’s two
symmetry-equivalent binding modes) taking hun-
dreds of nanoseconds (Mobley group, unpublished
data).

2. Sidechain rearrangements: Some sidechains are
known to reorganize when binding certain ligands.
The smallest ligands tend not to induce confor-
mational changes, but larger ligands may induce
sidechain rearrangements – often, rotamer flips –
around the binding site region. These can be slow
in the tightly packed binding site. This especially
occurs for Val111 in the L99A site [53, 74, 83] and
Leu118, Val11, and Val103 in L99A/M102Q [10,
45, 121, 122]. These sidechain motions typically
present sampling problems for standard MD simu-
lations [10, 53, 74, 75, 119].

3. Backbone sampling: Larger ligands induce shifts of
the F helix, residues 107 or 108 to 115, adjacent to
the binding site, allowing the site to enlarge. This
occurs in both binding sites [10, 68, 122], but is
best characterized for L99A [68]. There, addition
of a series of methyl groups from benzene up to
n-hexylbenzene causes a conformational transition
in the protein from closed to intermediate to open
conformations.

Tables V and VI introduce proposed benchmark sets
for the apolar and polar cavities, giving ligands poten-
tially amenable to both absolute and relative free energy
calculations, and spanning the range of available affini-
ties. Co-crystal structures are available in most cases,
and the PDB IDs are provided in the tables. The selected
ligands span a range of challenges and levels of difficulty,
ranging from fairly simple to including most of the chal-
lenges noted above. Essentially all of them have been
included in at least one prior computational study, and
some have appeared in a variety of prior studies. Addi-
tional known ligands and non-binders are available, with
binding affinities available for 19 compounds in the L99A
site [28, 75, 82] and 16 in L99A/M102Q [10, 44, 121].
Because of the extent of the sampling challenges in
lysozyme, binding of most ligands will currently consti-
tute a soft benchmark, though long-timescale simulations
to turn these into hard benchmarks may already be fea-
sible.
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TABLE V. Proposed Lysozyme L99A Set benchmark data

name PC CIDh 2D SMILES ∆Ga (kcal/mol) PDB code reference

benzeneb 241 c1ccccc1 −5.19± 0.16 181L [83], 4W52 [68] [82]

tolueneb 1140 Cc1ccccc1 −5.52± 0.04 4W53 [68] [82]

ethylbenzeneb 7500 CCc1ccccc1 −5.76± 0.07 1NHB [83], 4W54 [68] [82]

propylbenzeneb 7668 CCCc1ccccc1 −6.55± 0.02 4W55 [68] [82]

butylbenzeneb 7705 CCCCc1ccccc1 −6.70± 0.02 186L [83], 4W57 [68] [82]

hexylbenzeneb 14109 CCCCCCc1ccccc1 UNKc 4W59 [68] [82]

p-xylened 7809 Cc1ccc(cc1)C −4.67± 0.06 187L [83] [82]

benzofuran 9223
O

c1ccc2c(c1)cco2 −5.46± 0.03 182L [83] [82]

thieno[2,3-c]pyridine 9224 N
S

c1cncc2c1ccs2 NBe NDf [75]

phenolg 996
OH

c1ccc(cc1)O NBe NDf [75, 82]

aT=302K, with compounds from [82] measured in 50mM sodium acetate at pH 5.5 and thieno[2,3-c]pyridine measured at pH 6.8 in 50 mM

potassium chloride and 38% (v/v) ethylene glycol; b part of the series of [68], so larger ligands in the series induce conformational change; c

unknown due to solubility limitations, but likely binds strongly; d L99A sidechain undergoes rotation; e nonbinder; f not done; g included since it
is a binder in the polar cavity; h PubChem compound ID.

2. Computational challenges posed by the T4 lysozyme
benchmarks

Early work on the lysozyme sites focused on the dif-
ficulty of predicting binding modes [10, 73, 75] because
of the slow interconversions noted above. Docking meth-
ods often can generate reasonable poses spanning most
of the important possibilities [10, 45, 73, 75] but do not
accurately predict the binding mode of individual com-
pounds [10, 45, 75]. Thus it appears necessary to con-
sider the possibility of multiple binding modes; this is also
important since some ligands actually populate multiple
binding modes [10]. In a number of studies, candidate
binding modes from docking are relaxed with MD simu-
lations, then clustered to select binding modes for further
study. It turns out an effective binding free energy for
each distinct candidate binding mode can be computed
separately [73] and combined to find the population of
each binding mode and determine the overall binding free
energy. However, this is costly since each candidate bind-
ing mode requires a full binding free energy calculation.

Relative binding free energy calculations do not dra-
matically simplify the situation. Introduction of a lig-
and modification can leave the binding mode uncertain
(e.g., introducing a chlorine onto phenol leaves at least
two possible binding modes even if the binding mode
of phenol is known) [10]. A näıve solution is to con-
sider multiple possible binding modes in relative free
energy calculations [10], but this generates multiple re-
sults; determining the true relative binding free energy

requires additional information [76]. Enhanced sampling
approaches provide one possible solution to the bind-
ing mode problem. Particularly, with λ or Hamiltonian
exchange techniques, ligands can easily switch between
binding modes when they are non-interacting unless they
are restrained, and then moves in λ space can allow tran-
sitions back to the interacting state. Thus, approaches
employing this strategy can naturally sample multiple
binding modes [34, 117].

While sidechain sampling has been a significant chal-
lenge, it is possible to use biased sampling techniques
such as umbrella sampling to deliberately compute and
include free energies of sampling slow sidechain rear-
rangements [74]. However, this is not a general solu-
tion, since it requires knowing what sidechains might
rearrange on binding and then expending substantial
computational power on sampling free energy landscapes
for these rearrangements. An apparently better gen-
eral strategy is including sidechains in enhanced sam-
pling regions selected for Hamiltonian exchange [53, 57]
or REST [119], allowing sidechains to be alchemically
softened or torsion barriers lowered (or both), to enhance
sampling at alchemical intermediate states. With swaps
between λ values, enhanced sidechain sampling at inter-
mediate states can propagate to all states, improving con-
vergence [53, 119].

Larger protein conformational changes in lysozyme
have received less attention, partly because until very re-
cently they seemed to be a peculiar oddity only rarely ob-
served; i.e., for ligands 4,5,6,7-tetrahydroindole and ben-
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TABLE VI. Proposed Lysozyme L99A/M102Q Set benchmark data

ligand PC CIDk 2D SMILES ∆Ga (kcal/mol) PDB code reference

tolueneb 1140 Cc1ccccc1 −4.93 NDc [121]

phenol 996
OH

c1ccc(cc1)O −5.24 1LI2 [121] [121]

catecholh 289
OH

OH

c1ccc(c(c1)O)O −4.16± 0.03 1XEP [44] [121]

2-ethoxyphenold 66755 O

OH

CCOc1ccccc1O −4.02± 0.03 3HU8 [10] [10]

benzyl acetatee,f 8785
OO

CC(=O)OCc1ccccc1 −4.48± 0.16 3HUK [10] [10]

4,5,6,7-tetrahydroindolef 57452536
N
H

c1c[nH]c2c1CCCC2 −4.61± 0.09 3HUA [10] [10]

n-phenylglycinonitrileg 76372
NH

N

c1ccccc1NCC#N −5.52± 0.18 2RBO [10] [10]

3-chlorophenol 7933
ClOH

c1cc(cc(c1)Cl)O −5.51 1LI3 [121] [121]

2-methoxyphenol 460
O

OH

COc1ccccc1O NBi NDc [10]

4-vinylpyridine 7502

N

C=Cc1ccncc1 NBi NDc [121]

aT=283K, with measurements done at pH 6.8 in 50 mM potassium phosphate, 200 mM potassium chloride buffer in the case of [10]; b included

for symmetry with the L99A site since this (unlike phenol and benzene) binds in both; c not determined; d fails to make crystallographic

hydrogen bond [10]; e multiple binding modes; f induces helix F motion; g induces flip of Val111 sidechain; h induces flip of Leu118 sidechain; j

nonbinder; k PubChem compound ID.

zyl acetate in the polar site [10]. However, recent work
noted above highlighted how a helix in the apolar cavity
can open to accommodate larger ligands [68]. Timescales
for this motion appear to be on the order of 50 ns, so it
can pose sampling challenges, even for relative free en-
ergy calculations [63]. Including part of the protein in
the enhanced sampling region via REST2 provides some
benefits, but sampling these motions will likely prove a
valuable test for enhanced sampling methods.

IV. THE FUTURE OF BENCHMARKS AND OF
THIS REVIEW

This work has so far presented a small set of bench-
mark systems for binding free energy calculations, and
has highlighted some of the ways in which they have al-
ready proven their utility. However, the scope of these
sets is still quite limited. More, increasingly diverse, host-
guest systems will help probe the strengths and weak-
nesses of force fields, and to drive their improvement.
At the other end of the spectrum, we need more com-
plex and challenging benchmark sets for proteins includ-

ing simple models, like T4 lysozyme as well as candidate
drug targets. And there may be community interest in
test systems specifically selected to challenge sampling
algorithms, without reference to experimental data.

Several candidate hosts and proteins are worth men-
tioning in this regard. Among host-guest systems, there
is a particularly extensive experimental literature on
cyclodextrins [43, 93], and they are tractable compu-
tationally [47, 123]. As to artificial protein binding
sites, the two variants of the CCP protein model bind-
ing site [4, 5, 31, 88, 95, 98] offer a modest increase
in difficulty relative to the T4 lysozyme sites discussed
above. And thrombin and the bromodomains appear to
be promising examples of candidate drug targets for in-
clusion in a growing set of benchmark systems. Thrombin
is a serine protease that has received prior attention from
free energy studies [12, 119, 120]. Experimental data ex-
hibits interesting trends [6] that can partly be explained
by simulations [12]; but challenges remain [11]. Bromod-
omains may also be interesting, especially given that rel-
atively high accuracies have been reported, relative to
experiment. At the same time, binding modes may be
non-obvious and the diversity of ligands could pose prob-
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lems for relative free energy calculations [1]. Other sys-
tems will undoubtedly emerge as promising benchmarks
as well, and we seek community input to help identify
these.

In order to provide for updates of this material as new
benchmark systems are defined, and to enable commu-
nity input into the process of choosing them, we will make
the LaTeX source for this article on GitHub at http://
www.github.com/mobleylab/benchmarksets. We en-
courage use of the issue tracker for discussion, comments,
and proposed updates. We plan to incorporate new ma-
terial via GitHub as one would for a coding project, then
make it available via a preprint server, likely bioRxiv.
Given substantial changes to this initial version of the pa-
per, it may ultimately be appropriate to make it available
as a “perpetual review” [77] via another forum allowing
versioned updates of publications.

V. CONCLUSIONS AND OUTLOOK

Binding free energy calculations are a promising tool
for predicting and understanding molecular interactions
and appear to have enough accuracy to provide substan-
tial benefits in a pharmaceutical drug discovery context.
However, progress is needed to improve these tools so
that they can achieve their potential. To achieve steady
progress, and to avoid potentially damaging cycles of en-
thusiasm and disillusionment, we need to understand and
be open and honest about key challenges. Benchmarks
are vital for this, as they allow researchers in the field
to rigorously test their methods, arrive at a shared un-
derstanding of problems, and measure progress on well-
characterized yet challenging systems. It is also worth
emphasizing the importance of sharing information about
apparently well thought-out and even promising meth-
ods that do not work, rather than sharing only what
does appear to work. Identifying and addressing failure
cases and problems is critically important to advancing
this technology, but failures can be harder to publish,

and may even go unpublished, even though they serve a
unique role in advancing the field. We therefore strongly
encourage that such results be shared and welcomed by
the research community.

Here, we proposed several benchmark systems for bind-
ing free energy calculations. These embody a subset of
the key challenges facing the field, and we plan to expand
the set as consensus emerges. Hopefully, these systems
will serve as challenging standard test cases for new meth-
ods, force fields, protocols, and workflows. Our desire is
that these benchmarks will advance the science and tech-
nology of modeling and predicting molecular interactions,
and that other researchers in the field will contribute to
identifying new benchmark sets and updating the infor-
mation provided about these informative systems.

DISCLOSURE STATEMENT

D.L.M. is a member of the Scientific Advisory Board
for Schrödinger, LLC. M.K.G. is a cofounder and has
equity interest in the company VeraChem LLC.

ACKNOWLEDGMENTS

DLM appreciates financial support from the Na-
tional Institutes of Health (NIH; 1R01GM108889-01) and
the National Science Foundation (NSF; CHE 1352608).
MKG thanks the NIH for partial support of this work
through grant R01GM061300. The contents of this pub-
lication are solely the responsibility of the authors and
do not necessarily represent the official views of the NIH
or the NSF.

We also appreciate helpful discussions with a huge
number of people in the field, including a wide variety of
participants at recent meetings such as the 2016 Work-
shop on Free Energy Methods in Drug Discovery. Con-
versations with John Chodera (MSKCC), Chris Oosten-
brink (BOKU), Julien Michel (Edinburgh), Robert Abel
(Schrödinger), Bruce Gibb (Tulane), Matt Sullivan (Tu-
lane), and Lyle Isaacs (Maryland) were particularly help-
ful.

[1] M. Aldeghi, A. Heifetz, M. J. Bodkin, S. Knapp, and
P. C. Biggin. Accurate calculation of the absolute
free energy of binding for drug molecules. Chem. Sci.,
7(1):207–218, 2016.

[2] M. P. Allen and D. J. Tildesley. Computer Simulation of
Liquids. Oxford Science Publications. Oxford University
Press, New York, NY, June 1989.

[3] K. I. Assaf and W. M. Nau. Cucurbiturils: From syn-
thesis to high-affinity binding and catalysis. Chem Soc
Rev, 44(2):394–418, Jan. 2015.

[4] S. Banba and C. L. Brooks III. Free energy screening of
small ligands binding to an artificial protein cavity. The
Journal of Chemical Physics, 113(8):3423–3433, Aug.
2000.

[5] S. Banba, Z. Guo, and C. L. Brooks III. Efficient Sam-
pling of Ligand Orientations and Conformations in Free
Energy Calculations Using the λ-Dynamics Method. J.
Phys. Chem. B, 104(29):6903–6910, July 2000.

[6] B. Baum, L. Muley, M. Smolinski, A. Heine,
D. Hangauer, and G. Klebe. Non-additivity of Func-
tional Group Contributions in Protein–Ligand Bind-
ing: A Comprehensive Study by Crystallography and
Isothermal Titration Calorimetry. Journal of Molecular
Biology, 397(4):1042–1054, Apr. 2010.
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