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Abstract

Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle
Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed,

Predictive Method

by

David Joseph Lettieri

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Van P. Carey, Chair

Traditionally data centers were designed with reliability, functionality, and up front cost
as the primary design drivers, with secondary consideration given to cost of operation and
sustainability. In the past decade, data center design has shifted giving more weight to opera-
tional energy use and sustainability. This thesis outlines two work streams aimed at allowing
data center designers and operators to design more efficient, cost effective, sustainable data
centers. The first track deals with evaluating data center sustainability quickly and easily.
The metric chosen to quantify data center sustainability is life-cycle exergy consumption.
Other sustainability indicators are investigated, and reasons for choosing this metric for data
centers are provided. Two case studies are provided to illustrate the sustainability ramifica-
tions of different design and operation decisions. A Life-Cycle Assessment (LCA), perhaps
the most widely accepted industry practice of assessing the environmental ramifications of a
product or process, is also completed for comparison purposes. A MATLAB based graphical
user interface (GUI) developed to perform a life-cycle exergy consumption analysis (LCEA)
on data centers was designed and its usefulness is demonstrated.

The second track of this thesis deals with expeditious velocity and temperature field
prediction in data centers, developed to be an ultrafast alternative to conventional com-
putational fluid dynamics (CFD) code. This expeditious predictive scheme is based on a
potential flow velocity prediction method with a Rankine vortex superposition correction
scheme to correct for physical processes neglected by the relatively simpler but much more
computationally efficient potential flow equations. Energy considerations are accomplished
through convective energy transport equations. It is shown that without the Rankine vortex
superposition correction, potential flow is inadequate for accurately predicting velocity and
temperature fields in data centers. It is also shown that with the Rankine vortex superpo-
sition, in areas of interest within data centers, temperature predictions are as accurate or
are more accurate than a commercially available, conventional CFD software package that
uses the full Navier-Stokes and energy equations to solve for velocity and temperature fields.
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Three case studies are carried out based on experiments that were conducted in a data center
at HP Labs in Palo Alto, California. Measurements taken in that data center are used for
comparison with CFD predictions from ANSYS FLUENT and a MATLAB based, potential
flow with Rankine Vortex code named COMPACT (Compact Model of Potential Flow and
Convective Transport) . FLUENT’s temperature field predictions are also compared with
COMPACT’s predictions for both computational speed and accuracy.

The ultimate goal of these two streams, when combined, is to give a data center designer
or operator an ultrafast, comprehensive tool to make data center sustainability decisions
while constrained by operational temperature limit considerations. It is shown in this work
that such a goal is attainable.
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Chapter 1

Introduction

1.1 Motivation for Sustainable Data Centers

Information technology (IT) equipment in data centers use considerable amounts of energy
and in the process generate large amounts of heat. In 2006, data centers used approximately
61 billion kWh of electricity, accounting for about 1.5% of total U.S. energy consumption.
More troubling than the large amount of electricity use is the fact that the usage has ap-
proximately doubled since 2000 [4]. Figure 1.1, taken from [4], shows electricity use in data
centers from 2000 to 2006 and estimates what the electricity use in data centers could be in
future years if different courses of action are taken. The figure shows the doubling of elec-
tricity use by data centers from 2000 to 2006 and extrapolates to what future electric usage
may be achieved. The potentially favorable trends rely on implementing current efficiency
practices, such as better load sharing of servers to reduce idle and number of servers needed,
as well as improved operating conditions, such as direct liquid cooling or the use of air and
water side economizers.

Before proceeding further, it is advantageous to define what is meant by the term data
center. The definition in this study will be that used by Tschudi, et al. [112]. A data
center will be defined as “a facility that contains concentrated equipment to perform one
or more of the following functions: store, manage, process, and exchange digital data and
information.” Since the temperature of the IT equipment must be controlled both to ensure
reliable operation and to prevent premature failure of said equipment, energy usage involves,
amongst other things, both actual server electricity use and the power needed to run cool-
ing infrastructure. Removing the heat generated by the IT equipment is most commonly
achieved by circulating cooled air through the data center; air warmed by this process is
then removed from the room and often re-cooled for use in the server room [97]. The energy
expended in this fashion is comparable to and sometimes even larger than the energy needed
to power the IT equipment [28]. When viewing an entire data center system, the electricity
used by cooling equipment can be more than half of the total data center energy use. In
light of growing economic and environmental concerns over energy use, it is advantageous
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Figure 1.1: Past U.S. data center electricity use and future electricity use projections, taken
from the EPA Report on Server and Data Center Energy Efficiency [4].

to expend effort and capital on data center energy efficiency. As is pointed out in [112], the
concentrated equipment to perform data center functions usually includes energy intensive
computer equipment, cooling equipment, and electrical infrastructure to handle high levels
of power consumption with a high level of reliability. This definition of a data center is not
applicable to spaces that house office computers as well as small rooms of servers.

Billions of dollars and kWh, and all of the environmental implications of generating 61
billion kWh, is motivation enough for the continued study of data centers and their environ-
mental footprint. Due to the large scale of operational energy use, even small improvements
in overall data center efficiency can lead to large financial and environmental savings. How-
ever, this motivation deals only with the operational portion of the life-cycle of a data center.
Data center life-cycles have other portions other than the operational leg. Traditional cradle-
to-grave life-cycle analyses include raw material extraction and processing, manufacturing,
operation, recycling or some other end-of-life treatment, and transportation throughout. All
of these stages of a life-cycle contribute to the overall environmental footprint of a product,
process, or service. In the case of the data center, almost all of the research efforts have been
focused only on the operational portion. The reason for this is likely twofold. First, data
center equipment uses a high level of power continuously for years. Second, by far the easiest
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attainable measure of data center environmental performance is electricity consumption.
The assumption often made is that the environmental effects of a high level of fairly

constant operational energy use over years are much larger than the other life-cycle stages.
Therefore, if an exotic material were to be used in data centers to increase data center oper-
ational efficiency, but at the cost of requiring more energy to manufacture, the assumption is
that the operational energy savings and associated environmental savings achieved through
the use of the exotic material will by far outweigh the increased environmental consequences
of manufacturing the new exotic material. In addition, tallying the electric bills for a data
center is an easy and straightforward process requiring little skill and time.

While this approach is the easiest and may be satisfactory if the operational leg truly is
exceedingly dominant when compared to the rest of the life-cycle, to the authors knowledge,
there is presently no holistic analysis to confirm this assumption. Several frameworks exist
to quantify the environmental effects of a product, process, or service. These frameworks
are discussed in chapter 2. It is a goal of this study to perform a life-cycle analysis of a data
center to show the sustainability implications of the entire life-cycle.

1.2 Data Center Basics

1.2.1 Equipment in a Data Center

Data centers come in many different sizes and configurations, but almost always consist of
five groups of similar equipment. The most obvious group of equipment is the IT equipment.
This includes the servers, routers, switches, and other related equipment. IT equipment is
usually stored in cabinets called racks. These racks are approximately 7 feet tall and 2 feet
wide. The racks are usually organized in rows (more information on why that is in subsection
1.2.2). The IT equipment uses a large amount of electricity, and dissipates this electricity as
heat. This concentrated heat load must be removed to maintain cool operating conditions
required by the IT equipment. The second group of equipment included in data centers is
the cooling equipment. This group of equipment includes computer room air handler units
(CRAH units), computer room air conditioning units (CRAC units), water chillers, cooling
towers and all of the ductwork, piping, and other related equipment needed to move heat from
within the data center to outside the data center. The third group of equipment traditionally
in data centers is the power distribution equipment. Power distribution units (PDU), both
on a large room level scale and a smaller rack level scale, are used to step voltages down
thousands of volts to hundreds of volts for IT equipment to use. The fourth group of
equipment is the group of equipment used to maintain reliable power to the data center.
Depending on the size of the data center, power reliability consists of both uninterruptible
power supplies (UPS) as well as backup generators. The uninterruptible power supplies are
devices which, in the event of power loss, provide power to the data center for a short period
of time until the power is restored or the backup generators are turned on and brought online.
The next group of equipment is some kind of building structure or housing for a data center.
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Often this is a traditional bricks and mortar building or lately metal shipping containers.
A final group of equipment includes economizers, either air or water side economizers. A
description of how these equipment work is given in subsection 1.2.2, but for now it is
sufficient to know that economizers are used to take advantage of cool outside air to reduce
air conditioning costs of the CRAC and chiller units.

In order to evaluate the sustainability ramifications of the equipment in a data center,
this thesis includes two different life-cycle analyses of a combination of the equipment listed
above from all five of these groups. Not all of the equipment in each category will be analyzed,
primarily due to a lack of information on certain equipment. However, the most important
equipment from all five groups is included. The study focuses on equipment housed in the
data center, and will not include equipment outside of the physical data center (electricity
grid, step down transforms, cooling towers, air and water side economizers, etc.).

1.2.2 Cooling Strategy in a Data Center

To cool a data center, different methodologies can be employed. IT equipment uses a lot of
electricity, almost all of which is transformed into heat. This heat must be removed for two
reasons. First, if IT equipment becomes too hot, it cannot perform its tasks. The equipment
must be below design thresholds to function. Second, even if below design thresholds, if
equipment is kept too close to the design temperature limit, the lifetime of the IT equipment
shortens. For this reason, an effective cooling strategy is needed. In the past, when electricity
use and environmental effects took a backseat to system reliability and facility upfront cost,
the cooling strategy often involved providing more cooling than needed to ensure reliable
operation and equipment longevity. Recently, concern over operational costs (as energy
becomes more expensive) and environmental effects (as data centers become more prevalent),
motivate more efficient cooling strategies.

The most common cooling strategy is a raised floor configuration with an underfloor
plenum, where air is cyclically cooled and warmed. Figure 1.2 shows an example of a data
center cooling strategy. Racks are organized into rows which separate cold aisles from warm
aisles. Cold air is pumped from the underfloor plenum into the cold aisle. Fans in the racks
pull cold air in through the front of the racks over the hot IT equipment, cooling the IT
equipment. The warm air is blown out of the back of the racks into the hot aisle, where it
leaves the room through either ceiling or wall return tiles.

Cold air is generated either directly by chillers and then moved around by CRAH units,
or is made cool by direct expansion (DX) CRAC units. Chillers are large refrigeration units
which make cool water. The air that is to be cooled in the data center is passed through a
heat exchanger, where the hot air gives up its heat to the cool water. In this case, a CRAH
unit is used to move warm air from the data center to the chiller evaporator coils. In the
latter case, a DX CRAC unit uses a refrigerant rather than water to exchange heat with
warm air. CRAC units can be located directly in the data center and often give operators
and designers more flexibility in the cooling strategy. The warm working fluid of the CRAC
unit is often cooled by chilled water supplied by a chiller, so a chiller is still required. As
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Figure 1.2: Most common data center layout, showing hot and cold aisles.

pointed out in [46], this is the dominant cooling strategy in mid to large data centers [112].
The warm working fluid of a chiller is cooled using air or water and a cooling tower.

A more recent cooling strategy uses cold air from the environment when available to save
on cooling costs [46]. This can be done using economizers which use free, cool outside air
to minimize cooling energy needed. There are two types of economizers, air and water side,
both of which make use of cold outside temperatures when available. Air side economizers
make use of the fact that it can be more energy efficient to condition cool outside air than
to condition recirculating interior air [59]. The outside air is conditioned to ensure proper
humidity and particulate matter levels to meet standards necessary for IT equipment, and
is pumped inside a data center using CRAH units. Warm exhaust air from the data center
is exhausted out of the data center to the environment. This strategy bypasses the vapor-
compression cycle of the CRAC units and chillers, and can save energy. However, more
ducting is needed to pump in outside air, resulting in more air resistance. Achieving 100%
use of outside air could result in more overall cooling energy used due to the increased
pumping energy needed, so care must be used when using air side economizers to ensure
energy savings when compared to a baseline case of no air side economizer.

A water side economizer is used to directly cool the working fluid of CRAC units without
having to use a chiller [100]. Additional heat exchangers are installed between the CRAC
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unit and the cooling tower. Using cold outside air and cooling towers, cold water is generated
to cool the working fluid of a CRAC unit. If weather conditions are sufficient, a chiller can
be bypassed altogether. In this case, outside air does not have to be introduced into the
data center, dismissing concerns over ducting losses and humidity and particulate control
that afflict air side economizers.

In order to evaluate the cooling strategies in data centers, this thesis employees two
different types of computational fluid dynamics (CFD) studies: tradition CFD and reduced-
order CFD. The CFD studies focus on predicting velocity and temperature fields in the data
center room, and do not model flow upstream of the room. The boundary conditions for the
CFD studies are the room inlet and outlet tiles.

1.3 Motivation for Faster Data Center Velocity and

Temperature Field Prediction

The arguments for sustainable data centers illustrate two competing goals for data center
thermal management. The first goal is to maintain temperatures in the data center so that
IT equipment stays below rated operational temperature thresholds. The second goal is to
provide the needed cooling as efficiently as possible to minimize energy use and subsequently
the associated operational costs and potential environmental consequences associated with
energy consumption. Related to the improvement in energy efficiency is the improvement
in cooling capacity that results from accurate prediction of thermo-fluidic behavior in the
data center. Improved capacity utilization can result in reduced capital costs, since less
infrastructure is needed to remove a given load. Furthermore, improved capacity utilization
can result in increased potential to utilize alternative cooling resources like air or water
side economization which result in improved operational efficiency of cooling microgrids that
blend economization schemes with traditional mechanical refrigeration [60].

Accordingly, flow and temperature prediction allows data center designers to build data
centers that provide cooling to IT equipment when and where it is needed. Prediction is
also useful for active operation, allowing managers to control cooling equipment to efficiently
adapt to dynamic IT loads and/or cooling equipment failure. Current state-of-the-art CFD
models use the full Navier-Stokes equations, coupled with the energy equation and even
turbulence models, to model airflow and predict the velocity and temperature fields in a
data center. There are many commercially available CFD packages that exist and allow for
this rigorous analysis. While these packages do provide accurate modeling of airflow in data
centers, there are several drawbacks to their use.

1. The CFD packages themselves are often expensive and differ in their use. This requires
not only the purchase of the CFD package, but also the employment of someone with
knowledge of how to use the CFD package. Even for someone well versed in the use
of a particular CFD package, it may be time consuming to set up the CFD study,
especially if the design envelope being studied is expansive.
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2. CFD studies are often computationally expensive and require expensive, high powered
workstations to manage the large number of calculations required by the sophisticated
model.

3. CFD models can take long periods of time, often on the scale of hours, to achieve con-
vergence. This is prohibitively long for a real time controller or for design optimization
with a large number of design parameters.

These drawbacks are not insurmountable and are often not of large consequence. One
may argue that when designing a data center, the capital expense and time commitment
needed to carry out a CFD study are of little significance compared to the overall design and
construction of a data center. It is much cheaper and faster to complete a CFD study than
the alternative of building a data center and using trial and error to choose the location and
cooling levels of cooling equipment. However, it would still be advantageous to have faster,
less computationally expensive methods of predicting temperatures in a data center. This
is generally achieved at the expense of accuracy, but this trade-off is nonetheless deemed
beneficial for the following reasons:

1. Investigation of the data center design envelope would be expedited with faster pre-
dictive capabilities. When a final design or small group of potential final designs are
identified as promising after the use of the faster prediction, a more rigorous CFD anal-
ysis could be used to confirm the findings of the simpler prediction. This will speed up
optimization of data centers with many parameters.

2. Often in CFD analyses, convergence can be accelerated if the initial conditions are
closer to the final solution. The faster, simpler analysis could be used to generate an
initial guess for more complicated CFD analyses, facilitating faster overall convergence
times.

3. Simplified models could be used in automated, real time controllers that optimize the
cooling in a data center. In this case, the controller would likely not be a powerful
workstation and analyses would have to be completed on the scale of minutes or even
seconds rather than hours. This will not be possible in the foreseeable future with full
CFD simulations.

4. A MATLAB based program has been developed concurrently with COMPACT to assess
on a system level the life-cycle efficiency ramifications of different data center decisions
[64, 63]. Whether used by a data center designer when initially designing a data center
or by a controller when operating the data center, a simpler MATLAB based flow and
temperature prediction model could be easily incorporated with this software to rank
decisions based on the efficiency implications on an overall data center system level.
This will allow for the most efficient decision overall. The MATLAB based efficiency
program could be integrated with a commercially available CFD program, but it would
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Figure 1.3: Comparison of full numerical model to reduced order models.

be more difficult, time consuming, and potentially expensive. It is important to note
that while the efficiency and simpler flow and temperature modeling programs are
written with MATLAB, they are not restricted to MATLAB, and could be written in
other languages, such as C or JAVA. MATLAB was chosen because it is ubiquitous in
industry and academia.

It is the goal of this study to find an acceptable balance between full Navier-Stokes and
energy equation consideration and low order consideration. An example of a low order model
is BLAST or DOE-2 [6]. Low order models are much less computationally expensive, but
would not be accurate in assessing temperature or velocity fields in data centers. Low order
models are useful for looking at an overall energy balance, including building heat loads due
to building equipment or weather, on a simplified basis to estimate building energy usage.
For example, someone using these programs might be trying to solve for building energy
usage necessary to maintain a certain average temperature, but not to solve for temperature
fields within the building to find hot-spots. The middle ground reduced order model, with
the appropriate balance of accuracy and speed, needs to be computational cheap but predict
temperature fields accurately. Figure 1.3 illustrates the balance that needs to be achieved.

Although accuracy is generally lost when a simplified model is used, this assumes that the
boundary conditions supplied to said model are well-specified. Not every data center may
be well-instrumented enough to provide accurate boundary conditions (e.g. room inlet flow
rate, server rack power consumption, server rack volumetric flow rate). If they are not, then
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the effectiveness of a full commercial CFD package is lessened. If the accuracy of a full CFD
analysis is comparable to a simpler analysis, or if the simpler analysis is deemed accurate
enough, then the simplified model may be more desirable due to much quicker computation
time. It is the goal of this paper to make that comparison. A small data center was studied,
and the results of a full CFD analysis and simpler potential flow analysis were compared to
experimental results and to each other.

1.4 Thesis Layout

This thesis is composed of nine chapters. Chapters 2 and 3 provide a background of work
that has already been done with regard to sustainability modeling and indicators as well as
temperature and velocity field prediction, respectively. The literature review is broken into
two chapters: one for the sustainability track of this thesis, the other for the temperature
and velocity field prediction. Similarly, the methodology for the two tracks are laid out
separately in chapters 4 and 5. The results of sustainability modeling as well as temperature
and velocity field predictions are also laid out separately in chapters 6 and 7. The two tracks
are brought together in chapters 8 and 9, where the results from each track are discussed
and a case study is performed to show how they can be combined for their ultimate goal:
data center sustainable design and operation.
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Chapter 2

Literature Review of Sustainability
Modeling

Sections 2.1.1 through 2.3.3 are sections that were included almost verbatim in [64, 62]. They
are also included here in this thesis because they are necessary to motivate why life-cycle
exergy consumption is a good sustainability metric for data centers.

2.1 Review of Sustainability Modeling

2.1.1 Need for Sustainability Indicators

Energy, pollution, and resource use are currently issues of growing relevance and impor-
tance. On many levels, from the individual to the international, efforts have been and are
continuing to be made to increase sustainability. The most logical place to begin is with a
definition of sustainability. One of the first and the most widely cited definitions for sus-
tainable development comes from the Brundtland Commission’s resolution 42/187 [24]. This
resolution stated that “Sustainable development is development that meets the needs of the
present without compromising the ability of future generations to meet their own needs.” As
is often pointed out, there are several practical shortfalls of this definition. First, the term
“needs” is rather vague. For example, few would argue that access to clean drinking water
is a need, but is access to the Internet or air conditioning a need? The second shortcoming
deals with the needs of the “future generations”. There is no mention of how far in the
future we should be concerned. Taking it to the extreme limit, sustainable development
could be development that could be continued indefinitely. Someone attempting to use this
strict interpretation would have to decide what level of technological sophistication to factor
into their calculations. For example, when considering whether or not a car is sustainable,
should one use today’s standard fuel economy or fuel economy of future, more technologi-
cally advanced and efficient cars. Is it sustainable to drain our oil reserves now if cars in the
future will be powered by batteries? This definition of sustainability, as with many others,
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shows the inherent difficulty in assessing whether a certain decision, product, or process is
sustainable.

Setting aside the difficulty in defining sustainability, efforts to be more sustainable are
increasing. However, mere effort does not guarantee that more sustainable practices will be
achieved. An example is corn based ethanol biofuel. In principle, creating fuel from plant
material, a renewable resource, might increase a nation’s level of sustainability. But it has
been argued that more energy may be required to produce and distribute the ethanol than
the ethanol itself contains, resulting in a net loss [76]. For this reason, it is imperative to
have indicators that can be used to evaluate the level of sustainability for different activities.
By using such indicators, decision makers can perform more thorough assessments of the
sustainability of future actions. Indicators are typically used to show which is the more
sustainable option between several different options. In this way, the relatively difficult task
of defining absolute sustainability is sidestepped in favor of a practically feasible method of
a relative assessment of sustainability.

2.1.2 Overview of Sustainability Indicators

Over the last several decades, a myriad of sustainability indicators have been proposed. An
individual attempting to assess the sustainability of an action is faced with the daunting
task of choosing a suitable and accurate indicator to measure the action’s sustainability. In
an effort to remedy this problem, the Scientific Committee on Problems of the Environment
(SCOPE) published an extensive review [37] of sustainability indicators. Some of their
conclusions are summarized below:

1. Hundreds of sustainability indicators have been defined and used, and are grouped
into what the report labels three “pillars”. These three pillars, often also referred to
as the triple bottom line [23], categorize sustainability into environmental, economic,
and social considerations. However, there is no scientific consensus on a common set
of indicators appropriate for use within or between the pillars of sustainability.

2. Most indicators quantify behavior within one of the three pillars, although some in-
dicators attempt to link the three pillars. This linkage of the pillars, while difficult,
provides for a more complete indicator.

3. Good indicators are modular in nature. This allows for varying levels of accuracy in
the analysis depending on the desired investment into generating the indicator. Thus,
issues that are not considered important can be added later if then deemed relevant.
This also allows for easy updating of the indicator when new information becomes
available or when processes are changed.

Good indicators strike a balance between the accuracy of the model used to generate
the indicator and ease at which the indicator is generated. Indicators that model a system
with an excessively high level of accuracy at the cost of being overly expensive and time
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consuming to generate are not necessarily effective. On the other hand, indicators that are
easy to generate but that do not model a process well are also not effective.

In an age of relative information abundance, a good indicator is not only one that effec-
tively models a system, but does so in a way that results in a simple index or expression that
can be used by decision makers to achieve a “scientifically verifiable trajectory” towards a
goal [37].

2.2 General Classification of Sustainability Indicators

There are hundreds of sustainability indicators. An attempt to analyze and compare all
recently proposed indicators would be overly complex. One aim of this study is to compare
life-cycle exergy consumption with other proposed sustainability metrics for use with data
center design and operation. To refine the comparison of indicators, they will first be clas-
sified and only those that are applicable to information technology will be compared, citing
specific indicators for illustration when necessary.

On the broadest level, sustainability indicators can be classified by which pillar of the
triple bottom line they attempt to measure. While some indicators attempt to quantify
more than one pillar, most do not. For example, the human development index [113, 86],
which ranks countries by their level of human development, exemplifies a social indicator.
The index computes human development by factoring in life expectancy, education, and
standard of living. An example of an economic indicator is gross domestic product (GDP),
which can be used to quantify the income and output of a nation’s economy. Data centers
can affect all three pillars of sustainability. For example, information stored in data centers
may enable an increased level of education, thus increasing a nation’s human development
index. Data centers may also lead to more efficient businesses, thus increasing economic
sustainability.

Of interest in this thesis is how data centers affect the environmental pillar. It should be
noted that while some indicators may measure sustainability in more than one pillar, not all
of these pillars are relevant for this study. Only indicators or portions of indicators related
to the environmental pillar will be analyzed.

2.3 Thermodynamic Metrics used as Environmental

Indicators

2.3.1 Environmental Indicators

Human activities rely on the environment to provide resources and absorb wastes [33]. En-
vironmental indicators assess how such activities affect the environment and, based on the
effect, quantify the sustainability of the process. Environmental indices often do not have
a value which can be used to determine whether or not sustainability has been reached.
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Rather, most environmental indicators are used in a comparative manner. Using the index
in this way, two different activities can be analyzed, and the indicator can quantify which
activity is less sustainable. An example of an environmental indicator is the Environmental
Sustainability Indicator (ESI) [25]. The ESI takes 76 variables, chosen through an envi-
ronmental literature review, and obtains a single index for the sustainability of a country
through weighting of the different variables. A problem with the ESI is one that faces many
indices: the index is arrived at through subjective decisions as to the importance of different
variables. For example, two variables are child death rate from respiratory disease and envi-
ronmental efficiency. When determining the ESI, these two factors were weighted the same.
Weighting these two or any other factors differently may lead to an alternate conclusion as
to the sustainability of the country. A better index might be one that is not so subjective
and is instead based on scientifically rigorous calculations.

Thermodynamic assessments provide such scientific rigor. The fundamental laws of ther-
modynamics provide means to quantify mass and energy transfer in processes. While mass
conservation and the first law of thermodynamics track mass and energy exchanges, the
second law of thermodynamics can be used to assess how well energy is being used. Thus
thermodynamics can directly be used to quantify materials required and produced by a pro-
cess, energy required by the process, and how well the energy is used by the process. This
information can then be used as an indicator to compare different technologies. While a
thermodynamic analysis does not necessarily produce an index, one could use a thermody-
namic analysis to compare necessary inputs to a process, including materials and energy,
as well as the products of the process. Some thermodynamic quantities, such as exergy
consumption, can even be used as a single index. Thermodynamic indicators generally have
two main parameters that differentiate them. The first parameter is what thermodynamic
quantity the indicator is tracking. Some indicators track mass flow, while others track energy
flow, and still others track exergy or emergy flow. The second parameter is the scale the
analysis will include. The scale of the indicators is linked to the design goals. In past times
of relatively inexpensive energy, initial cost of manufacturing and installation was generally
more significant than operating costs [5]. As a result, design decisions were based on manu-
facturing and installation. However, higher energy prices and the prevalence of more active
work-consuming devices shifted the design emphasis towards operating costs.

Indicators generated to assess products will vary in the scope of their assessment as
design goals vary. Some indicators focus on certain portions of the life-cycle of a product,
such as the operations phase. Others look at the broader picture and evaluate more of the
life-cycle of a product. What is considered the life-cycle of a product is somewhat arbitrary.
The cradle-to-grave cycle, which includes raw material extraction, manufacturing, operation,
disposal, and all necessary transportation, is usually considered a complete life-cycle [10].
These phases are usually considered the most influential and will be the parts of a life-cycle
for the purposes of this paper.

Hau [41] provides an extensive review of recently proposed and utilized thermodynami-
cally based metrics. Some of the more influential metrics are the following:
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1. Mass Based Metrics

2. Energy Analyses

3. Life-Cycle Exergy Analysis (LCEA)

4. Life-Cycle Assessment (LCA)

5. Exergetic Life-Cycle Assessment (ELCA)

6. Emergy Analysis

The goal of this section, set forth in section 2.3.1, was to begin with all indicators and
refine their classification until only those pertinent to data centers remained (see figure 2.1).
The six thermodynamic indicator types are those that will be analyzed in their relevance to
data centers.

2.3.2 Specific Thermodynamic Indicators

Material Input per Service Unit (MIPS) exemplifies mass based metrics [45, 44]. It quantifies
the material necessary to produce a unit of service. In the context of information technology,
MIPS can be used to analyze a server. In the point of view of the MIPS indicator, the data
transferred (and not the server itself) is the service being provided. The total material
required over the life-cycle of the server normalized by the data transferred would be the
MIPS for the server. The advantage of the MIPS metric as well as other mass based metrics
is that because only material or mass is tracked over the life of a product, it may be easier to
calculate than other proposed metrics. However, this is also the disadvantage of the MIPS
method. Since only mass is tracked, mass based metrics do not give a complete assessment
of the process. They sacrifice a more thorough model for ease of generating the indicator
and are not as complete as those discussed below.

Energy analyses provide a more thorough picture of a system by tracking not only ma-
terial flows in a process, but also energy flows [32]. These types of analyses can vary in the
scope of the life-cycle they evaluate. Even a life-cycle energy analysis has its drawbacks.
Energy analyses use mass and energy conservation but do not make use of the second law of
thermodynamics. Therefore, there is no distinction made between energy of different forms.
A life-cycle exergy analysis (LCEA), which tracks lifetime exergy consumption, does use the
second law of thermodynamics and rates energy based on its “quality” [41].

Exergy is defined as the maximum work retrievable when a system is brought into ther-
modynamic equilibrium with its surroundings [68]. Exergy measures a system’s ability to do
useful work. The advantage of exergy analyses is that since the quantity being compared
is the ability to do useful work, different material and energy flows of varying quality can
all be compared in a scientifically rigorous manner. An example might be two processes, A
and B, each that use 100 kJ of energy. However, process A involves a heat engine that uses
100 kJ of heat or thermal energy, and process B involves an electric motor which uses 100
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Figure 2.1: Classification of sustainability indicators.

kJ of electricity. Since heat and electricity are of different qualities, they cannot be directly
compared. This is because electricity is of a high quality, and essentially all of the electric-
ity can be converted into useful work. However, a heat engine is limited in its ability to
convert thermal energy to work with the upper limit being the reversible Carnot engine. A
Carnot engine analysis dictates that the amount of thermal energy converted to useful work
is limited by the temperature at which heat transfer takes place. The main advantage of an
LCEA metric is that exergy provides an equal comparison for different forms of material and
energy, thus allowing for comparison between the heat use of process A and the electricity
use of process B. By examining the life-cycle of a process, a complete appraisal is provided.
The disadvantage of an LCEA metric is that it does not provide a complete picture of the
environmental impacts of a process. For example, an LCEA might find that some hypo-
thetical process C consumes 10 MJ of exergy. This evaluation is incomplete. There is no
accounting for how this affects the environment. Was rainwater acidified or a species made
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extinct in the consumption of this 10 MJ of exergy?
Life-Cycle Assessment (LCA) was defined by the International Organization for Stan-

dardization’s (ISO) 14040 series [50]. LCA is not a metric by itself, but instead provides
a framework for metrics to estimate environmental effects due to existence of a product or
process over its life-cycle [10]. This is done by systematically tracking all inputs and outputs
of a product or service over its lifetime. Since LCA is only a framework for how the inputs
and outputs should be tracked, there are many different variations, but the variations often
focus on emissions [41]. The advantage of an LCA analysis is that depending on how it is
done, it can give a very complete analysis of how a process affects the environment. It can
account for mass and energy inputs into a process, as well as mass products of a process.
While an LCA analysis is very complete in its description of environmental effects, there are
several disadvantages. First, in general, an LCA analysis does not lead to a single quantity
that can be used to compare different processes. For instance, if two hypothetical processes
A and B were analyzed, an LCA would find that process A produces sulfuric acid while pro-
cess B produces mercury as pollutants. Directly comparing these emissions is difficult, and
an LCA uses databases of standardized impact factors to compare aggregate effects from dif-
ferent processes. But comparing across different impact categories - for example, ecotoxicity
versus global warming potential - is still difficult, and users must often rely upon subjective
interpretations of different impacts to evaluate competing trade-offs in different processes.
Second, the accurate assessment of how a process affects the environment achieved by an
LCA is accomplished at the cost of being time consuming and expensive to produce. An
LCA requires the scope of the problem to be defined and extensive libraries to be assembled.
SimaPro [3] and GaBi Software [79] are two commercial LCA software packages available,
but even using such software packages, an LCA analysis is more difficult to obtain than other
metrics.

Attempts have been made to combine LCA with exergy in the ELCA [9, 14]. When this
is done, the rigor of an LCA is achieved, but resource depletion and pollution are accounted
for through exergy values. The result is a single metric available for comparison (exergy).
This method has the advantages of both the LCA and LCEA, but still requires more effort
to generate than an LCEA. Also, like an LCEA, a disadvantage is that the evaluation is
incomplete. The examples of rainwater acidification and species extinction presented for an
LCEA would work equally as well for an ELCA.

The last thermodynamic metric of interest is emergy. Emergy, a quantity defined by
Odum [72], “is the available energy of one kind previously used up directly and indirectly
to make a service or product,” where available energy is defined by Odum as “potential
energy capable of doing work and being degraded in the process (exergy).” Odum indicates
that emergy quantifies the work of nature as well as humans in production of a product or
service. As discussed earlier, different forms of energy are not equivalent in their ability to do
work, which motivated the use of exergy. In an attempt to make energy comparisons more
convenient, Odum expresses given energy inputs in equivalent amounts of solar energy that
would be required to generate the input. The idea is that nearly all of the energy available
on Earth comes from the sun (with small contributions from tidal and deep Earth energy).
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Emergy is similar to an LCEA, as described earlier, with the difference that the life-
cycle has been extended. In a cradle-to-grave LCEA, the normal starting point is the raw
material extraction. However, with this starting point, the exergy necessary for nature to
produce the raw material is neglected. Emergy has the advantage that it provides a more
complete picture over the entire life-cycle of a product or service, including the portion of
the life-cycle where nature provides the necessary inputs. This is also a disadvantage of
emergy analyses. Like an LCA analysis, the more complete analysis provided by emergy is
more time consuming and difficult to attain than an LCEA. This is so because the amount
of emergy involved with a raw material is path dependent while in an exergy analysis, path
is independent. For example, in an exergy analysis, a block of wood has some exergetic value
irrespective of how the block of wood came to be. In an emergy analysis, the block of wood
could have different emergy values if it were grown naturally in a forest or if it was grown in a
tree farm. In the latter case, the available energy involved with planting the tree, fertilizing
and watering the tree, and other farming energy expenditures would have to be accounted
for, complicating the analysis. There are also other criticisms of emergy analysis, many of
which are detailed in [42]. Many of these criticisms deal with other emergy principles, such as
how emergy measures economic value and how emergy dictates the organization of a system
(the maximum empower principle). While these are often criticisms of emergy, they do not
directly relate to environmental sustainability, and will not be further discussed here.

2.3.3 Application to Data Centers

Thermodynamic Indicators to Evaluate Data Centers

Table 2.1 provides a summary of the different types of environmental, thermodynamically
based sustainability metrics commonly used and their respective advantages and disadvan-
tages. The task still remains to investigate how these indicators would quantify the sustain-
ability of data centers.

Mass based indices would not be the best type of metric for information technologies, as
they track mass only. While it is useful to know the materials that go into and are produced
by information technologies, a mass based index alone is not preferred, in that it neglects
energy resource considerations, a very important aspect of information technology.

An energy analysis of information technologies is favored if the analysis is over the life-
cycle of the information technology, as this captures many important energy inputs that
would otherwise be neglected. In addition, energy analyses that compare exergy (LCEA),
rather than simply energy, are better because different forms of energy have different abilities
to do useful work. Comparing the exergy required to produce, operate, and dispose of
information technologies generates a more useful metric because many different technologies
can be compared. Exergy analyses have been found to be a useful indicator of operational
optimality for various types of information technologies [98, 99].

An LCA analysis provides a more complete analysis of the environmental consequences
of an information technology than an LCEA. It tracks all inputs and outputs required to
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Table 2.1: Thermodynamic metric advantages and disadvantages.

Indicator Type Advantage Disadvantage

Mass Based Relative ease of computa-
tion.

Lacks full description.

Energy Analysis Includes mass and energy
accounting through mass
conservation and 1st law of
thermodynamics.

Cannot compare different
forms of energy, does not
directly track pollution, re-
source depletion.

LCEA Those of energy analyses
but also can compare differ-
ent forms of energy, easier
to derive than LCA, arrives
at single index.

Involves more effort to com-
pute than mass based met-
rics, does not directly track
environmental impacts.

LCA Very complete picture of
environmental effect.

Difficult to compute, no sin-
gle index for comparison of
different products or pro-
cesses.

ELCA Complete picture, single
metric.

Difficult to compute and
does not directly track en-
vironmental impacts.

Emergy Expansion of life-cycle in-
corporates ecological inputs
to analysis.

Difficult and time consum-
ing to compute (path de-
pendent on history of ex-
ergy input).

make, operate, and dispose of the information technology. Emissions and pollutants, as well
as natural resource depletion involved with a given information technology, can be evaluated.
This cannot be done with an LCEA. However, a list of depleted resources and pollutants
is not easily comparable for different information technologies. Moreover, because a large
fraction of the environmental impacts of information technologies stem from the direct or
indirect consumption of material or energy resources across the system life-cycle - which are
adequately captured by an LCEA analysis - information technology choices based on LCEA
often agree with the technology choices based on other impact assessment methods of an
LCA. In addition, because of the cumbersome nature of an LCA analysis, it has been argued
that an LCA analysis is useful for evaluating already proposed or existing systems, but an
LCEA is much more useful in designing a sustainable product or process [32].

Finally, emergy analyses are comparable to LCEA but are perhaps more useful in that
they capture the natural or ecological inputs to a product or service. However, like an LCA
analysis, an emergy analysis is more burdensome to generate than a life-cycle energy analysis.
Databases of emergy values are not easy to produce or readily assessable and depend on the
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path taken to reach a state, so are not retrospectively deterministic.
For these reasons, it can be argued that an LCEA, which tracks lifetime exergy consump-

tion, provides the best compromise among the different thermodynamic metrics for designing
sustainable information technologies. It is important to note that an LCEA is a sustainabil-
ity metric that meets the standards outlined by SCOPE for good indicators. An LCEA is
modular in nature since the components of the life-cycle can be updated as new information
becomes available or is deemed important. An LCEA also strikes a balance between ease of
generation and scope of what it models. If more details are required, an LCA or an ELCA
can be performed. Finally, an LCEA provides the total exergy consumed in generating a
good or service, thus providing a single, scientifically rigorous, comparable metric.

Application: LCEA of Computer Servers in Data Center

An LCEA model generated by Hannemann et al. [40] will be used to exemplify a life-cycle
exergy analysis for a data center server. Specifically, a 2U-rack-mounted server with two
Intel Pentium III 1.0 GHz processors, one 36 GB SCSI hard disk drive, one CD-ROM drive,
and one floppy disk drive, in addition to other necessary components, will be analyzed. The
model examines the exergy for extracting and processing raw materials, manufacturing and
assembling components, operating the server (including cooling), recycling and disposing of
the server, and transporting the server and its components throughout.

Database Needs

In order to generate this model, databases are needed to provide the following information:

1. Mass of elements that make up different components

2. Exergy consumption to extract and process raw materials

3. Exergy consumption for different manufacturing processes

4. Operational parameters of technology of interest - max device power, average device
load, cooling requirements, operational duration, uptime, etc.

5. Locations of raw material extraction, assembly, distribution, operation, and disposal
as well as mode of transportation

6. Exergy consumption for different modes of transportation

7. Exergy consumption for recycling and disposal of different technologies

Hannemann et al. [40] devised methods to estimate these as well as server specific
quantities for a 2U-rack-mounted server based data center. The base values for the analysis
that follows are provided in table 2.2.
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Table 2.2: Input variables representative of 2U-rack-mounted server.

Input Parameter Input Value

Assembly Location Taipei, Taiwan
Transportation Mode Ship
Distribution Location San Francisco, USA
Transportation Mode Truck
Operation Location New York, USA
Max Device Power (kW) 0.265
Average Device Load (%) 50
Operation Duration (years) 3
Estimated Uptime (%) 95
Cooling Scales with Load Yes
Maximum Cooling Load 0.265

Results of Server Analysis

Figure 2.2 shows the exergy consumption in the five different stages of the life-cycle for typical
data center parameters. In a data center, it is of interest to know the exergy consumption
required to cool the servers, as it is a large portion of the operational exergy consumption.
Consequently, this part of the operational exergy consumption is plotted separately.

Varying the design parameters changes the exergy consumed in the life-cycle of a server
based data center. If an LCA analysis were done, it would be more difficult and take more
time to vary the design parameters and complete a new analysis. However, an LCEA can
be done quickly, letting a designer change many parameters to immediately find a design
that minimizes exergy destruction. For example, the second set of data in figure 2.2 depicts
the exergy destruction for the same server as described in table 2.2, except the operational
duration has been changed to one year and the average device load has been changed to 25
%.

Theoretically, the decreased operational duration might be necessary if server technology
accelerates at such a fast pace that servers need to be replaced every year. The average
device load reduction might take place if it is found that many servers are needed during
peak use certain times of the day, but at other times some servers may be powered down
due to reduced use.

There are a multitude of variations that a designer may wish to analyze, and the LCEA
provides a tool that is easy to use and is fairly complete in its analysis. A breakdown of where
exergy is consumed in the life-cycle is provided, so a designer can focus attention to areas of
largest exergy consumption. Once a design is decided upon based on minimization of life-
cycle exergy consumption, an LCA can be done to analyze other environmental ramifications.

Once an LCEA model is built, all that is necessary to analyze different information
technologies is a respective database of the components. For instance, all that would be
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Figure 2.2: LCEA for server with properties described in table 2.2 as well as server with
operational duration and average device load alterations.

required to extend the server model of Hannemann et al. [40] to do a LCEA of a laptop
or smart phone would be the information described in the database needs of this report.
Other minor adjustments to the model might be required, such as updating the cooling
requirements, but these changes can be done with ease due to the modular nature of the
LCEA analysis.
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Chapter 3

Literature Review of Data Center
Velocity and Temperature Prediction

Data center thermal management has been an area of intense research for over a decade.
Over that time, there has been much work devoted to predicting velocity and, more im-
portantly, temperature fields in data centers. Several comprehensive literature reviews have
been performed. This author finds the review by Joshi and Kumar [115] to be thorough and
complete. In the review by Joshi and Kumar, they note two other expansive reviews on data
center thermal management: one is by Schmidt and Shaukatullah [94], and the other is by
Rambo and Joshi [81]. The interested reader is directed to any of these three lengthly liter-
ature reviews for a more thorough literature review, the sum of which is on the same order
in length as this entire thesis. The Joshi and Kumar review is summarized and augmented
in this chapter.

3.1 Computational Fluid Dynamics: Solving full

Navier Stokes and Energy Equations

As was discussed in chapter 1, the most historically prevalent method of cooling data centers
has been through the use of an under-floor cold air supply with warm air ceiling return. One
might assume this would be an efficient method of cooling, since warm air is less dense than
relatively cooler air and naturally rises. It would seem logical to thus put the return vents
on the ceiling and the cold air supply on the floor.

This under-floor plenum strategy has some inherent problems. One of the major problems
that arises is ensuring that each floor tile achieves the target airflow through it that is desired.
Much numerical work, especially the earlier numerical models in data centers, dealt with this
problem [54, 55, 57, 95, 56, 73]. These studies examined variables such as under-floor plenum
height, open area of perforated floor tiles, under-floor obstacles, and plenum partitions and
their effects on airflow distribution through floor tiles.

Under-floor plenum numerical studies were just the beginning of data center numerical
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analysis. Another area of numerical study was choosing operational parameters and data
center layouts. These studies sought to find the optimal data center dimensions, rack layout,
CRAC placement, cold air supply temperature and flow rate, etc. One of the first of such
studies was performed by Schmidt [89]. Schmidt performed CFD studies examining hot aisle
and cold aisle arrangement in data centers. One of his key findings was that in data centers
recirculation can be caused by lower racks drawing in cold air from the supply floor tiles.
Recirculation is when warm air that has already passed through servers recirculates around
the rack and flows to the cold aisle in a data center. This can lead to hot air at the inlets
to servers, the exact opposite of what is desired. Schmidt and Cruz performed other CFD
studies analyzing different design scenarios, such as introducing cold air in hot aisles in an
attempt to combat recirculation [90], mixing high and low power racks [91], and removing
adjacent racks [92]. A logical thought, if concerned about recirculation, is to create physical
barriers which prevent mixing of cold and hot aisle air. Gondipalli et al. [30, 31]. performed
numerical case studies of containment using doors and roofs, with and without slits.

Patel et. al [75] investigated using CFD to examine changes caused by different data
center layouts and CRAC cooling levels. They used their CFD work to find guidelines for
data center design. They showed in some cases they could achieve 35% energy savings by
choosing optimal CRAC settings.

Another logical questions in data center design is where is the optimal placement of supply
and return vents. While it seems logical to have an under-floor cold air supply plenum and
ceiling return vent, numerous CFD studies have sought to quantify the optimality of this
setup [69, 71, 74, 101, 43, 93, 80, 83]. Different scenarios investigated include under-floor
supply and overhead return, overhead supply and horizontal return, overhead supply and
under-floor return, and finally overhead supply and horizontal return. The general consensus
in these CFD studies is that the under-floor supply and overhead return minimizes mean
and max rack inlet temperatures, and is the optimal supply and return setup. It was also
shown that the worst setup, with the highest mean and max server inlet temperatures, is
generally the overhead supply and under-floor return.

It is also important to note that the majority of numerical analysis of data centers is done
at steady state. It is assumed that the server heat load is constant, that the cold supply air
is kept at the same temperature and flow rate, and that there are no equipment failures. In
reality, data centers are transient. Amongst other transient events, server loads vary over
time, CRAC units fail, or inlet tiles have changes in flow rate or temperature to match server
loads. There has been numerical work on the transient nature of data center operation [104].
Other transient CFD modeling looked at CRAC failure and the transient response [11] as
well as varying server heat loads [48].

3.2 Reduced Order Models

Others have been working to make reduced order models as well. They have the same goal
as the fast prediction methods of this work - to acquire relatively accurate temperature
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field predictions at faster than conventional CFD speeds. Karki and Patankar created a
one-dimensional computational model instead of using full CFD [58]. Their model generated
decent predictions in certain flow regimes. Rambo and Joshi [82], and Rambo [85], solved
RANS turbulence problems using proper orthogonal decomposition. The authors predicted
reduced model size by a factor of 104 with errors as low as 5%. Shrivastava et al. created a
software package to estimate cooling of groups of racks placed together in a cold aisle [102,
103]. Their tool produced temperature field solutions in 10-30 seconds.

There are also other researchers concurrently attempting to use potential flow theory to
arrive at reduced order models. Lopez and Hamman use a physical model, based on potential
flow theory, combined with real-time sensor data [66]. Due to the reduced complexity, they
developed a model “suitable for operational and real-time usage”. They conclude, as does
this work, that “although the model is simpler than those based on the use of the Navier-
Stokes equations for fluid flow, numerical experiments suggest that it can nevertheless provide
useful information for use in data center energy management.” Hamman went on to further
explore using this model to ascertain optimal CRAC settings in a data center [38]. VanGilder
and Shrivastava also developed a tool that is loosely based on potential flow theory [114].
They argue that in the bulk of most flow cases, the majority of the velocity field in a data
center can be modeled by potential flow. In order to make this simplification, they must
ignore buoyancy forces. With these forces ignored, the governing equations reduce to the
potential flow equations and ultimately to the Laplacian of a potential function. These linear
equations indicate that solutions can be superposed. VanGilder and Shrivastava use this
thought process to compute thousands of flow scenarios. They then develop an algorithm to
combine these flow scenarios to generate any flow scenario of interest through superposition.

All of the potential flow theories do not deal with buoyancy considerations. As was found
in [110], buoyancy can play an important role in data center flow patterns, and this thesis
details corrections to conventional potential flow theory to account for these forces.

3.3 Data Center Experimental Setups

Velocity and temperature fields in a data center are complex. Historically, researches have
conducted many experiments both in an attempt to gain knowledge about data centers and
to validate their numerical studies. Boucher [13] focused on controlling cooling equipment
and analyzing different cooling equipment settings and their effects on server inlet temper-
ature. In particular, CRAC temperature, fan speed, and vent tile openings were varied. It
was concluded that since inlet temperatures varied linearly with CRAC supply temperature,
that buoyancy was not important, at least for the operating conditions they studied. How-
ever, other experimental work has shown that buoyancy can be an important factor in data
center operation [110, 47]. Another experimental study focused on comparing under floor
plenum CFD simulations to experimental results [96]. The CFD analysis compared decently
in trends with the experimental results, but there were sometimes large deviations in flow
rates through tiles. Samadiani [87] used CFD to predict flow rates in an underfloor plenum to
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investigate under-floor obstructions and tile openness and their effects on CRAC flow rates
and distribution. The predictions were compared with experiments conducted by Rambo et
al. [84] and were found to have average errors of approximately 10-13%.

Iyengar [51] performed an experiment in a small data center, consisting of one rack and
one CRAC unit. In this study, the average absolute error between the CFD predictions and
absolute error was found to be 3 K. Iyengar claimed that the dominant form of error was
the k− ε method and a simplistic modeling of the rack since exhaust airflow was considered
uniform. It was argued that both of these modeling limitations hinder mixing in the numer-
ical model and lead to more extreme hot and cold spots than occur in reality. This brings
up an important point: when performing a numerical model of airflow in a data center, one
will have to choose a turbulence model. Cruz compared CFD results generated with seven
different turbulence models and three different experimental data center layouts in two sep-
arate studies [17, 18] . Cruz found that the zero equation (or mixing length model) and the
Spalart-Allmaras turbulence models had the smallest error when compared to experiments.
The zero equation model required one-fifth the computational effort as the Spalart-Allmaras
turbulence model. The laminar flow model was twice as fast the zero equation model and
had similar errors to the six k − ε turbulence models investigated.

Perhaps the most methodical comparison of CFD to experiments can be found in [74]. In
this work, unlike the others mentioned so far, a “controlled data center” was constructed to
avoid experimental errors that plague many of the other studies. For example, the servers
were simulated by heaters that had specific heat loads. Fan speeds on the simulated servers
were set to a know constant and did not change. In other studies, including the one performed
in this thesis, this luxury was not possible. Dynamic data centers are approximated as quasi-
steady state and modeled as steady. This data center experiment actually was steady. A
k− ε turbulence model was used, and the average error in temperature prediction was found
to be between 7-17%, depending on the height of the experimental measurement. In the
study, error was defined as follows:

Error =
|(Tsim − Tc,in)− (Texp − Tc,in)|

Texp − Tc,in
(3.1)

In this equation, Tsim is the temperature predicted by the numerical simulation at a
point, Texp is the experimentally determined temperature at the same point, and Tc,in is the
temperature of the cold inlet air.
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Chapter 4

Sustainability Modeling Methodology

Two different sustainability analyses were performed in this thesis. The first analysis was a
LCA. This was performed to be a point of comparison for the second analysis, a LCEA. The
LCEA of a data center is one of the primary objectives of this thesis. The LCA, however,
is more widely known and practiced and for this reason the LCEA results will be compared
to the LCA results. Also, it was argued in subsection 2.3.2 that the results of an LCA and
LCEA often agree. This claim will be quantified.

4.1 Life-Cycle Assessment (LCA)

A full blown LCA would take a very long time to generate and could be a thesis of its
own. Instead of a full blown LCA, an LCA is carried out that deals only with the global
warming potential of data centers. The questions which this study seeks to answer are what
is the global warming potential of a traditional data center, how does this footprint differ for
different data center configurations, and what are the best ways of reducing these impacts.
In addition, the different legs of the life-cycle will be compared to see if the operational
leg dominates over the other life-cycle stages as is often implicitly assumed. As has been
discussed in the introduction, data centers can vary by size and configuration. It is therefore
important to normalize both spatially and temporally. Spatial normalization refers to the fact
that data centers can be of different sizes. Without normalization, it does not require much
analysis to deduce the environmental impacts of a 100 MW data center are more than those
of a 1 MW data center. The functional unit chosen for normalization spatially is the number
of gigabytes (GB) available for data storage in the data center. A temporal normalization is
also required because the different components identified as being present in all data centers
have different lifetimes. Comparisons of the global warming potential of different equipment
within the data center would not be fair without a temporal normalization. For example,
the IT equipment in a data center may be used for 3 years without major maintenance
or replacement, while the CRAC unit and chiller may be used for 10 years without major
maintenance or replacement, and the building shell may last for 50 years without major
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maintenance or replacement. The environmental footprint of a data center will thus be
normalized by the lifetime of the respective equipment as well as the GB of storage of the
data center.

Information for all components of a data center is not readily available. This study will
focus on the following data center equipment for which information was available: building
shell, servers, room level PDU, UPS, CRAC unit, and chiller. This equipment constitutes
the bulk of what makes up data centers and represents all five groups identified as being
present in all data center configurations.

A hybrid LCA is used to find the global warming potential for a typical data center.
When performing an LCA, there are several different techniques, usually categorized into
two main categories: process based and economic input-output LCA (EIO-LCA) [49]. A
process based LCA is one that utilizes databases of information to ascertain process inputs
and outputs through the supply chain. An EIO-LCA uses economic data from the product or
process being investigated along with different sectors of the economy, in combination with
the environmental consequences of different sectors of the economy, to generate an estimate
of the environmental ramifications of a product or process. The EIO-LCA method takes
economic value for a sector of the economy as an input and outputs different environmental
information based on the economic activity in that sector. The EIO-LCA method is useful
for well defined, homogeneous sectors of the economy, such as printed circuit assembly man-
ufacturing, but less useful for non-homogeneous sectors of the economy, such as non-ferrous
metal rolling, drawing, extruding, and alloying. In some cases in this study, the economic
values could be found for the different data center components and the economic sector was
acceptable, so the EIO-LCA tool [49] was used. This was the case for the resource extrac-
tion and manufacturing leg of the life-cycle for the server, CRAC unit, chiller, PDU, and
UPS. For the other life-cycle stages, as well as the building shell, the process-based LCA
method was used. Process-based data came from other LCA literature, such as Junnila and
Horvath’s paper on the environmental effects of an office building [52].

A hybrid method was used to minimize both the aggregate errors of the EIO-LCA method
as well as truncation errors of the process based method. Aggregate error is error introduced
because an entire sector of the economy is being reduced to one average. Within the sector,
there are likely differences that get blurred. For example, if one is looking at the electricity
generation sector of the economy, there is an average emissions factor per kWh (or $) for the
entire country. However, the emissions per kWh in California are significantly different from
the average of the United States. This error is an example of aggregate error. Truncation
error is error due to the boundary of the problem being studied being truncated. Examining
a supply chain can help to illustrate this point. When trying to ascertain the emissions
of making a computer server, one would start by looking at the company that made the
server. This company, however, buys parts from other vendors, has workers that drive to
work and eat every day, and is housed in a building that has emissions of its own, etc.
The list of emissions associated with the supply chain of this server is extensive. Often,
the boundary of analysis is chosen to simplify the analysis and make the problem tractable.
Error is introduced by narrowing the boundary of the problem, and this is called truncation
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error. The EIO-LCA method cleverly avoids truncation error at the expense of introducing
aggregate error. A hybrid method seeks to minimize both errors, hopefully resulting in an
LCA with the least possible error [106].

Subsection 4.1.1 is an overview of how the life-cycle global warming potential of a typical
data center was modeled, followed by a subsection with specific information on the calcu-
lations performed for each piece of equipment and how the equipment was put together to
form a data center.

4.1.1 Overview

In this overview, the strategies behind the calculations in the four life-cycle stages studied are
described. These four life-cycle stages were applied to the six pieces of equipment studied,
and then a fictitious but realistic data center was created using combinations of the six
pieces of equipment. When discussing the four life-cycle stages, what is being addressed
in each life-cycle leg is only the activity of a particular piece of equipment in that leg. A
simple example helps to illustrate this point. In the resource extraction and manufacturing
life-cycle leg for a server, different materials and components had to be transported to make
a server. In addition, the equipment used to make the server has a useful life and there
are global warming ramifications associated with their disposal. However, in the context of
this report, the global warming potential of transporting around the raw materials used to
make the server and disposing of the equipment used to make the server will be counted
in the resource extraction and processing life-cycle leg. The transportation life-cycle leg
refers only to global warming potential of the emissions used to transport the finished server
throughout its life. Similarly, the end-of-life leg refers specifically to the emissions resulting
from the end-of-life treatment of the server. This thought process holds for all six data center
equipment analyzed.

Resource Extraction and Manufacturing

The resource extraction and manufacturing portion of the life-cycle refers to all activities that
were necessary to make the piece of equipment of interest. When possible, as was the case
for the CRAC unit and chiller, mass breakdown data for equipment was obtained. Economic
values were found for the different masses in the breakdown and using this information
economic values were determined for different materials that made up the equipment. For
example, knowing the mass of steel and aluminum in a CRAC unit, and also knowing the
price of manufactured steel and aluminum per kg, the price of these materials in a CRAC
unit were calculated. Using the price of the materials, the EIO-LCA tool was used to find the
global warming potential of the supply chain in making the respective piece of equipment.
The method of finding the mass breakdown, then the value of the masses in the breakdown,
and then using the EIO-LCA tool, was done in an attempt to avoid error that would result
from using non-homogeneous economic sectors in the EIO-LCA tool. It is important to
note that it was assumed the assembly of different materials was negligible compared to



CHAPTER 4. SUSTAINABILITY MODELING METHODOLOGY 29

the resource extraction and manufacturing of the individual components. For example, in
the case of the CRAC unit, the global warming potential was found for making steel and
aluminum components, but not for putting that steel and aluminum together into a CRAC
unit.

When it was not possible to obtain a mass breakdown of the individual pieces of equip-
ment, as was the case for the server, PDU, and UPS, monetary values were assumed for the
equipment and the EIO-LCA tool was used directly to estimate the global warming potential
for that component. This likely led to some error, since the PDU and UPS were analyzed
using economic sectors that are not unique to data center equipment. While not as accurate,
this method of modeling was necessary since detailed mass breakdowns of these components
could not be obtained. In the case of the building shell, the EIO-LCA tool was not directly
used. Data from [52] was used to estimate the global warming potential of procuring the
building materials as well as the actual construction of the building. Both of these activi-
ties were considered resource extraction and manufacturing to compare to other data center
equipment.

Operation

The modeled global warming impacts of data center operation were limited to only the life-
cycle emissions related to the electricity used by the data center. As a first order approxima-
tion, with the exception of the building shell, maintenance of the data center equipment was
not modeled. The life-cycle data used for the building shell [52] did incorporate maintenance,
and the global warming potential due to the maintenance was counted in the operational
leg of the life-cycle for the building. The other traditional operational parameters associated
with a building, such as HVAC, were not counted towards the building shell operational
global warming potential since they had dedicated equipment and were analyzed separately.
Other than electrical inputs and maintenance, the only other significant operational input
to a data center is water into the cooling towers. Data could not be obtained for cooling
towers and as a result they were omitted from this study. However, this is not a catastrophic
omission, since not all data centers use cooling towers. It is possible to cool the working
fluid of a refrigeration cycle with air and this is done in some circumstances. Future work
could analyze the effect of the cooling tower as data becomes available. A more thorough
description of the electricity calculations is given in the more detailed analysis descriptions
below.

Transportation

Transportation modeling required estimating the distances data center components traveled,
the mode of transportation over those distances, and the global warming potential of the
different modes of transportation. Due to data availability as well as simplifying the study,
the modes of transportation studied were limited to air, ship, rail, and truck. For all six of
the data center components, except the building shell, it was assumed the components were
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made in China and shipped via ship to southern California. From southern California the
components were loaded on a train and sent to northern California. From the rail yard, the
components were loaded on a truck and delivered to their final destination. As described
above, the transportation section here refers only to the transportation of the finished data
center component. As a result, the transportation for the building shell is zero since the
building shell is not transported anywhere. There is, however, transportation required in
the construction of the building shell. The global warming potential of this transportation
is included in the raw material extraction and manufacturing life-cycle leg for the building
shell. A more thorough description of the transportation calculations is given in the more
detailed analysis descriptions below.

End-of-Life

To estimate the global warming potential of the end-of-life activities, data was used from the
HP computer recycling facility in Roseville, California. This facility uses shredders, meshes,
eddy current separators, and other equipment to dismantle and separate IT equipment. As a
first approximation, it was assumed that all data center equipment except the building shell
would be shipped to this building at the end of their life. Electricity estimates were provided
for the facility, and the global warming potential calculated for the end-of-life came solely
from the global warming potential of the electricity used by the plant. A more thorough
description of the end-of-life calculations for all equipment except the building shell is given in
the more detailed analysis descriptions below. The building shell end-of-life global warming
potential came from [52].

4.1.2 Detailed Analysis

All six key data center components (server, CRAC unit, chiller, PDU, UPS, and building
shell) were first modeled individually. Then key assumptions were made to put together
a data center from the pieces. First, the fictitious data center was assumed to be located
in northern California in 2002, as that is the most recent date that enough data exists.
The main design point was that data center should be able to store 540 TB. The assumed
power density of the data center was 25 W

ft2
. To find the number of servers, the 540 TB goal

was divided by the storage capabilities of each server. The electricity needed to power that
number of servers was found by multiplying the number of servers by the average power use
of each server. It was then assumed that the cooling load was equal to the power needed
by the servers. This assumption is accurate for well insulated data centers or data centers
located in cool locations. The heat was removed from the data center room by CRAC units,
and the number of CRAC units needed was found by dividing the total heat load by the
average cooling load of each CRAC unit. The number of chillers needed was calculated by
dividing the heat that had to be moved from the CRAC units to the outside air by the average
cooling load of the chiller. The number of UPS and PDUs needed was found by dividing
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Table 4.1: Summary of assumptions used to create a data center from data center compo-
nents.

Assumption Category Assumed Value

Year of data center 2002
Data center location Northern California
Data center size [TB] 540
Power Density [ W

m2 ] 25

Table 4.2: Characteristics of HP Netserver LP 2000r.

Assumption Category Assumed Value

Price (year 2002 $) [21, 1] 3000
Storage size (GB) 108 (3 hard drives,

each 36 GB)
Average Power (W) 265
Uptime (%) 50
Lifetime (years) 3
Mass (kg) 16.7

their respective capacities by the electrical load of the servers. Table 4.1 summarizes the
assumptions used to create a data center from the six important data center components.

Server

The server modeled was an HP Netserver LP 2000r. Table 4.2 lists important information
about this server. The price was inferred from other servers of that time, and the storage size
and power came from the servers manual. The uptime and lifetime were assumptions that
are typical of servers. Note that uptime is the percentage of the time the server is running.
This value is typically around 50% as not all of the servers are always being used.

The resource extraction and manufacturing global warming potential was found using
the EIO-LCA tool, the price in table 4.2, and the electronic computer manufacturing sector.
The operational global warming potential came from the electricity to run the server. To
determine the electricity needed to run the server over its lifetime, the average power was
multiplied by the uptime and the lifetime and converted to kWh. The global warming
potential was found by multiplying the electricity used by the server with carbon dioxide
equivalent emissions associated with that amount of electricity. For transportation, the mass
of the server was multiplied by the appropriate emissions factor and distance traveled. For
end-of-life, the mass of the server was multiplied by the electricity needed by the recycling
facility per unit mass and then by the global warming potential of that electricity. For more
information on the global warming potential of the electricity, transportation, and end-of-life,
refer to their respective sections below.
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Table 4.3: 30 ton maximum capacity Stulz CRAC unit values used in global warming po-
tential model from [63].

Assumption Category Assumed Value

Total Mass (kg) 1395
Aluminum Mass (kg) 145
Copper mass (kg) 175
Steel mass (kg) 1025
Plastic mass (kg) 50
Average cooling load (tons) 15
COP 3.5
Uptime (%) 95
Lifetime (years) 10

Table 4.4: Assumed economic values of materials in table 4.3.

Assumption Category Assumed Value

Aluminum ($/lb) [19]] 1
Copper ($/lb) [19] 4
Steel ($/lb) [105] 0.4
Plastic ($/lb) [78] 0.7

CRAC Unit

The CRAC unit modeled was a 30 ton unit manufactured by Stulz Air Technology Systems,
Inc. Information assumed about this unit is given in table 4.3. The resource extraction and
manufacturing phase global warming potential was found by using the EIO-LCA tool. In
order to use the tool, economic values per unit mass were assumed for the four materials in
table 4.3. These values are given in table 4.4.

The economic values of the materials in the CRAC unit were found by multiplying the
price per mass by the mass. These values were then used in the EIO-LCA tool to find the
global warming potential associated with their manufacturing. The electricity used by the
CRAC unit in its operation was found by dividing the cooling load by the COP. Note that
the average cooling load for the CRAC unit is approximately 50% of the max load of the
unit. This is done to make sure that enough cooling can be provided in case of failure of
a CRAC unit. Should one unit fail, a neighboring unit can be turned up higher to its full
cooling capacity in an attempt to compensate. The global warming potential associated with
the electricity of operation, as well as the global warming potential of the transportation and
end-of-life, were found in the same method as the server.
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Table 4.5: 750 ton maximum capacity chiller values used in global warming potential model.

Assumption Category Assumed Value

Total Mass (kg) 35000
Steel mass (kg) 35000
Average cooling load (tons) 375
COP 3.5
Uptime (%) 95
Lifetime (years) 10

Table 4.6: PDU values used in global warming potential model.

Assumption Category Assumed Value

Economic value (year 2002 $) [2] 4500
Capacity [kVA] 40
Power factor ˜1
Efficiency (%) 95
Uptime (%) 100
Lifetime (years) 10
Total Mass (kg) [2] (%) 157

Chiller

The chiller was modeled in the same manner as the CRAC unit. It was assumed that
the mass of the chiller was entirely steel. This assumption was made after discussing the
material composition of chillers with data center operators familiar with chillers. Other
assumed values for the chiller are given in table 4.5.

PDU

Table 4.6 summarizes the assumed values needed to analyze the PDU. The global warming
potential of the resource extraction and manufacturing portion of the PDU life-cycle was
modeled using the EIO-LCA model. The economic sector used was the electric power and
specialty transformer manufacturing sector. While a PDU is a transformer, this sector was
not ideal. However, it should provide an order of magnitude estimate of the global warming
potential of the PDU. For operation, the electricity consumed by the PDU was assumed to
be 5% of the electricity that went through the device. This electricity was converted to heat
and never reached the server. The global warming potential associated with the electricity
of operation, as well as the global warming potential of the transportation and end-of-life,
were found in the same method as the server.
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Table 4.7: UPS values used in global warming potential model.

Assumption Category Assumed Value

Economic value (year 2002 $) [70] 13000
Capacity (kVA) 20
Power factor ˜1
Efficiency (%) 75
Uptime (%) 100
Lifetime (years) 10
Total Mass (kg) [70] 275

Table 4.8: Building shell values used in global warming potential model from [52].

Values category from [52] Value

Floor Area of building in [52] (ft2) 4400
Lifetime (years) 50
Materials and construction (Mg
CO2-e)

2400

Maintenance (Mg CO2-e) 1300
End-of-life (Mg CO2-e) 200

UPS

The analysis of the UPS was very similar to the PDU. Table 4.7 summarizes assumed values
for the UPS. In the case of the UPS, for the resource extraction and manufacturing portion
of the life-cycle, the storage battery manufacturing sector was used. This is not an ideal
sector, as there are many different types and sizes of storage batteries, but it is a good
enough sector to give an order of magnitude estimate. The efficiency of the UPS was chosen
to be similar to efficiencies from [20].

Building Shell

Global warming potential for the building shell came from [52]. Important values are summa-
rized in table 4.8. To parallel the rest of this study, the materials and construction category
was labeled as resource extraction and manufacturing and the maintenance was labeled as
operation. The other portions of a normal building operation, such as HVAC, were not
counted in the operation phase since they were counted separately. In order to scale this
study to the fictitious data center being studied, the global warming potentials were scaled
based on floor area ratio of the buildings.
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Table 4.9: Global warming potential of different methods of electricity generation as well as
electricity mix of PG&E.

Method of Electricity
Generation

Life Cycle Global
Warming Potential
(ton CO2-e/GWh) [67]

Percentage of California
PG & E Electricity Mix
(%) [77]

Nuclear 17 23
Hydro 18 13
Biomass 46 4
Wind 14 2
Solar PV 39 0.1
Geothermal 15 4
Coal 1041 4
Natural Gas 622 47

Electricity Generation

The global warming potential of electricity generation in northern California was needed for
nearly every piece of equipment in the data center. In order to come up with this estimate,
the life-cycle global warming potential was used in conjunction with percentage of PG&Es
electricity mix to find the average global warming potential of electricity from PG&E. The
life-cycle global warming potential of different electricity methods, as well as PG&Es energy
mix, are shown in table 4.9. The average life-cycle global warming potential as a result of
electricity generation by PG&E was found to be 345 g CO2-e/kWh.

Transportation

In order to estimate the global warming potential of transportation, emission factors were
taken from [27] and [65]. The ship estimate emissions came from [65], which shows that ship
emissions are roughly 60% of truck emissions. These emission factors provide the mass of
CO2-e produced per mile and metric ton of payload. All of the baseline values, shown in table
4.10, assume that 25% of the distance traveled consists of empty miles as the fleet repositions
itself. In addition, the values in table 4.10 also assume that the vehicle used in transportation
is only 75% full on average. Using the values in table 4.10, it was determined a product being
shipped by the modes of transportation and distances listed in the transportation overview
would emit 930 kg CO2-e/ton of shipped product.

End-of-Life

The global warming potential estimate was based on the electricity use of the HP computer
recycling facility in Roseville, California. Based on discussions with HP personnel, this
facility recycles 3 million pounds of electronics each month. It was assumed the plant operates
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Table 4.10: Emissions factors for different methods of transportation from [27] as well as
assumed miles traveled by each mode.

Mode of
Transportation

Emission Factor
(g CO2/ton-mile)

Miles Traveled

Truck 187 [27] 500
Rail 40 [27] 400
Ship 110 [65] 7500
Air 1358 [27] 0

8 hours per day, 30 days per month. Dividing the electricity used by the plant by the mass
of electronics that pass through the plant each month, it was estimated that the plant uses
0.14 kWh per kg of content that passes through it.

4.2 Life-Cycle Exergy Assessment (LCEA)

It is useful to begin with first explaining more carefully what is meant by exergy consumption.
As was previously stated, exergy is the ability to do useful work. The ability to do useful work
occurs when there are gradients in physical properties such as temperature, velocity, chemical
potential, or even position. Using temperature as an example, work can be generated using
a heat engine with a temperature difference. However, the amount of heat moved is greater
than the amount of work that can be generated due to entropy generated. This loss of the
ability to due work is called exergy consumption. Similar arguments could be made with
other gradients. Exergy consumption is so useful because it allows for comparison of different
qualities of energy (e.g. electrical vs. heat) as well as mass. Since work can be extracted
from a concentration gradient, high concentration ores (relative to the Earth’s crust) have an
exergy value relative to the Earth’s crust. Removing these ores for manufacturing results in
a loss of exergy from the environment. Another way of thinking of the exergy of an ore is the
minimum amount of energy that would be needed to take the Earth’s crust and concentrate
whatever elements were in the ore to the concentrations they are present in the ore. Since
both energy transfer processes and material removal from the environment have exergy loss,
the losses associated from material and energy streams can be combined into one metric.
This is a very useful result.

Following the same thought process as extracting ores, putting pollution into the en-
vironment would be a positive exergy transfer into the environment (negative exergy con-
sumption). This is because the concentration of pollutants in a pollution stream is larger
than that of the reference environment of the atmosphere, ocean, or Earth’s crust. This
means that the concentration or thermal gradients of pollution streams could be used to
generate work. Once mixed into the reference environment and equilibrated, this positive
exergy value would be lost, or, in other words, the exergy in the pollution stream would be
consumed. It is not impossible to envision recycling pollution streams from a data center.
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For example, waste heat from a data center, which is often dumped into the environment
as thermal pollution, could be used to heat a greenhouse in a cold environment instead of
being dumped into the ambient outdoor air. This was done at the University of Notre Dame
[29]. Since pollution streams are almost never recycled in practice (especially in regards to
emissions), and are often mixed and equilibrate with the environment, these negative exergy
consumption values are ignored in this study unless otherwise noted.

For a more complete discussion of life-cycle exergy consumption, the interested reader is
directed to entire volumes on the subject. The author finds the book by Szargut [107] and
the Ph.D. thesis by Creyts [15] to be informative and thorough works on the subject.

An LCEA can be carried out in a similar fashion to the LCA in section 4.1. The method-
ology for the LCEA will be laid out in the same way that it was for the LCA. First there will
be a general overview, followed by a more detailed explanation of the analysis for each com-
ponent. The same six components will be modeled, since the same data was available for the
LCA and LCEA. In addition to the six components, air in the data center will also be mod-
eled to add the exergy consumed due to mixing to the total life-cycle exergy consumption.
The details of this calculation can be found in chapter 5.

4.2.1 Overview

The LCEA examined the same four life-cycle stages as the LCA for the same six pieces of
equipment. Just as in the LCA, when addressing any of the four life-cycle stages, what
is being discussed is only the activity of a particular piece of equipment in that leg. The
same example as in the LCA overview about transportation in the resource extraction and
manufacturing leg applies.

Resource Extraction and Manufacturing

To calculate the exergy consumed in the resource extraction and processing portion of the
life-cycle, tabulated data of mass specific exergy consumption values for different materials
was used in combination with a detailed listing by mass of a piece of equipment. The mass
specific exergy consumptions values for resource extraction and manufacturing were taken
from [107] and [22], and are given in table 4.11. These exergy consumption values account
for energy needed for mining, transporting, and refining. They also account for the exergy
that was removed from the environment by removing relatively highly concentrated ores or
materials relative to the Earth’s diffuse crust.

The manufacturing exergy consumption accounts for the energy used by the manufac-
turing equipment as well as the exergy lost in the material waste streams in manufacturing.
A 10 % waste stream is assumed for metals, and a 50 % waste stream is assumed for the
plastics [15]. Mass specific exergy consumption values for machining processes, taken from
[16] and [36] for metals and plastics, respectively, are summarized in table 4.12. Area and
unit specific exergy values were also found and are included in table 4.12 for printed circuit
boards (PCB), integrated circuits (IC), and processors. The manufacturing exergy consump-
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Table 4.11: Mass specific exergy consumption values for material extraction and processing.

Material Value kJ
kg

Aluminum [107] 341,500
Steel [107] 52,100
Plastic [107] 92,300
Copper [107] 67,000
Iron [107] 51,040
Glass [107] 33,400
Epoxy [39] 20,000
Ceramics [39] 20,000
Other [39] 20,000

Table 4.12: Mass specific exergy consumption values for manufacturing.

Material Specific Exergy

Metal [16] [(kJ
kg

)] 0.28

Plastic [36] [(kJ
kg

)] 14.9

PCBs [39] [( kJ
m2 )] 238,400

ICs [39] [( kJ
unit

)] 12,500
Processors [39] [( kJ

unit
)] 1,242,000

tion is added to the resource extraction and processing exergy consumption to get the total
resource extraction and manufacturing exergy consumption.

Operation

Each piece of equipment was assumed to be in steady-state. For a steady flow system with
mass crossing its boundaries, it can be shown that the exergy consumed or destroyed is given
by the following formula [68].

Ẋd =
∑
j

(1− T0

Tj
)Q̇j − Ẇcv +

∑
i

ṁiφi −
∑
e

ṁeφe (4.1)

In equation 4.1, Ẋd is the rate of exergy consumption (often also referred to as exergy
destruction which is why it is denoted with a “d” subscript), Q̇j is the rate of heat transfer
through the control volume at location j, Ẇcv is the total rate of work done by the control
volume that crosses the control surface, and the ṁ and φ terms are the mass transfer rate
and specific exergy values for the mass crossing the control surface at the inlet and exit,
respectively. Note that T0 is the reference temperature of the environment to which the
system is being compared, and Tj is the temperature of the control surface where the heat,
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Table 4.13: Mass specific exergy consumption values for transportation from [108].

Mode of Transportation Specific Exergy ( kJ
kg−km)

Air 22.41
Truck 2.096
Rail 0.253
Ship 0.296

Q̇j, is transferred. Also note that the work is considered positive when going out of the
control volume. The specific exergy values for mass crossing the control surface boundaries
are also derived in [68] and are given below.

φ = ((h− h0)− T0(s− s0) +
V 2

2
+ gz) (4.2)

Note again that the subscript ”0” denotes with respect to the reference environment. The
variable h denotes specific enthalpy, s denotes specific entropy, V represents velocity, z is
the height relative to a set reference, and g is the gravitational constant.

Transportation

For transportation, the exergy consumed is not only a function of mass but also distance
and mode of transportation. Table 4.13 summarizes the exergy consumption for different
modes of transportation. Again, to obtain the total exergy consumed in this portion of the
life-cycle, the total mass of the CRAC unit is multiplied by the mass specific exergy value
as well as the distance traveled for the correct mode of transportation. These values are the
same as in the LCA and are summarized in table 4.10. Transportation mass specific exergy
values are taken from [108].

For the distances and modes of transportation discussed in subsection 4.1.2, a product
being shipped would destroy 5.4 MJ

kg
.

End-of-Life

The final component of the life-cycle is the recycling portion. To obtain an order of magnitude
estimate of the exergy consumed in recycling, Hannemann [40] estimated that the mass
specific exergy consumption for recycling is 520kJ

kg
.

4.2.2 Detailed Analysis

As was the case in the LCA, the six key data center components (server, CRAC unit, chiller,
PDU, UPS, and building shell) were first modeled individually. The same key assumptions
were made to put together a data center from the pieces. See section 4.1.2 and table 4.1
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Table 4.14: Material breakdown of 2U rack mounted server.

Input Parameter Input Value [39]

Aluminum [kg] 3.25
Steel [kg] 12.38
Plastic [kg] 1.41
Copper [kg] 1.56
Iron [kg] 0.85
Glass [kg] 0.11
Epoxy [kg] 0.07
Ceramics [kg] 0.04
Other [kg] 1.23
PCBs [m2] 0.20
ICs [Number of units] 171
Processors [Number of units] 2

for a description of the assumptions used to put a data center together from the six key
components.

Server

The mass breakdown of a representative server was found by Hannemann [39], and is given
in table 4.14. The resource extraction and manufacturing exergy consumption was found by
multiplying the masses in table 4.14 both by their respective waste stream ratio (1.10 for
metals, 1.50 for plastics), then by the mass specific exergy values in tables 4.11 and 4.12 and
summing the result.

The operation portion of the server was found using equation 4.1. In this equation, it was
assumed that that conduction and radiation heat transfer is negligible, eliminating the Q̇j

term. The convective energy transport is captured in the enthalpy portion of mass specific
energy terms, φi and φe, multiplied by the mass flow rate through the server. Assuming that
all of the electricity into the server is converted to heat, and that the heat is transferred
to the air through convective energy transport, the convective energy transport is exactly
equal to but opposite in sign to the Ẇcv term. Since the mass flow rate into and out of the
server are equal, this allows the these terms to cancel out. It is further assumed that the
velocity and height of the air entering and exiting the server remains unchanged. The only
term left is the entropy generation term. Equation 4.1, describing the operational exergy
consumption of the server, simplifies to

Ẋd = ṁT0(se − si). (4.3)

Note that the mass flow rate into and out of the server are identical and are represented
above simply as ṁ. Table 4.15 summarizes assumed quantities for variables in equation 4.3.
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Table 4.15: Assumed server operational values.

Variable Assumed Value

ṁ [kg/s] 0.5
T0 [K] 298

(se − si)[ kJ
kg∗K ] 0.018

The entropy rise in the table assumes temperature increases through the server from 290 K
to 300 K.

The transportation exergy consumption is found by multiplying the total mass of the
server by 5.4 MJ

kg
found in the transportation overview. The end-of-life exergy consumption

is found by multiplying the server mass by the 520kJ
kg

described in the end-of-life overview.

CRAC unit

To model the resource extraction and processing exergy consumption for the CRAC unit,
the mass specific exergy consumption values from [107] of interest for the CRAC unit are
summarized in table 4.11. To calculate the resource extraction and processing portion of
the life-cycle exergy consumption, the mass values from table 4.3 are multiplied by their
respective mass specific exergy consumption values in table 4.11 and summed. To calculate
the manufacturing portion of the life-cycle exergy consumption, the mass values from table
4.3 are multiplied by their respective mass specific exergy consumption values in table 4.12
and summed. Mass values for a CRAC unit are summarized with other important CRAC
unit modeling parameters in table 4.16.

The operational exergy consumption for a CRAC unit is more complex and is computed
by using equations 4.1 and 4.2. For this analysis, the CRAC unit system will be set up as
given in figure 4.1.

Depending on how a control volume is set up, different terms in 4.1 can be internalized to
avoid consideration. This is helpful if terms hard to measure or estimate can be eliminated.
As can be seen in figure 4.1, the control volume has been cleverly chosen so that the heat
transfer in the evaporator and condenser of the CRAC unit has been internalized. As a result,
the heat transfer term in equation 4.1 has been eliminated, but the mass transfer terms for
the warm air and chilled water must be considered. However, it is easier for a designer to
input the mass flow rate, temperature, and pressure of the input and exit streams for the
air and the water than to specify the temperature at which the heat is transfered in the
condenser and evaporator.

With this control volume definition, equation 4.1 has been simplified to

Ẋd = −Ẇcv +
∑
i

ṁiφi −
∑
e

ṁeφe. (4.4)

At this point it is useful to summarize what information would be available to a data
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Figure 4.1: CRAC unit control volume definition.

center designer who would be analyzing this CRAC unit to find its life-cycle exergy con-
sumption. A designer would know the following design parameters:

1. COP of the CRAC unit

2. Maximum cooling load capable by the CRAC unit, Q̇c

3. Temperatures of the return and supply air, Treturn and Tsupply

4. Pressure loss as the air travels through the CRAC unit, ∆Pb

5. Efficiency of the blowers used to provide the pressure increase for the air, ηb

6. Temperature difference of the chilled water across the condenser of the CRAC unit,
∆Twater
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7. Inlet temperature of the cooling water, T1.

Note that these design parameters being considered as known by the designer are somewhat
arbitrary. For example, it will be shown shortly that the temperature difference of the
chilled water across the condenser of the CRAC unit, combined with the input of the inlet
temperature of the chilled water, will be the only information used to evaluate the thermal
properties of the exiting chilled water to evaluate the specific exergy crossing that boundary of
the control volume. This is not the only way to find the exit temperature of the chilled water
to evaluate the specific exergy of the exiting water. Rather, the input temperature of the
chilled water , the effectiveness of the heat exchanger in the condenser,the input temperature
of the working fluid of the CRAC unit to the condenser, as well as the thermal properties
of chilled water and the working fluid, could be used to estimate the exit temperature and
thus specific exergy of the chilled water. However, these parameters are not easily known by
a data center designer. The temperature difference across the condenser is an easy input for
the designer. This is the reason the input parameters given in the list above where chosen.

Admitting that the list of parameters above are the correct input parameters for a de-
signer, there are several assumptions that will be made to simplify the analysis.

1. The CRAC unit exhibits steady flow at steady state.

2. Velocity differences and gravitational potential energy differences across components
are negligible when compared to enthalpy differences.

3. Air behaves like an ideal gas and thus can be approximated using the ideal gas law
Pυ = RT . In addition, enthalpy differences can be approximated as ∆h = cp∆T .

4. Water is an incompressible substance.

5. Specific heats will be considered constant in all processes and components of the CRAC
center, with the specific heat being evaluated at the average temperature of the inlet
and exit of the specific component.

Given the input design parameters and assumptions, three terms must be evaluated in
equation 4.4. The first quantity to be calculated is the work required by the blowers. An
energy balance on a blower then becomes

Q̇− Ẇb = ṁair∆h = ˙maircp(T3 − Treturn). (4.5)

Assuming that the blower is adiabatic, and for the moment considering the best case
scenario that the process is reversible, the process is isentropic, and equation 4.5 becomes

Ẇb,is = ṁaircpTreturn(1− T3

Treturn
) = ṁaircpTreturn(1− (

P3

Preturn
)
γ−1
γ ). (4.6)
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Note that γ is the ratio of specific heats, cp
cv

, and that P3 = Preturn + ∆Pb. Equation 4.6
now becomes

Ẇb,is = ṁaircpTreturn(1− (
Preturn + ∆Pb

Preturn
)
γ−1
γ ). (4.7)

Recall the definition of the isentropic efficiency of a blower is ηis,b = Ẇis

Ẇactual
, so the actual

ratio of the electrical power to the mass flow rate for the blower is

Ẇb

ṁair

=
cpTreturn

ηb
(1− (1 +

∆Pb
Preturn

)
γ−1
γ ). (4.8)

In order to proceed, the mass flow rate of the air through the evaporator of the CRAC
unit must be known. To find this quantity, an energy balance is performed on the evaporator.
Assuming there is no work interaction, the energy balance becomes

Q̇c = ṁaircp(T3 − Tsupply) (4.9)

To find T3, an energy balance is performed on the blower and the expression for Ẇb

ṁair
in

equation 4.8 is used.

Ẇb = ṁair
Ẇb

ṁair

= ṁaircp(Treturn − T3) (4.10)

T3 = Treturn −
1

cp

Ẇb

ṁair

(4.11)

After rearranging, the mass flow rate of air can be solved for.

ṁair =
Q̇c

cp[Treturn(1− 1
ηb

[1− (1 + ∆Pb
Preturn

)
γ−1
γ ])− Tsupply]

(4.12)

The work required by the blowers can be calculated by multiplying the mass flow rate
determined in equation 4.12 by equation 4.8. To determine the total work crossing the
control volume to obtain the Ẇcv term in equation 4.4, the work of the blowers must be
added to the work of the compressor in the CRAC unit. This total work is then

Ẇcv = Ẇb + Ẇc, (4.13)

where

Ẇc =
Q̇c

COP
. (4.14)

Note that both the blower and compressor work terms are negative because it was assumed
work done by the system was positive.
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At this point, the first term in equation 4.4 has been found in terms of the given input
parameters. The remaining two terms in equation 4.4 may be found using equation 4.2
and the fact that there are two inlets and two outlets. Note again that the velocity and
gravitational potential terms are assumed negligible compared to the enthalpy terms. The
subscripts w and a denote water and air, respectively.

∑
i

ṁiφi = ṁa[(ha,return−ha,0)−T0(sa,return−sa,0)]+ṁw[(hw,1−hw,0)−T0(sw,1−sw,0)] (4.15)

∑
e

ṁeφe = ṁa[(ha,supply−ha,0)−T0(sa,supply−sa,0)]+ṁw[(hw,2−hw,0)−T0(sw,2−sw,0)] (4.16)

When equations 4.15 and 4.16 are combined and inserted into equation 4.4, the result is

Ẋd = −Ẇcv + ṁa[(ha,return − ha,supply)− T0(sa,return − sa,supply)]
+ ṁw[(hw,1 − hw,2)− T0(sw,1 − sw,2)].

The mass flow rate of air has already been determined. To evaluate the enthalpy and
entropy differences of air, the ideal gas approximation will again be used. Thus, the enthalpy
difference between the return and the supply is simply ha,return − ha,supply = cp(Ta,return −
Ta,supply). The entropy difference can be found by plugging the ideal gas equation of state
into the Tds equation.

ds =
dh

T
− υ

T
dP =

cpdT

T
− RT

T

dP

P
(4.17)

When this is integrated, the result is

sa,return − sa,supply = cp ln(
Ta,return
Ta,supply

)−R ln(
Pa,return
Pa,supply

) (4.18)

All of the air terms have now been solved for, leaving only the water terms. The assump-
tion that water is an incompressible fluid means that enthalpy and temperature are related
by

h2 − h1 = c(T2 − T1) + υ(P2 − P1). (4.19)

Because υ for liquid water is small, and the pressure drop from state point 1 to state point
2 is also small, the second term in equation 4.19 will be assumed negligibly small. Also, the
specific heat at constant pressure is equivalent to the specific heat at constant volume for an
incompressible substance, and is denoted as c.

To find the mass flow rate of the water, an energy balance is performed on the water flow
through the condenser. The energy balance yields
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Q̇H = ṁw(h2 − h1) (4.20)

= ṁw[c(T2 − T1) + υ(P2 − P1)]. (4.21)

In order to proceed, the assumption that the second term in 4.21 is negligible is used. In
addition, using an alternate control volume in which only the working fluid cycle of the
CRAC unit is considered, the QH term can be found with an energy balance.

Q̇H = Q̇c − Ẇc = Q̇c(1 +
1

COP
) (4.22)

Putting 4.21 together with 4.22 and after the rearranging, the mass flow rate of water
becomes

ṁw =
Q̇c(1 + COP )

COPc(∆Twater)
. (4.23)

The final term that needs to be solved is the entropy change of the water. To do this, the
Tds equation is again utilized. However, for the water, cp is merely c, and incompressibility
makes the second term identically zero.

sw,2 − sw,1 = c ln(
Tw,2
Tw,1

) = c ln(1 +
∆Twater
T1

) (4.24)

The rate of exergy destruction has now been determined. To calculate the total amount
of exergy consumed over the life of the CRAC unit, the rate of exergy destruction must be
multiplied by the amount of time the CRAC unit is run. For this calculation, equation 4.25
is used,

Xd,total = (U) ∗ (AL) ∗ (D) ∗ Ẋd, (4.25)

where U is the percent uptime for the CRAC unit expressed as a fraction, AL is the average
load of the CRAC unit in terms of a fraction of its peak load, and D is the operational
duration of the CRAC unit.

Typical CRAC unit parameters for this case study came from two companies. Stulz Air
Technology Systems, Inc., provided a typical mass breakdown for a 30 ton CRAC unit. The
mass values of the different materials used to make the CRAC unit were used to estimate
the material extraction, manufacturing, transportation, and recycling exergy consumptions.
The operational exergy consumption was calculated using the analysis described above and
typical input parameters for CRAC units from Hewlett Packard data centers. Table 4.16
summarizes typical values of all necessary input parameters necessary to predict the exergy
consumption over the life-cycle of a CRAC unit. Note that the blower efficiency and static
pressure drop for the blower are functions of the flow rate of the air through the CRAC unit.
The COP for the compressor is a function of the desired supply side temperature achieved.
Data necessary for these dependencies was provided by Hewlett Packard Laboratories.
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Table 4.16: Input variables representative of CRAC unit.

Input Parameter Input Value

Qc(ton) 30
Treturn (K) 311
Tsupply (K) 289
Preturn (atm) 1
∆Pb (in. H2O) 1.944
ηb (%) 85.4
COP of compressor 5.13
T1 (K) 293
∆Twater (K) 20
Operation Duration (years) 10
Estimated Uptime (%) 95
Average Device Load (%) 50

At this point, all of the thermodynamic quantities necessary to compute the exergy
destroyed by the CRAC unit have been solved for in terms of the inputs. A list of design
inputs was generated based on what would be convenient inputs for a designer designing a
complete data center. It is important to note that this analysis has been constructed from
the point of view of a data center designer, not a CRAC unit designer. Specific information
for a given CRAC unit design, such as what working fluid is chosen and the flow rate of
the working fluid, have not been considered directly. Rather, these specifics for a CRAC
unit have been considered by specifying the inlet and outlet temperature of the warm air
to be cooled as well as amount of heat the CRAC unit removes. In addition, CRAC unit
specifications such as the efficiencies of the heat exchangers in the compressor and evaporator
are considered by choosing the COP of the CRAC unit. From this point of view, a designer
can explore the implications of varying the COP of the CRAC unit or increasing the efficiency
of the blowers without having to actually design a new CRAC unit. It is left up to the CRAC
unit designer to ensure that the design inputs are realistic.

One important point that a CRAC unit designer would have to consider is that the
relative humidity of the air moving through the CRAC unit. The relative humidity of the
air will be a function of the relative humidity of the air entering the CRAC unit and the
temperature drop desired by the data center designer. If the designer selects a drop in
temperature that is too large and lowers the temperature of the air below the saturation
temperature, water will begin to condense out of the air in the CRAC unit. It is left up to
the CRAC designer to ensure this does not occur.

To model the transportation and end-of-life exergy consumption, the total mass of the
CRAC unit was multiplied by the exergy consumption per unit mass for transportation and
end-of-life provided in the overview of this section. These values were 5.4 MJ

kg
and 520kJ

kg
,

respectively.



CHAPTER 4. SUSTAINABILITY MODELING METHODOLOGY 48

Chiller

A chiller was modeled very similarly to a CRAC unit. As was mentioned in the life-cycle
assessment portion of this chapter, unlike the CRAC unit, detailed information about a
chiller was not available. Making the same assumption as was made for the LCA, it was
assumed that the mass of the chiller was entirely steel. Again, this assumption was made
after discussing the material composition of chillers with data center operators familiar with
chillers.

For the resource extraction and manufacturing portion of the life-cycle, the mass specific
exergy consumption value from [107] for steel was used. This value is located in table 4.11.
The size and mass of the chiller are summarized in table 4.5. To calculate the resource
extraction and processing portion of the life-cycle exergy consumption, the mass value from
table 4.5 is multiplied by the steel mass specific exergy consumption values in table 4.11.
To calculate the manufacturing portion of the life-cycle exergy consumption, the steel mass
value is multiplied by the mass specific exergy consumption values in table 4.12 for metal.
All important values for the chiller are summarized in table 4.5.

Chiller information needed for modeling the operational portion was minimal. Since a
chiller is based on the same vapor-compression refrigeration cycle as a CRAC unit, chillers
achieve similar COPs as CRAC units. In this sustainability study, due to lack of information
on a cooling tower, it was assumed that the chiller working fluid was cooled with air from
outside the data center. Unfortunately, there was also no information on the air blown over
the chiller condenser to cool the chiller working fluid. It seems reasonable to assume that
the blower blowing air over the chiller condenser coils would behave similarly to the blower
blowing air over the CRAC unit evaporator coils. Using this assumption, the operational
exergy consumption of the chiller could be modeled almost exactly the same as the CRAC
unit with two minor differences. First, figure 4.1, which shows the vapor-compression refrig-
eration cycle for a CRAC unit, will be exactly the same for the chiller as the CRAC unit
except the evaporator now cools warm water and the condenser is now cooled by cold air.
Second, the equation formed by the combination of equations 4.15 and 4.16 will have the
same terms, but the second and third terms will be opposite in sign. This is because of
the first difference, changing the fluid going through the condenser and evaporator. This
effectively switches the direction of the working fluid if viewing 4.1 making the change of sign
necessary. Finally, this is the exergy consumed by the chiller for the cooling load prescribed
by the CRAC unit. However, the chiller is responsible for cooling multiple CRAC units.
Therefore, the amount of exergy consumed by the chiller for each CRAC unit is scaled by
the number of CRAC units being cooled by the chiller.

As was the case with the CRAC unit, the transportation and end-of-life exergy consump-
tion was found by multiplying the mass of the chiller by the exergy consumption per unit
mass for transportation and end-of-life provided in the overview of this section. These values
were 5.4 MJ

kg
and 520kJ

kg
, respectively.

While it may seem problematic to make all of these assumptions about a chiller, most
of these assumptions do not pertain to the operational portion of the chillers life-cycle. In



CHAPTER 4. SUSTAINABILITY MODELING METHODOLOGY 49

Table 4.17: Important assumed properties for 208 V, 3-phase delta PDU.

Input Parameter Input Value

Steel mass [kg] 9.2
Copper mass [kg] 2.9
Plastic mass [kg] 5.5
PCB area [ft2] 1.6
Uptime [%] 100
Lifetime [years] 10

the operational portion of the life-cycle, assumptions are made about the cooling air flow
rate and temperatures. The COP of the chiller, however, was not assumed and is a very
realistic value. Therefore, if the exergy consumption value is dominated by the operational
exergy consumption, and if the operational exergy consumption value term is dominated by
the Ẇcv term, these assumptions become of negligible importance. It will be shown in the
chapter 6 that this is, in fact, the case.

PDU

Information needed for the PDU analysis was again obtained from Hewlett Packard Labo-
ratories, and is summarized in table 4.17. The resource extraction and processing, manufac-
turing, transportation, and end-of-life exergy consumption values were calculated using the
mass breakdown as was done for the previous components. For the operational exergy con-
sumption, it was assumed that 5% of the power flowing through the PDU was lost as heat.
While this is true, the PDU does not get significantly warm. Therefore, the heat transfer
term of equation 4.1 is neglected. Another way of thinking of this is that the air around the
PDU is considered to be part of the PDU. The boundary that separates the PDU and the
rest of the room is one such that no heat transfer is occurring across the boundary. Because
the PDU does not get significantly warm, this air boundary will be very thin. The exergy
that could otherwise be recovered from the warm PDU is lost as the air in this hypothetical
boundary heats up. However, this amount of exergy is small because the surface temperature
of the PDU is not very high.

UPS

Information needed for the UPS analysis was also again obtained from Hewlett Packard
Laboratories. The total mass of a 1500 VA UPS (230 V and 980 W active power output)
was 27 kg. The resource extraction, processing, and manufacturing exergy were found by
multiplying the mass of the UPS by the mass specific life-cycle exergy consumption to make
UPS type batteries. This value was 21 MJ

kg
taken from [22]. The transportation and end-of-

life exergy consumption values were calculated using the mass breakdown as was done for
the previous components.
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Table 4.18: Data from [88] used to find losses in a 100 kVA, 277 V UPS as a function of
load.

% Full
Power

Load
(kVA)

Efficiency
(%)

Loss
(VA)

Fixed
Loss
(VA)

Linear and
Quadratic
Losses (VA)

Current
(A)

0 0 0 2310 2310 0 0
10 10 76.4 2360 2310 50 12
20 20 85.5 2900 2310 590 24
30 30 88.9 3330 2310 1020 36
40 40 90.7 3720 2310 1410 48
50 50 91.8 4100 2310 1790 60
60 60 92.4 4560 2310 2250 72
70 70 92.8 5040 2310 2730 84
80 80 93.1 5520 2310 3210 96
90 90 93.3 6030 2310 3720 108
100 100 93.4 6600 2310 4290 120

For the operational exergy consumption, equation 4.1 was once again used. It was again
assumed that even though there are electrical loss mechanisms that convert electricity to
heat, the UPS does not get significantly warm. Therefore, the heat transfer term of equation
4.1 is neglected. The same thought experiment can be made for the UPS that was made
for the PDU to verify this assumption. In order to use equation 4.1, the electrical loss of
the UPS must be known, which is the Ẇcv term. To find the electrical loss the UPS was
assumed to have three loss mechanisms: fixed losses that are independent of load, losses that
are linear with load, and losses that go as the square of the load [88]. Data was taken from
[88] to find the fixed, linear, and quadratic losses in a 100 kVA UPS. It was assumed that
the loss coefficients found would be similar for the 1.5 kVA UPS for which the mass data
from Hewlett Packard was available. From data in [88], the loads and losses for a 100 kVA
UPS were found and are summarized in table 4.18.

The first four columns of table 4.18 are from data in [88]. Also stated in [88] is the fact
that the fixed losses in a UPS are typically on the order of 40% of the losses at 100% load. In
this case, it was assumed that the fixed losses are 35% of the losses at 100% load. With this
information, the losses in the 100 kVA UPS are calculated and the fixed loss is calculated
to be 2310 VA. Once this is known, the linear and quadratic losses are found by subtracting
the total loss from the fixed loss. The current through the UPS is calculated by dividing the
apparent power, S, provided by the UPS by the line to ground voltage, 277 V, supplied by
the UPS. Apparent power is related to voltage and current as shown in equation 4.26. The
current is the sum of the three equal currents in the three phase UPS. Thus, the current of
any one phase will be the apparent power divided by three times the voltage. The result
of this calculation is the last column of table 4.18. A fit of the current through the UPS
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Table 4.19: UPS values used in LCEA model.

Assumption Category Assumed Value

Capacity (kVA) 1.5
Total Mass (kg) 27
Power factor ˜1
Efficiency (%) 92
Average Load [%] 70
Uptime (%) 100
Lifetime (years) 10

and the linear and quadratic losses produces constants for the linear and quadratic terms in
equation 4.27.

S = V I (4.26)

Ploss = C + kI +RI2 (4.27)

From the fit to the data, it was found that R for the UPS is 0.1013W
A2 and k is 23.54W

A
. The

UPS with a material breakdown provided by Hewlett Packard has a max apparent power of
980 W and a voltage of 280 V. Assuming that the UPS is run at 70% of max load, which
takes advantage of high efficiencies but leaves some room to ramp up power should another
UPS fail, this means each of the three phases in the UPS has a current of 1.25 A. The
power loss for the UPS is then 50 W. As stated in [88], nominal efficiencies for full load UPS
generally fall in the range of 92%. However, with a loss of 50 W, this is only a loss of 3.3%.
This leads one to conclude that assuming constant loss coefficients for different UPS sizes is
not a good assumption. Therefore, it was assumed that the loss in the UPS would be 8%,
or 120 W. This 120 W loss is the Ẇcv in equation 4.1 and this is equal to the rate of exergy
consumption since it was reasoned that the heat transfer term was negligible. The important
parameters used in duration and lifetime of the UPS are summarized in table 4.19.

4.2.3 Building Shell

For a building shell, literature was referred to for life-cycle exergy consumption values for
a brick and mortar building. Biek [12] estimated that the exergy consumed in construction
of a building to be approximately 4.7 − 5.8GJ

m2 . It was also estimated in this work that
the building decommissioning exergy consumption, or end-of-life consideration, was between
136 − 350MJ

m2 . For this study, it was assumed that the construction exergy consumption is
5.3GJ

m2 and that the decommissioning exergy consumption is 240MJ
m2 . To remain consistent

with the rest of this study, construction was considered as resource extraction, processing,
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and manufacturing. Decommissioning was counted as end-of-life. Transportation was ne-
glected, since a building is not transported anywhere. The transportation for building the
facility and decommissioning it are included in the resource extraction, processing, and man-
ufacturing and end-of-life life-cycle legs. There also was no operational exergy consumption,
since this is considered in detail through the various data center components studied. The
lifetime of this building was assumed to be 50 years. To get the size of the data center, the
power needed by the servers was divided by the average power per square foot listed in table
4.1.

4.3 Life-Cycle Exergy Advisor MATLAB Graphical

User Interface - LCEA

The MATLAB based (GUI) developed for data center sustainability tracking is called the
Life-Cycle Exergy Advisor, or LCEA. Figures 4.2 and 4.3 illustrate some of LCEA’s main
windows. For a more complete description, see [figure out where going to write a user manual
for this].
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Figure 4.2: Main LCEA window for building systems.
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Figure 4.3: Main LCEA window for building data centers from systems.
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Chapter 5

Velocity and Temperature Field
Modeling Methodology

This chapter deals with the formulation needed to compare three different data sets repre-
senting the temperature field in a data center room: a potential-flow-based model output, a
commercial CFD program output, and physical measurements. Previous investigations com-
pared the potential flow model with measured temperatures [111], but adding comparisons
to commercially available CFD was deemed to be better for validating the models usefulness.
This is because of the reliability of model inputs, which have to be derived from physical
measurements. Not all server rooms can be so thoroughly instrumented, so it would be more
appropriate to compare the output from two different models (compact potential flow-based
and commercial CFD) which have been given identical inputs and check their agreement with
physically measured temperatures. The progression of the COMPACT model development
in the Energy and Information Technologies Laboratory can be seen in 5.1:

Figure 5.1: COMPACT development progression: experimental and computational valida-
tion.
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5.1 Potential Flow Modeling

Development of the original potential flow model can be seen in Toulouse et al [111]. The
chosen physical configuration is represented as a finite difference problem, with cubical cells
filling the air in the room. All the flow boundary conditions in the room are specified and
Laplaces equation is solved to find the air velocity potential field.

∇2φ = 0. (5.1)

This simplified flow solution is computationally inexpensive; more so when care is taken
with the relative dimensions of air cells in each direction. Velocities can be determined by
simply taking the gradient of the potential field.

To find the temperature field, it is assumed that convective energy transport is dominant.
Air density, heat capacity, and flow velocity are used to balance the energy entering and
exiting each air cell. Additional assumptions include full mixing, which is that air exiting
the cell is at the same temperature, determined by an energy balance of incoming flows and
any added temperature generated by electronics in the server racks. Below is an equation
for the energy balance. Summation is over each face of the air cell.

(
∑

Cout)Tcell −
∑

CinTin −Qgen = 0. (5.2)

C is shorthand for the specific heat capacity of the air multiplied by the mass flow rate
through the cell face, and Qgen is the heat generated within the cell. Since we are not
modeling air within server racks but rather only in the rooms air, the heat term is added to
the first cells into which server racks expel warm air.

In Toulouse et al. 2009 [111], the above equation was solved using a unique streamtube
tracking approach, an approximation in which only those air cells which could be traced
from the exiting face of server racks would have temperatures differing from the CRAC air
temperature. However, this was not found to account for recirculation of hot air, which
is a very common occurrence. Instead, MATLAB was used for a simultaneous solution of
the full system of equations. These corrections are described in more detail in Toulouse
et al [110]. Ultimately, earliest versions of this software package, named COMPACT 1.0
(Compact Model of Potential Flow and Convective Transport), ran in under 3 minutes on
a commercially available laptop for a 4461 cell room, with later optimizations of the basic
model bringing this down to under 4 seconds.

One additional feature of COMPACT, in addition to generating flow and temperature
fields, is using the model output to calculate the exergy destruction field. Exergy destruction
refers to the loss of usable work in a process, and in the case of a data center, is represented
by the mixing of cold air from the room inlet and warmed air from the server racks. If this
occurs, energy was wasted to cool some air in the CRAC unit which was not used to cool IT
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equipment. Exergy destruction for COMPACT was calculated using an equation from Shah
et al [99], shown below:

Ẋd =
∑
j

(1− To
Tj

)Q̇j − Ẇcv +
∑
in

ṁi[(h− h0) +
V 2

2
+ g(z − z0)− T0(s− s0)]in

−
∑
out

ṁo[(h− h0) +
V 2

2
+ g(z − z0)− T0(s− s0)]out

It should be noted that this is a form of equation 4.1.
As the dominant form of exergy loss was due to the mixing of hot and cold flows and

not the loss of kinetic or gravitational potential energy, those terms were omitted from the
model. Also, since only the room airs temperature and flow modeling are within the purview
of COMPACT, and we assume an adiabatic room, the Q heat generation term was omitted
(the heat added to the room was only transferred inside the racks). No work is done on
the boundaries of the control volume, and the nature of the temperature model in assuming
convective transport as the dominant mode means that the enthalpy h terms also cancel.
This leaves us with a simplified equation, seen below:

Ẋd =
∑
in

ṁi[−T0(s− s0)]in −
∑
out

ṁo[−T0(s− s0)]out (5.3)

The mass flow rate for each air cell is extracted from the calculated flow field, and the
temperature field is used to calculate the entropy value associated with those flows. Using
equation 5.3 the exergy consumption at a given location in the room can be calculated. Note
that T0 is the reference temperature, 298 K.

5.2 Vortex Superposition

Initial experimental comparisons showed a large issue with the original potential flow model
[110]. Modeled temperatures near the top of the server racks were excessively high, reaching
20 K above the measured temperature in some cases. This was believed to be due to the lack
of accounting for buoyancy in the potential flow model. Warm air coming out of a rack, rather
than exhibiting a tendency (due to buoyant forces) to rise towards the ceiling outlets, would
instead be drawn back into the front of server racks where it would be heated even further.
The data center exhibited high recirculation conditions, in that the server racks as a whole
possessed a larger volumetric flow rate than the CRAC units, meaning that some amount
of warmed air would have to be drawn back into the racks. COMPACT was updated to
include buoyancy considerations into the original potential flow model. The chosen method,
as alluded to previously, was a vortex-based model of buoyancy recirculation. The updated
model takes the temperature field generated by the original model, computes a modified
flow field, superimposes that field on the original field, and recalculates the temperatures.
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This method has the added benefit of being a non-iterative approach, which would keep
computational costs low, an important factor in developing a compact model. The model
works as follows: first, it calculates the average temperatures in the hot and cold aisles and
the entire room (In the model GUI, locations of aisles and vortices can be automatically or
manually placed). From this, it is assumed the Boussinesq approximation applies, in which
the buoyancy force is an added term in the momentum equations, but incompressibility is
still assumed in mass continuity. The buoyancy force is based on density variations, which
is linked to differences in average temperature . δm refers to the mass of a heated parcel of
air.

Fδm = δm(∆ρ/ρo)g (5.4)

∆ρ/ρo = β∆T (5.5)

Focus is given to a single row of racks at a time, consisting of a cold aisle, a hot aisle, and
the row of racks itself. It is then assumed that in the hot aisle, the buoyancy force is applied
over some distance on the order of the server rack height. For this model, it is assumed that
height is one-half of the server rack height. Next, it is assumed that this force applied over
the height is used entirely to accelerate the air upwards; in other words, the added kinetic
energy from buoyancy forces, shown in equation 5.7, is equal to the added kinetic energy of
vertical air flow, shown in equation 5.8.

∆KE = FδmH = δm(β∆T )gH (5.6)

∆KE = δmβ(TH,avg − Troom,avg)gH (5.7)

β is the volumetric thermal expansion coefficient of the air, which can be approximated
as 1/T since air is assumed to be an ideal gas. TH,avg and Troom,avg are the average hot aisle
temperature and the overall average room temperature, respectively.

∆KE =
1

2
δm(w2

B −W 2
H,avg) (5.8)

By equating relations 5.7 and 5.8, the added vertical air velocity due to buoyant forces
is found:

wB =
√
w2
Havg

+ 2gβ(TH,avg − Troom,avg)H (5.9)

wB and wH,avg are the average upward hot aisle velocity with and without buoyant forces.
The latter is computed from the COMPACT 1.0 model, or the COMPACT model without
Rankine vortex superposition. This process is repeated for each row of server racks.

Now, for this row of server racks, we superimpose a Rankine vortex on the top of the row.
A Rankine vortex is acts as a solid-body (rotational) vortex within its core, and a potential



CHAPTER 5. VELOCITY AND TEMPERATURE FIELD MODELING
METHODOLOGY 59

(irrotational) vortex outside of that core. The velocity profile of a Rankine vortex can be
seen in equation 5.10 below:

vθ =

{
kvr if r < R,

kvR
2/r if r ≥ R.

(5.10)

A benefit of this method is that it spreads out the area of high recirculation, while
adding the tendency for warm air to rise, yet preserving the potential flow model outside
of the vortex core, as potential vortices satisfy Laplaces equation. Also, the effect of the
vortices drops with distance from the tops of the server racks, limiting the corrective flows
to the areas of greatest concern.

The distance from the vortex center is given by r. The center and R (the core radius)
is set to half the depth (the distance from front to back) of the row of server racks. The
center of the vortex is also centered on the top of the row of server racks, so the core covers
the entire top surface. The quantity kv is chosen so that vθ at the edge of the vortex core
(aka the cell right above the warm air outlet of the server rack) is proportional to the added
velocity ∆wB previously calculated.

kv = Vs
∆wB
R

(5.11)

Note the previous use of the word proportional; in equation 5.11, Vs is a vortex strength
multiplier which can be chosen. Similarly, the height H over which the buoyant force is
applied can be chosen. Since Vs and H can be chosen, this vortex superposition method was
tuned using multiple experimental data sets to find the most accurate model configuration.

The fronts of server racks are the areas in which we desire the most model accuracy;
using hot air to cool IT equipment can affect their ongoing operations and operational
lifetime. Following COMPACT design goals, the vortex superposition model was optimized
to minimize the errors in temperature predictions in these areas, and even more specifically
on the upper halves. Those areas were the most error-prone in the original model due to the
previously mentioned prevalence of recirculated warm air.

Figure 5.2 shows a result of said tuning. The height H was kept at one-half the server
rack height, but the Vs multiplier was adjusted to minimize mean deviation (deviation being
the absolute value of model minus measured temperature). A Vs of zero would be equivalent
to the original model. It was discovered that a multiplier of 2.47 kept the mean deviation
metric within 7% of its minimum in all three experimental cases, each of which had varying
levels of recirculation due to varied CRAC flow rates.

5.3 Conventional Computational Fluid Dynamics

Data centers are rarely as heavily instrumented as our experimental setup was, and the
potential inaccuracies in measurement meant that model inputs could not always be of
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Figure 5.2: Mean deviation (at in-flowing server rack faces) of modeled temperatures from
their measured values, versus the vortex strength multiplier used in vortex superposition
optimization.

highest quality. Additionally, it is infeasible to fully characterize every boundary condition
for all flows in a server room. Instead, much can be learned from comparing results between
differing models with identical inputs.

One of the stated purposes/objectives of COMPACT is to serve as a preliminary design
tool. This means that comparison to a larger conventional commercially available CFD final
design tool is warranted when validating the potential flow model. Essentially, COMPACT
is designed to run much faster than a full CFD package; it is worth investigating what
comparative degree of accuracy is lost in the attempt.

The chosen software needed to be a previously industry- or academically-validated pack-
age, with a reasonable price tag. ANSYS FLUENT met these criteria, and was used to model
the experimental server room [7]. The model was configured to solve the full set of Navier-
Stokes equations, including accounting for turbulent flow. The two-equation k − ε method
was used to model turbulence. The k− ε method was chosen for two reasons. First, it is the
most appropriate for large, open spaces [90]. Second, the k−ε method is the most commonly
used method, especially when modeling data centers [115]. It would therefore be useful as a
benchmark with which to compare COMPACT. The Navier-Stokes and two-equation k − ε
equations are not listed here. The interested reader is directed to [61] for a full description
of these equations.

The inputs for the conventional CFD model were the same as those used in the experimental-
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Table 5.1: ANSYS FLUENT CFD workstation specifications.

Specification Type Specification

Processor Intel Core i7-975 Extreme
Edition

Processor Speed 3.33 GHz
Amount of RAM 18 GB
Speed of RAM 1333 MHz

COMPACT comparison, with heat generation derived from power consumption measure-
ments and flow rate through server racks taken from the heat generation and measured
temperature rise (see section 5.4 for a more detailed discussion of these inputs). The bound-
ary conditions associated with the front and back of the servers were created in a two step
process: first, the intake to each rack was treated as an air outlet exiting the room, with the
corresponding air exhaust behind the rack classified as an inlet into the room. The aver-
age temperature coming into a given section of the server front was added to the measured
temperature rise at that location, and the air temperature of the rear source was adjusted
accordingly. ANSYS FLUENT is an iterative solver, and performed these calculations after
each iteration. Flow and temperature fields were generated by FLUENT on a workstation
with specification as detailed below in table 5.1.

In the FLUENT model, the turbulence intensity and length scale were specified at air
inlets into the room. Turbulence intensity is the strength of the turbulent variations in
velocity as compared to the free stream average, while turbulence length scale refers to the
size of the turbulent eddies [8]. Both are essential quantities to specify in using a standard
k− ε turbulence model. Since the slits in the inlet floor tiles were on the order of 1 cm, this
is what the turbulence length scale was set to, with the reasoning that eddies would be of
the same scale. For turbulent intensity, 1% variation from the average is considered weak
and 10% is strong. With little other information to narrow these bounds, 5% was chosen.
Despite best efforts, necessary decisions such as these contribute to inaccuracies in modeling
data center flow. This further justifies the use of less computationally expensive models,
as it lessens the appeal of more accurate but time-consuming models. For the other k − ε
turbulence parameters, default values for FLUENT were used.

5.4 Experimental Setup

The first step taken in evaluating the model was to compare model output to experimentally
gathered data. The chosen venue for gathering flow and temperature measurements for
validation was a data center at Hewlett-Packard Laboratories in Palo Alto, CA. A 500 sq.
foot portion of the entire data center was partitioned off, both above and below the floor
plenum, and was independently served by two CRAC units, one PDU and a rack of switches,
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Figure 5.3: Simplified visual representation of the data center used for experimental valida-
tion, isometric view.

making it an appropriate approximation of a smaller independent server room. This server
room also contained 17 racks of computer servers consuming between 100 and 115 kW of
power when measured.

Figure 5.3 illustrates the room in question; floor inlets are blue, ceiling outlets are red,
and server racks are green. Cool air enters from below, is drawn into the server racks by
electric fans and heated, then expelled and drawn up to the ceiling plenum to return to the
CRAC units.

Multiple sets of flow, temperature and power consumption measurements were recorded
in this experimental data center. The volumetric flow rate through each floor inlet and
ceiling outlet was measured with flow hoods and converted to flow velocities. The current
through each server rack was recorded, converted to power consumption and set equivalent
to heat generation. Temperature measurements in the room were recorded using thermistors
on every server rack and thermocouples in the hot and cold aisles and above the racks. 170
thermistors, five in front and five in back, lined each of the 17 server racks in the room. 116
thermocouple measurements brought the total to 286 total temperature measurements per
run. Initial runs omitted the above-rack thermocouples, and only had 250 temperatures;
later data sets included them, however. Figures 5.4 and 5.5 below show the locations of the
full set of measurements, marked by yellow dots.

COMPACT requires full characterization of flow boundary conditions, however, which
includes the server rack faces. It was deemed too difficult to measure the flow rate through
each rack; it was only possible for floor inlets due to a specialized flow hood with set dimen-
sions. There is a correlation between rack fan speeds and temperature, but that is not always
a standardized value readily available. Instead, the server racks are treated as a black-box
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Figure 5.4: Top view of experimental data center showing location of temperature measure-
ments.

Figure 5.5: Side view of experimental data center showing location of temperature measure-
ments.
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model in which all heat generated in the rack is transferred to the air, which comes out at a
higher temperature. If this assumption is made, the air flow rate through a server rack can
be estimated using the heat generation and measured temperature rise from front to back.

V =
Qgen

ρcpA∆TR
(5.12)

In the above equation, V is the flow velocity through a portion of the server rack with face
area A, heat generation Qgen, and measured temperature rise ∆TR. This can be generalized
to individual cell faces bordering the server rack. For a longer justification of this method, see
Rambo and Joshi [81]. It should be noted that for comparing the different models and data,
only temperatures were used. Measuring both magnitude and direction of mid-air flows in a
non-disruptive manner was deemed too difficult and potentially inaccurate, so more attention
was focused on increasing the number of locations for temperature comparisons.

5.5 Potential Flow MATLAB Graphical User

Interface - COMPACT

The MATLAB based (GUI) developed for ultrafast velocity and temperature field prediction
is called the Compact Model of Potential Flow and Convective Transport, or COMPACT.
Figures 5.6 and 5.7 illustrate some of COMPACT’s main windows. For a more complete
description, see [109, 111].
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Figure 5.6: Main COMPACT window.
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Figure 5.7: COMPACT main results window and streamline results window.
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Chapter 6

Sustainability Modeling Results

6.1 Life-Cycle Assessment (LCA)

Figure 6.1 shows the results of the global warming potential of a data center created with the
baseline values detailed in section 4.1 of this report. As can be seen in this figure, in terms
of global warming potential, operation does in fact dominate. The global warming potential
of the operation of this data center is roughly three times greater than the next largest life-
cycle stage, resource extraction and manufacturing. Figure 6.1 also shows that the majority
of the resource extraction and manufacturing life-cycle stage is from the servers. This is
because servers are highly ordered, energy intensive equipment. The largest contributors to
the operational global warming potential are the servers. The total HVAC system is the
next largest contributor and would have been slightly larger if the cooling towers had been
modeled, if the COP of the refrigeration cycles were slightly less, or if the data center was
located in a very hot area with poor insulation. The UPS has the next largest operational
global warming potential and the PDU has the least. Transportation has negligible global
warming potential in comparison to the other two life-cycle stages. This is true even assuming
that most of the transportation occurs via airplane, which is possible but is a conservative
overestimate of a ship, the usual method of transportation across the Pacific Ocean. End of
life appears to have negligible global warming potential when compared to the other life-cycle
stages.

6.1.1 Sensitivity Analysis

A sensitivity analysis was performed by varying the parameters outlined in chapter 4 of this
report through their ranges of possible values. Figure 6.2 shows the results of this sensitivity
analysis. Table 6.1 highlights the key variables that were altered in the sensitivity analysis.
Figure 6.2 shows that under the worst possible conditions, the global warming potential of
resource extraction and manufacturing approaches operation. Figures 6.3 and 6.4 show the
breakdown in the life-cycle global warming potentials for the best and worst case scenarios,
respectively.
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Figure 6.1: Life-cycle global warming potential of data center using baseline values.
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Figure 6.2: Sensitivity analysis of life-cycle global warming potential of data center.
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Figure 6.3: Life-cycle global warming potential of data center under best case scenario.
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Figure 6.4: Life-cycle global warming potential of data center under worst case scenario.
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Table 6.1: Values altered in LCA sensitivity analysis.

Data Center
Component

Altered
Variable

Baseline
Value

Best Case
Scenario
Value

Worst Case
Scenario
Value

Server
Storage size
(GB)

108 216 36

Lifetime
(years)

3 5 1

CRAC unit
COP 3.5 4 2.5
Cooling Ca-
pacity used
(% of max)

50 75 25

Chiller
COP 3.5 4 2.5
Cooling Ca-
pacity used
(% of max)

50 75 25

PDU Efficiency 95 98 90
UPS Efficiency 92 95 70
Building Shell Energy Den-

sity [ W
ft2

]
25 50 10

Transportation

Truck Miles 500 0 500
Ship Miles 7500 7500 0
Train Miles 400 900 400
Air Miles 0 0 7500

6.1.2 Uncertainty Assessment

Table 6.2 shows the results of an uncertainty assessment of the data used in the LCA study
carried out as described in [22]. The assessment shows that overall, the data was fairly good,
with some data being very good, some being fair, and some data being fairly poor. The
resource extraction and manufacturing had the poorest quality. This is because information
on the manufacturing of data center equipment is hard to come by due to complicated supply
chains, quick turnover rates, and proprietary information. The average score for this life-
cycle stage was roughly 3 out of 5. While this score is not the best, it is still useful for giving
an order of magnitude estimate of the the resource extraction and manufacturing. The other
life-cycle stages also have minor problems, but overall average to a score of about 2.



CHAPTER 6. SUSTAINABILITY MODELING RESULTS 73

Table 6.2: Data quality assessment of data center case study (Maximum quality = 1, mini-
mum quality = 5), based on [53].

Category Resource Ex-
traction and
Manufacturing

Operation Transportation End
of
Life

Acquisition Method 3 3 3 2
Independence of Data Sup-
plier

3 3 2 4

Representativeness of Data 1 1 1 1
Temporal Correlation 3 3 3 2
Geographical Correlation 2 1 2 1
Further technological corre-
lation

5 1 1 1

6.2 Life-Cycle Exergy Assessment (LCEA)

Figure 6.5 shows the results of the data center life-cycle exergy consumption model created
with the baseline values detailed in section 4.2 of this report. As can be seen in this figure, in
terms of life-cycle exergy consumption, operation does in fact dominate. Comparison of fig-
ures 6.1 and 6.5 reveal that the LCA and LCEA baseline scenarios have very similar results.
The operational life-cycle exergy consumption of this data center is roughly two times greater
than the next largest life-cycle stage, resource extraction and manufacturing. Figure 6.5 also
shows that like in the LCA, the majority of the resource extraction and manufacturing ex-
ergy consumption is from the servers. In fact, the resource extraction and manufacturing
exergy consumption of servers is larger than the operational exergy consumption. Again,
this is because servers are highly ordered, energy intensive equipment. The largest contrib-
utors to the operational exergy consumption are the servers and HVAC systems. The UPS
has the next largest operational life-cycle exergy consumption and the PDU has the least.
Transportation has negligible life-cycle exergy consumption in comparison to the other two
life-cycle stages. End-of-life appears to have negligible life-cycle exergy consumption when
compared to the other life-cycle stages.

6.2.1 Sensitivity Analysis

A sensitivity analysis was performed in the exact same fashion as in the LCA study, varying
the same parameters in table 6.1. The results of this analysis are shown in figure 6.6. Figure
6.6 shows that under the worst possible conditions, the exergy consumption of resource
extraction and manufacturing as well as transportation exceeds operation. The reason for
the high resource extraction and manufacturing term is because in the worst case scenario
the servers are replaced very often and do not have much hard drive space in each server.
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Figure 6.5: Baseline scenario for data center life-cycle exergy consumption.
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The transportation is so high because in the worst case scenario the trip across the pacific is
made by plane instead of ship, a much more exergy consumptive method of traveling. The
worst case life-cycle carbon dioxide emissions in the LCA sensitivity analysis approach the
operational emissions, but do not exceed the operational emissions. The reason that the
resource extraction and manufacturing exergy emissions exceed the operational emissions is
because the exergy consumed by the resource extraction and manufacturing is higher relative
to operation for exergy consumption than for carbon dioxide emissions. This is apparent
from comparisons of figures 6.1 and 6.5 since the ratio of operational to other life-cycle stages
is less in figure 6.5 than 6.1. Figures 6.7 and 6.8 show the breakdown in the life-cycle exergy
consumption for the best and worst case scenarios, respectively.

6.2.2 Uncertainty Assessment

The uncertainty assessment of the data used in the LCEA is the same as the uncertainty in
the LCA since almost the entire set of data used was the same. There was different PDU and
UPS data used in the two studies, but the different data sets do not change the uncertainty
analysis since they have similar uncertainties.

CRAC Unit

Because the CRAC unit has an interesting operational exergy model, details of it’s life-
cycle exergy consumption are provided here. A chiller would have a similar analysis and is
not included here to avoid redundancy. As modeled in this study, the operational exergy
consumption of the rest of the data center equipment scale more or less linearly with increases
in efficiency, so a detailed display of such a mundane finding is not included here.

The results of the life-cycle exergy consumption analysis are shown in figure 6.9. As can
be seen in the figure, the operational exergy dominates over all other portions of the life-
cycle. Plastic was chosen as the “Other” material because the life-cycle exergy consumption
was slightly larger than if the “Other” material had been chosen as steel or copper, and
slightly less than if the “Other” material was aluminum. However, due to the fact that over
99.99 % of the life-cycle exergy consumption is from the operational portion of the life-cycle,
the assumption as to what material is constituted by “Other” is of little importance.

The large exergy consumption in the operation phase is due to the fact that it was
assumed the CRAC unit runs almost continuously for 10 years. Since this portion of the life-
cycle exergy consumption is so much larger than the other portions, a data center designer
should focus attention on decreasing the operational exergy consumption. This can be done
in several ways. The first way would be to increase the COP . Blower efficiency is already in
the region where increasing efficiencies lead to small gains, but since the operational exergy
is so large, even a small reduction in the rate of exergy destruction is relevant. Thus, efforts
should also be focused on obtaining better blower efficiencies, but this is less important than
increasing the COP . Another way in which the operational exergy could be reduced is by
running the CRAC unit less. Efforts should be focused on better modeling of data center
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Figure 6.6: Sensitivity analysis of data center life-cycle exergy consumption.
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Figure 6.7: Best case scenario for data center life-cycle exergy consumption.
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Figure 6.8: Worst case scenario for data center life-cycle exergy consumption.
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Figure 6.9: CRAC unit life-cycle exergy consumption.
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Figure 6.10: Exergy consumption rates as a function of COP for selected ηb.

cooling so that accurate estimates can be made for how much CRAC units can be turned
down in times of decreased server use and thus cooling required.

Using the data in table 4.16, it was calculated that with the characteristic values of a
CRAC unit, over its lifetime it will consume 2.92 TJ of exergy. In order to achieve this
result, the COP , blower efficiency, and static pressure drop in the CRAC unit had to be
found. From the data available, these parameters can only be found once the air flow rate
is known. However, as derived in section 4.2.2, the air flow rate is dependent on COP ,
blower efficiency, and static pressure drop. To resolve this conflict, an iterative scheme was
developed. First, an initial flow rate guess was calculated using an energy balance on the air
traveling through the evaporator of the CRAC unit. This energy balance assumes that the
blower is not present.

ṁa =
Q̇c

cp(Treturn − Tsupply)
(6.1)

Using this guess, the analysis proceeds as described in section 4.2.2. When the mass flow
rate of air is calculated, the guess is compared to the calculated value. If the guessed value
of the air flow rate is not within 10−5% of the calculated airflow, the calculated airflow is
used as a new guess. The iteration continues until it converges to the correct flow rate.

An analysis was performed to observe the sensitivity of the exergy destruction rate to
the most interesting input parameters. In particular, the exergy destruction rate for varying
COP and blower efficiencies are given in figures 6.10 and 6.11. As can be seen in figure
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Figure 6.11: Exergy consumption rates as a function of COP and ηb.

6.10, increasing the COP results in less exergy being consumed than increasing the blower
efficiency. This means it is more advantageous to increase the COP than the blower efficiency.
The figure also shows that as blower efficiencies approach unity, the decrease in exergy
consumption per unit increase in blower efficiency decreases drastically. Figure 6.11 suggests
that increasing blower efficiencies more than 0.50 to 0.60 has little positive effect. There
is a similar trend for COP values. After COP values of approximately 8 to 9, the exergy
consumed levels off. Current blower technology already achieves efficiencies in the 0.50
to 0.60 range. However, current COP values are closer to 3 for the supply temperatures
being considered. This suggests that a designer attempting to reduce the operational exergy
consumption should focus attention on increasing the COP .
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Chapter 7

Velocity and Temperature Field
Modeling Results

This chapter outlines the results of the conventional CFD as well as the COMPACT pre-
dictions of temperature in a data center. Both the accuracy of the predictions as well as
the speed at which the predictions were determined are analyzed. Subsequent sections show
that acceptable predictions were achieved by both the ANSYS FLUENT and COMPACT
models. Streamlines and temperature profiles generated by ANSYS FLUENT are shown in
figures 7.1 and 7.2, and by COMPACT in figures 7.3 and 7.4. Accuracy of the predictions is
quantified through three different temperature metrics: error as defined in equation 3.1, as
well as maximum and mean temperature deviation. Temperature deviation is defined as

Tdeviation = |Tpredicted − Texperiment| (7.1)

Two different sets of data were compared using these metrics. The first set of tem-
peratures compare predicted and measured temperatures at the inlets of the servers only.
These temperatures are the most important to predict accurately, since these temperatures
must be kept below operational thresholds to ensure reliable operation. The second set
of temperature data included all temperatures taken throughout the data center, including
temperatures taken in front of, behind, to the side, and at the inlets and outlets of the
servers.

The data center predictions were generated based on three sets of experimental data
purposely constructed for different experimental conditions. Early versions of COMPACT
development indicated that buoyancy and recirculation were an issue in terms of predictive
accuracy. Experiments were conducted with increasing levels of recirculation to ascertain if
vortex superposition could accurately predict temperature fields with different amounts of
recirculation (recirculation is discussed throughout the thesis, but see sections 3.1 and 5.2
for a more thorough definition). Levels of recirculation were altered by changing the CRAC
unit flow rates into the room while maintaining both the cold air supply temperature and
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Figure 7.1: Velocity slice plot for FLUENT for experiment Run 5. Horizontal slices are flow
through floor inlets and ceiling outlets; the vertical slice is a vector plot at x = 22 ft.

Table 7.1: Experiment recirculation summary.

Experimental Level of
Run Name Recirculation

Run 5 Lowest
Run 6 Medium
Run 7 Highest

the same level of flow through the severs. The lowest level of recirculation had high flow
rates from the CRAC unit when compared to the flow rates through servers. Medium levels
of recirculation were obtained by maintaining flow rates from the CRAC unit comparable
to flow rates through the servers. High recirculation occurred when flow rates through the
servers were larger than flow rates from the CRAC unit. Table 7.1 summarizes information
about the three experimental data sets.

In additional to experimental runs, there were also different computational runs. These
different computational runs had varying levels of mesh refinement. By default. FLUENT
used non-uniform tetrahedral mesh elements. Therefore, there is no unique element size for
a given number of elements that fill a room. The mesher was used to generate meshes of
increasing number of elements. Table 7.2 summarizes the different names used in figures of
this thesis to refer to different numbers of elements.
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Figure 7.2: Temperature slice plot for FLUENT for experiment Run 5. Horizontal slices are
air temperature at floor inlets and ceiling outlets; the vertical slices are at x = 14 ft and x
= 22 ft.

Table 7.2: Name and number of elements for each computational run.

Computational Number of FLUENT
Run Name Elements in Mesh

Coarser3 954,606
Coarser 4,316,662

Try3 6,618,375
Finer1 8,169,179
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Figure 7.3: Streamline plot for optimized COMPACT for experiment Run 5. Streamlines
originate from floor inlets and out-flowing server rack faces.

7.1 Conventional Computational Fluid Dynamics

7.1.1 Convergence Testing and Computational Time

It is important to ensure that FLUENT’s predicted temperature field is the result of a
converged simulation. This is vital since FLUENT is one standard to which COMPACT is
going to be compared. ANSYS FLUENT’s convergence criteria is dictated by the residuals
calculated in the program. The residuals quantify the imbalance in the differential equations
solved. If the solution predicted by FLUENT were the actual solution, the residuals would
be zero. FLUENT seeks to drive these residuals towards zero, and when they reach an
arbitrary small level, FLUENT considers the solution converged.

Since the residual limits are somewhat arbitrary, and in order to have full faith that the
solutions predicted by FLUENT were indeed converged solutions, more work was done to
ensure convergence. Studies were conducted to show that the temperature field solutions
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Figure 7.4: Temperature slice plot for optimized COMPACT for experiment Run 5. Slices
are located at x = 18 ft, y = 10.5 ft, and z = 6 ft.

didn’t deviate for lower arbitrary residuals (more iterations) or for finer mesh. A complete
summary of results of the convergence study are included in the appendix of this thesis.
Figures 7.5 and 7.6 are example results of the convergence study. A more thorough discussion
of these figures is provided in the subsections below.

Testing Number of Iterations and Its Affect on Convergence

Figure 7.5 shows an example of a convergence study looking at number of iterations, or
alternatively, residual size. The first important point to discuss is the definition of the
temperature Tlimit calculated . In order to quantify the error of a temperature predicted at a
point, one could compare the predicted temperature to the true or converged temperature.
Unfortunately, this true or converged temperature is not known ahead of time. Nonetheless,
a temperature is still needed to compare the temperature prediction at a given point to
obtain some measure of how close the temperature prediction is to being converged.

It seems reasonable that with more iterations the temperature prediction would settle
down to a converged value. Ideally, as the iterations increased in number, the error between
the prediction and true value would become smaller and smaller, and would decrease in
magnitude for each successive iteration. If this is the case, the error would decrease as the
inverse of the number of iterations. In addition, the predicted temperature would decrease
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Figure 7.5: High level or recirculation case study: residual size (number of iterations con-
vergence study) for finest mesh level.
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as the inverse of the number of iterations to the final, converged temperature. This final
temperature could then be described in the following equation:

Tlimit calculated = A1
1

it
+ A2, (7.2)

where A1 and A2 are fitting parameters and it is the iteration number. As the number of iter-
ations goes to infinity, the first term goes to zero, and the final limiting temperature, named
“limit calculated” would be the temperature the solution is heading towards. Tlimit calculated
would then be known if A2 were known. In order to find this constant, numerical fits were
performed on the temperature predictions at each point. The entire procedure, including
residual limits, went as follows:

1. FLUENT was used to solve for temperature fields in the data center. Every 100
iterations, the temperature field was saved. This was done until FLUENT reached
the prescribed default residual threshold. The temperature field was also saved at the
iteration number when the first residual limit was reached.

2. The residual threshold was decreased to half of the default value. The process described
in step one was repeated until the new residual threshold was reached. At the final
iteration, the temperature field was again saved.

3. For every point in the data center, the temperature history was constructed. A fit of
the form in equation 7.2 was made for the temperature at each point. A2 and thus
Tlimit calculated was found for each point.

4. For each point where temperature was predicted, the temperature at every 100 itera-
tions was compared to Tlimit calculated. The absolute value of the temperature difference,
termed “temperature deviation” in this thesis, was found for all points in the data cen-
ter. There were millions of locations where this temperature deviation had been found.
In order to draw conclusions about convergence from the many points, several subsets
of these million points were examined. First, the average and maximum temperature
deviations of all the points were found and plotted versus number of iterations. Sec-
ond, a smaller subset of data was analyzed. The points within 10 cm of server inlets
was given extra attention since temperature prediction in this area is most important.
Figure 7.5 shows examples of plots of this form. A solution was considered converged
if the average temperature deviation at all points went below and remained below 1 K.

Care must be taken when referring to every point in the data center. Traditionally, finite-
volume methods (which is the method employed by FLUENT) calculate physical properties
at the nodes of elements. Since different mesh configurations were used, vertices of mesh
could not be used as locations to look at temperature histories since each mesh would have
different node locations and thus different physical locations at which temperature was pre-
dicted. Instead, approximately 175,000 points were defined, and temperature histories were
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created for the same 175,000 points for all mesh sizes and experimental runs (Runs 5, 6, and
7). The 175,000 were the vertices of the coarsest mesh, and were chosen to ensure that the
locations would span the entire room and not be too spread apart. It was also computa-
tionally easiest to pick these points. 175,000 random points were also chosen in one study
and it led to strikingly similar convergence plots. Since it seemed irrelevant whether totally
random points or the vertices of the coarsest mesh where chosen, the 175,000 locations were
chosen to be at the vertices of the coarsest mesh since this was the easiest path.

The steps in the list above were done for all four levels of mesh refinement for all three
sets of experimental data. The other 11 plots analogous to figure 7.5 can be found in the
appendix.

Testing Number of Elements and Its Effect on Convergence

Convergence is not only a function of the residual limit, but also the size of the mesh. A
converged solution would be one in which the temperatures predicted no longer change with
finer mesh. In the exact same fashion as was done for number of iterations, a convergence
study was performed for number of elements. The exact same procedure was followed with
one minor difference: rather than creating a temperature history as a function of itera-
tions, a temperature history was created as a function of number of elements. Therefore,
Tlimit calculated was calculated based on equation 7.3 for the mesh refinement study.

Tlimit calculated = A1
1

M
+ A2, (7.3)

In this equation, M is the number of elements. All of the temperatures used for a certain
level of mesh resolution were from the last iteration for that mesh resolution. This was the
iteration at which the residuals were twice as small as default in FLUENT.

As with the convergence study based on the number of iterations, a solution was consid-
ered converged if the average temperature deviation at all points went below and remained
below 1 K for increasing number of elements. Figure 7.6 shows the results of the mesh re-
finement study for Run 7. The other 11 mesh refinement plots are included in the appendix.

Computational Time

Depending on the number of iterations and elements, the amount of time needed to reach a
solution varies. In all cases, it was found that halving the residual size resulted in negligible
changes in average temperature deviations. It was also found that increasing the number
of elements above the second coarsest level, 4,316,662 elements, had negligible effect on the
average temperature deviation. For this reason, table 7.3 summarizes the amount of time
needed to achieve temperature predictions for the three different experimental runs with the
default FLUENT residual and with 4,316,662 elements.
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Figure 7.6: High level or recirculation case study: mesh size convergence study.
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Table 7.3: Comparison between FLUENT temperature prediction and experiment as well as
computational time (default FLUENT residual limit, 4,316,662 elements).

Tdeviation = |TFLUENT − Texperiment| [K] Convergence
Experiment All Points Inlets Only
Run Name Max Mean Max Mean Iterations Time [S]

Run 5 13.5 3.1 5.3 1.2 369 22,000
Run 6 17.4 3.3 6.4 1.5 514 31,000
Run 7 17.8 4.6 10.6 2.9 431 26,000

7.1.2 Temperature and Flow Prediction - Comparison to
experiment

Comparisons of FLUENT’s temperature predictions to experimental results were satisfactory
overall and better at the inlets to the servers. Temperature deviation and error, as described
by equations 7.1 and 3.1, respectively, were used as metrics for predictive accuracy. Figures
7.7 and 7.8 summarize these metrics for Run 5, and figures 7.9 and 7.10 summarize these
metrics for Runs 6 and 7, respectively. Table 7.3 also summarizes the highlights of the
FLUENT and experiment comparison.

Figure 7.7 shows that the maximum temperature deviation for all points in Run 5 is
approximately 14 K. The average error for all points is approximately 3.1 K. The predictions
get better when comparing temperatures only at server inlets. In this case, the maximum
temperature deviation is approximately 5.3 K, while the average deviation is approximately
1.2 K.

Figure 7.8 shows that the error metric in this thesis is unusable. The reason for this
is because the uncertainty in the measurements is too large for this metric. This happens
for a combination of two reasons illuminated by looking at the uncertainty equation for the
error metric. Note in equation 7.4, u stands for uncertainty, uTC is the uncertainty in a
thermocouple reading, and utemp variation is the uncertainty due to temperature variation in
a measurement. The combination of uTC and utempvariation is the total uncertainty in the
measurement.

uerror metric =

√
(Tc,in − Tsim)2

(Texp − Tc,in)4
(u2

TC + u2
temp variation) (7.4)

First, the combined uncertainty in an experimental measurement was fairly high. This
estimate comes from two components: one component due to the inherent inaccuracy of
the thermocouples used, and the second component due to the variation in the tempera-
tures measured. The inherent inaccuracy of the T-type thermocouples used is 1 K in the
temperature range of the experiments. The temperature variation uncertainty is due to the
temperature measurement varying over time. This is a result of approximating the transient
data center as steady state. This uncertainty is two standard deviations of the tempera-
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Figure 7.7: Experimental temperature deviation for Run 5.
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Figure 7.8: Experimental temperature error for Run 5.
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ture measurement to attain 95% confidence. The temperature varying uncertainty changed
depending on the measurement, but was usually around 0.4 K. The second reason that
uerror metric is high is because in many places Texp − Tc,in was very small. Since this term is
in the denominator, and is raised to an integer power, this makes the uncertainty high. This
could only be countered by a very accurate temperature reading, which as just outlined,
wasn’t the case. For this reason, the error metric was not used in this thesis as it was in [74]
where an actual steady-state data center was modeled.

Figure 7.9 has an average temperature deviation at the inlets of 1.5 K, and figure 7.10
has an average temperature deviation at the inlets of 2.9 K. This shows that with increasing
recirculation FLUENT becomes less accurate.

FLUENT has built in flow visualization tools. Strategic slice plots showing velocity
contours and vector fields help to visualize the recirculation occurring in the data center.
Figures 7.11 and 7.12 show such recirculation in the Run 7 simulation results. In these plots,
the blank areas are something structural in the room and are blank because only the velocity
field is being viewed. In figure 7.11, the semi-circular blank spots are room support columns
and the rectangular blank spots are rows of server racks. In figure 7.11, the rectangular blank
spots are again rows of server racks. In figure 7.11, it can be seen that a vortex is predicted
above the right row of server racks. The vector field shows that air is flowing downward in
the cold aisle. This is the exact opposite of what is desired, as this is a case of warm air
being recirculated downward into the cold aisle. Recirculation can also occur around the
sizes of the racks as is the case in figure 7.12. Towards the top of this figure, warm air is
being recirculated around the ends of the server racks and flowing from the hot aisle to the
cold aisle. Similar plots examining Run 5 of this study, the case with the lowest amount
of recirculation possible in our experimental setup, also had recirculation occurring. These
figures, and the fact that recirculation was present even in the case where it was minimized
as much as possible, indicate that recirculation is indeed a phenomenon that data center
designers must be concerned with.

7.2 Potential Flow Modeling

7.2.1 Convergence Testing and Computational Time

Just like FLUENT, COMPACT had to undergo analysis to ensure that convergence was
achieved. COMPACT is not an iterative solver, so there were no iterations to test, but mesh
sensitivity still had to be be analyzed. There were three sets of mesh analyses, and their
important features are summarized in table 7.4.

As in the case of the FLUENT mesh sensitivity analyses, Tlimit calculated was found and
used as a temperature of comparison for all points. The same 175,000 points were looked at
in the COMPACT studies as in all the FLUENT studies. Figures 7.13, 7.14, and 7.15, for
Runs 5, 6, and 7, respectively, show the results of the mesh refinement study.

Based on these figures, the solution generated with the lowest number of elements was
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Figure 7.9: Experimental temperature deviation for Run 6.
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Figure 7.10: Experimental temperature deviation for Run 7.
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Figure 7.11: Side view of recirculation for Run 7. Slice plots are at 4 meters from data center
wall.

Table 7.4: Element summary for COMPACT mesh sensitivity analysis.

Experiment Run Mesh Fineness Number of Elements

Run 5,6,7
Coarse 4,461

Medium 35,688
Fine 120,477

considered close enough to Tlimit calculated to be considered the converged temperature for all
three experimental runs. The same criteria was used as in the FLUENT study: namely,
once the mean temperature deviation went below and remained below 1 K, the solution was
considered converged. In all three cases, the solution was found in approximately 4 seconds.

7.2.2 Temperature and Flow Prediction - Comparison to
experiment

Table 7.5 highlights the max and mean temperature deviation between COMPACT and
experiment. These values are considerable lower than the same values for FLUENT.
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Figure 7.12: Top view of recirculation for Run 7. Slice plots are at 1.8 meters above floor of
data center.
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Figure 7.13: Low level or recirculation case study: mesh size convergence study.

Table 7.5: COMPACT comparison to experiment and computational time. Number of
iterations is not applicable (NA) since COMPACT is not an iterative solver.

Tdeviation = |TCOMPACT − Texperiment| [K] Convergence
Experiment All Points Inlets Only
Run Name Max Mean Max Mean Iterations Time [S]

Run 5 5.6 1.2 2.4 0.7 NA ˜4
Run 6 6.8 1.5 3.8 1.1 NA ˜4
Run 7 8.1 1.7 5.3 1.5 NA ˜4



CHAPTER 7. VELOCITY AND TEMPERATURE FIELD MODELING RESULTS 100

Figure 7.14: Medium level or recirculation case study: mesh size convergence study.

Table 7.6: Experimental run summary.

Experimental Rate of Exergy
Run Name Consumption [W]

Run 5 616
Run 6 775
Run 7 931

7.2.3 Exergy Consumption Due to Flow Mixing

The exergy consumed in the flow field due to mixing was calculated for the three runs and
is shown in table 7.6. The table shows that increasing levels of recirculation result in more
exergy destruction.
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Figure 7.15: High level or recirculation case study: mesh size convergence study.

7.3 Temperature Comparison Between COMPACT

and FLUENT

Table 7.7 highlights the max and mean deviations, as well as difference in computation time,
between COMPACT and FLUENT at the 286 points where temperature was measured. The
table shows that COMPACT and FLUENT had very large maximum deviations throughout
the entire room, but average deviations at server inlets were acceptable.
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Table 7.7: COMPACT comparison to FLUENT (Tdeviation and computation time).

Tdeviation = |TFLUENT − TCOMPACT | [K] Convergence
Experiment All Points Inlets Only Computation Time Ratio
Run Name Max Mean Max Mean T imeFLUENT

TimeCOMPACT

Run 5 15.1 3.9 6.5 1.1 5,500
Run 6 19.9 4.2 7.6 1.4 7,750
Run 7 20.9 5.8 11.5 3.2 6,500
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Chapter 8

Discussion of Results

8.1 Sustainability Discussion

The fictitious data center constructed matches well with traditional data centers. The power
distribution in the fictitious data center is given in figure 8.1, and the total power usage of the
data center is approximately 2.5 MW. Both the power distribution and the total power usage
are in the range of typical data centers of its size and location. A measure of data center
efficiency, the power usage effectiveness, was also in the correct range for a data center of
this size. Power usage effectiveness (PUE) is defined as the total power used to run the data
center divided by the powers of the computers in the data center. Typical PUE values are
in the range of 1.5 - 2.5 [34]. The PUE for this fictitious data center is 1.9, which is slightly
more efficient than typical data centers but within the range of normal. It is believed this
fictitious data center is slightly more efficient than average due to the stated omissions in
the HVAC system, namely the cooling towers.

As is often assumed but not necessarily quantified, in terms of both global warming
potential and life-cycle exergy consumption, operation is much more influential than other
life-cycle stages. When a sensitivity analysis was performed, under worst case scenario, the
resource extraction and manufacturing life-cycle leg approaches or exceeds the operation leg,
depending on whether the LCA or LCEA results are used. It is clear from figures 6.4 and 6.8
that the cause for large increase in the resource extraction and manufacturing is the short life-
time assumed for the server. This new shorter lifetime is perhaps possible if server technology
advances at a rapid pace. Computer servers are very energy intensive pieces of equipment
made from highly ordered materials, and the large amounts of energy and relatively rare
materials used to make the servers corresponds to a large global warming potential but an
even larger life-cycle exergy consumption. Since, under the worst case scenario, servers are
being replaced every year, there is a large global warming potential and exergy consumption
incurred every year as new servers are being manufactured. While it is true that computer
technology is advancing at a rapid pace compared to HVAC, transportation, and end-of-life
equipment, it is unlikely that servers would be replaced every year. Figure 6.3 shows that
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Figure 8.1: Power breakdown in fictitious data center.

under the best case scenario, the operational global warming potential still exceeds resource
extraction and manufacturing, the next closest life-cycle leg, by a factor of four. A similar
trend is shown for life-cycle exergy consumption in figure 6.7. The reason for the difference
in transportation for the worst case scenarios between the LCA and LCEA studies has to do
with the global warming potential and life-cycle exergy consumption environmental factors
used for air travel. For global warming potential, the global warming potential is roughly one
order of magnitude worse for air than ship. For life-cycle exergy consumption, the difference
is two orders of magnitude. Based on the LCA and LCEA results, it is recommended that
a data center designer or operator focus on the operational leg of the life-cycle, while at
the same time ensuring that servers are used for several years rather than a single year, to
improve environmental performance. This will likely not only reap environmental benefits
but also monetary savings.

Table 6.2 shows that some data in this study was not as strong as it could be. Also, as
discussed throughout the report, some data center equipment was omitted. For example,
switches, ducting, piping, cable, and cooling towers as well as general data center mainte-
nance were not modeled. The largest reason for these model weaknesses was lack of good,
available data. Efforts should continue to be made to obtain better and more data to ob-
tain a more accurate and complete analysis of the life-cycle exergy consumption or global
warming potential of a data center. However, while some data is missing and other data is
not particularly strong, the results of this study are still useful. It is unlikely that future,
better data will change the trends found in this study. The largest components of the data
center were analyzed and they all showed the same trend of having by far the largest global
warming potential from the operation leg.
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8.2 Velocity and Temperature Field Prediction

Discussions

The goal of the temperature prediction portion of this study is to compare the accuracy and
computational expense of a commercial CFD code with full physics modeling to a simpler
potential flow based model. Tables 7.3 and 7.5 show that COMPACT was most accurate
predictive tool overall. COMPACT performed very well, better than FLUENT considering
mean deviation in temperature prediction at all points measured. COMPACT still has
large deviation when looking at the temperature deviation with experimental measurements
throughout the room. The largest deviation for optimized COMPACT was approximately
8 K. However, the maximum deviation for FLUENT was approximately 18 K. Error in
prescribing boundary conditions could be contributing to the deviation in both COMPACT
and FLUENT. One such example of boundary condition error was observed cold air leakage
from the under floor plenum below one of the racks. Since the leakage was below one of the
racks, it was nearly impossible to quantify. However, this rack was one of the racks with the
largest temperature deviation.

Temperature deviation for both COMPACT and FLUENT is much smaller at inlet faces
as compared to the entire room. This is a promising result, as predicting temperature at the
inlet faces of the servers is the ultimate goal of data center designers and operators. When
looking just at inlet temperature predictions, tables 7.3 and 7.5 show that the optimized
COMPACT prediction has a smaller temperature deviation than FLUENT. It is important
to note that the COMPACT prediction was tuned to minimize this error, so these results
are not surprising. The superposed Rankine vortex strength is roughly based on theory, but
has a vortex strength factor that was tuned to minimize errors. Future work could ascertain
if the tuned potential flow will perform as well under different data center geometries and
configurations. Irrespective of what future studies may find, this study shows that a properly
tuned COMPACT model can accurately predict temperatures at inlets of server racks to
within 0.7 K on average or 5.3 K at worst. Even if future work reveals this is the extent of
COMPACTs capabilities, COMPACT will still be useful as a real time controller. After being
tuned or calibrated, this work shows that COMPACT will be able to predict temperatures
in the event of dynamic IT loading or cooling equipment failure.

The comparison of the COMPACT and FLUENT temperature predictions with each
other showed very close agreement in some areas. COMPACT predictions were within 1-3
K of FLUENT predictions at server rack inlets. When considering the entire room, rather
than just the temperatures at the inlets of the racks, COMPACT did not compare as well
to FLUENT. However, the results shows that COMPACT can produce similar estimates
to FLUENT in the areas of a data center that matter the most, and more importantly, is
better at predicted temperatures than FLUENT. These conclusions are true for all levels or
recirculation in the data center. It was found that increasing recirculation levels led to larger
temperature deviations for both FLUENT and COMPACT, but in all cases COMPACT had
smaller temperature deviations than FLUENT.
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The total rate of exergy consumption calculated by COMPACT is not necessarily useful
by itself. The exergy consumption field can be used to visualize where mixing is occurring
in the data center. Eliminating these areas of mixing will lead to more efficient cooling.
In addition, when combined with other life-cycle exergy consumption calculations, exergy
consumption in the room can be compared to other instances of life-cycle exergy destruction.
This is desirable because it will aid in identifying the most inefficient stages of a data centers
life-cycle. Table 7.6 lists the rate of exergy consumption for the different experiments. The
exergy consumption values show that exergy consumption due to mixing in the room is
negligible when compared to the entire life-cycle, since the 600-1000 W of exergy consumption
is less exergy consumption than by a couple servers.

COMPACT had a much lower computational expense than FLUENT. For Run 5, the
optimized COMPACT model predicted the temperature and velocity fields for in approxi-
mately 6 seconds on a 2008 Dell laptop with a 2.16 GHz Core 2 DUO processor and 3 GB
of ram. The FLUENT model took approximately 6 hours to converge on a 2010 worksta-
tion with better specifications in every category, most notably a faster processor and RAM.
COMPACT was also run on the 2010 workstation for a more fair comparison, resulting in
a reduced run-time of 4 seconds. Table 7.7 shows that depending on the experiment run
number, COMPACT was 5,500-7,500 times faster than FLUENT.

8.3 Sustainability Case Study Example: Brick and

Mortar vs. Shipping Container Data Center

A simple example shows the utility of these two modeling tools. Someone interested in
building a new data center could be confronted with two choices: build a traditional bricks
and mortar data center or building a modular shipping container data center. A shipping
container data center is a modular data center where shipping containers are recycled as
housing units for IT and HVAC equipment. Advantages of this type of data center include
increased mobility of equipment when company requirements change, “shorter deployment
times, higher system and power densities, and lower cooling and manufacturing costs [35].”
In addition, it gives data center designers flexibility to grow a data center if only a small
data center is needed now but a larger data center will be needed in the future. This can
lead to more efficient data center design and operation, since someone designing the cooling
strategy won’t have to guess at future IT cooling needs. A mismatch in predicted and actual
cooling needs is often a source of inefficiency.

Using the two modeling tools developed in this thesis, as was done in chapters 6 and 7,
a designer could put desired IT equipment in a virtual shipping container, use the compact
modeling tool to ensure IT equipment remained below design thresholds, and use the sus-
tainability tool to analyze the system and make more efficient design decisions. This will not
be done here, since there are many, many design choices that have to be made, resulting in
an extensive analysis. This example is just being presented to show the two tools developed
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in this utility.
Design choices would have important sustainability ramifications which could be captured

with a LCEA. For example, each shipping container has its own CRAC unit. If the shipping
container doesn’t need the full cooling load of the CRAC unit, the extra embodied exergy
consumed to make a CRAC unit past the size needed would be wasted. This would show up in
extra resource extraction and manufacturing exergy consumption due to more CRAC units
being needed. In addition, the building shell exergy would differ. If shipping containers
were truly recycled, rather than being made from virgin steel, there would likely be less
exergy consumed in the building shell than a traditional brick and mortar data center.
This is because the life-cycle exergy would be amortized over the data center portion of
the shipping containers life-cycle as well as its previous use. If a new shipping container
was constructed purely for the purpose of being used as part of a modular data center, the
building shell life-cycle exergy consumption would increase. This is because making a steel
building shell consumes more than a traditional building shell per area. An estimate of the
steel shell could be found by multiplying the weight of the shipping container steel [26] by
the exergy consumed for resource extraction and processing as well as manufacturing, and
then normalizing by area of the shipping container [26]. The result is an exergy consumption
value of 9.6GJ

m2 for a steel shipping container versus 5.3GJ
m2 as was assumed for a brick and

mortar building, or an 80 % increase in building shell exergy consumption. This may or
may not be important in the entire life-cycle of a data center, but the results from chapter
6 indicate that it is likely not vital in the life-cycle perspective.
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Chapter 9

Conclusions

This dissertation has two main groups of goals: one set for sustainability modeling, one
for fast predictive modeling. The first goal of the first group was to quantify the indus-
try wide, commonly accepted idea that more sustainable data centers will be achieved by
minimizing the environmental footprint of operation. Both global warming potential and
life-cycle exergy consumption show this to be true under both standard and best case op-
eration conditions. Under both standard and best case scenario operating conditions, the
global warming potential of operation was approximately 70-80% of the total global warm-
ing potential, and resource use and manufacturing was the second largest contributor with
20-30% of the total. Under these operating conditions, it is recommended that operational
electricity use be minimized even at the expense of more greenhouse gas emissions or exergy
consumption in the resource extraction and manufacturing phase. Under the worst case sce-
nario, the global warming potential for resource extraction and manufacturing and operation
were roughly equivalent, due almost entirely to a 1 year turnover of server equipment. For
life-cycle exergy consumption, resource extraction and transportation exceeded operational
exergy consumption. It is recommended that a 1 year turnover of equipment be avoided
due to the large global warming potential and life-cycle exergy consumption that it causes.
Future work could focus on modeling equipment left out of this study or in obtaining better
information to model equipment in this study.

The second sustainability goal of was to evaluate life-cycle exergy consumption as a sus-
tainability metric. When compared to the life-cycle global warming potential found through
a LCA, life-cycle exergy consumption seems to be an appropriate metric. Similar conclu-
sions are reached in the worst, baseline, and best case scenarios studied. There were some
differences, most notably whether operation is more or less than both resource extraction
and transportation in the worst case, but the general trends were all exactly the same. Given
the rough approximation of life-cycle analyses, both in terms of an LCEA or LEA, the two
modeling tools were considered to be in agreement.

The second group of goals centered around investigating the accuracy and computational
speed of a reduced-order predictive tool when compared to a conventional CFD tool. The
main objective of compact modeling is to achieve an acceptable balance of computational
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speed and accuracy. A simplified potential flow model was created, which, when compared
to commercially available CFD code, generated temperature predictions in seconds rather
than hours. Previous work with the simplified potential flow model showed that while
it generated predictions very rapidly, it was too inaccurate to be useful [110]. Through
experimental validation, this thesis shows that when augmented with vortices that have
been correctly tuned, potential flow modeling can generate predictions more accurately than
full CFD modeling but in a fraction of the time. Comparisons of the vortex superposition
potential flow model and experiments, as well as ANSYS FLUENT and experiments, showed
that both numerical techniques differed from the experimental results throughout the room.
It was concluded that this may be in part caused by differences between measured boundary
conditions and true conditions in the room. Despite these temperature deviations, both the
vortex superposed potential flow model and FLUENT predicted the temperature at the inlet
of servers accurately. This study shows that the vortex superposed code achieves drastically
reduced run time without the loss of accuracy, since the tuned potential flow model predicted
temperatures in the data center better than FLUENT. It is concluded that future work could
investigate the optimization method outlined in this study and determine if it will hold up
under different server room or flow configurations.
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Appendix A

Convergence Plots for All FLUENT
Simulations

This appendix has all of the residual and mesh refinement convergence studies for Runs 5,
6, and 7. The plots are ordered starting with Run 5 and ending with Run 7. Within each
experimental run, the plots are ordered with the residual refinement first, from the coarsest
mesh to the finest mesh, and then the mesh refinement study. The Run 7 residual refinement
for the finest mesh as well as the Run 7 mesh refinement plots are not in this appendix, since
they were included in the body of this thesis.
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