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Abstract: Recent studies have demonstrated that somatic MED12 mutations in exon 2 occur at a
frequency of up to 80% and have a functional role in leiomyoma pathogenesis. The objective of
this study was to elucidate the expression profile of coding RNA transcripts in leiomyomas, with
and without these mutations, and their paired myometrium. Next-generation RNA sequencing
(NGS) was used to systematically profile the differentially expressed RNA transcripts from paired
leiomyomas (n = 19). The differential analysis indicated there are 394 genes differentially and
aberrantly expressed only in the mutated tumors. These genes were predominantly involved in the
regulation of extracellular constituents. Of the differentially expressed genes that overlapped in the
two comparison groups, the magnitude of change in gene expression was greater for many genes in
tumors bearing MED12 mutations. Although the myometrium did not express MED12 mutations,
there were marked differences in the transcriptome landscape of the myometrium from mutated
and non-mutated specimens, with genes regulating the response to oxygen-containing compounds
being most altered. In conclusion, MED12 mutations have profound effects on the expression of
genes pivotal to leiomyoma pathogenesis in the tumor and the myometrium which could alter tumor
characteristics and growth potential.

Keywords: leiomyoma; fibroid; myometrium; MED12 mutation; next-generation RNA sequencing

1. Introduction

Leiomyomas, also known as uterine fibroids, are benign uterine tumors, characterized
by excess accumulation of extracellular matrix (ECM), increased cell proliferation, and
inflammation [1–3]. Ovarian steroids are known to promote the growth and progression of
leiomyomas [4] which affect about 70% women in their reproductive years. There are higher
prevalence and symptom severity in African Americans [5] compared with Caucasian
women. The mechanisms underlying the pathogenesis of leiomyomas have been under
intense investigation and recent evidence using microarrays and next-generation RNA
sequencing has indicated aberrant expression of a host of protein-coding genes and non-
coding RNA (ncRNA) in leiomyomas, including long and small non-coding RNA (lncRNA
and sncRNA), which play crucial roles in regulation of protein-coding genes through post-
transcriptional, transcriptional, and epigenetic mechanisms [6–11]. These tumors are also
characterized by genetic heterogeneity with chromosomal re-arrangements, and mutations
in a number of driver genes such as MED12 (mediator complex subunit 12), FH (fumarate
hydratase), HMGA2 (high mobility group AT-hook 2), and COL4A5/6 (collagen type IV
alpha 5 and alpha 6). These driver mutations have been associated with development
and growth progression of leiomyomas [12–15]. Of the driver mutations, MED12 gene
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mutations have gained the most attention in the pathophysiology of leiomyomas [16–19].
MED12 is one component of the mediator complex, which in humans is composed of
30 subunits and functions as a transcription coactivator of RNA polymerase II [20]. It
interacts with over 3000 transcription factors controlling the transcription of a wide array of
genes [21]. MED12 along with MED13, cyclin C, and either CDK8 or CDK19 are components
of the kinase module of this mediator. MED12 stimulates the kinase activity of CDK8 by
bridging the interaction between MED13 and cyclin C–CDK8 [21]. Dysregulation of MED12
is found in many human cancers [21]. In leiomyoma, somatic MED12 mutations in exon 2
occur at a frequency of up to 80% regardless of race/ethnicity [16–19]. The MED12-mutant
leiomyomas are smaller in size and more often subserous in location [22]. Mutations in
exon 2 of MED12 are gain-of-function mutations, as evidenced by transgenic mice which
developed leiomyoma-like tumors in the uterus when a conditional mutation in MED12
was introduced [23]. Mutations in the MED12 gene have been shown to disrupt its ability to
activate cyclin C-dependent CDK8 [24], and its CDK19 stimulatory activity [25]. Moreover,
these mutations were reported to be associated with abnormal activation of many genes
regulating important pathways in leiomyoma pathogenesis, including the Wnt/β-catenin
signaling, hedgehog signaling, sex steroid receptor signaling, and transforming growth
factor (TGF)-β receptor signaling pathways [17–19,26,27].

The impact of the high occurrence of MED12 mutations in leiomyomas on the expres-
sion of genes critical to leiomyoma pathogenesis remains unknown. Therefore, the objective
of the present study was to determine and compare the expression profile of differentially
expressed coding RNA transcripts using high-throughput sequencing and in-depth data
analysis based on the MED12 mutation status of the leiomyoma. This next-generation se-
quencing (NGS) profiling was followed by validation studies of 31 differentially expressed
genes in 73 specimens using quantitative reverse-transcription polymerase chain reaction
(qRT-PCR).

2. Results
2.1. High-Throughput Sequencing of Coding RNA Transcripts in Leiomyoma and
Matched Myometrium

We initiated our investigation with high-throughput next-generation RNA sequencing
(NGS) with RNA isolated from nineteen paired leiomyomas, including eight MED12-
mutation-negative and eleven MED12-mutation-positive leiomyomas. We first analyzed
the differential expression of genes in all the specimens regardless of MED12 mutation
analysis. Following normalization of 29,354 RNA transcripts, hierarchical clustering and
TreeView analysis, comparing leiomyomas with the matched myometrium group, resulted
in identification of 9699 RNA transcripts whose expression was altered significantly, with
overexpression of 5665 RNA transcripts and downregulation of 4034 RNA transcripts by
1.5-fold or greater in leiomyoma (Figure 1A). Volcano plot filtering indicated that 2344 RNA
transcripts were upregulated, and 1711 RNA transcripts were downregulated in leiomy-
omas compared with their matched myometrium (fold change > 1.5 and p < 0.05; Figure 1B).
Principal component analysis (PCA), which examines the similarity in the pattern of RNA
transcripts among two groups, was performed, followed by k-mean analysis to cluster
the samples, indicating the high reliability of the data (Figure 1C). Subsequently, by using
the STRING database and Cytoscape software a functional analysis of the protein–protein
interaction (PPI) network was constructed demonstrating the highlighted associations
between target genes involved in leiomyoma pathogenesis (Figure 1D). The involvement
of many proteins such as FN1, COL1A1, BMP7, CCND1, EZH2, HMGA2, AhR, and E2F1
shown in the protein–protein interaction networks are well known in leiomyoma patho-
genesis [8,28–32]; others, such as SOX2, REN, PPARG, ABCB1, and NR3C1 are novel and
require further investigation.
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Figure 1. Heterogeneity and transcriptomic changes in leiomyomas compared to the myometrium.
(A) Hierarchically clustered heatmap analysis of the differentially expressed transcripts (fold change
≥ 1.5, p < 0.05) in 19 paired leiomyomas and matched myometrium. Color gradient represents gene
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expression as z-scores. (B) Volcano plot showing up- (n = 2344) and downregulated genes (n = 1711)
with a false discovery rate (FDR), p-value < 0.05, depicted as red dots. (C) Principal component
analysis (PCA) plot of RNA-seq results from paired leiomyomas and matched myometrium (n = 19).
Each dot represents one sample. Myometrial samples (Myo) are shown in black and leiomyoma
samples (Lyo) are shown in red. (D) The protein–protein interaction networks were constructed with
the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software
version 3.9.1 using the 150 hub genes identified by the CytoHubba plugin of the Cytoscape software
platform. The color of nodes denotes interaction degree (from high to low degree: red, orange, yellow,
and blue).

2.2. Differential Expression of MED12-Associated Coding RNA Transcripts in Leiomyoma and
Matched Myometrium

We then examined the differential expression of genes in MED12-mutated and non-
mutated specimens. We observed a significant overlap of differentially expressed genes be-
tween the two groups although in mutated specimens the degree of change was greater for
most genes. The analysis was performed as fold change (leiomyoma/paired myometrium)
comparing mutated and non-mutated group. This analysis, based on differential expres-
sion, resulted in identification of 2757 RNA transcripts with altered expression, of which
the expression of 1406 RNA transcripts was increased, while the expression of 1351 RNA
transcripts was decreased by 1.5-fold or greater in MED12-mutated specimens compared
with non-mutated specimens. Hierarchical clustering and TreeView analysis separated
these transcripts into their respective groups (Figure 2A). We identified 394 transcripts that
showed more than 1.5-fold change (up or down) in the mutated specimens but not in the
non-mutated specimens. The heat map (Figure 2B) shows 109 out of the 394 transcripts
that were uniquely altered in the MED12-mutated specimens. The gene ontology (GO)
and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses for
these 109 transcripts revealed that the genes that were uniquely expressed in the mutated
group were predominantly involved in the regulation of extracellular matrix constituents
(Figure 2C).

2.3. Differential Expression of MED12-Associated Coding RNA Transcripts in Myometrium

We next sought to examine if there were any differences in the expression of genes
in the myometrium of specimens with the MED12 mutation compared with non-mutated
specimens. Although we did not detect mutations in the MED12 gene in any myometrial
tissues, we observed marked differences in the expression profile in the myometrium adja-
cent to MED12-mutated leiomyomas compared with the myometrium adjacent to MED12
wild-type tumors. The analysis of RNA sequencing data in myometrium based on MED12
mutation status of their paired adjacent leiomyomas indicated that the expression of 6259
RNA transcripts were altered, of which 2219 RNA transcripts were up-regulated, while
4040 RNA transcripts were downregulated by 1.5-fold or greater in myometrium adjacent
to MED12-mutated leiomyomas compared to myometrium adjacent to MED12 wild-type
leiomyomas. Hierarchical clustering and TreeView analysis separated these transcripts
into their respective group (Figure 3A). A volcano plot, a PCA and a PPI network were
constructed to highlight MED12-associated RNA transcripts in their paired adjacent leiomy-
omas (Figure 3B–D). Many proteins such as F3, WNT2, CDH1, and LIF [33–36] shown in
the protein–protein interaction networks are well known in leiomyoma pathogenesis, and
others, such as ICAM1, CXCL8, CCL2, and NANOG are novel and require further investi-
gation. The gene ontology (GO) and KEGG pathway enrichment analyses of genes with
altered expression in the myometrium indicated that these genes were mainly involved
in the response to oxygen-containing compounds and the extracellular space (Figure 3E).
Selected genes in each of the pathways shown in Figure 3E are presented in Supplementary
Table S1. We selected five of the differentially expressed novel RNA transcripts in the my-
ometrium (WNT16, CACNA1D, DCX, MTMR8, and WIF1) for confirmation using qRT-PCR
in seventy-three paired specimens (Figure 4). This analysis indicated that the expression
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of WNT16, CACNA1D, DCX, and WIF1 was significantly higher, while the expression of
MTMR8 was significantly lower in myometrium adjacent to MED12-mutated leiomyomas
compared to myometrium adjacent to MED12 wild-type leiomyomas (Figure 4).
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Figure 2. Differential levels of transcriptomic heterogeneity of genes in paired specimens analyzed
based on MED12-mutation status. (A) Hierarchically clustered heatmap analysis was performed
as fold change (leiomyoma/paired myometrium) comparing the MED12-mutated (n = 11) with the
non-mutated (n = 8) group (fold change ≥ 1.5, p < 0.05). Color gradient represents gene expression as
z-scores. (B) Heatmap of the 109 enriched genes (leiomyoma/paired myometrium) in the MED12-
mutated (n = 11) but not in the non-mutated (n = 8) group (fold change≥ 1.5, p < 0.05). Color gradient
represents gene expression levels as z-scores. (C) Gene ontology (GO) analysis of 394 differentially
expressed genes (leiomyoma/paired myometrium) in the MED12-mutated (n = 11) but not in the
non-mutated (n = 8) group (fold change ≥ 1.5, p < 0.05). Color gradient represents levels of log2 fold
change presented as z-scores.
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Figure 3. Heterogeneity and transcriptomic changes in myometrium specimens based on MED12-
mutation status of their paired adjacent leiomyomas. (A) Hierarchically clustered heatmap analysis
was performed in the myometrium comparing the MED12-mutated (n = 11) with the non-mutated
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(n = 8) group of their paired adjacent leiomyomas (fold change ≥ 1.5, p < 0.05). Color gradient
represents gene expression as z-scores. (B) Volcano plot showing up- (n = 2219) and downregulated
genes (n = 4040) with a false discovery rate (FDR), p-value < 0.05, depicted as red dots. (C) Principal
component analysis (PCA) plot of RNA-seq results in the myometrium comparing the MED12-
mutated (n = 11) with non-mutated (n = 8) group of their paired adjacent leiomyomas. Each dot
represents one sample. Myometrial samples from MED12 mutation-negative adjacent leiomyomas
(Myo-WT) are shown in black and myometrial samples from MED12-mutated adjacent leiomyomas
(Myo-Mut) are shown in red. (D) The protein–protein interaction networks were constructed with
the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software
version 3.9.1 using the 150 hub genes identified by the CytoHubba plugin of the Cytoscape software
platform. The color of the nodes denotes interaction degree (from high to low degree: red, orange,
yellow, and blue). (E) Gene ontology (GO) analysis of the identified differentially expressed 150 hub
genes in the myometrium comparing the MED12-mutated (n = 11) with the non-mutated (n = 8)
group of their paired adjacent leiomyomas (fold change ≥ 1.5, p < 0.05). Color gradient represents
level of log2 fold change presented as z-scores.
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Figure 4. The expression of selected genes from the analysis of the myometrium (n = 73) based on
MED12-mutation status of their paired adjacent leiomyomas by qRT-PCR. The results are presented
as mean ± SEM with p values (* p < 0.05; ** p < 0.01) as indicated by the corresponding lines.

2.4. Validation of MED12-Associated Coding RNA Transcripts in Leiomyoma and
Matched Myometrium

To provide support and validate the NGS data we selected 31 differentially expressed
coding RNA transcripts for confirmation studies using qRT-PCR (n = 73) including the
same tissues used for RNA sequencing (Figure 5). Of the 73 paired specimens, 48 leiomy-
omas had MED12 mutations (65.8%). The prevalence of MED12 mutations in our pa-
tient population was in agreement with previously published reports [16–19]. The gene
ontology (GO) and KEGG pathway enrichment analyses of the selected differentially
expressed RNA transcripts revealed that these genes were involved in multiple signal-
ing pathways such as ECM–receptor interaction (Figure 5A; COL11A1, MUC12, FRMD5,
FCGBP, EGFL6, FN1, KLK5, ITGA9, and DCX), cell signaling pathways including the
Wnt signaling pathway (Figure 5B; WNT4, WNT2, WNT16, and WIF1), chemokine signal-
ing pathways (Figure 5B; CXCL13), PI3K/AKT signaling (Figure 5B; CBX8), TLR signal-
ing (Figure 5B; S100A1), signaling by Rho GTPases (Figure 5B,C; NDC80 and NTM), the
VEGFA–VEGFR2 signaling pathway (Figure 5C; RAB37), signal-transducing phosphatase
(Figure 5C; PPP1R14C), the Jak/STAT signaling pathway (Figure 5C; JAK3), the TGF-β sig-
naling pathway (Figure 5C; BMP7), transcription regulation (Figure 5C; S100A4 and HMX1),
ion homeostasis (Figure 5C; CACNA1D and RGS4), and metabolic pathways (Figure 5D;
EZH2, IGFBPL1, MTMR8, ATP5MC1P1, and CYP19A1). Among the 31 RNA transcripts
validated, the expression of COL11A1, MUC12, FRMD5, FCGBP, EGFL6, FN1, KLK5, ITGA9,
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DCX, WNT4, WNT2, WNT16, WIF1, CXCL13, CBX8, NDC80, NTM, PPP1R14C, BMP7,
EZH2, IGFBPL1, MTMR8, ATP5MC1P1, CYP19A1, HMX1, CACNA1D, and RGS4 was signif-
icantly higher, while the expression of S100A1, RAB37, and S100A4 was significantly lower
in leiomyomas compared to matched myometrium (Figure 5A–D). Further comparisons
were made comparing mutated leiomyomas to non-mutated leiomyomas and mutated
myometrium to non-mutated ones (Figure 6A–D). The differentially expressed genes
(leiomyoma/paired myometrium) in the two comparison groups are shown in Figure 7. As
shown in Figure 6, the magnitude of differences in expression between the mutated and
non-mutated groups was most pronounced for KLK5, WNT 4, WNT16, PPP1R14C, NTM,
IGFBPL1, EGFL6, FCGBP, COL11A1, FRMD5, DCX, CBX8, and RAB37. A summary of the
analyses from Figures 6 and 7 is shown in Table 1. The expression pattern of these 31 genes
when divided into mutated and non-mutated groups, was similar to the analysis when
all samples were combined regardless of mutation status (Figure 5), with the exception of
JAK3, which showed no significant difference in expression in the combined group analysis
but was significantly different when analyzed based on the mutation status (Figure 5C).
The expression of the 31 RNA transcripts was also similar when the data were analyzed as
differentially expressed versus when the comparison was performed based on expression
levels in the leiomyomas alone, except for S100A1, MTMR8, CACNA1D, DCX, BMP7, RGS4,
and CYP19A1 (Table 1).
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KLK5, ITGA9, and DCX; (B) WNT4, WNT2, WNT16, WIF1, CXCL13, CBX8, S100A1, and NDC80;
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MTMR8, ATP5MC1P1, and CYP19A1. The results are presented as mean ± SEM with p values
(* p < 0.05; ** p < 0.01; *** p < 0.001) indicated by corresponding lines.
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MTMR8, and FCGBP; (B) MUC12, FRMD5, WIF1, CXCL13, EGFL6, FN1, S100A1, and NDC80;
(C) CBX8, KLK5, ITGA9, EZH2, RAB37, WNT4, WNT2, and WNT16; (D) PPP1R14C, JAK3, NTM,
ATP5MC1P1, S100A4, HMX1, and IGFBPL1 in MED12-mutated leiomyomas (n = 48) and non-
mutated leiomyomas (n = 25) and myometrium adjacent to MED12-mutated (n = 48) or non-mutated
leiomyomas (n = 25) measured using qRT-PCR. The results are presented as mean ± SEM with
p values (* p < 0.05; ** p < 0.01; *** p < 0.001) as indicated by the corresponding lines.



Int. J. Mol. Sci. 2023, 24, 3742 11 of 23Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 23 
 

 

  

Figure 7. The expression of mRNA for (A) COL11A1, MUC12, FRMD5, FCGBP, EGFL6, FN1, KLK5, 
and ITGA9; (B) WNT4, WNT2, WNT16, CXCL13, CBX8, S100A1, NDC80, and NTM; (C) RAB37, 
PPP1R14C, JAK3, EZH2, IGFBPL1, MTMR8, ATP5MC1P1, S100A4, and HMX1 expressed as fold 
change (Lyo/paired Myo) in MED12-mutated (n = 48) and non-mutated (n = 25) specimens measured 
using qRT-PCR. The results are presented as mean ± SEM with p values (* p < 0.05; ** p < 0.01; *** p 
< 0.001) as indicated by the corresponding lines. 

Table 1. Genes selected based on the RNAseq analysis according to the MED12 mutation status. 

GO/KEGG Path-
way Enrichment 

Symbol Lyo vs 
Myo  

Lyo/Myo(+) vs 
Lyo/Myo(−) 

Lyo(+) vs 
Lyo(−) 

Myo(+) vs 
Myo(−) 

Function 

ECM-receptor in-
teraction 

COL11A1 Up (p < 
0.001) 

Up (p < 0.001) Up (p < 
0.001) 

No Signifi-
cance 

Minor fibrillar collagen; expression has been associated with ad-
vanced tumorigenic disease and epithelial-mesenchymal transition 
(EMT) [37].  

ECM-receptor in-
teraction 

MUC12 
Up (p < 

0.05) 
Up (p < 0.05) 

Up (p < 
0.05) 

No Signifi-
cance 

An O-glycosylated protein of the mucin family; mucous barrier on 
epithelial surfaces; involves in adhesion modulation, epithelial re-
newal, differentiation and intracellular signaling via EGF-like do-
mains in its extracellular region [38]. 

ECM-receptor in-
teraction 

FRMD5 
Up (p < 
0.001) 

Up (p < 0.001) 
Up (p < 
0.001) 

No Signifi-
cance 

Part of adherens junction and involved in regulation of cell migra-
tion, cellular metabolism, and signal transduction [39,40].  

ECM-receptor in-
teraction 

FCGBP 
Up (p < 
0.001) 

Up (p < 0.001) 
Up (p < 
0.001) 

No Signifi-
cance 

Contains multiple von Willebrand D (VWD) domains that form 
complexes through disulfide-linked heterodimers with members of 
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Member of EGF superfamily, is expressed at significant levels dur-
ing developmental processes and various malignant cancers ; in-
volved in the regulation of cell cycle, tumor proliferation, invasion, 
and metastasis through activation of multiple signaling pathways 
including PI3K/AKT, ERK/MAPK, Wnt/β-catenin and integrin-me-
diated signaling pathway [43]. 
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A major component of the extracellular matrix, exists as a dimeric 
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KLK5, a member of the kallikrein subfamily, is involved in collagen 
formation and MSP-RON signaling [46,47].  

Figure 7. The expression of mRNA for (A) COL11A1, MUC12, FRMD5, FCGBP, EGFL6, FN1, KLK5,
and ITGA9; (B) WNT4, WNT2, WNT16, CXCL13, CBX8, S100A1, NDC80, and NTM; (C) RAB37,
PPP1R14C, JAK3, EZH2, IGFBPL1, MTMR8, ATP5MC1P1, S100A4, and HMX1 expressed as fold
change (Lyo/paired Myo) in MED12-mutated (n = 48) and non-mutated (n = 25) specimens measured
using qRT-PCR. The results are presented as mean ± SEM with p values (* p < 0.05; ** p < 0.01;
*** p < 0.001) as indicated by the corresponding lines.

Table 1. Genes selected based on the RNAseq analysis according to the MED12 mutation status.

GO/KEGG
Pathway

Enrichment
Symbol Lyo vs Myo Lyo/Myo(+) vs

Lyo/Myo(−) Lyo(+) vs Lyo(−) Myo(+) vs Myo(−) Function

ECM-receptor
interaction COL11A1 Up (p < 0.001) Up (p < 0.001) Up (p < 0.001) No Significance

Minor fibrillar collagen; expression has been
associated with advanced tumorigenic disease and
epithelial-mesenchymal transition (EMT) [37].

ECM-receptor
interaction MUC12 Up (p < 0.05) Up (p < 0.05) Up (p < 0.05) No Significance

An O-glycosylated protein of the mucin family;
mucous barrier on epithelial surfaces; involves in
adhesion modulation, epithelial renewal,
differentiation and intracellular signaling via
EGF-like domains in its extracellular region [38].

ECM-receptor
interaction FRMD5 Up (p < 0.001) Up (p < 0.001) Up (p < 0.001) No Significance

Part of adherens junction and involved in
regulation of cell migration, cellular metabolism,
and signal transduction [39,40].

ECM-receptor
interaction FCGBP Up (p < 0.001) Up (p < 0.001) Up (p < 0.001) No Significance

Contains multiple von Willebrand D (VWD)
domains that form complexes through
disulfide-linked heterodimers with members of
the mucin and trefoil factor family, which affect
the attachment and motility of pathogens on
mucosal surfaces [41,42].

ECM-receptor
interaction EGFL6 Up (p < 0.001) Up (p < 0.001) Up (p < 0.001) No Significance

Member of EGF superfamily, is expressed at
significant levels during developmental processes
and various malignant cancers; involved in the
regulation of cell cycle, tumor proliferation,
invasion, and metastasis through activation of
multiple signaling pathways including PI3K/AKT,
ERK/MAPK, Wnt/β-catenin and
integrin-mediated signaling pathway [43].
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Table 1. Cont.

GO/KEGG
Pathway

Enrichment
Symbol Lyo vs Myo Lyo/Myo(+) vs

Lyo/Myo(−) Lyo(+) vs Lyo(−) Myo(+) vs Myo(−) Function

ECM-receptor
interaction FN1 Up (p < 0.001) Up (p < 0.01) Up (p < 0.01) No Significance

A major component of the extracellular matrix,
exists as a dimeric or multimeric form with other
extracellular matrix proteins such as integrins,
collagen, fibrin, and heparan sulfate proteoglycans
linked by disulfide bonds [44,45].

ECM-receptor
interaction KLK5 Up (p < 0.01) Up (p < 0.01) Up (p < 0.001) No Significance

KLK5, a member of the kallikrein subfamily, is
involved in collagen formation and MSP-RON
signaling [46,47].

ECM-receptor
interaction ITGA9 Up (p < 0.001) Up (p < 0.01) Up (p < 0.01) No Significance

An integrin subunit that mediates cell-cell and
cell-matrix adhesion and accelerates cell migration
and regulates various biological functions
including cancer cell proliferation, angiogenesis,
adhesion and invasion [48].

ECM-receptor
interaction DCX Up (p < 0.001) No Significance Up (p < 0.001) Up (p < 0.01)

A microtubule-associated protein, contains two
internal tandem repeats and stabilizes
microtubules through bundling to the microtubule
cytoskeleton [49].

Cell signaling
pathway WNT4 Up (p < 0.01) Up (p < 0.01) Up (p < 0.001) No Significance

Ligand for members of the frizzled family of seven
transmembrane receptors; works as a biphasic
initiator for activating the canonical and
non-canonical Wnt signaling [50].

Cell signaling
pathway WNT2 Up (p < 0.01) Up (p < 0.05) Up (p < 0.01) No Significance

Enriched in cancer-associated fibroblasts; has the
potential to enhance the growth and invasion of
colorectal cancer [50].

Cell signaling
pathway WNT16 Up (p < 0.001) Up (p < 0.01) Up (p < 0.001) Up (p < 0.01)

Has no homology to any other Wnts signaling
molecule; implicated in tumorigenesis and in
skeletal development and postnatal bone
homeostasis [50].

Cell signaling
pathway CXCL13 Up (p < 0.001) Up (p < 0.01) Up (p < 0.01) No Significance

Potent B lymphocyte chemoattractant, which
promotes the migration of B lymphocytes, and is
one of the most abundant chemokines in
endometrial epithelial cells [51].

Cell signaling
pathway CBX8 Up (p < 0.001) Up (p < 0.001) Up (p < 0.001) No Significance

Component of a PcG PRC1-like complex, is
involved in the RNA polymerase II-mediated
transcription repression of genes [52].

Cell signaling
pathway S100A1 Down (p < 0.001) Down (p < 0.05) No Significance No Significance

Member of the S100 family of calcium-binding
proteins; interacts with specific target proteins,
resulting in the modulation of their activity [53,54].

Cell signaling
pathway NDC80 Up (p < 0.001) Up (p < 0.05) Up (p < 0.05) No Significance

Component of the essential kinetochore-related
NDC80 complex, which is involved in the
organization and stabilization of
microtubule-kinetochore interactions, spindle
checkpoint signaling and
chromosome segregation [55].

Cell signaling
pathway NTM Up (p < 0.001) Up (p < 0.001) Up (p < 0.001) No Significance

Neural cell adhesion molecule, promotes adhesion
and neurite outgrowth via a
homophilic mechanism [56].

Cell signaling
pathway RAB37 Down (p < 0.001) Down (p < 0.001) Down (p < 0.001) No Significance

Rab small GTPase protein, through switching its
guanine nucleotide binding status between
GDP-bound (inactive) and GTP-bound (active)
functions as a critical regulator in
exocytotic pathway [57].

Cell signaling
pathway PPP1R14C Up (p < 0.001) Up (p < 0.05) Up (p < 0.01) No Significance

Inhibitor of the PP1 serine/threonine phosphatase,
which regulates the activation of
PTH(1–34)-induced catabolic response and the
non-canonical PTH1R signaling pathway [58,59].

Cell signaling
pathway JAK3 No Significance Up (p < 0.01) Up (p < 0.01) No Significance

Member of the JAK family of non-receptor
tyrosine kinases, plays a pivotal role in cytokine
and growth factor-mediated intracellular signal
transduction via the JAK/STAT pathway [60].

Cell signaling
pathway WIF1 Up (p < 0.001) No Significance No Significance Up (p < 0.01)

Secreted protein that binds and inhibits the
activity of Wnt proteins.Downregulated in
numerous cancers via epigenetic transcriptional
silencing mechanism [61,62].

Cell signaling
pathway BMP7 Up (p < 0.001) No Significance Up (p < 0.05) No Significance

Secreted ligand of the TGF-β superfamily,
activates TGF-β signaling via receptor-mediated
activation of Smad transcription factors leading to
target genes regulation [63].
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Table 1. Cont.

GO/KEGG
Pathway

Enrichment
Symbol Lyo vs Myo Lyo/Myo(+) vs

Lyo/Myo(−) Lyo(+) vs Lyo(−) Myo(+) vs Myo(−) Function

ECM-receptor
interaction FN1 Up (p < 0.001) Up (p < 0.01) Up (p < 0.01) No Significance

A major component of the extracellular matrix,
exists as a dimeric or multimeric form with other
extracellular matrix proteins such as integrins,
collagen, fibrin, and heparan sulfate proteoglycans
linked by disulfide bonds [44,45].

Metabolic
pathways EZH2 Up (p < 0.001) Up (p < 0.01) Up (p < 0.01) No Significance

Catalytic core protein in PRC2 and facilitated
PRC2-mediated H3K27me3 reaction. The
dysregulation of EZH2 is acting as an important
driver of tumorigenesis and progression [64].

Metabolic
pathways IGFBPL1 Up (p < 0.05) Up (p < 0.001) Up (p < 0.01) No Significance

Located in extracellular space, is an IGF-binding
protein that could prolong the half-life of IGF
proteins and either promotes or inhibits the effects
of IGF proteins on cell growth [65].

Metabolic
pathways MTMR8 Up (p < 0.001) Up (p < 0.05) No Significance Down (p < 0.05)

Member of the myotubularin-related family; has
phosphatase activity towards lipids containing
phosphoinositol headgroup and acts on
phosphatidylinositol 3-phosphate and
phosphatidylinositol 3,5-bisphosphate; functions
in membrane trafficking, cytoskeletal regulation,
and receptor signaling [66].

Metabolic
pathways ATP5MC1P1Up (p < 0.001) Up (p < 0.05) Up (p < 0.01) No Significance

Pseudogene of ATP5MC1, which is encoded by
the mitochondrial DNA and is subunit c of
mitochondrial ATP synthase (F1F0 ATP synthase
or Complex V) [67].

Metabolic
pathways CYP19A1 Up (p < 0.001) No Significance Up (p < 0.05) No Significance

Member of the cytochrome P450 superfamily, is a
monooxygenase involved in many reactions such
as synthesis of steroids, lipids, cholesterol, and
drug metabolism [68].

Transcription
regulation S100A4 Down (p < 0.001) Down (p < 0.01) Down (p < 0.01) No Significance

Member of the S100 calcium-binding protein
family, through its interaction with other proteins
plays essential roles in many cellular processes
and the development of cancers including
metastasis, differentiation, inflammation,
metastasis, and cell cycle progression [69].

Transcription
regulation HMX1 Up (p < 0.001) Up (p < 0.01) Up (p < 0.01) No Significance

Transcription factor that belongs to the homeobox
proteins (H6 family), and it recognizes and binds
to the 5′-CAAG-3′ core DNA sequence. HMX1
may act as a transcriptional repressor and
involved in the development of
craniofacial structures [70].

Ion
homeostasis CACNA1D Up (p < 0.001) No Significance Up (p < 0.05) Up (p < 0.01)

Member of the high-voltage-activated Ca2+
channels (HVA), is expressed in uterus and
involved in a variety of calcium signaling
related processes [71].

Ion
homeostasis RGS4 Up (p < 0.001) No Significance Up (p < 0.01) No Significance

Regulates numerous G protein-coupled receptors
(GPCRs) associated post-receptor
signaling cascades [72].

3. Discussion

The results of this study provide a comprehensive profile of protein-coding genes
whose expression is altered by the presence or absence of MED12 mutations in the tumor.
Although there was a significant overlap of differentially expressed genes in mutated and
non-mutated specimens, there were 394 transcripts that were uniquely aberrantly expressed
in the mutated specimens compared with non-mutated ones. Using the DAVID gene func-
tional classification tool [73,74] for gene ontology (GO) and KEGG pathway enrichment
analyses for these transcripts indicated that these genes were predominantly involved
in the regulation of extracellular matrix constituents, response to external stimulus, and
extracellular space. Although the myometrium of mutated specimens did not express
MED12 mutations, the expression of WNT16, CACNA1D, DCX, WIF1, and MTMR8 genes
were significantly altered in the myometrium of MED12-mutated specimens compared with
non-mutated specimens, with WNT16, CACNA1D, DCX, and WIF1 genes upregulated and
the MTMR8 gene downregulated. Pathway enrichment analysis for these myometrial genes
showed predominant involvement in response to oxygen-containing compounds, extracel-
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lular space, and response to organic substances and external stimuli. Validation studies
using PCR, performed in 73 specimens, confirmed the RNA-seq results indicating the differ-
ential expression of COL11A1, MUC12, FRMD5, FCGBP, EGFL6, FN1, KLK5, ITGA9, WNT4,
WNT2, WNT16, CXCL13, CBX8, NDC80, NTM, PPP1R14C, JAK3, EZH2, IGFBPL1, MTMR8,
ATP5MC1P1, HMX1, CYP19A1, RGS4, BMP7, DCX, and CACNA1D mRNA was signifi-
cantly higher, while the expression of S100A1, RAB37, and S100A4 mRNA was significantly
lower in MED12-mutated leiomyomas compared with non-mutated specimens.

The mediator complex is composed of the head, middle, tail, and kinase modules
and gene-specific transcription factors bind through the tail and kinase domains and then
transduce the regulatory information through the middle and head modules to RNA poly-
merase 11, thereby regulating the expression of a wide array of genes [21]. It remains to be
determined how, despite the loss of mediator-associated CDK activity [24], the transcription
of so many genes as shown here are altered by the MED12 mutations. One possibility
for the widespread effects of these mutations on gene expression is that the mediator is
known to interact with super enhancers which regulate gene families [75], and in a recent
publication [11] we reported that the expression of multiple super enhancers is altered
in leiomyomas, many of which were dependent on the MED12-mutation status of the
tumors. Our data indicate that the presence of a MED12 mutation does not only affect
the expression of genes in the leiomyoma but also in the myometrium which does not
express the MED12 mutation. Potential mechanisms that could account for this crosstalk
between the leiomyomas and the adjacent myometrium is through exosomes containing
regulatory RNAs, the expression of which are altered in the mutated leiomyomas [6,76].
These regulatory RNAs such as miRNAs within the exosome could, through the systemic
circulation or in a paracrine manner, influence the expression of genes in the myometrium.
The myometrial genes whose expressions were altered by the presence of MED12 muta-
tions were predominantly involved in processes related to response to oxygen-containing
compounds, extracellular space, and response to external stimuli. The importance of the
myometrium in the pathophysiology of leiomyomas was highlighted in recent reports
showing myometrial oxidative stress can drive MED12 mutations in leiomyomas [77],
and another report demonstrating differences in the transcriptome of myometrium from
patients with leiomyomas compared with myometrium from non-diseased uteri [78]. In ad-
dition, uterine contractions induce uterine hypoxia in reproductive-aged women [79], and
this insult can cause activation of NF-κB-mediated inflammation as has been demonstrated
for human stromal cells [80].

WNT/β-catenin plays a pivotal role in leiomyoma pathogenesis. In an early study,
constitutive activation of β-catenin led to development of mesenchymal tumors similar
to leiomyomas in mice [81]. Another study demonstrated that WNT4 was significantly
overexpressed in leiomyoma intermediate cells, inducing cell proliferation through Akt-
dependent β-catenin activation, and resulting in the induction of pro-proliferative genes
such as cyclin D1 and c-Myc [82]. Moreover, the expression of WNT16 in leiomyoma
stem cells was increased in response to estrogen and progesterone and led to growth of
leiomyoma cells in a paracrine manner through activation of canonical WNT signaling [83].
WNT2, WNT4, and WNT16 are subunits of the WNT gene family and have been reported
to be involved in several developmental processes and in tumorigenesis [50]. Here we
showed that WNT2, WNT4, and WNT16 are overexpressed in leiomyomas, and that this
upregulation was more pronounced in MED12-mutated leiomyomas compared to MED12
mutation-negative specimens, which is in line with previous reports [17,19,84]. In addition,
the myometrial expression of WNT16 in MED12-mutated specimens was greater compared
to myometrium of mutation-negative leiomyomas. These findings raise the intriguing
possibility that MED12 mutations in the leiomyomas also induce changes in the expression
of WNT16 in the adjacent myometrium, which further fuels tumorigenesis in mutated
specimens; this possibility could account for the observation of multiplicity of tumors
in MED12-mutated specimens compared to non-mutated tumors which are generally
solitary [22]. An unexpected finding was the overexpression of the WNT inhibitory factor
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(WIF1) in leiomyomas. WIF1, is a lipid-binding protein that binds to WNT proteins
and prevents them from signaling [85]. The presence of mutations did not affect the
degree of overexpression of WIF1; however, the myometrium of mutated specimens also
overexpressed WIF1 mRNA compared to myometrium of non-mutated specimens. Others
have also reported overexpression of WIF1 and other WNT-protein inhibitors such as
SFRP1, FBXW11, NKD1, and SFPR4 in leiomyomas [84]. Moreover, the expression of DKK1
and SFRP1 was higher in MED12-mutated tumors compared with non-mutated ones [84].
A potential possibility is that overexpression of these WNT-inhibitory proteins could be a
mechanism to prevent leiomyomas from becoming malignant and invasive.

One of the hallmarks of leiomyomas is the accumulation of ECM [2]. Our profiling
indicates that the genes that were uniquely dysregulated in MED12-mutated specimens
predominantly fell in the category of ECM structural constituents, among them were
KRT80, COL5A3, NDC80, WNT4, MTMR8, and FGF17 (Figure 2B). Several other genes,
although upregulated in non-mutated samples, showed a greater magnitude of increase in
expression in the mutated leiomyoma group, including FN1, DCX, and COL11A1. FN1 is a
major component of the extracellular matrix and exists as a dimeric or multimeric form
linked by disulfide bonds to other extracellular matrix proteins such as integrins, collagen,
fibrin, and heparan sulfate proteoglycans [44,45]. FN1 plays a major role in cell adhesion,
growth, differentiation, and migration processes including wound healing and embryonic
development, host defense, blood coagulation, and metastasis [44,45]. Several groups have
reported that leiomyomas express higher levels of FN1 compared to myometrium [8,86].
The greater expression of FN1 in mutated leiomyomas suggests a much greater accumula-
tion of ECM in mutated tumors, as FN1 is one of the major components of ECM. A recent
report showed increased ECM activity in MED12-mutated tumors and although no specific
ECM genes were specified, histologic evidence for increased collagen levels in mutated
tumors was provided. The authors of this study also provided evidence for differences in
the DNA methylome of mutated tumors, although no validation studies were provided
for any specific genes [87]. Another component of the ECM is COL11A1 which is one
alpha chain of type XI collagen and is involved in fibrillogenesis through regulation of
the lateral growth of collagen II fibrils [37]. Recent evidence has shown that COL11A1 is
frequently overexpressed in various tumors and its expression is highly correlated with
tumor aggressiveness. Our results indicate greater overexpression of COL11A1 in mutated
tumors compared with non-muted ones. DCX is another component of the ECM. It is a
microtubule-associated protein belonging to the doublecortin family. DCX is expressed in
immature neurons and neuronal precursor cells and binds to the microtubule cytoskeleton
to direct neuronal migration through modulation and stabilization of microtubules [49].
Several studies suggested that DCX is correlated to cancer cells invasion and metastasis
and is overexpressed in leiomyomas as well [49,88,89]. Our data indicate that in addition to
marked overexpression of DCX in leiomyomas, in both mutated and non-mutated tumors
with greater increase in the mutated leiomyomas, the myometrium of MED12-mutated
specimens also overexpressed DCX. This finding points to a probable significance of DCX
in ECM remodeling and crosstalk between leiomyoma and myometrium in this process.
Another noteworthy ECM-regulating gene is KLK5 which was differentially overexpressed
in mutated leiomyomas but not in the non-mutated specimens. KLK5 is a serine protease
and a member of the kallikrein subfamily with involvement in collagen formation and
MSP-RON signaling [46,47]. Growing evidence suggests that KLK5 is upregulated in
numerous types of cancers such as colorectal cancer, gastric cancer, and oral cancer and is
implicated in carcinogenesis [90–93]. KLK5 is upregulated by estrogens and progestins [46].
One substrate of KLK5 is PAR2, which triggers pro-inflammatory mediators and induces
the expression of NF-κB target genes in both immune cells and tumor cells [91]. Our group
and others have previously reported on the significance of inflammation and the NF-κB
pathway in leiomyoma pathogenesis [94,95]. Overall, the differential expression of genes
regulating the constituents of ECM in mutated and non-mutated specimens suggests po-



Int. J. Mol. Sci. 2023, 24, 3742 16 of 23

tential differences in tumor stiffness in mutated leiomyomas compared with non-mutated
leiomyomas and merits further investigation.

Our data indicate that the expression of a number of genes regulating calcium home-
ostasis is dysregulated in leiomyomas in a MED12-dependent manner. Among these genes
are the calcium-binding proteins S100A4 and S100A1, and CACNA1D (calcium voltage-
channel subunit alpha-1D) which regulates calcium entry into cells [53,54,69,71]. S100A1,
upon binding to calcium, undergoes conformational change and interacts with numerous
protein targets such as those involved in calcium signaling, filament-associated proteins,
transcription factors, and others [96,97]. S100A4 plays a vital role in fibrotic diseases [98].
It is released at inflammatory sites and is implicated in ECM remodeling, cell motility,
invasion, and angiogenesis [98] and in epithelial–mesenchymal transition [99] all of which
are critical in leiomyoma pathogenesis. In the realm of cancer, S100A4 is a transcriptional
target of β-catenin and promotes tumor migration, invasion, and metastasis [100]. Our
data, demonstrating decreased expression of S100A4 and S100A1 particularly in mutated
tumors and the increase in CACNA1D expression, suggest potential reduced binding of
calcium and greater calcium entry into leiomyoma cells which could contribute to tumor
calcification. Currently there are no data indicative of a difference in calcium content of
mutated compared with non-mutated tumors.

The growth of leiomyomas is dependent on estrogen [4] and early studies demon-
strated that the expression level of CYP19A1, or aromatase, which is a member of the
cytochrome P450 superfamily and converts androgens to estrogens [68], is higher in leiomy-
omas [101] and this increase is more pronounced in African American women compared
with Japanese women [102]. Here we confirmed that leiomyomas overexpress aromatase,
but, more importantly, we showed that this increase is of greater magnitude in MED12-
mutated tumors compared with non-mutated tumors. Leiomyomas are also characterized
by a number of epigenetic modifications [103]. Among the epigenetic enzymes involved
in these modifications is EZH2 which is a catalytic core protein in PRC2 and catalyzes
the methylation of H3K27, thereby silencing the transcription of target genes [64]. Sev-
eral studies demonstrated overexpression of EZH2 in leiomyomas [104,105]. Here we
confirmed higher expression of EZH2 in leiomyomas and showed that the magnitude of
overexpression is higher in MED12-mutated tumors compared with non-mutated tumors.
Collectively, these results indicate potential greater local exposure to estrogen in mutated
tumors along with greater degree of epigenetic modifications.

In summary, we demonstrate that although there is a significant overlap in the differ-
ential expression of genes in MED12-mutated and non-mutated leiomyomas, the degree
of change in expression is heightened for many genes in the MED12-mutated specimens.
One limitation of our study is that a myomatous uterus has multiple tumors which might
express different types of MED12 mutations [32], and these mutations may not induce
the same changes in the transcriptome. Furthermore, a whole host of genes are uniquely
over- or under-expressed in mutated tumors. These unique genes primarily regulate ECM
structural constituents and components, and response to external stimuli. Our study also
points to the significance of the myometrial compartment as a site of gene dysregulation as
evidenced by differences in the expression of a unique set of genes in the myometrium of
MED12-mutated specimens compared with non-muted myometrium. This result suggests
a potential communication between the tumor and the adjacent myometrium which could
contribute to tumor progression and growth.

4. Materials and Methods
4.1. Myometrium and Leiomyoma Tissue Collection

Portions of uterine leiomyomas (intramural, 3–5 cm in diameter) and paired my-
ometrium (n = 73) were obtained from patients at Harbor-UCLA Medical Center. Prior
approval from the Institutional Review Board (18CR-31752-01R) at the Lundquist Institute
was obtained. Informed consent was obtained from all patients participating in the study
who were not taking any hormonal medications for at least 3 months prior to surgery. The
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paired tissues were from Caucasian (n = 9), African American (n = 23), Hispanic (n = 37), and
Asian (n = 4) women aged 30–54 years (mean 45 ± 5.2 years). The tissues were snap-frozen
and stored in liquid nitrogen for further analysis as previously described [33,35].

4.2. MED12-Mutation Analysis

Genomic DNA from leiomyomas and paired myometrial specimens was extracted
from 100 mg of freshly frozen tissue using MagaZorb DNA Mini-Prep Kits (Promega,
Madison, WI, USA) according to the manufacturer’s protocol. PCR amplification and
Sanger sequencing (Laragen Inc., Culver City, CA, USA) were performed to investigate
MED12 exon 2 mutations using the following primer sequences in the 5′–3′ direction: sense,
GCCCTTTCACCTTGTTCCTT and antisense, TGTCCCTATAAGTCTTCCCAACC. PCR
products were sequenced using Big Dye Terminator v.3.1 sequencing chemistry and the
sequences were analyzed with the Software ChromasPro 2.1.8 and compared with the
MED12 reference sequence (NG_012808 and NM_005120). The 19 pairs of tissues used for
next-generation RNA sequencing were from 11 MED12-mutation positive and 8 MED12-
mutation negative leiomyomas. The mutation analysis of the specimens (n = 73) indicated
that 48 leiomyomas had MED12 mutations (48/73 pairs; 65.8%) with no mutations in the
myometrium. Missense mutations in MED12 exon 2 were the most frequent alteration
(39/48 pairs), followed by in-frame insertion–deletion type mutations (9/48 pairs). The
missense mutations in exon 2 included c.130G > C (p.Gly44Arg) (5/39 pairs), c.130G > A
(p.Gly44Ser) (7/39 pairs), c.130G > T (p.Gly44Cys) (2/39 pairs), c.131G > C (p.Gly44Ala)
(2/39 pairs), c.131G > A (p.Gly44Asp) (17/39 pairs), c.131G > T (p.Gly44Val) (5/39 pairs),
and c.128A > C (p.Gln43Pro) (1/39 pairs).

4.3. RNA Sequencing and Bioinformatic Analysis

Total RNA was extracted from leiomyomas and matched myometrium using TRIzol
(Thermo Fisher Scientific Inc., Waltham, MA, USA). RNA concentration and integrity was
determined using a Nanodrop 2000c spectrophotometer (Thermo Scientific, Wilmington,
DE, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) as
previously described [9,29,30,106]. Samples with RNA integrity numbers (RIN) greater
than or equal to 9 were used for library preparation. One microgram of total RNA from
each tissue was used to produce strand-specific cDNA libraries using Truseq (Illumina,
San Diego, CA, USA) according to manufacturer’s instructions. The RNA sequencing
was carried out at Novogene Corporation Inc. The computational analysis was started by
establishment of pairs of Fastq files for all samples. The workflow consisted of QC check
(FastQC) -> alignment (Hisat2) -> feature counts (subread) -> differential gene expression
analysis (DESeq2). For quality control FastQC was used to check the quality of raw fastq
data from sequencing core and after adaptor cut and quality trimming [107]. FastQC
reports consisted of multiple parameters such as the number of reads, duplicates, adapter
contents, and sequence quality score. HISAT2 was applied to perform alignment [108]. The
reads of raw fastq data with either end were distributed from 17.1 M to 34.8 M and the
alignment rates were higher than 95%. Assigned reads for feature count were distributed
from 17.7 M to 36.7 M in correspondence to the rate of assigned reads from 80.1% to 96.5%.
Each sample produced a bam file after alignment to the genome. Features from each
bam file that mapped to the genome in the provided annotation file were counted using
the subread function [109]. MultiQC was used to analyze and integrate the QC reports,
with input data from reports of fastqc, alignment reads, and feature assigned [110]. An R
package, DESeq2, was used to analyze differential gene expression [111]. Markers/genes
with sum-of-read counts across all cases and controls that were 10 or greater were kept
for the downstream analysis. During DGE analysis, a boxplot of the Cook’s distances was
prepared to determine if any sample raw reads departed from others. All our samples’
raw reads in the boxplot were relatively even and all samples were included into the
downstream analysis for differential gene expression (DGE). To visualize the strength
of differential gene expression, the hierarchical clustering and TreeView graphs, volcano
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plots, PCA plots, and pathway enrichment analysis plots were prepared using Flaski [112],
and the protein–protein interaction networks were prepared using the Search Tool for
the Retrieval of Interacting Genes (STRING) database [113]. Overall, all differential gene
expressions were acceptable for subsequent statistical analysis. The RNA sequencing
data were deposited in Gene Expression Omnibus (GEO) database with accession number
(GSE224991).

4.4. Quantitative RT-PCR

Briefly, 2 µg of RNA was reverse transcribed using random primers for selected genes
according to the manufacturer’s guidelines (Applied Biosystems, Carlsbad, CA, USA).
Quantitative RT-PCR was carried out using SYBR gene expression master mix (Applied
Biosystems). Reactions were incubated for 10 min at 95 ◦C followed by 40 cycles for 15 s at
95 ◦C and 1 min at 60 ◦C. The expression levels of selected genes were quantified using
the Invitrogen StepOne System with FBXW2 (F-box and WD repeat domain containing
2) used for normalization [114]. All reactions were run in triplicate and relative mRNA
expression was determined using the comparative cycle threshold method (2-∆∆Cq), as
recommended by the supplier (Applied Biosystems). Values were expressed as fold change
compared to the control group. The primer sequences in the 5′–3′ direction used are listed
in Supplementary Table S2.

4.5. Statistical Analysis

Throughout the text, results are presented as mean ± SEM and were analyzed using
PRISM software (Graph-Pad, San Diego, CA, USA). Dataset normality was determined
using the Kolmogorov–Smirnoff test. The data presented in this study were not normally
distributed and therefore non-parametric tests were used for data analysis. Comparisons
involving two groups were analyzed using the Wilcoxon matched pairs signed rank test
(Figure 5) or the Mann–Whitney test (Figures 4, 6 and 7) as appropriate. Statistical signifi-
cance was established at p < 0.05.
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