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ABSTRACT OF THE DISSERTATION 

Non-diffusive Cross Field Transport in  

Scrape-off-Layer in Tokamak  

 

by 

 

Guanghui Yu 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 

University of California, San Diego, 2006 

Professor Sergei I. Krasheninnikov, Chair 

 

 
In recent years, coherent structures in edge plasmas are believed to be one of the 

major factors in cross-field transport. The present dissertation is dedicated to using 

theoretical and numerical methods to study the dynamics of individual coherent 

structure, or so-called blob, moving from bulk plasma to the chamber wall. 

Blob is a filament structure extended along magnetic filed lines. We focus on 

two different types of blob. One is ending up at target plates, the other is not, i.e. the 

SOL and HB blobs. Two dimensional blob models are derived. Characteristic spatial 

scale *δ , time scale *t , and velocity *v  for blob are obtained and calculated for 

different tokamaks. They are in agreement with experimental measurements. Scaling 



 

 

analysis shows blob dynamics sensitive to spatial scale length. Stability analysis 

shows that blobs with spatial scales less than *δ  may move as coherent structures to 

large distances. 

In the SOL model simulation we have found the most structurally stable blob has 

scale length around *δ . Blobs smaller than *δ  evolve into mushroom-like structures. 

Blobs larger than *δ  are subject to the fingering instability. Blobs with spatial scales 

close to *δ  can coherently move to long distances. Simulation results show that high 

density background effectively narrows down blob size and the inertia term in 

vorticity equation drives blob to mushroom shape and builds up vortex dipole within 

the structure. We also compare results with and without the Boussinesq approximation.  

In the HB model simulation it is shown that blobs have wider stable range. Their 

steep nose and long relaxation tail can explain experimentally detected asymmetric 

profile. HB blob moves with a constant velocity.  

In the biasing potential model a critical magnitude of the potential barrier is 

derived. A strong deformation of the blob as coherent structure will be observed while 

blob pass through a barrier higher than the critical value. Simulation results confirm 

the theoretical prediction.  

In the rotational blob model simulation results show the suppression of radial 

velocity and the generation of poloidal velocity. Fingering and mushroom effects are 

inhibited, but blobs evolve into rotational instability at later stage. 
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Chapter 1 

Introduction 

1.1 Overview 

Coming into 21st century, along with the population booming on the earth and 

the oil price soaring in 2006, we more and more clearly realize that exploring large 

dependable source of energy is one of the most important missions our human beings 

are facing up to.  Among several types of feasible “new” energy in the future, such as 

nuclear energy, solar energy, wind energy, and tide energy etc., thermonuclear fusion 

energy is the most promising clean energy people can use in the future. 

Possibly to be the first industrialized fusion technique, magnetic confinement 

fusion has been studied for many decades. However, many key problems of magnetic 

confinement fusion are still under research, and will surely carry on in the 

International Thermonuclear Experimental Reactor (ITER) project [ 1 ]. The edge 

plasma physics and cross-field transport are certainly in them because they determine 

the efficiency of magnetic confinement, plasma-wall interaction, and lifetime of 

chapber wall. Therefore, in some sense, it determines the feasibility of controlled 

fusion, or at least, makes a big impact on the cost of fusion reactor. 
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In recent years, coherent structures in edge plasmas are believed to be one of the 

major factors in cross-field transport. This dissertation work is dedicated to using 

theoretical and numerical methods to study the dynamics of individual coherent 

structure in SOL region in tokamak, expecting to understand these mesoscale (to be 

defined subsequently) structures’ evolution on their way from bulk plasma to the 

chamber wall and provide some clues to control or reduce this transport process when 

it’s undesirable. Understanding how blobs are born and what happens when they are 

reaching solid wall are beyond the scope of our research. 

1.2 Cross-field Transport and Coherent 
Mesoscale Structure  

The achievement of sufficiently long particle and energy confinement is perhaps 

the most difficult task on the route to a fusion reactor. Energy must be confined long 

enough for the plasma to reach the temperature, of order 10keV, for thermal reactions, 

while the ions must be confined long enough for a significant fraction to fuse. So the 

understanding of the transport phenomena is one of the central issue for realizing 

burning plasmas. We could say that an appropriate reduction in the undesirable 

transport means a dramatic decrease in the size and cost of a tokamak fusion reactor.  

The particle and energy transport in toroidal plasmas is of two types. The first 

result from collisions is referred to as classical or neoclassical transport [2, 3, 4, 5]. It 

exact evaluation is mathematically quite difficult partially because of the complicated 

orbits of charged particles in a torus. However, much elegant analysis has been done 
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on this problem, see Ref. [5, 6, 7, 8] and references therein, and neoclassical loss can 

now be calculated accurately.  

The second type of transport, know as anomalous transport [2, 9, 10, 11], results 

from the fluctuation of electric and magnetic fields, which are generally observed in 

magnetically confined plasma devices. Experimental results show that plasma loss rate 

is generally larger than neoclassical transport, which means that anomalous transport 

is much faster than the neoclassical transport. Therefore, understanding anomalous 

transport becomes crucial in controlling and reducing cross-field particle and energy 

losses. 

Coherent mesoscale structures, often referred as blobs, have attracted much 

attention in the research of anomalous transport of edge plasma in recent years. The 

“mesoscale” means spatially much larger than gyro-radius, but on the other hand it’s 

much smaller than the length scale of fusion devices. It is generally believed that 

mesoscale dynamics is driven by plasma instabilities due to density and temperature 

gradients. It becomes more and more clear that intermittent convective-like transport 

associated with such mesoscale structures is often dominant in the cross-field transport 

in the SOL of tokamaks, stellarators, and linear devices [12-28]. The term 

“intermittency” was originally coined to characterize signals measured in turbulent 

fluids, but has now come to refer more generally to systems undergoing apparently 

random, rapid switching from quiescent to bursting behaviors, as measured by the 

magnitude of some suitable system variable [29]. The intermittency features higher 

pressure and density than the surrounding plasma in edge plasma. Recent experimental 
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observations suggest that the dynamics of the Edge Localized Modes (ELMs) in high 

confinement regime in tokamaks are very similar to that of blobs [30,31,32,33,34], and 

result in a much larger plasma particle and energy fluxes into far SOL than it was 

thought of. Significant amount of theoretical and computational work on blob physics 

[35-44]  have been done to date. It turns out that reduced two dimensional (2D) blob 

models are rather simple but still useful approach to understand main features of blob 

dynamics. 

1.3 Experimental Observation of Coherent 
Structure in Edge Plasma 

Recently the physics picture of plasma transport in the scrape-off layers of 

tokamaks and stellarators has changed because the former theory based on slow 

diffusive cross-field transport is not compatible with some of the experimental 

findings. Cross-field particle fluxes have an intermittent character. Large transport 

events can be responsible for large portion of the total flux. 

Progress in those studies has been the result of improvements in several areas. 

One is the continuous improvement of edge plasma diagnostics. New diagnostics have 

allowed people to go from single point measurements to a visualization of structures at 

the plasma edge. The 2D radial vs. poloidal structures and motions of edge trubulence 

in the experimental magnetic confinement facilities have been trying to detect in wide 

time period. Because of the rather small scale length (normally several cms), high 

speed (around 105 cm/s), and harsh environment in edge plasma, measuring and 
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tracking mesoscale structures in SOL are technically very difficult. So far, 

measurements of edge-turbulence-developed structures have been made using 

Langmuir probes [45, 46, 47], beam emission spectroscopy (BES) [48], and gas puff 

imaging (GPI) [49,50]. We will introduce the recent diagnostic results as the following. 

1.3.1 Langmuir Probes 

It is well-known that fluctuations in the SOL are large and the fluctuation-

induced particle flux is the dominant component in the total cross-field flux [51, 52, 

53, 54, 55]. The most common fluctuation diagnostics techniques used in the SOL are 

based on electrostatic Langmuir probes, which are used in measuring ion saturation 

current (Isat) fluctuations, floating potential fluctuations (from which one may derive 

the plasma potential [56]), electron temperature, etc. A local particle flux may be 

calculated from these measurements.  

Figure 1.1 shows the results of the Isat , Eθ and IsatEθ signals for three spatial 

locations in the SOL, namely, (a) close to separatrix, (b) 5 cm into the SOL, and (c) 10 

cm into the SOL, which are measured by Langmuir probes. It is noticed that (1) the Isat 

pulses are always positive, (2) the Eθ pulses are always positive and (3) the amplitudes 

of the Isat and Eθ events are quickly reduced (by a factor of ~7) away from the 

separatrix. Intermittency, i.e., occasional bursts in a signal, is quite evident in many 

edge diagnostics in tokamaks. The intermittent character of the fluctuations is a very 

important result from the analysis of these measurements. More details of the study 

can be found in [19]. 
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1.3.2 Beam Emission Spectroscopy 

The BES measures plasma density fluctuations at relatively high spatial 

resolution. It observes density fluctuations by measuring the emission from neutral 

beam deuterium atoms that undergo collisions with the plasma ions and electrons. The 

observed beam-plasma emission intensity fluctuations are related to density 

fluctuations through the atomic physics of particle collisions, excitation, ionization 

and emission. The intensity of the signal begins to saturate at higher plasma densities. 

for more details, see [57, 58, 59]. 

Figure 1.1 Results of the Isat (top), Eθ (middle) and IsatEθ signals for 
radial locations within (a) 0.5 cm, (b) 5 cm and (c) 10 cm of the LCFS, 
showing the intermittent feature and its amplitude decaying with 
radius. [19]. 
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Bursting density and its velocity can be visualized by comparing two frames (2-

D images) from BES [60], separated in time by 6 µs as shown in Figure 1.2, where the 

last closed flux surface (LCFS) is indicated by a solid vertical line. High density is 

indicated in red and low in blue. The radial motion of a positive density structure, 

marked by a dashed circle in both frames, is indicated by vertical dashed lines. Notice 

that the object has a radial and poloidal spatial extent of roughly 2 cm. From the two 

frames it is clear that the object is moving poloidally and radially with speeds that can 

be easily estimated at vθ = 5×105 cm/s and vr =1.5×105 cm/s. These compare well to 

Langmuir probe results.  

 

 

 

 

 

 

 

 

 

Figure 1.2 (Color) Two frames from BES showing 2D density plots. 
There is a time difference of 6 µs between frames. Red indicates high 
density and blue low density. A structure, marked with a dashed circle 
and shown in both frames, features poloidal and radial motion [60]. 
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1.3.3 Gas Puff Imaging 

The GPI diagnostic can be used to study the turbulence present at the edge of 

magnetically confined plasmas. In GPI diagnostic the instantaneous 2D radial vs. 

poloidal structure of the turbulence is detected by fast-gated cameras and discrete fast 

chords [20, 22].  

 

 

 

 

 

 

Figure 1.3 presents the GPI results in the Alcator C-Mod tokamak. (a) and (b) 

are two snap shots taken from side view movie of edge turbulence in C-Mod around 

mid-plane region in the SOL. The "filaments" of bright light emission in D-alpha are 

aligned nearly along the local magnetic field direction. Figure 1.4 shows the GPI 

results in the National Spherical Torus Experiment (NSTX). (a) and (b) are two frames 

cut from edge turbulence movies in NSTX. This view of the plasma is located just 

above the outer mid-plane near the magnetic separatrix (dashed line). The vertical 

Figure 1.3 (Color) Side viewing images taken from movie of edge 
turbulence in C-Mod. The "filaments" of bright light emission in 
D-alpha are aligned nearly along the local magnetic field direction. 
This result and more pictures and movies can be found at 
http://www.pppl.gov/~szweben/. 

(a)

(b)



 

 

9

direction is approximately poloidal, and the horizontal direction is approximately 

radial (with out toward the right). The solid vertical line is the RF limiter. Blob-like 

structures are clearly captured with both radial and poloidal velocity. The speed is 

about 105 cm/s. These results and more details about the measurements and plenty of 

interesting pictures and movies can be found at http://www.pppl.gov/~szweben/. 

1.3.4 Edge Localized Modes 

Edge localized modes (ELMs) are often seen in H-mode plasmas. It is a 

temporary relaxation of the very high edge gradients observed in H-modes and it may 

be a relaxation back to the L-mode. 

 

 

 

 

 

 

 

 

Figure 1.4 (Color) Two frames cut from edge turbulence movies in NSTX. 
This view of the plasma is located just above the outer midplane near the 
magnetic separatrix (dashed line). The vertical direction is approximately 
poloidal, and the horizontal direction is approximately radial (with out 
toward the right). The solid vertical line is the RF limiter. This result and 
more pictures and movies can be found at http://www.pppl.gov/~szweben/. 

(a)

(b)
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ELMs were first observed as short bursts detected by Mirnov coils and soft x-ray 

diodes, associated with periodic density and temperature reduction in the outer plasma 

zones of H-mode plasmas [61]. Large Type-I ELMs [62] are observed in good 

confinement regime, which can be destroyed by the ELMs themselves, triggering the 

return to the L-mode regime. The ELMs represent one of the main outstanding crucial 

issues for the design of large scale magnetic fusion reactor like ITER [63, 64], as the 

outflux of plasma energy and particles caused by these events could disturb steady-

state operation [65] and cause serious damage of the first wall [66]. Hence a lot of 

effort has been devoted towards characterizing the ELMs as function of various 

plasma parameters across different machines. 

Many recent experimental observations [29-33, 67] suggest that the dynamics of 

ELMs in the SOL plasma are very much similar to those of blobs. The temporal ELMs 

substructures being detected are related to spatial substructures on the scale of 1-2 cm 

[67], which is indeed in the most stable scale length range of blobs. 

1.4 Two Dimensional Blob Model 

So far, the name “blob” has been mentioned a couple of times and will be 

discussed even much more in the following Chapters. It is necessary to make it clear at 

this stage that what blob is and how 2D blob is related to three dimensional filament 

structures.  

As we discuss in previous sections, in the last years the overall picture of 

fluctuations and transport in the SOL has changed because of much more quantitative 
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measurements obtained by latest techniques [68]. Its essential part is altering from a 

diffusive cross-field transport model to an intermittent transport model dominated by 

large transport events. Different authors [26, 35, 45, 69] have given different names to 

these transport events, which were first detected in the Caltech tokamak and were 

called “blobs” in Ref. [45]. 

A three dimensional (3D) density fluctuation in the SOL is a long filament along 

the toroidal direction.  In 2D domain perpendicular to field lines it’s a coherent “blob” 

or bubble. The spatial relative positions of magnetic field, target plates, and blob with 

the coordinates in the slab frame are shown in Figure 1.5. Note that all 2D simulation 

results in the thesis are shown in the frame of Figure 1.5 (b). 

 

 

 

 

 

 

 

 

 

Figure 1.5 Sketch of blob in space.  (a) is  spatial relative positions of 
magnetic field, target plates, and blob.  (b) is a bottom view of (a).  
Note that all 2D simulation results in the thesis are shown in the 
bottom view frame. 

 

(a) (b) 

 

Bottom view of left plot 
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1.5 Dissertation Outline 

The present dissertation consists in theoretical and numerical attempts to gain 

understanding of some experimental observed phenomena of intermittent coherent 

structure, blob, which is very active in tokamak edge plasma. 

In present Chapter, we provide the goal of this dissertation work, introduce basic 

concepts and recent experimental results as very important bases of our research, and 

give a brief outline of its content. 

Chapter 2 is dedicated to the review of the fundamental plasma theories behind 

our modelling work.  

In Chapter 3, we review the derivation of our simple 2D blob model in SOL and 

normalization approach to make governing equations to be of unity-coefficient. We 

also use linear theory to study local stability of blob. Very important characteristic 

parameters in length and time are derived. Our numerical simulation is based on the 

normalized equations.   

Chapter 4 describes the basis of our numerical model. The slab frame, spatial 

discretization, and time advance method are discussed. Models with/without 

Boussinesq approximation, relaxation technique, and effect of spatial resolution and 

data accuracy for our simulation are included in this Chapter.  

The numerical results are covered in Chapter 5 through Chapter 8. Chapter 5 is 

devoted to the dynamics of individual blob along the open field lines, i.e. the SOL 

blob. Effects of spatial scale length, density background, and different terms in 

governing equation are discussed in this Chapter. Further more, a numerical model 
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without the Boussinesq approximation, i.e. the FI-SOL approach, and dip motions are 

also demonstrated in Chapter 5. Chapter 6 presents simulation results of blob in high β 

regime. We also talk about the impact of plasma diffusion in this Chapter. Chapter 7 

contains how SOL blobs passing through the biasing potential region. A theoretical 

criteria of deformation of configuration is derived. In Chapter 8, we consider the non-

thermalized blob dynamics with plasma rotation. Simple model for spinning blobs 

driven by the monopole temperature potential inside are given. The change of velocity 

due to rotation and rotational instability are discussed.  

In Chapter 9 we summarize all results in this dissertation.   

1.6 Units and Notations 

In this work we use Gaussian units in equations and derivations unless explicitly 

noted to the contrary. After normalization of equations, all variables are non-

dimensional. Real unit values can be converted by the characteristic normalizing 

constants addressed in Chapter 3. Vector variables are written in bold format. The 

symbol e refers to the absolute value of electron charge. In our simple 2D slab domain, 

we make use of the cartesian coordinates (x, y) to replace the directions (r, θ) in 

primitive toroidal coordinate systems. 
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Chapter 2 

Fundamental Theories in Edge Plasma 

In this Chapter, we are going to review some fundamental theories applied in 

edge plasma, which are related to our research work. They mainly are general reviews 

of fluid equations, MHD equations, Rayleigh-Taylor (RT) instability, Kelvin-

Helmholtz (KH) instability, resistivity, sheath, and polarization in blob and the E×B 

drift with polarization induced electric field. 

2.1 Fluid Equations 

2.1.1 Continuity Equation 

In fluid equations, we are looking at plasma as an ensemble of charged particles, 

whose behavior is a special kind of fluid. If only consider a single species of particle at 

one time, it is typical to derive the continuity equation as follows, 

ααα
α =⋅∇+

∂
∂ S)n(

t
n v   

where nα is the particle density for any single species α, vα is the average velocity, and 

Sα is a volume source rate of α particles. For the charged particles of a plasma, a 

(2.1) 
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volume source term would arise from the ionisation of neutral atoms; recombination 

would give rise to a corresponding volume sink term. For the present work, we will 

generally neglect ionisation and recombination, but it should be aware that sources and 

sinks of particles do arise in plasmas and give additional terms in all of the fluid 

equations.   

2.1.2 Momentum Balance Equation 

We consider next the two-fluid momentum balance equations for species α and 

β. Considering the famous Navier-Stokes (NS) equation, taking the electric force and 

Lorentz force into account, and neglecting the gravitational force, the momentum 

equation for species α reads 

αβαααααα
α

αα +∇−×+=∇⋅+
∂

∂ RBvEvvv P)
c
1(qn))(

t
(nm  

Where E is electric field, B is magnetic field, Pα is the pressure, q is the charge per 

particle, mα is the mass of particle α, and c is the speed of light. Rαβ denotes the 

momentum volume rate gained by species α due to collisions with species β.  

2.2 Hydrodynamic Instabilities 

Hydrodynamic instabilities in fusion plasmas are very common. There are so 

many types of instabilities associated with fusion plasmas that it is very hard to fully 

list out. Of course, there are many instabilities associated with blob study such as the 

RT instability [70-77], the KH instability [78, 79], the Richtmyer-Meshkov (RM) 

(2.2) 
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instability [80, 81], and the rotational instability [78] etc. These instabilities are key to 

the understanding of many essential phenomena in blob dynamics. We introduce two 

most famous typical instabilities, the RT and KH instability, as follows. We are trying 

to review the phenomenology of both instabilities basically at the beginning stage. 

2.2.1 Rayleigh-Taylor Instability 

The RT instability is a density gradient + effective gravitational force driven 

instability. If the density gradient and the effective gravitational force are in same 

direction, the system is stable; if in opposite direction, the system is unstable. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 (Color) Rayleigh-Taylor instability. (a) RT instability in real 
fluid: falling green dye in vinegar and rising red dye in sugar syrup [82]; 
(b) Simulation result of RT instability [83]. 

(a) 

(b) 
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There is a complex phenomenology associated with the evolution of the RT 

instability. This includes the formation of fingers and bubbles, the development of KH 

instability on the side of the fingers, and much more [72]. 

Figure 2.1 shows RT instability in both real fluid and numerical simulation. We 

see the featured fingering effect and KH-related mushroom phenomenon in both cases. 

2.2.2 Kelvin-Helmholtz Instability 

KH instability can occur when velocity shear is present within a continuous fluid 

or when there is sufficient velocity difference across the interface between two fluids. 

The theory can be used to predict the onset of instability and transition to turbulent 

flow in fluids of different densities moving at various speeds. When two parallel 

streams of different velocities are adjacent to each other, the flow can be unstable to 

perturbations, even infinitesimal ones, for all speeds. 

 

 

 

Figure 2.2 (Color) Kelvin-Helmholtz instability. (a) KH instability in real 
fluid: cloud in the sky; (b) Simulation result of KH instability. [84] 

(a)

(b) 
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Observed plenty of times in real fluid, also predicted by theory, KH instability 

occurred on velocity difference interface is associated with the famous Kelvin’s cat’s 

eye pattern in streamline. Figure 2.2 shows KH instability in both real fluid and 

numerical simulation. We see the cat’s eye pattern in both cases. It’s interesting to 

note that the mushroom patter in RT instability actually consists of two symmetric 

cat’s eyes. 

2.3 Sheath 

2.3.1 The Collisionless Sheath 

In all magnetically confined plasma devices, the plasma is contained in a 

vacuum chamber of finite size. At the edge of the bounded plasma an electrostatic 

potential drop exists to contain the more mobile charged species. This allows the flow 

of positive and negative carriers to the wall to be balanced. The plasma will therefore 

charge positively with respect to a grounded wall (see Figure 2.3). The potential layer, 

which must exist on all cold walls with which the plasma is in contact, is called a 

sheath. 

For simplicity, we just pay our attention on a one-dimensional model with no 

magnetic field as in Figure 2.3. Suppose there is no appreciable electric field inside the 

plasma, so the potential ϕp is a constant. Since electrons have much higher thermal 

velocities than ions, they are lost faster and leave the plasma with a net positive charge. 

The plasma must then have a potential positive with respect to the wall, i.e., the wall 



 

 

19

potential ϕw is lower than ϕp. This potential cannot be distributed over the entire 

plasma, since the Debye shielding [85] will confine the potential variation to a layer of 

the order of several Debye lengths in thickness The thickness of the barrier adjusts 

itself so that the flux of electrons that have enough energy to go over the barrier to the 

wall is just equal to the flux of ions reaching the wall. 

 

 

 

 

 

 

 

 

To examine the exact behavior of ϕ(x) in the sheath, one must treat the nonlinear 

Poisson’s equation.  Figure 2.3 shows the situation near one of the wall. At the x point 

far away from the wall, ions are imagined to enter the sheath region from the main 

plasma with a drift velocity u0. For simplicity, assume Ti=0, so all ions have  the 

velocity u0 in the main plasma zone far away from the wall. The potential ϕ is 

assumed to decrease monotonically with x.  

If u(x) is the ion velocity, conservation of energy requires  

Figure 2.3 Qualitative behavior of sheath and presheath in contact 
with a wall. [86] 
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The ion equation of continuity then gives the ion density ni in terms of the 

density n0 in the main plasma: 

n0u0 = ni(x)u(x) 
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In steady state, the electrons will follow the Boltzmann relation closely: 
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Poisson’s equation is then 
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Equation (2.7) is the basic nonlinear equation governing the sheath potential and 

ion and electron densities.  

2.3.2 The Bohm Sheath Criterion 

A first integral of (2.7) can be obtained by multiplying it by dϕ/dx and 

integrating over x: 
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Cancelling the dx’s and integrating with respect to ϕ, we obtain 
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⎥
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where we have set ϕ = 0 and dϕ/dx = 0 at infinity corresponding to a field free plasma. 

Equation (2.9) can be integrated numerically to obtain ϕ (x). However, it is apparent 

that the right hand side (RHS) of (2.9) should be positive for a solution to exist. 

Physically this means that the electron density must always be less than the ion density 

in the sheath region. In particular |ϕ| << 1, we expand the RHS of (2.9) to second order 

in a Taylor series to obtain the inequality 

0
um

1
T
1

2
0ie

≥−  

One can also show that as -ϕ increases the RHS in equation (2.9) will monotonically 

increase and, therefore, keep being positive, as long as the inequality in equation (2.10) 

holds. The inequality gives us 

2/1
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e
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⎝

⎛
=≥  

The result is known as the Bohm sheath criterion. Same derivation can be found in Ref. 

[86] or many other plasma text books. To give the ions this directed velocity u0, there 

must be a finite electric field in the plasma over some region, typically much wider 

than the sheath, called presheath (see Figure 2.3). Hence the presheath region is not 

strictly field free, although electric field is very small there. Since the field at the edge 

between the sheath and the presheath is not precisely defined, only approximate 

(2.9) 

(2.10) 

(2.11) 
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solutions are obtained by matching sheath to presheath solutions. Nevertheless, if we 

can make (2.11) sharper, by using the equality on the right, this relation is sufficient to 

obtain quantitative solutions for the plasma equilibrium. One can use the balance 

equation for ion flux and electron flux coupled with the equality in (2.11) to derive the 

potential drop within the sheath, therefore, to have the wall potential ϕw as 

e

ie
w m

mln
e
T

−=ϕ  

2.4 Guiding-Center Drift and Blob Motion 

2.4.1 Guiding-Center Drift 

Plasma motion can be broken down into a circular gyration with the motion for 

the instantaneous centre of this gyration. The center about which the particle gyrates is 

known as the guiding center. When some additional effect acts to make the radius of 

the particle orbit vary slowly, the guiding center drifts and particle moves. This is 

called drift motion. Several typical drift motions are as follows 

 

A. E×B drift 

The most basic type of fluid drift motion is the E×B drift. Think about a 

homogeneous magnetic field, both magnitude and direction constant in both time and 

space; an electric field superposed, perpendicular to the magnetic field; a single 

particle moving in the plane perpendicular to the magnetic field. Because the charged 

(2.12) 
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particle is continuously accelerated and decelerated by electric field, it is going to have 

higher speed and larger gyro-radius on one side of the gyro-orbit and lower speed and 

smaller gyro-radius on the other side. This small velocity imbalance between the two 

sides amounts to a macroscopic drift of the guiding center. This is so-called E×B drift 

vE×B as follows  

2BE Bc
1 BEv ×

=×  

Note that the electric and magnetic forces are both perpendicular to vE×B, and the 

E×B drift velocity is independent of particle's charge, q, and mass m. 

 

B. ∇B+Curvature Drift 

One can also calculate the ∇B drift, a guiding-center drift in a relatively simple 

inhomogeneous magnetic field, the lines of force are straight, but their density 

increases; and the curvature drift, in which the line or force is curved with a constant 

radius R and |B| is a constant. 

In toroidal fusion device the curvature drift is always associated with the the ∇B 

drift with similar order of magnitude. Therefore, it is helpful to calculate ∇B drift and 

curvature drift together. Taking the configuration relations into account, the total drift 

in a toroidal vacuum field reads 

⎟
⎠
⎞

⎜
⎝
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×
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22
||22RB v

2
1v

BRqc
m BRvv  

(2.13) 
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where R is the major radius of torus, B is the toroidal magnetic field, v|| is the velocity 

along B, and v⊥ is the velocity perpendicular to B. Details of drift velocities’ 

derivation and more types of guiding center drifts can be found in [85].  

2.6.2 ∇B+Curvature Polarization and Blob Motion 

Although originally born in a strong turbulence, blobs are seen to move as 

coherent objects in the SOL when we are going to study their dynamics. It’s time to 

clarify at the moment that the ∇B+curvature polarization and the associated E×B drift 

are the main reasons pushing blob flowing outwards.  

 

 

 

 

 

 

 

In tokamak the ∇B+curvature drift of charged particle results in plasma 

polarization in blob as shown in Figure 2.4. In the blob (the yellow area) negative 

charged particles shift upwards a little bit and positive charged particles move 

downward due to the non-uniform magnetic field and toroidal curvature. Shifted 

Figure 2.4 (Color) Sketch illustrating physics of blob charge 
polarization and transport in the SOL. [87] 

∇B 
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charged particles in opposite direction build up the local electric field within the blob. 

The corresponding E×B drift gives rise to plasma flow to the RHS. This flow can be 

very strong in the SOL because of the large effective “sheath resistivity” [88] when 

plasma contact with diverter targets at some distance from the separatrix where the 

effects of strong magnetic shear induced by X-point [89] can be neglected. Therefore, 

radial convective motion of blob requires two necessary conditions: (1) a mechanism 

to shift negative and positive particles in opposite directions, which can build up 

internal polarization inside blob; (2) a sufficiently slow parallel current (polarization 

charge loss) into sheaths, i.e. a strong enough sheath resistivity. In the case of Figure 

2.4 it is the ∇B+curvature drift that creates the electric field within blob. In different 

fusion plasma devices the shifting power could be different. For instance, it could be 

centrifugal force or neutral wind effect in linear devices [90].  
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Chapter 3 

Two Dimensional Models of Blob 
Dynamics 

In this Chapter we will derive the reduced model equations, which describe blob 

motion across field lines under different conditions, referred to different closures in 

this Chapter. These governing equations are being used in the rest of our simulation 

work. However, before moving to the most important part of this thesis, the simulation 

research work, we apply a specific normalization rule on our equations to make them 

have very simple coefficients, which brings much convenience in programming and 

adjusting parameters in our models. Even more, very important characteristic values of 

scale length, scale time, and electric potential are dug out in this normalization process. 

At the end of this Chapter, we do a linear stability analysis on our equations. 

3.1 Governing Equations 

 Basically we are using mass continuity equation and macroscopic two-fluid 

equations for electron and ion momentum conservation to build up our 2D model. We 

rewrite those equations as follows. 
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Mass continuity:  S)n(
t
n

=⋅∇+
∂
∂ v  

Momentum conservation: 

For electron:  ( ) eeee
e
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c
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For ion:   ( ) iiii
i
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c
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dt
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Next we use quasi-neutrality assumption with ne ≅ ni and electric potential ϕ as 

ϕ−∇=E . Also we set two orthogonal unit vectors ⊥e  and ||e  associated with 

magnetic field lines. ⊥e  is perpendicular to B field and ||e  is parallel to B. Decoupled 

to the new components, the total derivative and gradient operators read 

||||ttdt
d

∇⋅+∇⋅+
∂
∂
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∂
∂

= ⊥⊥ vvv  

Considering the uniform assumption along the magnetic field lines, ∇⊥ term is 

always much larger than ∇|| term. Now we decompose the electron and ion momentum 

equations in ⊥ and || components and just consider the ⊥ component balance equation 

at this moment. We have 
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For equation (3.4), left hand side (LHS) can be neglected because electron mass 

is very small comparing with other terms. Then electron momentum equation becomes 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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Where Pe = Ten.  Te is assumed to be a constant. 

Take ||e  cross product to equation (3.6) and reorganize the form to be 
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For equation (3.5), assume Ti = Pi = 0 and speed of ion is very small. The zero 

order form of ion momentum equation becomes 

( ) ϕ∇=× ⊥B
c

||0i ev  

Taking ||e  cross product to both sides of the equation above, we have 

( )ϕ∇×= ⊥⊥ ||0i B
c ev  

This is in agreement with electron velocity at zero order because 

( ) 2
0i0e B/c BEvv ×== ⊥⊥ , which is just the E×B drift velocity. However, we need to 

find another way to figure out first order form for speed of ion. 

Assume vi = vi0 + vi1 (vi1 << vi0), then the first order equation of vi becomes: 

( )||1ii
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dt
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where ii cm/eB=Ω  is the ion cyclotron frequency, and total derivative 

( )∇⋅+∂∂= ⊥⊥ 0it/dt/d v . By a couple of steps as the following, we derive the vi1⊥. 
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So we have the full form of ion velocity as 

 ( ) ϕ∇−ϕ∇×= ⊥
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Taking the current conservation law into account 

0=⋅∇ j  

and decouple it in components of ⊥e  and ||e  

0|||| =∇+∇ ⊥⊥ jj  

Integrate above equation along the field line. 
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where ⊥⊥ ⋅∇ j term can be written as 
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where we assume B = B(x), but it is only considered in the driving force term 

(3.12) 

(3.13) 
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Meanwhile, decompose electric potential ϕ into wall potential ϕw and fluctuant 

potential δϕ, i.e. ϕ  = ϕw + δϕ. The second term in equation (3.16) reads 
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where we use the ambipolar plasma flow as in equation (2.12) for ϕw and assume 

1T/e e <<δϕ . 

Combining equations (3.16), (3.17), and (3.18) together, we get 
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where R/Bx/B −=∂∂ , and ϕw is independent of time, so 
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Let eT/eϕ=φ , and use ies m/TC = ; )cm/(eB ii =Ω ; iss /C Ω=ρ , after some 

algebra, we finally derive, 
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Note that the factor 2 in second term comes from taking the directional variation 

of unit vector ||e  into account. This is so-called vorticity equation (see for example 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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Refs. [88, 91, 92] and [35, 36, 93]). It is coupled with mass continuity equation as the 

following, where S is density source, to build our 2D blob model in the SOL (D in 

equation (3.22) is the diffusion coefficient). 

SnD
dt

nd 2 +∇= ⊥
⊥  

In the absence of ambient plasma the equations (3.21) and (3.22) allow the 

solution in the form of travelling wave 
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where vb is an arbitrary function,  δy is the effective poloidal width of the blob,  and 
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is the velocity of the blob. 

Further research shows that the vorticity equation consists of the inertia term, the 

driving term, and the parallel current term. It can be written in a more general way as 

follows. 
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where the operator )(ˆ φµ  describes different closures for the dissipation effects 

and gives the relation between electrostatic potential and the parallel current.  

So far the major attention is paid to the sheath-limited model. The model deals 

with the blob sitting on magnetic field lines in the SOL which are going through 

conductive material surfaces (Figure 3.1) and assumes that the relation between the 

(3.22) 
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(3.25) 
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electrostatic potential and parallel current is determined by the sheath boundary 

conditions. It is simply to see that, for this closure, we have 

φ≡φµ=φµ n
L
C2)(ˆ)(ˆ

||

s
SOL  

 

 

 

 

 

 

 

Other limitations of the closure )(ˆ φµ  are related to simple models corresponding 

to different magnetic field geometries. For example, closure (3.26) cannot be used to 

describe blob dynamics in the vicinity of the separatrix where strong magnetic shear 

squashes the magnetic flux tube at X-point so strongly that perpendicular resistivity of 

plasma becomes important [94]. Meanwhile, it cannot describe the dynamics of blobs 

with high plasma beta, which can cause so significant bending of magnetic field lines 

that blob can penetrate deeply into the SOL region while the magnetic field lines, blob 

sitting on, still do not intersect the material surfaces, as shown in Figure 3.2. These 

two issues were addressed in [42] (see also review [95]). It is shown that taking into 

(3.26) 

Figure 3.1 Schematic view of 3D blob geometry. Blob sits on the 
magnetic field lines going through conductive material surfaces. 

x

y
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blob  
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account current flow along the field lines toward the X-point and the cross-field 

resistivity effects in the vicinity of it we have 

φ
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φµ=φµ n
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b
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where Lb  is the blob parallel length (the length of the region with increased 

plasma density/pressure). Somewhat different approach for the closure at the X-point 

was considered in [96]. 

For the case of the high beta blob plasma we estimate the perturbation of the 

magnetic field due to the blob motion, which is similar to that made in the study of the 

pellet cloud evolution [97, 98]. In this case, plasma polarization current is balanced by 

parallel current dipole 

R
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b

s
s δ

ρ~||  

which gives the following magnitude of radial perturbation of the magnetic field 

strength, Br , 
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B
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r βδ
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where βb refers to the value of β = 8πP/B2 at blob position. 

As a result, the magnetic field line bends in radial direction. Since bending of 

magnetic field like propagates along B with the Alfven velocity such quasi-steady 

state approximation of the magnetic field line structure can be considered if 
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Then, taking into account the equations (3.24) and (3.27) for blob velocity, we find 

from inequality (3.30) 

R
LCV b

bsb β<  

 

 

 

 

 

 

 

However, at relatively large βb bending of the magnetic field lines become so 

strong that the magnetic field line would “touch” first wall without even going through 

the material surfaces of divertor targets or limiters (see Figure 3.2). Taking into 

account expression (3.29), from Figure 3.2 one sees that such situation occurs for 

2
w

critb L
R

||

~ ∆
β>β  

where we assume ||LLb ≈ , ∆w is the distance from last closed flux surface to the first 

wall. In order to describe the evolution of blobs with βb > βcrit  within the framework 

of simple 2D model we use the approach adopted in the studies of the dynamics of 

(3.31) 

Figure 3.2 Schematic view of 3D blob geometry. Blob sits on highly 
bending magnetic field lines getting into SOL region without touching the 
material target. 
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pellet clouds [97, 98]. Introducing vector potential A|| and taking into account that the 

bending of magnetic field propagates along the field line with Alfven speed from 

relation 0t/A)c/1(E |||||| =∂∂−ϕ−∇=  we find ||AAV)c/1(=ϕ  and, correspondingly,  

j|| = −
c2

4πVA
∇⊥

2ϕ  

Substituting (3.33) into (3.13) we find 

φ∇ρ−≡φµ=φµ ⊥β
22

samb
b

A n
L
V2)(ˆ)(ˆ  

where namb  is ambient plasma density away from the blob and VA  is the Alfven 

speed calculated with the density of ambient plasma. 

We notice that equations (3.22), (3.25), and (3.34) can be considered as a 

nonlinear stage of the ballooning instability, which in a “weakly nonlinear” 

approximation is discussed in [99]. These equations describe also ionospheric plasma 

flows with ion-neutral friction as well as fluid flow in porous medium [100]. We also 

remind that in the case where dissipation in equation (3.25) is due to cross-field 

plasma viscosity we have   

 φ∇ρν≡φµ=φµ ⊥ν
42

sn)(ˆ)(ˆ  

where ν is the coefficient of molecular viscosity. As one sees, plasma viscosity 

has the highest order of derivative and, therefore, the closures [(3.26) - (3.34)] should 

dominate in mesoscale structures while (3.35) is dominant in very small scales. 

In the following Chapters, we will present simulation results of blob dynamics 

for the closure (3.26) (the SOL case) and the closure (3.34) describing high beta blob 

(3.33) 

(3.34) 

(3.35) 



 

 

36

dynamics (the HB case). From now on we are going to use the expressions, the SOL 

blob, the SOL model, or the SOL case; also the HB blob, the HB model, or the HB 

case. The “SOL” refers to the physical situation governed by the closure (3.26) and the 

“HB” refers to the physical situation governed by the closure (3.34), in stead of 

spatially referring to the scrape-off-layer and the high β region.   

3.2 Normalization 

As stated in previous section, our next work is doing numerical simulation for 

the closure (3.26) (the SOL case) and closure (3.34) (the HB case). Before that we are 

going to normalize our equations into simpler form. Different plasma facilities have 

quite different parameters such as major radius, plasma densities, connection length 

etc., changing in a wide range.  To make our analysis more general, we normalize our 

models. The final goal of our normalization process is to make all coefficients in (3.25) 

to be unity. This approach is very important not only because it makes the form of 

equations simpler and reduces tons of unnecessary work in numerical simulation, but 

also highlights the characteristic scale length and time scale at the end. 

For the closure (3.26), we use 
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where n0 is the initial highest density value in our simulation domain and the 

upper tilde is a symbol of normalized variable.  The characteristic scale length *δ  and 

time scale *t  can be derived in the way to let all coefficients be of unity. 
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Plugging all [(3.36) - (3.38)] into equation (3.21) and dropping the upper tilde at 

the end, eventually we get simpler form of the SOL case as  
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For closure (3.34), the HB case, governing equation reads 
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we also use the normalization scheme in (3.36). It turns out that the characteristic 

scale length *δ  and scale time *t  are: 
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Finally the HB case is simplified as  
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and associated continuity equation becomes 
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We notice that in continuity equations (3.40) and (3.46), the only thing changed 

is that the diffusivity D multiplied by a constant. Therefore, using “D” to replace the 

whole thing in front of ∇2n, the form of continuity equation will not be changed and 

read as same as Eq. (3.22). The new D is the normalized diffusivity. In our work, 

normalized diffusivity D is set to be a very small number which helps in numerical 

stabilization but not kills the interesting dynamics in the model. We will also discuss 

diffusivity effect in Chapter 5. 

There are a couple of advantages with this normalized model. Firstly all the 

facility-related parameters are wrapped up.  So it gives us an opportunity to use this 

simple 2D model to explain more general physical phenomena without considering the 

effect associated with particular experimental parameters.  Secondly the characteristic 

length scale *δ , time scale *t , and characteristic velocity *v  are highlighted. To give 
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an idea about the magnitude of δ∗, t∗, and ∗v  we calculate them for several current 

running toroidal plasma devices as follows 

Table 3.1 δ∗, t∗, and ∗v  for typical fusion plasma devices. 

 DIIID C-Mod NSTX ITER 
L||(cm) 1750 700 850 6200 

R(cm) 175 70 85 620 

B(gauss) 22000 50000 3000 53000 

Te(eV) 100 80 50 300 

n 2×1013 7×1013 5×1012 1×1014 

Cs(cm/s) 7×106 6×106 5×106 1.2×107 

ρs(cm) 0.066 0.026 0.34 0.047 

(δ*)SOL(cm) 0.70 0.27 2.25 0.69 

(t*)SOL(s) 1.1×10-6 5×10-7 2×10-6 1.22×10-6 

(v*)SOL(cm/s) 6.2×105 5.5×105 1.1×106 5.6×105 

(δ*)HB(cm) 0.73 0.16 2.37 6.7 

(t*)HB(s) 1. ×10-6 3.8×10-7 2.1×10-6 3.8×10-6 

(v*)HB(cm/s) 6.3×105 4.2×105 1.1×106 1.8×106 
 

One can use these real unit values to correlate our normalized solutions to the 

real experimental results, and check the corresponding key length and time scales in 

real devices.  It is worthy to note that the scale length, *δ , for all devices is in order of 

1 cm and velocity is in order of 105 cm/s. This is in agreement with experimental 

measurements in SOL in tokamak. Thirdly with these normalized unity coefficient 

equations, it is much easier to weigh the contribution of each term in the model, and 

then find leading terms.  We will see this in the following qualitative analysis. 
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Comparing the magnitude of each term in equation (3.39) and (3.45), we can 

assume the spatial derivative, either x/ ∂∂  or y/ ∂∂ , is in order of δ-1. δ is the scale-

length of the characteristic density variation. Neglecting the time derivative in inertial 

term at the moment, it is simply to derive that the order of inertial term, driving force 

term and current term in (3.39), the SOL case, are δ-6, δ-1, and δ-1 respectively, and δ-2, 

δ-1, and δ-1 for (3.45), the HB case. These magnitude comparisons unveil two 

important properties of our model. First one is that both SOL and HB cases are 

sensitive to the structure length scale.  For coherent structure larger than unity, δ>1, 

the inertia term δ-6 in (3.39) and δ-2 in (3.45) are very small comparing with the other 

two term, so the inertia term can be ignored, and the models are dominated by the 

other two terms left. Large scale model without inertia term has been clearly 

demonstrated in [101]. Second property is for small spatial scale structure. When δ ≤ 1, 

the inertia effect comes in. One could expect strong KH instability coming in when the 

inertia term becomes dominant with strong velocity shear.  Also we notice that, in the 

SOL case, the ratio between inertia term and the other two terms is δ-5, but this ratio is 

δ-1 in the HB case. Therefore we can imagine that when δ is getting smaller than unity 

the inertia effect in the SOL model increases much faster than in HB model.  So the 

motion mode in the SOL case would have a much stronger change than in the HB case 

as the δ changes from one side of unity to the other side.  In addition, using the scaling 

analysis to evaluation the E×B drift velocity, one can derive that SOLv  is proportional 
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to 2/1 δ  and HBv is independent of the scale length δ. All these conclusions from 

scaling analysis are approved by the simulation results in Chapter 5 and Chapter 6.  

3.3 Local Stability Analysis 

Next we consider local linear stability analysis of two simple one dimensional 

structures, which to some extent resemble blobs [equation (4.11)] in the limits 

∞→δx  or ∞→δy . We take the perturbations to be proportional to 

exp(−iωt + ik ⋅ r) , where ω  and k  are the frequency and the wave number 

respectively. Then neglecting plasma leakage to the plates and diffusion, linearizing 

equation (3.39), and taking into account that 1kx >δ|| , 1ky >δ|| , we find the 

following dispersion relations for both limits. 

3.3.1 Linear Stability Analysis of the SOL Model 

When ∞→δy  in equation (4.11), zero order plasma density, n0, depends only 

on x, i.e. n0 = exp ( )2
x

2 /x δ− , which can been seen as a poloidal elongated blob. One 

can calculate that the zero order potential is formulated as 0y/nln 00 =∂−∂=φ  

(constant). We need also the first order first order small perturbed fluctuation as 

follows: 
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neglect all other higher order fluctuations and plug zero and first order values 

into vorticity and continuity equations, we have  

( ) 0niknkni 1y10
2

0 =+φ−ω  

0ni
dx
dnik 11

0
y =ω+φ  

Equation (3.48) is from vorticity equation and (3.49) from continuity equation. 

Note that for this poloidal elongated structure zero order velocity goes to zero, 

0ˆ00 =×φ−∇= zv ; and the first order convention term can be written as  
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Equation (3.48) and equation (3.49) are coupled together. To have non-zero 

solutions for φ1 and n1, the determinant of the coefficient matrix must be zero. By this 

we have the dispersion relation as follows 
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Solutions of this quadratic equation can be easily derived as 
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For radial elongated structure, δx → ∞  in equation (4.11) Zero order density and 

potential read 
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(3.49) 

(3.50) 

(3.51) 

(3.52) 
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dy
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1)y( 0

0
0 −=φ  

Linearize first order variables as in equation (3.47) again, also cancel out the 

zero order balance and let  

ϖ = ω − k⋅v0 

where v0 is the unperturbed plasma velocity. We derive first order balance 

equation for vorticity equation 
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and for continuity equation 
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Note in this case zero order velocity v0 is not zero but a constant. To have non-

zero solutions for the two-coupled equations, again, the determinant coefficient matrix 

must be zero, then we have 
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As we see from equations (3.51) and (3.58) simple 1D structure can be unstable 

with respect to RT type of instability with some modification due to the sheath effects 

(see for example Ref. [88]). In the case ∞→δy , the instability requires dln(n0)/dx < 0 

and the most unstable perturbations are those with |ky| >> |kx|, while for δx → ∞ , both 

negative and positive derivatives of the density, dln(n0)/dy, are unstable (instability 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 



 

 

44

requires kxkydln(n0)/dy > 0) and the most unstable perturbations are those with |ky| = 

|kx|. 

In both cases ∞→δ x  and ∞→δ y , scale dependence of the growth rates, γ, on 

the wave number and blob scale has the form 

b
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b

2 1~k
δ

γ<
δ

=γ   for  b
2k δ<  

maxγ≈γ   for  b
2k δ>  

where δb is the spatial scale of 1-D “blob” in the x or y direction. Due to the restriction 

kδb > 1 of our local analysis, from equations (3.59) and (3.60) we can estimate the 

growth rate of the perturbations with large spatial scales, which are somewhat 

comparable to δb (kδb ≥  1): 

b

b
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bbmax

vv
δ

<δ≈γ≈γ   for  1b <δ  

where normalized blob velocity 2
bb /1v δ= . More about nonlocal analysis of blob 

linear stability can be found in Ref. 27. From (11) we see that for blobs with large 

spatial scale δb >1, the instability develops in a so short time scale, determined by the 

growth rate from equation (3.61) τinst = Λ/γ ≈ Λδb/vb (Λ is a numerical factor of the 

order of a few), that blob barely moves to a distance comparable to its own size. While 

blob has small spatial scale δb < 1, the instability develops at τinst = Λ/γmax and blob 

moves radially to a large distance τinstvb = Λvb/γmax ≈ Λ (δb)-3/2 > 1 > δb. Thus we can 

(3.59) 

(3.60) 

(3.61) 

(3.62) 
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conclude that it is unlikely that blobs with large spatial scale δb > 1 can move radially 

as coherent structures, while blobs with δb < 1 seem to be able to move as coherent 

structures to large distances. 

3.3.2 Linear Stability Analysis of the HB Model 

In this section, we are going to apply linear stability analysis on the HB blob 

with the same initial one dimensional perturbations and very similar derivations. 

For the poloidally elongated blob, δy → ∞ , linearize first order variables as in 

equation (3.47), plug into governing equations, and cancel out the zero order balance, 

then we have  
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To have non-zero solutions for φ1 and n1, the determinant of the coefficient 

matrix must be zero. So we have the dispersion relation as follows 
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Radial elongated perturbation has zero order density ( )2
y

2
0 /yexpn δ−=  and the 

corresponding φ0 = φ0(y). The linearized first order equations read  

 

(3.63) 

(3.64) 

(3.65) 

(3.66) 
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The local analysis results of HB model are similar to their counterparts in SOL 

model. In the case ∞→δy , the instability requires dln(n0)/dx < 0 and the most 

unstable perturbations are those with |ky| >> |kx|, while for δx → ∞ , both negative and 

positive derivatives of the density, dln(n0)/dy, are unstable (instability requires 

kxkydln(n0)/dy > 0) and the most unstable perturbations are those with |ky| = |kx|. 

However, in HB model the stabilized term is proportional to 1/n0, instead of 1/k2 in 

SOL blob, this indicates that HB blob dynamics is less sensitive to blob scale length 

than SOL blob dynamics. 

In both cases ∞→δ x  and ∞→δ y , scale dependence of the growth rates, γ, on 

the blob scale has the form 

b
max

b

1~1
δ

γ<
δ

=γ   for  b1 δ<  

b
max

1~
δ

γ≈γ   for  b1 δ>  

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 
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where δb is the spatial scale of 1-D “blob” in the x or y direction. Normalized blob 

velocity 1~vb . From equation (3.71) we see that for blobs with large spatial scale δb 

>1, the instability develops in a so short time scale, determined by the growth rate 

from (10a) τinst = Λ/γ ≈ Λδb (Λ is a numerical factor of the order of a few), that blob 

barely moves to a distance comparable to its own size. While blob has small spatial 

scale δb < 1, the instability develops at τinst = Λ/γmax and blob moves radially to a large 

distance τinstvb = Λ/γmax ≈ Λ (δb)1/2 > δb. The result is similar to what we have in the 

SOL blob analysis. We can also conclude that it is unlikely that blobs with large 

spatial scale δb > 1 can move radially as coherent structures, while blobs with δb < 1 

seem to be able to move as coherent structures to large distances. 

3.4 Conclusion 

This work has presented the derivation of the 2D SOL blob model. Different 

closures are discussed to make models with different closure describe several different 

physical situations. Our focus will on the SOL and HB models. A specific 

normalization scheme is introduced to reduce all coefficients in governing equations to 

be unity. Characteristic spatial and time scale are obtained from this normalization 

method. Spatial scale ( ) 2.0
s

2
s* )R2/(L ρρ=δ and time scale ( ) )CL/(Rt s

2
s

3
** ρδ=  are 

showed to be critical values in the SOL blob dynamics and )RV2/(LC 2
A

22
||

2
s* α=δ  and 

)V2/(Lt A||* α=  in the HB blob dynamics. It is unveiled that both the SOL and HB 
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cases are sensitive to the structure length scale. For coherent structure larger than *δ , 

dissipation term becomes dominant. For structure smaller than *δ , inertia term 

becomes dominant. *δ  is equal to one in the normalized model. In addition, blob 

dynamics in the SOL model could have a much stronger change than in the HB model 

as the δ changes from one side of *δ  to the other side. Meanwhile, by local linear 

stability analysis we find out that in both SOL and HB models simple 1D structure can 

be unstable. In the case ∞→δy , the instability requires dln(n0)/dx < 0 and the most 

unstable perturbations are those with |ky| >> |kx|, while for δx → ∞ , both negative and 

positive derivatives of the density, dln(n0)/dy, are unstable (instability requires 

kxkydln(n0)/dy > 0) and the most unstable perturbations are those with |ky| = |kx|. It is 

indicated that dynamics in HB model is less sensitive to blob scale length than 

dynamics in SOL model. We also conclude that it is unlikely that blobs with large 

spatial scale δb > 1 can move radially as coherent structures, while blobs with δb < 1 

seem to be able to move as coherent structures to large distances. Meanwhile we list 

characteristic values of *δ , *t , and *v  for several popular toroidal plasma devices, 

such as DIII-D, NSTX, C-MOD, and ITER. It is worthy to note that the scale length, 

*δ , for all devices is in order of 1 cm, and velocity is in order of 105 cm/s. This is in 

agreement with experimental measurements in SOL in tokamak. 
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Chapter 4 

Numerical Scheme for Blob Simulation  

As we describe in previous Chapters, many key features in the rather 

complicated transport phenomena are captured by the fairly simple 2D models in (3.39) 

and (3.45) coupled with continuity equation. However, analytically solving the 

problems without any extra assumption is very hard. Therefore, we use time-

dependent numerical method to simulate blob dynamics in the middle age of its life. 

Next, we will introduce the structure of our 2D numerical model, such as governing 

equations, spatial grid system, numerical schemes adopted, boundary condition (B.C.) 

and initial condition (I.C.). Numerical resolution and data accuracy are also discussed 

in this Chapter. 

4.1 Governing Equations 

Even for the reduced 2D models (3.39) and (3.45), numerical solution is not easy 

to get because of the non-linear inertia term.  To simplify our work, we neglect the 

density variation in inertia term and take the “n” out of the divergence in our models.  

Then we have 
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This is so-called the Boussinesq approximation [102, 103, 104, 105, 106]. The 

essence of the Boussinesq approximation is the density difference in inertia term is 

neglected, but it is considered in driving term. Equation (4.1) and (4.2) (we expand the 

inertial term in there to clarify all the terms we need to deal with in our computational 

solver.) become RI-SOL and RI-HB equations and equation (3.39) and (3.45) are FI-

SOL and FI-HB equations with RI referring to reduced inertial term and FI referring to 

full inertial term. RI equation is much easier to numerically solve than FI equation. 

However, we also try to solve the FI-SOL equation by applying relaxation scheme as 

discussed in section 4.3. This approach is also used in [107].   

Meanwhile one should note that equation (4.1) and (4.2) are not closed. Each of 

them should couple with density continuity equation (4.3), which is in normalized 

form and neglects density source term, to form a closed system. 

( ) nDn
t
n 2

⊥∇=∇⋅+
∂
∂ v  

4.2 Grid System 

A quasi-slab domain in edge plasma is chosen to be our simulation domain with 

boundary length Lx by Ly. It is evenly separated into an nx×ny rectangular grid system 

as shown in Figure 4.1, where nx and ny are integer numbers of nodes on each axis. 

(4.1) 

(4.2) 

(4.3) 
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The width and height of each cell are denoted by ∆x and ∆y, and ∆x=Lx/(nx-1), 

∆y=Ly/(ny-1). Neither nx and ny nor  ∆x and ∆y should be identical to each other. 

x 

y 1
2
3
4

ny-3
ny-2
ny-1

ny

yi

yi+1

yi-1

(i,j) 

1 2 3 4 xi-1 xi xi+1 

nx 
nx-1 
nx-2 
nx-3 

∆x 

∆y 

 
Figure 4.1  Grid system of simulation domain. 

 

On the boundaries around the domain, we artificially pre-setup node value at xi = 

1, 2, nx-1, and nx, and yi = 1, 2 ny-1, ny to satisfy our boundary condition discussed in 

section 4.4.1. So our effective calculation domain is from x = 3 to nx-2, and y =3 to 

ny-2, the area inside of the closed thicker bar in Figure 4.1. Therefore, our calculation 

amount is (nx-4)×(ny-4). However, for the reason of setting up boundary conditions, 

our real calculation domain is from x=3 to x=nx-2, and from y=3 to y=ny-2, the area 
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inside of the closed thicker bar in Figure 4.1. We are going to discuss this in section 

4.4 in detail. 

Depending upon the spatial discretization, the first and second spatial derivatives 

are chosen as follows.  
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Where f could be any variable. We use fourth-order central difference formula 

for the first derivative and second-order central difference formula for the second 

derivative. 

4.3 Numerical Schemes Adopted 

4.3.1 The Fourth-Order Runge-Kutta Method 

In our numerical approach, we use the fourth-order Runge-Kutta (RK4) method 

in time advance. We choose RK4 scheme not only because it the most popular one in 

the Runge-Kutta family, but also because it has relatively larger domain of stability 

(4.4) 

(4.5) 
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comparing with other time advance methods [108]. Blob dynamics maybe unstable as 

we see from the preceding linear stability analysis. We will also see the instability 

evolution in numerical results later on. Therefore, we would like to have a more stable 

numerical scheme to make our model stabilized in numerical level. It turns out that 

RK4 is good in this mission. The following is a formula description of RK4 for 

symbol problem )t,y(fdt/dy = , where y could be seen as a vector containing all 

variables except time. 
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4.3.2 The Fast Fourier Transform 

In our simulation, we need to solve the Poisson’s equation like φ∇=Ω 2 . We use 

the Fast Fourier Transform [109] (denoted by fft in Matlab) to solve it. In fact, we 

have two versions of solver for our model. One is programmed by Matlab for easy 

slover, the other by Fortran for faster calculation speed. In the Matlab code, we 

directly solve Possion’s equation by taking the fft solver from Matlab. However, in the 

Fortran code, we use indirect iteration method, the relaxation method discuss in the 

next section, to get φ at each time step. By comparing the results from different codes, 

we surely know that both schemes are working fine. 

(4.6) 
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4.3.3 The Relaxation Method 

The equations (4.1) and (4.2) are in the Boussinesq approximation. Comparing 

with full version equations in (3.39)and (3.45), the first (inertial) term in each equaiton 

is replaced by computationally less demanding version. This method is extensively 

used in recent years to study blob dynamics. However, strictly speaking the 

Boussinesq approximation is not justified for the SOL region where the background 

plasma density is smaller than the blob plasma density. Therefore simplified equations 

should be verified with exact version of the first term. 

Here we only give the solution for the SOL equation. To make (3.39) solvable, 

one can change the equation’s form (Appendix A) as follows [110] 
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Equation (4.7) can be solved by our normal schemes. However, equation (4.8) is 

much more difficult than the Poisson’s equation. It cannot be directly solved by the 

FFT. To achieve our goal, we introduce relaxation method to solve equation (4.8). It is 

basically an iteration method with the formula as follows 

( ) ( )( ) ( )( )1ji1ji1ji1jij1ij1ij1ij1ijiji
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ji nnnn
16
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(4.9) 

(4.10) 



 

 

55

At each time step, ni,j and Ωi,j are known and φi,j are unknown. This formula is 

special for spatial discretization ∆x=∆y. The variable ω, sometimes called relaxation 

factor, is normally chosen as 1.2 in our simulation. This technique can be easily 

transplanted to the Poisson’s equation with quite similar formula. Actually, we do use 

this method to solve the Poisson’s equation in our Fortran code.  

4.4 Initial and Boundary Conditions 

4.4.1 Initial Conditions 

In our numerical study we normally seed the Gaussian density blob as an initial 

condition, as in equation (4.11), with (x0, y0) the starting center of blob at t=0. 

nb(x, y, t=0) = exp bg
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where δx and δy are the initial spatial scales of blob in the radial and poloidal 

directions, and nbg  is the background density (all in normalized units). In what 

follows, we mostly take nbg=0.01, but in section 5.2.4 about high background research 

we use different values larger that 0.01 for nbg. Figure 5.1 shows a circular density 

contour plot of a seeded blob, δx = δy. It is applied as initial condition most of the 

time in our simulation. However, one should note that it’s not necessary to set δx and 

δy identical to each other.  Oval blob with δx ≠ δy is also worthy to study and we 

will report our solutions in the next Chapter. Furthermore, our model is compatible to 

(4.11) 
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more complicated density distribution such as biasing potential, zonal flow, pedestal 

region etc.  

In most cases, initial potential is derived by the balance between the driving 

force and the current terms.  The effect of initial potential will be discussed later on. 

4.4.2 Boundary Conditions 

Boundary conditions are set up as the following. In y direction, we use periodic 

boundary conditions. Referring to Figure 4.1, it is f(∀x, ny) = f(∀x, 4), f(∀x, ny-1) = 

f(∀x, 3), f(∀x, 2) = f(∀x, ny-2), and f(∀x, 1) = f(∀x, ny-3), where f is any function or 

its derivatives and “∀” means any point on the axis. In x direction, we simply use 

fixed value or fixed slope conditions. That means f(3, ∀y) = constant and f(nx-2, ∀y) 

= constant, or ( ) =∀y,3dx/df constant and ( ) =∀− y,2nxdx/df constant 

corresponding to Figure 4.1. We manage the grid point values at x=1, 2, nx-1, and nx 

to make the fixed boundary condition. So our real calculation domain is from x=3 to 

x=nx-2, and from y=3 to y=ny-2, the area inside of the closed thicker bar in Figure 4.1. 

Normally, we set blob’s spatial characteristic scale length δx and δy ten times 

smaller than the size of simulation domain, Lx and Ly, therefore, boundary condition 

won’t effect blob dynamics very much as long as the blob is not near the wall.  

4.5 Accuracy and Resolution 



 

 

57

Blob dynamics is very strong. One could expect instability, turbulent flow, and 

even chaotic situation in blob’s evolution. However, we wouldn’t like to see the 

chaotic situation happen too early. We are going to study the evolution process from 

regular coherent structure to turbulent regime. Besides using more stable numerical 

scheme such as RK4 to stabilize our model, we apply the following rules on data 

accuracy and numerical resolution, to some extent, to let our more stable, or in another 

word to lower down disturbance in our system. 

4.5.1 Data Accuracy 

As we know, in numerical simulation computer store data not with infinite 

precision but rather in some approximation that can be packed into a fixed number of 

bits (binary digits) or bytes (group of 8 bits). The system accuracy, sometimes called 

roundoff error, depends on the data type programmers choose for their code. Both 

Matlab and Fortran allow us a choice among different data types such as integer, 

single-precision, double-precision, etc. We choose double-precision (64 bits floating-

point value), the higher level data accuracy, for all the data values in our simulation. 

4.5.2 Numerical Resolution 

There is another kind of error that is a characteristic of the program or algorithm 

used. It comes from the “discrete” approximations to the desired “continuous” 

quantity. This type of inaccurate representation would persist even on a hypothetical 

“perfect” computer that had an infinitely accuracy and no roundoff error. We know 
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that any kind of numerical inaccuracy could bring artificial disturbance to our system. 

To lower down this discretization-related inaccuracy, sometimes called truncation 

error, we try to use high enough resolution in our simulation. In practice, we run a 

code with nx×ny in resolution and then run another code with all the same parameters 

but two times higher resolution, 2nx×2ny than the preceding one. If the two runs are 

consistent with each other in terms of instability or graphical pattern, we will use the 

nx×ny resolution results as the final solutions. If apparent discrepancy occurs, we will 

try higher resolution code until we get consistent solutions from two different level of 

resolution. We believe higher resolution code gives us more reliable results in a strong 

dynamic system. 
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Chapter 5 

SOL Blob Dynamics 

5.1 Introduction 

The main focus of this Chapter is on the numerical simulation of the dynamics of 

individual coherent structure, blob or dip, which is a concave in density background, 

in the SOL region in tokamak. The mechanisms of how blobs are peeled off from bulk 

plasma and penetrate into the SOL or how dips are formed are beyond the scope of 

this thesis work. Here we just seed such structures in uniform density SOL plasma and 

then follow their evolutions and capture geometrical features for different type of 

structures. We simulate different size circular blobs with and without Boussinesq 

approximation. Blobs with different scale length in radial and poloidal directions (oval 

blobs) are studied for distinguishing the influence of different spatial scale length on 

blob dynamics. In the third section, we introduce the concept of dip in the SOL and 

compare dynamics of blob and dip. We also discuss the diffusivity and inertia effect 

on blob dynamics in this Chapter. 

5.2 Blob Simulation 
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Blobs, as we described previously, are extended structure along the field lines 

but with much smaller scales across the field line. They look like filaments and 

normally have cross-field size of the order of 1 cm. Through high speed camera in real 

experiment, we see blobs move radially or poloidally and end up with many different 

shapes. Some of them can coherently move in a very long distance. Some just fade 

away without clear trajactory. In this section, we explore blob dynamics by numerical 

simulation. The evolutions of different geometrical blob structures are discussed. The 

difference in motion due to poloidal scale length and radial scale length is presented. 

The effect of high background density to the blob motion and the full inertial term 

simulation are also discussed.   

5.2.1 Circular Blob 

Circular blob with poloidal scale length equal to radial scale length, i.e. δx=δy=δ 

[as defined in equation (4.11)], is the most simple coherent structure we can start from 

and this kind of shape is close to that observed in experiment, in which most coherent 

structures present comparable spatial scale in both poloidal and radial directions. 

Indeed, we are going to see this simple symmetric structure with single key parameter 

δ shows many essential properties of blob dynamics in the SOL. In the following, the 

dynamics of blobs with different scale lengths are discussed.  

In this section, all circular blobs are initially set up in the same way described in 

equation (4.11). Figure 5.1 shows a general density contour plot of an initial blob (t=0) 

in the slab domain without scale.  It could be seen as an initial plot of any circular blob 
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simulation at t=0.  For example, if the domain length Lx=Ly=L=10, then it could be 

seen as the density contour plot for δ=1 blob at t=0; if L=50, it is for δ=5 blob at t=0.  

Therefore we won’t show initial plot for circular blob at t=0 anymore. Here δ is the 

dimensionless scale length. The initial blob center is at x0=0.3L and y0=0.5L, which is 

far enough away from boundaries to avoid any boundary effect. Density amplitude n0 

is 1 and background density nbg is 0.01. 

 

 

 

 

 

 

 

 

Four group pictures of blob evolution are shown in Figure 5.2 to Figure 5.5, 

corresponding to δ=0.2, 1, 2, and 5 respectively. Dimensionless diffusivities are given 

under the figures. We purposely choose the scale series with lengths smaller, equal 

and larger than unity because we want to see if the blob dynamics is going to change 

when the inertia effect goes from strong to weak as we have discussed in Chapter 3. 

Figure 5.1 (Color) A general density contour plot of an initial blob at 
t=0 in the slab domain without scale. 
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For δ=0.2 blob, the initial circular structure evolves into mushroom shape very 

quickly. Depending upon the qualitative analysis in Chapter 3, the inertia term is about 

55 times larger than the other two terms. Although nonlinear effect could lower the 

degree of difference, the inertia effect is still strong. It shows up very quickly and 

becomes dominant. As a matter of fact, inertia term balances driving force term in the 

small-scale dynamics. Because this is a situation with fast changing dynamics, initial 

condition could somewhat affect the pattern of final results, such as the curvature of 

mushroom hat or the slope of leading/back edges. For example, Figure 5.6 shows the 

simulation result obtained with zero potential at t=0. From it we see that mushroom 

has smaller curvature and smoother back edge than the one in Figure 5.2 (b).  The time 

range to get this stage is also longer because of different velocity levels associated 

with different scales of potential.  However, these are just minor differences related to 

initial conditions. The mushroom shape, the major feature, always shows up in all our 

small-scale simulations.   

For the δ=1 blob, as shown in Figure 5.4, the inertia effect is getting smaller. 

Basically the δ=1 blob propagates as a coherent circular structure to the right hand 

side with a long distance, which is much longer than the scale of itself. Again, we see 

slight mushroom pattern because the inertia term is still comparable to the other two 

terms when δ=1.   

When we increase the blob size to δ=2 in Figure 5.5, the mushroom effect will 

never show up. This is because the inertia term becomes much smaller than the other 

two terms in this case. δ=2 blob coherently moves to the right in a very long distance. 
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Further simulation study shows that δ=2 blob is not absolutely stable. It will involve in 

fingering effect after a long run. We also notice that, after long time evolution, a 

significant steepening of density profile starts to develop at the nose, as shown in 

Figure 5.6. This is due to the reduced E×B convection velocity in the x direction at the 

nose. As a matter of fact, for δ>1 blob, the x component of the plasma convection, vx, 

velocity can be estimated from vx ∝ y/ ∂φ∂ ∝ 22 y/nln ∂∂ , which decrease when we 

move further from the center of the blob. This can explain the asymmetric profile 

(steep increase of the signal with further long relaxation tail) on the ion saturation 

current from the probe measurements (see, e.g., Refs. 19, 22 and 60). Similar effects 

were also reported in Refs. 37 and 39. 

Continually increase the spatial scale of blob, we get to the δ=5 blob in Figure 

5.7. This regime is dominated by current dissipation because the inertia term is about 

5-5 times smaller than the other two terms and can be surely neglected. What we see in 

the simulation is that this current dissipation controlled dynamics is not stable either. 

Instead of mushroom effect, the RT instability brought by the driving force, which is 

also the effective gravitational force, becomes dominant and the corresponding 

fingering effect appears later to break up the original coherent structure. The pattern of 

finger effect can change much. We have three-finger patter for the δ=5 circular blob. 

We may also see two-finger, four-finger, or even more fingers pattern as shown later 

on. The key property in determining fingering effect modes is the blob scale, or more 

precisely, the poloidal scale of blob. We also notice that although the large scale blob 
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is subject to fingering effect, the scale of the gingers is comparable to the unity, or *δ  

in real units, and they keep propagating coherently to the right in large distance. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 5.2 (Color) SOL blob evolution with δ=0.2 and D=0.002. 

Figure 5.3 (Color) SOL blob zero-initial evolution with δ=0.2 
and D=0.002. 

(a) (b) 

(c) (d) 
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Figure 5.4 (Color) SOL blob evolution with δ=1 and D=0.005. 

Figure 5.5 (Color) SOL blob evolution with δ=2 and D=0.005. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 5.6 δ=2 blob’s central profile with relaxation tail. 

Figure 5.7 (Color) SOL blob evolution with δ=5 and D=0.01. 
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5.2.2 FI-SOL Blob Simulation  

In most current edge plasma numerical simulations, reduced inertia (RI) 

technique is used in modifying governing equation as we did in our studies [40].  This 

simplified model has shown many essentials of blob dynamics.  However, we still 

want to know how big difference between the full model and the reduced one.  We use 

the technique described in Chapter 4 to solve the FI-SOL model numerically.     

Figure 5.13 to Figure 5.16 show four different scale length blobs in FI-SOL 

model. We clearly see that, in FI model, smaller blobs are more structurally stable and 

coherently propagate in a longer distance than in RI model. However, larger blob like 

δ=2 is less stable than its counterpart. Comparing with RI-SOL results at same time 

stage, δ=0.2 and δ=1 FI blob motions have mushroom shapes suppressed. We don’t 

clearly see mushroom shape in 1 blob motion. Also we see the difference of velocity 

for δ=0.2 and δ=1 blob in Figure 5.13 and Figure 5.14 Small FI blob keeps the 

constant velocity better than small RI blob because RI blob’s speed is slowed down by 

stronger mushroom effect. This is coincident with the mushroom suppression when we 

take the density variation in inertia term into account. δ=2 blob is the most stable one 

in RI simulation but it goes to fingering effect here, which probably due to mushroom 

suppression. Meanwhile, without surprise, the δ=5 blob motion doesn’t change much 

between FI and RI results. It is because the inertia term is negligibly small in this large 

size case. Neglecting part of inertia term won’t change the whole story very much. 
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Over all, FI-SOL model in general is coincident with RI-SOL model.  However, some 

details differ. In particular the most stable scale length shifts from 2 to 1.   

The iterative relaxation method used in FI-SOL model is very restricted with 

parameters like diffusivity and iteration times to have the simulation converged.  It 

also cost much more CPU-time and system memory in calculation than RI-SOL model.  

Depending upon the results we have by far, we think the RI-SOL model is a 

reasonable approximation and good enough in studying vorticity equation.  

5.2.3 Oval Blob 

In previous section, we study circular blobs with different size. In this section, 

we demonstrate results of simulation of oval blobs (δx ≠ δy). The effect of δx and δy on 

blob dynamics are not the same. Based upon our analytical analysis of instability 

criterion, equation (3.51), and the expression for the drift velocity, equation (2.13), 

one should expect that the scales of δx and δy are not equivalent in terms of the blob 

dynamics. Poloidal scale length δy should be the key factor in determining the radial 

velocity of blob and intriguing the fingering instabilities. Radial scale δx is less 

important for radial motion. 

Figure 5.13 shows a radially elongated blob with δx=5 and δy=2. Comparing 

with the circular blob simulation results in the preceding section, one can see this oval 

blob motion is more likely to be comparable to the δ=2 blob motion. It moves outward 

about 10 dimensionless unit long and then evolves into fingering effect and ends up 

being two fingers.   
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Figure 5.14 shows a poloidally elongated blob with δx=2 and δy=5. Although the 

initial configuration of blob is almost the same as the upper one with just 90 degrees 

turning around, the blob dynamics is very different. The poloidally elongated blob 

moves more like the dynamics of δ=5 blob because it doesn’t move forward much and 

tends to fingering effect after a while. The breaking up point comes earlier in this oval 

structure comparing with the circular counterpart and it breaks into parts (four fingers) 

at the end. 

Here we are going to discuss the relation between the blob speed and its scale. 

As we showed in Chapter 2, for blob with poloidal scale close to or larger than one, 

blob speed should be determined by the poloidal scale and the relation is 2
ybv δ∝ . In 

Figure 5.15, we define the blob position by its highest density point and plot blob 

position vs. running time. The slope will show blob speed. It is clear that coherent 

structures with same poloidal scales have same speed. From another point of view, 

Figure 5.16 shows that 2
ybv δ⋅  tends to be a constant. We also read that this speed-

scale relation will be weakened by non-linear vorticity term as blob getting smaller. 
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Figure 5.8 (Color) FI-SOL blob evolution with δ=0.2 and D=0.01. 

Figure 5.9 (Color) FI-SOL blob evolution with δ=1 and D=0.01. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 5.10 (Color) FI-SOL blob evolution with δ=2 and D=0.01. 

Figure 5.11 (Color) FI-SOL blob evolution with δ=5 and D=0.01. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 5.12 (Color) Blob’s peak position vs. time in FI-SOL model with 
square dot line and RI-SOL model with circle dot line.  Small FI-blob keeps 
the constant velocity better than small RI blob because RI blob’s speed is 
slowed down by strong velocity shear, i.e. mushroom effect.  This is 
coincident with the mushroom suppression in FI results.   

 peak position vs time δ=0.2

t

x 

0 0.005 0.01 0.0150

0.1

0.2

0.3

0.4

0.5

0.6

0.7
FI
RI

(a) 

 peak position vs time δ=1

t

x 

0  0.5 1  1.5 2  2.5 3  3.50

1

2

3

4

5

6
FI
RI

(b) 



 

 

73

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.13 (Color) Oval blob evolution with δx=5, δy=2 and D=0.01. 

Figure 5.14 Oval blob evolution with δx=2, δy=5 and D=0.01. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 5.15 (Color) Blob peak position vs. evolution time. 

Figure 5.16 Relation between blob speed and blob scale. 
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5.2.4 Impact of Background Density 

So far we assume the density magnitude within blob, n0, is a hundred times 

larger than background density nbg. Different ratio of n0/nbg can change the dynamical 

pattern of blob motion. 

The impact of the ratio n0/nbg on the spatio-temporal evolution of the blobs is 

demonstrated in this section by Figure 5.17 and Figure 5.18. Both have smaller ratio 

n0/nbg as 5 and 2 respectively. δ is equal to 5 in both cases. In the high background 

situation, the )y(vx  profile, which can be estimated from )nln(v 2
yx ∂∝ , significantly 

changes in comparison to the results for n0/nbg = 100 in Figure 5.7. As a result, high 

background effectively narrows down poloidal section of the blob. This effectively 

decreases the magnitude of δy. So in Figure 5.7 we see the δ=5 blob breaks into three 

fingers, but in Figure 5.17 there are only two major fingers. In Figure 5.18, there is 

only one major finger. This means the effective scale decrease to value less than 5. It 

can be seen as the major density in center blob coherently moves forward and 

transport material to a large distance. We also notice that smaller density difference 

between center blob and background slows down the dynamics. Finger effect delays 

because driven force associated with density gradient is weaker in high background 

case. 
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Figure 5.17 (Color) High background blob evolution with δ=5, 
n0/nbg=5, and D=0.01. 

Figure 5.18 (Color) High background blob evolution with δ=5, 
n0/nbg=2, and D=0.01. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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5.3 Dips 

Blobs rapidly transfer plasma outward, increasing sputtering of wall material. 

Also, return convective flows may rapidly carry impurities across the SOL and into 

the core plasma. Next we study the evolution of the dips of plasma density in the SOL 

plasmas. While the ∇B+curvature polarization of blobs causes their ballistic motion to 

the outer side of torus, the polarization of dips will cause dip to move toward the core. 

uch features of dip motion are observed in our 2D modeling [111] and have been seen 

experimentally near the separatrix [19, 112], where dip diagnostic is easier. Ballistic 

motion of dips can explain the penetration of impurity from the wall to the core often 

seen in experiments. Indeed, neutral impurity atoms/molecules, being sputtered from 

the wall, fly to the plasma and, finally, are ionized at some distance from the wall. 

Neutral impurities that are ionized within the blobs will be immediately carried away 

to the wall by the blob motion and will not contribute to core plasma contamination. 

But impurities that are ionized within the dips can be convectively carried towards the 

core.  

Evolution of density contours for dips with nd/nbg = 0.5 and  and δ =1 are shown 

in Figure 5.17 and Figure 5.18.  The initial dip density distribution nd(t=0) as the 

following is slightly different from blob density nb in equaiton (4.11).  
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Similarly nbg is the normalized background density and δx and δy stand for 

characteristic scale length of dip in x and y directions. Unlike the blob, the dip is 

occupied by plasma with lower density than ambient plasma.  

An apparent observation is that dip motion is contrary to blob motion in 

direction. The dynamics of an individual dip can significantly differ from that of a 

blob. The reason is the difference in the magnitudes between the blob and dip plasma 

density excursions from the background. The magnitude of the blob density, nb, is not 

restricted and can be much larger than background plasma density nbg. The magnitude 

of the dip density, nd, is restricted. Then, recalling expression (2b), we conclude that 

the impact of the velocity shear and, therefore, vorticity effects, on dip dynamics may 

be rather strong. We see this from Figure 5.19 and Figure 5.20 that indeed vorticity 

effects play a very important role in dip dynamics. Vorticity slows down the inward 

dip propagation and even breaks the dips into pieces. We also found fast-moving 

mushroom structures, which is similar to those found in the case of small-scale blob 

evolution, propagate radially from wall side (RHS) to core side (LHS). 
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Figure 5.19 (Color) Dip motion with δd=1, nd/nbg=0.5, and D=0.01. 

Figure 5.20 (Color) Dip motion with δd=1.3, nd/nbg=0.5, and D=0.01. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 5.21 (Color) Dip motion with δd=2, nd/nbg=0.5, and D=0.01. 

Figure 5.22 (Color) Dip motion with δd=5, nd/nbg=0.5, and D=0.01. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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5.4 Discussion of Inertia Term 

As we discussed previously, D'Ippolito and Myra independently study blob 

dynamics using their numerical model without inertia term. In their numerical results 

reported, we can see the RT instability almost everywhere. However, in their results 

there is no mushroom effect appeared. It turns out that the mushroom effect and vortex 

dipole are associated with the inertia term.  

Figure 5.23 shows blob evolution with inertia term and driving force dominated, 

i.e. the current term in vorticity equation is neglected in this group of simulation. 

Comparing with results in section 5.2.1, we see that δ = 0.2 blob has little change, but 

δ = 2 and 5 blobs change a lot. As we know, for small blob like δ = 0.2, by linear 

stability analysis, the inertia term is much larger than current term. Therefore, 

neglecting current term in vorticity equation has almost no influence on blob evolution. 

For δ = 2 and 5, inertia term is parallel or much smaller than current term. Neglecting 

current term of course strongly change the dynamic system. As a result, we don’t have 

coherent moving structure and finger shape in Figure 5.23. Instead we have all size of 

blobs end up with mushroom patterns with a vortex dipole behind. It is clear that 

inertia term drives the structure to mushroom shape and builds up vortex inside the 

structure.  Related study can be found in Ref. [38]. 
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Figure 5.23 (Color) Blob evolution with inertia term and 
driving force dominated. 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 
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5.5 Conclusion 

In this Chapter we have carried out simulations of the SOL blob dynamics on 

circular blobs, oval blobs, and dips. We also study the effect of density background, 

diffusivity, and inertia term on blob dynamics. 

We have found that all blob moves outward by E×B drift. The most structurally 

stable blob has dimensionless scale length around one, which is corresponding to the 

characteristic scale length *δ derived in Chapter 3, and propagate coherently to large 

distances. Steep nose profile can explain experimental asymmetric profile. Blobs 

smaller than one evolve into rather slowly moving mushroom-like structures due to 

strong velocity shear. Blobs larger than one are subject to the fingering instability, 

which very quickly chops large blobs into a number of relatively narrow fingers 

reducing their effective cross-field scales. Blobs with spatial scales close to one can 

coherently move to long distances. The SOL Blob velocity is numerically proved to be 

proportional to 1/δ2, which is in agreement with our previous scaling analysis. 

Also we have found that scale lengths δx and δy are not equivalent. δy determines 

motion mode and velocity. High background plasma density effectively narrows down 

blob size.  

In the model without the Boussinesq approximation (the FI-SOL model), 

dynamics is somewhat suppressed. Big blob motion, such as δ=5 blob, doesn’t change 

much comparing with results from the RI-SOL model. For δ=0.2 blob, mushroom 
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effect is greatly suppressed. In δ=1 blob simulation, inertia effect is not perceptible. 

Meanwhile, relaxation tail gets longer in the FI case. Over all, FI-SOL model in 

general is coincident with RI-SOL model.  However, some details differ. In particular 

the most stable scale length shifts from 2 to 1. 

Density dips move inward to the core plasma, opposite to the blob movement. 

Impurity can be carried into the core by dip motion. Vorticity effects in dip is strong, 

slows down propagation speed and  breaks one dip into pieces.  

The inertia term in vorticity equation drives the structure to mushroom shape and 

builds up vortex dipole within the structure. Blob goes to mushroom shape when 

neglecting parallel current term regardless of the scale length. Blob goes to fingering 

effect without inertia term regardless of the scale length.  

The text of Chapter 5 is, in part, a reprint of the material as it appears in “Two 

dimensional modelling of blob dynamics in tokamak edge plasmas,” G. Q. Yu, S. I. 

Krasheninnikov, and P. N. Guzdar published in Physics of Plasmas 13, 042508-1 

(2006). The dissertation author was the primary author in this paper. 
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Chapter 6 

High β Blob Dynamics 

6.1 Introduction 

In this Chapter, we present our numerical solutions on HB blob. The normalized 

governing equations, equation (3.45) and (3.46), have been discussed in Chapter 3. 

Features of this type of blob has been given in the discussion associated with closure 

(3.34) in Chapter 3. Spatial geometry is also given in Figure 3.2. To simplify our job, 

we take Boussinesq approximation in our HB model. So the exact vorticity equation 

we are solving numerically is the equation (4.2).  

6.2 HB Blob Simulation 

Numerical simulation results are shown in Figure 6.1 to Figure 6.4.  It is clear 

that HB blobs also move forward to low B side by the E×B drift.  However, we notice 

that the motion modes or the patterns of these HB blobs are somewhat different from 

the SOL blobs we have studied so far.  Looking at Figure 6.2 to 6.4, where blobs have 

same scale lengths as in Figure 5.2, 5.4, and 5.7, we don’t see mushroom shape or 

fingering shape in the blob evolution.  The blob dynamics doesn’t obviously change 
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when the blob scale increases from δ=0.2 to δ=5 right crossing the interesting scale 

length of unity, which is unlike the previous Chapter results.  This is in agreement 

with what we analyse in Chapter 3.  In HB case, the inertia effect would change 

slightly because the ratio between inertia term and the other two terms is only δ-1.  So 

we won’t see great difference in the motion mode when δ is just 5 times smaller/larger 

than one.  However, for some extremely small blob, such as the 0.01 blob shown in 

Figure 6.1, the inertia term becomes dominant because the ratio δ-1=100 in this case.  

The mushroom effect and the vortex dipole show up.  Note that these results are very 

similar to pellet cloud study [97, 98].  We also observe fingering effect in HB model 

for large blob with sufficiently steep leading edge. One can find out rather similar 

results in [100].   

Another interesting feature of the HB blob is the long relaxation tail following 

behind the leading density peak.  We see this steeply increasing density front with 

long lasting tail for all blobs close to unity in Figure 6.2 to 6.4. One of the density 

midline in Figure 6.4 (d) is extracted out and shown in Figure 6.5.  This type of 

bursting signal followed by a smoother decaying tail has been extracted from 

measurement of ion saturation current in SOL region [19, 60].  So experimental 

coherent structure in SOL with long relaxation tail could also be formed close to or 

inside of LCFS and be dragged out to SOL region by the blob dynamics shown here. It 

has been shown that SOL blob can also form a relaxation tail in the previous Chapter. 

We notice that SOL blob’s tail, comparing with blob itself, is much shorter than the 

HB blob’s tail shown inhere. 
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As we knew, velocity of SOL blob is proportional to δ-2, however, HB blob 

velocity is independent of blob scale, which is just follows our scaling analysis in 

Chapter 3. Numerical resutls are shown in Figure 6.6.  We plot the x positions of 

density peaks of blobs vs. time, which demonstrates blob velocity by the slope.  To 

make it more comparable and readable, we use δ for each blob to rescale its own x and 

time axes.  Note that this rescaling is only for resizing the figure and containing all 

four blobs’ position-time figure suitably in one frame just like a zoom-in/out process.  

It does not change the slope of the curves at all.  In Fig. 8, initially, all blobs move to 

RHS.  The moving distance is much longer than the blob size itself and the velocity is 

a constant.  Then the 5 blob and 1 blob will keep moving with constant velocities, 

which implies, in tokamak close to LCFS region, larger blob around dimensionless 

one or bigger could move coherently in a longer distance with constant velocity.  They 

may transfer into SOL region and form blob structures with long lasting tails in there.  

Smaller blobs like 0.2 and 0.01 blob will slow down.  The smaller the blob structure, 

the faster the velocity decreasing.  This velocity decreasing process is associated with 

the inertia term effect.   
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Figure 6.1 (Color) High β blob evolution with δ=0.01 and D=0.00002. 

Figure 6.2 (Color) High β blob evolution with δ=0.2 and D=0.001. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 6.3 (Color) High β blob evolution with δ=1 and D=0.008. 

Figure 6.4 (Color) High β blob evolution with δ=5 and D=0.04. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 6.5 δ=5 High β blob’s midline profile with relaxation tail.  

Figure 6.6 (Color) Peak position vs. time of HB blob in different sizes.  
We use δ for each blob to rescale its own x and time axes.  This rescaling 
is only for resizing the figure and containing all four blobs’ position-time 
figure suitably in one figure.  It does not change the curve’s slope, which 
stands for the velocity of the blob.   
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6.3 Impact of Plasma Diffusion 

As we showed in section 5.2.1, radial blob behaviour is like shock-wave 

solutions of the Burgers’ equation, where steep leading edge due to nonlinear 

convection is balanced by diffusion. Therefore, in addition to the spatial scale of the 

blob, relative dissipation level in the system is expected to play an important role in 

blob dynamics as well. 

As we understand, the diffusive dissipation with large enough value can always 

kill the dynamics or instability. In practice, we set diffusivity D as a very small 

dimensionless number which can help in numerical stabilization but not kill the 

interesting dynamical features. Numerically max
2 t/1.0D δ×< , where tmax is the 

longest simulation time. For example, in a tmax=10 simulation for δ=1 blob, we set 

01.0D < . This would more or less guarantee that blob won’t deform too much just by 

diffusion (see Ref. [39] for details).  In Figure 6.7, we show two group of simulation 

results for blob’s evolution with different diffusivities, (a) for the δ=2 SOL blob, (b) 

for the δ=1 HB blob. The diffusivity doesn’t change the blob motion modes much in 

both (a) and (b) cases. As one can expect, the peak density is diffused lower in higher 

diffusivity case. In (b), the “shock front” is more apparently smoothened by higher 

diffusion and the blob speed slows down a little bit more. Note that, in real units, D = 

0.01 is corresponding to 0.67m2/s for real diffusivity in the SOL case, and 1.45 m2/s in 

the HB case. Our applied diffusivities are mostly in the range of 0.1~1m2/s.  These 
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plots also show that, when close to unity, the HB blob extends a longer tail than the 

SOL blob does. 

 
               (a) 
 
 

 
               (b) 
 

Figure 6.7 Density profile at center line of blob with different diffusivities.  
In (a), δ=2 SOL model, dot line is for dimensionless D=0.0025, solid line is 
for D=0.005, dot-dash line is for D=0.01.  In (b), δ=1 HB model, dot line is 
for D=0.004, solid line is for D=0.008, dot-dash line is for D=0.016.  
Diffusivity doesn’t change the blob motion modes much in both cases. 
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Meanwhile, we can also see the stabilization effect by stronger diffusion from 

density contour plots in Figure 6.8 and Figure 6.9, where δ = 5 simulation is made for 

D = 0.03 and 0.1. Comparing with solutions in Figure 5.7 (c) and (d), one can easily 

see that the RT instability is stabilized by stronger diffusion. As D = 0.01, the 

fingering effect is fully developed at t = 40. However, as D = 0.03, although we still 

see fingering effect at t = 40, it is much weaker than the D=0.01 case. As D up to 0.1, 

the fingering effect is fully suppressed at t=40 by the relatively large diffusivity. 

Figure 6.8 (Color) SOL blob evolution with δ=5 and D=0.03. 

Figure 6.9 (Color) SOL blob evolution with δ=5 and D=0.1. 

(a) (b)

(a) (b)
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6.4 Conclusion 

In this Chapter we have carried out simulations of the HB blob dynamics. We 

apply our code on blobs with normalized scale length of 0.01, 0.2, 1, and 5. We have 

found that HB blobs coherently move forward. They have larger stable range in terms 

of scale length.  They also have longer relaxation tale. We observe mushroom effect 

for extremely small blob, and fingering effect for big blobs with steeper boundary. HB 

blob moves with a constant velocity about one half in normalized unit. Unlike the SOL 

blob the drift velocity does not depend on blob size δ. Blob’s velocity slows down 

more quickly as the scale length getting smaller. 

The plasma diffusion doesn’t change the blob motion modes much. But it has 

stabilization effect on blob dynamics. It is shown that RT instability is suppressed by 

large diffusivity. 

The text of Chapter 6 is, in full, a reprint of the material as it appears in “Two 

dimensional modelling of blob dynamics in tokamak edge plasmas,” G. Q. Yu, S. I. 

Krasheninnikov, and P. N. Guzdar published in Physics of Plasmas 13, 042508-1 

(2006). The dissertation author was the primary author in this paper. 
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Chapter 7 

SOL Blob Passing Through Biasing 
Potential 

7.1 Introduction 

The applicable divertor biasing schemes uses an electrode inserted into the 

plasma edge, often beyond the separatrix to establish a radial electric field [113, 114, 

115]. It offers a more acceptable alternative for modifying the particle and energy 

transport in the SOL. Divertor biasing has been reported to be a promising 

applications for improving divertor performance in the areas of impurity retention, 

particle exhaust, and heat handling capacities.  It is possible to control the radial 

transport of both plasma and impurities by the value and the polarity of the biasing 

electric field [116, 117, 118, 119, 120]. In this Chapter we will use our SOL blob 

model to study blob passing through a biasing potential. A theoretical critical potential 

value is evaluated. The influence of biasing potential width and amplitude on blob 

dynamics are reported.  

7.2 Model Equation 
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As it was demonstrated numerically in [121], an impact of divertor target biasing 

can alter blob shape and, therefore, dynamics of the blob in the after-biased region. 

Here we present some qualitative conclusions on the impact of divertor target biasing 

on blob propagation. We assume a bell shape of biasing potential barrier 

( )2
biasbiasbiasbias )/)xx((exp)x( δ−−Φ=φ  

where Φbias  and δbias are the magnitude and the width of biasing potential, and xbias  

determines its spatial location.   

We notice that if we omit of the first term in LHS of equation (3.39) then there 

will be no impact of the biasing on the blob propagation. Indeed, in this case, with 

simple change of the variable y to t)x(vyy bias−=′ , where dx/)x(d)x(v biasbias φ= , 

and introduction of bias
~

φ−φ=φ , we eliminate the function φbias(x)  from equation 

(3.39). Therefore, in the variables (x, ′ y ) neither blob shape nor its propagation along 

x-coordinate is affected by the biasing, even though in a laboratory frame (x, y) a blob 

shape will be sheared along y-direction when blob moves through biased region (with 

this regard see also Ref. [122]). Thus, the first term in LHS of equation (3.39) is the 

only term, which can alter propagation along x-coordinate. Then comparing the first 

term in equation (3.39) with others we get the estimate for an impact of biasing on 

blob propagation. Estimating the first term as )/v( 3
biasbbias δΦ , we find that significant 

effect of biasing can be expected for 

b

3
biascrit

biasbias 2
~ δ⎟

⎠
⎞

⎜
⎝
⎛ δ

≈Φ>Φ  

(7.1) 

(7.2) 
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where the dimensionless critical biasing potential crit
biasΦ is normalized by 

)R/(L *s* δρ=φ  and spatial length is normalized by ( ) 2.0
s

2
s* )R2/(L ρρ=δ  as in 

equations (3.38) and (3.37). It is worthy to note that the non-dimensionalized form of 

crit
biasΦ  is ( ) ||b

3
sbias

crit
bias L/)2/( δρδ≈Φ . 

To verify the expression (15) we perform a series of numerical runs for blob 

propagation through biasing potential. We consider the blobs with 2b =δ  and biasing 

potential with bbias δ≈δ , bbias 2 δ×≈δ , and bbias 5.0 δ×≈δ . We scan the magnitude of 

the potential biasΦ  and analyze the impact of biasing on blob shape after the potential 

barrier. We observe that critical amplitude of the potential, when biasing significantly 

alter a blob shape in the after-barrier region, scales as p
bias

crit
bias )(δ∝Φ  with p being 

between 2 and 3, which is in a reasonable agreement with equation (7.2). 

7.3 Blob Passing Through Biased Region 

To prove our evaluation, we use the most stable blob, 2b =δ , as a test vehicle to 

hit the biasing potential wall in simulation. In Figure 7.1 to Figure 7.4, we show the 

test blob after passing through the barriers with 2bias =δ  (which in figures in this 

section is shown as δφ, standing for scale length of biasing potential, to save some 

space in figures) to equal to the test blob’s scale length, 10xbias =  at the center in x 

direction in simulation domain, and varied biasΦ . From equation (7.2) we find that in 
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this case 2~crit
biasΦ . In the plotted results, we observe that major blob bodies 

coherently pass through biased region in the cases when Φbias is 0.25 or 0.5, although 

the trajectory of blobs is strongly deviated by the biasing potential at the center. As 

Φbias=1 in Figure 7.3, the blob body is apparently deformed. A large part of the blob 

body is trapped in the biasing zone however still a major piece from blob body gets 

across the zone and keeps moving outward. In the case of Φbias=2, i.e. crit
biasbias

~ Φ>Φ , in 

Figure 7.4, as we expect in the early part in this section, a strong deformation and even 

disintegration of blob body occurs while blob gets into the barrier (see Figure 7.4). 

Then most fragments from original blob are trapped in the barrier. One should notice 

that the blobby cross-field transport is somewhat prevented or at least delayed in case 

of Φbias= 1 or 2. The critical biasing potential amplitude to deform blob coherent 

structure and prevent blob motion is in agreement with the analytical evaluation. 

Next we study how the width of biasing barrier effects on blob motion. We still 

use the most stable blob, 2b =δ  as the hitting blob, setting Φbias=1 and 2 to compare 

with results in Figure 7.3 and 7.4, and varying biasing potential width, δbias (or δφ in 

figures), in 1 and 4, two times smaller and larger that the hitting blob scale. Biasing is 

located at  10xbias =  at the center in x direction in simulation domain.  Figure 7.5 and 

7.6 show that narrower barrier prevents the blob outgoing movement quite similar to 

the barrier with δbias=2 does. Figure 7.7 and 7.8 show that, however, wider barrier 

prevents blob movement much less than δbias=2 barrier does. A major part of blob 

body gets through the biasing zone either in Φbias=1 or Φbias=2 case when δbias=4. 
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These are in agreement with equation (7.2). It can also be explained as small structure 

wouldn’t be affected by large wave because the local variation in wave is small, just 

like an ant can hardly sense the curvature on a basketball. Above all, we conclude that 

potential barrier with scale length close to or narrower than the most coherent blob 

structure has better impact on prevent blob’s outward movements. 

7.4 Conclusion 

In this Chapter we have modified blob model to study the blob passing by 

biasing divertor target. Theoretical analysis shows that for a large magnitude of the 

potential barrier ( ) b
3

bias
crit
biasbias 2/~ δδ≈Φ>Φ , which is normalized by )R/(L *s* δρ=φ  

and ( ) 2.0
s

2
s* )R2/(L ρρ=δ  as in equations (3.38) and (3.37). A strong deformation and 

even disintegration of the blob as coherent structure will be observed while blob pass 

through a biasing potential barrier higher than the critical value. Numerical 

simulations confirm the theoretical prediction. Simulation results visualize that blob 

can coherently move across lower barrier less than critical value. A strong deformation 

occurs while blob passes through the critical barrier. We observe that major blob 

bodies coherently pass through biased region in the cases when Φbias is small. In the 

case of crit
biasbias

~ Φ>Φ , a strong deformation and even disintegration of the blob as a 

coherent structure occurs while blob gets into the barrier. We also find that blobby 

cross-field transport is somewhat prevented or at least decelerated by the biasing 

potential. Also following equation (7.2), we study how the width of biasing barrier 



 

 

100

effects on blob motion. Numerical results shows that the narrower barrier prevents the 

blob outgoing movement better than wider barrier. It can be explained as small 

structure wouldn’t be affected by large wave because the local variation in wave is 

small. Therefore potential barrier with scale length close to or narrower than the most 

coherent blob structure has better impact on prevent blob’s outward movements. 

The text of Chapter 7 contains material of the paper “Dynamics of blobs in 

scrape-off-layer/shadow regions of tokamaks and linear devices,” G. Q. Yu and S. I. 

Krasheninnikov, published in Physics of Plasmas 10, 4413 (2003). The dissertation 

author was the primary author in this paper. 
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Figure 7.1 (Color) δb=2 blob passing biasing potential barrier with 
δbias=2 (δφ in the figure), Φbias=0.25, and xbias=10. 

Figure 7.2 (Color) δb=2 blob passing biasing potential barrier with 
δbias=2 (δφ in the figure), Φbias=0.5, and xbias=10. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 7.3 (Color) δb=2 blob passing biasing potential barrier with 
δbias=2 (δφ in the figure), Φbias=1, and xbias=10. 

Figure 7.4 (Color) δb=2 blob passing biasing potential barrier with 
δbias=2 (δφ in the figure), Φbias=2, and xbias=10. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 7.5 (Color) δb=2 blob passing biasing potential barrier with 
δbias=1 (δφ in the figure), Φbias=1, and xbias=10. 

Figure 7.6 (Color) δb=2 blob passing biasing potential barrier with 
δbias=1 (δφ in the figure), Φbias=2, and xbias=10. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 7.7 (Color) δb=2 blob passing biasing potential barrier with 
δbias=4 (δφ in the figure), Φbias=1, and xbias=10. 

Figure 7.8 (Color) δb=2 blob passing biasing potential barrier with 
δbias=4 (δφ in the figure), Φbias=2, and xbias=10. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Chapter 8 

Rotational Blob Dynamics 

8.1 Introduction 

In this Chapter, we present our study of dynamics and stability of blobs which 

have both density and temperature higher than the surrounding plasma. One dynamic 

feature of this type of “non-thermalized” blob is rotation, or spin, which is due to 

monopole temperature potential in blob and plasma motion associated with it. Blob 

dynamics and instabilities are altered greatly by the rotational behaivor. Most of our 

studies of rotational blob are reported in Ref. [123] and [124]. 

In previous Chapters, we demonstrate that an effective gravity force produces a 

charge dipole due to charge separation in a blob and results in radial transport of the 

blob as a coherent object. We note that the monopole density concentration in blob is 

always accompanied by a charge dipole. The magnitude of the electric field in dipole 

is determined by the balancing of the particle drift source with two counter effects: the 

loss of charge by current flow j|| along the field lines to the divertor sheaths, and the 

mixing of the positive and negative charges by blob spin around its axis, which act to 

reduce the internal charge polarization. Thus, the plasma spin in blob is an important 
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dynamical variable. The instability is enhanced by the blob spin but its radial transport 

is hindered by the spin by partially defeating the internal charge polarization.  

Blobs develop spin when two conditions are satisfied: (i) the parallel transport of 

charge and energy to the sheaths is sufficiently rapid to suppress parallel variation of 

the electrostatic potential and temperature along B (k||=0), and (ii) the blob has an 

internal temperature profile Te(r), where r is the blob radial coordinate. The case of 

interest here is a cylindrically symmetric blob with a hot dense core, so that both n(r) 

and Te(r) are monotonically decaying profiles. The first condition ensures that the blob 

is electrically connected to the sheath and thus has a large Bohm sheath potential. The 

second condition ensures that this potential produces a radial electric field in the blob 

and azimuthal spin around its axis. Previous Chapters on blob study are concerned 

with the far SOL where the blobs are in thermal equilibrium with the background 

plasma due to the rapid parallel heat transport. In this limit, Te=const and the blobs did 

not spin. This Chapter has the goal of understanding blob properties near the 

separatrix, where the blobs have not yet had time to lose their hot interiors by parallel 

heat transport. This work is relevant to understanding the blob-like objects thrown off 

by ELMs which have central densities and temperatures characteristic of the top of the 

pedestal, much denser and hotter than the surrounding SOL plasma. 

In addition to the physics mentioned above, blob spin can also drive internal 

rotational instabilities that can tear the blob apart. This is a subject of our study. The 

theory of rotational instabilities of fusion plasmas has a long history [125, 126, 127, 

128]. We use our numerical results to show the rotational instabilities of a hot blob, 
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driven by its own internal spin, play a role in determining its dynamics and the 

associated SOL particle and energy transport. Another task for this study is to 

determine the qualitative property of the dominant rotational mode so that it can be 

used as a “signature” of blob spin (and thus of sheath connection) in understanding 

experimental visual 2D blob data, such as provided by the gas puff imaging diagnostic 

[20, 50, 129]. This study is restricted to the k||=0 limit in which blob spin is expected 

to be large. The instability is driven by a combination of centrifugal force, Coriolis, 

Kelvin-Helmholtz, and rotational shear effects.  

Next we are going to build up a rotational blob model and use our numerical 

scheme to study blob’s rotational dynamics. 

8.2 Model Equation 

A minimal set of equations for understanding convective transport of hot blobs 

consists of the vorticity equation for the electrostatic potential and continuity 

equations for the plasma density, n, and electron temperature, Te. For simplicity we 

work in the cold ion limit. The fundamental equations take the form 

)(n
L
C2

y
n

R
C2

dt
dn B

||

sss2
s θφ−φ=

∂
∂ρ

+⎟
⎠
⎞

⎜
⎝
⎛ φ∇⋅∇ρ ⊥⊥  

nD
dt
dn 2

⊥∇=  

θ∇=
θ

⊥
2D

dt
d  

 (8.1) 

(8.2) 

(8.3) 
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where we assume Te = T0 + δTe has a small perturbation and only consider the 

perturbed temperature in the parallel current term, θ = δTe/T0 is the normalized 

electron temperature,  i0s m/TC = , iss /C Ω=ρ , cm/eB ii =Ω , and in the Bohm 

sheath potential φBθ typically φB = ln ei m/m ~ 4. Parallel energy loss is neglected in 

equation (8.3), under the assumption that τc < 
||Eτ  where τc is a convective time scale 

of interest, to be defined subsequently. In the opposite limit, τc > 
||Eτ , the blob will 

quickly thermalize to the background temperature. Parallel particle loss is also 

neglected in equation  (8.1). 

The “thermalized blob equations” result from taking Te = constant, which 

trivially solve equation (8.3). Since φB is then just a constant potential, it may be set to 

zero, leaving equations  (8.1) and (8.2) which are the equations dominating non-

rotational blobs in preceding Chapters.  

For more convenience, we use the same normalization scheme as in as in 

equations (3.37) and (3.38) to make all coefficients to be unity. It is worthy to note 

that potential φ is normalized by *φ  and temperature θ is normalized by amplitude of 

temperature variation θ0. Equation (8.1) then reads 

)(n
y
n

dt
dn 0B θΦ−φ=

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ φ∇⋅∇  

where dimensionless ΦB0= φBθ0/ *φ .  We drop the sub-notation ⊥ for convenience and 

equations (8.2) and (8.3) don’t charge form. To simplify our work, we take Boussinesq 

approximation in the rotational blob model. 

(8.4) 
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Next we investigate the above equation with addition of spin through Bohm 

sheath potential ΦB0θ with θ(t=0) = n(t=0), we adjust the value of ΦB0 from 0 to 10. 

Larger ΦB0 will give us stronger rotation in blob. Note that equation (8.4) includes the 

rotational, curvature, and sheath conductivity terms and it is normalized by the *δ  for 

spatial length and *t  for time as in equation (3.37). 

8.3 Blob Rotation 

Based upon rotational equation (8.4), results for the scaled x-velocity of blob 

propagation are shown in Figure 8.1. When both the spin and vorticity convection 

term are neglected, the blob velocity has the simple scaling vx ~ 2/1 δ , where δ again 

is the scale length of blob, and results in a characteristic time for a blob to convect one 

blob radius of τc ~ δ3. This scaling leads to straight-line trajectories in Figure 8.1. 

Comparing the spinning and nonspinning blobs for the same a, spinning blobs move 

more slowly than their nonspinning counterparts. Finally note that all blobs move at 

the same speed for τ << τc because there is no time for charge mixing by vorticity 

convection due to Kelvin–Helmholtz (KH) instability or spin. The blobs typically 

show motion in both x and y directions. Comparing with non-rotational blob 

simulation in previous Chapters, we see the suppression of vx and the generation of vy 

due to spin-induced charge mixing. The quantitive analysis for the slowing of vx and 

the generation of vy, and criteria controlling the velocity slowdown by spin can be 

found in Ref. [124]. 
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The rest of this section will be devoted to studying blob’s rotational dynamics in 

the 2D slab domain. The 2D simulations employed to obtain Figure 8.1 exhibit a rich 

variety of phenomena. More results in detail are illustrated by snapshots shown in 

Figure 8.2 through Figure 8.4. At longer times, there are significant ambiguities in the 

blob trajectories due to blob instabilities which distort the blob’s shape, and in extreme 

cases, destroy its coherence. For δ=0.67 blob with ΦB0=1, this less-than- *δ  blob tends 

to mushroom effect as in Chapter 5. However, the structure losses symmetry because 

of rotation process inside. As ΦB0 increases to 10, the monopole temperature potential 

becomes stronger, so does the rotational process. Both x-direction velocity and 

mushroom effect are suppressed. This is in agreement with the velocity model above. 

Figure 8.1 Normalized radial displacement ∆x of blob vs time normalized to 
blob convection time τc. Numbers indicate the value of δ. The curves labeled 
“spin” have ΦB0=10, while the curves without the spin label have ΦB0=0. Note 
that (i) the speed increase as δ→0 reflected in the scaling of τc is saturated by 
the vorticity convection term, (ii) for the same δ, spinning blobs move more 
slowly than their non-spinning counterparts, and (iii) that all blobs move at the 
same speed for t<<τc because there is not time for charge mixing by vorticity 
convection due to KH instability or spin.  
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Furthermore, blob obtains velocity in y direction and evolves into rotational instability. 

As noted previously, the KH instabilities are present in nonspinning blob simulations. 

In the spinning case, rotational instabilities are observed (see the simulation results 

below). These instabilities result in a pinwheel pattern (somewhat resembling a spiral 

galaxy) that ejects the outer region of the blob. For δ=3.33 blob with ΦB0=10, the 

larger-than- *δ  blob doesn’t tend to fingering effect as its counterpart does in Chapter 5. 

The mixing process due to spin lowers the effective gravitational force and delays the 

RT instability. The rotational instability firstly happens in the outer region. 

The frames in Figure 8.3 shows that the instability has undergone several e 

foldings to produce an observable distortion of the blob. The instability peaks near the 

outside of the blob and throws off an outer shell of material that wraps around to form 

“arms.” The arm is left behind by the blob’s rotation and curvature-driven propagation 

to the right. The instability shown here is clearly rotational in origin and differs 

qualitatively from the curvature-driven blob instabilities studied in previous Chapters. 

This figure shows the development of two major “arms” thrown off from blob body, 

which is corresponding to the mode-2 instability discussed in Ref. [123]. Similar run 

with different δ has different mode as in Figure 8.4. We remark that the blob dynamics 

(e.g., temporal variation of vx and vy) at later times is very interesting in the simulation 

as other rotational effects come into play. For example, the radial velocity of the blob 

is observed to increase after throwing off its outer “arms” and it develops a poloidal 

velocity. 
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Figure 8.2 (Color) Rotational blob with δ=0.67 and ΦB0=1. 

Figure 8.3 (Color) Rotational blob with δ=0.67 and ΦB0=10. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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8.4 Conclusion 

In this Chapter we study the non-thermalized blob with plasma rotation. A 2D 

rotational blob model is built up. Blob dynamics in 2D domain is analysed and 

interesting 2D evolutions are shown. We have we observed the suppression of radial 

velocity and the generation of poloidal velocity. Deformation by KH and RT 

instabilities are suppressed due to the spin-induced mixing of the curvature-generated 

charge separation. Fingering and mushroom effects are inhibited by the rotation. 

However, blobs are linearly unstable with evolution of rotational instability in 

Figure 8.4 (Color) Rotational blob with δ=3.33 and ΦB0=10. 

(a) (b) 

(c) (d) 
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different modes. At later times rotational instability can distort the blob’s shape by 

throwing off the out “arms”, and in extreme cases, destroy its coherence. 

The text of Chapter 8 contains material of the paper “Rotational stability of 

plasma blobs,” D. A. D'Ippolito, J. R. Myra, D. A. Russell, and G. Q. Yu, published in 

Physics of Plasmas 11, 4603 (2004) and material of the paper “Convective transport in 

the scrape-off-layer by nonthermalized spinning blobs,” J. R. Myra, D. A. D'Ippolito, 

S. I. Krasheninnikov and G. Q. Yu, published in Physics of. Plasmas 11, 4267 (2004). 

The dissertation author was a co-author in these papers 
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Chapter 9 

Conclusion 

This thesis has been a theoretical and numerical study of mesoscale plasma 

structures transport in the SOL region in fusion devices. It turns out that a rather 

simple 2D model of blob propagation, based on the effective plasma gravity caused by 

∇B and magnetic curvature or any other effective gravitational force effect, describes 

many essentials of nonlinear evolution and radial advection of such mesoscale 

structures as so-called blobs.  

This work has presented the derivation of the 2D blob model. Different closures 

are introduced to describe several different physical situations. Our focus is on blob 

along the open field lines and blob with high plasma pressure without reaching the 

target plates, i.e. the SOL and HB models in this work. A specific normalization 

scheme is introduced to reduce all coefficients in governing equations to be unity. 

Characteristic spatial and time scale are obtained from this normalization method. 

Spatial scale ( ) 2.0
s

2
s* )R2/(L ρρ=δ and time scale ( ) )CL/(Rt s

2
s

3
** ρδ=  are showed to 

be critical values in the SOL blob dynamics and )RV2/(LC 2
A

22
||

2
s* α=δ  and 

)V2/(Lt A||* α=  in the HB blob dynamics. It is unveiled that both the SOL and HB 
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cases are sensitive to the structure length scale. For coherent structure larger than *δ , 

dissipation term becomes dominant. For structure smaller than *δ , inertia term 

becomes dominant. *δ  is equal to one in the normalized model. In addition, blob 

dynamics in the SOL model could have a much stronger change than in the HB model 

as the δ changes from one side of *δ  to the other side. Meanwhile, by local linear 

stability analysis we find out that in both SOL and HB models simple 1D structure can 

be unstable. In the case ∞→δy , the instability requires dln(n0)/dx < 0 and the most 

unstable perturbations are those with |ky| >> |kx|, while for δx → ∞ , both negative and 

positive derivatives of the density, dln(n0)/dy, are unstable (instability requires 

kxkydln(n0)/dy > 0) and the most unstable perturbations are those with |ky| = |kx|. It is 

indicated that dynamics in HB model is less sensitive to blob scale length than 

dynamics in SOL model. We also conclude that it is unlikely that blobs with large 

spatial scale δb > 1 can move radially as coherent structures, while blobs with δb < 1 

seem to be able to move as coherent structures to large distances. Meanwhile, we list 

characteristic values of *δ , *t , and *v  for several popular toroidal plasma devices, 

such as DIIID, NSTX, C-MOD, and ITER. It is worthy to note that the scale length, 

*δ , for all devices is in order of 1 cm, and velocity is in order of 105 cm/s. This is in 

agreement with experimental measurements in SOL in tokamak. 

Using our numerical schemes, we have carried out simulations of the SOL blob 

dynamics on circular blobs, oval blobs, and dips. We also study the effect of density 

background, diffusivity, and inertia term on blob dynamics. 
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We have found the most structurally stable blob has dimensionless scale length 

around one, which is corresponding to the characteristic scale length *δ derived in 

Chapter 3, and propagate coherently to large distances. Steep nose profile can explain 

experimentally detected asymmetric profile. Blobs smaller than one evolve into rather 

slowly moving mushroom-like structures due to strong velocity shear. Blobs larger 

than one are subject to the fingering instability, which very quickly chops large blobs 

into a number of relatively narrow fingers reducing their effective cross-field scales. 

Blobs with spatial scales close to one can coherently move to long distances. Blob 

velocity is proportional to 1/δ2., which is in agreement with our scaling analysis. 

Also we have found that scale lengths δx and δy are not equivalent. δy determines 

motion mode and velocity. High background plasma density effectively narrows down 

blob size.  

In the model without the Boussinesq approximation (the FI-SOL model), 

dynamics is somewhat suppressed. Big blob motion, such as δ=5 blob, doesn’t change 

much comparing with results from the RI-SOL model. For δ=0.2 blob, mushroom 

effect is greatly suppressed. In δ=1 blob simulation, inertia effect is not perceptible. 

Meanwhile, relaxation tail gets longer in the FI case. Over all, FI-SOL model in 

general is coincident with RI-SOL model.  However, some details differ. In particular 

the most stable scale length shifts from 2 to 1. 

Density dips move inward to the core plasma, opposite to the blob movement. 

Impurity can be carried into the core by dip motion. Vorticity effects in dip is strong, 

slows down propagation speed and breaks one dip into pieces.  
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The inertia term in vorticity equation drives the structure to mushroom shape and 

builds up vortex dipole within the structure. Blob goes to mushroom shape when 

neglecting parallel current term regardless of the scale length. Blob goes to fingering 

effect without inertia term regardless of the scale length. 

In the HB blob simulation we apply our code on blobs with normalized scale 

length of 0.01, 0.2, 1, and 5. We have found that HB blobs also coherently move 

outward (RHS). They have wider stable range in terms of scale length.  They also have 

longer relaxation tail. We observe mushroom effect for extremely small blob, and 

fingering effect for big blobs with steeper boundary. HB blob moves with a constant 

velocity about one half in normalized unit. Unlike the SOL blob the drift velocity does 

not depend on blob size δ. Blob’s velocity slows down more quickly as the scale 

length getting smaller. 

The plasma diffusion doesn’t change the blob motion modes much. But it has 

stabilization effect on blob dynamics. It is shown that RT instability is suppressed by 

large diffusivity. 

Furthermore we have modified blob model to study the SOL blob passing by 

biasing divertor target. Theoretical analysis shows that for a large magnitude of the 

potential barrier ( ) b
3

bias
crit
biasbias 2/~ δδ≈Φ>Φ , which is normalized by )R/(L *s* δρ=φ  

and ( ) 2.0
s

2
s* )R2/(L ρρ=δ . A strong deformation and even disintegration of the blob as 

coherent structure will be observed while blob pass through a biasing potential barrier 

higher than the critical value. Numerical simulations confirm the theoretical prediction. 

Simulation results visualize that blob can coherently move across lower barrier less 
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than critical value. A strong deformation occurs while blob passes through the critical 

barrier. We observe that major blob bodies coherently pass through biased region in 

the cases when Φbias is small. In the case of crit
biasbias

~ Φ>Φ , a strong deformation and 

even disintegration of the blob as a coherent structure occurs while blob gets into the 

barrier. We also find that blobby cross-field transport is somewhat prevented or at 

least decelerated by the biasing potential. From another point of view to the critical 

value of potential barrier, we study how the width of biasing barrier effects on blob 

motion. As one can predicts, the narrower barrier prevents the blob outgoing 

movement better than wider barrier. One of the reasons is that small structure 

wouldn’t be affected by large wave because the local variation in wave is small. 

Therefore potential barrier with scale length close to or narrower than the most 

coherent blob structure has better impact on prevent blob’s outward movements. 

Finally we study the non-thermalized blob with plasma rotation. A 2D rotational 

blob model is built up. Blob dynamics in 2D domain is analysed and interesting 2D 

evolutions are shown. We have we observed the suppression of radial velocity and the 

generation of poloidal velocity. Deformation by KH and RT instabilities are 

suppressed due to the spin-induced mixing of the curvature-generated charge 

separation. Fingering and mushroom effects are inhibited by the rotation. However, 

blobs are linearly unstable with evolution of rotational instability in different modes. 

At later times rotational instability can distort the blob’s shape by throwing off the out 

“arms”, and in extreme cases, destroy its coherence. 



 

 

120

We conclude that modelling work of blob shows many features of mesoscale 

structure transport in the SOL so far. It is in agreement with experimental 

measurements. Also it helps further our understanding of the anomalous cross field 

transport in fusion plasma devices.  
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Appendix 

A. Change the Form of Inertia Term in 
Relaxation Method 
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