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Continuous Profiling of Magnetotelluric Fields

by

Carlos Torres-Verdfn

Abstract

The magnetotelluric (MT) method of mapping ground electrical conductivity is

traditionally based on measurements of the surface impedance at widely space_5 stations to

infer models of the subsurface through a suitable pseudo 1-D inverse or with linearized

least-squares inversion for 2- or 3-D geoelectric mediz. It is well known that small near-

surface inhomogeneities can produce spatial discontinuities in the measured electr._c fields

over a wide frequency range and may consequently bias the impedance on a vet/local
scale. Inadequate station spacing effectively aliases the electric field measurements and

results in distortions that cannot be removed in subsequent processing or modelling. In

order to fully exploit the benefits of magnetotellurics in complex geological environments,

closely spaced measurements must be used routinely. This thesis entertains an analysis of

MT data taken along continuous profiles and is a first step that will allow more

encompassing 2-D sampling techniques to become viable in the years to come.

The developments presented here are to a large extent motivated by the physical

insight gained from low-contrast solutions to the forward MT problem. These solutions

describe the relationship between a perturbation in the electrical conductivity of the

subsurface and the ensuing perturbation of the MT response as the output of a linear

system. Albeit strictly accurate in a limited subset of practical exploration problems, the

linearized solutions allow one to pursue a model independent study of the response

chaz'acteristics of MT data. In fact, these solutions yield simple expressions for 1-, 2-, and

3-D resistivity models which are here examined in progressive sequence.

Over 1-D media, study of the vertical resolution characteristics of MT data is

pursued with a logarithmic parameterization of both frequency and depth which transforms

the linear system equation into a simple convolutional formula. Standard Fourier analysis is

- then used to establish that the largest vertical wavenumber of the subsurface resistivity

distribution that in practice can be recovered from noisy data is approximately 3.5
cycles/decade, which in turn implies that at most 7 or 8 frequency samples/decade are ali

that is needed to infer vertical variations of resistivity within the resolving power of

magnetotellurics. Further, to evaluate the validity of the 1-D linear system equations,
inversion experiments are performed over resistivity profiles wherein the low-contrast

assumption is not acceptable. These experiments yield consistent checks when resistivity



contrasts are lower than 1"10 and th _,refore indicate that albeit of limited practical use, the
linearized solutions do embody the physics of magnetoteUurics.

The 1-D linear system concepts are extended to the study of 2-D MT data, electric

and magnetic, in order to understand what properties of the subsurface resistivity

distribution are borne by each field component. A major thrust of this section is the
estimation of lateral resolution bounds with which features in the subsurface can be inferred

from noisy data. It is found that, below the Nyquist wavenumber dictated by the sampling
distance, the largest wavenumber that can be recovered with 1% noise in the data is

approximately the inverse of the Bostick depth of penetration. Also, a 2-D inversion

procedure is introduced in the wavenumber domain which consists of a sequence of 1-D

pseudo inverses performed for each wavenumber harmonic. Numerical experiments with

this new method of inversion confirm that TM electric field data possess superior lateral

resolution to TE electric field data, and that the former may be subject to instability and
hence poor vertical resolution because of static effects. However, it is found that a natural

way to stabilize the inversion of TM electric field data is to prewhiten them prior to
inversion. When prewhitening is enforced in the inversion of TM data, the wavenumber-

domain inversion produces acceptable results when the resistivity contrasts are below 1:10
approximately.

The linearized 3-D equations describe the surface electric response as the additive

interplay of static and induction components. The induction component is sensitive to the

increase of depth of penetration with a decrease in frequency, whereas the static component

is not, and this causes the electric amplitude response to be biased by shallow geoelectric

features. W avenumber-domain solutions for MT fields over 3-D media suggest that the

static component may be separated from the induction component by way of spatial f'fltering

of the surface electric field. Application of this processing step to field data requires that
electric dipoles be deployed end-to-end continuously along a profile of measurements.

Such is the basis of Electromagnetic Array Profiling (EMAP), a subject discussed in a

second part of this thesis. A data-adaptive spatial filtering procedure is developed for the

suppression of frequency-dependent static effects which consists of lateral and frequency
adjustment of the cutoff wavenumber properties of the TM prewhitening filter elicited with

the 2-D linearized inverse. Adaptive spatial filtering is tested on 2-D subsurface resistivity

models which include static effects and exhibit strong nonlinear response characteristics. A

simple 1-D Bostick pseudoinverse applied to the spatially filtered data yields relatively
accurate resistivity cross-sections in negligible CPU times. The feasibility of EMAP is J

demonstrated by three field examples which reveal with unprecedented clarity the errors

that would have been generated had the interpretation been performed with single-station
data. Also, the level of lateral detail achieved with the use of spatial filtering is consistent

with the vertical and lateral resolution bounds imposed by the underlying diffusion
equation.
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CHAPTER I

INTRODUCTION

1.1 Magnetotellurics
.a

Magnetotellurics is a geophysical technique that utilizes measurements of natural

electric and magnetic fluctuations, typically in the frequency band from 0.001 to 20,000

Hz, to infer electrical properties of the subsurface. At frequencies below approximately

1 Hz, these fluctuations originate from interactions between streams of solar plasma and the

outer envelopes of the ionosphere and magnetosphere. Above 1 Hz, useful electromagnetic

(EM) energy is provided by electric thunderstorm activity taking place mainly about the

equator and reaching other latitudes as propagation modes inside the earth-ionosphere

cavity. There are two advantages in using these natural EM fluctuations for the sounding of

the earth: their large energy levels (not yet artificially produced by man) and their wide

frequency range. Both high energy levels and wide frequency range combine to allow, in

principle, the probing of the subsurface anywhere from a few meters down to hundreds of
kilometers.

The fundamentals of magnetotellurics followed from independent scientific

endeavors in the Soviet Union by A. Tikhonov (1950) and in Franc_ by L. Cagniard

(1953), both in the context of layered earth models. Practical consi, erations make it

feasible for magnetotellurics to assume a source of EM excitation in :he form of plane

waves impinging normally upon the surface of the earth. Tikhonov and Cagniard's early

work showed that lowering the sounding frequency provides a selective deepening of the

zone of response within the earth. This result is consistent with the skin depth effect that
best describes the diffusion of EM waves in conductive media.

• Magnetotelluric (MT) soundings have been used in the past for the exploration of

geothermal (Goldstein, 1988) and hydrocarbon (Orange, 1989) reservoirs. Other no less

important applications of magnetotellurics include scientific studies aimed at defining the

electrical properties of the earth's lower crust and mantle (Wannamaker at al., 1989), and in

earthquake monitoring and prediction studies ( Honkura et al., 1976, and Honkura, 1978).

A high-frequency, artificial-source version of magnetotellurics referred to as the

Controlled-Source Audio-Magnetotelluric (CSAMT) method (Goldstein and Strangway,
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1975), purports to use the same interpretation principles used in magnetotellurics, with the

difference that a measurable amount of current is artificially injected into the ground to

increase signal levels at high frequencies. The CSAMT method has been used with

moderate success in the exploration of mineral deposits (Zonge et al., 1986) and

geothermal reservoirs (Goldstein, 1988).

In the hydrocarbon industry, magnetotellurics has played an auxiliary exploration

role in geological situations difficult, if not impossible, to approach with the seismic " "

method (Orange, 1989.) Examples of these situations are sedimentary basins underlying a

thick surface volcanic stratum and regions in which abrupt topographic relief make seismic

methods impractical. In geothermal exploration, magnetoteUurics fmds itself in natural

advantage over the seismic methods because the bulk electrical contrasts that exist in a

geothermal reservoir axe much larger than those of an elastic nature (Goldstein, 1988).

High-frequency (from 1 to 20,000 Hz) applications of magnetotellurics are suited for the

exploration of massive mineral deposits (Morrison et al., 1990).

As the exploration for energy and mineral resources is directed toward more

inaccessible and geologically complex regions in which conventional seismic techniques are

expected to have little success, a more prominent role is anticipated for magnetotellurics.

Also, growing interest in magnetotellurics can be expected because of its almost null

environmental impact and relative ease of implementation in areas of difficult access.

Nevertheless, even under favorable circumstances, because magnetotellurics obeys the

physics of a diffusive EM process, its resolving power cannot compete with the wave-

equation attributes of the seismic method. Hence, in reconciliation with its limited

resolution, it is important that the MI' rzsponse be sampled adequately both in frequency

and spatially. Only when this is done can interpretation procedures be used to optir,aally

extract the characteristics of the subsurface resistivity distribution within the resolution

bounds imposed by the underlying diffusion equation. Meeting the required sampling

conditions has led to a great deal of instrumentation and theoretical work by the MT

communiq_, and this work has advanced the technique to a fairly mature state of
,i

development.

1.2 Interpretation of MT data and the static effect

The relative simplicity with which MT data can be interpreted over one-dimensional

(l-D) environments quickly disappears in the presence of lateral variations of subsurface

.]
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resistivity. Ways in which this data complexity can be dealt with have been the central

subject of a myriad academic and practical MT studies (e.g. Vozoff, Ed., 1986.)

Results embodied in Cagniard's (1953) MT exposition suggest that, over a non-

layered earth, lateral variations of the measured MT fields at high frequencies should reflect

the lateral variations of near-surface resistivity, whereas lateral variations of the fields at

lower frequencies should reflect the lateral variations in subsurface resistivity deeper in the

" earth. Put in Cagniard's own words:

"... Consequently, one can lay out the survey of a large sedimentary basin
by performing at the start a small number of MT-soundings far removed
from one another, but with a great depth of investigation. In the second
step, one will intercalate stations closer together, and at these he will
perform MT-soundings with a more moderate depth of penetration. Finally,
the continuity between the stations will be assured either by soundings with
a relatively small depth of investigation, or, once in a while, by simple,
quick determinations of the apparent resistivity summarily evaluated through
a very simplified analysis of the magneto-telluric data... "

Unfortunately, the situation is not nearly so simple: field and theoretical MT studies

(see, for instance, Swift, 1967, Word et al., 1969, Berdichevsky and Dmitriev, 1976, and

Berdichevsky et al., 1980) have shown that in geoelectric environments other than l-D, the

low-frequency electric amplitude response from the subsurface can be dominated by the

response from the shallowest resistivity anomalies. Since the electric response from the

subsurface is the most prominent MT response (see section 1.3), this low-frequency m
sensitivity to near-surface geoelectric features (including abrupt topographic relief) is highly

undesirable, and, because of its DC nature and partly in analogy with a similar problem

faced by seismic exploration, it is usually referred to as the static effect by MT

practitioners. The static effect arises at frequencies where the skin depth is larger than the

size of the near-surface geoelectric features in the vicinity of the measurement point. Under

these circumstances, the near-surface features exhibit electrostatic behavior, as though

responding to a uniform DC electric field excitation, and their DC response is usually larger

in magnitude than that of deeper subsurface structure responding inductively at the same
" frequency.

. Below the frequency where the DC distortion comes into play, the electric static

effect can be described as the product of a real constant times the otherwise undistorted k_

electric field (Berdichevsky and Dmitriev, 1'976). Because of this, the phase of the

frequency-domain complex ratio total electric field to primary magnetic field often suffers

no appreciable static distortion. This important property has suggested the possibility of
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avoiding the static effect altogether by inverting the lateral variations of impedance phase

alone into subsurface resistivity estimates. However, previous studies in this area (Weidelt,

1972, Boehl et al., 1977) show that, for instance, the interpretation of 1-D subsurface

resistivity variations solely from phase data is unique provided that an amplitude response

level is known beforehand. With the presence of electric static effects, the desired .

amplitude level is uncertain. To further complicate matters, shallow 3-D geoelectric features

may sometimes cause DC current channeling effects capable of deflecting the secondary b

electric field vector and hence produce a non-inductive distortion in impedance phase

(Bahr, 1987, and Groom and Bailey, 1989).

In the presence of static distortion, one may resort, in favorable situations, to

auxiliary methods of interpretation to recover an undistorted amplitude level in the electrical

response from the subsurface. One such situation occurs when both resistivity and depth to

a spatially continuous feature in the geoelectric model are known from external information

(Jones, 1988.) Other times, controlled-source EM methods can be used whenever the

geometrical complexity of the surface resistivity does not introduce interpretation problems

whose solution requires dense spatial sampling of the secondary magnetic fields (Andrieux

and Wightman, 1984, Sternberg et al., 1988, and Pellerin and Hohmann, 1990.) Situations

in which the electric static effect arises below some particular value of frequency rather than

as a constant shift in logarithmic amplitude throughout the whole measured frequency

range, are rrmch more difficult to handle with auxiliary correction procedures than with MT

data themselves. There exists another technique that even though offering only partial

remedy to the static effect, sheds valuable insight to the physics of DC current channeling.
This technique exploits the characteristics of the electric field sensor.

In magnetotellurics, electric field sensors, or dipoles, consist of conductive wires

laid on the ground with end points in contact with the earth such that, in response to electric

currents flowing in the ground, a potential difference develops between the two electrodes.

The measured potential difference, V, is in general expressed by the line integral

fi E , (1.1)
O dt

for which the path of integration, F, extends along the conductive wires, the vector E is the

electric field in the earth along the wire path, and dt is the differential curve element

tangential to F. The acquisition process described by equation (1.1) intrinsically averages,
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i.e., low-pass filters the surface electric fields, thereby providing a measure of supFression

to the contribution from the static effect local to the point of measurement.

To illustrate this situation, consider the two-dimensional (2-D) geoelectric model

whose cross section is shown in Figure 1-1, with x- and y-axes oriented in directions

perpendicular and parallel to strike, respectively. The model consists of a confined, 0.5

_,m, outcropping rectangular block embedded in a two-layer earth in which the upper

" layer has a thickness of 4 km and a resistivity of 20 f_.m, and the lower layer is a 1 _.m

half-space. Figure 1-2 shows the apparent resistivity and impedance phase curves

simulated at an observation point located in the middle of the outcropping conductor for

both, TE (electric field parallel to strike) and TM (electric field perpendicular to strike)

polarization modes. The synthesized frequency range is from 0.001 to 1,000 Hz, with

calculations performed at 10 frequencies per decade and evenly spaced in logarithmic

fashion. For the computation of the TM curves shown in Figure 1-2, numerical integration

was used to replicate the electric response of a finite-length electric dipole normal to strike

and centered about the observation point. The dipole lengths considered are 100, 500 and

1,000 m. Also, for comparison, a 1-D response curve is plotted in Figure 1.2 for a medium

in which the outcropping conductor has infinite lateral extent. Notice that lengthening the

dipole in the strike direction does not have any consequence on the TE impedances because

the electric field is constant in that direction; thus, the exercise described herein concerns

only the TM impedances.

At the highest frequency, both TE and 1-D apparent resistivity curves in Figure 1-2

asymptote to the resistivity of the surface conductor (0.5 f_.m), whereas at the lowest

frequency the same curves asymptote to the resistivity of the deep layer (1 f_.m). This

behavior is consistent with the inverse relation between sounding frequency and depth of

penetration described by Cagniard (1953) in his seminal publication. However, in the same

figure, the TM 100-m apparent resistivity curve underestimates the resistivity of the

conductive basement at the lowest frequency. A similar situation is not observed in the TE

and TM im0edance phase curves. The amplitude difference between both TE and TM

apparent resistivity curves at the lowest frequencies in Figure 1-2 is a clear example of

static shift, which in this case is conditioned by the DC response of the outcropping

conductor. As the dipole length increases, the low-frequency split between the two curves

decreases (in fact, at 1,000 m the split has practically disappeared.) At the high frequencies,

however, dipole lengths of 500 and 1,000 m are too long to detect the outcropping

conductor, thus causing a loss of lateral resolution.
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In response to current channeling imposed by the outcropping conductor in Figure

1-1, a profile of the secondary surface electric feld perpendicular to strike exhibits positive

and negative values as one marches past the conductor. These electric field variations may

be described as due to surface distributions of electric charge "sieved" along the lateral

boundaries of the conductor as the conduction current forces its way through them. In the

DC limit, Faraday's law shows that positive and negative secondary electric field variations

will balance if averaged along a line drawn across the conductor and beyond points where

the secondary electric field has negligible amplitude. The electric field value that remains

from such a line average primarily contains the inductive response of geoelectric features

buried below the conductor. This principle is illustrated in Figure 1-3.

Even though it is advisable to use the longest possible dipoles in field surveys, this

is not a general solution because the voltage difference measured with the longer dipole

may itself have a static distortion caused by an even larger geoelectric feature in the

subsurface. A measure of the averaging distance required to outweigh the local secondary

DC electric field distortion is the adjustment distance (Ranganayaki and Madden, 1980.)

For confined bodies, normally this distance is only a few times longer than the size of the

body itself (Robertson, 1983), but it may be of tens of kilometers if the distortion is due to

a semiinfmite slab, or an ocean-continent boundary, for instance (Mackie et al., 1988).

Due to the frequency scaling property intrinsic to MT fields, geoelectric structures

that at one frequency respond in an almost exclusively inductive fashion may be the source

of static distortion at a lower frequency, with their DC effect superimposed on the inductive

response of even deeper targets. Lacking a better name to describe this phenomenon, in this

thesis the term static effect is used in a very broad sense to include frequency-dependent

static distortion. Static effects may also affect the surface magnetic field response; however,

in most practical cases the electric static effect is much more significant and definitely

exhibits more lateral variability than the magnetic static effect (Wannamaker et al., 1984).

1.3 Sampling requirements

In magnetotellurics, spectral estimation techniques are used to obtain a frequency

and space dependent, 2x2, surface impedance matrix, Z, linearly relating orthogonal

electric and magnetic field values measured at the same point. Traditionally, inference of the

electrical characteristics of the subsurface stems from samples of Z made at a number of

locations within the survey area. Often, this inference is aided by the measurement of a
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tipper vector, T, linearly relating the vertical magnetic field with the two horizontal

magnetic field components measured at the same point. For practical reasons, the

interpretation of the frequency-dependent and time-invariant transfer functions _ and T is

almost always preferred to the direct interpretation of the electric and magnetic fields: the

. random nature of both source strength and polarization makes it prohibitive to

simultaneously record the electric and magnetic signals at ali sounding locations within the

survey area.

From a fundamental viewpoint, however, the actual electric and magnetic field

behavior is easier to understand than the local impedances and tipper vectors. By way of

example, consider the subsurface resistivity model shown in Figure 1-4. This example

includes local 2-D features as wellas a regional 1-D background medium, the latter

composed of exactly three layers. Two of the 2-D features outcrop to the surface of the

model, and a third one is a buried block with square section. For reference, the x-axis is

normal to strike and points to the right of the sectio,l, whereas the z-axis points downward.

Figures 1-5 through 1-8 are profiles of the different electric and magnetic field components

that describe the surface MT response along the direction normal to strike. All field

quantities in these figures are displayed as ratios with respect to the corresponding 1-D

background field (E0 for the electric field components and H0 for the magnetic field

components) at the frequencies of 1000, 0.1, and 0.001 Hz. The scale on the left-hand side

of the electric field olots corresponds to the logarithmic amplitude of the electric field ratio,

whereas on the right-hand side of the same plots the scale is linear phase. In contrast, the

lateral amplitude variations of the magnetic fields are much smaller than those of the electric

fields, and are thus best described alopg a linear axis and as real and imaginary parts

instead of amplitude and phase components. Surface lateral variations of the TM-mode

magnetic field component are constant in ali cases (d_ErceviUe and Kunetz, 1962), and are

thus omitted from this study. For reference, similar field plots for the case in which near-

surface conductors are not present in the model example are shown in Figures 1-9 through
1-12.

Several basic properties of MT fields can be observed in Figures 1-3 through 1-8.

For instance, at 1000 Hz the lateral electric and magnetic field variations reflect the nature

of the lateral variations of surface resistivity. However, the amplitude variations of both

electric field components are much more prominent than those of the magnetic field

components. Laterally, the TM electric field profile is discontinuous across the surface

blocks. On the other hand, the TE electric field profile is smooth and, in fact, appears as a
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low-pass filtered version of the TM profile. In both cases the phase profiles exhibit only

slight variations. At 0.1 Hz, the TE electric field profile is mostly affected by the buried

conductive block (cf. to Figure 1-10), whereas the TM electric field profile continues to

show the same lateral discontinuities observed at 1000 Hz, although the discontinuity over

the thicker surface conductor becomes more accentuated at the new frequency. The lateral

profile of TM impedance phase at 0.1 Hz, on the other hand, develops variations that

suggest the influence of both the thicker surface conductor and the buried block (cf. Figure

1-10). At the same frequency, the TE magnetic field components show their maximum

amplitude (larger for the horizontal than for the vertical component) exactly over the buried

conductive block, but this anomaly is also emphasized by the magnetic response of the

thicker surface conductor (cf. Figure 1-10). Finally, at 0.001 Hz only the TM electric field

component exhibits significant lateral amplitude variations (the phase variations of the same

component are practically null at this frequency). The fact that all other field components

show almost flat profiles indicate that their 2-D inductive range has virtually disappeared at

this point in the frequency spectrum.

In Figure 1-6, the persistency even at 0.001 Hz of lateral amplitude variations in the

TM electric field response associated with the surface features is due to distortion of static

nature. In contrast, the TE electric and magnetic field components have, using Fourier

analysis jargon, a band-limited 2-D response along the frequency axis consistent with the

depth of penetration of an inductive process. Because of these characteristics, in the

presence of highly variable (laterally) and unknown surface and subsurface resistivity

structure, the static effect dictates as short as possible spacings between adjacent electric

field sampling locations. This ensures that lateral bounds for the discontinuities can be

recognized and not misinterpreted as deeper geoelectric structure. Spatial sampling

requirements for the measurement of the TE electric field are less severe because of the

absence of a static component. The magnetic field components, on the other hand, exhibit

much less significant lateral variations than either electric field component and are therefore

less troublesome to sample.

Over three-dimensional (3-D) geoelectric media the nature of the MT fields is more

akin to that of 2-D TM fields (Swift, 1962, Wannamaker et al., 1984, and Torres-Verdfn

and Bostick, 1990a) although some amount of 2-D TE-type field behavior may be observed "

in regions with substantial current channeling.
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1.4 Sampling techniques and model recovery: the problem

In most cases, economic limits impose a maximum number of MT stations that can

be used for the exploration of a given target. A major task then consists of selecting

sampling locations that as a set can maximize the amount of information recovered about

- the characteristics of the subsurface. Way_ in which this can be accomplished largely

depend on the "expected" characteristics that can best describe the target. By way of

example again, consider the Long Valley Caldera (Mammoth Lakes, California) work

recounted by Park and Torres-Verdin (1988), where regular to good-quality data from 77

MT stations scattered in an area of approximately 20x17 km, were used to ascertain the

existence, and if so, the characteristics of magmatic bodies thought to underlie the volcanic

sediments within the caldera. The Long Valley Caldera is a complex 3-D geoelectric

environment, and in due respect the authors decided to use both a 3-D simulation code and

atl available complementary geophysical and geological data to carry out the interpretation.

This strategy of interpretation shed some light on the general distribution of electrical

conductivity within the caldera, but the spacing between adjacent stations was not short

enough to eliminate dramatic sensitivity to 3-D surface features. Despite the larger than

usual number of MT soundings available for the interpretation, such a near-surface

sensitivity masked the evidence for massive magmatic bodies seated deep below the

volcanic sediments. Had the data been acquired following the established Nyquist criterion

for spatial sampling, much less uncertainty would have been introduced regarding the

nature of near-surface effects and, consequently, more certainty about the surface response

from deeply buried magmatic bodies.

A data acquisition strategy that recognizes the need for continuous sampling of the

electric field is known as Electromagnetic Array Profiling (EMAP) (Bostick, 1986, Torres-

Verdin and Bostick, 1990b, see also Chapters V and VI). In this technique, the surface

electric field is sampled by deploying electric dipoles end-to-end continuously along a

survey path. Electric field data acquired along the line of measurements are referred to the

primary magnetic field components estimated within the survey area for subsequent

processing and inversion. The field procedure used by EMAP not only reduces the

likelihood of aliasing effects but also lends itself to spatial filtering of the measured electric

- field variations along the survey path in order to reduce distortions of static nature.

Field procedures such as EMAP open a whole new window of opportunities for the

processing and subsequent inversion of MT data into estimates of subsurface resistivity.

Traditionally, the inversion of MT data taken along a profile has been approached by model
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parameterization schemes in which the subsurface is represented as a mesh of rectangular

blocks. On the basis of this parameterization, a theoretical MT response is simulated

numerically and the electrical resistivity of the blocks adjusted in an iterative fashion until a

tolerable difference is found between the simulated and field data sets (Jupp and Vozoff,

1977, Rodi et al., 1984, Sasaki, 1989, Madden and Mackie, 1989, Wannamaker et al.,

1989b, Oldenburg and Ellis, 1990, deGroot-Hedlin and Constable, 1990, and Smith and

Booker, 1990). Unfortunately, the forward problem involved in this approach, that of

deriving the wave impedances for arbitrary distributions of subsurface resistivity, can be

very complicated and may, at the least, require extensive numerical computations. Another

normally unrecognized complication is that stiff model parameterizations can sometimes

demand excessive lateral structure within the model in order for the data to be satisfied

within the desired accuracy. Even though excessive lateral complexity in the inverted

parameterized model may "best fit" the field data, the results may project a wrong idea of

the resolution with which features in the surface can be resolved from MT data taken on the

surface. An imposing, although often disregarded, complication in solving the inverse

problem is the effect of excessive separation between sampling locations. Whenever the

distance between measurement locations fails to properly describe the lateral extent of local

variations of both electric and magnetic fields, there is a potential risk in interpreting their

wavenumber harmonics beyond the Nyquist wavenumber as fa!se geoelectric structure in
the subsurface.

A spatially continuous data set may lend itself not only to model parameterization-

type inversions, but also to fast and relatively accurate inversion procedures similar to those

employed in seismic data interpretation under the name of migration and field continuation

(Zhdanov and Frenkel, 1983, Lee et al., 1987, and Zhdanov, 1988, for instance), or, to

use more modem terminology (although not for this reason more precise), seismic

imaging. Despite the limitations involved in their approximate nature, these techniques

share the common theme of being consistent with the resolving power implicit in the

physics of the forward problem.

Unfortunately, at least two decades of continued field and interpretation practices

have demonstrated that a single MT station is not sufficient to provide a profile of electrical

resistivity vs. depth. Seismological practices, by contrast, show an evolution process in

which the necessity of dense spatial sampling (even vectorial) is amply recognized in any

effort to provide an adequate image of the subsurface. Justifiable as it may sound, the

excuse for magnetote!!m,%s not to go in the same direction has been the underlying
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assumption that, although lower in information content, a single MT station is inherently

cheaper than a simple seismic survey in which, instead, a layout of many sensors is needed

to unfold vertical information about the earth. Nowadays, however, with the emergence of

a new front of electronic and computer technology, the economical excuse becomes less

. and less factual.

The feasibility of more aggressive spatial sampling technique is best appreciated

" from few of the most recent accounts of MT case histories. For instance, Word et al.

(1986), describe an EMAP field transect across the Rocky Mountains. Shoemaker et al.,

(1989), introduce a variant of the EMAP technique applied to a sedimentary basin project in

Oregon, including calibration with well-log data. Takasugi et al. (1989) narrate the

probably most comprehensive MT survey yet undertaken in which ali electric and magnetic

field components were measured over a 13x13 rectangular grid in the Hokkaido Island,

Japan. Pelton and Furgerson (1989), describe dense MT sampling techniques referred to as

swath MT and grid MT with an example from Railroad Valley, Nevada. Morrison et al.

(1990), report a continuous MT profiling technique over a mineral prospect in Nevada.

Warren and Srnka (1990) describe a multiple-line hydrocarbon survey over the volcanics of

the Columbia River basalt plain, and finally, Torres-Verdfn and Bostick (1990c) recount a

three-line EMAP survey carded out over a geothermal reservoir in northern Honshu Island,

Japan (see Chapter VI).

1.5 Scope of work

This thesis can be considered a collection of research works related to the general

topic of MT profiling. The arrangement in which these works are presented reflects by no

means a historical progression, but rather an effort to coherently mesh them together.

However, a main thrust should be clear: the attempt to understand what are the

characteristics of the surface MT response that determine how subsurface structure can be

resolved beneath the profile of surface measurements. Even though this is pursued under

the basis of a mathematical treatment, the pragmatic aspect of the problem is left as a central

aspect of the exposition. Thus, in addition to establishing physical criteria as to how to

sample and interpret MT data gathered in the field, at lea_t two methods are presented for

the fast interpretation of those data.

Chapter II is an exposition of the mathematical work leading to the Born

approximation of the surface electric and magnetic fields that result from exciting the earth

with a normally incident plane wave. The results of this work have been the subject of
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previous work by the author (Torres-Verdin, 1985, and Torres-Verdfn and Bostick,

1990a), and thus only a brief summary is presented including the latest findings on the

subject. The objective is to lay out the framework for the development of topics reported in

subsequent chapters of the thesis.

In Chapter III, a Born, or linearized 1-D inversion method is introduced with the

objective of understanding the vertical resolution bounds of data sampled in the frequency

dimension. The work presented here parallels and expands that by Bostick et al. (1979).

A linearized inversion procedure applicable to 2-D data sets is introduced in Chapter

IV. The material presented here can be considered a natural extension of the ideas exposed

in Chapter III. Complications pertinent to this case of analysis comprise one new

coordinate variable as well as three more field quantifies. The inversion is carried out in the

wavenumber domain and special emphasis is given to the lateral resolution bounds with

which geoelectric stmctm e can be resolved when the inversion is performed on each of the

field quantifies involved or, else, on appropriate combinations of them. Synthetic tests of

the inversion are presented as well as a field example.

The elements of Electrorr, tgnetic Array Prof'fling (EMAP) are presented in Chapter

V. Work related to EMAP actually comprised the earlier aspects covered in the course of

the thesis research. However, having been involved in the initial development aspects of

the technique, it is the author's opinion that the ideas put forth by EMAP can be best

understood once the material covered in Chapters II, III, and IV has been thoroughly

assimilated. Also, inasmuch as EMAP is a technique developed for and applicable to 3-D

environments, it seems logical to present it following Chapter IV.

Chapter VI is an account of some of the properties of EMAP as applied to 2- and

3-D environments. In particular, in two dimensions, a procedure is introduced whereby

both TE and TM impedances can be estimated from a field configuration in which the

survey traverse is oblique with respect to strike. Simulation and field data examples are

used to examine the performance of EMAP over 3-D environments.

Finally, Chapter VII is a compendium of conclusions to the thesis work as well as

an outline of suggested topics for further research.
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Figure 1-2. The effect of dipole length when the MT sounding site is centered within the surface
conductor of Figure 1-1. Curves are shown of the TE, TM, and I-D apparent resistivity and impedance
phases simulated at the sounding site. The three different TM curves correspond to an equal number of
dipole lengths, i.e., 100, 500 and 1000 m. For comparison, 1-D response curves are shown which are
associated with the model shown in Figure 1-l except that the surface conductor has infinite lateral extent.
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Figure 1-3. DC-limitTM electric field response of the outcropping conductor in Figure 1-1. The lower
diagramdepictshow someamountof the otherwise laterallyuniformconductioncurrentis bentupwardand
channeledt.b,rough the st,J'faceconductor.This channelingeffectis manifestedon the surfaceas the surgeof
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2-D TE Ey/E0
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Figure 1-5. TE-mode Ey electric field component along the direction normal to strike for the model
shown in Figure 1-4. Both amplitude and phase components are normalized with respect to the primary
electric field, E0, associated with the 1-D background medium. Profiles are shown at frequencies values of
_, 0 i, and Hz.. U°UUI
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2-D TM Ex/E0
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Figure 1-6. TM-mode Ex electric field component along the direction normal to strike for the model
shown in Figure 1-4. Both amplitude and phase components are normalized with respect to the primary
electric field, E0, associated with the 1-D background medium. Profiles are shown at frequencies values of
1000, 0.1, and 0.001 Hz.
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Figure 1-7. TE-mode Hx magnetic field component along the direction normal to strike for the model in

Figure 1-4. Both real and imaginary components are normalized with respect to the primary magnetic field,
H0, associated with the 1-D background medium. Profiles are shown at frequencies values of' 1000, 0.1, and
0.001 Hz.
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Figure 1-8. TE-mode Hz magnetic field component along the direction normal to strike for the mod_l
shown in Figure 1-4. Both real and imaginary components are normalized with respect to the primary
magnetic field, H0, associated with the 1-D background medium. Profiles are shown for the frequencies of
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Figure 1.9. TE-mode Ey electric field component along the direction normal to strike for the model
shown in Figure 1-4 asslmaing no surface conductors. Both arnplitude and phase components are normalized
with respect to the primary electric field, E0, associated with the 1-D background medium. Profiles are
shown at frequencies values of 1000, 0.1, and 0.001 Hz.
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Figure 1-10. TM-mode Ex electric field component along the direction normal to strike for the model

shown in Figure 1-4 assuming no surface conductors. Both amplitude and phase components are normalized
with respect to the primary electric field, E0, associated with the I-D background medium. Profiles are
shown at frequencies values of 1000, 0.1, and 0.001 Hz.
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Figure 1-11. TE-mode Hx magnetic field component along the direction normal to strike for the m .-'dei in

Figure 1-4 assuming no surface conductors. Both real and imaginary components are normalized with
respect to the primary magnetic field, H0, associated with the 1-D background medium. Profiles aJ'e shown
at frequencies values of 1000, 0.1, and 0.001 Hz.
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Figure 1-12• TE-mode Hz magnetic field component along the direction normal to strike for the model
shown in Figure 1-4 assuming no surface conductors. Both real and imaginary components are normalized
with respect to the primary magnetic field, H0, associated with the 1-D background medium. Profiles are
shown for the frequencies of 1000, 0.1, and 0.001 Hz.



CHAPTER II

BORN APPROXIMATION OF THE SURFACE MT FIELDS

!,

2.1 Introduction

The mathematical developments presented in this chapter originated with a Master's

thesis (Torres-Verdfn, 1985). Also, a more comprehensive presentation of the same subject

has been recently accepted for publication (Torres-Verdfn and Bostick, 1990a). Since the

results from these two studies serve as a foundation for the material presented in

subsequent chapters, a succinct version of them is included here.

The Born approximation provides a mathematical model that is consistent with the

qualitative characteristics of the surface MT fields over any type of geometrical complexity

within the subsurface. Quantitatively, however, the assumptions implicit in the Born

approximation restrict its numerical accuracy to those situations in which either the

subsurface resistivity contrasts are small, or in which the scattered fields are only a small

fraction of the primary field. Even though these restrictions may not always apply

rigorously, the ensuing approximations may be used to test the MT method in

inhomogeneous media and with an analysis that produces results as simple closed-form

expressions. As detailed below, these expressions clearly show the characteristic response

functions under inhomogeneous conditions.

2.2 Integral formulation and first-order Born approximation

The earth is described as a set of conductivity anomalies embedded in a

homogeneous half-space of conductivity ao and occupying the region 7>0. The air space is

modelled with a non-conductive half-space in the region z<0, and the source of excitation

provides electromagnetic (EM) energy throughout the entire range of frequencies relevant to

magnetotellurics. Each frequency component of the excitation is assumed to be in the form

. of a plane wave, linearly polarized and propagating vertically downward onto the surface of

the earth at z=0. Cartesian axes are chosen with the x-axis pointing in the direction of

polarization of the incident plane wave (Figure 2-1). Unit vectors in the x, y and z

directions are identified as i, j and k, respectively.
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At any observation point in the earth, the total MT fields may be written as

E = E0 + e, and (2.1)

tt = H0 + h, (2.2)

where the vectors E0 and H0 are primary electric and magnetic fields, respectively,

associated with the propagation of the incident plane wave in the homogeneous half-space.

The vector components e and h, on the other hand, designate secondary, or scattered
M

fields. Similarly, the conductivity distribution in the earth may be expressed as

o - o 0 + Ao, (2.3)

where Ao identifies departures in conductivity away from the homogeneous half-space. In

equation (2.3), the spatial function Ao is arbitrary except for two restrictions. The f'u'st is

that Ao be such that o is positive, and the second that Ao be absolutely integrable over the

half-space z_>0.This last restriction insures the existence of the Fourier transform of Ao,

and allows the estimation of o0 from the spatial average of o.

The link between the total fields E and H is determined by the source free Maxwell

equations, written as

V x E = -it01.tH, and (2.4)

V x H = oE, (2.5)

in which i = CSf, a time-harmonic variation of the form eic0t is assumed, displacement

currents are neglected, and the permeability tx is set to its free space value. A similar set of

equations to that of (2.4) and (2.5) is satisfied by the primary electric and magnetic fields,

except that o is replaced by o0.

Equations (2.1) through (2.3) substituted into (2.4) and (2.5) yield

V2e + 1¢2e= ic0_AoE, (2.6)

where g: is the propagation constant for the homogeneous haft-space, given by

_c2 =-icogoo. (2.7)

The inhomogeneous Helmholtz equation (2.6) may be cast in the integral form

e(r) = (G.Q(r,r0) Ao(r0) E(r0) d'co (2.8)
,/'C0
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(Morse and Feshbach, 1953), where r=(x,y,z) is the observation point, and the volume x0

corresponds to the set of source points r0=(xo,Y0,Z0) in the half-space 7>0 where Ao _ 0.

In equation (8) the function _. is the Green's tensor satisfying

" V2.G_(r,ro)+ _:2Q(r,r0) = ic01.t$(r-r0) !, (2.9)

" and which also complies with the boundary conditions inherent to the homogeneous half-

space model; the function _5(r) denotes the Dirac delta, and the symbol ! is the unity
tensor.

Within the homogeneous half-space, the primary fields are described by the pair

E0(zo) = Eo e-if'z° i, and (2.10)
A

Ho(z0) = Ho e"ira° j, (2.1 1)

for which the ratio

= Zo(co)= 1___j

E0
H---o ' (2.12)

correspondstothesurfaceplane-waveimpedancelookingdown intothehomogeneous

half-space.

First-order Born approximation of the Fredholm integral equation of the second

kind (2.8) is obtained by substituting the total field E that appears under the integral sign in

that equation by the incident field Eo (Morse and Feshbach, 1953.) This substitution yields

j-th secondary electric field components expressed as

ej(r) = fxo Gj(r,ro) Ao(ro) E0 e-if'z° d'l:0 , (2.13)
j=x,y,z

where the scalar function Gj, with units of electric field strength per dipole moment,

describes the j-th component of the electric field vector due to an infinitesimal electric

. dipole. The latter is centered at ro and oriented pamUel to the x-axis.

Equation (2.13) is an accurate solution for the secondary electric field, e, within a

medium in which [Ao[ << o0. Besides this limitation, the small departures Ao away from
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the homogeneous earth model preserve the attribute of three-dimensionality in the

subsurface conductivity distribution.

Further simplification of equation (2.13) is done as follows. Introducing the

variables Po and Ap, defined as

Po = A__ and, Ao = _1 (2.14)
O.o' Ao" '

4

respectively, one can show that under the assumption that IAO[ << o"o,the approximation

_6_0_ __ Ap
o"o Po

holds true. Using this property, the ratio Ap/po is hereafter referred to as the normalized

resistivity function, and assigned the symbol Ph, i.e.,

AO
Pn = _ • (2.15)Po

Equation (2.13) may thus be rewritten as

ej(r)
= fx ph(r0) Kej(r,r0) dxo , (2.16)Eo 0

where

Kej(r,ro) = -o"oGj(r,r0) e -ir-zo. (2.17)

In similar fashion, a Born approximation solution for the secondary magnetic field, h, may

be expressed as

hj(r)
_"fx Khj(r,ro) ph(r0) dxo , (2.18)Ho 0

where

Khj(r,ro) - 1 + i Aj(r,ro) e-ir'zo , (2.19)8
and

8=,_/ 2 •o_go"0

The variable _ above is the skin depth of the homogeneous half-space at the particular

frequency under consideration. In equation (2.19), the function Aj is analogous to Gj,
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except that Ajdescribes the magnetic field components due to the x-oriented electric dipole,

and has units of magnetic field strength per electric dipole moment.

Equations (2.16) and (2.18) express the secondary MT fields as weighted averages

of the subsurface resistivity distribution. They are linear approximations to the forward MT

problem in which a perturbation in subsurface resistivity translates to a perturbation of the

surface MT fields. The main difference between the weighting functions, Ke and Kh, in

equations (2.16) and (2.19) and their primitive electric and magnetic field forms, G and A,

respectively, is an additional vertical attenuation factor, e-i_0, in the former. Furthermore,

it is not difficult to show that, when the observation point is located on the surface, both Ke

and Kh are space shift-invariant, namely,

K(r,r0) = K(r-r0) (z=0, z0,20).

Hence, in Cartesian coordinates equations (2.16) and (2.18) may be specialized to read as

ej(x,y,0)
= f([Kej(x,y,z0) • pn(x,y,z0)] dz0, and (2.20)E0

hj(x,y,0) _f(Ho - [Khj(x,y,z0) • pn(x,y,z0)] dzo, (2.21)

where the symbol "," denotes 2-D convolution with respect to x and y. The functions

. K(x,y,z0) in these last two equations can be thought of as depth-dependent horizontal MT

"wavelets." At a given depth, z0, the MT w avelets describe the source-coordinate variations

of equations (2.17) and (2.19) when the observation point is fixed at the origin.

Equations (2.20) and (2.21) may be transformed into the wavenumber domain with

the Fourier transform pair

Y'{f(x,y)} = F(_,rl) = ffoo f(×,Y) e. i(_x+ny) dx dy, and
,/,/- oo

_.,-1 {F(_,TI) } = f(x,y)- 1 ff_* F(_,rl)e-i(_x+rly ) d_ drl,
- (2_:)2 J.1-_

to read as
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lo.

=Jo aoj(gn,zo)P( ,n,zo)dzo,and (2.22)Eo

Hj(_,n)
-- f0 *_hhj(_,l"l,zo) P(_,rl,zo) dzo, (2.23) .Ho

respectively, where

Ej(_3"l) = _' {ej (x,y,O) },

Hj(_,T1) = ]="{hj(x,'f,0) },

P(_,TI,zo) = F {pn(X,y,z0) }, and

A(_,Tl,zo) = F {K(x,y,z0) }.

The functions A above are the transfer functions for the linearized forward MT

problem. Because of the important fact that these functions can be written as simple

algebraic expressions, analysis of the forward MT problem can be done much more easily

in the wavenumber domain than in the space domain. This objective is pursued in the

following sections.

2.3 The MT transfer functions

Equations for the MT transfer functions A e a'_d Ah introduced in the previous

section follow from the Cartesian plane-wave vector solutions of the electric and magnetic

fields excited by a buried electric dipole. These solutions are derived in Appendix A

(equations A.19 through A.24).

Special cases for the electric and magnetic field transfer functions appropriate for

1- and 2-D earth models can be obtained from the expressions of the 3-D transfer functions

with the substitutions _--0 and vi--0, or both. In a 1-D earth, for instance, the resistivity of

the subsurface is constant with respect to both x and y, and therefore contains only the DC

wavenumber components {---0 and rl--0. Hence, the transfer functions that relate to thi-

particular case are obtained by setting both {=0 and ri--0 in the 3-D transfer function

equations. Over 2-D media, one may set {---0if the resistivity of the subsurface is constant

in the x-direction (E-parallel, or TE polarization mode), or rl=0 if the resistivity of the

subsurface is constant in the y-direction (E-perpendicular, or TM polarization mode.) This
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exercise yields the following equations for the electric transfer functions, Aex, over i, 2-,

and 3-D geoelectric media:

im_ta0
Aex 1-D (m) = iK (1)ei0c+_c)z° (2.24)

Aex 2-D TE (c0,rl) - i¢0_a0 ( i______) e i (_+_¢)zo (2.25)
• i_ ITll+ i_

_2
Aex 2-D TM (c0,_) = icol.tCYo(1) e-i(g +_¢)zo+__e-i(_ +K:)zo (2.26)

i; i;

_2+ r12(1+ Rv _2
Aex 3-D (C0,_,Ti) ic0_tO0[ 2 ")_ ]e-i (g+ _¢)zo+ __ e-i (g+ _¢)zo, (2.27)

i_ _2+ rlz i_

where

=-i_/ico_oo+_2+TIz,

and,

; + i_/ _2+ rl2
Rq, =

_-i4 _2+ viz

Tables 1 through 4 summarize the MT transfer functions operating over 1-, 2-, and

3-D geoelectric media for the remaining electric and magnetic field components; as for the

case of equations (2.24) through (2.27) above, the expressions in these tables have been

written in forms that facilitate their term-to-term comparison.

EARTH

MODEL

1-D
and null
2-D

ico_tOo
(1 - Rv _rl e-i (_+_¢)zo

3- D i; [ _-2+rlz 2 ) ] e-i(_+,_)_o+

Table 2-1. Ey electric transfer function, Aey.
i
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EARTH

MODEL

1-D
and null
2-D

|

3-D "_'ic°_°° [ _T1 (1- R_,-- ] e-i(;+
_2+ ],12

Table 2-2. Hx magnetic transfer function, Ahx.

EARTH

MODEL
...

1-D null
| ,i i i

2- D TE " _'i¢°l'tcro[ Irll ] e-i(; +,c)zo
MI + i_

i

2-D TM null
i

_______21-R_,
3 -D " _'icogoo [ (_.) ] e-i (; + _:)zo

_2

Table 2-3. Hy magnetic transfer function, Ahy.

EARTH

MODEL

1-D null

2-D TE "/i¢ol.tOo[ irlIrl[+ i_ ] e'i (_+z)zo
i ii i

2-D TM null
, ., i m

3 - D _'icogoo[zl ( 1 + R_,
2 ) ] e'i (_ + _c)zo

Table 2-4. Hz magnetic transfer function, Ahz.
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Close examination of equations (2.24) through (2.27) as well as of the equations in

Tables 2-1 through 2-4 reveals that, qualitatively, ali transfer functions are consistent with

the properties of the MT fields known to hold over 1- and 2-D earths; e.g., (a) the surface

vertical electric field is null, (b) no secondary field components are generated when the

. earth is 1-D except for the electric field component in the x-direction, (c) no y- and

x-component of the secondary electric and magnetic fields, respectively, arise over 2-D

geoelectric media, and (d) the TM mode of propagation in a 2-D earth is not accompaniedQ

by a secondary surface magnetic field component. Also, an interesting correlation is

•pointed out between the electric transfer functions for 2-D TM and 3-D geoelectric media,

for which the two additive terms involved in their expressions have similar properties. This

correlation is consistent with the notion that the TM response of a 2-D earth is in some

ways similar to that of a 3-D earth (Swift, 1967, and Wannamaker et al., 1984), and will

be further studied in the following section. Sections 2.4 through 2.7 are devoted to a more

in-depth analysis of the characteristics of the electric and magnetic transfer functions.

2.4 The electric transfer functions

Inspection of equations (2.24) and (2.25) shows similarities between the electric

transfer functions for 1-D and 2-D TE earths. The two transfer functions differ in that

certain factors that are constant in the 1-D transfer function are functions of the

wavenumber rl in the TE transfer function. Specifically, the complex coefficient

rl(rl) =. i________(_ =- i_/iml.t_0 + rl2 ) (2.28)
_ql+ i;

in equation (2.25) does not approach zero with increasing values of the rl wavenumber,

and this dependence on 11causes the TE electric response to have the characteristics of a

low-pass wavenumber filter. Also, because of the exponential factor in equation (2.25), the

cutoff wavenumber gets progressively lower with increasing depth, z0. This means that the

TE-mode electric field has a progressive loss of response, with respect to depth, to the

spatial detail in the resistivity distribution that is contained in the large wavenumber

components. Otherwise the behavior of the TE-mode transfer function is similar to that of

the 1-D earth; conventional interpretation procedures used with magnetotellurics are known

to yield quite reasonable results in both cases, and neither case suffers from the electric

static effect. Likewise, because of the low-pass filter characteristics of the 2-D TE transfer
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functions, aliasing effects will be reduced when the electric field is sampled at recording

locations spaced some distance apart from each other.

Consider now both 2-D "lE and TM electric transfer functions Aex. The first

additive term of the sum in the TM transfer function is non-zero only for the case of time .

varying (c0>0) fields, and for this reason it is hereafter referred to as the induction

component. This term has a form similar to that of the TE mode, except that evaluation of
t,

the complex coefficient,

_2+ _2(.1 +R
r2(_, rl) = 2_') (_ =-i_ / icol.tc_0+ _2+ T12) , (2.29)

rl2

in equation (2.27) yields r2(_,0)=1 for the TM mode, whereas for the TE mode r2 is

rendered a function of rl (rl in equation 2.28). In addition, _ is a function of _ for the TM

mode instead of rl as is the case for TE. It can also be shown that the amplitude of r2 is

bounded such that

1 < lr 2 ({,rl)[ < 1_ - - (2.30)

for -,,*< _ < +_ and -,,*< rl < +*_, implying that the amplitude difference between the two

terms, r2(_,0) and r2(0,rl), is at most of a factor of 2.

Amplitude curves for the electric response of both the TE mode and the induction

component of the TM mode are plotted in Figure 2-2. The response curves in this figure

have been normalized with respect to the amplitude of the 1-D transfer function at the same

depths of response, z0, and are plotted with respect to the normalized wavenumber

_/q coktc_0.It can be seen that, like the TE-mode response, the TM induction response is

characteristic of a low-pass filter with a depth dependent cutoff wavenumber.

The second additive component in the TM-mode electric transfer function Aex has

no counterpart in either the 2-D TE or the 1-D responses. In allusion to the fact that this

second additive component does not vanish in the DC limit (cO-->G),this component is

hereafter referred to as the static component. Because of this second term, the

TM-mode electric response from the subsurface may differ significantly from that of the TE

mode. The difference in amplitude response between the two components depends on
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specific values of frequency, to, and wavenumber, _. To clarify this point, Figure 2-3

shows amplitude response curves computed for the TM electric static component at

different depths of response, zo, and normalized with respect to the 1-D amplitude response

measured at the same depths; abscissas for the plots shown are normalized wavenumbers

- _/'_tol.ta0. The behavior for the TM electric static component evidenced by the curves in

Figure 2-3 is that of a band-pass wavenumber filter with a double zero in its response at

. _----0.Decreasing values of depth of response, zo, widen the pass band of the wavenumber

filter. In fact, at z0---0the TM static component becomes a perfect high-pass filter of the

lateral variations of subsurface resistivity. Because the lateral variations of surface

resistivity are normally rich in large wavenumber components, the high-pass filter nature of

the TM static component opens the possibility of significant aliasing effects if the electric

field is undersampled in the measurement process.

Equations (2.26) and (2.27) show similarities between the electric transfer

functions for the 2-D TM and 3-D cases. Both transfer functions contain induction and

static components in their expressions. Except for the complex factor r2(_,rl), the induction

component of the 3-D electric transfer function is symmetric in _ and rl, but the magnitude

of the asymmetry is at most a factor of 2 by virtue of the inequality (2.30). The induction

component of the 3-D electric transfer function is characteristic of a 2-D low-pass

wavenumber filter for which the cutoff wavenumbers are determined by the depth of

response: an increase in the depth of response causes a decrease in the cutoff

wavenumbers. The static component of the 3-D electric transfer function, on the other

hand, is highly asymmetric in _ and 11. Significant response from this component,

however, is developed only for the large _ wavenumbers.

When the coefficient r2(_,rl) in equation (2.29) is unheeded, simple algebra shows

that the amplitude ratio of the static component to the induction component of the 3-D

electric function equals _2/tokta0. This ratio indicates that relative to the induction

component, the 3-D static component functions as a band-pass filter of the wavenumber

harmonics of subsurface resistivity in the x-direction (the direction of primary electric-field

polarization.) In contrast, the 3-D static component is a low-pass f'flter with respect to the rl

. wavenumber harmonics of subsurface resistivity. The directional wavenumber properties

of the 3-D static component are illustrated in Figure 2-4, wherein 2-D surfaces describe the

amplitude response of the static component of Aex (equation 2.27) normalized with respect

to the 1-D amplitude response for the depths of response, z0, of 0 and 0.25 skin depths,

and plotted as functions of the normalized wavenumbers _/Vtokta0 and rl/Vtol.tc_0.
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In consistency with the characteristics of the static effect described in section 1.2,

the static component of Aex causes no distortion in the frequency-domain phase response of

the surface electric fields. However, non-inductive phase distortions in the electric response

from the subsurface can be anticipat, t in 3-D geoelectric media by inspection of the Aey, or
cross-coupling electric transfer _'unc _ ,n. This problem is discussed next.

2.5 The cross-coupling electric transfer function
¢.

The electric transfer function Aey is similar to Aex in the sense that over 3-D media

both transfer functions contain static and induction components in their response.

However, unlike Aex, Aey exhibits symmetric dependence on the wavenumbers _ and rl in

both its induction and static components. This property intuitively suggests that Aey is

responsible for the cross-coupling between the secondary fields due to incident electric

fields polarized in the x and y directions. Moreover, the wavenumber behavior of Aey

shows that neither its static component nor its induction component exhibit sensitivity to the

_=0 and 1"!=0wavenumber harmonics of the subsurface resistivity distribution. In other

words, Aey is insensitive to the lateral average of subsurface resistivity that exists at any

given depth in the subsurface.

Another interesting observation about the DC limit (¢0-->0)response of Aey is that

its static component can develop a larger amplitude response than the static component of

Aex when the subsurface resistivity distribution contains wavenumber harmonics in the

neighborhood of rl=+_. The availability of wavenumber harmonics in this region opens the

possibility of lateral DC current channeling effects, which can cause deflection of the

secondary electric field vector about the direction of primary electric-field polarization. This

deflection of the electric field vector may lead to non-inductive distortion of the phase

response between the secondary electric and primary magnetic fields. In some situations,

this may even result in distortion of the otherwise minimum-phase property of the surface

electric field response.

The inductive and static components of Aey are shown in separate plots in Figure

2-5. At a fixed depth of response, zo, of 0 skin depths, these plots describe amplitude

response variations (normalized with respect to the 1-D electric response at the same depth)

with respect to the normalized wavenumbers _/o_J0 and rlN cOg_o. Although the band-

pass characteristics of the transfer function Aey are not precisely the same as those of Aex,
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methods used to suppress the surface static response of Aex can also be used to suppress

the surface static response of/key, as explained in section 2.7.

2.6 The magnetic transfer functions

o

Tables 2.2 through 2.4 show no static component in the magnetic transfer functions

comparable to those of the 2-D TM or 3-D electric transfer functions. This remark is

" probably best understood with the aid of Figure 2-6, where the amplitude response of the

TE magnetic transfer function, Ahy, is plotted with respect to the normalized wavenumber

rl/q c0tx_0 at various depths of response, z0, where the values shown along the vertical axis

have been normalized with respect to the 1-D electric amplitude response at the same

depths. The response curves in Figure 2-6 are characteristic of a band-pass wavenumber

filter (the plots are representative of the wavenumber properties for the remaining 2- and

3-D magnetic transfer functions as weil) for which the pass-band is progressively wider for

decreasing values of the depth of response, z0.

The band-pass filter properties of the magnetic transfer functions open the

possibility of surface magnetic field distortion by way of current channeling, not only

inductive at high frequencies, but also in the DC limit (0)-->0)1 . However, because of the

fact that the primary electric field at any depth is proportional to the product Z0(o))e-iv,z0

(equations 2.10 and 2.12, and also reflected in the factor qic01.t_0 that appears in the

magnetic transfer functions summarized in Tables 2.2 through 2.4), even on the surface of

the earth (where the effect of the magnetic transfer functions is most emphasized), the

amount of conduction current available for channeling will decrease in proportion to q-_ for

decreasing values of frequency (Wannamaker et al., 1984). With this reduction in the

conduction current available for channeling, the only way to increase the surface magnetic

field effect at decreasing values of frequency is by simultaneous attrition of the area where

the conduction takes piace; this rather pathological situation is not to be expected in practical

field studies. Moreover, partly because of their lack of lateral sttrface discontinuities and

partly because of their relatively smaller amplitude compared to the amplitude of the

primary magnetic field, secondary surface magnetic field variations do not impose as stiff

sampling requirements as their electric field counterparts do in the MT probing of the
subsurface.

1 DC surface magnetic field effects are a subject of interest to the magnetometric resistivity method.
Edwards(1974),for instance,has studiedthe surfacemagneticresponseof a DC currentfilamentburiedin
a conductivehalf-space.
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An important property of the secondary surface magnetic fields variations also

implicit in the Bom approximation results is that they exhibit absolutely no sensitivity to the

average value of subsurface resistivity. This can be demonstrated by substituting _---'q----0in

the expressions for the 3-D magnetic transfer functions shown in Tables 2.2 through 2.4

(in fact, the result of this substitution is already expressed as the 1-D magnetic transfer

function in each table.) The consequences of this property in any attempt to infer a cross-

section of subsurface resistivity exclusively from measurements of the surface magnetic

field are discussed in detail in Chapter IV. For the moment, it is stressed that the same

property can be used to obtain an estimate of the primary magnetic field.

The fact that the secondary surface magnetic field measurements have a perfectly

null DC wavenumber harmonic indicates that their horizontal spatial average taken

simultaneously in the x and y directions must approach zero for increasingly long averaging

distances. In the limit, the outcome of such a horizontal average will be an estimate of the

plane-wave primary magnetic field. This property suggests that when the magnetic field is

sampled at a number of locations within the survey area, one may fu'st estimate the primary

magnetic field by areal spatial averaging of these measurements and then compute MT

impedances solely reflecting the spatial variability of the electric field response from the

subsurface. Such a procedure contrasts with the sta_adard MT field method in which the

local electric-to-magnetic field ratio (local wave impedance) is measured at all sampling

locations. More specific techniques that can be used for the practical estimation of

secondary-to-primary field ratios using the same principle are described in Chapters IV
and V.

2.7 Suppressing the electric static effect

A foremost conclusion that stems from section 2.4 above is that the effect of the

static component in the 2-D TM and 3-D electric transfer functions can be reduced by

inverting its wavenumber behavior, i.e., by spatially low-pass filtering the surface electric

field. Where this can be accomplished, the remaining low-pass characteristics of the electric

transfer functions will cause the measured electric field components to contain contributions

from subsurface resistivity variations that are averaged with respect to depth as well as both

horizontal directions, x and y. Subject to the restrictions of the Born approximation, a

bench mark for the cutoff wavenumber, _c, required to suppress static effects may be

determined from equations (2.26) and (2.27) as the value of _ below which the induction
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component in those expressions produces a larger surface amplitude response than the

static component at the same frequency. Excluding the effects of r2(_,rl), this occurs when

_2= COl.tao= colt. (2.31)
Po

aD

Cutoff wavenumbers below this critical value increase the suppression of the electric static

.. component but decrease the lateral resolution of the induction component. Conversely,

cutoff wavenumbers greater than this value produce just the opposite effect.

As emphasized in section 2.4, the induction co rriponent of the 3-D electric transfer

function has the characteristics of a spatial low-pass filter for which the cutoff

wavenumbers in orthogonal horizontal directions are inversely related to the depth of

response. Because a low-pass filter is an averaging operator, it follows that the magnitude

of the response derived from the induction component is determined by the distribution of

local lateral averages of subsurface resistivity where the size of the region over which the

resistivity is averaged increases with increasing depth. Furthermore, similarities between

the induction component of the 3-, 2- and 1-D electric transfer functions suggest that the

induction component responds to the lateral variations of subsurface resistivity much as if

operating over a horizontally stratified medium with the resistivity at each depth level equal

to a local lateral resistivity average taken at the same depth. This property suggests that,

with their electric static component suppressed by way of spatial f'fltering, 2-D TM and 3-D

surface electric field data can be interpreted using methods appropriate for the interpretation

of 1-D or 2-D TE ( both inductive modes of surface electric response) electric field data.

Thus, the resistivity Po in equation (2.31) should be interpreted as a local spatial

average of the subsurface resistivity distribution at an effective depth of response

determined by the operating frequency. To link the three parameters, frequency, co,average

resistivity, Po, and effective depth of response, the right-hand side of equation (2.31) is

now expressed in terms of the Bostick (1977) depth of penetration_ ZB, namely,

" 1 _C0tt

ZB2 PO

This equality suggests that the cutoff wavenumber of the f'flter required to reduce the effect

of the static component on the surface electric response may be estimated from

ZB
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or, in general, from

- c1 , (2.32)

where c is a real constant that can be arbitrarily adjusted to control the extent of the spatial

filtering below (c< 1) or above (c> 1) that consistent with equation (2.31).

As discussed in section 2.4, the high-pass characteristics of the electric static

component almost exclusively operate on the _ wavenumber harmonics of the subsurface

resistivity distribution. Because of this, any filtering operation intended to suppress surface

static effects must have directional properties in order to comply with the requirements

suggested by equation (2.32). The easiest and most natural way to comply with such a

requirement is to extend the directional spatial filtering performed by the electric field

sensors themselves (see section 1.3) in a controlled fashion.

For a preset filtering direction, it is essential that electric dipoles be deployed

tangential to it. In so doing; there are two variables that control the sampling of the surface

electric field response from the subsurface, and hence its subsequent inversion into an

estimate of subsurface resistivity: one is the separation distance between adjacent dipoles

and the other is the dipole length. The separation distance should be chosen in accordance

to the well established sampling theorem so as to minimize aliasing effects (potentially

damaging given the high-pass characteristics of the 3-D electric static component.) As for

the dipole length, it should be remembered that although long dipoles may provide a useful

amount of suppression of local static effects, excessively long _poles may cause undesired

lateral smoothing. A method that offers a good compromise between sampling distance and

dipole length is the one in which electric dipoles are deployed end-to-end along the filtering

path. This arrangement of electric dipoles has the important characteristic that the length of

the electric field average at a given point can be increased with decreasing values of

frequency as required for the application of equation (2.32). Both the implementation

characteristics of such a survey technique as well as the practical evaluation of spatial

filtering for the MT sounding of the subsurface are the central discussion matters in I,

Chapters V and VI.

,Q
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2.8 Summary

First-order Born approximation of the MT scattering equations yields a linear

solution for the relation between a perturbation in subsurface resistivity and the ensuing

surface response. The linear system solutions derived from this approach apply only to

" cases of low resistivity contrasts, but do retain many of the characteristics of the forward

and inverse MT problems as they can be applied to any geometrical complexity in

subsurface. In fact, the linearized forward solutions yield a set of response equations that

can be easily specialized to the cases of 1-, 2-, and 3-D subsurface resistivity distributions,

and which are consistent with ali the qualitative properties of magnetotellurics that are
known to hold over these environments.

Wavenumber analysis of the linear system solutions suggests that the electric

response from 2-D TM and 3-D geoelectric media can be described as the additive interplay

of induction and static components. The induction component has a zero DC-limit

response, and operates over the lateral variations of subsurface resistivity in the form of a

low-pass wavenumber filter whose cutoff wavenumber decreases with decreasing values of

frequency. These characteristics exemplify the response properties of the purely inductive

2-D TE and 1-D transfer functions, and which imply _ selective deepening of the zone of

response with decreasing values of frequency. The static component, on the other hand,

does not have a zero DC-limit response and operates over the lateral variations of

subsurface resistivity in the form of band-pass wavenumber filter whose cutoff

wavenumber 2ncreases with decreasing values of frequency. Because of these wavenumber

properties, the static component may eventually outweigh the amplitude response derived

from the induction component below some value of frequency, at which point the

amplitude of the surface electric response will not truly reflect a selective deepening of the

zone of response with decreasing values of frequency. This is a common and highly

adverse situation in the exploration of the subsurface with the MT method.

Fortunately, the linear system analysis also suggests that a way to enhance the

. amplitude response of the depth-sensitive induction component over the amplitude response

of the depth-insensitive static component is to spatially low-pass filter the surface electric

,. field. The cutoff wavenumber of the filter required for this operation decreases with

decreasing values of frequency and is therefore insensitive to the induction component.

After filtering, the electric field variations can be subject to procedures suitable for the

inversion of the inductive part of the MT response into a cross-section of subsurface

resistivity.
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The practical procedure suggested herein for the sampling of the electric field is the

one in which electric dipoles are deployed end-to-end continuously along a curvilinear

survey path. This arrangement of dipoles lends itself to a spatial filtering procedure

whereby the length of the electric field average is increased with decreasing values of

frequency. Although the suggested field procedure includes only the sampling of electric

field data tangential to the line of measurements, the use of spatial filtering is consistent

with the response characteristics of 3-D geoelectric media. It is envisioned that detailed

exploration work over complicated 3-D targets may demand the deployment of electric

dipole arrays in more than one direction.
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Incident Electric
Field

X
Y

1
Z

Figure 2-1. Theoretical model: the earth is described as a homogeneous half-space with confined
conductivity anomalies. Incident electromagnetic energy is in the form of normal plane waves polarized in
the x-direction.
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TE AND TM ELECTRICINDUCTION RESPONSE

Figure 2-2. Amplitude response of the 2-D electric induction components. Solid and dashed curves
describe the amplitude response of the TE and TM-induction transfer functions, respectively, evaluated at
different depths of response, z0. The curves are normalized with respect to the 1-D electric amplitude

response calculated at the same depths of response, and are plotted with respect to the normalized
wavenumber _#'_l.t_0.

J
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2-D TM ELECTRICSTATICRESPONSE

Figure 2.3. Amplituderesponse of the TM-mode electric static component.Response curves are shown
for various depths of response, z0, normalized with respect to the 1-D response at the same depths, and

- plotted with respectto the normalizedwavenumber_¢'_i.tGo •
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TE SURFACEMAGNETIC RESPONSE

Figure 2-6. Amplitude response of the TE magnetic transfer function. Response curves are shown for
various dep',.hs of response, z0, normalized with respect to the 1-D electric response at the same depths, and

are plotted with respect to the normalized wavenumber rl/#_l.t_0 .



CHAPTER III

BORN INVERSION OF 1-D MT DATA

3.1 Introduction

Inversion of 1-D MT data has been a subject of extensive research, with

contributions dating as far back as the curve matching techniques suggested by Cagniard

(1953) irt his seminal paper on magnetotellurics. The abundance of material related to this

interesting t,_pic is no mere coincidence: the situation in which a normally incident plane

wave excites a stratified medium to date remains the simplest of ali analytical problems for

the EM probing of the subsurface. It is this simplicity that makes the 1-D MT inverse

problem amenable to a fairly large class of formulations, ranging from computer-intensive,

nonlinear iterative techniques, to much simpler direct (although sometimes only

approximate) procedures. Regardless of the method of solution, however, the common

theme to ali 1-D MT inverse techniques is the problem of extracting a resistivity profile in

the rather adverse situation of exponentially decreasing sensitivity with increasing depth.

This chapter introduces a linearized solution for the inference of a profile of

subsurface resistivity from surface electric field data gathered at a number of frequencies.

The linearized inverse directly stems from the Born approximation solutions derived in

Chapter II particularized for a medium in which the resistivity is solely a function of depth.

In considering this rather simplified view to the inverse problem, however, the intention is

not to devise a practical tool for the interpretation of MT data, but to shed light on the

factors that control the vertical resolution characteristics of 1-D MT data.

The linearized 1-D MT inverse problem is studied here by extensively exploring the

properties of the associated weighting kernels. For this purpose, a change of variables is

introduced whereby both frequency and depth are expressed as logarithmic quantities.

Likewise, a modification of the data and model representations is used which is consistent

• with the expressions for the first-order Rytov approximation of the surface MT fields, lt is

shown that the logarithmic parameterization of both frequency and depth transforms the

kernel of the linear system solution into a depth-shift invariant operator. With this property,

the characteristics of the linear system are studied in the wavenumber domain, leading to

simple formulas describing the wavenumber range along which noisy data can be mapped
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into practically undistorted vertical variations of subsurface resistivity. Finally, numerically

simulated data are used to test the linearized inverse solution in cases where the

assumptions implicit in the Born approximation are unjustified. The objective of these tests

is to ascertain in a most pragmatic way the extent to which the linearized inverse is a useful

tool for understanding the actual nonlinear inverse problem. In so doing, various practical

e2- and £1-norm model estimation procedures are examined and their results contrasted

against those obtained with a popular nonlinear estimation procedure.

A study in some ways related to the objectives of this chapter has been reported by

Bostick et al. (1979). Their work stemmed from direct linearization of the second-order

nonlinear Ricatti equation governing the variations of EM wave impedance with respect to

depth. In spite of a different starting point, however, Bostick et al.'s basic equations are

equivalent to those serving as foundation to this chapter, not to mention some of their

original concepts as weil. Unfortunately, their work has been never formally written and

their ideas remain largely unknown. Thus, in the measure to which this chapter represents

an outgrowth of Bostick et al,'s work, care has been exercised to point out where ideas and

concepts are borrowed from their work.

Finally, the topics studied in this chapter are important for understanding the

developments of Chapter IV leading to the formulation of a Born inversion procedure

applicable to 2-D MT data.

3.2 The linearized forward problem

Secondary surface magnetic field variation both laterally and with respect to

frequency are constant over 1-D media (Kaufman and Keller, 1981). This property of the

surface MT response is consistent with the characteristics of the linearized magnetic transfer

functions (Tables 2.2 and 2.3) derived in Chapter II, and indicates that the nature of the

1-D vertical variations of subsurface resistivity can only be determined from the secondary

frequency variations of the surface electric field.

Following the notation introduced in Chapter II, the electric field, E, on the surface

of a 1-D earth may be expressed as

E(m) = E0(m) + e(03), (3.1)

where 03is the radian frequency, E0 is the primary electric field dictated by a homogeneous

half-space of resistivity Po, and e is the secondary surface electric field that arises with
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variations of subsurface resistivity away from the homogeneous half-space. Similarly, the

resistivity, p, in the subsurface may be written as

p(z) = Po + Ap(z), (3.2)

" where z is depth measured downward from the surface and Ap describes the vertical

variations of subsurface resistivity away from the homogeneous half-space.

In the presence of band limited and noisy surface measurements, the mapping of

E(co) into p(z) is perforce non-unique (Bailey, 1970). In addition, the relationship between

these two functions is in general nonlinear and thus difficult to analyze without specific

knowledge of the subsurface. To ease the understanding of how E(o_) maps into p(z),

consider the test case in which the assumptions

e(c0) << E0(¢.0),or/and (3.3)

Ao(z) << Po (3.4)

are met. For this situation, the relationship between e(c0) and Ao(z) can be expressed as

suggested by equations (2.20) and (2.24), namely,

_--(¢.o)= _/i¢.o_]P0/ Ap(z0) e.2zoVitoix/p0dzo (3.5)
J0 P0

Q

Customarily, surface electric field measurements made over 1-D media are

disguised in the form of an impedance, Z(c0), relating orthogonal electric and magnetic field

values. Assuming that the electric field vector, E, points in the x-direction and that the

magnetic field vector, H, points in the y-direction, the 1-D MT impedance can be expressed

in terms of the secondary-to primary electric field ratio as

Z(o)) - E(eO) Eo(¢O)+ e(o)) e(¢o)
H(o)---_- Ho(O)) = Zo(O))[ 1 + Eo(O)-----_] ' (3.6)

where Zo(O)) is the surface wave impedance associated with the reference homogeneous

half- space (equation 2.12).

Equation (3.5) can be rewritten in the more familiar notation of linear inverse

problems (Parker, 1977) as
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= fo m(z0) f(co,z0) dzo, (3.7)
d(¢o)

where

dfr.0)= 2 _-(0co) are the data, (3.8) "

m(z) - Ap(z) is the model, and (3.9)
Po

f(c0,z) = 2qio31Mp0e -2zqi°_t/p° is the kernel. (3.10)

In this notation, the factor 2 is arbitrarily introduced in the data and kernel definitions with

the objective of rendering the real part of f(co,z0) unimodular (see section 3.7).

The kernel f(co,z0) in equation (3.10) may be thought of as an adaptive operator

that, at a given depth, z, locally averages the vertical model variations to produce the data

measured at the frequency co. The vertical.extent of the average performed by the kernel is

adapted in response to variations in both frequency, co, and depth, z. Analysis of the

averaging characteristics of the kernel is best done if both model and data variables are

expressed in forms that truly express the vertical resolution characteristics of

magnetotellurics; this objective is pursued in sections 3.3, 3.4, and 3.5 below.

3.3 Linearized forward problem under the first-order Rytov approximation

Often, practical MT exploration problems call for exponential representations of

both data and resistivity variations in the form

E(co) = e 't'(c°) = e a'_(c°)+ A't'(C0), and (3.11)

p(z) = eV(Z) = eV0+ av(z) , (3.12)

where _ and _ are auxiliary complex and scalar functions, respectively. This

representation for E(o3) and p(z) envisions both functions as logarithmic oscillations about

their average logarithmic values. In fact, because the two functions occur over such large

amplitude ranges they are both customarily plotted with a logarithmic scale (see Figures 1.4

and 1.5), for which a description in the form of equation (3.11) and (3.12) is best suited.
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Exponential function representations such as those of equations (3.11) and (3.12)

lend themselves to a recursive series expansion known as the Rytov series. This

representation is in some ways similar to the additive Born series expansion for which f'trst-

order terms were derived in Chapter II. Studies of the relationship between the terms in

• both expansions have been presented in the solution of wave propagation problems (Sancer

and Varvatsis, 1970, and Mano, 1971). A simple relation between the f'trst-order terms

involved in both series expansions for the MT problem can be obtained in the following

way. With the equivalences

ea'°(t°)= E0(¢o),and
ew°= po,

as well as the assumptions that IA_<<l_g01and IA_I<<I_01, substitute the right-hand side of

equations (3.11) and (3.12) into equations (3.1) and (3.2), to get

E-_-(0¢o)= Aq)(¢o) = Aln E(¢0), and

Ao(z)
- Allt(z) = Aln p(z).

Po

These expressions suggest modified data and model representations for the linearized 1-D

MT forward problem in the form

d(o3) = Aln E2(¢o) = Aln IE(¢o)I2 + i arg[2Eo(c0)E(¢o)1j,and (3.13)

ro(z) : Aln p(z), (3.14)

respectively, where the assumption is implied that E(¢o) is never zero, a fact perfectly

justified by the minimum-phase property of 1-D MT data (Kunetz, 1972, and Weidelt,

1972). Notice that the model definition in equation (3.14) has the advantage of naturally

enforcing the positivity of p(z) in any attempt to solve for m(z) via equation (3.7).

It becomes evident that under the f'trst-order Rytov approximation both the data and

the model possess different expressions compared to those of the first-order Born

approximation. However, the kernel for the linear system equations is exactly the same in

both situations. The physical significance attached to d(¢0) under the first-order Rytov

approximation is explored in the following section.
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3.4 Relationship between the ratio e/E0 and apparent resistivity and
impedance phase data under the first-order Rytov approximation

Once again, consider the 1-D MT impedance, Z(o), defined in equation (3.6),

although this time expressed in the additive form

z(o) = z0 (co)+ az(o),

where A7.(o) is the perturbation of surface wave impedance reflecting the variations Ap(z)

of p(z) about Po. Disregarding second-order terms of AZ(o), the square of Z(o) can be

approximated with the expression

,,6Z(o),
Z2(O) = Z_(o) [1 + z Z0(o) j .

Taking the complex logarithm on both sides of this last identity and retaining only the first-

order terms in AZ(o) for the expression within brackets yields

In [Z2(o)] =In[Z_(o)]+ 2AZ(°)Z0(o) "

Collecting real and imaginary components results in the two identities

az(c0)
In IZ(o)[2 = In IZo(o)[2 + Real[2zn(o)v ]' and

r,,AZ(o),
2arg[Z(o)] = 2arg[Z0(o)] + Imagtz Z0(o) j"

Adding -In(oi.t) to both sides of the first identity and substituting the exact expressions for

IZ0(o)I and arg[Z0(o)] (equation 2.12) yields

AZ(o) and (3.15)
In pA(O) = In PO+ Real[2Z0(m ) ],

._Az(o),
2arg[Z(o)]= z_+ Imagt2_'(o_z.o )j' (3.16)

where pA(O) is the 1-D apparent resistivity function (Cagniard, 1953). Now, from

equation (3.6) it becomes clear that

2_e (o) ..AZ(o)
E0 =/_ '
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in which case, by simple inspection of equations (3.15) and (3.16), one fL-aallyobtains

Real[2_- ° (co)] = Aln PA(CO),and (3.17)

Imag[2_0° (co)] = 2arg[Z(co)] - K (3.18). 2 '

These are simple expressions that relate both apparent resistivity and impedance phase with

the real and imaginary parts of d(co). As detailed in section 3.11, equation (3.17) also

provides a simple means to estimate the background resistivity, P0, directly from apparent

resistivity data.

3.5 Reparameterization and convolutional response

Because of the very large frequency range over which electric and magnetic field

measurements are made, MT signals are normally processed to yield frequency samples

evenly distributed in logarithmic fashion. Both the reason and repercussion of a sampling

procedure of this nature as to the way in which vertical variations of subsurface resistivity

can be resolved from the data is best understood if both model and data variables are

expressed in equivalent forms. A way to accomplish this is by writing both skin depth, _5,

and depth, z, in terms of exponential variables; more precisely, let

= P_ - e-v, and (3.19a)

z = e-u, (3.20a)

such that,

v = -In _5= In _ + In _/_ and (3.19b)2p0 "
u =-in z (3.20b)

(Bostick et al. 1979.) Equation (3.19b) above is a double transformation that links the two

- variables, background resistivity and frequency, to map the original frequency samples into

the same natural log depth axis that is used to describe the vertical variations of subsurface

- resistivity (equation 3.20b).

Substitution of equations (3.19a) and (3.20a) into equation (3.5) gives rise to a

well-known convolutional representation form, i.e.,
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d(v)= f_ m(u) f(v-u) du, (3.21)

where

f(u ) = g(u) + i h(u), (3.22) "

g(u) = [ cos(2e u) + sin(2eu)] 2e u'2e_, and (3.23)

h(u) = [ cos(2eU) - sin(2eU)] 2e u'2e_. (3.24)

Thus, under the logarithmic parameterization of _5and z, the new kernel, f(u), in equation

(3.21) adopts the properties of a depth-shift invariant operator. In a way, the simplicity of

equation (3.21) suggests that the logarithmic scale for both the sampling of the data and the

inference of the model are an optimal combination to deal with the exponential decay that

the kernel f(o_,z) (equation 3.5) experiences with increasing depth. Smith and Booker

(1988) in their own nonlinear study advocate a parameterization of this nature because they

show it works as a natural "prewhitening" process of the observational errors. The function

f(u) defined in equations (3.22) through (3.24) is the impulse response (or Green's

function) for the 1-D MT forward problem and, borrowing the terminology used in linear-

system theory, can be meritoriously referred to as the 1-D MT wavelet (Bostick et al.,

1979).

Figure 3-1 shows both real and imaginary components of the reversed 1-D MT

wavelet, f(-u), plotted as a function of-u, such that depth actually increases to the right of

the plot. The reversed wavelet is shifted over the resistivity model at increasing values of

depth to produce the data measured at decreasing values of frequency. The resulting

apparent resistivity and phase curves (real and imaginary components of the data under the

Rytov approximation) thus appear as smooth versions of the original resistivity profile after

the wavelet has been shifted through it (Figure 3-2). A study of the smoothing
characteristics of the 1-D MT wavelet is carried out in section 3.8 with the aid of the

Fourier transform.

3.6 Causality and minimum phase

For the seemingly unrealistic, although theoretically appealing situation in which the

linearized data have been gathered at ali points along the logarithmic frequency axis, their

real and imaginary components remain linear combinations of each other. This linear

dependence is due to the linearity in turn exhibited by the real and imaginary parts of the
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1-D MT kernel themselves In fact, both components are related by the Hilbert u'ansform,
defined as

_IJJ g(u0)
h(u) = _ - _ duo, and (3.25)

h(uo)1g(u)
J_** duo (3.26)

__ u0 -u

(Bracewell, 1965).

To demonstrate that equations (3.25) and (3.26) hold true for the linearized 1-D MT

forward problem, consider the auxiliary integral, Ii(e0), defined as

Ii(u) = (+** e.i2eU° eU°" 2eU0duo.
u0 - u

The Cauchy principal value of Ii(u) can be found by closed contour integration in the upper

half of the complex plane. For this purpose, the contour of integration is chosen to contain

both the real axis and a semicircle of infinite ._dius. Given that the complex function,

oc(w) = e.i2ew ew 2e",

vanishes for

w = Rcos 0 + isin 0; R---_00, and 0 < 0 < n,

it can be shown that the contribution from the integral taken along the infinite semicircle

reduces to zero. Along the real axis, on the other hand, the path of integration can be drawn

such that the singular point u=u0 is not contained within the region enclosed by the contour

" of integration. Thus, with no other singularities to take care of, the Cauchy principal value

of Ii(u) is -in times the residue of the integrand at u=u0 (Marsden, 1973), whereupon,

I1 (u) = -ine +i2eu e u - 2eu .

Similarly, a second auxiliary integral,
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i{'+*_ e-i2euo eu0- 2euo12(u) duo

J_. U0 "" U

is solved with the aid of a closed contour drawn in the lower half of the complex plane. The

Cauchy principal value of I2(u) is now +in times the residue of the integrand at u=u0, i.e,

I2(u) = +iTre+iae_eu "2eu .

By combining the results for Ii(u) and I2(u) above one f'mds the expressions

_ cos(2eU0) eU0- 7.euo
u0 - u duo =- nsin(2eU), and

* _ sin(2eU0) eU0 - 2eU0
u0 - u duo - _cos(2eU).

These last two formulas are now used in the substitution of equations (3.23) and (3.24)

into equations (3.25) and (3.26) to finally showing that, in effect, both g(u) and h(u) are

analytic components of each other.

The Hilbert transform relation that exists between g(u) and h(u) is consistent with

the property of causality inherent to the electrical response of a 1-D earth upon normal

plane-wave excitation (Kunetz, 1972, and Weidelt, 1972). In the case of the ftrst-order

Rytov approximation, equations (3.25) and (3.26) directly enforce the even more

specialized minimum-phase property of the response, qoehl et al. (1977) have

advantageously used this minimum-phase property in the interpretation of noisy and biased

apparent resistivity data.

Even though both real and imaginary components of the data are related by a causal

linear transformation, there are properties of the subsurface resistivity variations that cannot

be recovered by the imaginary component alone. This is shown in sections 3.7 and 3.8

below.

3.7 Depth of penetration in a homogeneous half-space

When operating over a homogeneous perturbation of subsurface resistivity, the

electrical response from the subsurface obtained via equation (3.21) is determined by the



59

DC values of the real and imaginary components of the 1-D MT wavelet. Direct integration

of ",heright-hand side of equations (3.23) and (3.24) reveals that such DC values are given

by

+,,_ g(u) = 1,
du and

m

_+o,_h(u) du 0.

In plain words, these results indicate that only the real component of the data is sensitive to

the average value of subsurface resistivity. Also, notice that the unimodularity of g(u)

comes as a consequence of the factor 2 arbitrarily introduced in the definitions for the data

and kernel functions in equations (3.8) and (3.10), respectively.

Because of the fact that h(u) has a zero DC value, the imaginary part of the electrical

response is useless in helping establish a difference among ali homogeneous distributions

of subsurface resistivity and, therefore, cannot be used in at, independent determination of

depth of penetration. For this purpose, attention is focused solely on the real component of
the data.

Consider now the integrated response function, I(-u), def'med as

I(-u) = I/u g(-u0) duo = 1-e -2e'' cos (2eU).

Inspection of this last expression reveals that I(-u)---)0 for u---_-**, whereas I(-u)---_1 for

u---)+,o. The way in which I(-u) asymptotes the value of 1 determines the depth range

down from the surface where most of the weighting exercised by g(-u) takes piace. This is

illustrated in Figure 3-3, where the integrated responses of the real and imaginary

components of the 1-D MT wavelet are plotted with respect to -u, i.e., with depth

increasing to the right of ",heplot.

• The first point,-u, where I(-u) becomes 1 is -u=0.242 (0.788). For comparison,

the Bosfck depth of penetration (Bostick, 1977) in the homogeneous half-space coincides

with the point-u--0.346 (0.718). Beyond the value-u--0.242, toward the positive portion

of the -u axis, the func:ion I(-u) continuously oscillates about 1, with the oscillations

progressively smaller for increasing values of -u. This oscillatory behavior of I(-u)

indicates that, for given frequency, or v value, the surface electric response is insensitive to

_ any hair--space buried below the critical point v-u=0.242. Although the result obtained here
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is consistent with the results reported in his study, Spies (1989) examines more

conservative estimates of the depth of penetration in an effort to account for practical noise

levels in the measured data. As shown below, the effect that noisy measurements have in

the estimation of a resistivity model is probably best understood in the vertical wavenumber

domain.

3.8 Vertical harmonic behavior

Owing to the depth-shift invariance property of the 1-D MT wavelet, the

characteristics of the linearized response can be easily studied in the Fourier domain. To

this effect, def'me the Fourier transform pair of f(u) as

F(_) = I'{f(u)} - ftu) e.i2_'u du, and (3.27)

f(U) = _:"-1 (F(_)} = F(_.) e"i2r_z'udX, (3.28)

where the variable _. is the linear vertical wavenumber. Thus, in the FOurier transform

domain, equation (3.21) takes on the multiplicative form

D(_.) = M(_.) F(_.) , (3.29)

where,

D(k) = _ {d(v) }, and

M(X) = _"{m(u) }.

In order to obtain the Fourier transform of the 1-D MT wavelet, fin'st substitute equation

(3.23) into equation (3.27) together with the change of variable q)= 2e u. The result is

G(_,) = _'{ g(u) } = 2 "i2_" fo (cosq) + sinq) ) (pi 2;-_ke-_
dq) e

Further substitution of Euler's formulas for sine and cosine into this last expression plus a

few algebraic steps yields

fo foG(_,) = 21 " i2_" {(1 -i) q)i2_" eq_(1 - i) dtp+ (1 +i) q)i 2_- e-Cp(1+ i) dq)}.
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The integrals involved in this 1ast expression can be solved in terms of the complex-valued

gamma function, F. Using the integral formula

fo tr-1 e -_ttdt = __L_F(v)ktv
[Real kt>0, Real v>o]

(Abramowitz and Stegun, 1972, 6.1.1), one finally obtains

G(_.) = 2"i3nz' cosh _2 ) F(1 +i2n_.). (3.30)

Similarly, the Fourier transform, H(_,), of the imaginary part of the 1-D MT wavelet, h(u),

takes on the form

H(_,) = -i2 -i3nk sinh (n___) F(1 +i2n_,). (3.31 )

Amplitude values of both G and H can be computed with use of the identity

IF(1 +i2n_,)l 2= F(1 +i2nX) F(1-i2n_,) = 2_2_,
sinh(2n2X)

(Abramowitz and Stegun, 1972, 6.1.31).

The low-pass filter nature of both G und H is illustrated in Figure 3-4 with plots of

amplitude response versus linear wavenumber, X. In these plots, the upper scale consists

of wavenumber values in the units of cycles/decade. Such units are particularly useful in

magnetotellurics since the sampling interval with which data are acquired in the frequency

axis is normally a submultiple of a logl0 decade. Notice that, in agreement with the depth-

domain analysis carded out in section 3.7, H(_.) annihilates the DC wavenumber harmonic

of the vertical variations of subsurface resistivity.

3.9 Model deconvolution and vertical resolution

In the wavenumber domain, a simple algebraic step is all that is required to estimate

a resistivity model from the data via equation (3.29), namely,

M(X)- 1 o D(X), (3.32)
F(k)
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provided that IF(_.)l_e0for ali values of _.. However, the asymptotic decay of IF(_)I (Figure

3-4), together with the potentially damaging presence of noise in the data, render the above

equation unstable in any practical attempt to recover M(k). To understand this problem,

assume that the data are contaminated with additive noise whose Fourier transform is

denoted as N(_.). Thus, in the wavenumber domain the measured data, D(k), can be •
written as

D(_,) = D(_,) + N(_.). (3.33)

Resorting to the basic tenet of linearity, one can obtain a model estimate, M(_.), from the

noisy data by way of the expression

M(_.) = S(_.) D(_,), (3.34)

in which the transfer function S(_.) is deliberately introduced to describe the way in which

noise in the data projects into a distortion of the true model solution, M(_.). The way in

which the true model solution is modified in response to the presence of noise in the data is

determined by the characteristics of both F(_.) and N(_.). Unfortunately, in practical

applications only a few of the characteristics of the noise, N(_,), are known a priori, and,

consequently, the estimation of M(_,) from noisy data is rendered non-unique.

A common procedure to solve the model estimation problem is the one for which

the difference between M(_.) and M(k) is minimized in a least-squares, or e_-norm sense.

To this end, consider a stationary, zero-mean model, M(_.) (if the mean of the model is not

zero one subtracts the mean from it prior to performing this analysis). Likewise, assume

that the noise in the measurements is stationary, has zero mean and is uncorrelated with the

model. Hence, the least-squares, or Wiener estimate of S(_.) is

S(_,) = .__!__ [W(_)[2 , (3.35)
F(_.) IF(_.)I2+ NSR2(_.)

,o

where NSR(k) is the function that describes the noise-to-signal ratio, expressed as

NSR(_.)- IN(_.)I (3.36)
IM()_)I
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(see, for instance, Papoulis, 1965, and Franklin, 1970). With this solution for S(X), a

measure of the difference between M(_.) and M(X) is obtained by substituting equations

(3.32), (3.33), and (3.35) into equation (3.34), i.e.,

M(_.) = IF(MI2 • M(_.). (3.37)
IF(_.)I2+NSR2(_,)

" Equations (3.32) and (3.34) reduce to equivalent expressions when NSR(_.)---O. lt

is remarked also that the definition of the noise-to-signal ratio in equation (3.36), which

considers the model variations as signal, tacitly assumes that IM(_.)I_:0 for ali values of X.

This assumption has a practical reason: it allows one to study the resolving power of the

linear system solution embodied in equation (3.34) when the model is potentially capable of

exciting all wavenumber harmol_ics in the surface electric field response.

In equation (3.37), the ratio

R00 = IF(X)12
IF(_.)I2+ NSR2(_)

is normally referred to as the resolution window. The latter function is a zero-phase low-

pass filter that describes the distortion of model harmonics in the presence of noise; the

larger the value of NSR(_.) the lower the cutoff wavenumber of R(%).

Within the assumption of stationarity, the Wiener estimate of SO.) is indeed the best

estimate when the noise, N(_.), is white and is described by a Gaussian probability

distribution (Menke, 1984). To understand the resolution characteristics of the 1-D MT

wavelet, consider a "white" model, m(u), with variance s2, and hence described in terms of

the Dirac delta function, 8(u), as s28(u). Assume also that the noise is white and is

described by a Gaussian probability distribution of zero mean and variance equal to n2.

Under these conditions, the function NSR(_) (equation 3.36) is constant and equal to

NSR(_) =n.s

• Figure 3-5 shows the "white" model amplitude response, D(_), of the linear system

described by F(_) upon excitation of a unity-variance model, 8(u). This figure also shows

a white noise amplitude response, N00, with a 10% standard deviation. Graphically, it is

easy to understand for this particular situation that, beyond approximately 1.5

cycles/decade, the noise response has completely flooded the natural signal level from the
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subsurface. For a given noise-to-signal ratio, the maximum wavenumber harmonic that can

be recovered from the subsurface without distortion is described in the plots of resolution

window, R(k) shown in Figure 3-6, for both real and imaginary components of the data.

Even in computer simulate5 data, when the only likely sources of noi;e are

accumulated 32-bit computer roundoff errors, a noise-to-signal ratio of approximateij 10-4

remains a good minimum bound. For this situation, Figure 3-6 indicates that 3.5

cycles/decade is the maximum wavenumber with which the model, M(_.), can be recovered

without significant harmonic distortion. Assuming that this wavenumber is the actual

Nyquist wavenumber with which the data have been sampled along a log10 frequency axis,

it becomes apparent that 7 or 8 frequency samples per decade should be the maximum

necessary to optimally recover the vertical variations of subsurface resistivity (other sources

of noise in the data actually bring this minimum number of samples per decade to a lower

value.) Inverse simulation studies carried out with single-precision arithmetic on a 32-bit

computer show that a more practical lower bound for noise-to-signal ratio is approximately

0.01 (sections 3.12 and 3.13), for which the optimal number of frequency samples per

decade is in the neighborhood of 5.

In the sections below, deconvolution examples are presented to illustrate the

characteristics of, and problems faced by practical 1-D MT inverse problem formulations.

The objective of those examples is to ascertain whether the linear system representation

discussed above has any practical use in situations where the assumptions of small

secondary resistivity and electric field variations are clearly unjustified. Likewise, in the

simple framework of the linearized forward solution, procedures are examined whereby the

inversion of a resistivity profile is affected by the choice of model functional, smoothing

parameters and, ultimately, model norm.

Even though deconvolution procedures in the wavenumber domain can be used in

practical inversion problems, often depth-domain procedures offer a greater degree of

flexibility, as is shown below.

3.10 Model deconvolution in practice

Inversion procedures for the estimation of the model, m(u), from the data, d(u), for

which the relationship is of a linear nature have been amply studied in the context of

geophysical applications (see, for instance, the excellent tutorial paper by Oldenburg,

1984.) For the particular case in which the kernel is shift invariant, such as that of the
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linearized forward MT problem, Treitel and Lines (1982), have explored the relationship

between the Wiener deconvolution and Backus and Gilbert (1967, 1968, 1970) model

estimation procedures.

The approach taken here for the model estimation is equivalent to the constrained
b

Wiener inverse solution described by Treitel and Lines (1982)• For this purpose, equation

(3.21) is discretized in the form

N

E m(uj)g(vi - uj) Auj for 1< i < M

d(vi) = j=l
N

E m(uj)h(vi uj) Auj for M+I< i < 2M
j=l

Using the abbreviated notation,

di = d(vi),

mj = m(uj), and

=/g(vi-uj) Auj for l<i<M
fij k

h(vi uj) Auj for M+I< i < 2M

a simple matrix notation for the discrete linear forward problem is

d =_Fm, (3.38)

where

( dl ) ml)

d= d.2 , m= m2 and

fl 1 f12 "'" flN

. F= f21 f21 :'" f.ZN .

fM1 fM2 -.. fMN

e

For simplicity, and without sacrifice of generality, here attention is paid to the well-

posed inverse problem in which the number of frequency samples is exactly the same as the

number of model unknowns, i.e., M=N. Likewise, it is assumed that the data are evenly

sampled and that there are not missing data between the first and the last samples. The
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variable Au is thus independent of the column index in equation (3.38). Finally, even

though in practice the data are seldom sampled continuously with respect to frequency, the

linearity between real and imaginary components predicted by the Hilbert transform pair in

equations (3.25) and (3.26) still holds to a large extent. For this reason, the model

estimation procedures examined in this chapter are based solely on the real component of

the data. Model inference from the imaginary component of the data alone is not studied

because, as it was shown in sections 3.7 and 3.8, such data are unable to resolve the DC

component of the resistivity profile. To circumvent this difficulty one could think of a

procedure whereby the DC component of the resistivity profile would be extracted from the

real component of the data and the remaining vertical wavenumber harmonics inferred from

the imaginary component alone. However, the advantages and disadvantages of such a

procedure are not explored in this thesis.

Consider now the practical situation in which the measured data, __, are
contaminated with additive noise, n, i.e.,

d=d+n. (3.39)

An estimate of the model, _, can be found from the noisy data with use of the linear

equation

m=,_d, (3.40)

where the inverse operator S describes the way in which noise in the measured data is

projected into the estimated model solution. Once again, a solution for _. may be found by

minimizing the least-squares difference between _ and m, written as

r(__m)=(.__- m__)T(__ m_), (3.41 )

where the superscript T is used to symbolize matrix transpose. The minimization of this

model functional is the basis of the Wiener or stochastic inverse (Franklin, 1970, and Aki

and Richards, 1980), in which both model and noise vectors are assumed realizations of a

stochastic process. In this vein, assume also that both the model and the noise are

uncorrelated and have zero means (if their means are not zero then they are subtracted prior

to performing this analysis.) With these assumptions, equations (3.38) through (3.40)

substituted into equation (3.41) yield a set of normal equations for the entries of S whose
final solution is

S = (,FTCM_ F + CN)-1 CMFFT '
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where

C_M= m m T, and

CN= nn T

• are the model and noise eovarianee matrices, respectively (Aki and Richards, 1980). For

the case in which both the model and the noise are white Gaussian processes with zero

. means and standard deviations equal to sz and n2, respectively, their eovarianee matrices

can be written as

_M = s2 !, and

CN= n2 !,

respectively, where ! is the identity matrix. Under these assumptions, the solution for S.S.

above can be specialized to read as

S = (R + nsr 2 ~I)IFT...., (3.42)

where

is the autocorrelation matrix of the linear system, symmetric and Toeplitz (the latter

characteristic being a result of the shift-invariance property of the 1-D MT wavelet); also,

nsr = n
s

is the noise-to-signal ratio. Incidentally, the solution for S in equation (3.42) is the space-

domain equivalent of the wavenumber domain inverse filter S(Z.)derived in section 3.9.

Alternatively, a solution for the operator S introduced in equation (3.40) can be

found by casting the model functional, r(rn), in the form of data residuals, i.e.,

" r(m) =(_- _DT (_- d), (3.43)

o together with the condition that this model functional be minimized in conjunction with the

model energy constraint that

mTm =C

remain constant. An augmented model functional for this situation can be written as
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r(_m_) =(._- _l.)T (_- d) + at (_m_Tm- c), (3.44)

where at, the Lagrange multiplier, becomes a new variable sought after in the minimization

process leading t0 the model estimate. Treitel and Lines (1982) have shown that the critical

model value for which this augmented model functional is minimized is identical to that

derived from the Wiener inverse (equations 3.41 and 3.42). The physical significance

attached to the Lagrange mu!tiplier, at, in equation (3.44), however, is best understood
e

with the use of the noise-to-signal ratio concept of the Wiener inverse formulation.

An interesting modification to the model functional in equation (3.44) is the one for

which the first derivative of the model is minimized concomitantly with the minimization of

the data residuals, namely,

N

r(.m_)=_- d)T (__- d) + Ixx (mi- mi-l). (3.45)
i=2

The model estimate that results from the minimization of this new model functional is

= (R + at DTD )'IF T_ , (3.46)

where D is the first-order difference matrix, written in expanded form as

000...00
-1 1 0...00

I_= 0-1 1...0 0• • , • • .

660..i 6
0 0 0 .... 1 1 NxN

In equation (3.46), the Lagrange multiplier, at, controls the degree of smoothness in the

inferred model solution. A small value of czproduces a highly oscillatory model solution;

conversely, a large value of oc produces a smooth model solution. Even though their

solution includes an optimal search for the Lagrange multiplier, oc, whereby the data

residuals are kept as close as possible to a preset data misfit value, Constable et al. (1987) "

have applied this modification of the Wiener inverse solution under their own denomination

of Occam's inverse. Similar model functionals can be formulated in like manner for the "

minimization of higher-order model derivatives.

Minimization of model functionals such as those written in equations (3.44) and

(3.45) can also be done via quadratic programming techniques (Lawson and Hanson,
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1974, and Gill et al., 1981). The advantage of quadratic programing is that model range

constraints, known a priori from sources of information other than the measured data

themselves, can be enforced in the minimization of the model functional. In section 3.14

examples are shown that illustrate the effect of adding this type of model range constraints

to the minimization of the model functional. Also, section 3.15 illustrates the use of an

alternative g1-norm model functional.

i
3.11 Estimation of the background resistivity

Application of the inverse procedures described in the previous two sections

assumes that the background resistivity is known beforehand. Within the assumption of

linearity, accurate knowledge of the background resistivity is important to reduce shifting

errors in the mapping whereby measurements made along the log10 frequency axis are

transported into the log10 depth scale describing the inverted resistivity profile. This

mapping is governed by equation (3.19b).

Assuming again that the model can be described as the realization of an ergodic

stochastic process, the background resistivity can be thought of as the expected value of

this stochastic process. Accordingly, because of the linear relationship between the model

and the data also assumed in the analysis above, the average value of the data (i.e., its zero-

lag autocorrelation value) should reflect the expected model value. With this idea in mind,

substitute the value of Real(2e/E0) given by equation (3.17) into equations (3.21) and

(3.15) and express both frequency and depth in terms of the logarithmic variables v (for

any given background resistivity) and u, respectively, to get

r--.t- ,,,,

Integrating both sides of this expression with respect to v from -0,, to +.,, yields

f? f7 f+."" lira ( _1v In (pA(v)) dv ) = In + [ Aln la(u) f(v-u) du ] dv.
L ---_ oo z.t.,

Finally, interchanging the order of integration on the right-hand side integral, and assuming

that Alnp(u) has zero mean, one obtains

190= e In {_Atln(t0)]}, (3.47)
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where the bar over the logarithmic apparent resistivity is used to denote expected value. In

short, equation (3.47) indicates that the background resistivity is the expected value of

apparent resistivity taken over a logarithmic frequency axis.

Needless to say, an error in the estimated background resistivity, P0, will be

responsible for a change in the v-value range with which the data are projected onto the

logarithmic depth scale that is used in the inversion of p(z). The way in which an error in
t

the estimated background resistivity distorts the logarithmic depth scale is best expressed

by the derivative of v with respect to In(p0). From equation (3.19b), this derivative is

found to be

0v =.!.
/)In Po 2 "

Thus, as a result of a small perturbations of In(p0), the ensuing perturbation of the v value

is given by

Av = -2LA In P0.

This approximation indicates that a perturbation in the background resistivity will merely

cause a shift of the data along the logarithmic depth scale. A positive perturbation of Po will

uniformly shift the depth scale deeper in the subsurface; conversely, a negative perturbation

in Po will uniformly bring the logarithmic depth scale closer to the surface.

3.12 Example of inversion with the Born approximation of the data

The standard synthetic example analyzed here is the one described along with its

MT response in Figure 3-2. This model corresponds to the layered example used in the

nonlinear inversion study of Oldenburg (1979), although here the resistivity profile plotted

on a log10 depth scale has been shifted to the next higher decade to reflect a relatively more

practical exploration situation. The MT response plotted in Figure 3-2 was numerically

simulated with an exact 1-D transmission line algorithm, including 10 trequency samples

per decade in the band from 0.0005 to 1,000 Hz (a total of 64 samples). For the Born

approximation of the data, the function d(c0) in equation (3.7) is constructed from the

simulated impedances with the formula

z(co),
d(r.o)= ReM [2_, .r_j - 2

zo(co)
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(see equation 3.6). The value for background resistivity used henceforth in this chapter is

4.0 f_om; this value is approximately equal to the average of the fluctuations of logarithmic

apparent resistivity along the logarithmic frequency axis within the simulated frequency

range.

Ii,

Plots of the inverted resistivity profiles are shown in Figure 3-7. The algorithm

employed for the inversion is the constrained Wiener deconvolution governed by equations
I,.

(3.41) and (3.42), including results for three values of noise-to-signal ratio, i.e., 0.01,

0.1, and 1. Also, for comparison, the Bostick (1977) pseudoinverse is included in the

same figure. As evidenced by these results, a high noise-to-signal ratio translate to smooth

resistivity profiles, whereas a low noise-to-signal ratio produces a more oscillatory

behavior in the inverted profile. Noise-to-signal ratios lower than those considered in

Figure 3-7 (0.001, for instance) are tested here because their associated resistivity profiles

undergo very unrealistic oscillations. In fact, from the simulation studies related in this

chapter, it appears that a noise-to-signal ration of 0.01 is the lowest feasible value when the

synthetic data are calculated on a 32-bit single-precision machine.

Besides the model oscillations controlled by the noise-to-signal ratio, the excessive

undershoot near the first downward step of the layered model is a prominent feature

exhibited by the three inverted resistivity profiles. The nature of this undershoot will

become clearer when results are presented in the following section using the Rytov

approximation of the data. In advance, however, it is noted that such a situation occurs at

points where the data exhibit the most sensitivity to a change in subsurface resistivity, that

is to say, about low-resistivity variations. A decrease in subsurface resistivity is the easiest

way to render the assumption of small secondary-to-primary field ratios inappropriate. On

the other hand, the resistivity contrasts considered in this example by no means adhere to

the low-contrast assumption that is the basis of the linearized inverse. The fact that this

assumption is not as stiff an operation requirement is to a large extent due to the use of the

logarithmic model representation (equation 3.14).

• Figure 3-7 also shows that resistivity profiles inverted with a noise-to-signal ratio

below 1.0 display slightly more vertical resolution than the profile inverted with the Bostick

" pseudoinverse. However, the asymptotic nature of the Bostick pseudoinverse is better

suited to account for the abrupt termination of the data at 0.0005 Hz than the Born

inversion procedure, which at the same point develops a highly oscillatory behavior.
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3.13 Example of inversion with the Rytov approximation of the data

Consider now the expression for the data under the first-order Rytov approximation

of the 1-D MT response, given by

d(0_) = 2 In Z(c0) I
Izo(co)

(equations 3.8 and 3.13). With the simulated results described in the previous section as ._

input data, Figure 3-8 shows the resistivity profiles inverted via the constrained Wiener

inverse for values of noise-to-signal ratio of 0.01, 0.1, and 1.

Inspection of the results shown in Figures 3-7 and 3-8 reveals that even at the

lowest noise-to-signal ratiG, the resistivity prof'fle inverted with the Rytov representation of
the data is more stable and closer to the true model than the one inverted with the Bom

._ rep_eser_tation of the data. Of interest is also the fact that in the two methods resistive

- anomalies are better resolved than conductive ones, albeit for the model example studied

here the former anomalies exhibit much larger contrasts than the latter. This situation is

explained by recalling that the measured surface MT data is less sensitive to high-resistivity

- variations than to low-resistivity variations, in which case the linearized inverse works

under much favorable circumstances over resistive than over conductive variations of

subsurface resistivity.

Noise-to-signal ratios above 0.01 show almost no trace of the thin (keeping in mind

the logarithmic nature of the depth scale, of course) conductive layer buried at a depth of

700 m in the model plot of Figure 3-8.

Additional inversion examples that illustrate the discrepancies between the Born and

Rytov representations of the data are shown in Appendix B. In the following sections, the

estimation of a vertical profile of subsurface resistivity is approached with slightly different
model functionals.

-" 3.14 Model range constraints

_ Model range constraints are but a class of a priori information that is sometimes -

available regarding the nature of the model sought after. These constraints originate from

sources of information other than the data themseh, es (at least the data supported by the

- physical System related rc_ rha iraw_.r'_ir_n ) _0" ;ne_" ............. t._. _-- ....• . o,.,ee,-,_,..L,,,_tt-',,v,_rv, iiwerting for
=

=
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the model whose MT response is shown in Figure 3-2, it is known that all resistivity vaiues

fall above 1 _om. Starting with equation (3.2), this constraint can be cast in the form

> 1 .
Po Po

Enforcing this inequality in the minimization of the model functional is best done if instead

of the logarithnrc formula (3.12), the resistivity profile is written in algebraic form in terms

of the ratio Ap/p0, namely

Ap(z)
p(z) = p0(1 + ).

PO

For the case in which the desired resistivity profile has a preset upper bound, a more stable

algebraic expression for the resistivity p(z) is

p(z) = Po
1 AO(Z)

Po

For instance, if the resistivity profile shown in Figure 3-2 is known not to take on

values above 100 f2.m a model range constraint may be enforced with the inequality

Ap(z_______)< P_._o_0_ 1.
Po 100

Figures 3-9 and 3-10 show the results of inverting the synthetic data described in

Figure 3-2 with the model range constraints that p(z)>l C2.m, and p(z)<100 f2-m,

respectively, assuming the three standard values of noise-to-signal ratio of 0.01, 0.1, and

1. The results shown where obtained with the quadratic programming algorithm of the

HARWELL FORTRAN library (subroutine VE04A, Hopper, 1979) in conjunction with

the Rytov representation of the data.

In Figure 3-9, the lower bound model constraint causes the inversion to be overly

sensitive to the low-resistivity variations, arid for which the data actually exhibit the largest

response. This sensitivity is somewhat quelied only when the noise-to-signal ratio is larger

than 0.1, but when this is done the inverted resistivity profile shows no added benefit from

the inclusion of the model range constraint. However, in other situations, such as those

sl_own in Appendix B, this type of model range constraint ma), prove usefui to reduce the
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sidelobe activity, or Gibb's phenomenon, that is often characteristic of the standard

g2-norm minimization procedures.

On the other hand, the use of an upper bound model constraint for the inversion of

the same data shows more interesting features in the estimated resistivity profile. For this

new case, high-resistivity variations become more emphasized than their low-resistivity

counterparts. However, in like manner as with the lower bound model constraint, equal

values of noise-to-signal ratios cause much more variable resistivity profiles than with the

enforcement of no constraints at all. Also, even though some sidelobe activity is

successfully diminished with the use of the upper bound constraint (especially near low-

resistivity layers), the inverted resistivity profiles do not descended to quite as low a

resistivity value over conductive layers as the profiles for the unconstrained case do. More

examples that illustrates the advantages and disadvantages of using model range constraints

in conjunction with the minimization of the model functional in equation (3.44) are shown

in Appendix B.

3.15 Constrained tl-norm deconvolution

To evaluate the effects of different measures of length and size in the estimation of a

subsurface resistivity profile, consider now the gl-norm model functional

N

r(l]2) = lid- _ il + ct_ Imi- mi.li, (3.48)
i=2

where the double vertical bar, II,is used to denote el norm, i.e.,

N

Ilmll = _ Imil,
i=l

and ct is a prewhitening parameter (or Lagrange multiplier). The model functional in

equation (3.48) can be compared, at least in principle, to the ez-normfunctional described

by equation (3.44). However, because of the poor smoothing characteristics of the

gl norm, the simultaneous minimization of the first-order model differences (first

derivative) is more appropriate in this case than the model energy constraint used

previously with the g2-norm (in which case equation 3.48 is akin to equation 3.45.)

The minimization of an gl-norm model functional that includes an gl-norm model

energy constraint is more appropriate for the inference of a model characterized by a
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sequence of spikes (Taylor et al., 1979). In magnetotellurics, this type of minimization

finds a natural application for the D. inverse formulation advanced by Parker (1980), and

Parker and Whaler (1981). Hybrid formulations of the model functional may include an el-

norm minimization of the data residuals subject to the constraint that the e2-norm of the

. model remains constant in the process (Gill et al., 1981). The el-norm minimization of the

data residuals can be used to deal with model estimation problems in which the data have

been contaminated with non-Gaussian noise. In fact, this type of minimization is ideal for

the case in which the noise in the data is described by an exponential probability

distribution (Menke, 1984).

In practice, however, the minimization of the model functional expressed in

equation (3..48) entails much more elaborate and time consuming procedures than the use of

an g2-norm model functional does. This minimization is customarily approached using

linear programming techniques (Claerbout and Muir, 1973). The procedure used in this

section for the estimation of p(z) via equation (3.48) makes use of the algorithm devised by

Barrodale and Roberts (1973) whereby the first-order model difference constraint is

included via an augmented transformation matrix.

Figure 3-11 shows the resistivity profiles inverted by minimization of the model

functional in equation (3.48) with the three standard values of smoothing parameter ot (and

for this reason termed the noise-to-signal ratio as in the case of the g2-norm minimization)

of 0.01, 0.1, and 1. For the minimization, both the model and the data were expressed as

dictated by their first-order Rytov representations. In Figure 3-11, the blocky nature of the

inverted profiles is intrinsic to the el norm itself when used in conjunction with the first-

difference model norm, and should not be viewed as a natural way to extend the

wavenumber range that can be obtained with the e2 norm. In fact, it is precisely where the

g2-norm results fail to provide the high wavenumber harmonics necessary to recover sharp

boundaries in the subsurface resistivity, that the el-norm profiles contract or expand their

blocky nature.

• Even though for the model example analyzed in this chapter the resistivity profiles

inverted with the gl-norm model functional do not show dramatic differences with respect

to the profiles inverted with the ez-norm, often the use of the gl-norm minimization scheme

justifies its higher operational in extreme noise conditions.
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3.16 Nonlinear inversion (does it provide a larger wavenumber content?)

For completeness, consider now the nonlinear inverse procedure put forth by

Constable et al. (1987) under the name of Occam's inversion in reference to its objective to

find the simplest (smoothest) possible model solution that satisfies the data within a

prescribed data misfit value. Constable ct al. minimize the model functional described by

equation (3.45) at every linear step of their nonlinear algorithm. In so doing, they choose

the lowest value of Lag;_ nge multiplier, ct, that can accommodate the prescribed data misfit

value (the X2 error). The smaller the X2 error, the lower the value of ct, and hence the more

oscillatory the estimated model solution. Conversely, the larger the 22 error, the larger the
value of ct and the smoother the model solution.

However, Constable et al.'s (1987) approach becomes rather unstable when,

instead of the first derivative, one opts to minimize the g2-norm of the model. This

instability could be somewhat reduced if, in addition to the X2 error, a cutoff value for ct

were prescribed as well in their algorithm (such as the model energy constraint of the

Wiener inverse). Nevertheless, in the absence of a better way to compare the linearized

inversion results with those of a similar nonlinear method, the comparison is here done

with Constable et al.'s algorith'x_. In suppo_z for this exercise, however, it may be added

that resistivity profiles inverted with the linearized equations and a first-derivative model

functional (equation 3.45) show practically no difference with respect to the profiles

inverted using the model energy constraint (equation 3.44).

In the implementation of Constable et al.'s (1987) algorithm, the model was

parameterized with a sequence of uniformly distributed layer thicknesses (in logarithmic

fashion). Locations for the layers were obtained with the mapping of frequency values into

logarithmic depths dictated by equation (3.19b) and assuming a background resistivity of

4 _.m, and the layers remained fixed thereafter throughout the inversion. The number of

layers was the same as the number of frequency samples and the inversion was carried out

using both apparent resistivity and impedance phase data (this is twice the actual number of

data used in the linearized inverse solutions studied above.)

With 10 linear iterations, the results of the inversion are shown in Figure 3-12 for

the prescribed data misfit, or rms values of 1, 1.5, and 2. The rms misfit value is defined
as

4 _ _ (di-di)2s2

i
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where di and di are the measured and simulated data, respectively, and si is the standar5

deviation of the measured data (assumed unity for ali data samples here). In contrast, the

linearized ,_ytov inversion in Figure 3-8 has an rms value of approximately 1 at a

noise-to-signal ratio of 0.01.

The profiles inverted with the nonlinear procedure are in excellent agreement with

the true model for rms data misfit values below 1.5. In fact, at a noise-to-signal rati_ of

0.1, the Rytov inversion results correlate well with the prof'tle inverted in nonlinear fashion

at an rms value of 1.5. However, the nonlinear inversion has done a much better job in:

(1) adjusting the lateral locations of the various layers, (2) contracting the resistivity profile

about low-resistivity variations, and (3) expanding the resistivity profile within high

resistivity variations in the layered model. These three interesting features, together with the

physical construct of the 1-D MT wavelet, permit one to visualize the way in which a

nonlinear inverse works: within low-resistivity variations, the wavelet contracts because in

these zones the average resistivity is lower than the background (or global average)

resistivity; within high resistivity variations, on the other hand, the wavelet expands

because in their immediate vicinity the average resistivity is larger than the average. A

contraction of the wavelet signifies a larger wavenumber content, whereas an expansion of

it produces a narrower wavenumber content. Also, because of the localized nature of these

averages, the exact mapping location for the frequency samples along the logarithmic depth

scale is determined by the local and not global average of p(z). This explains why the

inverted variations of subsurface resistivity are better positioned with the nonlinear inverse

than with the the linearized inverse.

The degree to which the wavenumber content in the inverted resistivity profile is

different from that of the linearized inverse is determined by the presence and number of

low-resistivity zones in the subsurface. These low-resistivity zones are more prone to cause

a violation of the assumptions implicit in the linearized inverse than high-resistivity zones

are. However, over and above a noise-to-signal ratio of 0.01, the characteristics of the

resolution windows in Figure 3-6 should not significantly depart from those of a practical
m

nonlinear situation.

3.17 Discussion and concluding remarks

The inversion examples related in the previous sections indicate that the Rytov

expression for both data and model functions significantly outperforms their alternative

Bom expression. This conclusion is more evident in situations where the frequency-

i
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domain MT data exhibits the largest amplitude variations, that is to say, in response to

conductive features in the subsurface.

Use of the Rytov approximation generates acceptable linear inverse solutions in the

presence of resistivity contrasts of at most 20:1 approximately. However, given the
m

logarithmic depth scale which is natural to magnetotellurics, a large decrease in resistivity at

a particular depth can only have a significant surface response if the depth range where this

variation occurs has a large logarithmic thickness (the thickness itself may be large but

unless the logarithmic thickness is large compared to its logarithmic depth there will be a

measurable surface response). Hence, even highly conductive zones can be unheeded in the

surface MT response depending on their depths of burial. Conversely, in response to

resistive features, the Rytov approximation yields an acceptable inverse solution for

resistivity contrasts of up to 1"100 approximately. Again, the reason why the linearized

inverse works better over resistive than over conductive zones is directly related to the fact

that MT data are more sensitive to the latter. Because of this, the requirement that secondary

electric fields be small compared to the primary field implicit in the Born approximation is

more appropriate over resistive than over conductive zones, thus the difference in

performance. In fact there are situations wherein the linearized inverse outperforms the

Bostick (1977) pseudoinverse.

The inclusion of positivity constraints in the least-squares model functional

somewhat extends the wavenumber range of the inferred resistivity profile, and this is

especially noticeable as a reduction of sidelobe, or Gibb's phenomenon activity. However,

in order to warrant a stable inverse solution, the use of this type of constraints requires

larger noise-to-signal ratios (or Lagrange multiplier values) t, ian for the case in which no

model range constraints are enforced in the minimization process. Also, the use of an

el-norm model functional remains an attractive procedure for the inversion of resistivity

prof'tles from data contaminated with non-Gaussian noise. This type of minimization is also

suitable for the recovery of sparse delta-like conductance profiles such as those of the

D. inverse of Parker (1980) and Parker and Whaler (1981).

Despite the aforementioned positive characteristics of the linearized inverse, it

should be pointed out that in situations where the logarithmic thicknesses are both large an

sparse and the resistivity contrasts are large, this approximate procedure may easily break

down. A more practical idea that seems worth exploring as a natural outgrowth of the

developments presented in this chapter is the iterative Rytov inversion. For this situation,

..................... .r v ....... o ,.,,,t,,u,.,u_,y uvuat_u oy x_,cu point iteration of the electric :--
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fields in the subsurface or, at every step of the iteration a new resistivity profile is linearly

inverted and then updated to minimize the differences between the observed and

numerically simulated data. Albeit in a different context, these two procedures have been

successfully used under the name of iterative and distorted Born inversion methods,

respectively, by Habashi and Mittra (1987). Finally, the linearized inverse procedures

studied in this chapter may be easily adapted to be used with the exact nonlinear

formulation put forth by G6mez-Trevifio (1987), in which the model functionals are

expressed in terms of the resistivity distribution rather than in terms of a perturbation of it.
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1-D MT WAVELET
Ioglo z

-3 -2 -1 0 1
0.6 _ , , i . , , i ...... l

0.4 ._

0.2 _

?
_ -.....

- 0.0 ..... r-.: _-

V!

eal "r .
-0.2 ". :

"1:
imaginary '..

-0.4 .......................

-0.6 z i I l _ x J I
-7 -6 -5 ,4. -3 -2 -1 0 1 2 3

"u = Inz

Figure 3-1. Real and imaginary components of the reversed 1-D MT waveleL
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4 D,m (c luations 3.19band 3.20 b).
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1-D MT WAVELET:Integrated Response
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Figure 3-3. Integrated responses of the real and imaginary parts of the 1-D MT wavelet. The depth range
for the integration is from -oo to -u.
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• 1-D MT WAVELET: Amplitude Response
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Figure 3-4. Amplitude response of the real and imaginary parts of the 1-D MT wavelet (G and H,
respectively) plotted with respect to the linear vertical wavenumber, k.
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DATAAND NOISE:Amplitude Response
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Figure 3-5. The data and the noise in the vertical wavenumber domain: the data are the amplitude
response output of the 1-D MT wavelet to a unity-variance "white" model. The noise, on the other hand, is
characterized as a 0.01-variance, zero-mean, and Gaussian-distributed white stochastic process.
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1-r) MT RESOLUTIONWINDOW
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Figure 3-6. Wavenumber resolution windows, R(_), for the I-D MT linear inverse problem at various
noise-to-signal ratios.
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TRUEAND INVERTED1-D RESISTIVITYPRORLES
ConstrainedWiener Inverse,BornApproximation
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Figure 3-7. Resistivityprofilesinverted from the data shown in Figure 3-2 using the constrainedWiener
method.The data were input into the inversionwith theirexpressionfor the ta'st-orderBom approximation
consideringthree valuesof noise-to-signalratio, i.e., 0.01,0.1, and 1.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse, Rytov Approximation
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Figure 3-8. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained Wiener
method. The data were input into the inversion with their expression for the first-order Rytov
approximation considering three values of noise-to-signal ratio, i.e., 0.01, 0.1, and 1.
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TRUEAND INVERTED1-D RESISTIVITYPRORLES
RytovApproximation& Model RangeConstraint
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Figure 3-9. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained Wiener
method. The data were input into the inversion with their expression for the first-order Rytov
approximation. In addition, the model range constraint that p(z)>l _.m was enforced in the inversion
considering three values of noise-to-signal ratio, i.e., 0.01, 0.1, and 1.
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• TRUEAND INVERTED1-D RESISTIVITYPROFILES
RytovApproximation& Model RangeConstraint
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Figure 3-10. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained
Wiener method. The data were input into the inversion with their expression for the first-order Rytov
approximation. In addition, the model range constraint that p(z)<100 _.m was enforced in the inversion
considering three values of noise-to-signal ratio, i.e., 0.01, 0.1, and 1.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained 11Inverse, Rytov Approximation
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Figure 3-11. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained _l-
norm method. The data were input into the inversion with their expression for the first-order Rytov
approximation considering three values of noise-to-signal ratio (or smoothing parameter), i.e., 0.01, 0.1,
and 1.
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TRUE AND INVERTED 1-D RESISTIVITY PROFILES
Constrained Nonlinear Inverse, Constable et al (1987)
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Figure 3-12. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained
nonlinear procedure of Constable et al. (1987). A first-derivative, least-squares model functional was
minimized after 10 linear iterations. Results are shown for three different values of the prescribed rms data
misfit error, i.e., 1, 1.5, and 2.



CHAPTER IV

BORN INVERSION OF 2-D MT DATA

4.1 Introduction

The last few years have seen a revived interest in the development of procedures for

the inversion of 2-D MT data. By and large, this interest has been propelled by the advent

of powerful and compact computer resources that can cope in a more or less economic

fashion with the severe memory and time demands exacted by practical exploration

situations. A second and perhaps more dramatic factor has been the recent introduction of

field procedures wherein the sampling distance is short enough to reduce a large degree of

the uncertainty caused by otherwise unheeded near-surface scatterers. In consequence, new

methods of inversion also face the need to deal with amounts of data never thought of

before. Fast simulation procedures are required that can be repeatedly performed in

conjunction with nonlinear iterative inversion techniques within reasonable CPU times

(see, for instance, Smith and Booker, 1990). Stabilization procedures are also needed that

can guarantee the extraction of subsurface geoelectric features within the lateral and vertical

resolution bounds imposed by the underlying diffusion equation in the presence of noise.

The success of this second important aspect of the 2-D MT inverse problem is largely

determined by the general understanding one can have of the frequency- and space-domain

properties of surface electric and magnetic fields. This is the main thrust of this chapter: to

shed fight to the controlling factors that cause the surface MT fields to respond to lateral and

vertical variations of subsurface resistivity, and to advantageously use these factors in an

attempt to invert 2-D MT data.

The material presented in this chapter in some ways stems from the 1-D linearized

inverse formulation described in Chapter III. A 2-D geoelectric model is assumed in which

both lateral and vertical variations of resistivity are described as small perturbations about a

constant value. This simplifying assumption causes the relationship between a perturbation

of subsurface resistivity and the ensuing surface field perturbation to be expressed as the

output of a linear system. Accordingly, since the MT excitation of a 2-D earth can be

decoupled into two independent modes of propagation, TE (electric field parallel to strike)

and TM (magnetic field parallel to strike), the way in which geoelectric features can be
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recognized in the subsurface bears a one-to-one relationship with the type of electric or

magnetic field quantity used in the inversion. Thus, the analysis presented here is aimed at

understanding what specific information of the subsurface resistivity distribution is borne

by each field component, and how this information can be used to invert a cross-section of

subsurface resistivity under the pragmatic assumption that the measured data are corrupted

with noise.

• Because of its algebraic simplicity, the linearized 2-D MT forward problem is

approached in the lateral wavenumber domain. Further, as with the 1-D linear problem, a

logarithmic parameterization of frequency and depth is implemented in the wavenurnber-

domain equations. Both data and model variables are expressed with their Rytov

(logarithmic) expressions for the inversion of electric field data. For the inversion of

magnetic field data, given their relatively low dynamic range, a Born (algebraic) data

representation is more appropriate. The drawback of inverting surface magnetic field data is

that they are not sensitive to the 1-D background, and hence magnetic field measurements

must be complemented with electric field data if the former are to be transformed into a

cross-section of subsurface resistivity. In the same context, it is shown that ali three surface

TE electric and magnetic field components are linearly related to each other, implying that

from a purely theoretical standpoint, it is unnecessary that ali three components be

measured at exactly the same points.

A practical limitation imposed by an inversion procedure wherein input data are

field values rather than standard MT impedances, is that the former have to be somehow

estimated prior to inversion. Thus, a field procedure is introduced here whereby secondary

electric and magnetic field variations about a constant background can be estimated from

measurements of auxiliary base impedances and magnetic transfer functions. The suggested

field procedure requires that the magnetic field be constantly monitored at a f:,xed station

(the magnetic base station) while electric and magnetic field data are being acquired at

sampling locations along the survey line.

A central objective pursued with the wavenumber-domain formulation advanced

herein is the estimation of the lateral wavenumber content of the lateral subsurface

- resistivity variations that can be recovered from noisy data. It is shown that, in direct

consequence of the underlying diffusion equation, the inferred lateral wavenumber content

diminishes with decreasing values of frequency, i.e., with increasing values of the depth of

burial. In fact, the wavenumber-domain analysis predicts that, with 1% noise in the data,

the maximum wavenumber that can be recovered is approximately equal to the reciprocal of
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the Bostick depth of penetration. It is also shown that this wavenumber bound is consistent

with the stability criterion that is required for the inversion of TM electric field data.

A final topic presented here concerns the details of a practical inversion procedure.

This procedure is implemented directly in the wavenumber domain and consists of repeated

1-D inversion at each wavenumber followed by inverse Fourier transformation of the

inverted wavenumber-domain model. It is emphasized that a data prewhitening, or spatial

filtering step is a natural way to guarantee stability in the inversion of TM electric field data.

In physical terms, this data processing step can be understood as a way to suppress the

non-inductive response from the subsurface. Synthetic examples are used to test the

proposed inversion procedure mainly with the intent of ascertaining whether the 2-D

forward linear equations have any bearing on realistic situations in which the resistivity

contrasts are significant. These examples also prove helpful to corroborate the lateral and

vertical resolution properties of each surface field component, electric oT ,nagnetic, and in

general of magnetotellurics. The wavenumber-domain inversion is also tested on tangential

field data acquired along a continuous transect over a geothermal target in northern
California.

4.2 The 2-D linear forward problem

Assume a right-hand Cartesian coordinate frame with its origin on the surface, its

x-axis normal to strike, and its z-axis pointing down into the 2-D earth (Figure 4-I). The

surface electric and magnetic field variations can thus be described with the equations

Ex(x,c0) = E0(c0) + ex(X,tO), (4.1)

F_.y(x,m)= Eo(co)+ ey(x,m), (4.2)

Hx(x,o)) = Ho(cO)+ hx(x,(o), and (4.3)

Hz(x,o)) = hz(x,co), (4.4)

where E0 and H0 are primary electric and magnetic fields, respectively, related to a

homogeneous half-space of resistivity Po, and e and h are se._9ndary electric and magnetic

field, respectively, that arise with lateral and vertical variations of subsui'face resistivity

away from the homogeneous half-space. The Ey, Hx, and Hz fields are associated with TE

propagation in the 2-D earth, whereas the Ex component is associated with TM

propagation. Only the TM magnetic field, Hy, is constant with respect to both frequency

and position regardless of the subsurface resistivity distribution (d'Erceville and Kunetz,
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1962), and for this reason such component is not expressed here in terms of secondary
field variations.

Similarly, the resistivity distribution in the subsurface, p, may be written as

p(x,z) = Po + Ap(x,z), (4.5)

where the scalar function Ap describes the lateral and vertical variations of subsurface

resistivity away from the homogeneous half-space. A vertical variation of Ap causes only

frequency variations of the ex and ey fields. On the other hand, a lateral variation of Ao

causes both frequency and lateral variations of ali secondary fields.

In general, the mapping of Ap(x,z) into frequency and space variations of the

secondary fields -the 2-D MT forward problem- is nonlinear and hence highly dependent

on the specific characteristics of this function. A model-independent analysis of the physics

underlying the mapping of Ap(x,z) into surface field variations can only be made in light of

certain assumptions. The specific assumptions made here about Ap(x,z) and the secondary

surface fields for which this function is responsible are:

e(x,c0) << E0(co), (4.6)

h(x,c0) << Ho(e0), or/and (4.7)

Ap(x,z) << Po. (4.8)

These inequalities cause the relationship between the secondary surface fields and the

function Ap(x,z) to be expressed as suggested by equations (2.20) and (2.21), namely,

e(x,c0) f0**
Eo(¢O)- Ke(x,z0,_) • Ap(x,z0) dzo, andPo (4.9)

h(x,_) = Kh(x,z0,o) * Ap(x,z0) dzo, (4.10). H0(o_) Po

- where the symbol "," indicates convolution with respect to x, and the kernel functions Ke

and Kh are defined by equations (2.17) and (2.19), respectively. Equations (4.9) and

(4.10) are simple linear expressions for the 2-D MT forward problem, such that the

underlying physics for the mapping of Ap(x,z) into secondary surface fields is fully
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contained in the mathematical properties of the kernels. Notice that when the inequality

(4.8) is satisfied the inequalities (4.6) and (4.7) are also satisfied, but the opposite is not

always true because in some cases a large value of Ap(x,z) may not significantly affect the

secondary surface field response. The fact that the integration involved in equations (4.9)

and (4.10) is only performed in the vertical direction indicates that the local MT response

from the subsurface is largely determined by the characteristics of Ap(x,z) below the

observation point.

Even though explicit formulas for the space-domain kernels Ke and Kh exist, in this

chapter the algebraic simplicity of their wavenumber-domain expressions is used with the

intent to expose the physics of the 2-13 MT forward problem in the clearest possible way.

4.3 The 2-D linear forward problem in the wavenumber domain

Following the convention introduced in Chapter II for the forward and inverse

Fourier transforms, the lateral Fourier transform pair is here defined as

F(k) = F{f(x) } =f_ f(x) e+ i2rdcxdx, and

f(x) = F-I{F(k)} = f_ F(k)e - i2_kx dk,

where k is the linear wavenumber in the x direction. Thus, in the lateral wavenumber

domain, equations (4.9) and (4.10) can be written in the general form

=lo M(k,zo) A(k,zo,o_) dzo, (4.11)
D(k,co)

where

_F{2_-(ox,co)} TM mode

F{2_--_---(x,¢.0)}TE mode

D(k,co) = _ r,r_° are the data, (4.12) "

tF{ 2_(o x,c0)} TE mode

F{2H_o x,c0)} TE mode

F{A-__Px,z)} is the model, and (4.13)M(k,z)
la0
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2(i_) e-i(_ + _:)z (ex TE mode)2(i_ - 2_ Ikl) ei(_ + _¢)z (ey TE mode) is the kernel. (4.14)

A(k,z,0)) = |i(1+ i)8 2_lkl (i_ - 21t Ikl) ei(_ + _¢)z (hx TE mode)

/
(1+ i)8 2nk (i_ - 2n Ikl) e-i(_ + _:)z (hz TE mode)

The wavenumber-domain kernels in equation (4.14) are the MT transfer functions

" introduced in section 2.3, and the functions _ and _:in their expressions are given by

_(k,0))- l_i_/a-i(_-_) 2 ,and (4.15)

x:(0)) = 1 - i, (4.16)
8

where 8 is skin depth, i.e.,

= P_,.f-TIT,,• (4.17)8(0))
I Wl.t,

lt is also noted that the factor 2 that has been arbitrarily included in the data and kernel

definitions above serves for the same unimodularity purposes discussed in Chapter III in
connection with the 1-D MT wavelet.

The expressions included in equation (4.14) can be further simplified with the aid

of equations (4.15) through (4.17). First, define

 (k,co)
2_k, (4.18)

=..

and introduce the function

A(y)= a(y)-ib(y)= 41-iv2 , (4.19)

- where a(y) and b(y) are real and positive functions. Simple trigonometry shows that

a(7)--_ _/I+ T4+ 1 and (4.20)2 '

b(y) ____/1 +,_,,y4_1 . (4.21)
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Substitution of equations (4.18) and (4.19) together with (4.15) into equation (4.14) yields

the following simplified form for the 2-D wavenumber domain kernel

A(k,z,_) = W(y) 2(1 + i) e.[(l+a(_,)+b(_,))+i(l+a(_,)-b(_/))]z/8, (4.22)
5

where

_/1-iy 2 ex TM mode_/1- iT2- _ b/I ey TE mode
W(7) = • (4.23)

t41-i.- ¥] ¥) hxTE mode

t41-i.- yj<i hzTEmode

Finally, substitution of equation (4.23) into equation (4.11) yields

_

D(k,o_) = W(y) M(k, z0) 2(l+i------_)e "{[l+a(T)+b(_')]+ i[l+a(_')'b(_')]}z°/Sdz0. (4.24)
J0 _5

Notice that the definition of the function y(k,c0) in equation (4.18) suggests that the

wavenumber and frequency dependency of the A transfer functions (equation 4.14) is

jointly assimilated in the product _Skrather than by independent algebraic terms. As shown

in a subsequent section, this property of the transfer functions becomes an important

consideration in the study of the lateral resolution characteristics of 2-D MT data.

Incidentally, the ratio _,'-_V2in the definition of T is equal to the Bostick (1977) depth of

penetration in the homogeneous background. In equation (4.24), W(T) is independent of

the variable u and this is why it can be taken outside of the integral. This depth-independent

function plays the role of a wavenumber prefftlter whose properties are set by the particular

field quantity in use. A detailed study of both the prefilter and the integrand of equation

(4.24) is reserved for the following sections.

4.4 Logarithmic parameterization and pseudo-convolutional response

Using the logarithmic variables v and u introduced in Chapter III, equations (3.19)

and (3.20), in place of _ and zo in equation (4.24), respectively, gives rise to
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D(k,v) = W(_') M(k,u) 2(1+i.) ev'u" [(l+a+b) + i(l+a-b)]e*Udu.
-OO

Further algebraic manipulation leads to the more familiar form

• f+ coD(k,v) = W(_/) M(k,u) F(_/,v-u)du, (4.25)° OO

" where

F(%u) = G(%u) + i H(_,,u), (4.26)

G(%u) = {cos[(l+a-b)e u] + sin[(l+a-b)eU] } 2e u'(l+a+b)eu, and (4.27)

H(_,,u) = {cos[(1 +a-b)e u] - sin[(1 +a-b)e u]} 2e u-(l+a+b)eu. (4.28)

The functions G and H above are intimately related to the real and imaginary

components of the 1-D kernel, respectively (see equations 3.22 through 3.24). In fact, it is

trivial to show that equation (4.25) reduces to equation (3.21) under the substitution k--0

for both TE and TM electric fields. The same substitution yields a null result when

specialized for the TE magnetic fields. However, the main difference between the 1-D

kernel, ftu), and the 2-D wavenumber domain kernel, F(%u), is that the latter is no longer

depth-shift invariant. Because of this, the function F(%u) is hereafter referred to as the 2-D

MT pseudowavelet. The relationship between the 1-D MT wavelet and the 2-D MT

pseudowavelet is explored next.

4.5 1-D factorization of the 2-D MT pseudowavelet

Equations (4.27) and (4.28) can be factored in such way that one of the factors is

the 1-D depth-shift invariant kernel, ftu), defined by equation (3.22). To this end, express

cos[( 1+a-b)e u] = cos(2eU)cos[ (a-b- 1)eU]- sin(2eU)sin [(a-b-1)eU],

sin[( 1+a-b)e u] = sin(2eU)cos[ (a-b- 1)eu] + cos(2eU)sin[ (a-b- 1)eU],and

• e-(l+a+b)eU= e-2e_e-(a+b-1)e_,

and substitute into equations (4.27) and (4.28) to get

F(_,,u) = f(u) Q(%u), (4.29)

where

Q(_,,u) = e -[(a+b"1)+ j(a-b-1)e u. (4.30)
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The 2-D factor, Q(l',u), defined above is governed by independent expressions of u and v

rather than by their difference, v-u, alone as the functions a and b are determined by v but

not by u (see equations 4.20 and 4.21); in other words, as opposed to f(u), Q(%u) is not

depth-shift invariant. Notice that F(l',u) and f(u) reduce to equivalent expressions when

k=0 (the DC wavenumber), whereas for large values of k, F(y,u) _ f(u) e "V_-_eu.This

indicates that the 2-D factor Q is an exponential damping term whose effect is emphasized

by either increasing the wavenumber, k, or by decreasing the frequency, to. In essence, the

exponential damping inflicted by Q upon f in equation (4.29) translates to a progressive

loss of sensitivity to lateral features in the subsurface with increasing values of 1,.

Figure 4-2 shows both real and imaginary components of the reversed 2-D MT

pseudowavelet, F('t,-u), plotted with respect to -u. Four different panels are included in the

same figure for an equal number of _/values of 1, 2, 4, and 6. Clearly, in relation to the

1-D MT wavelet plotted in Figure 3-1, the 2-D MT is subject to severe attentmtion when the

),variable is larger than 1.

Aside from the lateral resolution characteristics of the 2-D MT pseudowavelet, the

lateral resolution of MT data is to some extent dictated by the prefilter W(1') defined in

equation (4.23). Ways in which the choice of field data affects the characteristics of the

pref'flter are studied next.

4.6 The wavenumber prefilter

From equation (4.23) one can show that W(I')---_1 for 171--_0with the use of TE and

TM electric field data. On the other hand, W(I')---)0 as Ild---)0with the use of TE magnetic

field data. This DC wavenumber behavior of the magnetic prefilter is consistent with the

known fact that the surface magnetic fields are insensitive to the 1-D background medium

(see also section 2.6). Also interesting is the behavior of W(I') for large values of 7. For the

TE electric field, IW(I,)I monotonically decreases as 1/(_lyt) with increasing values of 1',

and this causes the prefilter to have the characteristics of a low-pass wavenumber filter.

Conversely, the amplitude of the TM prefilter increases as b_/,_/2with increasing values of

y, and this causes W(y) to have the characteristics of a high-pass wavenumber amplifier.

The high-pass nature of the TM prefilter may significantly emphasize the response of local

near-surface variations of resistivity (rich in large wavenumber harmonics) over the

response of deeper and usually smoother lateral variations of subsurface resistivity. Such is

precisely the action of the electric static component studied in Chapter II. In equation
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(4.23), however, the effects of both TM electric static and induction components are

combined in a single expression.

Finally, besides their single-zero at T=0, both TE magnetic prefilters are all-pass

wavenumber filters with a constant amplitude response of 1/2, and hence their effect over
b

the subsurface resistivity distribution is that of a 1/2 flat gain attenuator. Figures 4-3

through 4-5 are amplitude response plots of the TM electric and TE electric and magnetic

• prefflters, W(y). Notice that because the sole difference between the hx and hz prefilters is

that the hz prefilter is asymmetrical about y-_, a single amplitude plot suffices to display the

characteristics of the TE magnetic prefilters.

Another important property of the TE prefilters, electric and magnetic, is that they

are related by simple linear formulas. This can be shown directly by inspection of the

expressions included in equation (4.23), from which it can be established that

W(T)hx = -q'ff U(T) T W(T)ey, and (4.3 I)

W(T)hz = i U(T) W(T)hx, (4.32)

where

{-_ ifT<OO(y) = if y>0 " (4.33)

Because the remaining factors of the 2-D MT forward linear system (equation 4.25) are the

same for ali field components, the preceding formulas convey a spatial linear dependence

among the three TE field components. Equation (4.32), for instance, indicates that the

horizontal and vertical magnetic field components are Hilbert transforms of each other in

the space domain (Bracewell, 1965). The relationship between the electric and horizontal

magnetic field components in equation (4.31), on the other hand, points to the fact that the

horizontal magnetic field component can be obtained by high-pass wavenumber filtering of

the electric field component, where the filter is a single-pole linear ramp. Conversely,

except for its DC wavenumber harmonic, the electric field component can be obtained by

low-pass wavenumber filtering of the horizontal magnetic field component. A proof that the

linear dependence among TE fields expressed by equations (4.31) and (4.32) remains valid

even beyond the dcmain of the Born approximation solutions is included in Appendix C.
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4.7 Vertical harmonic behavior of the 2-D MT pseudowavelet

Both the 2-D MT pseudowavelet and the wavenumber prefilter are responsible for

the attenuation of the lateral wavenumber spectrum of the surface electric and magnetic

fields. This loss of lateral response is primarily controlled by the y variable. Even though

the properties of the prefilter are set by the particular type of field component, a field-

independent study of lateral resolution properties of 2-D MT data can be performed by

examination of the 2-D pseudowavelet. Following the vertical wavenumber analysis

presented in section 3.8, the objective here is to derive a vertical wavenumber expression of

the 2-D MT pseudowavelet, F(%u), and to explore how this expression becomes affected

by specific values of the 3'variable. Strictly speaking, the vertical wavenumber study

carried out in connection with the 1-D linear inverse problem was made possible by the

depth-shift invariance of the 1-D MT wavelet. As shown earlier, the 2-D MT

pseudowavelet does not share the same property and therefore the vertical wavenumber

analysis is not valid in a formal sense. To circumvent this difficulty, the approximation is
made here that the variable T is simply a constant that conditions the characteristics of the

otherwise depth-shift invariant wavelet. Even under this approximation, the ensuing

vertical wavenumber expression sheds considerable insight to the vertical resolution
characteristics of 2-D MT data.

The Fourier transform pair for the u (-log(depth)) _ X (vertical wavenumber)

transformation is given by equations (3.27) and (3.28). Using those equations, define the

vertical wavenumber-domain functions CJ(3',3.),H(3',X), and F'(3',X)as

G(y,X) = F[G(%u)},

H(y,X) = F{H(y,u)}, and

F(y,X) = G(y,X) + i H(y,3.), (4.34)

where the functions G and H are the real and imaginary components of the 2-D _.'i-

pseudowavelet, respectively.

To obtain the vertical Fourier transform of the 2-D MT pseudowavelet, F(%u), Vn'st

substitute equation (4.27) into equation (3.27) together with the change of variable
cp= (1+a-b)e u. The result is

_j(y,K) = 2 f0**(1 +a-b) 1.i2_. ( coscp + sincp ) g)i 2_. e-_l+a+b)/(l+a-b) dcp .
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Making use of the same algebraic steps detailed in section 3.8 as well as of the integral

expression for the complex gamma function, F, yields the explicit formula

CJ(7,Z.)= F(l+i2_) { _-i + l+i }.(4.35)[(l+a+b)- i (l+a-b)] l+i2nz" [(l+a+b) + i (l+a-b)] 1+i2n_"

Similarly, the vertical Fourier transform, H(y,k), of the imaginary part of the 2-D MT

• pseudowavelet takes on the form

H(%_,) = F(l+i2_,) { 1+i + 1-i }.(4.36)[(l+a+b)-i (l+a-b)] l+i2n_" [(l+a+b)+ i (l+a-b)] l+i2n_-

In the DC wavenumber limit, y=0, whereupon a=l, and b--0. Substitution of these

values for a and b into equations (4.35) and (4.36) leads to vertical wavenumber-domain

expressions that are identical to those of the 1-D MT wavelet (equations 3.30 and 3.31,

respectively). On the other hand, large values of y cause the a and b functions to be both

equal to Y/x/2, and this dictates that the G and H functions monotonically decrease in

amplitude as 1/(_1_) for large y values. Figure 4-6 shows amplitude response curves of

both functions G and H plotted against the linear vertical wavenumber, _, for y values of 1,

2, 4, and 6. The four panels displayed in this figure are analogous to the one shown in

Figure 3-4 in connection with the 1-D MT wavelet. An interesting remark concerning the

characteristics of the function H is that, contrary to what occurs with the 1-D MT wavelet,

its _.----0wavenumber harmonic (the vertical DC response) does not vanish so long y is not

zero.

Clearly, the vertical low-pass filter nature of the 2-D MT pseudowavelet severely

constrains the recovery of lateral detail in the subsurface resistivity distribution. This is felt

most dramatically in situations where the measured data are corrupted with noise. A way to

ascertain the largest lateral wavenumber that can be recovered of the subsurface resistivity

distribution from noisy data is outlined below.

,J

4.8 Vertical resolution of lateral structure in the presence of noise

Following the Wiener deconvolution procedure introduced in section 3.9, under the

assumption of a "white" model, M(k,u), both with respect to u (-log(depth)) and x (lateral

distance), the lateral resolution properties of the pseudowavelet can be described with the

aid of the spectral resolution window relating the true model with the estimated model in the
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presence of noise. Accordingly, let M(k,_.) and M(k,k) denote the zero-mean true and

estimated model solutions in the vertical wavenumber domain, respectively, and let

NSR(k,_.) = IN(k,_.)l (4.37)
[M(k,k)[

describe the noise-to-signal ratio inherent to the measured data. The function N(k,k) in this

last expression embodies the spectral characteristics of the zero-mean noise process that

additively contaminates the data. In the present analysis, N(k,_.) is further assumed to be

uncorrelated with the model. Disregarding the effect of the prefilter, W(T), in equation

(4.25), the t2-norm, or Wiener model estimate, M(k,k), can be written in terms of the true

model, M(k)_), with the formula

M(k,k) = R(_/,k)• M(k,_.), (4.38)

where

P-,(T,_.)= IF(_/'_')I9 (4.39)
IF(_/,_.)I2+NSR2(k,_.)

is the resolution window. As emphasized in section 3.9, the resolution window is a zero-

phase low-pass filter that describes the distortion of vertical model harmonics in the

presence of noise; the larger the value of NSR(k,_.) the lower the cutoff wavenumber of

The simplest way that exists to quantify the lateral harmonic distortion incurred on

in the estimation of M(k,_.) from noisy measurements is to consider both the model and the

noise to be realizations of a "white" Gaussian stochastic process, in which case the noise-

to-signal ratio defined in equation (4.37) takes on the constant value of

NSR(k,_.) =n
S '

where n and s are the standard deviations of the noise and the model, respectively. Plots of

the resolution window, R('y,_.) with respect to _. are shown in Figure 4-7 for different

combinations of noise-to-signal ratio and T values. In each panel of this figure a

noise-to-signal ratio is fixed while values of T are varied. The vertical wavenumber values,

_., are described in cycles/decade so that the resolution curves are in effect comparable to

those shown in Figure 3-6 for the 1-D MT wavelet. Clearly, thr: largest vertical
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wavenumber harmonic that can be recovered from the model is highly dependent on the

assumed noise-to-signal ratio. For instance, at a noise-to signal ratio of 0.01 the maximum

value of ? that guarantees no vertical harmonic distortion in the inferred model is between 6

and 8 (at ?=8, even the _.---0harmonic is slightly distorted). For the same value of noise-to-

signal ratio, however, a ? value of 1 allows the recovery of %.harmonics of at most

1.5 cycles/decade. Larger values of noise-to-signal ratio cause more significant distortion
effects on the _. harmonics.

In practice, the largest lateral wavenumber, k, that can be inferred from the

subsurface resistivity distribution is determined by the distance between contiguous field

sampling locations. This largest k value is the Nyquist wavenumber, given by

kN = ----1-- ,
2Ax

where Ax is the sampling distance. In conventional MT profiling surveys, Ax varies

anywhere from 0.5 to 10 km, so that ks varies from 1 to 0.05 km -1. With continuous

electric field sampling techniques such as EMAP, the Nyquist wavenumber is inversely

proportional to twice the length of the dipole. In fact, for this type of surveys the maximum

lateral wavenumber is also conditioned by the length of the dipole (see section 5.2), but

since the dipole length is at most equal to the sampling distance, the Nyquist wavenumber

will still remain the largest wavenumber that can be accounted for. Below such an upper

bound, Figure 4-7 shows that the largest wavenumber harmonic that can have a measurable

effect is dictated by both the noise-to signal ratio inherent to the data and the particular y

value. Given that 7 is directly proportional to the Bostick depth of penetration, it follows

that the largest lateral wavenumber harmonic of the subsurface resistivity distribution that

can have a recognizable effect on the frequency-domain data (reflected on the k variable) is

inversely proportional to the depth of penetration.

In summary, the largest lateral wavenumber, kmax, that can be recovered from the

subsurface resistivity distribution at the frequency cois given by the expression

• kmax = min[kN,k(?max)], (4.40)

where
?max

- , and (4.41)k(?max) 2_ ZB

ZB is the Bostick (1977) depth of penetration in the homogeneous background. At a

noise-to-signal ratio of 0.01, Figure 4-4 shows that ?max_- 6.0, in which case kmax= 1/ZB.
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To understand the practical meaning of this result, consider the 2-D synthetic model

whose cross-section perpendicular to strike is shown in Figure 4-8. The model consists of

a single 5 f_om rectangular block with lateral and vertical dimensions of 2 km x 600 m,

respectively, and which is buried at a depth of 400 m. A homogeneous 80 _om half-space

is the background medium. Figure 4-9 is a wavenumber-domain amplitude response plot of

TM secondary electric field response across strike. The response has been normalized with

respect to the primary electric field, E0(c0), and multiplied by 2 as required by equation
4

(4.12). Simulated field values are shown at 10 Hz, which is the point in the frequency

spectrum where the buried block develops a maximum inductive response. Also, and

merely for comparison, a normalized wavenumber-domain plot of the 2 km-wide block is

shown with a dashed line in the same figure. Inspection of the data amplitude response

curve in Figure 4-5 shows that the largest lateral wavenumber for which there would be

appreciable surface response at a noise-to-signal ratio of 1% is approximately 2.3 kmd. On

the other hand, at 10 Hz, the Bostick depth of penetration computed from the actual

apparent resistivity data is approximately equal to 400 m. Assuming that the value

)'max= 6 is adequate for the hypothetical 1% noise-to-signal ratio (which is probably

slightly optimistic given the unavoidable numerical errors incurred on the simulation of the

electric and magnetic fields), equation (4.41) yields a krnaxvalue equal to 2.5 km-1, which

is in reasonable agreement with the upper bound determined by visual inspection of the

amplitude response curve. Similar wavenumber-domain plots for the remaining TE electric

and magnetic fields are shown in Figures 4-10 through 4-12. Notice that these plots indeed

evidence the fact that the TE electric wavenumber response has a shorter operating band

than the TM response, and that in effect the TE magnetic field response has a null at k=0

When the effect of the wavenumber prefilter, W0'), is included in equation (4.39),

the actual value of kmax below that predicted by equation (4.41) is determined by the cutoff

characteristics of W(y). For instance, knowing that W()') is a low-pass filter for the TE

electric field and a high-pass filter for the TM electric field, one can intuitively understand

why the lateral resolution characteristics of TM electric field data are superior to those of TE

electric field data. The following sections are devoted to integrating the lateral wavenumber

characteristics of both the preftlter and the 2-D MT pseudowavelet into a practical procedure
to invert surface MT data.



107

4.9 Prewhitening of the TM electric field data

Assuming that W(T)_0, equation (4.25) can be modified to read as

=fT M(k,u)F(T,v-u)du.D(k,v) • 1----L-- (4.42)
w(T)

The multiplication involved in the left-hand side member of this new expression can be

• thought of as a data "prewhitening" step. The prewhitening operator, 1/W(T), is a

wavenumber filter whose cutoff wavenumber is controlled by both the background

resistivity, Po, and the frequency, to. Notice that when TE electric fields are the data the

prefilter is a low-pass wavenumber filter, and hence the data prewhitening step becomes an

inherently unstable process. On the other hand, owing to the fact that the TE magnetic

prefilter has a null at k=0, prewhitening of magnetic field data will become unstable in the

neighborhood of such wavenumber.

The only case for which the multiplication on the left-hand side of equation (4.42)
is rendered stable for ali wavenumber values is when the data are TM electric fields. This is

so because for such data W(T) is a high-pass filter. To clarify this important point, consider

the amplitude response curve of the inverse TM prefilter, 1/W(T), shown in Figure 4-13.

The curve m this figure illustrates an essential low-pass wavenumber behavior. In fact, it

can be shown that the cutoff wavenumber of the 1/W(T) filter decreases as 1/(_lTl) for

increasing values of T. Purely in terms of frequency, the cutoff wavenumber of l/W(T)

decreases as q-_ for decreasing values of to. It is also emphasized that because the 2-D MT

pseudowavelet, F(T,u), exhibits exactly the same 1/(_ITI) decay for large values of T, the

prewhitening of TM electric field data as indicated by equation (4.42), will not unbalance

the lateral resolution characteristics on either side of the linear system equation.

The preceding analysis reveals that prewhitening of TM electric field data is a

desirable processing step to help stabilize the inversion of equation (4.25). For the

inversion of TE electric and magnetic field data, however, the stabilization seems more

" natural if the prefilter, W(T), is absorbed in the low-pass wavenumber properties of the 2-D

MT pseudowavelet, F(T,u). Practical details involved in the subsequent inversion of

" prewhitened and non-prewhitened data are discussed below.
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4.10 Model estimation in practice

Attention is now shifted to the problem of how lateral and frequency variations in

the data can be inverted into a cross-section of subsurface resistivity with the linearized

inverse. The procedure studied here is based on the discretization of the linear integral

equation (4.25) for the TE electric and magnetic fields and of equation (4.42) for the TM

electric field.

In consideration to the prewhitening step described in the previous section, one can

rewrite equation (4.25) as

^ f7D(k,v) M(k,u) K(y,v-u) du, (4.43)

where

.-- D(k,v)D(k,v) = , and

K(%v-u) = F(y,v-u)

for TM electric field data, and

D(k,v) = D(k,v), and

K0',v-u) = W(y) F(_,,v-u)

for TE electric and magnetic field data. In general, the wavenumber-domain model,

M(k,u), is complex-valued and can thus be expressed as

M(k,u) = MR(k,u) + i Mi(k,u). (4.44)

Likewise, the kernel K0',v-u) in the integrand of equation (4.43) can be written as

K(y,v-u) = KR(y,v-u) + i KI(),,v-u). (4.45)

The product M(k,u)K(y,v-u) in the integrand of equation (4.43) can then be expressed in

the expanded form

MK = KR [MR + i MI] + i KI [MR + i Md.
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In view of the fact that the real and imaginary components of F(y,v-u) are linearly related 1,

and so are the real and imaginary components of W(y), the imaginary part of the product

MK above provides only redundant information to that furnished by its real complement. In

addition, when T=0, the function KI(y,v-u) is identical to zero for ali field components, in

which case only the function KR(T,v-u) can be used to estimate the DC wavenumber

harmonic of M(k,u). Notice also that because the complex-valued kernel K(y,v-u) is

symmetric with respect to y, when only the real part of the space-domain data, e/Eo, or
a

h/H0, is used for inversion (see equations 4.9 and 4.10), the imaginary kernel, Ki0',v-u),

becomes unnecessary. The only case for which K0',v-u) is asymmetric with respect to y is

when the linear equation (4.43) is specialized for the vertical magnetic field. Therefore, if

only the real part of the space-domain hz/I-I0 data is used for inversion, use of the real

kernel, KR(T,v-u) becomes unnecessary.

With the use of only the real part of the kernel K(y,v-u), equation (4.47) can be

separated into two independent expressions involving the real and imaginary parts of the

model, namely,

^ f7Real[D(k,v)] MR(k,u) KR(T,v-u) du, and (4.46)

^ f7Imag[D(k,v)] = Mi(k,u) KR(T,v-u) du. (4.47)

To solve for MR and MI from the discretized versions of equations (4.46) and

(4.47), respectively, one can resort, for instance, to any of the e2-norm estimation

procedures discussed in section 3.10. The advantage here is that the autocorrelation matrix

of the kernel KR(y,v-u) is the same for both equations. This is indeed a useful property

considering that, as was found with the simulation studies of Chapter III, most of the

computer time involved in the estimation of the model is spent in assembling such a matrix.

The disadvantage, though, is that contrary to what occurred with the 1-D MT wavelet, the

" 2-D MT pseudowavelet is not depth-shift invariant and hence the new autocorrelation

matrix is no longer Toeplitz. In consequence, the inversion of the autocorrelation matrix

(plus the prewhitening diagonal matrix) for the discretized versions of equations (4.46) and

1 Aproof of this lineardependencecan be donefollowingthe same analyticalsteps usedin ChapterIIIto
prove the lineardependencebetweenthe real and imaginarycomronents of the 1-DMT wavelet(section
3.7)
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(4.47) cannot be carried out with simple Levinson recursions as it was done in Chapter III

(Robinson and Treitel, 1980).

The specific procedure chosen here to estimate both MR and MI from equations

(4.46) and (4.47), respectively, is the constrained Wiener inverse described in Chapter Irl

(equations 3.44 and 3.42). With single inversions performed at each wavenumber between

0 and the Nyquist wavenumber, kN, the inverted real and imaginary model harmonics can

then be inverse Fourier transformed to recover the space-domain version of the model,

m(x,z). In addition, the inversion of magnetic field data should rely on an estimate of the

DC wavenumber harmonic of the model. The latter can be derived from electric field data.

It was shown in Chapter III that the Rytov representation for both model and data

variables is a good combination to use in the inversion of electric field data. The reason for

this is that the electric field response often exhibits large oscillations (laterally and also with

respect to frequency) about and average value. For the case of the magnetic field response,

however, the developments included in Chapter II show that the magnetic field ratio H/H0

exhibits only minor lateral oscillations in the presence of lateral variations of subsurface

resistivity. Specifically, the horizontal magnetic field ratio, Hx/Ho, laterally oscillates about

1, whereas the vertical magnetic field ratio, Hz/H0, oscillates about 0. These properties

intuitively suggest that the Born representation of the data is better suited than the Rytov

representation in dealing with magnetic fields. The Rytov representation for tl,e model is

still the most appropriate choice in dealing with either electric or magnetic field data.

Examples that illustrate the performance of the linearized 2-D inverse are presented in a

subsequent section. For the moment, attention is focused on two important preliminary

details: (1) the estimation of secondary-to-primary field ratios from impedances and

magnetic transfer functions, and (2) the estimation of a background resistivity value.

4.11 Field procedure for the estimation of secondary electric and magnetic
field variations

The linear model estimation procedures discussed thus far rely on specific values

for the secondary-to-primary field ratios. In contrast, owing to the fact that MT signals do

not behave as stationary processes whereas wave impedances do, conventional MT

sampling procedures are based on the measurement of wave impedances instead of actual

field quantities. The problem of calculating secondary electric and magnetic fields solely

arising from MT backscattering from the earth has been contemplated before. In particular,

Berdichevsky and Zhdanov (1984) studied a separation of the external (source) and internal
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(backscattering from the earth) parts of the EM field based on the Stratton-Chu integration

formulas (these formulas are similar to those of the Green's theorem on a closed surface;

see for instance, Harrington, 1961). Their separation procedure, however, can be used

only when conventional MT impedances are densely sampled over the surface of the earth.

A field procedure that can be used to overcome the need for densely sampled MT

impedances in the estimation of secondary electric and magnetic field variations away from

" those of a homogeneous 1-D background is depicted in Figure 4-14. As shown there, a

magnetic base station is deployed at a locality within the survey area which is kept fixed at

times when electric and magnetic field data are acquired at different points along the survey

line. Base impedances are calculated as the ratio between the total electric field measured

along the survey line and the magnetic field measured at the base station. To show how the

base impedances can yield estimates of the secondary-to-primary field ratios, assume a

coordinate frame as described in Figure 4-1, and let H_(o) and H_(o) denote the x and y

magnetic field components, respectively, measured at the base station. Likewise, let Ex(O)

and Ey(O) designate the TM and TE electric fields, respectively, measured at a given point

along the line the survey line, and for the sake of simplicity assume that the latter is laid out

normal to strike. Thus, the TM and TE base impedances are given by the formulas

ZTM(O) - Ex(O) , and (4.48)
HyB(O)

ZTE(O)- Ey(O)
nxB(O) , (4.49)

respectively, with the x-dependency of all quantities tacitly implied. Similarly, horizontal

and vertical magnetic transfer functions relating the TE magnetic fields measured along the

line of measurements with the HxB(o) field measured at the base station are given by the
formulas

Tx(t.0)- Hx(o), and (4.50)
• H_(o)

. Tz((0)- Hz(o)
HxB(o) , (4.51)

respectively.
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For the TM mode, the Hy field is spatially constant, and HB(to) is equal to the

primary magnetic field, H0(to). For the TE mode, however, the Hy field is not spatially

constant, but since its DC wavenumber is null, ,he primary magnetic field in the same

direction can be estimated from the spatial average of the magnetic transfer functions Tx

along the line of measurements (see section 2.6).

From equations (4. I) and (4.2) it then follows that

ex(to) _ ZTM(to) 1, and (4.52)
Eo(to) Zo(to)

ey(to) _ ZTE(to) - 1, (4.53)
Eo(to) Z0(o_)Tx(to)

where

Zo(to) = 41-_g_o,

and Tx(to) is the spatial average of Tx(to) along the survey line. Therefore, with knowledge

of the background resistivity, Po, equations (4.52) and (4.53) can be used to estimate the

secondary-to-primary electric field ratios from tl.e measured TM and TE base impedances,

ZTM(to), and ZT_.(to), respectively, and the magnetic transfer functions, Tx(to). In like

fashion, the secondary-to-primary TE magnetic field ratios can be calculated from the

expressions

hx(to) = Tx(to) 1, and (4.54)
Ho(to) T_(to)

hz(to)_ _Tz(_) , (4.55)
Ho(to) Tx(to)

which, incidentally, do not imply knowledge _f the background resistivity. A pre cedure

that can be used for the estimation of the background resistivity, Po, directly from the

measured electric field data is presented next.

4.12 Estimation of the background resistivity

For the 2-D linearized inversion, accurate knowledge of the backgrouad resistivity

is important not enly to reduce shifting errors in the log10 depth scale but also to adjust the
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cutoff wavenumber characteristics of the prefilter. The procedure described here for the

estimation of the background resistivity stems from the same principles used with the

linearized 1-D inversion. Assuming that the model can be described as the realization of an

ergodic stochastic process in both x and z directions, the background resistivity can be

thought of as the expected value of this stochastic process. In consequence, because of the

linear relationship between the model and the data in equations (4.9) and (4.10), the

average value of the data should reflect the expected model value. However, because the

spatial average of magnetic field data tends to zero, the background resistivity can only be
estimated from electric field data.

To express the electric field data in a foma that conveys information about the lateral

and vertical variations of subsurface resistivity, consider the modified impedance, Z,
defined as

--- E(x,m)
Z(x#0)- ,

where H0(m) is the primary magnetic field associated with the homogeneous half-space

whose resistivity is sought after. For the TM mode the modified impedance, Z, is identical

to the TM impedance, whereas for the TE mode, it is given by

--- ZTE(X,0_)
Z(x,co) = _

Tx(co)

where ZTE and Tx are the base impedance and average magnetic transfer function,

respectively, calculated by means of the field procedure described in section 4.11. An

apparent resistivity function, Ph, can then be defined from the modified impedances as

pA(X,CO)= _.L. i_(x,co)l 2
co_t

(Ca?niard, 1953). The resistivity of the homogeneous background can then be estimated
fl%m

I

P0 = e in {pA[X,ln(¢0)]}, (4.56)

where the bar over the logarithmic apparent resistivity is used to denote expected value with

respect to both x and log(c0). This equation is completely analogous to that derived for the

1-D linearized forward problem, except that the new expected value considers an addition

lateral average of the data. The sensitivity of the depth mapping functional to a change in
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the estimated background resistivity has been studied in section 3.11. For the 2-D

linearized forward problem, a change in the estimated background resistivity will also

"untune" the cutoff wavenumber characteristics of the prefilter. A large value of Po will

cause excessive lateral smoothing by the prefilter, whereas a small value of Po will be

responsible for insufficient prewhitening which in turn can be the source of vertical

conductive leakage in the inverted resistivity section.

i.

4.13 Synthetic examples of inversion

In summary, the linearized 2-D MT inverse problem can be approached according

to the following steps:

(1) Estimate the background resistivity (see section 4.12),

(2) Estimate the secondary-to-primary field ratios to be inverted (see section 4.11);

use Rytov and Born representations for electric and magnetic field ratios,

respectively (see section 3.3),

(3) Fourier transform the estimated field ratios with respect to lateral location,

frequency by frequency (one may opt to Fourier transform only the real part of

the estimated field ratios),

(4) If inverting TM electric field data, prewhiten the wavenumber domain ratios

obtained with step 3 (see section 4.9),

(5) Perform pseudo 1-D inverses at each wavenumber for both real and imaginary

components of the wavenumber-domain model (see section 4.10); the model

should be expressed with its Rytov representation formula (see section 3.3),

(6) If inverting magnetic field data, estimate the DC wavenumber harmonic of the

model from electric field data, and

(7) Inverse Fourier transform the estimated real and imaginary wavenumber

components of the model. The result is an estimate of the cross-section of

subsurface resistivity.

The subsections below contain a suite of synthetic examples that attest to both

advantages and shortcomings of the linearized 2-D procedure itemized in the steps above. It

is pointed out that the intent of these exercises is simply to ascertain whether the lateral and

vertical resolution properties studied in the previous sections are valid in situations where

the assumptions underlying the Born approximation are violated. The synthetic data were

simulated with the finite-element code of Wannamaker et al. (1987), and the frequency

range was from 0.001 to 1000 Hz, including 10 frequency samples per decade. In ali field

• E
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simulations, the standard station separation of 100 m was assumed, and this same distance

was used to replicate the dipole responses of TM electric field data. A radix-8 fast Fourier

transform algorithm (Bergland and Dolan, 1979) was used to carry out the forward and

inverse Fourier transforms involved in steps 3 and 7 above. Finally, the pseudo 1-D

. inverses of step 5 were solved with the constrained Wiener inverse procedure introduced in

section 3.10, which was implemented with a simple matrix inversion algorithm specialized

for symmetric and positive-definite matrices (HARWELL FORTRAN library, subroutine

MA22A, Hopper, 1979). A noise-to-signal ratio of 0.08 was assumed in ali the examples

presented here, as it was found that this value not only was in agreement with the numerical

accuracy of the simulated data but also prevented excessive vertical and lateral oscillations

in ali of the inverted models. Owing to the fact that ali three surface TE electric and

magnetic field components are linearly related (see Appendix 3), the linearized inverse is

tested here only on electric field data.

4.13.1 A single buried block

A description of the resistivity model using a logarithmic depth scale is included in

Figure 4-15a. Both the relatively low resistivity contrast of the single-block scatterer as

well as its intermediate-range depth of burial, constitute favorable conditions for :he

linearized inverse. Plots of the inverted resistivity sections are shown in Figures 4-15 and

4-16 for the "lM and "lE electric field components, respectively. The results shown were

inverted from 60 frequency samples simulated at each one of a total of 61 sounding

locations, so that in effect the traverse length is 6 km. To conform to the total number of

spatial sampling locations required by the fast Fourier transform, the first and last data

points along the traverse were extended symmetrically outside the lateral limits of the

assumed survey traverse. This generated a total of 128 spatial sampling locations and thus

65 wavenumber harmonics were independently inverted before performing the final inverse

Fourier transformation leading to the model estimate.

The background resistivity was estimated directly from the electric field data as

suggested in section 4.12 and this was 45 f2.m. Both resistivity sections obtained from the

inversion of the TE and TM electric field data are in good agreement with the true model

section. In fact, the resistivity recovered in the central portion of the block is only slightly

lower than the actual value of 5 f2-m. Most interesting is the difference in lateral resolution

in these two cases. The model cross-section inverted from the TM electric field data is

laterally concentrated whereas the TE electric section shows a significant amount of "lateral
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conductive leakage." Conversely, vertically, the TE electric section is more concentrated

than the TM section, which in this sense is affected by "vertical conductive leakage." The

latter effect is no doubt the result of unsuppressed static distortion caused by the conductive

block at frequencies below its inductive range. The TE electric field response is not affected

by static distortion but in exchange does not possess the lateral resolving power that the TM

response does. Notice also that the vertical positioning of the conductive block is in both

cases only slightly shifted downward with respect to the true model. A lower background
P

resistivity could reduce this downward shift in the vertical scale in exchange for a larger

amount of unsuppressed vertical conductive leakage in the TM section. As a parenthetical

notes the computation time incurred on the inversion of each one of the resistivity sections

was approximately 24 minutes on a Sun Spark 1. workstation.

4.13.2 A single buried block and a conductive basement

The model is described in Figure 4-17a. A single 2-D scatterer is buried in a 1-D

background composed of an upper resistive layer and a conductive basement. Lateral and

vertical dimensions of the conductive block are 1.6 km x 700 m, respectively. The

objective of this example is to evaluate the performance of the linearized inverse in a

situation where the concept of a constant vertical background is not applicable. The

estimated background resistivity from the DC lateral and vertical wavenumber harmonics of

the data is 20 f2.m, and a total of 61 electric field sampling locations were assumed along
the survey line.

Figures 4-17b and 4-18b are plots of the resistivity cross-sections inverted from the

TM and TE electric field data, respectively. Laterally, the inverted resistivity cross-sections

show the resolution characteristics expressed in the single-block model example examined

in section 4.13.2 above. The TE section exhibits lateral conductive leakage whereas the TM

section is subject to some amount of vertical conductive leakage. In consequence, the 1-D
background is slightly better resolved with TE than with TM data.

4.13.3 A vertical fault and a conductive basement

The vertical fault model is particularly interesting because it allows one to easily

appreciate the loss of lateral resolution with respect to depth in both TE and TM electric

field data. Figure 4-19a details the geometrical characteristics of this test case. The fault

extends from the surface down to a depth of 3 km, at which point the model is terminated

with a conductive basement. In contrast with the examples presented in the previous two
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sections, the concept of background resistivity here loses its meaning both laterally and

vertically because there is no predominant geoelectric feature in the model in either

direction. An average of the electric field data yields for this test case a background

resistivity of 130 _om. Figures 4-19b and 4-20b display the inverted resistivity cross-

sections for the TM and TE electric field data, respectively. Data simulated at a total number

of 61 sampling locations were used to produce the results shown. In the inverted TE

section, the vertical fault appears much smoother, laterally, than in the TM section.

However, despite the difference in lateral smoothness with which the vertical fault is

resolved in each case, the results cast no doubt that the degree of smoothness increases

with depth. In addition to the fact that a background resistivity of 130 f2om is more

appropriate on the right-hand side of the vertical fault, the difference in lateral conductive

leakage between the two sections evidently causes a discrepancy as to how, vertically, the

conductive basement is resolved in each case.

4.13.4 A semiinfinite buried slab and a surface inhomogeneity

As shown in the Figure 4-21a, perhaps the most interesting feature of this example

is the 500 m-wide and 100 m-thick surface e,onductor located exactly in the middle of the

geoelectric cross-section. In addition, a 300 m-thick semiinfinite horizontal slab has been

included on the right-hand side of the section at a depth of 1.4 km. Despite its reduced

thickness, the semiinfinite nature of this second feature produces a TM electric field

distortion whose influence on the surface can be felt several kilometers away from the

leftmost sampling location (+3 km.) By contrast, the same feature causes a more localized

distortion on the surface TE response. On the other hand, the resistive basement provides a

large enough contrast to prevent the vertical smearing of the conductive slab.

In order to optimize the function of the TM prewhitening filter in suppressing the

expected static distortion by the surface conductor, the background resisti,_ity for this

example was deliberately made equal to the resistivity of its surrounding layer, that is to

say, 100 f_om. Figures 4-21 a and 4-22b are plots of the resistivity cross-section inverted

from the TE and TM electric field data, respectively. Both sections provide indication of ali

of the features included in the original geoelectrical model but there are clear differences

between them. For instance, laterally, the horizontal slab is smoother in the TM section

than in the TE section. Likewise, vertically, the same feature is more concentrated in the

TM section than in the TE section. The surface conductor, on the other hand, is much better

resolved vertically in the TE section that in the TE section. Vertical conductive leakage
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caused by the same conductor on the TM section spreads out to longer distances with

increasing value_; of depth to eventually blend with the lateral conductive imprint of the
buried slab.

4.13.5 Symmetric resistive and conductive blocks

This test case is a modified version of the two-block calibration model used by

Smith and Booker (1990) and Oldenburg and Ellis (1990) in their own inversion studies.

Separated by a 5istance Of 3 km, the two blocks have the same geometrical dimensions

(1.5 km x 1.5 km) _nd are buried at a common depth of 1.5 km. Also, both blocks share

the same resistivity contrast with the surrounding layer. A conductive basement at a depth

of 10 km incorporates an additional vertical contrast of the same magnitude into the model.

The characteristics of this example permit one to compare the resolution properties of both

TM and TE electric field responses in a perfectly symmetric geometrical model that contains
resistive as well as conductive 2-D features.

Figures 4-22 and 4-23 display the true and inverted resistivity resistivity cross-

sections d_.zived from the TM and TE electric fields, respectively. The traverse length

assumed for the simulated data was 12 km and, with use of a sampling distance of 100 m,

the total number of stations input to the inversion 0ras 121. The Iu'st and last data points

were extended laterally outward to complete a total of 256 points, each including 61

frequencies. Approximately 40 minutes of CPU time were spent to produce each of the

inverted resir:ivity cross-section in a Sun Spark 1+ workstation.

At a noise-to-signal ratio of 0.08 and an estimated background resistivity of 40
f2-m, the resistivity cross-section inverted from the TM electric fields evidences both

resistive and conductive blocks. At the same time, the conductive basement is almost

perfectly recove_t? Laterally, the conductive block appears less localized than the resistive

block, but the resistivity value recovered for the latter is less accurate than the one

recovered for the former. In contrast, the resistivity cross-section inverted from the TE

electric fields not only has unheeded the resistive block, but also show the conductive block

as a highly smeared feature. The difference in the performance of the linearized inverse for

the two electric field modes can be traced back to the MT response characteristics of each

mode. In fact, the reason why the resistive block has a negligible imprint on the TE section

compared to that of the conductive block is that :he former causes a reduction of conduction

current as opposed to the increase of current introduced by the conductive block. On the

other hand, the TM-mode conduction current exhibits vertical distortion patterns directed
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both away from the resistive block and toward the conductive block. Even though the

outward current deflection effect introduced by the resistive block is much less pronounced

than the channeling effect imposed by the conductive block, the surface response in the fast

case is large enough to cause a measurable anomaly in the surface electric field.

4.14 Field example of inversion

" During the Summer of 1990, an expedition crew formed by staff and students of

both Engineering Geoscience, U.C. Berkeley, and Lawrence Berkeley Laboratory,

embarked upon an unconventional MT survey for the exploration of the Surprise Valley

Geothermal prospect in northern California. A location map including the description of the

field procedure as well as of the survey parameters employed in such geophysical

adventure are included in Figure 4-24. The project was financed by both Trans-Pacific

Geothermal Co. and the Department of Energy. Both a detailed geological description and a

historical semblance of the geothermal activity in Surprise Valley are reserved for a later

section in Chapter V. For the moment, just a brief description is presented insofar as what

the data mean in terms of the linearized inverse procedure introduced in the previous

sections of this chapter.

A 4.2 km-long electric field transect was laid out perpendicular to the predominant

geologic strike as inferred from the available geological and geophysical data. This transect

consisted of 100 m tangential electric dipoles placed end-to-end along the total survey

length. Additionally, orthogonal electric dipoles and pairs of induction coils were

positioned at regular spacings. To comply with the requirements of the field procedure

suggested in section 4.11 above, a magnetic base station was situated approximately 3.5

km away from the transect. This magnetic station served also as a remote site for noise

reduction purposes. The electric field data recorded at each one of the tangential dipoles

were referred to the synchronous magnetic fields acquired at the magnetic base station and

this procedure yielded TM-like base impedances for subsequent inversion (see sections

4.11 and the more general discussion of this topic in section 5.3). Lateral magnetic field

variations measured along the transect were found negligible for ali practical purposes,

whereupon the magnetic field measured at the base station was assumed an unbiased
,)

sample of the background magnetic field in the area. Apparent resistivity and phase

pseudosections for the calculated TM-like base impedances are shown in Figure 5-23. The

topographic profile included in those figures shows a maximum altitude gain of 400 m
toward the west end of the transect.
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Notwithstanding that the inverse procedure introduced in this chapter does not

account for variations in topography along the line of measurements, the objective of this

section is to evaluate the performance, and possibly the shortcomings, of the underlying

assumption of linearity made here for the MT response. Figure 4-25a shows the inverted

resistivity section derived from the Su_',grise Valley TM-like base impedances using a

background resistivity of 6 ff2om and a _aoise-to-signal ratio of 0.2, which is in fact a

slightly higher value than the actual noise-to-signal ratio estimated independently from the

electric and magnetic field measurements. For comparison, a resistivity section inverted

from the same data is shown in a contiguous figure. The latter section was derived using a

data-adaptive spatial filtering procedure which allows for lateral and frequency variations of

the cutoff wavenumber characteristic of the prewhitening filter discussed in section 4.9

above. Subsequently, a 1-D Bostick (1977) pseudoinverse was applied to the filtered base

impedances and the results were "stitched" together to yield the resistivity cross-section

shown in Figure 4-25b. Additionally, an elevation correction was applied to the inverted

resistivity profile to account for the topographic variations along the transect. A thorough

description of all of these processing and inversion steps are main subjects of discussion in

Chapter V; the results shown here are advanced merely to establish a measure of

comparison.

Even though there exist marked differences between the two inverted resistivity

sections shown in Figure 4-25, there are also common features that correlate well. For

instance, the prominent resistor on the right-hand side of the sections shows the same

upward dip in both cases. This resistor is found in both the apparent resistivity and

impedance phase pseudosections of Figure 5-23. Below the resistor, the presence of a

conductive layer can be expected by inspection of the phase pseudosection. In

Figure 4-25b, however, the same layer is somewhat blurred partly because of the

approximate nature of the Bostick pseudoinverse, although indeed the tendency of the

section is toward a conductive feature at depth. The most significant discrepancy between

the resistivity sections, however, occurs at the shallowest depths, where the resistivity

distribution is highly conductive and for this reason causes a large surface electric field

response which the linearized inverse is simply unable to account for. This is why toward

the right-hand side of section obtained with the linearized inverse the resistivity distribution

exhibits a drastic and highly unnatural downward dip toward the sedimentary valley. That

this behavior is in effect unnatural can be explained by recalling the deficiency of the 1-D

linearized inverse introduced in Chapter II/to recover large conductive segments in the

vertical resistivity profiles. In contrast, the Bostick pseudoinverse provides a much better
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resistivity estimate in the same situation. Ways in which the lateral variations of topography

may be responsible for some of the differences between the two sections at their upper

fight-hand comers are actually more difficult to understand, but there is no doubt that some

distortion is hatroduced thereby.

4.15 Discussion and concluding remarks

" The synthetic examples above show that the resolution properties inherent in the

linearized 2-D inverse hold even in situations where the low resistivity contrast assumption

is not valid. As in the case of the 1-D linearized inverse, the parameter that effectively

controls the validity of the linearized inverse is the amplitude of the secondary-to-primary

field ratio fed into the inversion. Regardless of the resistivity contrast, lateral dimensions

and depth of burial of the MT scatterer(s), a low secondary-to-primary field response ratio

justifies the use of the inversion. In fact, this is why, for instance, the linearized inverse

performed especially well at recovering resistive features and buried conductors. It should

also be pointed out that the merit of the linearized inverse resides in using Rytov and Bom

representations for the electric and magnetic field data, respectively, which are the most

appropriate data parameterization schemes in either case. Needless to say, the merits of the

linearized inverse should not be judged entirely by its practical promise. The Surprise

Valley field example, for instance, is but one of a great many situations where the linearized

inverse may support only marginal credence to the assumption of a low-contrast electric

field response. Instead, the analytical results and numerical experiments presented in this

chapter indicate that the importance of the linearized inverse is that it provides valuable

insight on the many, ietails that can make a more practical inverse method truly successful.

Foremost among these details is the use of a "prewhitening" operator in the

inversion of TM electric field data. This operator spatially low-pass f'dters the data without

sacrificing their lateral resolution, and it also turns out to be a natural way to stabilize the

inversion. As a useful corollary, it can be stated that the relative success with which the

prewhitening operator can be used in the inversion of TM data will be determined by the
u,

separation distance between contiguous measurements. Short sampling intervals will allow

an optimal application of the low-pass wavenumber filter and will also improve the stability

of the inversion. In plain physical terms, the prewhitening operator helps remove the

frequency dependent static effects mentioned in Chapter II. Thus, in the presence of near-

surface inhomogeneities, the success of the inversion will be largely determined by the

accuracy with which the prewhitening operator can be adjusted in response to lateral
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changes in the near-surface resistivity distribution. A large near-surface effect demands a

low cutoff wavenumber from the prewhitening operator. Conversely, in the absence of

near-surface effects, the low-pass wavenumber filter should not suppress valuable lateral

information in the surface response. It was shown that one of the characteristics of the

prewhitening filter is that its cutoff wavenumber decreases with decreasing values of

frequency. However, because the linearized inverse assumes a constant background

resistivity, no lateral adjustments of its cutoff wavenumber can be made to suppress lateral
o

variations in the intensity of static effects. A way to enforce prewhitening with lateral

sensitivity to static effects will be discussed in Chapter V.

As for the remaining TE electric and magnetic field data (including the prewhitened

TM electric field data), the linearized inverse formulation indicates that their sensitivity to

laterally varying features in the subsurface decreases with increasing depths of burial. More

specifically, it was found that the largest lateral wavenumber harmonic in the subsurface

that can be detected at a given frequency is inversely proportional to the corresponding

Bostick depth of penetration. This reduction of lateral resolution with depth is actually more

severe on the TE electric and magnetic fields than on the TM electric field, as can be seen in

the synthetic examples presented here. Also, it was shown that only electric field data can

resolve the DC wavenumber harmonic of the subsurface resistivity distribution, and that for

this very reason magnetic field data are insufficient to extract specific values of resistivity

and depth. Therefore, any inverse scheme that contemplates the use of magnetic field data

should not overlook the need for adequately sampled electric fields. The linearized inverse

also shows that the TE electric and magnetic fields are linearly related to each other

(actually, this property holds even in nonlinear environments), thus implying that over a

strictly 2-D earth one does not need to continuously sample ali three TE components to

infer a cross-section of subsurface resistivity. However, as shown in Chapter VI, more

realistic exploration situations call for measurements of the magnetic field to recognize 3-D

induction effects along the line of measurements.

From the properties of the linearized inverse one could think of an actual nonlinear
,w

method of inversion as one that continuously adjusts the lateral and vertical changes in

background resistivity to position the resistivity and depth estimates in more precise

locations than with the use of a constant background resistivity. In the inversion of TM

electric field data, these adjustments include lateral and frequency changes in the cutoff

wavenumber properties of the prewhitening operator that in turn result in better vertical

positioning of the inverted resistivity values. A decrease in the average background
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resistivity increases the cutoff wavenumber of the prewhitening operator and this also shifts

the estimated resistivity values to shallower depths. Exactly the opposite effect occurs when

the local background resistivity is larger than its assumed global value.

The wavenumber inversion presented in this chapter could also be approached

directly in the space domain. In retrospect, the choice of a wavenumber-domain method

over a space-domain formulation was made because of the algebraic simplicity of the

former. One of the stronger disadvantages of the wavenumber formulation is that model

constraints are very difficult, if not impossible, to incorporate in the numerical solution. On

the other hand, the role of the prewhitening operator is much easier to understand in the

wavenumber domain than in the space domain. Thus, it appears that the space-domain

formulation could offer a great deal of flexibility provided that the prewhitening step is

accounted for. Notably, the role of the prewhitening operator has been unrecognized in all

of the parametric nonlinear inverse formulations reported so far in the literature.

A 3-D version of the ideas developed in this chapter seems a natural way to

continue the line of research into linearized solutions to the MT inverse problem. Even

though some of the concepts dealing with this subject have already been touched upon in

Chapter II, detailed work remains to be done on specific characteristics that can make

practical inverse methods tractable. A wavenumber inversion, for instance, could be

formulated in terms of the 2-D Fourier transform of the model, at which point stability

criteria could be investigated in view of the lateral characteristics of the MT response.

Evidently, the practicality of a 3-D inverse solution will be highly determined by the

availability of 2-D surface data. This is by itself a major undertaking that perhaps will only

become feasible in the future. For the moment, the remaining chapters of this thesis

concentrate on the study and interpretation of 2- and 3-D properties of the MT response that

could be sampled along a continuous line of electric field measurements such as the

Surprise Valley transect introduced in section 4.14.
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2-D TM ELECTRICPREF1LTER

Amplitude Response
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Figure 4-3. Amplitude response of the TM electric field prefilter plotted with respect to the )' variable
(y=2rckzB,where k is the lateral linear wavenumberand ZB is the Bostick depth of penetration in the
homogeneousbackgroundat a givenfxequency.)



128

2-D TE ELECTRICPREFILTER

Amplitude Response
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Figure 4-4. Amplitude response of the TE electric field prefilter plotted with respect to the 1'variable
(,y=2rCkzB,where k is the lateral linear wavenumberand zB is the Bostick depth of penetration in the
homogeneousbackgroundata given frequency.)
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2-D TE MAGNETIC PREFILTER

Amplitude Response
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Figure 4-5. Amplituderesponse of the TE magnetic field prefilter plotted with respect to the ), variable
(y=2nkzB, where k is the lateral linear wavenumber and ZBis the Bostick depth of penetration in the

. homogeneousbackgroundat a givenfrequency.)
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Figure 4-8. Cross-section perpendicular to strike of a rectangular conductor buried in a homogeneous
background. Figures 4-9 through 4-12 are lateral wavenumber-domain plots of the MT response simulated
for this model at 10 Hz.
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2-D TM 2(Ex/E0-1)
Frequency--- 10.0 Hz
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Figure 4-9. Amplituderesponse plot of the secondary-to-primaryTM electric field ratio at 10 Hz for the
single conductor model of Figure4-8. For comparison,a normalizedamplitudeplot of the lateral Fourier
transformof the conductiveblock is shownas weil.
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2-D TE 2(Ev/Eo-1)
Frequency = 10.0 Hz
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Figure 4-10. Amplitude response plot of the secondary-to-primary "rEelectric field ratio at 10 Hz for the
single conductor model of Figure 4-8. For comparison, a normalized amplitude plot of the lateral Fourier
t:ansform of the conductive block is shown as weil.
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" 2-D TE 2(Hx/Ho-1)
Frequency= 10.0 Hz
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Figure 4-11. Amplituderesponse plotof the secondary-to-primaryTE horizontal magnetic field ratio at
10 Hz for the single conductormodel of Figure4-8. For comparison,a normalizedamplitude plot of the
lateralFourier transformof the conductiveblock is shownas weil.
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2-D TE 2hz/H0
Frequency= 10.0 Hz
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Figure 4.12. Amplituderesponse plot of the secondary-to-primaryTE vertical magnetic field ratio at 10
Hz for the singleconductormodel of Figure4-8. For comparison,a normalizedamplitudeplot of the lateral
Fourier transformof the conductiveblock is shownas weil.
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2-D TM PREVVHITENINGFILTER

Amplitude Response
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Figure 4-13. Amplituderesponse of the TM electric field "prewhitening"filter plotted with respect to the
y variable(y=2nkzB,wherek is the lateral linearwavenumberandZBis the Bostick depth of penetrationin
thehomogeneousbackgroundat a givenfrequency.)
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Figure 4-15. A single conductive block buried in a homogeneous background. (a) is the resistivity
section across strike, and (b) is the resistivity section inverted from the TM electric field data. A total of 61
stations and 60 frequencies were used in the inversion. Both station separation and dipole length were made
constant and equal to 100 m. The assumed noise-to-signal ratio was 0.08.
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(a)

Figure 4-16. A single conductive block buried in a homogeneous background. (a) is the resistivity
section across strike, and (b) is the resistivity section inverted from the TIEelectric field data (cf. Figure 4-
15b). A total of 61 stations and 60 frequencies were used in the inversion. Stations were spaced at 100 m
intervals, and the assumed noise-to-signal ratio was 0.08.
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Figure 4-17. A single buried block and a conductive basement. (a) is the resistivity section across strike,
and (b) is the resistivity section inverted from the TM electric field data. A total of 61 stations and 61
frequencies were used in the inversion. Both station separation and dipole length were made constant and
equal to 100 m. The assumed noise-to-signal ratio was 0.08.
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Figure 4-18. A single buried block and a conductive basement. (a) is the resistivity section across strike,
and (b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-19b). A total of 61
stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the
assumed noise-to-signal ratio was 0.08.
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Figure 4-19. A vertical fault and a conductive basement. (a) is the resistivity section across strike, and
(b) is the resistivity section inverted from the TM electric field data. A total of 61 stations and 61
frequencies were used in the inversion. Both station separation and dipole length were made constant and
equal to 100 m. The assumed noise-to-signal ratio was 0.08.
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Figure 4-20. A vertical fault and a conductive basement. (a) is the resistivity section across strike, and
(b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-23b). A total of 61
stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the
assumed noise-to-signal ratio was 0.08.
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Figure 4-21. A semiinfinite buried slab and a surface inhomogeneity. (a) is the resistivity section across
strike, and (b) is the resistivity section inverted from the TM electric field data. A total of 61 stations and
61 frequencies were used in the inversion. Both station separation and dipole length were made constant and
equal to 1(30m. The assumed noise-to-signal ratio was 0.08.
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Figure 4-22. A semiinfinite buried slab and a surface inhomogeneity. (a) is the resistivity section across
strike, and (b) is the resistivity" section inverted from the TE electric field data (cf. Figure 4-27b). A total of
61 stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the
assumed noise-to-signal ratio was 0.08.
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Figure 4-23. Symmetric conductive and resistive blocks. (a) is the resistivity section across strike, and
(b) is the resistivity section inverted from the TM electric field data. A total of 121 stations and 61
frequencies were used in the inversion. Both station separation and dipole length were made constant and
equai to 100 m. The assumed noise-to-signal ratio was 0.08.
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Figure 4-24. Symmetric conductive and resistive blocks. (a) is the resistivity section across strike, and
(b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-27b). A total of 121
stations and 61 frequencies were used in the inversion. Stations were spaced at 1(30m intervals, and the
assumed noise-to-signal ratio was 0.08.
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CHAPTER V

ELECTROMAGNETIC ARRAY PROFILING (EMAP)

. Electromagnetic Array Profiling (EMAP) was conceived by Prof. Francis X.

Bostick following extensive field, experimental, and theoretical MT research work carded

out prior to 1980 by the Electromagnetics Research Laboratory (ERL) of The University of

Texas at Austin. The first and earliest accounts of the technique can be traced back to

various ERL internal reports (circa 1981) which, to the regret of the MT community, were

never disclosed in the form of refereed publications. Prof. Bostick also described the

seminal ideas about EMAP at a dozen or so informal talks presented to industrial and

academic research groups in the USA. Some of the projects, and lecture discussions from

the stimulating period of time during which EMAP underwent its initial phases of

development have also been recorded by Dr. Bostick's graduate students in the form of

Master's and Ph.D. theses. For instance, in dealing with lateral distortion effects due to

2- and 3-D thin sheets, Robertson (1983) tested the concept of spatial filtering on his

numerically simulated data. A more general discussion of the subject of spatial f'dtering was

presented by Torres-Verdfn (1985) with a study of the Born approximation solutions for

the surface MT fields, the rnathematical expressions for which rest as the theoretical

foundations of EMAP. Mo';e recently, Williams (1988) described the results of a test

survey in the overthrust geological province of Wind River, Wyorrfing, and Booker (1988)

advanced a practical method to quantify the effect that noisy electric and magnetic data have

on the estimation of spatially filtered impedances. Bostick (1986) himself gave the first

conference presentation on EMAP.

The topics presented in this chapter summarize some of the research contributions

that, in close collaboration with Prof. Francis Bostick, the author has made to the use and

. understanding of EMAP. The presentation is centered on basic principles and ideas which

are tested and expanded in light of 2-D models of subsurface resistivity, particularly with

. regards to the practical implementation of spatial filtering, a subject already introduced in

Chapter IV. In addition, field data examples are presented that show both the feasibility and

advantage of of using a continuous line of electric field measurements to sense the MT

response of the subsurface. Analysis of procedures for the sounding of 2-D media with
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oblique survey traverses, as well as the testing of EMAP over 3-D environments is left as

main subjects of research in Chapter VI.

5.1 Introduction

EMAP is an adaptation of magnetotellurics in which a novel field procedure was

designed to accomplish two objectives: (1) to overcome spatial aliasing effects associated

with the sampling of the surface electric field, and (2) to deploy electric dipoles in such way

that the recorded electric field data could be subject to an extended version of the spatial

filtering exercised by an individual dipole.

In consideration to common 2- and 3-D electric static distortion, the first objective

of EMAP is crucial to insure a successful geoelectric interpretation of the subsurface

regardless of how the data are subsequently inverted into a cross-section of subsurface

resistivity. Fulfillment of the second design objective of EMAP, however, immediately

renders the collected data amenable to a method of interpretation whereby the static

component of the surface electric response is separated from its inductive complement prior

to inversion. This separation is achieved by progressive lengthening of the distance along

which the electric field is spatially averaged at decreasing values of frequency. With the

_tatic component conveniently reduced, the filtered electric fie.,_ data can be inverted into a

cross-section of subsurface resistivity with relatively simple, efficient, and stable

procedures similar to those used to invert 1-D or 2-D TE electric field data.

The developments presented in Chapter IV show that spatial filtering, or

prewhitening, of surface electric field data is a def'mite clement, explicit or implicit, in any

procedure that is used to invert TM electric ;"lelddata into a cross-section of subsurface

resistivity. With this nod,:;n in mind, it becomes readily apparent that the closer the spacing

between adjacent sampling locations the better the way in which the implicit low-pass

filtering step will be performed by the inversion method.

However, the need for spatial low-pass filtering of the surface TM data is not as

easy to detect and understand in the numerical labyrinths that arise with a nonlinear

parametric method of inversion. This kind of inversion is attractive to the MT interpreter

ma_rdy because it does not piace requirements on the way the data have to be sampled

(either with respect to frequency or spatially) to estimate a cross-section of subsurface

resistivity. The criterion that drives such methods is the production of a model that

t .... _,u ,._._ _A_,XAILI a*A a_u_taOlC tll.t_ltt _;llUl. _.leiirly, W en one
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considers all of the effects that an unrecognized electric static distortion may have on the

inferred depths and resistivities, the satisfaction of a prescribed data misfit error becomes a

moot criterion to judge the inversion of poorly sampled electric field data.

At first, it might appear that the EMAP spatial filtering process exacerbates the

severe loss of lateral detail that is already present in the data because of the diffusive nature

of the surface MT response. This is a valid argument only in the absence of static effects.

• As shown graphically in section 1.3, even though lateral channeling of the conduction

current may sometimes provide a very wide lateral wavenumber content at frequencies for

which the depth of penetration is consistent with the region of current flow, the same

wavenumber harmonics persist at lower frequencies, and hence are no longer representative

of current flow taking piace deeper in the earth. The aim of spatial filtering is simply to

remove the wavenumber harmonics associated with conduction current at depths shallower

than the effective depth of penetration at a particular frequency. Since the surface response

of the depth-sensitive induction component is already governed by a low-pass filtering

process, spatial filtering of the surface electric field will be harmless if the cutoff

wavenumber of the applied filter is kept outside the operational band of the induction

component. The critical step of spatial filtering is to ascertain this cutoff wavenumber from

direct inspection of the data

With the declared objective of employing spatial filtering for the interpretation of

EMAP electric field data, this chapter begins with a description of the elements and

operational characteristics of the technique. A central part of the exposition is the

introduction of a data-adaptive spatial filtering technique whereby the cutoff wavenumber

of the applied filter is varied along the survey path in response to changes in both local

average resistivity and frequency. Application of this filtering technique shows encouraging

results in the interpretation of data derived numerically from 2-D models possessing

different degrees or"structural complexity. Results are also shown for the application of

EMAP at two different field locations. In the flu'st example, a traverse of electric field data

from the northern Basin and Range geological province of Nevada are visibly affected by

frequency dependent static distortion. The second example describes a surve3 r tr_.verse for

the geothermal evaluation of Surprise Valley, California where, even though surface static

effects offered no serious difficulty, the continuous sampling of electric field data proved

indispensable to detect important lateral variations in the electrical properties of the
subsurface.
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5.2 Sampling distance and the electric dipole as an alias protection filter

Consider a field procedure in which the potential difference measurements are

uniformly separated along a straight line path and where the same separation, L, is used

between the two electrodes at each measurement location. Assume that this path extends in

the x direction with the electrodes in contact with the ground at the locations xj+L/2

(I<j<_M), and that the connecting wires follow the straight line paths between the

electrodes. The configuration for such an electric field array is shown in Figure 5-1. .

Under the assumed conditions, the potential difference, Vj, measured at the j-th

electric dipole along the electric field array can be written as

xj + 1.12= Ex(x) dx.
Vj Jxj - L/'2

Thus, an estimate, Exj, of the electric field in the neighborhood of the sounding location,

xi, is readily obtained with the ratio

=viL'

or, alternatively, from

Exj-f+" g(x-xj)Ex(x)dx,

where g(x) is the so-called "box-car" or rectangular function, defined as

/1 Ixl <L' -2

g(x) = / L "0, Ixl>_

The electric field estimates, --xj- above are discrete and uniformly spaced samples of the

continuous function Ex(x) described by

f+5Ex(x) = g(x0-x) Ex(x0) dx0,

or, in compact notation, by

Ex(x) = Ex(x) • g(x), (5.1)
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where the symbol "," indicates convolution. With the spatial Fourier transform of Ex(x)

defined as

Ex(_) = F{Ex(x)} =f+** Ex(x) e+i_x dx,

equation (5.1) can be written in the wavenumber domain as

• gx(_) = Ex(_)Sa(_), (5.2)

where

Ex({) = F{Ex(x)}, and

Sa({), the sampling function, is a low-pass filter with its first crossover at _--+__2n/L,and is

determined from the expression

Sa(_) = :F{g(x)}= g(x) e+_-xdx = _L "
2

As evidenced by equation (5.2), the sampling function plays the role of an alias

protection filter in the measurement process whereby samples, Exj, of the function Ex(x)

are obtained at different locations along the electric field array. Since the Exj series of

estimates consists of direct samples of the function Ex(x), the only control on the degree of

alias protection in the measurement process is through adjustments of the spacing, L,

between measurement electrodes, and of the sampling interval, Xj-Xj_l, between adjacent

sounding sites. The smaller the sampling interval the higher is the Nyquist wavenumber,

the larger the value of L the lower the cutoff wavenumber of the sampling function.

Although a lower cutoff wavenumber for the sampling function goes with better alias

protection, it was shown in section 1.2 that this also may cause a loss of lateral resolution

at high frequencies where the objective is to sense geoelectric features smaller than a dipole

. length. A standard dipole length should be comparable witn the shallowest depth of

penetration at the highest frequency. The electric field ,array, on the other hand, should be

, long enough to allow the suppression of static effects due to geoelectric structure of size

comparable to the depth of penetration at the lowest frequency. Economic conditions are

usually a key factor in determining both the length of the dipole and the distance covered by

the electric field array. The practicalities involved in the gathering of electric and magnetic

field data along and about the electric field array are discussed below.
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5.3 EMAP field procedure

Estimating a profile of subsurface resistivity beneath a line of surface measurements

may require closely spaced electric and magnetic field sampling locations, not only along

the profile but also laterally away from it. When the survey path coincides with the x-axis,

for instance, the frequency domain relationship between the tangential electric field, Ex, and

the horizontal magnetic field components, Hx and Hy, measured at the same point along the

path is

Ex(x,to) = Zxx(X,O_)Hx(x,co) + Zxy(X,t.o) Hy(x,t.o), (5.3)

where c0is the radian frequency, x is the coordinate of the observation point, and the Zxx

and Zxy terms are downward looking conventional MT impedances. These impedances are

functions of the 3-D subsurface resistivity distribution and are time invariant.

As emphasized earlier, the modification of equation (5.3) related to EMAP allows

one to perform spatial f'dtering of the tangential electric field component, Ex, along the

survey path. Also, in contrast to conventional magnetotellurics, with the EMAP field

procedure electric field measurements are not referred to the local magnetic field, but rather

to the primary plane-wave magnetic field within the survey area. The latter is estimated by

spatial areal averaging of the magnetic field measurements taken along and about the survey

line (see section 2.6).

The first constraint imposed by a field procedure that requires processing and

interpretation of MT fields rather than of impedances is that, because of their random

source mechanisms, all electric and magnetic field signals have to be synchronously

acquired. When the survey line consists of a great many sampling locations, the

requirement of synchronization among all of the field -aeasurements may place excessive

demands even on the most powerful MT data acquisition systems. A procedure to

overcome this practical limitation consists in recording the magnetic signals at a fixed base

station during the same times signals are recorded at any of the field measurement
locations. ,-

In the frequency domain, the relationship between the magnetic field components, ,

Hx and Hy, measured at a base site located at (xB,YB) , and the Ex field component

measured along the survey path can be written with the linear relation

Ex(x,_) = Zxx(X,t.0) Hx(xB,YB,03) + Zxy(X,t.o) Hy(XB,YB,t.0), (5.4)
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where the terms Zxx and Zxy in this last equation, henceforth referred to as base

impedances are not conventional MT impedances, but do exhibit the same time invariance

property. In similar fashion, the relationship between the magnetic field components H x

and Hy measured at a survey point, (x,y), and the magnetic field components measured at

the base site is expressed by the set of linear equations

Hx(x,¢0) = Txx(X,y,_) Hx(XB,YB,¢0)+ Txy(X,y,¢0) Hy(XB,YB,¢0), and (5.5)

• Hy(x,c0) = Tyx(X,y,o)) Hx(XB,YB,f.0)+ Tyy(X,y,o)) Hy(XB,YB,¢0), (5.6)

where the terms Txx, Txy, Tyx, and Tyy are time invariant magnetic transfer functions.

With the use of equations (5.4) through (5.6), basic operations on the electric and

magnetic fields such as spatial filtering and areal averaging can be performed on the

estimated base impedances and magnetic transfer functions. The procedure suggested for

the practical synchreraization of field measurements embodied in equations (5.4) through

(5.6) is essentially a generalization of the method described in section 4.11 as an

intermediate step for the computation of secondary electric and magnetic field variations.

Finally, the EMAP modification of equation (5.3) relates the estimated primary

magnetic field components, Hx, and Hy, with the measurements of Ex made along the

survey path, and is written as

Ex(x,¢0) = Zxx(X,¢0)Hx(¢0) + Zxy(X,f.0) Hy(O)). (5.7)

Because of their relation to the EMAP field procedure, the impedances Zxx and Zxy in

equation (5.7) are henceforth referred to as the EMAP impedances. It is remarked that

Zxx and Zxy can have different properties than the conventional and base impedances

defined in equations (5.3) and (5.4), respectively, especially when the surface magnetic

field exhibits appreciable local amplitude variations either along the survey path or at the
base station.

Figure 5-2 depicts the characteristics of the EMAP field procedure. A simple

modification of the field configuration shown in that figure would involve the measurement

of the orthogonal electric field component, Ey, at selected locations along the survey path.

If available, these measurements may be used to estimate, for instance, the dimensionality

of the underlying resistivity distribution with standard procedures (Vozoff, Ed., 1986).

However, the use of a single dipole perpendicular to the electric field array may prove
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insufficient either to overcome aliasing effects or to reduce static distortion that can

significantly bias the estimated parameters of dimensionality. Additionally, vertical

magnetic field measurements can be acquired at selected locations along the survey path to

ascertain the sensitivity of the electric field array to induction processes in the subsurface

taking place laterally away from the path. These two options are discussed in more detail in

Chapter VI. A procedure to carry out spatial filtering of the tangential electric field

measurements made along the survey path is discussed next.

5.4 A data-adaptive spatial filtering procedure

Individual dipole responses measured along the electric field array may be

combined to produce a wavenumber filtered output. A first choice for a low-pass spatial

filter that can be synthesized from the electric field array is a Harming window or "cosine

bell." For one thing, the Hanning window has better roll-off characteristics in the

wavenumber domain than the box-car function related to an individual dipole response.

Moreover, because of its spatial symmetry the Hanning window has a purely real

wavenumber response.

A Harming window, h(x), of width W and centered about the origin is described by
the formula

(1 + 27z_._xxIxl < W

W -
COS ),

h(x) = 0, Ixl >W-- ' (5.8)
2

or, in the wavenumber domain, by

wA wAsin(

H(,_) = 2" [ 1- 0.5 2 0.5 2 1 • (5.9)

_+/1; _-_
2 2 2

From this last expression it can be easily shown that the roll-off of H(_) fallsas

1/(W_) 3 for large values of _, and that its 3riB amplitude cutoff point is approximately

located at _=4.52/W. However, given the discrete characteristics of the electric field array,

the continuous Harming window given by equation (5.8) may at best be approximated as a

"staircase" representation. This idea is graphically illustrated in Figure 5-3.
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Assuming that the electric field array is deployed along a straight line, and that the

electric dipoles have ali the same length, the discrete Hanning window, h(X,Xk),

synthesized from the electric field array about the point X=Xkmay be written as

M

^ 2;h(x,xk) = _j g(xj-x) k = 1, ..., M, (5.10)
j=l

where M is the total number of dipoles in the array 1 .

The coeffÉcients _j in equation (5.10) describe the way in which dipole responses

adjacent to the sounding site X=Xkare weighed to emulate the shape of a Hanning window.

For a given window width, W, and center point, xk, these weights can be adjusted so that

the difference between the continuous Hanning window, h(x-xk), and the synthesized

version of it, h(x,xk), is minimized in a least-squares sense. The difference, gr, between

these two windows is a function of position along the array, and is written as

gtk(13j,O0= I_ [h(x-xk)- h(x,xk)]2dx • li (fT h(x,xk)dx- 1), (5.11)

where the Lagrange multiplier, a, is introduced to enforce the unimodularity of h(x,xk) in

the minimization of gtk.

To minimize the functional Uk defined by equation (5.11), substitute equation

(5.10) into equation (5.11) and differentiate with respect to a and ali 13j's.The resulting set

of normal equations has the simple solutions

f xj + L/2 M- h(x-xk) dx ( _ 13j= 1), (5.12)
_J -Jxj- L/2 j = 1

It then follows that, for given window width, W, the coefficients _j given by equation

(5.12) will be zero whenever

Xj < Xk W L or (5 13)- 2 2'

Xj_ Xk+_+ _. (5.14)

1 Consideration of both curvihnear paths and variable dipole lengths entails only shght modifications to the
developments presented in this section.
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This implies that the actual minimum and maximum indexes for the summations in

equations (5.11) and (5.12) are the largest and smallest values of j that satisfy the

inequalities (5.13) and (5.14), respectively. Equations (5.10) an (5.12) provide a useful

treatment for the special situation in which the center point, Xk,of h(x,xk) is close to, or

coincident with, an end of the survey traverse.

Even though a window width value is presupposed above for the derivation of the

13jcoefficients, the selection of this parameter is critical to the filtering operation. The value

of W can be adjusted if a cutoff wavenumber is specified beforehand. A useful choice of

cutoff wavenumber, _e, for the low-pass filter is the one for which, at a particular

frequency, the amplitude of the electric induction component no longer dominates over the

amplitude of the static component. For a subsurface resistivity distribution described by

small lateral and vertical resistivity variations about an average value, this cutoff

wavenumber is frequency dependent and inversely proportional to the Bostick (1977) depth

of penetration, zB, i.e.,

_(xk,_) _- 1
ZB(XU,CO) (5.15)

(see section 2.7). At a given frequency, co,the Bostick depth of penetration is an estimate

of the depth down to which the inductive response from the subsurface develops a

maximum effect on the measured surface electric field. Over 1-D geoelectric media this

depth of response can be estimated directly from the apparent resistivity curve (Bostick,

1977). However, in the presence of static effects the estimation of zB from apparent

resistivity data may suffer an appreciable bias. To reduce this bias, prior to computing zB,

the EMAP wave impedance Zxy defined in equation (5.7) may be low-pass filtered with a

bootstrapping value of window width 2. Subsequently, a Bostick depth of penetration is

computed for the filtered impedance with the formula

ZB(Xk,co)= --1-_[Zxy(xk,co)[ (5.16)

(Bostick, 1977), where

2 When the only sampleof the magneticfield is acquiredat the base station,the base impedance,Z_y,can

be usedin piaceof Z_yto performspatial filtering.
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M

Zxy(Xk,f.l)) = ff._ _j Z-.xy(Xk,0)), (5.17)
j=l

and the [3jcoefficients are computed from equation (5.12).

The important fact about equation (5.16) is that different widths, W, for the discrete

Hanning window change the value of the depth of penetration, zB. To clarify this important

point by way of an example, consider the 2-D model shown in Figure 5-4, redrawn from

Figure 1-1 to include the location of an extra sounding location. In the new figure, Site No.

1 is centered within the surface conductor, whereas Site No. 2 is located over the resistor

and 250 m away from Site No. 1. The filtered TM apparent resistivity and impedance phase

curves associated with Site No. 1 are shown in Figure 5-5. Both of these curves are

plotted as functions of the Hanning-window width for a symmetric and disca'ete window

centered about the sounding location and synthesized frc!m 100-m dipole responses at three

different frequencies, namely, 0.01, 1, and 100 Hz. For comparison, the apparent
resistivity panel in Figure 5-5 also shows 1-D apparent resistivity values (constant witti

respect to window width) at the same three frequencies assuming that the outcropping

conductor in Figure 5-4 is a layer rather than a block.

As evidenced from Figure 5-5, the magnitude of the filtered electric field at

Site No. 1 can vary considerably with the width of Harming window used to perform the

spatial averaging (i.e., with the cutoff wavenumber of the applied filter). At 0.01 Hz, for

instance, immediately after the window is wide enough to encompass elecwic field

variations outside the conductor, the filtered apparent resistivity develops an asymptotic

behavior toward the 1-D response value at the same frequency. Within the conductor, the

filtered apparent resistivity is only slightly sensitive to the window width used in the

averaging. At the highest frequency, however, excessively large values of W take the

apparent resistivity curve far away from the 1-D response curve at the same frequency,

hence causing oversmoothing of the electric response.

A criterion to choose a window width value that is consistent with the wavenumber

content of the electric induction component stems from equation (5.15). This inequality can

be made an equality in the following way:

c(Xk:Co)= 1
C ZB(Xk,0)) '

z
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where c is an arbitrary real constant (see also section 2.7). The cutoff wavenumber, _c,

above is inversely proportional to the window width, W, so that one can write

W(Xk,fdt}) --- C ZB(Xk,t0 ). (5.18)

To find the appropriate window width, W, that satisfies equation (5.18) for a prescribed

value of c, one tracks amplitude response curves similar to those shown in Figure 5-5

along the window-width axis until the equality is satisfied within an acceptable tolerance

level. This search can be done numerically in a number of ways, none of which entails

significant computer times. In fact, a repeated sequence of window-width adaptations for

as many dipoles and frequencies there are along the electric field array may take no more

than a few seconds. A procedure that has proved very efficient for the adaptation of W

along the electric field array is a simple fixed-point iteration of equation (5.18).

Several other points concerning the solution of equation (5.18) deserve special

mention. First, the real constant, c, in that equation plays the role of a window-width

expansion factor that must be input to the filter adaptation process to control the roll-off

characteristics of the applied Harming window. In adjusting c, it should be remembered

that lateral detail in the Zxy impedance function is lost when W increases very rapidly. This

means that the smallest acceptable value for c is the most desirable. Experience shows that

in most practical cases 1< c < 4 is an appropriate range. Second, the reason why only the

Zxy impedance is used in driving the filter adaptation process is that, even though the cross-

coupling wave impedance, Zxx, may sometimes undergo large amplitude variations, this

term is insensitive to the zero wavenumber harmonic of the lateral variations of subsurface

resistivity (section 2.5), meaning that spatial f'dtering of Zxx will consistently approach zero

for increasing values of W. However, when the survey traverse is not a straight line both

wave impedances, Zxx and Zxy must be filtered prior to rotation in the direction

perpendicular to the effective direction of the electric field array. This point will be further

clarified in Chapter VI. Finally, when the values of Zxy are obtained from noisy electric and

magnetic field data, the weights of the discrete Hanning window might include an

additional factor inversely proportional to the standard deviation of the weighted

impedances. Even though noise considerations are important in the analysis of the filter

adaptation process described herein, further discussion of this aspect of the problem is

deliberately omitted to concentrate on the general concept of spatial filtering.
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5.5 Stability of the adaptive filtering process

The adaptation process described in the previous section does not enforce an

explicit relation between window width values adapted at consecutive values of frequency.

Unfortunately, this may sometimes lead to abrupt changes in window width from one

frequency to another and hence reflect similar changes in the amplitude of the filtered

impedance. Commonly, one encounters this situation when, as for the case of Site No. 1 in

Figure 5-4, the Hanning window is centered within a surface conductor. In such cases, as

shown in Figure 5-5, so long as the window is contained within the conductor, a change of

W produces no appreciable change in the estimated depth of penetration. In fact, depending

on the width of the surface conductor, the depth of penetration may remain smaller than a

dipole length at a number of the highest frequencies. Both the shallower than usual depth of

penetration and the insensitivity of the filtered impedance to a change in window width are

due to the lateral current channeling imposed by the surface conductor. Only when the

frequency is low enough to force the Hanning window outside of the conductor does the

filtered impedance develop a significant change.

To understand this situation, Figures 5-6a and 5-6b show the apparent resisti_ty

and impedance phase curves, plotted with respect to frequency, of the TM (Zxy)

impedances filtered at Site No. 1 and Site No. 2, respectively, of Figure 5-4. These curves

were obtained with the adaptive filtering procedure described in the previous section

assuming a 3 km-long traverse, laid out normal to strike and with contiguous dipoles

deployed at 100 m intervals. The value of filter constant, c, used in the adaptation was 2. In

Figure 5-6a, the discontinuity of the filtered apparent resistivity curve at about 4 Hz is due

to a sudden expansion of the window once the depth of penetration is large enough to force

the Hanning window outside of the conductor. By contrast, at Site No. 2, Figure 5-6b

displays continuous filtered apparent resistivity and impedance phase curves obtained with

exactly the same field parameters used in the derivation of the curves at Site No. 1. The

discontinuous character of the apparent resistivity curve at Site No. 1 is further clarified

with the aid of Figure 5-7, wherein the values of Hanning window width adapted at both

sites are plotted against frequency. This figure shows that above 40 Hz the window width

adapted at Site No. 1 remains constant and equal to a dipole length, whereas at Site No. 2

the adapted window width exhibits a firm monotonic increase with decreasing values of

frequency. At 40 Hz, the window-width curve at Site No. 1 finally reaches the critical point

where the depth of penetration exceeds its stagnated value of 100 m, and slowly -almost

linearly- increases to about 300 m at 4 Hz. It is at this point where the change in depth of
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penetration is so drastic that the new window increases by a factor of 4, giving the

discontinuity in the apparent resistivity curve shown in Figure 5-6a.

A way to control the rate of increase of window width, W, with decreasing

frequency, co, is as follows: starting with equation (5.18) together with substitution from

equation (5.16), one can show that the rate of increase of logarithmic window width with a

logarithmic decrement in frequency is given by
o

_9In W(x,to) b ln[Zxy (x,m) I . 1
_9In m = b In m " (5.19)

This last equation places a bound on the decay rate of In(W), such that

-1 _<blnW(x,m) _<0.
blnto

In particular, over a homogeneous half-space the decay rate of ln0h') with respect to

In(m) is constant and equal to -1/2 3. The only case that prevents the decay of In(W) with

increasing frequency is the one in which Zxy responds to a perfect conductor, otherwise

In(W) cannot remain constant with respect to frequency. Hence, equation (5.19) may be

used to impose bounds on the rate of decay of In(W) as frequency increases to improve the

performance of the filter adaptation process governed by equation (5.18).

A second and more specialized method that gives good results in most cases

consists in f'trst running an unconstrained window adaptation for ali frequencies at a given

site. The curve of In(W) vs. In(m) that results from this adaptation is then examined to

check for a discontinuity. If the check is positive then the discontinuity is corrected for by

linearly increasing the In(W) values with respect to-In(m) starting with the highest

frequency until intersecting the unconstrained window-width curve. Yet another method

exists which, although only applicable to strictly 2-D data, is quite interesting because of its

physical implications. This consists of adapting the window width on the TE impedances

(which incidentally are not affected by adaptive spatial filtering applied as proposed by

equation 5.18). The values of W adapted this way are in the final step used to filter the TM

impedances.

Figure 5-8 shows the variations of window width with respect to frequency that

describe the performance of the constrained adaptive filtering procedure at Site No. 1 and at

3 This result is consistentwith the propertiesof the TM prewhiteningf'dterdefined in section4.9.
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Site No. 2. Both curves are smooth and compare reasonably well with each other. The

respective filtered apparent resistivity and impedance phase curves, shown in Figures 5-9a

and 5-9b, are also smooth and continuous. In fact, the plots in Figures 5-6b and 5-9b

reveal no change in the f'dtered impedance at Site No. 2 once the window growth constraint

. has been included in the adaptive filtering process. The difference between the plots in

Figures 5-6a and 5-9a, however, is remarkable, with the new apparent resistivity curve

showing a much closer agreement with both TE and 1-D curves. Not;.ce also that the

f'dtered apparent resistivity curve at Site No. 2 is actually in better agreement with the 1-D

curve than with the TE curve. An important observation is that in ali cases the impedance

phase curve is only slightly modified by the filtering process.

Assuming adequate electric feld sampling conditions, the adaptive filtering

procedure described above can in most cases be adjusted to render a smooth 2-D filtered

apparent resistivity curve. Over 3-D media, however, deflection and turn-around of the

conduction current (see section 2.5) can sometimes lead to abrupt variations in depth of

penetration whereby, regardless of the way in which the window width is allowed to grow,

the filtered apparent resistivity will develop irregular frequency variations. This situation

should not handicap the subsequent estimation of depths and resistivities, because, after all,

the filtered apparent resistivity and impedance phase curves as shown, for instance, in

Figures 5-9a and 5-9b are not MT impedances in the strict sense of the word.

5.6 The nature of the filtered impedances

That the f'tltered impedances are not "real" MT impedances can be shown by simple

inspection of the filtered apparent resistivity and phase curves shown in Figures 5-9a and

5-9b. In spite of the fact that these curves were derived by linear combination of 2-D TM

impedances, certainly the resulting apparent resistivity and impedance phase do not relate to

each other by the otherwise minimum-phase property that in the frequency domain is

characteristic of 2-D TM impedances.

This apparently conflicting situation originates from the use of different fi_.tering

lengths at different frequencies. Had the filtering length being kept constant at ali

frequencies, no doubt the curves in Figures 5-9a and 5-9b would have exhibited minimum-

phase characteristics, just as 2-D TM impedances are naturally minimum-phase when either

simulated or acquired in the field with a fixed dipole length. Over 3-D media, however, the

minimum-phase property cannot be taken for granted, especially in the presence of

deflection and turn-around conduction current effects. Rather than being interpreted as MT
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impedances with standard properties, each filtered impedance should be thought of as a set

of as many filtered impedances as there are frequency samples in the Fourier analysis. Each

member of this set of impedances is characterized by: (1) the window width (or length), W,

with which it has been filtered, and (2) the frequency, co,at which W was adapted. For the

purposes of a display of f'fltered impedances vs. frequency (such as the ones shown in

Figures 5-9a and 5-9b), however, each member of the impedance set is sampled only at the

frequency, co, for which it is identified. Below, the spatial f_,ltering and subsequent

inversion of 2-D TM impedances is tested over more complex synthetic models of

subsurface resistivity.

5.7 Synthetic examples

The basic computations for the spatial filtering procedure described in the previous

sections are complete when the f'fl:ered impedances, Zxy, i_ave been obtained for the

complete set of frequencies. These impedances may then be used to estimate a prone of the

subsurface resistivity distribution beneath the survey path with techniques designed for the

inversion of the inductive partof the surface electric field response (section 2.7), such as

those used in the interpretation of I-D or 2-D TE electric field data.

To test the performance of spatial adaptive filtering in the simplified inversion of

surface electric field data, three synthetic 2-D models have been chosen. An actual 3-D MT

response bears a great deal of similarity with the TM response of a 2-D earth (Swift, 1967,

Wannamaker et al., 1984, and sections 2.3 and 2.4 of this thesis), meaning that applying

the principles of spatial filtering to TM electric field data gathered over 2-D geoelectric

media should be indicative of its performance over 3-D environments.

When a 2-D earth is excited by a vertically incident plane wave with TM

polarization, the surface horizontal magnetic field is spatially constant (d'Erceville and

Kunetz, 1962). Thus, if the EMAP traverse is laid out normal to strike the TM impedances

are equivalent to any of the conventional, base, or EMAP impedances, Zxy, Zxy, and Zxy,

respectively, defined in section 5.3, and hence amenable to spatial filtering of the surface

electric field without modification. In addition, for the examples below these impedances

axe computed from electric dipole responses simulated by direct integration of the surface

electric field. The frequency range of the simulated measurements is from 0.001 to 1000

Hz and the sampling rate is 5 frequencies per decade. Finally. the survey traverse is kept at
_
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a constant length of 4 km and includes 40 contiguous electric dire!es spaced at 100 m

intervals.

5.7.1 Geologic Noise

The first model is shown in Figure 5-10a. lt corresponds to a two-layer sequence in

which the upper layer has a resistivity of 80 f_om, and the lower layer is a 5 f2.m half-space

4 km below the surface. Geologic noise is introduced in the upper layer with a sequence of

20 equal-width (200 m) contiguous blocks of variable thickness. The resistivity of the

overburden blocks varies from 2 to 400 f_°m, and their thickness varies from 4 to 50 m.

Both resistivity and thickness for each block were chosen with a Gaussian random number

generator. Last but not least, a 1 D°m conductive block is buried within the upper layer at a

depth of 400 m, and with lateral and vertical dimensions of 2000 and 700 m, respectively.

Figures 5-1 Ob and 5-10c. are the TM apparent resistivity and phase pseudosections,

respectively, numerically simulated for the described model. The wide range of values

included in the apparent resistivity pseudosection in Figure 5-10b evidences a surface

electric field whose amplitude is dominated by the amplitude response of the overburden at

nearly all frequencies. By contrast, lateral and frequency variations of impedance phase are

only slightly affected by the overburden, and the phase pseudosection in a rough way

reveals the various features contained in Figure 5-10a.

A suite of inverted resistivity sections derived by adaptive spatial filtering of the

simulated TM impedances are shown in Figures 5-1la, 5-11b, and 5-11c, for filter

constant values, c, of 2,3, and 4, respectively. The f'dtered impedances were transformed

into resistivity vs. depth profiles via the Bos ck pseudoinverse (Bostick, 1977).

Accordingly, the variable nature of the near-surface values in the resistivity sections reflect

the lateral variations at the shallowest depth of penetration (inverted at the highest

frequency) along the profile. Comparison of the three inverted resistivity sections reveals

that, even though increasing the value of filter constant, c, translates to better cor.trol of the

- electric static effects, excessively large values cause a loss of lateral detail in the inverted

resistivity section. For what appears to be an optimal value for the falter constant, c=3, the

associated apparent resistivity pseudosection is shown in Figure 5-12. This pseudosection

offers a much different view of the surface electric response than the apparent resistivity

pseudosection in Figure 5-1Ob. The computation time required for the spatial filtering and

inversion steps involved in the derivation of the sections in Figure 5-11 was approximately

9 seconds in a Sun Spark 1. workstation.

-



170

FLnally, to appreciate the effect that the electric response from the overburden has in

the detection of both the conductive block and the basement, Figure 5-13a displays an

inverted resistivity section obtained by spatial low-pass filtering (filter constant, c, of value

3) and subsequent Bostick inversion of the TM impedances generated from the model in

Figure 5-10a without the random surface overburden. This resistivity section defines

within acceptable tolerance margins the geometrical characteristics of the conductive block,

and the inverted depths and resistivities compare well with the actual values displayed in

Figure 5-10a.

The result of a last filtering and inversion exercise for this model is shown in Figure

5-13b. This resistivity section was derived from TM impedances simulated for the model of

Figure 5-10a except that the resistivity of the overburden was made constant and equal to

10 f_.m while its thickness remained variable. As for the case of Figures 5-11 b and 5-13a,

the value of filter constant, c, used in the derivation of the section in Figure 5-13b is 3.

This is an interesting situation because, given that the surface conductor is wider than the

buried rectangular block, one might think that suppressing the static effects in the former

would entail such a filtering length that oversmoothing of the inductive signature from the

block would be at risk. However, results are satisfactor_ and compare well with the model

section shown in Figure 5-10a.

5.7.2 Topographic distortion and elevation correction

The second test model is shown in Figure 5-14a together with its simulated TM

apparent resistivity and phase pseudosections displayed in Figures 5-14b and 5-14c,

respectively. In this model, electric static distortion is introduced by way of abrupt

topographic relief modelled as a quasi-periodic triangular interface between the air and a

200 f2-m stratum. Each of the triangles that conform the surface relief has a base length of

400 m and a slope of 30 °. Also, a 10 f2.m semiinfinite slab with thickness of 3.6 km is

buried at a depth of 400 m to simulate a subsurface fault. The mczlel is terminated below

the fault with a 1 f2.m half-space buried at a depth of 4 km. Finally, notice that sint.. _he

dipoles are laid out tangentially to the air-ear_ interface, some of them are actually longer

than the otherwise standard horizontal length of 100 m.
..

Electric static effects due to topography are inferred by the strong vertical banding

in the apparent resistivity pseudosection (Figure 5-14b), which in turn obscures the electric

response of the remaining features in the model. The impedance phase pseudosection, on

the other hand, shows no similar banding and does give an indication of both the fault and
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the conductive basement. Adaptive spatial filtering with a filter constant, c, of value 3, and

subsequent Bostick inversion of the simulated TM impedances produces the resistivity

section shown in Figure 5-16a. Because in Figure 5-14a depths are measured with respect

to an elevation datum placed at z=0, the depths of penetration displayed in the resistivity

section have been corrected for the vertical offset of each station along the profLle.

A more efficient and physically intuitive elevation correction than the simple

compensation of dipole elevations is proposed in Figure 5-15. For this correction, an

effective elevation for each dipole along the profile is computed by averaging the local and

adjacent site elevations with exactly the same discrete Hanning window used to filter the

EMAP impedances. Since the width of the window is a function of frequency and so is the

depth of penetration, it becomes clear that the elevation correction will be frequency

dependent as well. Figure 5-16b shows the inverted resistivity section obtained using this

correction procedure. As a result, the vertical irregularities with which the upper boundary

of the subsurface fault was inverted in Figure 5-16a have been almost completely
eliminated.

The inverted resistivity section shown in Figure 5-16b exemplifies an important

aspect of the buried contact problem whereby the recovered fault boundary has a

progressive loss of high lateral wavenumber components with increasing depth. This

situation is in agreement with the lateral wavenumber bounds for :he Born inversion

process discussed in Chapter IV.

5.7.3 Unaccounted adjustment distance

A third and last synthetic model is shown in Figure 5-17a. The 1-D background for

this model consists of a 100 fZ-m upper layer and a 1,000 fZ.m basement buried 3 km

below the surface. Features of 2-D nature are introduced by way of two 1 f2.m semiinfmite

rectangular slabs located within the upper layer of the 1-D background. Buried at depth of

900 m, the Cn'stslab has a thickness of 400 m and extends to the fight of the section. The

second slab has a thickness of 100 m and outcrops on the left-hand side of the section. No

horizontal overlap exists between the two slabs and their respective terminations are 500 m

apart. The unconfined nature of both 2-D features make this model a particularly interesting

case of analysis

Figures 5-17b and 5-17c are the simulated TM apparent resistivity and impedance

--

_
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of Figure 5-17b are dominated by the electric static response of the outcropping slab. On

the right-hand side of the pseudosection, however, electric static distortion comes into play

only below 0.1 Hz and once the depth of penetration has surpassed the depth of the buried

slab. This distortion somewhat dominates the inductive amplitude response of the resistive

basement. By contrast, the different response components of the geoelectric model are

grossly visible in the impedance phase pseudosection shown in Figure 5-17c.

F!balre 5-18 displays the resistivity section derived by adaptive spatial filtering and

subsequent Bostick inversion of the TM impedances using a filter constant, c, of value 1.5.

In contrast with the previous two examples, a low value of c is here more appropriate given

the absence of surface static effects on the right-hand side of the section. The inverted

resistivity section shows with some clarity the various structural feature, in the model.

However, close examination of the inferred resistivities reveals a slightly overestimated

value for the basement. Overestimated resistivity values at depth come as a consequence of

using a maximum filter length that has fallen short to account for the adjustment chstances

of the surface electric distortion introduced by the semiinfinite slabs (Ranganayaki and

Madden, 1980_.

5.8 White Pil_e County field example

During the Summer of 1984, the Geomagnetics Research Laboratory of the

University at Texas at Austin conducted an EMAP field study in White Pine County,

Nevada, approximately 20 miles southeast from the city of Eureka. The location map is

shown in Figure 5-19.

The White Pine CO. survey consisted of 84 electric dipoles, each 244 m (800')

long, and deployed end-to-end continuously along a 20.25 km-long traverse oriented

approximately parallel to the azimuth N149°10'S. The traverse was laid out transversely to

the Pancake Range, bordering on its northwest end with the Little Smoky Valley _d wi_h

the Railroad Valley on its southeast end. The objective of the experiment was to test the

EMAP field and interpretation procedures over a complicated geological setting. A single

magnetic base station was deployed and data were collected at 37 different frequencies in

the interval from 0.0015 to 488 Hz. Simultaneous measurements of electric field signals

were made at 6 contiguous dipole locations on a daily basis.

Figure 5-20a is the apparent resistivity pseudosection of the Zxy base impedances

measured along the traverse. For reference, the topographic profile is shown in the ,,pper

m

l
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panel with elevations measured in meters above the sea level (m ASL). The presence of

various local electric static effects is quite eviden_ along the traverse, and except for a

persistent resistive zone between 0.01 and 10 Hz, the apparent resistivity pseudosection

shows little clue to the electric response of other geoelectric features in the subsurface. An

important observation is that the most resistive stripe at spans 71 and 72 coincides with

outcropping dacites (references for the local and regional geology are Nolan et al., 1974,

Stewart, 1978 and 1980, and, Hamilton, 1988, among others.) The phase impedance
o

pseudosection shown in Figure 5-20b, on the other hand, grossly reveals a wide

intermediate resistive zone, a conductive basement, and other less prominent local features.

Finally, adaptive spatial filtering (filter constant, c, equal to 3) and subsequent Bostick

inversion of the Zxy base impedances produce the resistivity section shown in Figure 5-21.

The depths of penetration in this section are referred to an elevation datum placed at 1700 m

ASL. It is remarked that even though the White Pine CO. traverse is not precisely straight,

the departures from such condition do not cause an appreciable change in the results shown

in Figure 5-21.

The inverted resistivity section in Figure 5-21 shows two separate resistive

features, very likely of intrusive nature. One of these features, on the right-hand side of the

section, actually outcrops between the dipole spans 71 and 72, and extends down to a

depth of approximately 7 km. The second resistive feature, on the left-hand side of the

section, does not outcrop and is buried at a depth of approximately 1 km. Both of these

features are embedded in what is suggested as the geoelectric expression of the complex

sedimentary sequence typical of the area, for which a conductive basement becomes visible

at approximately 30 km below the datum. Given the fact that the survey traverse did not

include enough ground, laterally, of the two sedimentary sequences bordering the area of

study, the depth and resistivity values inverted for the conductive basement may not be

properly resolved in Figure 5-21. In spite of this, however, both numbers appear to be in

agreement with values reported from other sources of investigation in the northern Basin

and Range area (see, for instance, Wannamaker, 1983.) Without additional geophysical.

. and geological data along the section, more detailed comments on the geological

consistency of Figure 5-21 are not ventured here. Sensitivity analysis via numerical

. simulation seems an attractive procedure to quantify both lateral and vertical resolution

bounds with which the various geoelectric features in the inverted resistivity section can be

resolved from the measured Zxybase impedances.
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The White Pine CO. survey shows with striking clarity that only when electric field

data have been gathered in continuous form does one come to understand the adverse

effects that long distances between sampling locations may have on the estimation of a

cross-section of subsurface resistivity.

5.9 Surprise Valley field example

Details of this field example have been presented in Chapter IV. The objective here

is to reexamine the resolution characteristics of the data with the adaptive spatial filtering

procedure discussed in sections 5.4 through 5.6. A map describing the location of the

survey line is replotted in l=igure 5-22. The Surprise Valley survey was carried out with the

participation of students and faculty of the Engineering Geoscience Group of the University

of California, Berkeley, and staff of Lawrence Berkeley Laboratory. Funding was

provided by both Trans-Pacific Geothermal Co. and the Department of Energy. The intent

of the experimeht was to ascertain the geoelectric structure of a region with extensive

history of surface geothermal activity.

Surprise Valley, California, is located exactly on the western boundary of the Basin

and Range geological province of the western USA. Structurally, the valley is an extended

N-S graben limited to the west by the Warner Mountain Range and to the fight by Hays

Canyon Range. The Warner Mountain Range lies within the well-studied Warner Plateau,

and originated from the continuous accumulation of lava flows of basaltic composition.

Subsequently its strata were subjected to compressional forces that resulted in a westward

tilt of 15° to 20 °. The normal faulting processes that gave rise to Surprise Valley are the

result of episodic crustal extension effects that :ontinue to this day in the western Basin and

Range province. Tertiary volcanics are the main components of the sedimentary sequence

in Surprise Valley, although a conspicuous accumulation of quaternary conglomerates

reaches a maximum thickness of approximately 4 km toward the center of the valley.

For the MT evaluation of Surprise Valley, a survey line was oriented

perpendicularly to the predominant geologic strike (approximately in the W-E direction.) A

total of 43 contiguous and collinear dipoles were deployed along the line at a constant

interval of 100 m. In addition, 200 m orthogonal dipoles and pairs of induction coils were

disposed at regular intervals to aid in the estimation oi dimensionality of the underlying

subsurface resistivity distribution. Ali electric and magnetic field signals measured along

the survey line were referred to a fixed magnetic base station whose location is indicated in

the lower right-hand corner of Figure 5-22. Even though apparent resistivity and
_
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impedance phase curves for the orthogonal dipoles are not shown here, these revealed no

significant lateral response variations except in the proximity of the Warner Range.

Likewise, the recorded magnetic field variations along the line compared remarkably well

with the magnetic variations recorded at the base station, and from this observation it was

. concluded that former could be neglected for ali practical purposes. Finally, the geoelectric

strike estimated at the orthogonal dipole locations conf'n'med that the line was in effect

aligned almost perpendicularly to the dominant regional strike.

Electric and magnetic field data were collected at 45 frequencies, uniformly

distributed at a rate of 10 samples per decade within the interval from 0.003 to 100 Hz.

Apparent resistivity and phase pseudosections describing the Surprise Valley Zxy base

impedances are displayed in Figures 5-23a and 5-23b, respectively. The longer than usual

vertical axis in these plots was chosen so that the inverted resistivity sections could be

described with a 1:1 horizontal to vertical length scale. Both pseudosections reveal

negligible surface static distortion on the Zxy impedances, especially when compared

against the level of surface distortion effects exhibited by the White Pine CO. field

impedances. However, enough lateral response variations are exposed in the

pseudosections to call for a continuous reconnaissance of the surface electric response.

Figures 5-24a, 5-24b, and 5-25a show the inverted resistivity sections obtained by

adaptive spatial filtering and subsequent Bostick inversion of the Zxy base impedances

using filter constant values of 1, 1.5, and 0.5, respectively. The linear axis representation

for depth used in these plots is not intended to reflect the true vertical resolution

characteristics of the field data, and is simply used to facilitate the geological interpretation

of the results. For this same reason both horizontal and vertical axes are displayed with the

same scale. In fact, an upper bound of 5 km for the depth scale is consistent with the depth

range expected to optimally describe the lateral variations of subsurface resistivity

considering that the survey traverse is only 4.2 km long. Finally, the estimated depths

shown in Figures 5-24a, 5-24b, and 5-25a are measured below the 1300 m ASL elevation

datum, which, incidentally, coincides with the lower limit of the elevation panel displayed

in those figures.

The f'fltering exercise with different filter constants, c, illustrates in a practical way

how the optimal selection of this parameter is crucial to understanding the lateral resolution

bounds with which the data can be interpreted. First of all, the values of the f'flter constant,

c, used for the Surprise Valley traverse are smaller than those used with the White Pine

CO. traverse because of the comparatively smaller surface static effects in the former. One
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can see that for a filter constant value of 1.5, lateral detail in the inverted resistivity section

has been practically eliminated, whereas for a value of filter constant below 0.5, electric

static effects persist in the inverted resistivity section. To further clarify this last situation,

Figure 5-25b shows the resistivity section derived by direct 1-D Bostick inversion of the

unfiltered base impedances. This figure illustrates the extreme case wherein electric static

effects are completely unaccounted for in the estimation of a cross-section of subsurface

resistivity.

Exhaustive tests with different filter constants indicate that for the Surprise Valley

data the critical region of c lies somewhere within 0.8 and 1. An optimal selection of filter

constant in this range would require either additional geophysical and geological

information or extensive numerical simulation work, or both. A criterion to be met when

selecting c is that the inverted resistivity section be in qualitative agreement with the lateral

and vertical variations of impedance phase. More specifically, the impedance phase

pseudosection in Figure 5-23b indicates that the resistor on the left-hand side of the section

has a limited vertical extent and that a conductive basement lies at the bottom of the section.

Both of these features are adequately represented in the inverted resistivity section obtained

with a filter constant of value 1 (Figure 5-24b), although the conductive basement becomes

visible only when the depth axis is extended down to at least 10 km below the datum. For

this purpose, a complementary resistivity section is displayed in Figure 5-26, wherein

depths are measured wif. a logarithmic axis and down to 20 km. The depth and resistivity

values shown in Figure 5-26 for this conductor are only approximate estimates in light of

the fact that the estimated depth has already superseded the length of the traverse.

On purely geologic grounds, the resistive feature visible on the left-hand side of the

inverted resistivity section (Figure 5-24b) is consistent with the geometrical characteristics

of the well-studied upper block of the Hot Springs Fault. Both surface geology and gr,avity

data indicate that the latter is a normal fault and that it has an estirnated vertical displacement

of approximately 4 km (Hedel, 1981). The geoelectric imprint of a second normal fault is

recognized between dipole locations 8 and 10. This corresponds to the Front-Range Fault,

which delineates the geological boundary between the Warner Mountain Range (or more

globally the Warner Plateau) and the Surprise Valley graben (Tsvi Meidav, Trans-Pacific

Geothermal Co., personal communication). Both the Hot Springs Fault and the Front-

Range Fault are the principal members of a general stair-step fault pattern that best

describes the structural boundary of the Surprise Valley graben. The Hot Springs Fault

appears to be the ascending conduit for the thermal fluids which feed the hot springs
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located between dipole locations 20 and 22. Although the subsurface heating mechanism is

not clearly understood, the water source for those fluids is most probably the Warner

Mountain Range itself.

This brief geologic outline of the Surprise Valley region appears to be in qualitative

agreement with the geoelectric features represented in Figure 5-24b. In particular, the

sloping character of the resistive block on the left-hand side of this figure lends credence to

• normal nature of the Surprise Valley fault system. Also, the westward tilt exhibited by the

Warner Mountain Range appears properly represented over the same portion of the inverted

geoelectric section. From the basis of these results, the Surprise Valley field example

shows that even in the absence of significant surface static effects, continuous sampling of

the electric field extracts the maximum amount of lateral information from the subsurface

resistivity distribution.

5.10 Discussion and concluding remarks

The synthetic and field data examples described in the previous show the

importance of using contiguous electric dipoles for sampling the electric response from the

subsurface. Both field examples indicate the need for much closer spacings between electric

field sampling locations that has been used conventionally. In addition, the studies in this

chapter indicate when electric field data have been acquired continuously along the survey

line, spatial filtering of the ta:_ _ntial electric field component proves an efficient means to

reduce the static component of the response. Further, a simple inversion of the inductive

component that remains after spatial filtering provides a relatively accurate cross-section of

subsurface resistivity.

In connection with the prewhitening operator described in section 4.9, adaptive

spatial filtering can be understood as a method to continuously update, laterally and

vertically, the variations of local background re:'istivity along the traverse. The lower the

sounding frequency, the larger the depth of penetration and the longer the distance along

which the subsurface resistivity is averaged. Needless to say, the nature of _hese averages

is intimately related to the diffusive mode in which the MT fields prol:agate in the

subsurface.

The crucial step of spatial filtering is to determine whether, at a given frequency, the

induction component no longer dominates over the static component. Over low-contrast

subsurface resistivity models, this occurs when the cutoff wavenumber of the low-pass
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filter is inversely proportional to the Bostick depth of penetration in the homogeneous

background (section 2.7). This is the nominal cutoff wavenumber. However, because the

Bostick depth of penetration can be biased by static effects, spatial filtering has to be tried

with different cutoff wavenumbers until one is found which is in effect inversely

proportional to the depth of penetration of the filtered impedance. The suppression of

stronger than usual static distortion necessitates of a cutoff wavenumber even smaller than

the reciprocal of the Bostick depth of penetration. This criterion remains consistent with the

wavenumber bounds derived in Chapter IV for the maximum wavenumber that can be

recovered from the subsurface resistivity distribution for a given frequency (or depth of

penetration).

The factor by which the nominal cutoff wavenumber of the low-pass f'tlter is further

reduced has been referred here to as the filter constant. Normally, the selection of an

optimal filter constant requires the trial of several of them until, from inspection of the

inverted resistivity sections, it is judged that all static effects have been properly accounted

for. In the presence of frequency-dependent static effects, a low value of the filter constant

may be appropriate for shallow depths of penetration, whereas for the inversion of deeper

subsurface resistivity variations the required filter constant may be progressively increased

to its maximum value. A limit to the lateral extent of this filtering process is set by the

length of the traverse: even if data have been acquired at frequencies for which the depth of

penetration may be larger than the traverse length, there will be no certainty that the inverted

depths and resistivities have not suffered from a bias effect due to unaccounted for static
distortion.

Although the filter used in the synthetic and field examples above was

parameterized as a discrete Hanning window, it appears that so long as both the cutoff

wavenumber and the roll-off of the filter are carefully adjusted, different discrete filters may

be designed to perform the spatial filtering of the electric field data. The Harming windo,,,

is attractive because it is symmetric and has simple properties. Filters with more

sophisticated and even asymmetrical shapes may introduce bias of their own on the filtered

sections unless they are chosen to deal with specific characteristics of the data. Sasaki

(1989), following a seemingly independent study of the sensitivity of dipole and Hanning

window responses for the suppression of static effects advocated the use of a simple

Hanning window.

Also, in spite of the fact shown in Chapter IV that filtering (prewhitening) of

electric field data can be done in the wavenumber domain, filtering in the space domain
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offers much greater flexibility. An important advantage of space-domain filtering over

wavenumber-domain filtering is that it is much easier to compensate for edge effects with

the former. For instance, the Wiener filtering procedure introduced in section 5.4 for the

discretization of a Hanning window, takes into account edge effects in a most natural way.

Moreover, wavenumber-domain f'tltering is only appropriate when the characteristics of the

filter remain the same for ali the sites along the electric field array, otherwise repeated

Fourier transformations will be necessary to perform filtering for as many variations of

filt_,r characteristics there are along the electric field array.

Jones et al. (1989) have reported a study based on their interpretation of the

"conventional" EMAP f'fltering. They mistakenly assumed that in the EMAP spatial f'tltering

procedure the width of the Hanning window is determined as the inverse of a depth of

penetration value estimated from the unfiltered impedances. Because of this, they showed

the EMAP spatial filtering may, in the presence of static effects, lead to oversmoothing of

valuable information in the electric field data. To "avoid" this situation, they proposed

instead to perform the filtering step in the wavenumber domain such that the frequency-

wavenumber properties of the filter could be tailored not to oversmooth valuable response

characteristics that are known a priori from the subsurface. With so many flawed

assumptions about the EMAP spatial filtering procedure in Jones et al.'s (1989) study, any

explanatory note here is probably unnecessary. The only comment that seems pertinent,

though, is that with an appropriate choice of filter constant, the adaptive spatial filtering

process described in section 5.4 can be made to respect specific portions of the

wavenumber-frequency spectrum of the unfiltered data, and thus minimize undesired

smoothing.

An important note regarding the _vay in which the filtered impedances can be

inverted into a cross-section of subsurface resistivity is that, even though a simple 1-D

Bostick inversion may yield relatively accurate results, this is neither the only nor the

optimal procedure available. Indeed, more sophisticated procedures of 1-D inversion may

be used with each one of the filtered EMAP impedances. In so doing, however, it must be

remembered that the standard curves of filtered apparent resistivity and impedance phase

(such as those shown, for instance, in Figures 5-6 and 5-9) do not obey the basic

properties of conventional MT impedances (see section 5.6). Because of this, the use of a

nonlinear procedure to carry out the 1-D inversions becomes much more elaborate than the

use of a straightforward frequency-by-frequency method such as the Bostick

pseudoinverse.
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At a given point along the electric field array, the modified 1-D inverse of the

filtered impedance would be done more or less in the following way. First, at the highest

frequency a window width is adapted with the aid of equation (5.18), such that ali

remaining frequency samples are filtered with the same window. An exact 1-D inverse is

then applied to the impedance filtered this way, and only that portion of the inverted

resistivity profile is retained for which the depth is shallower or comparable to the product

eW, where c is the filter constant and W is the window width. Second, the same spatial
ii

filtering is performed except that now the window width is increased to its next higher

value. The new filtered impedance is then 1-D inverted such that, once again, only that

portion of the inverted resistivity profile is retained for which the depth of penetration is

comparable to the new eW product. Furthermore, the retained portion of the inverted

resistivity profile should not overlap with the portion derived in the previous filtering-

inversion step. This sequence of steps are repeated until ali remaining values of W have

been processed. Clearly, an inversion method with these characteristics exacts a much

greater toll in computer time than the Bostick pseudoinverse. However, it can be used at

only certain points along the survey traverse (for instance, in the neighborhood of well-

logging locations) and even some window-width values can be omitted from the analysis to

simplify the computations.

A next step of sophistication in carrying out the inversion of EMAP impedances

consists in performing nonlinear iterative 2-D TM inversions where the simulated data are

spatially filtered at each iteration and then contrasted against the filtered field impedances

until an appropriate match is attained. Both, 1-D and 2-D nonlinear procedures for the

inversion of EMAP impedances remain as challenging tasks for future developments in the

interpretation of continuously acquired MT data.
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Figure 5-2. Graphical description of the EMAP field procedure.
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Figure 5-5. Apparent resistivity and impedance phase curves describing the variations of the spatially
filtered TM impedance at Site No 1 (Figure 5-4) with respect to the width of Hanning window used to
perform the filtering. Curves are shown for three different frequencies, namely, 0.01, 1, and 100 Hz. For
comparison, constant apparent resistivity lines are shown at the same frequencies describing the 1-D
response of a medium in which the surface conductor of Figure 5-4 has infinite lateral extent.
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Figure 5-6. Apparent resistivity and impedance phase curves of the spatially filtered TM impedance at
Site No. 1 (a) and Site No. 2 (b) (Figure 5-4) obtained using an unconstrained adaptive filter. Spatial
rdtering was carried out assuming a 3 km long traverse composed of uniform and contiguous 100 m electric
dipoles. A filter constant, c, of value 2 was used to produce the results shown. Also, plots of the TE, TM
(100 m dipole length) ar,d 1-D responses are displayed for comparison. The 1-D cw'ves describe the response
of a medium in which for (a) the surface conductor of Figure 5-4 has infinite lateral extent, whereas for (b)
the surface conductor is not included.
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Figure 5-7. Curves of Hanning-window width adapted with the unconstrained spatial filtering procedure at
Site No. 1 and Site No. 2. The values of window width shown were used to produce the apparent resistivity
and impedance phase curves of Figure 5-6.



188

WIDTH OF HANNING WINDOW

Constrained Growth of Window Width

1_ ...... ,,,, ........ , , ,,,,,,,, ........ , , ,,,,,,,, , ,,,,,,= 1C_

_, 104 _ 104
-1-

10s 10s

ld , , ..... ,, , , ...... , ........ , ,, ,,,,,,, ,, ,,,,"_",, ....... ld
10" 10.= 10" 10o 10_ 10= 1_

FREQUENCY (Hz)

Figure 5-8. Curves of Harming-window width adapted with the constrained spatial filtering procedure at
Site No. 1 and Site No. 2. The values of window width shown were used to produce the apparent resistivity
and impedance phase curves of Figure 5-9.
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Figure 5-9. Apparent resistivity and impedance phase curves of the spatially filtered TM impedance at
Site No. 1 (a), and Site No. 2 (b) (Figure 5-4) obtained using a constrained adaptive filter (cf. Figure 5-6).
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Figure 5-10. Geologic noise model. (a) is the model plot, and (b) and (e) are the simulated TM
apparent resistivity and phase pseudosections, respectively.
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Figure 5-11. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion
of the TM impedances described in Figures 5-10b and 5-10c. The (a), (b), and (c) sections correspond to
filter constants, c, of values 2, 3, and 4, respectively..
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Figure 5-12. Apparent resistivity pseudosection of the spatially filtered TM impedance for the geologic
noise model described in Figure 5-10a. A filter constant, c, of value 3 was used to produce the
pseudosection.
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Figure 5-13. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion
of the TM impedances simulated for the model described in Figure 5-10a, except that in (a) no surface
overburden was present, and in (b) the overburden was set to have the same thickness variations as in
Figure 5-10a and a constant resistivity of 10 _,m. Both sections were obtained with the use of a filter
constant, c, of value 3 (cf. to Figure 5-11b).
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Figure 5-14. Topogr:aphic distortion model. (a) is the model plot, and rb) and (c) are the simulated TM
apparent resisti_,'it3and phase pseudosections, respectively.
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Figure 5-16. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion
of the TM impedances described in Figures 5-14b and 5-14c. Both sections were obtained with the use of a
filter constant, c, of value 3. However, in (a) an elevation correction was applied by direct compensation of
the dipole elevations, whereas in (b) the dipole elevations were compensated with use of the spatial
f'dtering procedure described in Figure 5-15.
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Figure 5-17. Model for the study of adjustment distance effects. (a) is the model plot, and (b) and (c)
are the simulated TM apparent resistivity and phase pseudosections, respectively.
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Figure 5-18. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of
the TM impedances described in Figures 5-17b and 5-17c. The section was obtained with the use of a filter
constant, c, of value 1.5.



199

1 .5 0 1 2 3 4 5 _j
i i _ C _\

ElevationsKil°meterSinm ASE -_ "{ J _\To Duckwater
'_" _ "_ (13 miles)-

Figure 5-19. Location map of the White Pine CO. test survey. The traverse included 84 contiguous
electric dipoles (spans) with a common length of 244 m (800'). A single magnetic base station was
deployed and data were collected at 37 different frequencies, evenly distributed logarithmically in the band
from 0.0015 to 488 Hz.



2O0

APP RES Zxy / WHITE PINE CO., NV 1984
A

-J Sampling Interval " 244.0 m, Dipole Length -= 244.0 m(13
<

.EE 2100 2100

z 1900' Span No. •19oo0
6 10 16 20 25 30 35 40 46 84) 86 eO 85 70 78

'1700
._J
"' 10'

"_ lO'

(a) ; lO'
r,,.) 100Z
UJ

o lO'uJ lO"
li

I0"" 101

I0" fl-m
0 2 4 a 8 10 12 14 16 18 20

PHASEZxy / WHITEPINECO.,NV 1984
Sampling Interval -- 244.0 m, Dipole Length "- 244.0 mU)

<
F: 2100 2100

Z 1900 - 1900
6 10

_, 1700
t,,i.J
-_ 1# 10=IJJ

- 70

"_ 10'::E

(b) _,o o
uJ 40
D
O
ua 10" 30
tr-
U..

2O
10-=

10

10"s DEGREES
0 2 4 6 8 10 12 14 16 18 20

DISTANCE (km)

w
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Figure 5-21. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of
the Zxy base impedances measured along the White Pine CO. traverse. The section was obtained with the
use of a filter constant, c, of value 3. Depthr are measured in meters below an elevation datum placed at
1700 m ASL.
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Figure 5-26. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of
the Zxy base impedances measured along the Surprise Valley traverse. The section was obtained with a
filter constant, c, of value 1. Depths z-e displayed wilh a logarithmic axis from 500 to 20,000 m below the
elevation datum placed at 1300 m ASL.



CHAPTER VI

PROPERTIES OF EMAP IN 2- AND 3-D ENVIRONMENTS

6.1 Introduction

In Chapter V, methods used for the acquisition, spatial filtering, and subsequent

inversion of EMAP impedances were tested on 2-D synthetic models assuming a line of

measurements taken normal to strike. This chapter considers a more complicated field

situation for the same methods, including both the case of a survey traverse oblique to

strike and the presence of confined 3-D scatterers. Specifically, over 2-D media, it is

shown that both TE and TM impedances can be approximated from the base impedances,

Zxx and Zxy, when the survey traverse is laid out at an angle with respect to strike.

Estimation of the geoelectric strike direction requires only one additional orthogonal electric

dipole. However, with the occurrence of local 3-D static distortion, estimation of the

regional strike, if any, is best done with an orthogonal line of contiguous electric field
measurements.

Over 3-D media, the synthetic EMAP model study presented here is aimed at

evaluating the performance of spatial filtering over buffed and surface scatterers; attention is

paid to the cases where the line of measurements is either perpendicular or oblique with

respect to the principal geometrical axis of the scatterer. A critical point of this task is the

study of EMAP responses when the survey traverse is offset from the 3-D scatterers. For

instance, it is shown that measurements of the vertical magnetic field could be used to

recognize the presence of lateral induction effects on the in-line electric field. However, the

suppression of electric static effects by way of spatial filtering is primarily controlled by the

adjustment distance of the 3-D scatterer regardless of how the latter is transected by the line

of measurements.

This chapter also includes a case history based on a three-line EMAP survey carded

- out over the Sengan geothermal prospect in Japan. Tangential electric field data gathered

along the three lines reveal a highly 3-D subsurface resistivity distribution. The objective

here is to use the electric response measured at the intersection points between pairs of liaes

to estimate the geoelectric strike as a function of frequency. In so doing, spatial filtering is

applied to the electric field measurements along each intersecting survey line to suppress
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3-D static effects prior to the rotation of conventional MT impedances, lt is shown that

unsuppressed static effects may cause a significant bias not only on the induction strike but

also on other MT parameters of dimension',dity. As corol_ary to these studies, a simple

'_echnique is proposed for the acquisition of conventional MT impedances that can be used

to minimize electric static effects in the estimation of induction and dimensionality

parameters.

v

6.2 Properties of EMAP in 2-D environments

In an effort to improve the exploration potential of EMAI _ over 2- and 3-D

geoelectric media, Sigal (1989)recently advanced a similar field procedure wherein, as

shown in Figure 6-1, the contiguous electric dipoles are deployed in a "zig-zag" pattern; he

did so seeking to obtain continuous estimates of all tensor impedance components along the

line of measurements. Particularly, Sigal (1989) remarks that because EMAP measures

only one electric field component, the standard field procedure (Figure 5-2) cannot yield

estimates of the TE and TM impedances when the survey is performed in 2-D

environments. The developments below, however, demonstrate that so long as the line of

measurements is oblique with respect to strike, both TE and TM impedances can be

estimated from measurements of :he tan,ge_tial electric field components without having to
"zig-zag" the survey path.

For simplicity, assume that the EMAP traverse coincides with the x-Cartesian axis

(Figure 6-2). La the freqlaency domain, the relationships between the electric and magnetic

field components measured along the survey line with the magnetic fields measured at the

magnetic base station may be written as

Ex = 7-xxHBx+ Z=yHyB, (6.1)

Hx = TxxHxB + TxyHBy,and (6.2)

Hy = TyxHxB + TyyHyB, (6.3)

f

where HxB and HyB are the x and y magnetic field components, respectively, measured at the

base station, Ex is the tangential electric field, and Hx and Hy are the local magnetic fields.

The notation Zxx and Zxy is used to designate base impedances (equation 5.4), and the

terms Txx, Txy, Tyx, and Tyy are magnetic transfer functions (equations 5.5 and 5.6).
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Tbe standard definition of MT impedance components, Zxx and Zxy, on the other

hand, follows from the linear relationship

Ex = ZxxHx + ZxyHy. (6.4)

• It is pointed out that in the EMAP field procedure the magnetic field needs not be measured

at as many locations as the eleclric field. Typically, the lateral magnetic field variations are

• not as significant as the lateral variations of the electric field, and thus one can rely on much

longer sampling distances to intercalate the pointwise variations of magnetic field along the

survey traverse. With an interpolation scheme of this nature, local magnetic transfer

functions can in turn be computed in the form suggested by equations (6.2) and (6.3) from

the base magnetic fields. In this respect, substitution of equations (6.2) and (6.3) into

equation (6.1) together with comparison with equation (6.4) yields explicit relations

between the base and conventional impedances, namely,

Zxx "- xx- "IyxZxy), and

Zy.y = x xy - TxyZxx),

where

h2 = TxxT_ - TxyTyx.

Formulas relating EMAP (equation 5.7) and conventional impedances can be derived in

similar fashion. The remaining elements of the impedance tensor, namely, Zyx, and Zyy,

can only be calculated if the oxthogonal electric field component, Ey, is measured as weil.

However, if at any given point along the line of measurements only one dipole is used to

measure Ey there will be no guarantee that this measurement will not be spatially aliased.

Sigal's (1989) zig-zag electric field path does yield continuous estimates of Ey, but, as

intuitively see_xfrom Figure 6-1, once the spatial filtering length required to suppress static

effects is a t¢w times longer than a dipole length, the effective direction for filtering will no

. longer be the y-axis. In fact, the longer the filtering distance the more parallel to the x-axis

the effective direction for filtering becomes. On the other hand, rotation of the electric field

- measurements into mutually orthogonal directions prior to performing spatial filtering may

project existing 3-D static effects in a rather adverse way (see sections 6.2.1 and 6.5

below).
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Suppose for the moment that the subsurface consists of only 2-D variations of

resistivity. For this situation, Figure 6-2 illustrates both a line of measurements laid out at

an angle, 0, with respect to strike, and a Cartesian coordinate frame with its x'- and y'-axes

in the directions parallel and perpendicular to strike, respectively. In the x'-y' coordinate

frame, the E'x and _'._,yelectric field components are described by the uncoupled linear

equations

E'x = ZTMI-fy,and

F4=

where the complex variables ZTE and ZTM are the TE and TM impedances, respectively,

that characterize the geoelectric properties of the underlying 2-D medium. By

counterclockwise rotation of the electric and magnetic field components E'x, H'x, and H'y,

respectively, into the x-y Cartesian coordinate flame, one obtains the expressions

Zxx = (ZTE - ZTM)SIn0COS0,and (6.5)

Zxy = ZTESin20 - ZTMCOS20 (6.6)

relating the TE and TM impedances with the Zxx and Zxy tensor impedance components

measured with the x-y Cartesian coordinate frame. These expressions can only be
implemented in practice when 0 is known.

Equations (6.5) and (6.6) above indicate that whenever 0 is neither 0° nor 90° one

can solve for both TE and TM impedances from measurements of Zxx and Zxy acquired

along the oblique traverse. If 0=0 ° then Zxx=0 and Zxy=ZTM; if 0=90 ° then Zxx=0 and

Zxy=ZTE. Explicit relations for both Z,_ and ZTM in terms of the Zxx and Zxy impedances
are

Z'I'E= ZxxcOt0 + Zxy, and (6.7)

ZTM = -Zxxtan0 + Zxy. (6.8)

For the common situation in which the magnetic field is sampled at only the base

site, the TE impedances estimated via equation (6.7) will reflect only the lateral variations

of TE electric field. Likewise, if the TE impedances are estimated from the Zxx and Zxy

EMAP impedances, these will reflect variations of the ratio between the electric field -E'y,

and the primary magnetic field, H'0x. On the other hand, usage of either local, base, or
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primary magnetic field components does not modify the nature of the TM impedances.The

mixture of both TE- and TM-like electric field responses that explains in general the Zxy

(either base or EMAP) traverse impedances proves useful to understand how spatial

filtering works when the line of measurements is oblique with respect to strike.

By way of example, consider the geoelectric cross-section shown in Figure 6-3a.

This corresponds to a 2-D vertical fault model projected at a 45° angle with respect to strike

° (the projection angle, 0, defined as illustrated in Figure 6-2). The vertical fault separates

rectangular blocks with resistivities of 100 and 1,000 G*m on the left- and right-hand sides

of the section, respectively, and is terminated on the surface with a 10,000 f_om symmetric

block (vertical and lateral dimensions of 100 and 500 m, respectively). At depth, the fault is

underlain by a 10 G°m half-space buried 3 km below the surface. Figures 6-3b and 6-3c

are the cross-sections of subsurface resistivity derived by Bostick inversion of the TE and

spatially filtered (filter constant, c, equal to 3) TM impedances, respectively. Both TE and

TM impedances were estimated from the Zxy EMAP impedances using the formulas (6.7)

and (6.8) and assuming primary magnetic field components instead of a laterally varying

surface magnetic field. In turn, Zxy EMAP impedances along the survey traverse were

simulated from the responses of 100 m-long contiguous electric dipoles. Because of the

45° angle projection in the model section (Figure 6-3a), the traverse length used for spatial

filtering was made 2 km longer than the standard normal-to-strike length of 4 km. The

numerical simulations were performed in the frequency band from 0.001 to 1,000 Hz, at a

rate of 5 samples per decade. Resistivity cross-sections derived directly from the Zxy

EMAP impedances via spatial filtering and subsequent Bostick inversion are shown in

Figures 6-4b and 6-4c in association to filter constant values, c, of 2 and 3, respectively.

The lateral resolution characteristics described in Chapter IV for both TE and TM

impedance are well exemplified in Figures 6-3b and 6-3c. For instance, the progressive

loss of high wavenumber harmonics with respect to depth is evidenced by the smoothness

with which the vertical fault boundary has been recovered in each case. This loss of

wavenumber harmonics is much more pronounced for the TE electric field than for the TM

electric field. However, the TE electric field response exhibits better vertical resolution

characteristics (the conductive basement is better resolved in this case) than the TM electric

field. In contrast, the sections derived from the Zxy impedances are somewhat smoother

laterally than the section derived from the estimated TM impedances, but do show a flatter

basement. The difference in lateral behavior between the Zxy and TM resistivity sections is

due to the superposition of TE electric field variations in the Zxy impedances, which even
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though has acted in detriment of the high wavenumber harmonics, it has improved the

vertical resolution characteristics of the section (increasing the value of filter constant, c,

smooths the Zxy section laterally, but does not translate to a more severe loss of vertical

resolution.)

A second model example is shown in Figure 6-5a; this is a projected version of the

geologic noise model studied in section 5.7.1. The survey traverse is laid out at a 45 ° angle

with respect to strike, and consists of 100 m-long contiguous electric dipoles deployed

along a total distance of 6 km. From these dipoles, Zxy impedances were simulated in the

same frequency range and with the same sampling interval as in the previous example.

Resistivity cross-sections derived by spatial filtering and subsequent Bostick inversion of

the TM and Zxy impedances are shown in Figures 6-5b and 6-5c, respectively. In both

cases, the spatial filter was adapted with a filter constant, c, of value 3. Barring the

difference in traverse length (the effective length normal to strike is about the same), the

inverted TM resistivity section compares well with the resistivity section shown in Figure

5-11b, and which was derived directly from the simulated TM impedances measured

perpendicularly to the strike. On the other hand, even though the Zxy impedances have

yielded a laterally smoother resistivity section than the estimated TM impedances, the

former have been superior in resolving the conductive basement. Likewise, the vertical gap

between the most conductive block of the surface overburden and the buried rectangular

block is better resolved in the Zxy section than in the TM section. Finally, as a parenthetical

note, Figures 6-6b and 6-6c show the apparent resistivity and phase pseudosections,

respectively, of the Zxx cross-coupling impedances. As evidenced by these figures, even

though both amplitude and phase may attain large values at some points, the

pseudosections reveal a somewhat randomly distributed electric field response. In fact, this

randomness helps explain why spatial filtering of the cross-coupling component

consistently approaches zero for progressively longer averaging distances (see section 2.5),

and thus why only the Zxy impedance is used to drive the adaptive spatial filtering

procedure described in section 5.4.

Because adaptive spatial f'tltering is relatively harmless to the TE (purely inductive)

electric field response, filtering performed on the Zxy impedances will suppress only the

static component of the TM electric field response. In this regard, equation (6.6) shows that

the influence of TE electric field effects on the filtered Zxy impedances will increase with

increasing values of the angle, 0, between the survey traverse and the normal-to-strike
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direction. Values of 0 over 45° cause the Zxy impedances to contain a larger proportion of

the TE impedances than of the TM impedances. Conversely, values of 0 lower than 45°

cause just the opposite effect. Thus, spatial filtering and subsequent inversion of the Zxy

impedances may be thought of as a joint inversion of both TE and TM impedances when

• the survey traverse is laid out at an angle with respect to strike. A 45 ° traverse is the break

even point where both TE and TM impedances are equally weighed in the inversion

• process. The tradeoff incurred on with the use of an oblique traverse, however, is an

increase in survey length, the latter proportional to tan(0). A field procedure that can be

implemented for the estimation of 0 is discussed below.

6.2.1 Estimation of the strike angle

The preceding analyses show that estimation of both TE and TM impedances from

the Zxx and Zxy traverse impedances can only be accomplished if the strike a:_gle, 0, is

known beforehand. This estimation requires measurements of the electric field orthogonal

to the line of measurements. In 2-D environments, only one orthogonal dipole is needed to

calculate 0 (Figure 6-2). Orthogonal and tangential electric field data acquired at the same

control point can be assembled into a standard MT tensor, which in turn can be analyzed

with standard techniques to yield an estimate of strike angle (see, for instance, Vozoff,

1972). In addition, vertical magnetic field data may be acquired at the same point to

properly discriminate between the strike and normal-to-strike directions.

Even though a number of practical situations exist where the bulk MT response of

the subsurface can be considered 2-D in a regional scale, often near-surface resistivity

anomalies cause enough electric static distortion to severely bias the estimation of the

regional strike angle oy conventional techniques (see Groom and Bailey. 1989, for an

excellent analysis of this topic) To circumvent this difficulty on the interpretation of

conventional MT impedances, Groom and Bailey (1989) propose an ad-hoc matrix

factorization for the 2x2 impedance tensor that can unravel regional strike directions in the

presence of 3-D electric static distortion. However, because of the short electric field

sampling distances that are normally used to acquire conventional MT impedances, Groom

and Bailey's (1989) matrix factorization method is of limited use precisely where it would
be most valuable.

The procedure suggested here for the estimation of a regional 2-D strike angle under

3-D electric static distortion is illustrated in Figure 6-7. This consists of the deployment of
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an additional line of electric dipoles (a mini-EMAP line) perpendicular to the main line of

measurements. Data acquired from these dipoles are amenable to the spatial filtering

procedures described in Chapter V for the suppression of static distortion; the longer the

orthogonal traverse the more efficiently the static distortion can be suppressed over a wider

frequency range. However, when economic conditions severely constrain the deployment

of a string of electric dipoles, one can be opt for the deployment of a single but longer

dipole at regular spacings along the traverse (see the Surprise Valley field example in

section 5.9). The disadvantage of a single longer dipole over a string of them is that the

former may sometimes miss valuable information about the inductive response at the

highest frequencies.

Upon applying spatial filtering both along the mini-EMAP line and along the main

survey traverse, the regional geoelectric strike angle, 0, can be estimated at the intersection

point (or points), and the TE and TM impedances computed from equations (6.7) and (6.8)

at the remaining points along the line of measurements. In principle, spatial filtering along

the mini-EMAP line should yie!d a depth of penetration comparable to that obtained with

spatial filtering performed along the main survey traverse at the same frequency. This

specialized form of spatial filtering along orthogonal directions is tested with a field

example in section 6.5.

The location for the orthogonal mini-EMAP traverse (or long orthogonal dipole)

should not be arbitrary, especially when the influence of 2-D geoelectric features is

confined to only some portions of the survey traverse. For best results, the orthogonal

mini-EMAP line should be deployed at a point (or points) where lateral induction effects are

most conspicuous. Such points can be determined by inspection of the Zxx cross-coupling

impedance. Barring the presence of 3-D electric static distortion, large lateral variations of

Zxx are indicative of induction current oriented at an angle with respect to the survey

traverse. It is at points whe_,: _his occurs that the location of the mini-EMAP line (or longer

orthogonal dipole) is most appropriate.

6.3 EMAP simulation in 3-D environments

Use of EMAP for the sounding of 3-D geoelectric media involves a few practical

considerations, some of which are simple extensions of the ideas discussed above in

reference to the sampling of 2-D surface electric field responses. In contrast, however,

depending on their relative dimensions and depth of burial, confined 3-D scatterers often

provide a weaker inductive MT response than 2-D scatterers with the same cross-section,
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Moreover, over 3-D media there is always the possibility not only of transecting confined

3-D scatterers at an arbitrary angle but also of sensing their static and inductive electric

responses without having transected them at all. The simulation study presented in this

section is aimed primarily at examining the performance of EMAP in these last two

situations. To this end, surface electric and magnetic field data were synthesized with the

3-D integral equation code of Wannamaker (1990) which, among other things, allows for

outcropping scatterers. The standard frequency range from 0.001 to 1,000 Hz is
t

considered, and includes 5 frequency samples per decade. Only straight survey traverses

are studied and the convention adopted is that the x-axis coincides with the survey traverse

and that the z-axis points downward into the earth. In ali cases, Zxy EMAP impedances are

computed from the responses of 100 m dipoles (simulated by numerical integration of the

tangential electric fields) deployed end-to-end along the traverses. The model examples

consist of (1) a simple buried 3-D scatterer and, (2) a combination of both surface and
buried 3-D scatterers.

6.3.1 A simple 3-D scatterer in a 1-D background

Both a plan view and a cross-section of the first model example are shown in

Figure 6-8. The 1-D background of this model is composed of a 250 _.m upper layer and

a 1 f_.m basement, the latter buried 4 km below the surface. A single 3-D scatterer is

introduced in the form of a 1 f_-m rectangular block buried at a depth of 100 m and with

lateral dimensions of 700 m x 700 m and thickness of 300 m. The two survey traverses

considered for the EMAP simulation are described in the plan view of Figure 6-8: Line 1

transects the 3-D scatterer directly above it, and Line 2 is offset 200 m away from it. Both

lines have a common length of 3 km.

Apparent resistivity and phase pseudosections describing the simulated Zxy

impedances along Line 1 are shown in Figures 6-9b and 6-9c, respectively. In Figure 6-9b,

the static effect introduced by the buried 3-D scatterer on the inductive 1-D background

response is evident in the central portion of the pseudosection. Along Line 2, the

corresponding apparent resistivity and phase pseudosections of the 7__,r.yimpedances are

. displayed in Figures 6-10b and 6-10c, respectively. Even though the model cross-section

along Line 2 does not transect the 3-D scatterer, the Zxy apparent resistivity pseudosection

in Figure 6-10b shows electric static effects superimposed on the inductive signature of the

conductive basement. In contrast, the impedance phase pseudosection along the same line
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shows significant lateral variations only at the highest frequencies, which can only be
explained by the offset 3-D scatterer.

Resistivity cross-sections derived by spatial filtering and subsequent Bostick

inversion of the simulated Zxy impedances along Line 1 and Line 2 are shown in

Figures 6-1 lb and 6-1 lc, respectively. Both sections were obtained with the use of a filter

constant, c, of value 2. In Figure 6-1 lb, the lateral variations of the shallowest depth of

penetration are determined by the underlying resistivity profiles, and this is why even at the "

highest frequency (shallowest depth of penetration) the buried 3-D scatterer gives the

impression of a surface feature. In general, however, the section compares well with the

adjoining model cross-section (Figure 6-1 la). Along Line 2, spatial filtering proved

successful in suppressing the electric static effect from the buffed 3-D block and

superimposed on the inductive signature of the conductive basement. However, even after

spatial filtering has been performed, the relative proxirrfity of the buried 3-D scatterer has

left a clear imprint on the inverted resistivity section shown in Figure 6-11 b. Because the

inductive signature of the 3-D scatterer is also visible in the impedance phase

pseudosection, it is impossible to ascertain whether the scatterer is offset from the survey

traverse without additional in-line field measurements. Deployment of an orthogonal dipole

may be helpful in resolving this situation, but as emphasized in section 6.2 above, it may

also be dangerous under complex static distortion if precautions are not taken to minimize

spatial aliasing. A more viable alternative consists of making measurements of the vertical

magnetic field at regular intervals along the survey traverse, as described below.

The magnetic field measurements, Hz, made along the survey traverse can be

written in terms of the primary magnetic field components, Hox and H0y, with the linear
relation

Hz = KzxH0x + KzyH0y, (6.9)

where the terms Kzx and Kzy are modified tipper transfer functions 1. .The functions Kzy

and Kzx are mostly governed by inductive effects from conduction current parallel and •

perpendicular to the line of measurements, respectively. The combined lateral and

frequency behavior of both tipper transfer functions provides indication of subsurface "

induction current either oriented at an angle with respect to the traverse or offset from it.

For instance, along Line 2 of Figure 6-8, Figures 6-12b and 6-12c show the

1 Vozoff (1972) has presenteda similarlinearexpressionwithtippercomponentsthat relate the local
horizontaland verticalmagneticfields.
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pseudosections of the real part of the tipper transfer functions Kzy and Kzx, respectively.

Even though both pseudosections exemplify lower than practical tipper values, the

prevalent positive response of the real component of Kzy together with the negligible

response values of the real part of Kzx are indicative of an inductive scatterer located to the

. left side of the traverse, as is in fact the case.

As stressed in in section 2.6, the secondary magnetic fields measured on the surface

° are much less sensitive to near-surface scatterers than the secondary electric fields are, and

for this reason the gathering of vertical magnetic field data becomes an attractive procedure

to ascertain induction effects that cannot be evaluated from tangential electric field

measurements alone. However, in the presence of multiple scatterers, both laterally and at

depth, care must be exercised to interpret the tipper measurements. In the most difficult

cases the deployment of an additional line of measurements cannot be avoided.

6.3.2 Surface and buried 3-D scatterers in a 1-D background

A slightly different version of the previous example is described in Figures 6-13

and 6-14. Several degrees of complexity can be recognized in this new model regarding

both the subsurface resistivity structure and the way in which the survey traverse is laid out

with respect to the predominant current channeling paths in the 3-D scatterers.

The 1-D model background consists of a two-layer sequence in which the upper

layer has a resistivity of 80 f_om and the lower layer is a 1,000 f_om half-space buffed at a

depth of 3.5 km. Surface resistivity anomalies are introduced in the model by way of three

elongated rectangular blocks, two of which have a resistivity of 5 f_°m, lateral dimensions

of 800 m x 200 m and thickness of 50 m. The third surface block has a resistivity of

500 f_.m, lateral dimensions of 500 m x 2 km, thickness of 250 m and, most importantly,

is oriented perpendicularly to the remaining surface blocks. A single buffed 3-D rectangular

scatterer is located in the upper layer of the 1-D background at a depth of 700 m. This last

block has lateral dimensions of 2 km x 1 km and thickness of lkm. The three survey

" traverses considered for the simulation study have a common length of 4 km.

. A cross-section of subsurface resistivity along Line 1 is shown in Figure 6-15a.

The corresponding apparent resistivity and phase pseudosections describing the simulated

Zxy impedances along the same line are shown in Figures 6-15b and 6-15c, respectively.

Similarly, model sections and impedance pseudosections for Line 2 and Line 3 are shown

in Figures 6-16 and 6-17, respectively. This set of plots reveals rather interesting electric
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static distortion effects. In particular, lateral deflection patterns in the distribution of surface

conduction current are evidenced in the apparent resistivity pseudosections for Line 2 and

Line 3. In contrast, the corresponding impedance phase pseudosections exhibit the same

effects only at the highest frequencies. Also, static distortion effects caused by surface

scatterers adjacent but not intersected by the survey traverse are visible in the apparent

resistivity pseudosections simulated along Line 1 and Line 2.

Resistivity sections derived by spatial f'fltering and subsequent Bostick inversion of

the Zxy impedances over Line 1, Line 2, and Line 3 are shown in Figures 6-18, 6-19, and

6-20, respectively. For comparison, each of these figures includes also a resistivity section

derived from Zxy impedances simulated without near-surface scatterers. The values of f'dter

constant, c, used in the filtering step were adjusted to minimize lateral smoothing of the

inductive signature derived from the buried rectangular block. Because of this, in some of

the sections the filter constant is larger with the presence of near-surface static effects than

without them (either 2 or 1, respectively).

Even though along Line 1 the inverted resistivity section (Figures 6-18b) provides

good indication to the lateral extent of the buried conductive block, its vertical boundaries

are somewhat obscured by the resistive block directly above it. Also, the surface

conductive slabs have caused a slight vertical distortion in the section, but the most

interesting effect is located at their end points, where the lateral deflection of surface current

(lateral current channeling) has produced the impression of a resistive feature. Without

near-surface static effects (Figure 6-18c), the buried block is well determined both laterally

and vertically, except that the resistivity recovered for this feature is approximately 10 times

higher than its actual value. This discrepancy seems excessive especially when compared,

for instance, against the resistivity value one would recover under similar circumstances for

the case of a 2-D scatterer with the same cross-section. However, because in fact the

induction response of a confined 3-D scatterer can be several times smaller than the

response of a 2-D body with the same cross-section (the controlling parameters are depth of

burial and strike length of the 3-D scatterer), the vertical resolution characteristics are not

the same in both cases. An approximate 1-D inversion technique such as the Bostick (_.977)

pseudoinverse is particularly sensitive to this situation. ,,p

The inverted resistivity section for Line 2 (Figures 6-19b) shows lateral induction

effects introduced by both resistive and conductive surface slabs at the shallowest depths,

but still provides good indication of the buried rectangular block across the section.
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However, as in the case of Line 1, the resistivity inferred for this feature is about 10 times

higher than its actual value. Also, because of the fact that the scattering section of the buried

block along Line 2 is smaller than its scattering section along Line 1, the same block

appears slightly smoother laterally in Figure 6-19b than in Figure 6-18b. This situation is

• even clearer in the resistivity section inverted without the presence of surface static

distortion (Figure 6-19c).

• Along Line 3, the inverted resistivity section (Figure 6-20b) shows at the

shallowest depths the presence of both the surface resistive block and an unexpected

resistive anomaly. The latter anomaly is spurious and originates from the lateral deflection

of conduction current that exists in the vicinity of the conductive slab. In effect, on the

surface most of the conduction current is being channeled along the principal geometrical

axis of the slab so that, slightly away from it, the absence of conduction current is

equivalent to the presence of a resistive feature at the same point, thus the spurious

anomaly. Another important feature of the resistivity section shown in Figure 6-20b is the

excessive lateral smoothness with which the buried block has been recovered (especially

when compared against the profiles that for the same block were recovered along Line 1

and Line 2.) This situa_ _n is somewhat analogous to the 2-D test cases of section 6.2,

where it was found that if the traverse is laid out oblique to strike then a proportion of the

TE electric field response is automatically absorbed by the Zxy impedances. In similar

fashion, in addition to the predominant TM-like induction component measured along

Line 1 and Line 2, along Line 3 the Zxy impedances bear a significant proportion of the

TE-like induction component due to induction current parallel to the principal geometrical

axis of the buried block. Because of the inherent lateral smoothness of this TE-like

inductive response, the resistivity section derived from the Zxy impedances along Line 3

develops what is termed "lateral conductive leakage" at depth (see also Figure 6-20c).

However, exactly as described in section 6.2 above, with approximate knowledge of the

main geometrical axis of the causative scatterer, this smoothness may be somewhat reduced

by decoupling the TM-like response in the Zxy impedances prior to spatial filtering.

6.4 Discussion of simulation results

The 2- and 3-D synthetic model examples analyzed above indicate that spatial

filtering of the surface electric field is an efficient procedure for the suppression of static

effects even when the traverse is laid out at an angle with respect to the predominant

geoelectric strike. Over 3-D media, spatial filtering is also adequate for reducing electric
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static effects due to resistivity anomalies offset from the survey traverse. That the latter

conclusion is correct can be intuitively demonstrated with the aid of Figure 6-21. In this

figure, a closed contour of integration, F, for the line integral

E -dr

that describes spatial filtering applied to the electric field, E, is laid out over a surface 3-D

scatterer responsible for static distortion. The contour F is closed below the surface with a

semicircle of infinite radius such that the contribution from this segment portion of the

contour becomes negligible for ali practical purposes. In the DC limit, regardless of the

way in which the contour is drawn on the surface (even in curvilinear fashion), Faraday's

law shows that the electric field integral will vanish provided that the integration path has its

end points outside the area of secondary field distortion. This simple physical construct

indicates that suppression of 3-D electric static effects by way of spatial filtering does not

require that the traverse be laid out directly over the causative body. The most important

requirement, though, is that the traverse be long enough to include the spatial region of

secondary electric static distortion.

It was also seen from the synthetic model examples above that inversion of the

electric induction component remaining after spatial filtering yields a relatively accurate

cross-section of subsurface resistivity. However, several points should be made clear

regarding this procedure of inversion. It was found that spatial filtering and subsequent

inversion of the Zxy traverse impedances may sometimes lead to appreciable lateral

smoothing ("lateral conductive leakage") of the resistivity section when the traverse is laid

out at an angle with respect to the predominant geoelectric strike. This situation, far from

expressing a detrimental characteristic of spatial filtering, is related to the obliqueness of the

traverse. More specifically, an oblique traverse introduces some amount of TE-like
,..,,..,,

induction response on the Zxy impedances calculated from the tangential electric fields.

Because the TE-like electric response varies more smoothly, laterally, than the TM-like

response measured along a transect perpendicular to a principal strike direction, the ,

induction component of Zxy remaining from spatial filtering will lead to a laterally smooth

resistivity cross-section. Moreover, it should be recalled that the induction response of a

buried 3-D scatterer with finite strike length is not as prominent as the induction response

of a buried 2-D scatterer with the same cross-section. For this reason, the vertical

resolution characteristics of the electric induction component are in general superior in 2-D
media.
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Lastly, inasmuch as spatial filtering is insensitive to the electric induction

component, the spatially filtered impedances may retain the induction response of 3-D

scatterers located laterally away from the survey traverse. Recognizing such lateral

induction effects can be accomplished in various ways. It was stressed here that because

• the vertical magnetic field is affected by DC current channeling only in very pathological

situations, measurements of this component may be interpreted to diagnose those

situations. Pursuing similar objectives with the use of orthogonal dipoles, or sequence of

orthogonal dipoles is explored below with a field example.

6.5 Sengan field example

The Sengan exploration project was one of the most promising targets of a large

research and development effort undertaken by the government of Japan to assess the

geothermal potential of that country. The area of study is located in the border between the

Akita and Iwate Prefectures of Honshu Island, as indicated in the location map shown in

Figure 6-22. Previous reconnaissance studies in this region suggested an active geothermal

zone at a depth of approximately 2 km; geological and geophysical studies almost

immediately followed (see, for instance, Uchida et al., 1987, and Uchida, 1990). Use of

seismic methods turned out to be impractical because of access problems, abrupt

topographic relief and complicated surface geology. Thus, initially, MT and DC resistivity

soundings were acquired at scattered locations in the area to understand basic properties of

the andesite-rhyolite volcanic sediments underlying the quaternary surface deposits (mainly

breccias and volcanic agglomerates) that exist in the proximity of the Hachimantai volcano.

However, the subsequent interpretation of those data yielded inconclusive results mainly

because of complicated 3-D response effects.

It was at this point that in early 1988 the New Energy and Industrial Technology

Development Organization (NEDO) of Japan, decided to finance the exploration of tl.e

Sengan geothermal project with the EMAP technique. This decision was partly made with

the intent to ascertain whether EMAP was a viable technique for the exploration of other
o

similarly complicated geothermal targets in Japan. The survey was contracted to the

Japanese exploration company Marc-Rand Co., which in turn deferred the field data
w

acquisition portion of the project to the now defunct US company Advanced Energy

Technology,

The Sengan EMAP project consisted of three survey traverses, hereafter referred to

as Line A, Line B, and Line C, laterally extending over the most significant portion of the
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geothermal reservoh" as it was known from geological and geophysical data. A description

of the survey parameters involved in the exploration of each line can be found in the table

insert of Figure 6-22. Because of severe topography (Line A and Line B actually transect

the Hachimantai volcano) and technical problems with the mobilization of equipment, a

variable dipole was used along each line and, as can be seen from Figure 6-22, the electric

field _finescould not be laid out in straight lines. Locations of the magnetic base station aa_d

additional MT sites are indicated in Figure 6-22 as weil. Tangential electric field data along

Line B and Line C were gathered in the frequency band from 0.01 to 250 Hz at a rate of 7

samples per decade. Along Line A, the frequency range of the measurements extended only

from 0.06 to 250 Hz. Because of the curvilinear nature of the EMAP hnes in the Sengan

project, the procedures described in Chapter V for the spatial filtering of the Zxy traverse

impedances require of some additional processing steps. These are summarized in the

following lines.

In the frequency domain, the relationship between the tangential electric field, Et,

measured at a given point along the electric field array, and the magnetic field components,

HxB and HyB, measured at the base station is expressed by the linear equation

Et = ZtxH_ + ZtyHyB,

where the terms Ztx and Zty are in-hne impedances. In this last equation, the orientation of

electric field component, Et, in general does not ,'oincide with the orientation of either of

the magnetic field components HxB and Hy_. The relation between the base impedances, Z-xx,

and Zxy, and the in-line impedances, Z_x arid Zty, can be obtained by projecting the

magnetic field components HxB and Hya in directions parallel and perpendicular to each

dipole along the electric field array. This procedure is illusa'ated in Figure 6-23, where the

Cartesian coordinate frame x'-y' is used to describe the local orientation of each dipole

(with the x'-axis paxallel to the dipole direction), and the x-y coordinate frame is used to

describe the magnetic field measurements acquired at the base station. With the rotation

angle, ¢, between the two coordinate frames defined positive in the azimuthal direction
Q

(clockwise rotation), the relationship between the two sets of impedances i.s given by

w

Zxx = Ztxcost) + Ztysint), and (6.9)

Zxy =-Ztxsin¢ + ZtycOSt_. (6.10)
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Apparent resistivity and phase pseudosections of the Sengan base impedances, Zxy ,

computed with equations (6.9) and (6.10) are shown in Figures 6-24, 6-25, and 6-26

along Line A, Line B, and Line C, respectively. A separate upper panel in these figures

describes the corresponding topographic profile with elevations given in meters above the

• sea level (m ASL). The presence of significant static distortion is evidenced by localized

vertical banding in the three apparent resistivity pseudosections.

• In carrying out spatial filtering and inversion of the 7-xy base impedances, however,

the latter should be computed from equations (6.9) and (6.10) only after spatial f'dtering of

the in-line impedances has been performed. Spatial filtering is done using a slightly

modified version of the adaptive spatial filtering procedure described in section 5.4.

Accordingly, along the curvilinear traverse both in-line impedances, Ztx and Zty are first

filtered (here the main difference with the procedure described in section 5.4 is that both

in-line imlzedances are filtered instead of simply the principal impedance component along a

straight traverse) with a bootstrapping in-line filtering length, W. Upon filtering, an

equivalent straight direction for the curvilinear electric field average (the integral fE.dt) is

estimated with a weighed average of the individual dipole responses included in the ftltering

length, W. This direction yields the rotation angle, t_, that is needed to compute the

effective impedances, Zxx and Zxy, with the use of equations (6.9) and (6.10). An effective

Bostick depth of penetration, ZB, computed from the impedance Zxy is then multiplied by

the filter constant, c, and the resulting product compared against the filtering length, W.

This filtering length is then varied until a match with the product czB is found within the

prescribed tolerance. The procedure is repeated at as many array locations and frequencies

there are along each EMAP line.

Figure 6-27 through 6-29 show the inverted resistivity sections derived by spatial

filtering and subsequent Bostick inversion of the Zxy impedances along each line of the

Sengan project. These impedances were obtained with the aforementioned spatial filtering

• and rotation procedure using a filter constant, c, of value 2. The resistivity sections

compare well at their intersection points in spite of the fact that spatial filtering was

• performed independently along each one of them. An interesting feature shown in the three

resistivity sections is a resistive uplift buried at a depth of approximately 1 km below the

elevation datum (placed at 700 m ASL). Previous studies in the area have identified this

resistive feature with a granitic intrusion. On the other hand, the prominent shallow
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conductor in the three sections corresponds to the geoelectric expression of welded rhyolitic

tuff and to a less extent of breccias and volcanic agglomerates, and on plan view correlates

well with the limits of the Hachimantai volcano.

Even though a detailed geoelectric interpretation of the Sengan EMAP data goes

beyond the scope of this thesis, pseudosections and resistivity sections along the three lines

show a complicated 3-D subsurface resistivity distribution. Attention is focused instead on

whether spatial ftltering can aid in determining unbiased MT parameters of geometrical °

dimensionality in the presence of electric static distortion at the intersection points between

lines. To this end, a comparison is made below between MT induction strike angles

estimated with and without the use of spatial filtering at the intersection points between Line
A and Line B, and between Line A and Line C.

Simulation studies aimed at understanding the effect of electric static distortion on

the estimation of dimensionality parameters have been reported before. For instance,

Groom and Bailey (1989) simulated 3-D static distortion with an anomalous surface

hemisphere embedded in a 2-D background medium. Park and Livelybrooks (1989), on the

other hand, showed that the use of the popular impedance tensor determinant, although

rotationally invariant, could be highly sensitive to 3-D static effects and thus lead to

erroneous interpretations of the subsurface. However, field data studies dealing with the

same problems have been scant or at best inconclusive because of insufficient control on

the geoelectric characteristics of the underlying subsurface structure. The resistivity

sections derived for the Sengan project do provide enough knowledge of the underlying

resistivity structure to make this an attractive study.

Figures 6-30a and 6-30b show the estimated strike direction at the Line A-Line B

(AB) and Line A-Line C (AC) intersection points, respectively. In each figure, separate

plots describe the frequency variations of the estimated rotation angle before and after

adaptive spatial filtering of the in-line impedances along each intersecting line. Strike

directions in these plots are measured with their true North azimuth. The full 2x2 MT

tensors at the AB and AC points were assembled with the electric field components -

measured at the same points and the magnetic fields measured at the base stafi,_-,. In so

doing, the measured electric fields were first projected to the x-y Cartesian coordinate frame

at the base station. With this MT tensor, the strike angle was determined as the rotation

direction which minimized the sum of the squares of the off-diagonal entries, Zxy and Zyx

(Stodt, 1981). For the case of the filtered results, adaptive spatial filtering was performed
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prior to rotation of the electric field measurements to avoid "leakage" of static effects in the

projected components.

The estimated strike angles shown in Figures 6-30a and 6-30b ali lie within the

second quadrant (or fourth quadrant, depending on the measuring convention), and boda
filtered and unfiltered curves exhibit differences of at most 30°. At the AC intersection

point, the difference between the two curves is largest at the highest frequencies. However,

• the most remarkable difference between the filtered and unfiltered curves appears at tile

lowest frequencies, where the estimated strike angles for the unfiltered curves at the AB

and AC points smoothly asymptote 150 ° . In fact both of these curves overlap at

frequencies below 10 Hz. On the other hand, even though the filtered curves seem both to

asymptote 120 ° instead of 150° at the lowest frequencies, they do not overlap. As a matter

of fact, both of the filtered curves suggest that the underlying resistivity distribution has no

predominant strike direction. In contrast, without additional knowledge of the underlying

resistivity structure, simple inspection of the unfiltered curves would lead one to believe

that the ground is essentially 2-D below 10 Hz, an inconsistent result considering the 3-D

character of the subsurface revealed by the three electric field lines.

This simple example averts the potential danger of estimating MT parameters of

induction from single-dipole measurements where conditions are not created to minimize

spatial aiiasing and suppress static effects.

6.6 Conclusions and recommendat:.ons

The 2- and 3-D evaluation studies presented in this chapter demonstrate that the

EMAP field procedure is suitable for the exploration of complicated geoelectric

environments. However, because the study of 3-D structures demands, in general, the

profiling of MT fields in more than one direction, precautions should be taken to recognize

3-D induction effects in the tangential electric fields acquired along a single traverse.

Additional field components should be measured along the traverse whenever possible. For

- instance, it was shown that the acquisition of vertical magnetic field data helps ascertain the

presence of induction processes taking piace laterally away from the traverse. Also, the

• deployment of orthogonal dipoles at certain locations allows one to estimate parameters of

dimensionality that might, among other things, shed light to induction current flowing at an

angle with respect to the line of measurements. However, because the acquisition of electric

field data requires closely spaced sampling locations both to avert and suppress static

effects, deployment of orthogonal dipoles with the required sampling conditions at ali
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locations may not be practical from an economic point of view. The studies presented in

this chapter suggest that the orthogonal electric field could instead be sampled at a few

points along the survey line either with a long electric dipole, or better, with a string of

them. A mini-traverse of o_hogonal dipoles not only minimizes spatial aliasing problems,

but also lends itself to the use of adaptive spatial filtering to suppress static effects without

excessive smoothing of the induction component at the highest frequencies.

Under very special circumstances, when only one MT station is ali that is needed °

for reconnaissance purposes rather than for detailed exploration work, the developments

presented in this chapter suggest that the deployment of a "cross" of electric dipoles may be

an adequate field procedure; this is shown in Figure 6-31. The number of dipoles

positioned along each line of the cross will be determined by the charmel capabilities of the

data acquisition system in use, excluding two channels that are necessary to measure the

horizontal magnetic field. If desired, an additional channel could be used to measure the

vertical magnetic component. This field configuration allows one to recognize and suppress

static effects to at least a depth of penetration comparable with the length of each line of the

cross. It may also be used to calibrate the survey parameters (for instance, dipole length,

traverse length and frequency range) that are needed to study the underlying resistivity

structure prior to embarking upon detailed work along a continuous survey line.

Regarding the length of the survey traverse, it was emphasized above that (1) it

should be comparable with the depth of penetration at the lowest frequency to allow

adequate suppression of static effects, and (2) it should be consistem with the adjustment

distance of the 2- or/and 3-D scatterers (see sections 5.7.3 and 6.4). In connection with this

second requirement, there have been important studies to assess distortion effects caused

by large-scale induction current processes. Among these studies, Mackie et al. (1989), and

more recently, Madden and Mackie (1990) have shown, for instance, that coast effects may

cause a significant low-frequency induction bias even at points located tens of kilometers

away from the ocean-continent boundary (vertical anisotropy of the crust). The same

studies indicate that, within sedimentary basins, so long as the sounding frequency is low
o

enough to cause the depth of penetration to be larger that the lateral and vertical dimensions

of the basin, local induction effects fall-off and crustal anisotropy becomes a dominant
a,

factor in the inductive response from the subsurface. Both of these studies recommend that

2- or/and 3-D numerical simulation be used to assess regional distortion effects in the

measured data and hopefully to correct for them before engaging into detailed interpretation

tasks. To this end, they recommend that ali available geological and geophysical
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information be compiled and fed into a preliminary synthetic model. A similar conclusion

has been recently advanced by Singer (1991).

Recognizing regional distortion effects in the measured data is critical to the success

of EMAP for crustal and in general for deep sounding studies. Long survey traverses are

necessary for the suppression of static effects at frequencies for which the zone of inductive

response is tens of kilometers deep. In addition, lateral distortion effects of dimensions

• comparable with the length of the traverse (for instance, ocean-continent boundary effects,

and the exotic channeling of currents flowing around sedimentary basins) should be

evaluated either with complementary electric and magnetic field measurements (for

instance, with the use of long electric dipole "crosses" such as those described in

Figure 6-31) or with 2- and 3-D numerical simulation studies or with both. It should be

emphasized, however, that because in most cases numerical simulation cannot reproduce ali

of the features that are needed to accurately evaluate regional distortion effects, the results

obtained this way should be examined with great care. They will be, at best, a f'u'st-order

approximation to the intricate regional distribution of subsurface resistivity. The lack of

adequately sampled MT data cannot be replaced in any endeavor to understand the

geoelectrical properties of the earth's crust.
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Figure 6-1. Graphical description of Sigal's (1989) modification of the EMAP field procedure.
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Figure 6-3. (a) Cross-section of a 2-D vertical fault model at a 45° angle with respect to strike. (b)
Geoelectric section derived by Bostick inversion of the estimated TE impedances. (c) Geoelectric section
derived by spatial filtering (filter constant, c, equal to 3) and subsequent Bostick inversion of the estimated
TM impedances.
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Figure 6-4. (a) Cross-section of a 2-D vertical fault model at a 45° angle with respect to strike
(Figure 6-3a). (b) and (e) are the geoelectric sections derived by spatial filtering and subsequent Bostick
inversion of the Zxy EMAP impedances using filter constant values of 2 and 3, respectively.
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(cf. Figure 5-10a). (b) Geoelectric section derived by spatial filtering and subsequent Bostick inversion of
the estimated TM impedances (cf. Figure 5-1 lb). (c) Geoelectric section derived by spatial filtering and

subsequent Bostick inversion of the Zxy EMAP impedances simulated along the oblique traverse. A filter
constant, c, of value 3 was used to obtain both resistivity sections.
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Figure 6-8. Plan view and transverse section of a simple 3-D scatterer buried in a 1-D background
(3-D model No. 1). Line 1 and Line 2 are EMAP survey traverses. The vertical scale has been slightl)
distorted.
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Figure 6-11. (b) and (c) are geoelectric sections derived by spatial filtering and subsequent Bostick
inversion of the simulated Zxy EMAP impedances along Line 1 (Figure 6-9) and IAne 2 (Figure 6-10),
respectively. The model cross-section along Line 1 is shown for comparison in (a). A filter constant, c, of
value 2 was used to obtain both inverted resistivity sections.
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Figure 6-15. (a) Cross-section of 3-D model No.2 (Figure 6-13) along Line l. (b) and (e) are the
apparent resistivity and phase pseudosections, respectively, of the Zxy EMAP impedances.
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Figure 6-16. (a) Cross-section of 3-D model No.2 (Figure 6-13) along Line 2. (b) and (e) are the
apparent resistivity and phase pseudosections, respectively, of the Zxy EMAP impedances.
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Figure 6-17. (a) Cross-section of 3-D model No.2 (Figure 6-13) along Line 3. (b) and (c) are the
apparent resistivity and phase pseudosections, respectively, of the Zxy EMAP impedances.
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Figure 6-18. Geoelectric sections derived by spatial filtering and subsequent Bostick inversion of the
simulated Zxy EMAP impedances along Line 1 of 3-D model No. 2 (Figure 6-14). (b) and (c) are the
inverted resistivity resistivity sections with and without surface 3-D scatterers, respectively. The model
cross-section along Line 1 is shown for comparison in (a). Filter constants, c, of value 2 and 1 were used
to obtain the resistivity sections in (b) and (c), respectively.



246
-2 -1.5 -1 -0.6 O 0.5 1 1.5 2

102 102

lO'

lo' n-m
-2 -1.5 -1 -0.5 O O.6 1 1.5 2

INVERTEDRES FILT(Zxy)/ MOD 02-1.2
Sampling Interval - 100.0 m, Dipole Length -- 100.0 m

Travl-- 4.0Okm, C--1.O
-2 -1.6 -1 -0.5 0 0.5 1 1.5 2

1# lo'

lO'

10+ fl-m
-2 -1.6 -1 -0.6 0 0.5 1 1.6 2

INVERTEDRES RLT(Zxy)/ MOO 02-L2
Sampling Interval -- 100.0 m, Dipole Length " 100.O m

Travl " 4.00 km, C " 1.O
-2 -1.5 ol -0.6 0 0.6 1 1.6 2

102 102

lO'

104 fl-m
-2 -I.5 -I -0.5 O 0.6 I 1.5 2

HORIZONTALLOCATION(km)

Figure 6-]9. Gcoclectric sections derived by spadal filtering and subsequent Bostick inversion of the
simulated Zxy EMAP impcdances along Line 2 of 3-D model No. 2 (Figure 6-15). (b) and (¢) are the
invertcd resistivity resistivity sections with and without surface 3-D scattercrs, respectivc]y. The model
cross-section along Line 2 is shown for comparison in (a). A filter constant, c, of valuc! was used to
obtain both invcrtcd rcsistivity sections.
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Figure 6-20. Geoelectric sections derived by spatial filtering and subsequent Bostick inversion of the

simulated Zxy EMAP impedances along Line 3 of 3-D model No. 2 (Figure 6-16). (b) and (c) are the
inverted resistivity resistivity sections with and without surface 3-D scatterers, respectively. The model
cross-section along Line 3 is shown for comparison in (a). A filter constant, c, of value 1 was used to
obtain both inverted resistivity sections.
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Figure 6-21. Diagram describing the way in which the closed-line integral lE.d/is evaluated over the

surface (the survey traverse), and along a semicircle of infinite radius, to suppress static effects. In the DC
limit, regardless of the integration path the surface integral will vanish if its end points coincide with
locations where the secondary electric field distortion is negligible.
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Figure 6-23. Gmphlcal description of the procedure that is used to transform the measured in-line
impedancesinto base impedancesalong a curvilinearEMAP traverse: the magneticfields measuredat the
base siteare rotatedin the directionsparallelandp_dpenclicularto eachone of the electricdipoles.
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Figure 6-24. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base
impedances measured along Line A of the Sengan EMAP project (Figure 6-20). For reference, the
topographic profile is shown in the upper panel of both pseudosections with elevations given in meters
above the sea level (m ASL).
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Figure 6-25. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base
impedances measured along Line ]3 of the Sengan EMAP project (Figure 6-20). For reference, the
topographic profile is shown in the upper panel of both pseudosections with elevations given in meters
above the sea level (m ASL).
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Figure 6-26. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base
impedances measured along Line C of the Sengan EMAP project (Figure 6-20). For reference, the
topographic profile is shown in the upper panel of both pseudosections with elevations given in meters
above the sea level (m ASL).
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Figure 6-27. Geoelectric section derived by spatial filtering and subsequent Bostick inversion of the Zxy
base impedances measured along Line A of the Sengan EMAP project (Figure 6-20). The section was
obtained with the use of a f'dtcr constant, c, of value 2. Depths are measured in meters below an elevation
datum placed at 700 m ASL.
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Figure 6-29. Geoelectric section derived by spatial low-pass f'dtering and subsequent Bostick inversion of
the Zxy base impedances measured along Line C of the Sengan EMAP project (Figure 6-22). The section
was obtained with the use of a filter constant, c, of value 2. Depths are measured in meters below an
elevation datum placed at 700 m ASL.
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Figure 6-31. Diagram showing the suggested field procedure for the estimation of conventional MT
impedancesin the presenceof electricstatic distortion:a "cross" of electricdipoles is used to reducespatial
aliasing and ultimately to suppressstaticeffects by increasingthe length of the electric field averagewith
decreasingvaluesof frequency.Allelectricdipolemeasurementsare referredto a commonmagneticstation,
whichmayalso includea verticalmagneticfieldsensor.



CHAPTER VII

SUMMARY

Se miente mds de la cuenta por falta de fantasfa
" Tambidn la verdad se inventa

Antonio Machado

The acquisition of MT data should be approached from the perspective of the well

established sampling theorem. In essence, the recovery of lateral resistivity variations in the

subsurface requires the sampling distance to be in accord with the spatial characteristics of

the signal, that is to say of the electric of magnetic surface field response. It has been

shown in practical applications of magnetotellurics that lateral electric field variations can be

substantial along relatively short distances; in fact, lateral discontinuities in the surface

electric field are not uncommon. Conversely, the lateral magnetic field variations are never

discontinuous and in general are characterized by smooth and small oscillations about the

primary magnetic field. These properties indicate that inference of lateral variations in the

subsurface resistivity distribution requires much shorter sampling distances for electric

than for magnetic fields. Unfortunately, magnetic field variations alone are not sufficient to

uniquely determine the lateral and vertical characteristics of the subsurface resistivity
distribution. The measurement of electric field variations cannot be avoided if one is

interested in recovering specific values of depth and resistivity for the geoelectfic features

whose MT response can be discerned on the surface. Thus, a natural question to ask is,

how short should the sampling distance be to guarantee optimal recovery of the lateral

resistivity variations both laterally and at depth? The answer to this question lies precisely

in the well known sampling theorem for signals, which states that the maximum lateral

wavelength that can be truly recovered from the sampled signal is equal to one-half the

sampling distance. Of course, when nothing is known a priori of the signal that is being

sampled, it is appropriate to use as short as possible a constant sampling distance. With

respect to frequency, and ultimately with respect to depth, the diffusive nature of the MT

response dictates that the depth of response increases with decreasing values of the

sounding frequency. This implies that, to guarantee the recovery of a laterally varying

geoelectric feature in the subsurface, one needs to select a specific value of frequency or
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range of frequencies for which the effective depth of response secures a measurable EM

backscattering effect.

The major difficulty in sampling electric field signals is that their amplitude

response can be significantly affected by shallow and spatially localized geoelectric
lt

features. In consequence, the measured electric field amplitude at decreasing values of

frequency often does not bear a one-to-one relationship with geoelectric features buried at

increasing depths of response. This unfortunate phenomenon has been referred to as the

static effect in allusion to its DC nature. In contrast, barring the occurrence of certain

complex 3-D current distortion effects, the electric phase response does reflect the EM

backscattering of features buried at increasing depths when one lowers the sounding

frequency. Because of this, the phase response is in effect purely inductive. However, in

keeping with the principle of constant nastiness, the electric amplitude response is needed

to determine lateral and vertical resistivity variations because the phase response does not

define them uniquely. Thus, in summary, lateral measurements of the electric field

response should be made in a way that guarantees both adequate sampling of the large

amplitude variations and recognition of static effects. Strictly speaking, over structurally

complex 3-D environments, the electric field sampling procedure required to satisfy the

requirements of the sampling theorem entails the deployment of sounding stations not only

along a survey line, but over a surface grid. However, without losing sight of the 3-D and

tensor nature of the surface MT response, this thesis followed a practical historical

progression of magnetotellurics and concentrated on the 1- and 2-D aspects of the problem.

In spite of the fact that a linear model for the MT response is incomplete for the

accurate description of EM scattering in practical exploration situations, it allows oiae to

perform a model-independent study of the vertical and lateral resolution characteristics of

the technique, particularly in connection with the continuous profiling of MT fields.

Over 1-D media, a simple logarithmic parameterization of both frequency and depth

of the linearized solutions yields a convolutional model response relationship between the

vertical variations of subsurface resistivity and the measured electric field data. This

suggests that the logarithmic depth scale is natural for the diffusive MT response, and that

the logarithmic sampling that is normally used with respect to frequency is consistent with

the resolving power. A Wiener estimation procedure to map frequency variations of the

electric field into resistivity variations along the logarithmic depth scale reveals that the use

of more than 8 frequency samples per decade is unnecessary considering the resolving

power of noisy MT data. Numerical experiments with the 1-D linearized inverse suggest
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that the Rytov (logarithmic) parameterization of the electric field data is superior to the Born

(algebraic) parameterization. In general, it can be stated that the linear system equations

hold not only when the resistivity contrasts are small, but also when, regardless of the

magnitude of the resistivity contrast, when the frequency variations of the electric field

response are small. Because numerical experiments with the linearized 1-D inverse produce

reasonable results in cases where the assumption of linearity is not valid, one can conclude

that the physical insights gained from this simplified method of solution are not too far

" from reality. The linearized inverse could be easily extended to a nonlinear method of

inversion in which the inverted model is continually updated either by way of a Born series

or by iterative checks between the data and the simulated results.

When the linearized MT forward problem is specialized for 2-D subsurface

resistivity distributions, it becomes evident that the resolution with which one can estimate

lateral and vertical variations of subsurface resistivity is determined by the particular electric

or magnetic field quantity fed to the inversion process. Moreover, a wavenumber-domain

formulation of the 2-D linear inverse problem shares a few of the characteristics of the 1-D

linearized inverse, and for this reason the latter can be used as a benchmark in lateral

resolution studies of 2-D MT data. An ad hoc factorization of the wavenumber-domain

linear equations reveals that a vertical response kernel is common to ali the TM and TE field

components. This kernel exhibits an exponential loss of response to the lateral detail in the

subsurface with increasing values of the product 7=2_kZB, where k is the linear

wavenumber, and ZB is the Bostick depth of penetration at a given frequency. The

distinction among the various TM and TE field components is defined by a wavenumber

prefilter which operates on the lateral variations of subsurface resistivity and whose cutoff

characteristics are essentially controlled by the sounding frequency. For the TE magnetic

field components, the prefilter produces a null in the surface response at the DC

wavenumber. On the other hand, the pref'tlter is a low-pass filter for TE electric field data

and a high-pass filter for TM electric field data. The high-pass filter nature of the TM

electric prefilter is related to the way in which the static effect is impressed on the electric

field component. In contrast, the TE electric field component is purely inductive and hence

is devoid of static effects, thus the low-pass filter nature of its associated prefilter. A

• significant consequence of the high-pass filter nature of the TM prefilter is that stability in

the inversion of TM electric field data can be naturally achieved by allowing the prefilter to

operate on the data instead of on the lateral variations of subsurface resistivity. When this is

done, the prefilter behaves as a stable low-pass filter of the measured TM electric fields.

The resu!ting operation is thus equivalent to a data prewhitening step in which the cutoff



262

wavenumber of the prewhitening operator decreases with decreasing values of frequency.

Compared to the TE prefilter, however, the TM prewhitening filter has a slightly wider

wavenumber band, and it is for this reason that TM electric field data possess better lateral

resolution characteristics than TE electric field data. With regard to the magnetic field data,

the null of the magnetic prefilter at k=0 causes these components to be insensitive to the

1-D background of the subsurface resistivity distribution. Furthermore, the relationship

between the TE electric and magnetic prefilters indicate that ali surface TE field components
Q

are linearly related with respect to position.

The 2-D linearized inverse predicts that, below the Nyquist wavenumber dictated by

the sampling distance, and at a 1% noise-to-signal ratio in the measured MT data, the

maximum wavenumber that can be recovered from the lateral variations of subsurface

resistivity distribution is approximately the inverse of the Bostick (1977) depth of

penetration° This result permits one to perform simple approximate calculations to estimate

the lateral resolution that can be expected from an MT survey aimed at determining the

geometrical characteristics of a given target. Numerical experiments with the 2-D linearized

inverse corroborate that the underlying physical principles hold even when the low-contrast

assumption is violated, and are in agreement with the expected lateral and vertical resolution

characteristics of both TM and TE electric field data. The inversion algorithm developed in

this thesis consists of a sequence of pseudo 1-D inverses at each lateral wavenumber to

estimate the real and imaginary wavenumber harmonics of the 2-D subsurface resistivity

distribution. Inverse Fourier transformation is subsequently used to derive a model estimate

in the space domain. A space-domain formulation can be the subject of future research

efforts with special attention to the role of the TM prewhitening operator in the new

domain. Likewise, an iterative Born inversion procedure could be used to continually

update the lateral and vertical changes of the background resistivity which was assumed

constant in the linearized inverse formulation.

Electromagnetic Array Profiling (EMAP) is one MT profiling technique where the

requirements stipulated by the sampling theorem in the measurement of lateral electric field

variations are satisfied. The EMAP field procedure consists of the deployment of electric

dipoles end-to-end along the survey line. This configuration also enables one to perform

spatial filtering on the measured electric field variations in a controlled fashion. In fact, the

use of spatial filtering can be seen as a practical way to incorporate the role of the TM

prewhitening filter over geoelectric media where the assumption of a constant background

resistivity is simply out of the question. Moreover, analysis of the 3-D equations derived
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under the assumption of a linear MT response elicits a similar prewhitening wavenumber

filter to be used with electric field data collected on a grid. Such equations indicate that if

spatial filtering is to be applied to suppress 3-D static effects, this has to be performed in a

directional fashion. In plain physical terms, spatial filtering over 3-D geoelectric media

reflects the action of the fE.dt integral inherent to the acquisition characteristics of an

individual electric dipole. In so doing, frequency dependent static effects in the electric

" response are reduced and the remaining electric component may be interpreted with

procedures suitable for a purely inductive MT response. The way in which spatial f'fltering

of the tangential electric field is performed essentially consists of simultaneous lateral and

vertical calibration of the cutoff characteristics of the prewhitening filter. This is done

directly in the space domain via a nonlinear fixed-point iteration procedure wherein the

width of the applied window is varied until the filtered electric field produces an estimate of

the depth of response which is a multiple of the window width. The constant that linearly

relates the width of the filtering window with the depth of penetration estimated from the

filtered electric field can be judiciously chosen to control the degree of lateral smoothing

inflicted upon the original data to reduce static effects. In fact, over homogeneous media,

the adaptive calibration of the low-pass tilter produces an identical tilter response to that of

the TM prewhitening filter derived from the 2-D linearized inverse. A possible avenue for

future research in connection with the optimization of the prewhitening filter consists of a

recursive double sequence of both spatial filtering and 1-D localized inversion. This thesis

exploited a simplified view of such an inversion method by using a Bostick (1977)

pseudoinverse to map the f'fltered results into depth and resistivity estimates along the line
of measurements.

In practice, spatial filtering of the electric field requires that ali the measurements be

synchronously acquired. Knowing the random source characteristics of MT data, this is a

rather strong demand on a field procedure that may potentially consist of tens or even

hundreds of electric field dipoles. A way to circumvent such a difficulty consists in the

deployment of a fixed base magnetic field station while electric and magnetic field
Ib

measurements are acquired along the survey line. The in-line electric field measurements

referred to the fixed magnetic base station yield stationary impedances that can be used ino

piace of actual electric field values to carry out the spatial filtering step. A further refinement

to this field procedure consists in performing an areal average of the magnetic field

measurements acquired within the survey area to estimate the primary magnetic field.

Because the magnetic field is insensitive to the 1-D background, its areal average will tend
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to represent the constant primary magnetic field for a large enough number of magnetic

field sensors adequately disposed along and about the survey line. The estimated primary

magnetic field can then be used to normalize the in-line base impedances such that the latter

exclusively reflect the lateral variations of the secondary electric field away from the 1-D

background response.

A collection of 2-D simulation examples which includes strong surface static effects

- as well as highly nonlinear respoiase characteristics, yields a very encouraging evaluation

for the adaptive spatial ffdtering of electric field data. Further, the feasibility of EMAP is

attested to by three field examples over geological environments where lateral variations in

the geoelectric response simply cannot be discounted. These are prime examples of actual

exploration situations where only after electric field data have been gathered in continuous

fashion does one come to fully appreciate the extent to which unheeded static effects can

- b;_asthe subsequent geoelectric interpretation when the sampling distance is of the order of

kilometers. Needless to say, electric field data acquired in continuous fashion does not

exclusively lead to a method of inversion where spatial filtering is enforced. Any of the

parametric nonlinear inversion "algorithms reported elsewhere in the EM geophysical

literature may be used on these data.

Ever since EMAP came to light, much unnecessary emphasis has been placed on

the limitations of the technique for imaging practical 3-D geoelectric media or even over 2-D

media when the survey line might be oblique to strike. It was found here that, over 2-D

media, the tangential electric field measurements can yield estimates of both TE and TM

impedances provided that the survey line is oblique with respect to strike. To estimate these

two impedances, it is necessary that the strike angle be known beforehand. This can be

accomplished by deploying an orthogonal dipole at a single point along the survey line.

Use of EMAP over geoelectric environments where there is a prevalent 2-D induction strike

at depth but in which there are also 3-D surface scatterers, may call for a small-scale

version of an EMAP line in the orthogonal direction in order to satisfy the requireme; _sof

the sampling theorem and to be able to suppress possible static effects. The suggestion

made in this thesis is that instead of acquiring data with orthogonal electric dipoles at

exactly the same locations where tangential electric field data are gathered, one can use

either much longer dipoles or, better, strings of them, perpendicular to the main survey line

with lateral spacings equal to a few times the sampling distance used to measure the

tangential electric field. The collection of well sampled (here "well" means with satisfaction

of the sampling theorem and with static effects previously suppressed) orthogonal electric
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field data helps considerably in ascertaining whether the tangential electric fields measured

along tb_esurvey line are affected by the induction response of either offset scatterers or

geoelectric features whose principal geometrical axis is oblique to the survey line.

Alternatively, because the vertical magnetic field is distorted by static effects only in very

• pathological situations, measurements of this component along the survey line can serve to

indicate the presence of such induction effects at a much lower operational cost.

- On the other hand, the use of spatial filtering (or data prewhitening) to suppress

static effects on 3-D synthetic electric field data and also on 2-D electric field data sampled

obliquely with respect to strike, yields very encouraging results. A simple Bostick

inversion carried out on the induction electric component that remains after f'tltering yields a

relatively accurate resistivity cross-section below the line of measurements. The only case

that deserves special mention is the one in which the survey line crosses the principal

geometrical axis of the inductive scatterer at an angle. In this case, the tangential electric

field measurements are a "blend" of both TE-like and TM-like induction response

components. Given that the lateral TE electric field response is much smoother than the TM

electric field response, the degree of lateral smoothness in the inversion will depend on the

proportion of the TE-like response that has "leaked" into the tangential electric field

measurements. The larger the angle between the survey traverse and the principal

geometrical axis of the scatterer, the larger the proportion of TE-like response, and

therefore the smoother the inverted resistivity section. Because the TE and TM electric field

responses often bear different pieces of information regarding the nature of the vertical and

lateral variations of subsurface resistivity, it is recommended that, whenever applicable and

possible, the two mode responses be separated and subsequently interpreted in independent

ways. A joint interpretation of both mode responses may be pursued after individual

inversions have been obtained.

Estimation of dimensionality parameters and regional strike angles can be biased by

3-D static effects. It was shown that, with the use of orthogonal lines of electric dipoles,

static effects can be suppressed prior to performing estimation of MT parameters from

• tensor impedances. In fact when the use of a continuous line of electric field measurements

is impossible because of economic limits, an option is to deploy a "cross" of electric
w

dipoles with a maximum number of dipoles determined by the capabilities of the acquisition

system. Alternatively, such a cross can be used to calibrate both the frequenc2¢ range and

the dipole length to be used along a continuous line of measurements before embarking

-
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Clearly, in an EMAP survey the depth of penetration that can be achieved without

bias due to static effects is proportional to the length of the traverse. This may seem a

serious practical requirement if the technique ,'_sto be applied in crustal studies, where the

desired depths of penetration are of the order of 50 km or more. Furthermore, as

emphasized by Mackie at al. (1988), and Madden and Mackie (1990), at those depths of

response one cannot discount current distortion effects of a regional scale such as ocean-

continent buundaries, large sedimentary basins, and mountain ranges. In most of these

situations, it would be extremely difficult to deploy a continuous electric field line, even

when dipoles could be made as long as perhaps 1 km. It should be reiterated, however, that

the need for closely spaced electric field measurements is not a whim but simply an effort to

satisfy the requirements imposed by the sampling theorem, and this becomes more

important when, in addition to recognizing anomalous conductive zones in the crust, one is

interested in determining specific values of resistivity and depth of such features. A field

procedure that seems a good compromise between deploying a very long line of electric

dipoles (that perhaps has to cross cultural-noise areas, heavily trafficked roads, rivers and

high mountain passes), or positioning a dozen or so single MT stations at 10 km intervals,

consists of fin'st carrying out a calibration survey with one or more continuous lines of

dipoles from which somewhat accurate knowledge of the back,Tround crustal geoelectric

structure could be obtained with some interpretation procedure that also minimizes static

distortion effects (spatial filtering is but one of such procedures) and can asce_'_Sn 3-D

induction effects along the line(s) of measurements. Subsequently, single MT statioqs or

dipole-crosses of MT stations could be deployed at larger spacings and tied in with the

measurements inferred from the calibration survey. In so doing, particular attention should

be paid to the lateral variations of impedance phase, which are only in extreme cases subject

to static distortion. With the lateral v,,riations of impedance phase, and to some extent of

apparent resistivity, referred to the calibrated resistivity section, one could "s_p out" local

distortion effects and derive approximate values for both resistivity and depth below the

single MT site useful at a crustal sounding scale. Numerical simulation of somewhat well

determined regional distortion effects, such as ocean-continent boundaries, could be done

prior and after the survey to ascertain their influence on the measurements acquired both

along the continuous calibration(s) line and also at isolated MT sites.

m

m



267

REFERENCES

Abramowitz, M., and Stegun, I. A., 1972, Handbook of mathematical functions with
formulas, graphs, and mathematical tables: National Bureau of Standards, Applied
Mathematics Series No. 55.

Aid, K., and Richards, P. G., 1980, Quantitative seismology, theory and methods, II: W.
H. Freeman and Co.

Andi'ieux, P., and Wightman, W. E., 1984, The so-called static corrections in
magnetotelluric measurements: 54th Ann. Internat. Mtg., Soc. Explor. Geophys.,
Expanded Abstracts, 43-44.

Backus, G. E., and Gilbert, J. F., 1967, Numerical application of a formalism for
geophysical inverse problems: Geophys. J. Roy. Astr. Soc., 13, 247-276.

Backus, G. E., and Gilbert, J. F., 1968, The resolving power of gross earth data:
Geophys. J. Roy. Astr. Soc., 16, 169-205.

Backus, G. E., and Gilbert, J. F., 1970, Uniqueness in the inversion of inaccurate gross
earth data: Phil. Trans. Roy. Soc. London, A., 266, 123-192.

Bahr, K., 1987, Interpretation of the magnetotelluric impedance tensor: Regional induction
and local telluric distortion: J. Geophys., 62, 1-9.

Bailey, R. C., 1970, Inversion of the geomagnetic induction problem: Proc. Roy. Soc.
London, 315, 185-194.

Bannister, P. R., and Hart, W. C., 1968, Quasi-static fields of dipole antennas below the
eorth's surface, in Quasi-static electromagnetic fields: Naval Underwater Systems
Center, Department of the Navy.

Bafios, A. Jr., 1966, Dipole radiation in the presence of a conducting half-space: Pergamon
Press, Inc.

" Barrodale, I., and Roberts, F. D. K., 1973, An improved algorithm for £1 approximation:
SIAM J. Numer. Anal., 10, 834-848.

• Berdichevsky, M. N., Dmitriev, V. I., 1976, Basic principles of interpretation of
magnetotelluric sounding curves, in Adam, A., Ed., Geoelectric and geothermal
studies: KAPG Geophysical Monograph, Akademiai Kiado, Budapest, 165-221.



268

Berdichevsky, M. N., Vanyan, L. L., Kuznetsov, V. A., Levadny, V. T., Mandelbaum,
M. N., Nechaeva, G. P., Okulessky, B. A., Shilosky, P. P., and Shpak, I. P., 1980,
Geoelectric model of the Baikal region: Phys. Earth Planet. Inter., 22, 1-11.

Berdichevsky, M. N., and Zhdanov, M. S., 1984, Advanced Theory of Deep
Geomagnetic Sounding: Elsevier Science Publ. Co., Inc.

Bergland, G. D., and Dolan, M. T., 1979, Fast Fourier transform algorithms, in Programs •
for digital signal processing: IEEE Press.

Boehl, J. E., Bo_tick, F. X., Jr., and Smith, H. W., 1977, An application of the Hilbert .

transform to the magnetotelluric method: EGRL Technical Report, The University of
Texas at Austin.

Booker, J. A., 1988, Statistical processing of magnetotelluric data, M.Sc. thesis, The
University of Texas at Austin.

Bostick, F. X., Jr., 1977, A simple almost exact method of MT analysis, in Ward, S.,
Ed., Workshop on Electrical Methods in Geothermal Exploration, Univ. of Utah Res.
Inst., U. S. Geol. Surv. Contract 14-08-0001-g-359, 174-183.

Bostick, F. X., Jr., 1986, Electromagnetic array profiling: 56th Ann. Internat. Mtg., Soc.
Explor. Geophys., Expanded Abstracts, 60-61.

Bostick, F. X., Jr., Shoh_'n, Y., and Smith, H. W., 1979, An optimal inverse for the
linearized one-dir-,ensional magnetotelluric problem: 49th Ann. Internat. Mtg., Soc.
Explor. Geophys., Expanded Abstracts, in Geophysics, 45, 554.

Bracewell, R. N., 1965, 'the Fourier transform and its applications: McGraw-Hill Book
Co.

Cagniard, L., 1953, Basic theory of the magneto-telluric method of geophysical
exploration: Geophysics, 18, 605-635.

Claerbout, J. F., and Muir, F., 1973, Robust modeling with erratic data: Geophysics, 38,
826-844.

Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: A
practical algorithm for generating smooth models from electromagnetic sounding data:
Geophysics, 52, 289-300.

deGroot-Hedlin, C., and Constable, S., 1990, Occam's inversion to generate smooth,
two-dimensional models from magnetotelluric data: Geophysics, 55, 1613-1624.

d'Erceville, I., and Kunetz, G., 1962, The effect of a fault on the earth's natural
electromagnetic field: Geophysics, 27, 651-665.

Edwards, R. N., 1974, The magnetometric resistivity method and its application to the
mapping of a fault: Can. J. Earth Sci., 11, 1136-1156.

Franklin, J. N., 1970, Well-posed stochastic extensions of ill-posed linear problems, J.
Math. Anal. Appl., 31, 682-716.



269

Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical optimization: Academic Press
Inc.

G6mez-Trevifio, E., 1987, Nonlinear integral equations tbr elcctromagnetic inverse
problems: Geophysics, 52, 1297-1302.

Goldstein, N. E., 1988, Sabregional and detailed exploration for geothermal-hydrothermal
- resources: Geotherm. Sci. and Tech., 1, 303-431.

Goldstein, M. A., and Strangway, D. W., 1975, Audio-frequency magnetotellurics with a
. grounded dipole source: Geophysics, 40, 669-683.

Groom, R. W., and Bailey, R. C., 1989, Decomposition of magnetotelluric impedance
tensors in the presence of local three-dimensional galvanic distortion: J. Geophys.
Res., 94B2, 1913-1925.

Habashy, T. M., and Mittra, R., 1987. On some inverse problems in electromagnetics: J.
Electrom. Waves Appl., 1, 25-58.

Hamilton, W.,1988, Tectonic setting and variations with depth of some cretaceous and
cenozoic structural and magmatic systems of the western United States, in Ernst, W.
G., Ed., Metamorphic and crustal evolution of the western United States: Prentice-
Hall, Inc.

Harrington, R. F., 1961, Time-harmonic electromagnetic fields: McGraw-Hill Book Co.

Hedel, C., 1981, Map showing the geothermal, resources of the Lake City-Surprise Valley
area, Modoc County, California: USGS map MP-1299.

Honkura, Y., Niblett, B. R., and Kurtz, R. D., 1976, Changes in magnetic and telluric
fields in a seismically active region of eastem Canada: Tectonophysics, 34, 219-230.

Honkura, Y., 1978, On a relation between anomalies in the geomagnetic and telluric fields
observed at Nakaizu and the Izu-Oshima-Kinhai earthquake of 1978: Bull. Earthquake
Res. Inst., 53, 931-937.

Hopper, M. J., 1979, HARWELL subroutine library, a catalog of subroutines: AERE,
Harwell, Didcot, Oxon, OX 11 ORA, England.

Jones, A. G., 1988, Static-shift of magnetotelluric data and its removal in a sedimentary
basin environment: Geophysics, 53, 967-978.

Jones, A. G., Boerner, D. E., Kurtz, R. D., Oldenburg, D., and Ellis, R. G., 1989,
EMAP data processing in the wavenumber domain: 59th Ann. Internat. Mtg., Soc.

• Expl. Geophys., Expanded Abstracts, 172-174.

Jupp, D. L. B., and K. Vozoff, 1977, Two-dimensional magnetotelluric inversion:
• Geophys. J. R. Astr. Soc., 50, 333-352.

Kaufman, A. A., and Keller, G. V., 1981, The magnetotelluric sounding method: Elsevier
Science Publ. Co., Inc.

Kunetz, G., 1972, Processing and interpretation of magnetotelluric soundings:
Geophysics, 37, 1005-1021.

-



270

Lawson, C. L., and Hanson, R. J., 1974, Solving least squares problems: Prentice-Hall,
Inc.

Lee, S., McMechan, G. A., and Aiken, C. L. V., 1987, Phase-field imaging: the
electromagnetic equivalent of seismic migration: Geophysics, 52,104-117.

Mackie, R. L., Bennett, B. R., and Madden, T. R., 1988, Long-period magnetotelluric
measurements near the central California coast: a land-locked view of the conductivity
structure under the Pacific Ocean, Geophys. J., 95, 181-194.

Madden, T. R., and Mackie, R. L., 1989, Three-dimensional magnetotelluric modeling
and inversion: Proc. IEEE, 77, 318-333.

Madden, T., and Mackie, R. L., 1990, Enhancement of regional distortions of MT fields
by anisotropy of high-contrast layers: 60th Ann. Intemat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, 510-511.

Mano, K., 1970, Interrelation between terms of the Born and Rytov expansions: Proc.
IEEE, 58, 1168-1169.

Marsden, J. E., 1973, Basic complex analysis: W. H. Freeman and Co.

Menke, W., 1984, Geophysical data analysis: Discrete inverse theory: Academic Press Inc.

Moore, R. K., and Blair, W. E., 1961, Dipole radiation in a conducting half-space: J. Res.
Nat. Bureau Stand., 65D, 547-563.

Morrison, H. F., Nichols, E. A., Torres-Verdfn, C., Booker, J. R., and Constable, S. C.,
1990, Comparison of magnetotelluric inversion techniques on a mineral prospect in
Nevada: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 516-519.

Morse, P. W., and Feshbach, H., 1953, Methods of Theoretical Physics: McGraw-Hill
Book Co., Inc.

Nolan, T. B., Merriam, C. W., and Blake, M. C., Jr., 1974, Geologic map of the Pinto
Summit quadrangle, Eureka and White Pine Count, es, Nevada: USGS map 1-793.

Oldenburg, D. W., 1979, One-dimensional inversion of natural source magnetotelluric
observations: Geophysics, 44, 1218-1244.

Oldenburg, D. W., 1984, An introduction to linear inverse theory: IEEE Trans. Geosci.
Remote Sensing, GE-22, 665-674.

Oldenburg, D. W., and Ellis, R. G., 1990, Inversion of geophysical data using an
approximate inverse mapping: Internat. Symp. on Borehole Geophysics, University of
Arizona, and Soc. Expl. Geophy._., Expanded Abstracts.

Orange, A. S., 1989, Magnetotelluric exploration for hydrocarbons: Proc. IEEE, 77, 287-
317.

Papoulis, A., 1965, Probability, random variables, and stochastic processes" McGraw-Hill
Book Co.



271

Park, S. K., and Livelybrooks, D. W., 1989, Quantitative interpretation of rotationally
invariant parameters in magnetoteUurics: Geophysics, 54, 1483-1490.

Park, S. K., and Torres-Verdfn, C., 1988, A systematic approach to the interpretation of
magnetotelluric data in volcanic environments with applications to the quest of magma
in Long Valley, California: J. Geophys. Res., 93Bll, 13265-13283.

- Parker, R. L., 1977, Understanding inverse theory: Ann. Rev. Earth. planet. Sci., 5, 35-
64.

Parker, R. L., 1980, The inverse problem of electromagnetic induction: Existence and
" construction of solutions based on incomplete data: J. Geophys. Res., 85B8, 4421-

4428.

Parker, R. L., and Whaler, K. A., 1981, Numerical methods for establishing solutions to
the inverse problem of electromagnetic induction: J. Geophys. Res., 86B10, 9574-
9584.

Pellerin, L., and Hohmann, G. W., 1990, Transient electromagnetic inversion: A remedy
for magnetotelluric static shifts: Geophysics, 55, 1242-1250.

Pelton, W. H., and Furgerson, B., 1989, High-density 3-D MT: Swath MT and grid MT:
59th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 179-181.

Ranganayaki, R. P., and Madden, T. R., 1980, Generalized thin sheet analysis in
magnetotellurics: An extension of Price's analysis: Geophys. J. R. Astr. Soc., 60,
445-457.

Rob_rtson, J. C., 1983, A study of magnetotelluric fields in laterally inhomogeneous earth
models: Ph.D. thesis, The University of Texas at Austin.

Robinson, E. A., and Treitel, S., 1980, Geophysical signal analysis: Prentice Hall, Inc.

Rodi, W. L., Swanger, H. J., and Minster, J. B., 1984, ESP/MT: An interactive system
for two-dimensional magnetotelluric interpretation: 54th Ann. Internat. Mtg., Soc.
Expl. Geophys., Expanded Abstracts, in Geophysics, 49, 611.

Sancer, M. I., and Varvatsis, A. D., 1970, A comparison of the Born and Rytov methods:
Proc. IEEE, 58, 140-141.

Sasaki, Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole
resistivity data: Geophysics, 54, 254-262.

Sasaki, Y., 1989, Sensitivity analysis of magnetotelluric measurements in relation to static
• effects: Geophys. Prosp., 37, 395-406.

Shoemaker, C. L., Shoham, Y., and Hockey, R. L., 1989, Calibration study of natural
- source electromagnetic array data recorded over a well in Oregon: Proc. IEEE, 77,

334-337.

Sigal, R. F., 1989, Method of magnetotelluric exploration with a zigzag array: U.S. Patent
4,862,089.



272

Singer, B. Sh., 1991, Allowance for static distortions in magnetotellurics, a review paper:
Surveys in Geophys., submitted.

Smith, J. T., and Booker, J. R., 1988, Magnetotelluric inversion for minimum structure:
Geophysics, 53, 1565-1576.

Smith, J. T., and Booker, J. R., 1990, Rapid inversion of two- and three-dimensional
magnetotelluric data: in press, J. Geophys. Res.

Spies, B. R., 1989, Depth of investigation in electromagnetic sounding methods:
Geophysics, 54, 872-888.

Sternberg, B. K., Washburne, J. C., and Pellerin, L., 1988, Correction for the static shift
in magnetotellurics using transient electromagnetic soundings: Geophysics, 53, 1459-
1468.

Stewart, J. H., 1978, Basin and Range structure in western North America: a review, in
Smith, R. B., and Eaton, G. P., Eds., Cenozoic tectonics and regional geophysics of
the western cordillera: Geol. Soc. Am. Mem., 152, 1-31.

Stewart, J. H., 1980, Geology of Nevada: Nevada Bur. Min. Geol., Special Pub. 4.

Stodt, J., 1981, Algorithms for magnetotelluric calculations in the frequency domain:
Phoenix Geosciences, internal report.

Swift, C. M., Jr., 1967, A magnetotelluric investigation of an electrical conductivity
anomaly in the southwestern United States: Ph.D. thesis, Massachusetts Institute of
Technology.

Takasugi, S., Kawakami, N., and Muramatsu, S., 1989, Development uf a "high-accuracy
MT" system and analysis of corresponding high-density MT measurements: 59th Ann.
Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 175-178.

Taylor, H. L., Banks, S. C., and McCoy, J. F., 1979, Deconvolution with the gl norm:
Geophysics, 44, 39-52.

Tikhonov, A. N., 1950, On determining electrical characteristics of the deep layers of the
earth's crust, Dokl. Acad. Naul-_ USSR, 73, 295-297.

Torres-Verch'n, C., 1985, Implications of the Born approximation for the magnetotelluric
problem in three-dimensional environments: M.Sc. thesis, The University of Texas at
Austin.

Torres-Verdfn, C. and Bostick, F. X., Jr., 1990, Implications of the Born approximation
for the magnetotelluric problem in three-dimensional environments: Geophysics,
accepted for publication.

Torres-Verdfn, C. and Bostick, F. X., Jr., 1990, Principles of spatial surface electric field
filtering in magnetotellurics: Electromagnetic Array Profiling (EMAP): Geophysics,
accepted for publication.



273

Torres-Verdin, C., and Bostick, F. X., Jr., 1990, Properties of EMAP in two-dimensional
environments: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
520-523.

Torres-Verdfn, C., and Pellerin, L., 1989, Simulation of EMAP responses in three-
dimensional environments: 59th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, 168-171.

Treitel, S., and Lines, L. R., 1982, Linear inverse theory and deconvolution: Geophysics,
47, 1153-1159.

" Uchida, T., Ogawa, Y., and Kikuchi, T., 1987, Resistivity structure of the Sengan
geothermal area, northeast Japan, as inferred from the two-dimensional interpretation
of Schlumberger soundings: Rept. Geol. Surv. Jap., 266, 505-531.

Uchida, T., 1990, Reservoir structure of the Sengan geothermal field interpreted from the
resistivity data: J. Geoth. Res. Soc. Jap., 12, 1-21.

Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins:
Geophysics, 37, 98-141.

Vozoff, K., Ed., 1986, Magnetotelluric Methods: Soc. Expl. Geophys., Geophysics
Reprint Series No. 5.

Wait, J. R., 1961, The electromagnetic fields of a horizontal dipole in the presence of a
conducting half-space: Can. J. Phys., 39, 1017-1026.

Wannamaker, P. E.,1983, Resistivity structure of the northern Basin and Range, in The
role of heat in the development of energy and mineral resources in the northern Basin
and Range province: Geoth. Res. Counc. Special Rep. 13, 345-362.

Wannamaker, P. E., 1990, Modeling three-dimensional magnetotelluric responses using
integral equations: U.S. Dept. of Energy rep. DOE/ID/12489-63, University of Utah
Research Institute.

Wannamaker, P. E., Booker, J. R., Filloux, J. H., Jones, A. G., Jiracek, G. R., Chave,
A. D., Tarits, P., Waff, H. S., Egbert, G. D., Young, C. T., Stodt, J. A., Martfnez,
M., Law, L. K., Yukutake, T., Segawa, J. S., White, A., and Green, A. W., Jr.,
1989, Magnetotelluric observations across the Juan de Fuca subduction system in the
EMSLAB project: J. Geophys. Res., 94B10, 14111-14125.

Wannamaker, P. E., Booker, J. R., Jones, A. G., Chave, A. D., FiUoux, J. H., Waff, H.
S., and Law, K. L., 1989, Resistivity cross section through the Juan de Fuca
subduction system and its tectonic implications: J. Geophys. Res., 94B10, 14127-

. 14144.

Wannamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984, Magnetoteli,aric
• responses of three-dimensional bodies in layered earths: Geophysics, 44, 1517-1533.

Wannamaker, P. E., Stodt, J. A., and Rijo, L., 1987, A stable finite element solution for
two-dimensional magnetotelluric modeling: Geophys. J., R. Astron., Soc., 88, 277-
296.



274

Warren, R.K., and Srnka, L.J., 1990, EMAP exploration in the volcanics of the Columbia
River Basin, Washington: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, 524-527.

Weidelt, P., 1972, The inverse 0roblem of geomagnetic induction: Geophys. J., 38, 257-
289.

Williams, J. B., 1988, An EMAP survey of the southern Wind River overthrust, •
Wyoming, M.Sc. thesis, The University of Texas at Austin.

Word, D. R., Goss, R., and Chambers, D. M., 1986, An EMAP case study: 56th Ann.
Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 61-63.

Word, D. R., Smith, H. W., and Bostick, F. X., Jr., 1969, An investigation of the
magnetotelluric tensor impedance method: EGRL Technical Report No. 82, The
University of Texas at Austin.

Zhdanov, M. S., 1988, Integral transforms in geophysics: Springer-Verlag New York,
Inc.

Zhdanov, M. S., and Frenkel, M. A., 1983, Solution of inverse problems by analytical
continuation of a transient electromagnetic field in reversed time: J. Geomag.
Geoelectr., 35, 747-765.

Zonge, K. L., Ostrander, A. G., and Emer, D. F., 1986, Controlled-source audio-
frequency magnetotelluric measurements, in Vozoff, K., Ed., Magnetotelluric
Methods: Soc. Expl. Geophys., 749-763.



APPENDIX A

A PLANE-WAVE DECOMPOSITION FOR THE EM FIELDS
EXCITED BY A BURIED ELECTRIC DIPOLE

d,

- A.1 Introduction

This appendix is divided into two mutually related sections. First, a plane-wave

decomposition is obtained that describes the EM fields radiated by an electric dipole in an

unbounded conductive medium. Second, the expressions for the homogeneous plane-wave

expansion are generalized for the case in which the same dipole is buried within a

homogeneous half-space and the observation point lies on the interface between the

conductive half-space and perfectly insulating air. The latter problem has been dealt with by

Wait, 1961, Moore and Blair, 1961, Bafios, 1966, and Bannister and Hart, 1968, among

others. However, in solving the same problem the approach presented here is best suited

for the derivation of the MT transfer functions introduced in Chapter II.

A.2 Plane-wave decomposition of the electric dipole fields in a
homogeneous medium

For convenience, the electric dipole is oriented in the x-direction and is centered at

the origin; the z-axis points downward (Figure A- 1) Two distinct media are considered in

this problem: Medium 1 is above the x-y plane and medium 2 below; in both media the

conductivity is constant and equal to a o.

The differential equation satisfied by the electric field is analogous to equation
(2.9), and reads as

V2E(r) + _:2E(r) = ie01.t8(r) i, (A.1)

where _:2= _io_i.tc0' and r = x "i+ y j + z k.

A solution for the electric field E in equation (A.1) and its associated magnetic field,

H, is now pursued via two transverse vector potentials following the principles of the L-M-

N decomposition described by Morse and Feshbach (1953), namely, let
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Ej= EjM + EjN, and (A.2)

H j = H jM + H jN, (A.3)
j= 1,2

where the subscript j identifies the medium in whmh field observations are made, and the
,lh

subscripts M and N denote transverse, or solenoidal (divergenceless) fields derived from a

vector potential. The use of a longitudinal (curl-free) component in equations (A.2) and

(A.3) is not required because both Ej and Hj are divergenceless and satisfy the

homogeneous Helmholtz equation. Electric and magnetic fields related to the transverse

vector potentials are constructed from the relations

EM = VxW k, and (A.4)

HN = Vxf2 k, (A.5)

where W and _ are scalar potentials satisfyin_ the homogeneous Helmholtz equation,

72_ ,_"_) + K2(kI s,_'_) = 0.

The M and N electric and magnetic fields, EM and Hs, respectively, are coupled with their

magnetic and electric field counterparts described by equations (A.4) and (A.5) via

Maxwell's equations, i.e.,

EN = __!_VxVxC2N k, and (A.6)
t30

HM- 1 VxVxWMk.
iaea. (A.7)

Here, solutions for the potentials _ anci f2 are chosen in the form of Cartesian

scalar plane-wave functions, expressed as

q'j = _0j e-i ,c. r, and (A.8)

_"_j = _-20j e i k. r, (A.9)
j= 1,2

i.

where W0 and _0 are complex constants, and K:= _ i + rl ] + _ k is the propagation
vector, with

_2+ 1.12+ _2= K2 ' (A.10)

!
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such that the wavenumber _ is explicitly written as

= -t-_/K:2- _2_ rl2 . (A.11)

The sign opted for in equation (A.11) is the one that yields positive real and negative

imaginary parts for _, so that both of the solutions (A.8) and (A.9) remain finite as the

observation point, r, recedes away from the dipole.

A clos _._d-formsolution for the total electric field vector in equation (A.1) is written

in terms of the Cartesian plane-wave vector components as

= 1---L--fr +** E(_,rl)e -i_¢'r d_ drl. (A. 12)E(r) (2r_) 2

In similar fashion,

= 1_ rf+*" H(_,rl)e "i_c"r d_ drl.H(r) (2_) 2

Thus, in solving for both E(r) and H(r), the derivations below are aimed at finding a

solution for the plane-wave vector harmonics E(_,rl) and H(_,rl) contained in their integral

representation form.

Substitution of equations (A.8) and (A.9) into equations (A.4) through (A.7) and

finally into (A.2) and (A.3) yields the following expressions for the EM fields in media 1
and 2:

1-12
= m m _ _"21k ,

frO frO frO

Hl (-irl_r'21-_ kIJ1)I + (i_(21 T[_ kiJ1)i - _2+
rl2

= _ W1 k ,
lo_l.t ic0lt i0_

E2 (-irl_t's2 _ _')2) i + (i_tts 2 1]_ _'22) j + _2+
1"]2

= ..... _2 k, and
O0 O0 rf0

HE (-irl _"22+ _ tIJ2) i + (i_ _22 + rl_ _IJ2) i _2+
_2

= _ _ _IS2 k .
lO)lt 10J.t io_
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Finally, matching the required electric and magnetic field boundary conditions on the plane

z--0, where the surface current density is expressed as Ks(_,ri) = (1) i, gives way to the

following coefficients for the Cartesian plane-wave functions:

f210 = -f_20 -- O.o = -i_ , and (A.13)
2(_2+ 112)

-io._trl
W10 = W20 = Wo = (A.14)

2_(_2+ 1"!2/

Equations (A.13) and (A.14) substituted into equations (A.8) and (A.9) constitute the

solution for the Cartesian vector wave functions describing the EM perturbation of an

electric dipole in an unbounded conducting medium.

A.3 Plane-wave decomposition of the fields due to an electric dipole buried
in a half-space

The electric dipole is now located at the point (0,0,z0), as indicated in Figure A-2.

There are three separate vertical domains for this problem: medium 1 is the insulating haft-

space z<0, medium 2 is the region 0_ of the conductive half-space directly above the

dipole, and medium 3 is the space, z>z0, below the dipole. Boundary conditions on the

half-space interface are accounted for by introducing both primary and reflected plane wave

fields in media 1 and 2, as well as transmitted fields in medium 1. Let

W2 = _P0 e -ir_z°e -itr2"r, and

_'_2 --- _4) e ir_ e-i_2"r

describe the Cartesian scalar wave potentials associated with the primary electric and

magnetic fields in medium 2. Likewise, the scalar wave potentials associated with the

plane-wave fields reflected downward from the air-earth interface can be written as

W_ = R,vW0 e"ir_z°e'ik_ "r, and
b

D.re= Rni2 0 e-i r,zoe-i_- r,

where Ry and R a are the Fresnel reflection coefficients of the air-earth interface, and the

propagation vectors tc2 and rg2 point upward and downward, respectively. The fields
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transmitted into the insulating half-space, on the other hand, are derived from the scalar

potentials

.W1 = TrW0 e ig_ e i k_-r, and

_'_1 -- T_D.O e "i_xz°e -ik_"r,

where Tv and T_ are the Fresnel transmission coefficients associated with the fir-earth

, interface. The wavenumber _l in these last expressions satisfies the dispersion relation in

the insulating half-space, namely, _2+ 112+_21= 0, in which case,

;1 = -i_/ _2+ 112 ,

where the negative sign is preferred to render both scalar wave functions _F I and _'21 finite

as the observation point recedes away from the interface into the insulating half-space.

Substitution of the above scalar potentials into equations (A.2) through (A.7) yields

the following solution for the Cartesian plane-wave vector functions in medium 2:

E2 = [-irl(l+ R_e-i2_z)W2 +_00 (1 - Rf_e-_-_)flz]i " +

n;
[i_(1 + R v e-i2_z)W2 + _-0 (1 - Rfle-i2_z)f2z]j +

_2+ rl2 .,-.
(1+ R_e-i2_)_ 2 k, and

G0

H2 = [i--_--(1 - R_ze-i2-_Jz)_J 2 - irl(l+ R_e-i2_z)f_2]i"+

[i-_--(1 - R,_e-i2_)W 2 + i_ (1+
/

_2+ 112
(1+ Rwe-t2_Z)Wok.

io._

In medium 1, on the other hand, the plane-wave vector functions are given by

E1 = (-irlT,g_F2 + __..._1Tftr2) / +

,d

(i_Tv_F2 + TI_I Tf_Q2) i + _2+ 112 ^_ Tfl_2 k ], and
t_l t_l

HI = :Iki,_P2 - irlTG_2) I +
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( rl_lT • + i_T_2) j _2+ 112 ^.:_ _ 2 T_IS2 k.
ico_t.u_t

The required continuity of the tangential electric and magnetic fields on the half-

space interface (z=0) decouples the field solutions related to each of the scalar potentials tp

and rf2.Thence, solutions for the Fremel reflection and transmission coefficients are

_-_1 _ + i_/_2+ ri2

+ _1 _- i_/_2+ 112 ' (A.15)

R_ =-1 , (A.16)
T,v = 1 + Rv , and (A.17)
Ta = 1 + Ra=0. (A.18)

With these solutions, the Cartesian plane-wave vector components for the EM fields on the

half-space boundary (z=0) are finally written as

_2+ 1,12(1 + Rv _2Ex(_,rl,c0) {-ic0_t [ 2 )= _ ] }e i_z° , (A.19)
i_ _2+ 112 i_cto

_rl (1 - Rv
Ey(_,TI,CO ) {-itt_t [ 2 ) _rl= _ ] }ei;z°, (A.20)

i_ _2+ 112 i_(_o

Ez = 0, (A.21)

Hx(_,rl) = _rl (1 - Rv2 ) e-i_z°'
(_2+ r12) (A.22)

n2 (1-Hy(_,rl) - RT ) e.ir_, and (A.23)
(_2+ 1.12)

Hz(_,rl) = rl (1 +R_____Ev ) e__r_.
2 (A.24)

Equations (A.19) through (A.24) can be modified to describe plane-wave vector

components in connection with an electric dipole shifted from the z-axis at the location
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(xo,y0,zo). The solution comes directly from the shifting property of the Fourier transform

(A.12), namely,

-1----L-- f f_**E(_,tl/O,O)(e-i_x° ei'ny°)e-iVa e-iny d_drl, (A.25)E(x,y/xo,y0) (2_) 2

where the vector E(_,rl/0,0) is the plane-wave vector component for the electric field of an

- electric dipole buried at a depth zo below the orighl (equations A.19 through A.21). The

vector E(x,y/xo,Y0), on the other hand, is the total electric field related to the offset dipole.

For an observation point (x,y) fixed at the origin, equation (A.25) also yields the Fourier

transform, with respect to the source-point coordinates, xo and Y0,of the total electric field

vector E(0,0/xo, Y0), namely,

_'(xo,y0){E(0,0/x0,Yo)} = E(- _,- 11/0,0).

In summary, when the observation point is timed at the origin and the dipole is moved

laterally, the Fourier transform that describes field response values with respect to dipole

location can be obtained by reflection about the point (_---0,rl--0) of the expressions (A.19)

through (A.24). The wavenumber expressions that result from this operation are the MT

transfer functions introduced in Chapter II.
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Figure A-1. First source configuration for the plane-wave expansion: an infinitesimal electric dipole is
placed at the origin of an unbounded homogeneous conductive medium. The dipole is polarized in the x-
direction.
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Figure A-2. Second source configuration for the plane-wave expansion: the electric dipole of Figure A-1
is now immersed in a conductive half-space at the location (0,0,z0).



APPENDIX B

ADDITIONAL EXAMPLES OF 1-D BORN INVERSION

B.1 Description
d,

This appendix contains additional examples that illustrate the performance of the

linearized 1-D inversion procedures studied in Chapter HI. In ali cases, data have been

numerically simulated for 64 frequency samples, evenly distributed in logarithmic fashion

and spanning the interval from 0.0005 to 1,000 Hz. The figures are self-explanatory, and

their format follows ali of the plotting conventions established in Chapter liT.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse. Rytov Approximation
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Figure B-I. A study of contrast effects over a resistive step: Rytov inversion.



285

TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse, Rytov Approximation
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Figure B-1 (continued). A study of contrast effects over a resistive step: Rytov
inversion.
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TRUEAND INVERTED1-D RESISTIVITYPRORLES
ConstrainedWiener Inverse,Rytov Approximation
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Figure B-2. A study of contrasteffects over a conductive step:Rytov inversion.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse, Rye;oyApproximation
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Figure B-2 (continued). A study of contrast effects over a conductive step" Rytov
inversion.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse, Born Approximation

Po =13.0 t3-m
_Dm_

• nsr -- 0.01
...o...o.o...o.

o nsr -- 0.1

• nsr m 1.0

10= .........B.o.._.k...... 10=I True ,-e

,,,_-> _ __!...............:_.. ."'10' -'_..."-u -"'" ;''''-_ 10'
i e

"r"

t
10° ! ........ , ....... 100I i I i I I I ; j I I i _ I I l I i

101 10= 103 104 10s

DEPTH (m)

TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wienor Inverse, Rytov Approximation

Po =13.0 f)-m
_u , ....... , ,,, ..... , ........ , ....... _cr

• nsr -- 0.01
.o.oooo.oooooo.

• nsr m 0.1

• nii m 1.0

-'E O= - oo,t_ f . 1021_ T.,, .g : ",_

(b) (,,.............
tr

100 ........ .. ........ , ....... , . ,, .... 100
16 102 10s 104 106

DEPTH (m)

Figure ]]-3. A resistive anomaly: (a) Born inversion, (b) Rytov inversion, and (c) Rytov
inversion with a lower-bound model range constraint.
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TRUEAND INVERTED1-D RESISTIVITYPRORLES
Rytov Approximation & Model RangeConstraint
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Figure B-3 (continued). A resistive anomaly" (a) Born inversion, (b) Rytov inversion,
and (c) Rytov inversion with a lower-bound model range constraint.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse, Born Approximation
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Figure B-4. A conductive anomaly: (a) Born inversion, (b) Rytov inversion, and (c)
Rytov inversion with an upper-bound model range constraint_
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TRUE AND INVERTED 1-D RES1STIVrrY PRORLES
Rytov Approximation & Model Range Constraint
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Figure B-4 (continued). A conductive anomaly: (a) Born inversion, (b) Rytov
inversion, and (c) Rytov inversion with an upper-bound model range constraint.
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TRUE AND INVI:HiI:U !-D RESISTIVITY PRORLES
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Figure B-5. Resistive and conductive anomalies combined: Born inversion.
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TRUEAND INVERTED1-D RESISTlVFI'YPROFILES
ConstrainedWiener Inverse,Rytov Approximation
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Figure B-6. Resistive and conductive anomalies combined: Rytov inversion.
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TRUE AND INVERTED 1-D RESISTIVITY PRORLES
Constrained Wiener Inverse, Rytov Approximation
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Figure B-7. Smith and Booker's (1988) model example and Rytov inversion.



APPENDIX C

LATERAL LINEAR DEPENDENCE AMONG THE SURFACE
2-D TE FIELDS

- C.I Introduction

The purpose of this appendix is to demonstrate that the linear dependence among ali

three surface TE fields embodied in the Born approximation is applicable to any 2-D

resistivity distribution within the earth. To this end, wavenumber solutions for the surface

electric aria magnetic fields are derived directly from Maxwell's equations. It is shown that

these expressions exhibit the claimed linear relationships.

C.2 Maxwell's equations and linear dependence

Assuming a fight-hand Cartesian coordinate frame in which the x axis is normal to

strike and the z axis is positioned on the surface and points downward (Figure 4-1), the

governing Maxwell's equations for the TE mode are

0Ey(x,z,o_)
0x = -io_t Hz(x,z,o_), (C.1)

0Ey(x,z,03)
Oz = i_g Hx(x,z,o_), and (C.2)

0Hx(x,z,oD 0Hz(x,z,co)
- = o(x,z) Ey(x,z,0_), (C.3)_z Ox

where the usual e i°_t time dependency is assumed and _=l/p. Dividing equation (C.1)

through by Eo(O_)and H0(o_), the surface electric and magnetic fields associated with a

homogeneous half-space of resistivity po, respectively, and subsequently transforming the

field ratios into the wavenumber domain yields
t"

Hz(k,_) =-Zo(o3)2x__.kgy(k,o_), (C.4)
J

where

"" Hz(x,0,_)

Hz(k,O,¢o) = :F{ Ho(o3) }'
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--- Ey(x,0,o_)
Ey(k,0,_)=F{ _-_ },

Z0(co)is the surface wave impedance of the homogeneous half-space, given by

Z0(o_)- E0(¢o) =_ _/ic0tx90 (C.5)Ho(o )

(equation 2.12), and k is the linear wavenumber in the x direction. The def'mition of the
,Q

spatial Fourier transform with respect to x, identified with the operator F, is as described in

section 4.3. Substitution of equation (C.5) into (C.4) and further algebraic simplification

leads to the expression

Hz(k,co) = iqT[y Ey(k,co), (C.6)

where the variable _,is defined in equation (4.19).

To obtain a similar wavenumber-domain expression between the surface magnetic

field components Hx and Hy, consider the solution of equation (C.3) in the air, where

o(x,z)=0 and the dispersion relation is given by

(2xk)2 + _2= O, (C.7)

where _ is the complementary wavenumber that determines the Laplacian fall-off of the

fields away from the surface into the the air. Dividing equation (C.3) th-ough by Ho(CO)and

specializing the exponential solution for Hz(x,z, co)on the surface, yields the wavenumber-!

domain expression

 x(k,t0) = (C.8)

where

--- Hx(x,e_)
Hx(k,o)) = F{ Ho(co) }"

D

Substitutionoftheexplicitvaluefor_ derivedfrom equation(C.7)intoequation(C.8)
leadsto

Hz(k,c0) = iU(T) Hx(k,co), (C.9)

where U(y) is the sign function defined by equation (4.37). This last expression is

equivalent to the space-domain Hilbert transform relations
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+_ Hz(xo,O,o_)
1Hx(x,0,o_) dx0 and
.. x0 - x '

+: Hx(x0,0,t0)
' Hz(x,0,o_) = 1_ x0 - x dx0

t

(BraceweU, 1965), which indicate that the surface solutions for both Hx and Hz are spatial

analytic components of each other.

Hence, the developments above demonstrate that the spatial linear dependence

among the TE field components found with the Born approximation equations is extensive

to ali situations. In practice, this linear dependency should be taken into account, for

instance, when devising procedures to concomitantly invert a combination of two or three

of the components into a cross-section of subsurface resistivity. Even though the addition

of data makes the inverse problem more overdetermined, the linear dependency exhibited

by some of the data may bias performance parameters such as the goodness of fit.

In a different context, because the electric field component is related to the magnetic

field components by the single-pole high-pass wavenumber filter l/T, the estimation of

magnetic field data from electric field data across strike is a very unstable operation even

with continuously sampled data. On the other hand, even though the estimation of electric

field data from magnetic field data requires a stable low-pass wavenumber filtering

operation, this process will not yield the DC wavenumber harmonic because as

demonstrated in section 2.6, the magnetic field data are insensitive to such harmonic.








