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ABSTRACT
We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function
(2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months
of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple
effective Zel’dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock
sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for
catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail,
highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of
certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm
a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable
datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements
from the data itself. The code used in this paper is publicly available at https://github.com/oliverphilcox/RascalC.

Key words: large-scale structure of Universe – cosmology: theory – galaxies: statistics – surveys – software: data analysis –
methods: statistical

1 INTRODUCTION

Measurements of the large-scale structure of the Universe are one of
the pillars of modern cosmology. The two-point correlation function
(2PCF) of galaxies is a particularly important statistical quantity for
the large-scale structure, describing the excess probability of find-
ing a galaxy at a given separation from another galaxy, compared
to a random distribution. Its measurements have a notable feature
at the scale of baryon acoustic oscillations (BAO, first detected by
Eisenstein et al. (2005)). As the corresponding comoving scale is a
standard ruler with length set by sound horizon during recombina-
tion (more precisely, drag epoch), these measurements particularly
constrain the expansion history of the Universe at redshifts between
then and now (𝑧 ∼ 1), providing a valuable test for cosmological
models. A more detailed overview of the methodology is provided
in Weinberg et al. (2013).

We have an exciting opportunity to analyze the data from the
Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration

★ E-mail: mrashkovetskyi@cfa.harvard.edu

et al. (2016, 2022, 2023a,b)), a highly promising 5-year Stage-IV
BAO experiment for large-scale spectroscopic surveys. For example,
the sample of Luminous Red Galaxies (LRG, Zhou et al. (2020))
observed during the first two months of DESI main survey operations
(DESI-M2) yields a BAO scale measurement with 1.7% precision
(Moon et al. 2023), which is already comparable to the aggregate
precision of 0.77% of preceding leading surveys, BOSS and eBOSS
(Alam et al. 2021).

For rigorous interpretation of data, the likelihood is crucial. For-
tunately, the distribution of measured clustering statistics is well
described by a multivariate Gaussian, which is fully described by
mean and covariance matrix. Unfortunately, the latter poses a seri-
ous challenge. A fully analytical model for the covariance matrix is
desirable because it can provide a fast and stable result. However,
it is very hard to construct in the case of galaxy clustering. One of
the reasons is that galaxies are high matter overdensities, evolving in
a crucially nonlinear regime. Another is the complicated effects of
survey geometry and non-uniform selection. There have been recent
promising developments on covariance matrices for power spectra
using perturbation theory (Wadekar & Scoccimarro 2020). However,
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2 M. Rashkovetskyi et al

power spectra results are difficult to apply to the correlation functions,
because the Fourier transform is not local.

The standard approach is using a sample covariance estimated
from mock (simulated) galaxy catalogs. This solution is far from
ideal. Such catalogs need to capture key aspects of clustering and
be representative of the data, or assumed theoretical model. Detailed
simulations are computationally expensive, while for precise covari-
ance estimate a large number of samples is required, increasingly
higher as more quantities are measured. This forces a hard compro-
mise between quality and quantity, keeping the total computation
time very long. The mock-based covariance production is therefore
not characterized by flexibility, as the generation and processing of
numerous simulations for an updated dataset or alternative model
require a huge effort.

Another group of methods is called internal for using only the
data itself. The lack of dependence on mocks and model assump-
tions makes them attractive. These are represented by re-sampling
techniques like jackknife and bootstrap, which involve splitting the
data into parts. However, it may be hard to ensure that the parts
are principally equivalent (so the differences all stem from random
fluctuations) and separate the independent contributions to differ-
ent estimates used for covariance. Mohammad & Percival (2022)
attempt to mitigate the latter issue for jackknives by modifying the
pair weighting for jackknife covariance estimates. However, Trusov
et al. (2023) find that the results are still prone to a density-dependent
bias.

Each of the three approaches has its flaws and combining advan-
tages from different ones seems very promising. Thus we choose to
focus on a method that started nearly analytical and employed ele-
ments of an internal approach. O’Connell et al. (2016) demonstrated
that the covariance matrix for 2PCF in arbitrary survey geometry
can be expressed through integrals or sums in configuration space
(this result is analogous to Bernstein (1994)), which can be com-
puted efficiently with importance sampling techniques. There are
terms containing higher-point correlations (3-point and connected 4-
point functions), which are highly challenging to model or measure
with precision. Thus instead a procedure of leaving only Gaussian
correlation and rescaling of shot noise amplitude was proposed and
found to achieve a good agreement with mock-based covariances.
This rescaling parameter can be calibrated on a small suite of mocks,
or on a jackknife covariance intrinsic to the data analyzed (O’Connell
& Eisenstein 2019). We find the combination of analytical methods
with jackknife more promising than with mocks, because, after a vali-
dation, such a procedure does not require the construction of any new
mocks to match updated data or an alternative model with different
assumptions, and does not require any more than jackknife covariance
computation, at the same time offering higher smoothness, stability,
and invertibility. Philcox et al. (2020) introduced the RascalC1 code
with a new algorithm, making it easier to account for survey geom-
etry via a catalog of random points, boosting the efficiency several
times and extended the formalism to covariances for multiple tracers
(galaxy types). Philcox & Eisenstein (2019) developed the estima-
tors for Legendre-binned 2PCF and isotropic three-point correlation
function.

We have contributed RascalC covariances for the BAO analysis of
DESI-M2 data (Moon et al. 2023). This work accompanies it, focus-
ing on the validation of the approach in realistic circumstances. We

1 https://github.com/oliverphilcox/RascalC (Oliver Philcox,
Daniel Eisenstein, Ross O’Connell, Alexander Wiegand, Misha Rashkovet-
skyi, Yuting Wang, Ryuichiro Hada, Uendert Andrade)

limit ourselves to analogs of DESI LRG sample (Zhou et al. 2020)
due to the availability of a large suite of mocks with correspond-
ing cuts, providing a good sample covariance matrix for reference.
Similarly to Philcox et al. (2020), we process a single mock catalog
in essentially the same manner as data and compare the resulting
covariance with the sample covariance of clustering measurements
in all available mocks, which gives a fair proxy of the pipeline per-
formance on data and is also robust to the mismatch between data
and mock clustering. We repeat the procedure multiple times taking
a different catalog each time to assess the accuracy of the method,
its stability, and fluctuations. In addition, we pay extra attention to
the formation of a covariance matrix comparison toolkit. We focus
on the meaning of the numbers used and derive reference values for
the ideal case when the semi-analytical prediction matches the true
underlying covariance. Due to sample variance, these expectation
values can be nontrivial, and understanding the noise in the compar-
ison measures is crucially important as well. We choose a smaller
number of observables for lower noise and clearer interpretation, and
further project the covariances into the lower-dimensional and more
physically meaningful space of model parameters.

We also note the prospects of standard reconstruction techniques
that aim to reverse the large-scale displacements during the times
after the drag epoch. Such subsequent evolution leads to broadening
and contamination of the BAO peak, thus undoing it sharpens the
feature (Eisenstein et al. 2007). The RascalC formalism is applicable
to reconstructed 2PCF covariance as well with minor adjustments.

This paper is organized in the following manner. We review pre-
vious 2PCF estimators and covariances, discuss a modification of
random counts computation and a formal extension to reconstructed
data in Sec. 2. In Sec. 3 we discuss the problem of covariance matrix
comparison and present our selection of methods, before applying
them to RascalC validation with DESI LRG mocks in Sec. 4. We
conclude in Sec. 5 by reviewing current accomplishments and fu-
ture prospects. Appendix A provides more complete details on the
covariance matrix estimators. Appendix B provides an overview and
derivations of useful properties of covariance matrix comparison
metrics.

2 METHODS OF COVARIANCE MATRIX ESTIMATION

We start by recapitulating the 2PCF estimators and covariance matrix
formalism from O’Connell et al. (2016), O’Connell & Eisenstein
(2019), and Philcox et al. (2020), with a revised notation similar to
Philcox & Eisenstein (2019). In the following two subsections, we
discuss a slight modification for optimized disjoint random count
computation and an extension for reconstructed data.

2.1 Overview of previous work

In a galaxy survey, we may define the 2PCF of tracers 𝑋 and 𝑌
through the ratio of pair counts:

𝜉𝑋𝑌 (𝑟, 𝜇) = 𝑁𝑋𝑁𝑌 (𝑟, 𝜇)
𝑅𝑋𝑅𝑌 (𝑟, 𝜇)

(2.1)

(Landy & Szalay 1993), where 𝜇 = cos 𝜃 is used instead of angle 𝜃
(𝜇 can be restricted to 0 ≤ 𝜇 ≤ 1 by symmetry) and 𝑁𝑋 = 𝐷𝑋 −𝑅𝑋 .
𝐷𝑋 and 𝑅𝑋 are (weighted) galaxies and random particles (tracing
the expected mean density) of kind 𝑋 respectively. In radial bin 𝑎
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2PCF covariance matrices for early DESI data 3

and angular bin 𝑐, this estimate transforms to

(
𝜉𝑋𝑌

)𝑐
𝑎
=

(
𝑁𝑋𝑁𝑌

)𝑐
𝑎(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

(2.2)

with (
𝑁𝑋𝑁𝑌

)𝑐
𝑎

=
∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑤

𝑋
𝑖 𝑤

𝑌
𝑗 Θ

𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )𝛿𝑋𝑖 𝛿
𝑌
𝑗 (2.3)(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

=
∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑤

𝑋
𝑖 𝑤

𝑌
𝑗 Θ

𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 ),

where we have assigned a cubic grid to the survey such that each cell
contains no more than one galaxy, 𝑛𝑋

𝑖
is the expected mean number

density of tracer 𝑋 in the cell 𝑖, 𝑤𝑖 is the expected mean weight, 𝛿𝑖
is the fractional galaxy overdensity, 𝜇𝑖 𝑗 relates to the angle between
the line of sight and the separation vector r𝑖 𝑗 = r𝑖 − r 𝑗 (𝑟𝑖 𝑗 being its
absolute value), and Θ are binning functions (unity if the argument
fits into the bin and zero otherwise).

Given the binned 2PCF estimator (Eq. (2.2)), the covariance matrix
can be computed by definition:

cov
[(
𝜉𝑋𝑌

)𝑐
𝑎
,

(
𝜉𝑍𝑊

)𝑑
𝑏

]
=

〈(
𝜉𝑋𝑌

)𝑐
𝑎

(
𝜉𝑍𝑊

)𝑑
𝑏

〉
(2.4)

−
〈(
𝜉𝑋𝑌

)𝑐
𝑎

〉〈(
𝜉𝑍𝑊

)𝑑
𝑏

〉
,

where ⟨⟩ means ensemble average over realizations of overdensity 𝛿.
According to Eq. (2.3), this affects the 𝑁𝑁 counts but not 𝑅𝑅. Thus
the right-hand side of Eq. (2.4) has the product of 𝑅𝑅 counts as a
constant denominator and a sum over sets of 4 cells (from the product
of 𝑁𝑁 counts) containing an ensemble average of the product of 4 𝛿
values, where some of the cells can coincide with each other. These
ensemble averages are by definition 4-point correlation functions,
but same-cell overdensities handled naively give zero separation and
divergent values. To overcome this issue, O’Connell et al. (2016)
further expanded Eq. (2.4) into sums over distinct 2-, 3- and 4-
cell configurations. Additionally, squares of overdensity in one cell
(products of overdensities in coinciding cells) were replaced by a
shot-noise approximation:(

𝛿𝑋𝑖

)2
≈ 1
𝑛𝑋
𝑖

(
1 + 𝛿𝑋𝑖

)
. (2.5)

As a result, only products of 4, 3, or 2 overdensities in distinct cells
remained. After ensemble averaging, these give 4-, 3- and 2-point
correlation functions at nonzero separations, respectively. Lastly, the
disconnected (Gaussian) part of the 4-point function can be sepa-
rated from the connected (non-Gaussian) one according to Isserlis’
(Wick’s) theorem (Isserlis 1918). The full resulting expressions are
provided in Appendix A, Eq. (A2).

Due to high noise in higher-point correlation function measure-
ments and difficulties in their theoretical modeling, an alternative
approach of mimicking non-Gaussianity has been established. All
the higher-order correlation functions are set to zero (save for dis-
connected 4-point, which reduces to products of 2-point functions),
but the shot-noise approximation is modified with a factor 𝛼𝑋SN > 1
which can have a separate value for each of different samples of
galaxies: (

𝛿𝑋𝑖

)2
≈
𝛼𝑋SN
𝑛𝑋
𝑖

(
1 + 𝛿𝑋𝑖

)
. (2.6)

This increases the correlations on the smallest scales, which is similar
to where non-Gaussian effects are the strongest.

The sums can be transformed to continuous form by changing
sums to integrals over positions and replacing cell quantities with
continuous functions in 3-dimensional space. However, it is conve-
nient to leave them discrete, which allows us to estimate them using
importance sampling directly from the random catalog (Philcox et al.
2020), without the need to write functional forms for survey number
density, weights, and so on. Two-point function values for pairs of
points are interpolated from a grid/table to sampled pair separation
𝑟𝑖 𝑗 , 𝜇𝑖 𝑗 (the latter can be computed with respect to the midpoint
radius-vector of the pair, or a fixed axis) with the bicubic method,
which is in practice based on radially and angularly binned 2PCF es-
timates. A special iterative correlation function rescaling procedure
is used to modify the values of the correlation function on the inter-
polation grid such that the bin-averaged values of the interpolation
result resemble the binned 2PCF estimates more closely.

Originally O’Connell et al. (2016) fit the shot-noise rescaling to a
sample covariance obtained from a smaller set of mocks, with the idea
that lower precision was sufficient for obtaining just one parameter
as opposed to estimating the whole matrix. O’Connell & Eisenstein
(2019) proposed that a jackknife covariance from the data itself can
be used instead, eliminating the dependence on mocks completely.
Noting that jackknife has issues in the cosmological application, they
developed a separate estimator for this covariance taking into account
correlations between different estimates.

We follow a modified formalism from Philcox et al. (2020) called
unrestricted jackknife. According to it, the jackknife correlation func-
tion estimate 𝜉𝐴 is the cross-correlation function between jackknife
region number 𝐴 and the whole survey. In other words, an additional
weight of particle 𝑖 (denoted by 𝑞𝐴

𝑖
) is equal to one if it belongs

to the region 𝐴 and zero if not. A pair of particles is additionally
weighted by the mean of their weights: one if both belong to the
region 𝐴, one half if only one does and zero if both are out of it.
Conveniently, the sum of these weights for any selected pair over all
jackknife regions is unity. As a consequence, the mean of jackknife
2PCF estimates (weighted by 𝑅𝑅 counts) is equal to the full 2PCF
estimate. Then an estimator for jackknife covariance is worked out
separately (Eq. (A7)), with a similar shot-noise rescaling procedure.

In principle, shot-noise rescaling (Eq. (2.6)) can be different for
each tracer, and it can be obtained by fitting the prediction for the
jackknife covariance of its auto-correlation function to the data-based
jackknife estimate. The resulting 𝛼𝑋SN value(s) is used together with
the full covariance estimator (Eq. (A1)) for the final result.

Let us reiterate the key approximation: non-Gaussianity can be
mimicked by rescaling shot noise while dropping the terms with
higher-order correlation functions. It works because the primary ef-
fect of non-Gaussian contributions is an additional correlation at
small distances, typically smaller than the bin width of 2PCF used in
actual fits and requiring a covariance. Enhancing the shot noise re-
sults in increased correlation on infinitely small scales. This should
remain a good estimate as long as the correlation functions’ con-
tribution to covariances on scales of interest is dominated by their
squeezed limits. Whether this is the case is not clear generally, but
O’Connell et al. (2016) reported good agreement with large sets
of mock catalogs achieved with this method, and Vargas-Magaña
et al. (2018) demonstrated the applicability of the approach to BAO
analysis.

It is important to specify the means of fitting covariance matrices.
Following Philcox et al. (2020), we choose to optimize the Kullback-
Leibler (KL) divergence between the RascalC jackknife precision
�̃�𝐽 (𝛼SN) and the data-based jackknife covariance estimate (given
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4 M. Rashkovetskyi et al

by Eq. (A6)), 𝐷KL
[
�̃�𝐽 (𝛼SN),C𝐽

]
, where

𝐷KL (𝚿1,C2) =
1
2
[tr (𝚿1C2) − 𝑁bins − ln det (𝚿1C2)] . (2.7)

In this equation, 𝑁bins is the dimension of covariance matrices (num-
ber of correlation function bins). Inversion of the RascalC covari-
ance has a certain bias. Since it is not expected to obey Wishart statis-
tics like the (mock) sample covariance, the Hartlap factor (Hartlap
et al. 2007) is not relevant. A special second-order bias correction
has been derived in O’Connell & Eisenstein (2019):

�̃� = (I − D̃)C̃−1 (2.8)

D̃ =
𝑁subsamples − 1
𝑁subsamples

−I +
1

𝑁subsamples

𝑁subsamples∑︁
𝑖=1

C̃−1
[𝑖 ]C̃𝑖

 ,
which uses the partial covariance estimates C̃𝑖 from 𝑁subsamples dis-
tinct sets of configurations resulting from importance sampling in
the estimation of sums (Eq. (A2) or (A8)) and mean of all the partial
estimates but the 𝑖’th C̃[𝑖 ] . Thus the correction is applicable for both
jackknife and full covariance.

2.2 Split random-random computation

Keihänen et al. (2019) showed that splitting the random catalog into
a number of sub-catalogs of the same size as the data catalog when
calculating random–random pairs and excluding pairs across differ-
ent sub-catalogs provides the optimal error at a fixed computational
cost. The splitting can be used in RascalC. It gives little to no
speed-up and impact on results because the importance sampling is
too far from complete. However, it can be useful for multi-node paral-
lelization. This approach has been used for the data-based RascalC
computation in Moon et al. (2023).

A robust implementation of split random-random pair calculations
in RascalC would require considering only quadruples of random
points where members of each pair are from the same sub-catalog,
but the pairs can be from different catalogs. However, this has been
found to have little to no impact on the results, probably due to the fact
that importance sampling covers only a small fraction of all possible
configurations. At the same time, such implementation makes the
code less efficient and makes it impossible to split the computation
of different catalogs between nodes.

2.3 Reconstructed two-point function covariance

After standard reconstruction, a common approach is to replace 𝑁 =

(𝐷 − 𝑅) by 𝑁 = (𝐷 − 𝑆) (𝑆 being the random point with position
shifted in the same manner as data) in the Landy-Szalay estimator
(Eq. (2.1)), leaving 𝑅𝑅 in the denominator, so that it is

𝜉𝑋𝑌 =
𝐷𝑋𝐷𝑌 − 𝐷𝑋𝑆𝑌 − 𝑆𝑋𝐷𝑌 + 𝑆𝑋𝑆𝑌

𝑅𝑋𝑅𝑌
, (2.9)

instead of

𝜉𝑋𝑌 =
𝐷𝑋𝐷𝑌 − 𝐷𝑋𝑅𝑌 − 𝑅𝑋𝐷𝑌 + 𝑅𝑋𝑅𝑌

𝑅𝑋𝑅𝑌
. (2.10)

This means shifted randoms are to be used in sums or integrals
representing 𝑁𝑁 . These eventually form the sums (or integrals) for
𝐶 terms. Thus, strictly speaking, the procedure for reconstructed
2PCF should be:

• use shifted randoms for sampling, corresponding to the numer-
ator of (2.9);

• provide a differently normalized 2PCF as input, namely

𝜉𝑋𝑌in =
𝐷𝑋𝐷𝑌 − 𝐷𝑋𝑆𝑌 − 𝑆𝑋𝐷𝑌 + 𝑆𝑋𝑆𝑌

𝑆𝑋𝑆𝑌
, (2.11)

since non-shifted randoms do not appear in the sampling procedure;
• use non-shifted random counts for denominator in Eq. (A2), or

correction function (Eq. (A15)) in Legendre case, corresponding to
the denominator of (2.9).

Shifted randoms are individual for each mock catalog. Therefore
they can not be defined clearly for mock-averaged computations. In
those cases, we continue to use the non-shifted randoms everywhere
for consistency.

3 METHODS OF COMPARISON OF COVARIANCE
MATRICES

Since a covariance matrix is a high-dimensional object, it can be hard
to explore and interpret. Moreover, we run the pipeline multiple times
independently and aim to study all the covariance matrix products to
assess their stability and fluctuations. Thus compact and numerical
comparison measures are instructive.

3.1 Interpretable measures of similarity for covariance
matrices

The first characteristic we consider is the Kullback-Leibler (KL) di-
vergence, a measure of distance between distributions used to fit
covariances in RascalC (Section 2.1, Eq. (2.7)). It is generally de-
fined as an expectation value of the logarithm of the ratio of the two
probability distribution functions according to the first distribution:

𝐷KL (𝑃1 | |𝑃2) =
∫

ln
(
𝑃1 (𝑥)
𝑃2 (𝑥)

)
𝑃1 (𝑥)𝑑𝑥 (3.1)

By this expression, KL divergence can be seen as an average differ-
ence in log-likelihood. For two Gaussian distributions with covari-
ance matrices C𝑖 and precision matrices 𝚿𝑖 = C−1

𝑖
describing 𝑁bins

observables (correlation function bins in our setup), it can be found
as

𝐷KL (𝚿1,C2) =
1
2
[tr (𝚿1C2) − 𝑁bins − ln det (𝚿1C2)] . (3.2)

This is the expression we will use. O’Connell et al. (2016) show that
the KL divergence is related to the log-likelihood if the covariance
matrix is estimated from a sample with multivariate normal distri-
bution, which is a very good approximation for correlation function
bins, and additionally assuming that the precision matrix is the in-
verse of the true covariance matrix characterizing the multivariate
normal distribution of measured quantities. This is very appropriate
for testing the hypothesis that the RascalC precision matrix is a
precise unbiased estimate.

The next metric assesses how close the first precision matrix is to
the inverse of the second covariance matrix, and at the same time a
“directional” root-mean-square relative difference in 𝜒2 given by the
two covariance matrices (explained in more detail in Appendix B2):

𝑅inv (𝚿1,C2) =
1

√
𝑁bins

������C1/2
2 𝚿1C1/2

2 − I
������
𝐹

=

√√√
tr
[
(𝚿1C2 − I)2

]
𝑁bins

. (3.3)

This measure can also be seen as the average relative difference in
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2PCF covariance matrices for early DESI data 5

the errorbars. Moreover, if the covariance matrix is estimated from a
sample with multivariate normal distribution and the precision ma-
trix is assumed to be true, 𝑅2

inv is proportional to the 𝜒2 computed
using covariance of independent covariance matrix elements (Ap-
pendix B2). Thus, in this case, it can serve as an approximation of
log-likelihood for optimization.

The last metric is akin to the mean reduced 𝜒2 of samples corre-
sponding to one covariance matrix with respect to the other precision
matrix:

𝜒2
red (𝚿1,C2) =

1
𝑁bins

tr (𝚿1C2). (3.4)

It can be seen as the mean ratio of 𝜒2 given by the two covari-
ance/precision matrices.

All three metrics are not symmetric, meaning that values for
(𝚿1,C2) and (𝚿2,C1) may be different, so in principle, it might
be informative to consider differences both ways. On the other hand,
the sample covariance is less robust than the RascalC result and
its inversion can be less stable. Moreover, computing each metric
twice makes the results more numerous and less clear. Finally, the
KL divergence (Eq. 3.2) is expected to lose its log-likelihood sense
if computed between the sample precision and model covariance,
since the latter one does not necessarily follow Wishart distribu-
tion. Therefore we decided to limit ourselves to RascalC precision
matrices and sample covariance matrices.

For a better understanding of the metrics, let us consider the eigen-
values of 𝚿1C2 (alternatively, one can use 𝚿1/2

1 C2𝚿
1/2
1 which is

symmetric) and denote them as 𝜆𝑎 . We would like 𝚿1 → C−1
2 thus

all 𝜆𝑎 → 1. The metrics then can be expressed as

𝐷KL (𝚿1,C2) =
1
2

𝑁bins∑︁
𝑎=1

[𝜆𝑎 − 1 − ln𝜆𝑎] ≈
1
4

𝑁bins∑︁
𝑎=1

(𝜆𝑎 − 1)2, (3.5)

𝑅inv (𝚿1,C2) =

√√√
1

𝑁bins

𝑁bins∑︁
𝑎=1

(𝜆𝑎 − 1)2, (3.6)

𝜒2
red (𝚿1,C2) =

1
𝑁bins

𝑁bins∑︁
𝑎=1

𝜆𝑎 . (3.7)

Thus 𝐷KL and 𝑅inv accumulate any deviation of 𝜆𝑎 from 1, although
they cannot indicate the direction of such differences. Note that the
quadratic expression for 𝐷KL is approximate so it is not generally
degenerate with 𝑅inv, although as the covariance matrices approach
each other these two measures become more redundant:

𝐷KL (𝚿1,C2) ≈
𝑁bins

4
𝑅2

inv (𝚿1,C2). (3.8)

𝜒2
red can show which covariance matrix is “larger” on average, while

deviations in opposite directions may cancel each other.
Next, we would like to understand what to expect from these met-

rics. For this purpose, we consider the case when the precision matrix
is predicted perfectly (𝚿0), ideally matching the true underlying co-
variance (C0 = 𝚿−1

0 ), and focus on the noise properties of the sample
covariance matrix C𝑆 obtained via the standard unbiased estimator
for the case when the true mean is not known:

𝐶𝑆,𝑎𝑏 =
1

𝑛𝑆 − 1

𝑛𝑆∑︁
𝑖=1

(𝜉𝑎,𝑖 − 𝜉𝑎) (𝜉𝑏,𝑖 − 𝜉𝑏) (3.9)

where 𝑎, 𝑏 denote bin numbers, 𝑖, 𝑗 index sample numbers, and 𝜉𝑎

is the estimate of the mean:

𝜉𝑎 ≡ 1
𝑛𝑆

𝑛𝑆∑︁
𝑖=1

𝜉𝑎,𝑖 . (3.10)

Since the clustering measurements are described well by a multi-
variate normal distribution, their sample covariance matrix follows
the Wishart statistics. This provides a reference of how the metrics
behave when the perfect precision matrix is compared to a covari-
ance matrix estimated from 𝑛𝑆 samples with 𝑁bins bins (or any other
Gaussian observables). Full derivations are presented in Appendix B,
here we will only provide the results for mean/expectation values and
standard deviations:

⟨𝐷KL (𝚿0,C𝑆)⟩ ≈ 𝑁bins (𝑁bins+1)
4(𝑛𝑆−1) ,

𝜎[𝐷KL (𝚿0,C𝑆)] ≈ 1
2

√︂
𝑁bins [ (𝑁bins+1) (𝑛𝑆+2𝑁bins+2)+2]

(𝑛𝑆−1)3 ;(3.11)

⟨𝑅inv (𝚿0,C𝑆)⟩ ≈
√︃

𝑁bins+1
𝑛𝑆−1 ,

𝜎[𝑅inv (𝚿0,C𝑆)] ≈ 1
𝑛𝑆−1

√︃
(𝑁bins+1) (𝑛𝑆+2𝑁bins+2)+2

𝑁bins (𝑁bins+1) . (3.12)

Naively, one could expect 𝐷KL and 𝑅inv to become arbitrarily small
as 𝚿1 → 𝚿0. However, in reality, they can have large expectation
values, especially as the number of bins increases.
𝜒2

red, however, would behave like the reduced 𝜒2 with 𝑁bins ×
(𝑛𝑆 − 1) degrees of freedom in this case (see Appendix B3):〈

𝜒2
red (𝚿0,C𝑆)

〉
= 1,

𝜎

[
𝜒2

red (𝚿0,C𝑆)
]
=

√︃
2

𝑁bins (𝑛𝑆−1) . (3.13)

It might seem like 𝐷KL and 𝑅inv could be unbiased by multiplying
one of the matrices by a factor similar to the Hartlap factor (Hartlap
et al. 2007), but a lack of bias in 𝜒2

red expectation value suggests that
this is not true.

It is notable that a deviation of 𝜒2
red from 1 would contribute to

𝑅inv – see expressions (3.7) and (3.6); their consequence is also that���𝜒2
red (𝚿1,C2) − 1

��� ≤ 𝑅inv (𝚿1,C2). (3.14)

However, the direction of such deviation will not be clear in 𝑅inv,
and nontrivial expectation value can make it harder to interpret. This
keeps 𝜒2

red useful in many cases.

3.2 Internal convergence assessment

Internal consistency of RascalC covariance matrices in one run
and the convergence of the Monte-Carlo integration procedure are
also important to assess quantitatively. We propose to employ the
above-mentioned methods to accomplish this and provide valuable
diagnostics which do not rely on a reference (e.g. sample) covariance
and thus can be used in any run, including the pure data-based one.
However, we need to note that such a test can only quantify limited
sources of uncertainty or error, leaving aside the factors like adequacy
of the approximations in the formalism, the precision of the input
clustering, and noise in the jackknife covariance estimated from the
data.

The RascalC code provides multiple partial intermediate results
corresponding to practically non-overlapping sets of quadruples,
triples, and pairs of points. These resulting covariance matrices can
be split into two distinct sets of similar size, averaged within them,
and compared using the three metrics. In this case, however, the argu-
ments for the 𝜒2

red weaken – we can expect 𝑅inv to become arbitrarily
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low as the number of Monte-Carlo samples increases, which would
limit the reduced chi-squared via Eq. (3.14), and it is not as inter-
esting to understand which of the halves gives a “smaller” matrix.
Then 𝐷KL also becomes more redundant with 𝑅inv via Eq. (3.8).
Therefore it is reasonable to only show 𝑅inv, which can be seen as
an estimate of root-mean-square relative precision (considered over
all directions in measurement space).

4 APPLICATION TO DESI LRG MOCKS

In this section, we use the described methods on DESI-M2 mocks
to assess the performance and stability of the approach on the actual
dataset. We describe the setup first, then perform intrinsic validation
described in Section 4.3, look at the shot-noise rescaling values
resulting from jackknife calibration used for the final covariance
estimates, validate the RascalC results by comparison with the mock
sample covariance in measurement/observable and parameter space
and finally focus specifically on errorbars on BAO scale.

4.1 Mock catalogs and reconstruction method

We use the 999 effective Zel’dovich (EZ) mocks (Chuang et al. 2015;
Zhao et al. 2021) with cuts corresponding to the DESI LRG sample
(Zhou et al. 2020) (described in more detail in Moon et al. (2023)),
which will be referred to as DESI-M2 Firstgen EZ mocks. Sam-
ple covariance based on these does not provide a perfect reference
because both the number of mock catalogs and the level of details
in each simulation are limited, but the best one can have realistically
since increasing one without making the other worse would require
even more significant computational resources. Comparing these is
also robust to the mismatch between data and mock clustering.

The reconstruction method is also the same as in Moon et al.
(2023): the iterative procedure (Burden et al. 2015) implemented
in the IterativeFFTReconstruction algorithm of the pyrecon
package2 with the RecIso convention. Three iterations are used with
a Gaussian smoothing kernel of width 15ℎ−1Mpc. An approximate
growth rate and the expected bias are assumed.

4.2 Setup

For this study, we have performed separate runs using 2PCF measured
from single LRG DESI-M2 Firstgen EZ mocks catalogs. This has
been repeated 10 times for pre- and post-recon. In the latter case,
individual shifted random catalogs have been used for each mock
following the procedure we described in Section 2.3.

Pre-reconstruction galaxies and randoms were assigned unity
weights, for post-reconstruction FKP weights (Feldman et al. 1994)
were used, given by

𝑤FKP =
1

1 + 𝑛(𝑧)𝐶𝑃0
(4.1)

where 𝑛(𝑧) is the weighted number density (per volume), 𝐶 is the
mean completeness for the sample, and 𝑃0 is a fiducial power-
spectrum amplitude. For LRG, 𝐶 = 0.579 and 𝑃0 = 104 (ℎ−1Mpc)3

(Moon et al. 2023). We note that the weighting schemes are not
exactly the same as for real data, but since weights are included

2 https://github.com/cosmodesi/pyrecon (Arnaud de Mattia, Martin
J. White, Julian E. Bautista, Pedro Rangel Caetano, Sesh Nadathur, Enrique
Paillas, Grant Merz, Davide Bianchi)

explicitly in the covariance estimators we expect RascalC to work
with any fixed choice applied consistently for 2PCF measurements
and Monte-Carlo integration.

For the importance sampling input, 10 random catalogs were used
in pre-recon computations and 20 in post-recon, like for the 𝑅𝑅 (𝑆𝑆)
pair counts computation for the 2PCF estimates. These randoms have
been concatenated before being provided to RascalC executable. We
assign 60 jackknife regions assigned by a𝐾-means subsampler based
on data positions (but not weights) as in DESI-M2 data, compute the
jackknife covariance matrix and use it to calibrate the shot-noise
rescaling.

We note that some validation has been performed in Moon et al.
(2023): RascalC covariance matrix based on 2PCF averaged over all
LRG DESI-M2 Firstgen EZ mocks with no shot-noise rescaling
applied (and using unshifted randoms in the post-reconstruction case)
has been compared to the sample covariance matrix in terms of 𝜒2

of BAO fits, best-fit values and standard deviations of BAO isotropic
scale parameter 𝛼, yielding a good agreement. However, there are
significant limitations to this approach:

• effect of noise in the input clustering is significantly smaller in
2PCF averaged over ≈ 1000 mocks than in the real data, which is
close to a single mock catalog;

• possible differences in other parameters of the BAO model or
more generic aspects of correlation function have not been assessed.

Single-mock runs address the first issue since each of them is a fair
proxy of the data. The use of covariance matrix comparison metrics
from Section 3.1 expands on the second one. We keep the result with
mock-average 2PCF, labeled “Average G” (Gaussian), to assess the
importance of precision of input clustering.

We also consider a shot-noise-rescaled version of the run with
mock-averaged clustering, labeled “Average NG” (non-Gaussian).
We note that calibration of an all-mocks run on a jackknife estimate
can be ambiguous or require a repeated computation of all the pair
counts with jackknives, which was not done before because jack-
knives are not necessary for the sample covariance. Thus we choose
to fit the full covariance matrix to the mock sample covariance by
minimizing the KL divergence between them (analogously to the
jackknife procedure described in Section 2.1 and Eq. (2.7)). Since
only one parameter is varied in the fit, a perfect agreement is still
not guaranteed. On the other hand, this setup is clearly idealized and
would be closer to the closest possible match to the mock covari-
ance the RascalC method can provide. It comprises another useful
reference to compare to the data-like performance on single mocks.

We only consider 45 radial bins, spanning 4 ℎ−1Mpc each from
20 to 200 ℎ−1Mpc. The RascalC covariances are produced with
single angular bins, which is a simplifying assumption since treating
monopole more precisely in Legendre mode with shot-noise rescaling
would require 2 runs per dataset, as explained in Appendix A3. The
2PCF measurements for the mock sample covariance use a more
precise monopole estimate provided by pycorr3. We also project
them into a BAO model parameter space using the derivatives near
the best fit (Fisher forecast). The model uses only a separation range
from 48 to 148 ℎ−1Mpc.

3 https://github.com/cosmodesi/pycorr (Arnaud de Mattia, Lehman
Garrison, Manodeep Sinha, Davide Bianchi, Svyatoslav Trusov, Enrique Pail-
las, Seshadri Nadathur, Craig Warner, James Lasker)
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Mock no. 𝑅inv pre 𝑅inv post

Average G 1.3 × 10−3 3.0 × 10−3

Average NG 1.2 × 10−3 8.1 × 10−3

1 3.7 × 10−3 2.3 × 10−3

2 3.1 × 10−3 2.2 × 10−3

3 3.8 × 10−3 2.1 × 10−3

4 6.3 × 10−3 1.9 × 10−3

5 4.4 × 10−3 1.3 × 10−3

6 4.4 × 10−3 1.9 × 10−3

7 3.7 × 10−3 2.0 × 10−3

8 3.3 × 10−3 1.7 × 10−3

9 3.5 × 10−3 2.5 × 10−3

10 3.5 × 10−3 2.2 × 10−3

Table 1. Intrinsic pre- and post-reconstruction convergence test results in
measurement space. 𝑅inv estimate root-mean-square relative precision, av-
eraged over all different directions in the measurement space. The numbers
provided here are for the full covariance, but the consistency levels of the
jackknife covariance prediction from RascalC are similar. They demonstrate
sub-percent stability in RascalC integrals and ensure that random noise in
importance sampling is not a significant source of error, as these numbers are
smaller than deviations observed in further comparisons (Tables 3–6).

4.3 Internal convergence checks

We perform an intrinsic diagnostic procedure (as described in Sec-
tion 3.2) to ensure that RascalC integrals converged well in each
run and exclude importance sampling random noise from significant
error factors. We found that pre-recon mock 6 and post-recon mock
5 showed significantly worse consistency than all the rest. Therefore
we have run them twice longer.

After that, all the RascalC results have reached a high and quite
uniform level of internal consistency, as presented in Table 1. We
only show 𝑅inv, which are easier to interpret as the root-mean-square
relative deviation between different partial estimates of the covari-
ance matrix (considered over all directions in measurement space).
𝜒2

red are limited via Eq. (3.14), and 𝐷KL values are quite close to
estimates from Eq. (3.8). Due to high consistency in measurement
space, we have not performed projection to parameter space here.
The splitting of Monte-Carlo subsamples has been done in a few dif-
ferent ways and the non-symmetric metric has been computed both
ways (Ψ1𝐶2 and Ψ2𝐶1), but all the values were very close4 and thus
have been averaged to one number for each metric. These low (sub-
percent) internal deviations give us confidence that the Monte-Carlo
integration procedure in RascalC has converged well and it will not
be a significant error source in further comparison. After ascertain-
ing this, we have not touched the covariance matrix products to be
fair – with real survey and no mocks, other validation procedures
described in this paper are not available.

4.4 Shot-noise rescaling values

Next, we look into the shot-noise rescaling values because the fi-
nal covariance estimates (with approximate non-Gaussianity) are
based on them. The shot-noise rescaling values for single mocks
are obtained by fitting the separate RascalC jackknife covariance

4 In the case of disjoint running (Sec. 2.2) there can be a meaningful differ-
ence between splittings within or between different random sub-catalogs, due
to fluctuations in pair counts between these. But here all the randoms have
been concatenated together.

Mock no. Pre-recon 𝛼SN Post-recon 𝛼SN

Average NG 1.096 1.038

1 1.096 1.062
2 1.074 1.043
3 1.040 1.034
4 1.077 1.051
5 1.079 1.033
6 1.089 1.030
7 1.080 1.041
8 1.102 1.058
9 1.116 1.033
10 1.080 1.041

1-10 mean±std 1.083 ± 0.020 1.043 ± 0.011

Table 2. Shot-noise rescaling values for the 10 mocks, on which the final
covariance predictions are based, pre- and post-reconstruction. The “Average
NG” value is fit to mock sample covariance, and the 1-10 are fit to jackknife
covariance estimates from single mocks, and the resulting numbers are con-
sistent. The standard deviation for single mocks is ≈ 2% before and ≈ 1%
after reconstruction, which translate into a similar effect on relative precision
of the final covariance matrices due to rescaling.

prediction to the jackknife covariance estimate for each mock. For
the mock-average clustering, the full RascalC covariance was fit to
the mock sample covariance instead, as discussed in Section 4.2.

The shot-noise rescaling values are gathered in Table 2. We note
that all of them are greater than one (which corresponds to purely
Gaussian covariance), in accordance with our expectation that the
non-Gaussianity expands the errorbars. Moreover, the mean shot-
noise rescaling of the 10 single mocks is ≈ 4 standard deviations
larger than 1 both before and after reconstruction. The values ob-
tained from jackknife and mock covariance are consistent. After re-
construction, the shot-noise rescaling decreases for every mock. The
pre-recon mean is larger than the post-recon one by ≈ 1.8 standard
deviations. The scatter after reconstruction is also smaller than be-
fore. These deviations can be caused by the random fluctuations in the
input 2PCF estimates, noise in jackknife covariances, and differences
in shifted randoms (for post-recon only).

The key conclusion is that we have obtained the shot-noise rescal-
ing parameter for a data-like setup (single mock runs) with a percent-
level precision. This maps into a similar or smaller relative deviation
in the rescaled covariance matrices since the 2-point term has the
strongest scaling, ∝ 𝛼2

SN, and the 4-point term remains the same
(Eq. (A3)).

4.5 Measurement-space validation

Now we proceed to comparison with the sample covariance matrices
as reference, keeping in mind they are not devoid of noise so not
all the comparison measures can be ideal. We consider the higher-
dimensional space of observables first, where the effects of sample
variance are quite significant. It consists of 45 bins of 2PCF, spanning
20–200 ℎ−1Mpc linearly with a bin width of 4 ℎ−1Mpc.

Sample covariances for all original bins have been estimated using
𝑛𝑆 = 999 2PCF measurements from all the DESI-M2 Firstgen EZ
mocks and the standard unbiased estimator (Eq. (3.9)). The proce-
dures have been similar for pre- and post-recon.

The comparison measures between the RascalC precision matri-
ces (estimated via Eq. 2.8) and the sample covariance matrices have
been computed and are presented in Table 3 for pre-reconstruction
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Mock no. 𝐷KL (𝚿𝑅 , C𝑆 ) 𝑅inv (𝚿𝑅 , C𝑆 ) 𝜒2
red (𝚿𝑅 , C𝑆 )

Average G 0.793 0.2922 1.1422
Average NG 0.537 0.2136 0.9906

1 0.721 0.2252 0.9600
2 0.602 0.2234 0.9992
3 0.571 0.2329 1.0477
4 0.548 0.2191 0.9991
5 0.755 0.2302 0.9830
6 0.727 0.2315 0.9723
7 0.695 0.2254 0.9675
8 0.530 0.2085 0.9695
9 0.610 0.2140 0.9291
10 0.518 0.2106 0.9895

1-10 0.628 ± 0.089 0.2221 ± 0.0087 0.982 ± 0.031

Perfect Ψ 0.519 ± 0.024 0.2147 ± 0.0049 1.0000 ± 0.0067

Table 3. Results of general measurement-space comparison between the
RascalC results (𝑅) and mock sample covariance (𝑆) before reconstruction.
The last row provides the perfect-case reference – expectation values and
standard deviations for the three metrics, if the RascalC precision matrix
truly described the distribution of the mock correlation functions.

Mock no. 𝐷KL (𝚿𝑅 , C𝑆 ) 𝑅inv (𝚿𝑅 , C𝑆 ) 𝜒2
red (𝚿𝑅 , C𝑆 )

Average G 0.62 0.247 1.0653
Average NG 0.57 0.225 1.0028

1 0.94 0.256 0.9463
2 0.63 0.229 0.9725
3 0.72 0.266 1.0031
4 0.61 0.222 0.9657
5 0.62 0.229 0.9924
6 0.65 0.231 0.9817
7 0.62 0.226 0.9706
8 0.61 0.222 0.9631
9 0.77 0.281 1.0214
10 0.88 0.314 1.0162

1-10 0.70 ± 0.12 0.247 ± 0.031 0.983 ± 0.024

Perfect Ψ 0.519 ± 0.024 0.2147 ± 0.0049 1.0000 ± 0.0067

Table 4. Results of general measurement-space comparison between Ras-
calC results (𝑅) and mock sample covariance (𝑆) after reconstruction. The
last row provides the perfect-case reference – expectation values and stan-
dard deviations for the three metrics, if the RascalC precision matrix truly
described the distribution of the mock correlation functions.

and Table 4 for post-reconstruction. First of all, there are fluctua-
tions in the comparison measures involving the single-mock results,
stemming from the input 2PCF estimates, jackknife covariances,
and differences in shifted randoms (for post-recon only) – the same
causes as for scatter in 𝛼SN discussed in Section 4.4. The individual
pre-reconstruction covariances appear to agree with the mock sam-
ple covariance better than the post-reconstruction. The covariance
with mock-averaged clustering and no shot-noise rescaling, on the
contrary, gives a closer agreement after reconstruction. Before recon-
struction, any individual shot-noise rescaled covariance shows better
agreement than the Gaussian mock-averaged clustering run; after re-
construction, it is very often worse. With mock-averaged clustering,
the shot-noise rescaling is clearly beneficial for pre-reconstruction
and less so for post-reconstruction. This may be a hint that the shot-

noise rescaling might not be doing as well after reconstruction as
before.

Compared to the perfect case, RascalC typically performs worse
(higher 𝐷KL and 𝑅inv, reduced chi-squared further from one), which
we expect since the code (and the mocks) involve (different) approx-
imations. We note that on average the comparison metrics are within
a couple of standard deviations of the expectation value for the true
underlying covariance matrix. On the other hand, it is the larger stan-
dard deviation in RascalC results that is allowing this conclusion,
and reducing the noise factors causing it (input 2PCF fluctuations,
single jackknife covariance) may allow us to reach a closer agreement
in the future works.

4.6 Parameter-space validation

In this section, we project the covariance into a lower-dimensional
and more physically meaningful space of BAO model parameters.
Lower dimensionality makes the reference values for comparison
metrics clearer and the results become easier to interpret. In addition,
the correlation function modes that are not physically possible or do
not affect the parameter constraints are removed from consideration,
which leaves only real and important “directions” for consideration.

We choose a commonly used BAO model5 (Ross et al. 2017; Ata
et al. 2018) with a scalable template 𝜉0 and three nuisance polynomial
terms:

𝜉mod (𝑟) = 𝐵𝜉0 (𝛼BAO𝑟) + 𝐴0 + 𝐴1/𝑟 + 𝐴2/𝑟2, (4.2)

comprising 𝑁pars = 5 parameters: 𝐵, 𝐴0, 𝐴1, 𝐴2, 𝛼BAO.
Instead of performing full fits, we use Fisher matrix formalism.

This can be seen as less precise than full fits on every mock or
MCMC using a 2PCF likelihood. On the other hand, the parameter
distribution is not Gaussian when the model is not a linear function
of parameters, which makes linear approximation within Fisher ma-
trix formalism more suitable for the comparison methods we have
discussed.

We estimate the parameter covariance matrix as the inverse of the
Fisher matrix:

Cpar
𝑆

=
𝑛𝑆 − 1

𝑛𝑆 − 𝑁 ′
bins + 𝑁pars − 1

[
M

(
C′meas

𝑆

)−1M𝑇
]−1

(4.3)

where the measurement-space mock sample covariance matrix
𝐶′meas

𝑆
is cut to the 𝑁 ′

bins = 25 bins spanning separations from 48 to
148 ℎ−1Mpc used in BAO fits, and M is the matrix of derivatives of
binned 2PCF vector 𝝃 with respect to parameters 𝒑:

𝑀𝑐𝑎 ≡ 𝜕𝜉𝑎

𝜕𝑝𝑐
. (4.4)

The derivatives have been taken at the best-fit parameters for the
mock-averaged clustering measurements (separate before and after
reconstruction).

Note that Eq. (4.3) is scaled by a correction factor according to
Eq. (B6) in Paillas et al. (2023) to account for biases caused by both
matrix inversions. This provides an unbiased (although not noiseless)
estimate of the true underlying covariance in parameter space as
validated in Appendix B4.

A similar but simpler procedure was performed with RascalC
products:

𝚿par
𝑅,𝑐𝑑

≈ M
(
C′meas

𝑅

)−1M𝑇 , (4.5)

5 https://github.com/cosmodesi/BAOfit_xs/ (Ashley J. Ross, Juan
Mena Fernandez)
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Mock no. 𝐷KL (𝚿𝑅 , C𝑆 ) 𝑅inv (𝚿𝑅 , C𝑆 ) 𝜒2
red (𝚿𝑅 , C𝑆 )

Average G 0.026 0.138 0.992
Average NG 0.027 0.135 0.925

1 0.104 0.236 0.855
2 0.065 0.193 0.911
3 0.022 0.122 0.941
4 0.013 0.099 0.962
5 0.127 0.250 0.883
6 0.091 0.232 0.866
7 0.095 0.229 0.861
8 0.025 0.128 0.918
9 0.042 0.165 0.876
10 0.016 0.107 0.944

1-10 0.060 ± 0.042 0.176 ± 0.059 0.902 ± 0.039

Perfect Ψ 0.0075 ± 0.0028 0.078 ± 0.014 1.000 ± 0.020

Table 5. Results of BAO parameter space (𝐵, 𝐴0, 𝐴1, 𝐴2, 𝛼BAO) compari-
son between RascalC results (𝑅) and mock sample covariance (𝑆) before
reconstruction. The last row provides the perfect-case reference – expectation
values and standard deviations for the three metrics, if the RascalC precision
matrix truly described the distribution of the mock correlation functions.

Mock no. 𝐷KL (𝚿𝑅 , C𝑆 ) 𝑅inv (𝚿𝑅 , C𝑆 ) 𝜒2
red (𝚿𝑅 , C𝑆 )

Average G 0.020 0.134 1.087
Average NG 0.014 0.113 1.049

1 0.122 0.252 0.907
2 0.036 0.171 1.002
3 0.041 0.202 1.082
4 0.015 0.106 0.981
5 0.030 0.149 0.999
6 0.029 0.144 0.974
7 0.021 0.125 0.981
8 0.014 0.105 0.977
9 0.095 0.329 1.154
10 0.096 0.327 1.155

1-10 0.050 ± 0.039 0.191 ± 0.085 1.021 ± 0.082

Perfect Ψ 0.0075 ± 0.0028 0.078 ± 0.014 1.000 ± 0.020

Table 6. Results of BAO parameter space (𝐵, 𝐴0, 𝐴1, 𝐴2, 𝛼BAO) compar-
ison between RascalC results (𝑅) and mock sample covariance (𝑆) after
reconstruction. The last row provides the perfect-case reference – expectation
values and standard deviations for the three metrics, if the RascalC precision
matrix truly described the distribution of the mock correlation functions.

where C′meas
𝑅 was also cut to the 25 bins spanning separations from

48 to 148 ℎ−1Mpc used in BAO fits. There is a bias correction matrix
D for RascalC (Eq. (2.8)), but for the results presented here absolute
values of its eigenvalues are ≲ 10−3 thus we have decided to neglect
this correction factor.

The comparison measures have been computed between the pro-
jected matrices and are presented in Table 5 for pre-recon and Table 6
for post-recon. Generally, lower expectation values of 𝐷KL and 𝑅inv
for perfect precision make these numbers for RascalC easier to inter-
pret. There is a less apparent difference between pre- and post-recon.
A notable exception is that all 𝜒2

red for rescaled (with mock-averaged
and single-mock clusterings) pre-recon are significantly less than 1
(meaning RascalC “overestimates” the covariance then). In other
cases, mimicking non-Gaussianity gives a slight improvement for

𝜎 (𝛼BAO ) Pre-recon Post-recon

Sample cov 0.01590 ± 0.00036 0.01459 ± 0.00033

Average G 0.01522 0.01360
Average NG 0.01596 0.01392

1 0.01616 0.01424
2 0.01598 0.01395
3 0.01583 0.01410
4 0.01609 0.01405
5 0.01595 0.01385
6 0.01613 0.01396
7 0.01594 0.01389
8 0.01621 0.01400
9 0.01652 0.01402
10 0.01618 0.01405

1-10 mean±std 0.01610 ± 0.00019 0.01401 ± 0.00011

Table 7. Pre- and post-reconstruction errorbars on 𝛼BAO from Fisher forecast.
The mean of 10 single pre-reconstruction catalogs agrees with the sample
covariance within a standard deviation. For post-reconstruction, the difference
is within 2 standard deviations.

mock-averaged clustering, but higher noise in 2PCF and jackknife
covariance in single-mock estimates often drives the agreement with
mock sample covariance worse than in the mock-averaged Gaussian
estimate.

Overall, RascalC single-mock results are within < 2𝜎 (domi-
nated by the standard deviation of the perfect reference values, ex-
cept the reduced chi-squared before reconstruction, which deviates
by ≈ 2.2 std (combined). However, the scatter in these numbers is
quite significant (e.g. a few percent in root-mean-square relative error
𝑅inv), and we should try to reduce it in future work.

4.7 Errorbars on BAO scale parameter

Since the scale parameter 𝛼BAO is the important output of the current
BAO analysis (Eq. 4.2), we have decided to extract its errorbar,
marginalized over the other four parameters. This is quite trivial
after the previous subsection – we only needed to invert the RascalC
parameter-space precisions

Cpar
𝑅

=

(
𝚿par

𝑅

)−1
(4.6)

neglecting the inversion bias, since it is expected to be even smaller
than before with the smaller size of the matrices. Then we extract the
marginalized errorbars from all the parameter covariances as

𝜎(𝛼BAO) =
√︃
𝐶

par
𝛼𝛼 . (4.7)

For the sample covariance, we expect the variance of 𝐶𝑆,𝛼𝛼 to
nearly follow Eq. B2:

Var
[
𝐶

par
𝑆,𝛼𝛼

]
≈ 2
𝑛𝑆 − 1

(
𝐶

par
𝑆,𝛼𝛼

)2
(4.8)

and therefore the standard deviation of 𝜎(𝛼BAO) of

𝜎[𝜎(𝛼BAO)] ≈
𝜎(𝛼BAO)√︁
2(𝑛𝑆 − 1)

, (4.9)

resulting in relative precision of 2.2%. This has been confirmed in
Appendix B4.

The resulting errorbar (Fisher) forecasts are provided in Table 7
and also presented as a scatter plot in Figure 1. We can notice that
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Figure 1. Pre- and post-reconstruction errorbars on 𝛼BAO from Fisher fore-
cast plotted against each other. Compared to the mock-averaged Gaussian
run (Average G), the mock-averaged rescaled run (Average NG) and single-
mock predictions with rescaling are closer to the sample covariance. The
horizontal (pre-reconstruction) agreement is closer than the vertical (post-
reconstruction) one, but even the latter falls within ≈ 2𝜎. Note that the range
of the axes is quite narrow, comprising only ≈ 9% relative difference in er-
rorbar before reconstruction and ≈ 7% after.

in any case the post-recon precision is expected to be higher than
pre-recon. In both pre-recon and post-recon, 𝜎(𝛼BAO) in the mock-
averaged clustering run without shot-noise rescaling are noticeably
smaller than predicted from the sample covariance and are brought
closer in the rescaled results. Mock-averaged clustering with fit shot
noise and single mock runs give very similar numbers. The key
conclusion is that single-mock runs are in good agreement with
the sample covariance on 𝜎(𝛼BAO), with a remarkably close match
before reconstruction (just fractions of standard deviation) and a
difference of ≈ 2 standard deviation after reconstruction. This gives
assurance that data-based RascalC covariances are on par with mock
sample one for isotropic BAO fits.

5 SUMMARY AND OUTLOOK

This work continues a series of papers (O’Connell et al. 2016;
O’Connell & Eisenstein 2019; Philcox et al. 2020; Philcox & Eisen-
stein 2019) developing a semi-empirical approach for estimating
covariances of 2PCFs, combining analytical methods with the usage
of measured clustering and calibration on jackknives. The former
brings smoothness and reliability, and the latter allows for flexibility
of the results while being independent of mock galaxy catalogs. We
should note that the method is expected to be applicable at interme-
diate scales – as analytical methods tend to fail on the smallest scales,
while on the largest scales, the number of configurations increases
making the computation longer, and the signal to noise in correlation
function measurement decreases. The latter issue could be alleviated
by a smooth transition to a theoretically modeled 2PCF, which we
leave for future work.

We have discussed the implications of split random-random counts
computation and made a slight modification to the formalism to
cover the reconstructed 2PCF estimates. Then, we reconsidered the
methods for covariance matrix comparison, paying great attention to
their meaning, interpretation, and noise stemming from mock sample
variance.

Finally, we have applied the selected approaches to the valida-
tion of RascalC on single DESI-M2 Firstgen EZ mock catalogs
(using their individual clustering measurements and shifted random
catalogs after reconstruction), each representing a reasonable proxy
for DESI-M2 data, by comparison with full mock sample covari-
ance. We find a close agreement (maximum deviation ≈ 2.2𝜎) with
a perfect case, although much of this deviation is due to scatter in
RascalC results. The preceding discussion about the interpretations
of the metrics, focusing on a smaller number of observables and
even fewer parameters allowed us to obtain a clearer quantitative as-
sessment of the precision and accuracy of RascalC results than in
previous works. One should keep in mind the mocks are approximate
and this can partially account for the imperfection of the match with
the reference statistics.

Focusing on the errorbar of the BAO scale, we found a very close,
percent-level agreement with the sample covariance from mocks. It
is on par with the accuracy that a set of ≈ 1000 simulations can
provide. The number of available mocks thus limits the precision of
the validation at the current level.

The comparison suggests that noise in the input 2PCF might be a
significant limiting factor for the accuracy of our covariance matrices
in higher-dimensional spaces. Smoothing this input or complement-
ing it with a theoretical best-fit model could help to mitigate this
issue without introducing many additional assumptions. This marks
an important topic for follow-up studies.

In the full measurement space before reconstruction, using a shot-
noise rescaling is particularly clearly beneficial compared to the pure
Gaussian estimate even with less noisy (mock sample average) input
clustering. The discrepancies and fluctuations are likely to be im-
pacted by the precision of correlation function estimates from data,
which will improve with its size in the future. Further validations
with larger mocks, corresponding to a year and/or full five years of
DESI data, will follow.

During the comparison, we have seen indications that the recon-
structed extension may not be working better than with the pre-
reconstructed data, contrary to the expectation. This might be related
to the subtleties of small-scale behavior of reconstructed points and
will be investigated in further detail in future work.

Another perspective direction is the development of alterna-
tives to shot-noise rescaling within the more generic semi-analytic
configuration-space formalism. Usage of fully empirical higher-point
functions is likely to be not viable, due to a significantly higher
number of bins and accordingly lower signal-to-noise. Precise theo-
retical modeling of non-Gaussian correlation functions is also very
challenging. Instead, we might include a basic prescription for non-
Gaussian covariance contribution inferred from a set of detailed sim-
ulations, or use approximate expressions for higher-point functions
like 𝜁 (r1, r2) = 𝑄

[
𝜉 (𝑟1)𝜉 (𝑟2)+𝜉 (𝑟1)𝜉 ( |r1−r2 |)+𝜉 (𝑟2)𝜉 ( |r1−r2 |)

]
motivated by hierarchical models (Peebles & Groth 1975), and pos-
sibly a similar structure for the 4PCF. This might provide better
accuracy than rescaling the Gaussian terms while keeping the num-
ber of parameters low and thus still allowing us to fit them to a
reference (e.g. jackknife) covariance. On the other hand, the afore-
mentioned 3PCF prescription is known to be far from exact with
constant 𝑄 (Takada & Jain 2003), and the computations may suffer
from slower convergence due to additional large values of small-scale
2PCF compared to Gaussian parts.

The key advantage of the approaches considered in this paper is
that a covariance can be based on the data itself and does not re-
quire matching mock catalogs each time. This alleviates the concern
about the accuracy of such approximate simulations, not completely
removing it since we still need some as references for validation
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of the prescriptions. Perhaps more importantly, covariance compu-
tation becomes much more flexible. Relevant cases are when the
clustering signal changes after more data are gathered, or when al-
ternative assumptions (for instance, the base cosmology) are tested.
For such updates, calibration, generation, and processing of a suite of
mocks large enough for good sample covariance consumes great re-
sources. The computation of one proxy-data covariance in this paper
took about 100 core-hours for pre-recon and about 300 core-hours for
post-recon6. This could be optimized further by noting that the intrin-
sic consistency in each run was much higher than the resemblance
of reference sample covariance – time of computation helps with
the former but the latter is fundamentally limited by the accuracy
of approximations and precision of the input correlation function.
Moreover, the number of mocks limits the level of accuracy of vali-
dation. Fast covariance matrix computation without mocks can also
allow shifting the balance from quantity to quality of the simulations,
freeing resources for more detailed ones.
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6 In one case out of ten (both pre- and post-recon), a repeated computation
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APPENDIX A: COVARIANCE ESTIMATORS

A1 Full covariance in radial and angular bins

The expression for full covariance in radial and angular bins (cov
[(
𝜉𝑋𝑌

)𝑐
𝑎
,

(
𝜉𝑍𝑊

)𝑑
𝑏

]
) is

(
�̃�𝑋𝑌,𝑍𝑊

)𝑐𝑑
𝑎𝑏

(𝜶SN) =

(
4𝐶𝑋𝑌,𝑍𝑊

)𝑐𝑑
𝑎𝑏

+
𝛼𝑋SN

4

[
𝛿𝑋𝑊

(
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(
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]
(A1)

+
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4

[
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(
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𝑅𝑋𝑅𝑌
)𝑐
𝑎

(
𝑅𝑌 𝑅𝑍

)𝑑
𝑏

∑︁
𝑖≠ 𝑗≠𝑘

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑛

𝑍
𝑘
𝑤𝑋
𝑖

(
𝑤𝑌𝑗

)2
𝑤𝑍
𝑘
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )Θ𝑏 (𝑟 𝑗𝑘)Θ𝑑 (𝜇 𝑗𝑘)

[
𝜁𝑋𝑌𝑍
𝑖 𝑗𝑘

+ 𝜉𝑋𝑍
𝑖𝑘

]
(
2𝐶𝑋𝑌

)𝑐𝑑
𝑎𝑏

=
2𝛿𝑎𝑏𝛿𝑐𝑑(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

(
𝑅𝑋𝑅𝑌

)𝑑
𝑏

∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗

(
𝑤𝑋
𝑖 𝑤

𝑌
𝑗

)2
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )

[
1 + 𝜉𝑋𝑌𝑖 𝑗

]
where 𝛿𝑋𝑌 , 𝛿𝑎𝑏 and 𝛿𝑐𝑑 are Kronecker deltas. Similarly to Philcox et al. (2020), we have written 2𝜉𝑖𝑘𝜉 𝑗𝑙 instead of 𝜉𝑖𝑘𝜉 𝑗𝑙 + 𝜉𝑖𝑙𝜉 𝑗𝑘 , allowing
to optimize the computation using the symmetries of the term, but requiring to compute a few more distinct terms in multi-tracer setup.
Computing full sums (beyond the pair one) is not feasible, so are estimated by the Monte-Carlo method instead, by randomly sampling a subset
of 2/3/4-point configurations from the random catalog (Philcox et al. 2020).

The most practical form for single tracer 𝑋 is simpler:(
𝐶𝑋𝑋,𝑋𝑋

)𝑐𝑑
𝑎𝑏

(
𝛼𝑋SN

)
=

(
4𝐶𝑋𝑋,𝑋𝑋

)𝑐𝑑
𝑎𝑏

+ 𝛼𝑋SN

(
3𝐶𝑋,𝑋𝑋

)𝑐𝑑
𝑎𝑏

+
(
𝛼𝑋SN

)2 (2𝐶𝑋𝑋
)𝑐𝑑
𝑎𝑏
. (A3)

A2 Jackknife covariance in radial and angular bins

The jackknife pair counts are (
𝑁𝑋𝑁𝑌

𝐴

)𝑐
𝑎

=
∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑤

𝑋
𝑖 𝑤

𝑌
𝑗 Θ

𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )𝛿𝑋𝑖 𝛿
𝑌
𝑗 𝑞

𝐴
𝑖 𝑗 (A4)(

𝑅𝑋𝑅𝑌
𝐴

)𝑐
𝑎

=
∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑤

𝑋
𝑖 𝑤

𝑌
𝑗 Θ

𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )𝑞𝐴𝑖 𝑗 ,

where 𝑞𝐴
𝑖 𝑗

is the jackknife weighting factor for the pair of particles, and for any pair
∑

𝐴 𝑞
𝐴
𝑖 𝑗

= 1 in the unrestricted jackknife formalism.

The binned correlation function estimate
(
𝜉𝑋𝑌
𝐴

)𝑐
𝑎

is their ratio. It is sensible to weight the regions by the 𝑅𝑅 pair counts, which roughly
correspond to the volume fraction of each region:

(
𝑤𝑋𝑌
𝐴

)𝑐
𝑎
=

(
𝑅𝑋𝑅𝑌

𝐴

)𝑐
𝑎(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

, (A5)

and then the weighted average of the jackknife 2PCF is identical to full-survey estimate (Eq. (2.2)).
The jackknife covariance estimate is(

𝐶
𝑋𝑌,𝑍𝑊
𝐽

)𝑐𝑑
𝑎𝑏

=
1

1 −∑
𝐵

(
𝑤𝑋𝑌
𝐵

)𝑐
𝑎

(
𝑤𝑍𝑊
𝐵

)𝑑
𝑏

∑︁
𝐴

{(
𝑤𝑋𝑌
𝐴

)𝑐
𝑎

(
𝑤𝑍𝑊
𝐴

)𝑑
𝑏

[(
𝜉𝑋𝑌
𝐴

)𝑐
𝑎
−
(
𝜉𝑋𝑌

)𝑐
𝑎

] [(
𝜉𝑍𝑊
𝐴

)𝑑
𝑏
−
(
𝜉𝑍𝑊

)𝑑
𝑏

]}
. (A6)

By substituting Eq. (2.2), expanding using Eqs. (A4) & (2.3) and simplifying through Eq. (2.6) one can arrive to(
�̃�
𝑋𝑌,𝑍𝑊
𝐽

)𝑐𝑑
𝑎𝑏

=

(
4𝐶𝑋𝑌,𝑍𝑊

𝐽

)𝑐𝑑
𝑎𝑏

+ 𝛼
𝑋

4

[
𝛿𝑋𝑊

(
3𝐶𝑋,𝑌𝑍

𝐽

)𝑐𝑑
𝑎𝑏

+ 𝛿𝑋𝑍
(
3𝐶𝑋,𝑌𝑊

𝐽

)𝑐𝑑
𝑎𝑏

]
+ 𝛼

𝑌

4

[
𝛿𝑌𝑊

(
3𝐶𝑌,𝑋𝑍

𝐽

)𝑐𝑑
𝑎𝑏

+ 𝛿𝑌𝑍
(
3𝐶𝑌,𝑋𝑊

𝐽

)𝑐𝑑
𝑎𝑏

]
(A7)

+𝛼
𝑋𝛼𝑌

2

[
𝛿𝑋𝑊𝛿𝑌𝑍 + 𝛿𝑋𝑍 𝛿𝑌𝑊

] (
2𝐶𝑋𝑌

𝐽

)𝑐𝑑
𝑎𝑏
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with(
4𝐶𝑋𝑌,𝑍𝑊

𝐽

)𝑐𝑑
𝑎𝑏

=
1(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

(
𝑅𝑍𝑅𝑊

)𝑑
𝑏

[
1 −∑

𝐵

(
𝑤𝑋𝑌
𝐵

)𝑐
𝑎

(
𝑤𝑍𝑊
𝐵

)𝑑
𝑏

] ∑︁
𝑖≠ 𝑗≠𝑘≠𝑙

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑛

𝑍
𝑘
𝑛𝑊
𝑙
𝑤𝑋
𝑖 𝑤

𝑌
𝑗 𝑤

𝑍
𝑘
𝑤𝑊
𝑙
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 ) (A8)

×Θ𝑏 (𝑟𝑘𝑙)Θ𝑑 (𝜇𝑘𝑙)
[
𝜂
(c) ,𝑋𝑌𝑊𝑍

𝑖 𝑗𝑘𝑙
+ 𝜉𝑋𝑌𝑖 𝑗 𝜉

𝑍𝑊
𝑘𝑙

+ 2𝜉𝑋𝑍
𝑖𝑘

𝜉𝑌𝑊
𝑗𝑙

] (
𝜔
𝑋𝑌,𝑍𝑊

𝑖 𝑗𝑘𝑙

)𝑐𝑑
𝑎𝑏(

3𝐶𝑌,𝑋𝑍
𝐽

)𝑐𝑑
𝑎𝑏

=
4(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

(
𝑅𝑌 𝑅𝑍

)𝑑
𝑏

[
1 −∑

𝐵

(
𝑤𝑋𝑌
𝐵

)𝑐
𝑎

(
𝑤𝑌𝑍
𝐵

)𝑑
𝑏

] ∑︁
𝑖≠ 𝑗≠𝑘

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑛

𝑍
𝑘
𝑤𝑋
𝑖

(
𝑤𝑌𝑗

)2
𝑤𝑍
𝑘
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )Θ𝑏 (𝑟 𝑗𝑘)Θ𝑑 (𝜇 𝑗𝑘)

×
[
𝜁𝑋𝑌𝑍
𝑖 𝑗𝑘

+ 𝜉𝑋𝑍
𝑖𝑘

] (
𝜔
𝑋𝑌,𝑌𝑍

𝑖 𝑗 𝑗𝑘

)𝑐𝑑
𝑎𝑏(

2𝐶𝑋𝑌
𝐽

)𝑐𝑑
𝑎𝑏

=
2𝛿𝑎𝑏𝛿𝑐𝑑(

𝑅𝑋𝑅𝑌
)𝑐
𝑎

(
𝑅𝑋𝑅𝑌

)𝑑
𝑏

[
1 −∑

𝐵

(
𝑤𝑋𝑌
𝐵

)𝑐
𝑎

(
𝑤𝑋𝑌
𝐵

)𝑑
𝑏

] ∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗

(
𝑤𝑋
𝑖 𝑤

𝑌
𝑗

)2
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑐 (𝜇𝑖 𝑗 )

[
1 + 𝜉𝑋𝑌𝑖 𝑗

] (
𝜔
𝑋𝑌,𝑋𝑌
𝑖 𝑗𝑖 𝑗

)𝑐𝑑
𝑎𝑏
,

where
(
𝜔𝑖 𝑗𝑘𝑙

)𝑐𝑑
𝑎𝑏

is an additional weight tensor:(
𝜔
𝑋𝑌,𝑍𝑊

𝑖 𝑗𝑘𝑙

)𝑐𝑑
𝑎𝑏

=
∑︁
𝐴

{[
𝑞𝐴𝑖 𝑗 −

(
𝑤𝑋𝑌
𝐴

)𝑐
𝑎

] [
𝑞𝐴
𝑘𝑙

−
(
𝑤𝑍𝑊
𝐴

)𝑑
𝑏

]}
. (A9)

In practice, shot-noise rescaling for each tracer has been obtained by fitting the prediction for jackknife covariance of its auto-correlation
function (

𝐶
𝑋𝑋,𝑋𝑋
𝐽

)𝑐𝑑
𝑎𝑏

=

(
4𝐶𝑋𝑋,𝑋𝑋

𝐽

)𝑐𝑑
𝑎𝑏

+ 𝛼𝑋
(
3𝐶𝑋,𝑋𝑋

𝐽

)𝑐𝑑
𝑎𝑏

+
(
𝛼𝑋

)2 (2𝐶𝑋𝑋
𝐽

)𝑐𝑑
𝑎𝑏

(A10)

to the data-based jackknife estimate (computed via Eq. (A6)). The resulting 𝛼𝑋 value(s) should be plugged into Eq. (A1) to obtain the full
survey covariance.

A3 Covariance of Legendre multipoles in radial bins

Philcox & Eisenstein (2019) further derive direct covariance estimators for Legendre moments of the anisotropic 2PCF, which is related to
𝜉 (𝑟, 𝜇) through

𝜉𝑋𝑌 (𝑟, 𝜇) =

∞∑︁
ℓ=0

(
𝜉𝑋𝑌

)ℓ
(𝑟)𝐿ℓ (𝜇), (A11)

(
𝜉𝑋𝑌

)ℓ
(𝑟) =

2ℓ + 1
2

∫ 1

−1
𝑑𝜇 𝜉𝑋𝑌 (𝑟, 𝜇)𝐿ℓ (𝜇) =

(−1)ℓ + 1
2

(2ℓ + 1)
∫ 1

0
𝑑𝜇 𝜉𝑋𝑌 (𝑟, 𝜇)𝐿ℓ (𝜇), (A12)

𝐿ℓ (𝜇) being the Legendre polynomial of order ℓ, and the second equality in last line assumes symmetry 𝜉𝑋𝑌 (𝑟, 𝜇) = 𝜉𝑋𝑌 (𝑟,−𝜇) (necessarily
true for auto-correlation, 𝑋 = 𝑌 , and violation in cross-correlations is debatable).

While one could estimate the angularly binned 2PCF first and then transform it to Legendre moments, a direct computation of the latter
allows to evade inaccuracies caused by the replacement of integral by sum over bins, and removes the need for very fine splitting in 𝜇, which
would make the covariance integrals slower to converge.

Averaging Eq. (A12) between the boundaries of radial bin 𝑎, we obtain(
𝜉𝑋𝑌

)ℓ
𝑎
= (2ℓ + 1)

∫ 1

0
𝑑𝜇

(
𝜉𝑋𝑌

)
𝑎
(𝜇)𝐿ℓ (𝜇). (A13)

Here 𝜉𝑋𝑌𝑎 (𝜇), binned radially but not angularly, is given by the reduced Landy-Szalay estimator(
𝜉𝑋𝑌

)
𝑎
(𝜇) =

(
𝑁𝑋𝑁𝑌

)
𝑎
(𝜇)(

𝑅𝑋𝑅𝑌
)
𝑎 (𝜇)

(A14)

similarly to Eqs. (2.1) & (2.2). The continuous counts 𝑃𝑃𝑎 (𝜇) (where each 𝑃 can stand for 𝐷𝑋 , 𝐷𝑌 , 𝑅𝑋 or 𝑅𝑌 ) are the limit of the ratio of
conventional pair counts in infinitesimally small angular bins 𝑐 to its width 𝛿𝜇, 𝑃𝑃𝑐𝑎 =

∫
𝑑𝜇 𝑃𝑃𝑎 (𝜇)Θ𝑐 (𝜇) ≈ 𝑃𝑃𝑎 (𝜇𝑐)𝛿𝜇, 𝜇𝑐 being the bin

center.
A functional form for the continuous random pair counts

(
𝑅𝑋𝑅𝑌

)
𝑎
(𝜇) is needed to go further due to integration in Eq. (A13). This is done

via a survey correction function Φ𝑋𝑌 (𝑟𝑎 , 𝜇) (following Xu et al. (2010)), which accounts for survey boundaries and selection, defined through(
𝑅𝑋𝑅𝑌

)
𝑎
(𝜇) ≡ 𝑉𝑋 �̄�𝑋 �̄�𝑌 �̄�𝑋�̄�𝑌 𝑣𝑎

Φ𝑋𝑌 (𝑟𝑎 , 𝜇)
, (A15)

where 𝑉𝑋 is the total volume of survey for tracer 𝑋 , and �̄�𝑋 and �̄�𝑋 are the survey-averaged number density and weight for tracer 𝑋 ,
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respectively. 𝑣𝑎 = 4𝜋
3

(
𝑟3
𝑎,max − 𝑟3

𝑎,min

)
is the volume of radial bin 𝑎 (𝑟𝑎,min and 𝑟𝑎,max being its lower and upper boundaries). The numerator

is the expression for a periodic box with uniform number density, weights and bins in |𝜇 | (i.e. negative values reversed into [0, 1] interval), thus
in this simple case the survey correction function Φ𝑋𝑌 (𝑟𝑎 , 𝜇) = 1. For nontrivial geometry, varying density and/or weights, it may become
different but not too far by order of magnitude. However, note that only the angular variable value is arbitrary, while the radius is taken as
representative of the bin. In practice, a piecewise-polynomial functional fit to empirical data was used by Philcox & Eisenstein (2019).

Then the 2PCF Legendre moment can be estimated and the covariance can be computed by definition, using Eq. (2.6), resulting in(
𝐶𝑋𝑌,𝑍𝑊

) 𝑝𝑞
𝑎𝑏

=

(
4𝐶𝑋𝑌,𝑍𝑊

) 𝑝𝑞
𝑎𝑏

+ 𝛼
𝑋

4

[
𝛿𝑋𝑊

(
3𝐶𝑋,𝑌𝑍

) 𝑝𝑞
𝑎𝑏

+ 𝛿𝑋𝑍
(
3𝐶𝑋,𝑌𝑊

) 𝑝𝑞
𝑎𝑏

]
(A16)

+ 𝛼𝑌

4

[
𝛿𝑌𝑊

(
3𝐶𝑌,𝑋𝑍

) 𝑝𝑞
𝑎𝑏

+ 𝛿𝑌𝑍
(
3𝐶𝑌,𝑋𝑊

) 𝑝𝑞
𝑎𝑏

] 𝛼𝑋𝛼𝑌
2

(
𝛿𝑋𝑊𝛿𝑌𝑍 + 𝛿𝑋𝑍 𝛿𝑌𝑊

) (
2𝐶𝑋𝑌

) 𝑝𝑞
𝑎𝑏
.

(
4𝐶𝑋𝑌,𝑍𝑊

) 𝑝𝑞
𝑎𝑏

=
(2𝑝 + 1) (2𝑞 + 1)

𝑉𝑋𝑉𝑍 �̄�𝑋 �̄�𝑌 �̄�𝑍 �̄�𝑊 �̄�𝑋�̄�𝑌 �̄�𝑍 �̄�𝑊𝑣𝑎𝑣𝑏

∑︁
𝑖≠ 𝑗≠𝑘≠𝑙

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑛

𝑍
𝑘
𝑛𝑊
𝑙
𝑤𝑋
𝑖 𝑤

𝑌
𝑗 𝑤

𝑍
𝑘
𝑤𝑊
𝑙
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑏 (𝑟𝑘𝑙) (A17)

× Φ𝑋𝑌 (𝑟𝑎 , 𝜇𝑖 𝑗 )Φ𝑍𝑊 (𝑟𝑏 , 𝜇𝑘𝑙)𝐿𝑝 (𝜇𝑖 𝑗 )𝐿𝑞 (𝜇𝑘𝑙)
[
𝜉
(4) ,𝑋𝑌𝑍𝑊

𝑖 𝑗𝑘𝑙
+ 𝜉𝑋𝑍

𝑖𝑘
𝜉𝑌𝑊
𝑗𝑙

+ 𝜉𝑋𝑊
𝑖𝑙

𝜉𝑌𝑍
𝑗𝑘

]
(
3𝐶𝑌,𝑋𝑍

) 𝑝𝑞
𝑎𝑏

= 4 × (2𝑝 + 1) (2𝑞 + 1)
𝑉𝑋𝑉𝑍 �̄�𝑋

(
�̄�𝑌

)2
𝑛𝑍 �̄�𝑋

(
�̄�𝑌

)2
𝑤𝑍 𝑣𝑎𝑣𝑏

∑︁
𝑖≠ 𝑗≠𝑘

𝑛𝑋𝑖 𝑛
𝑌
𝑗 𝑛

𝑍
𝑘
𝑤𝑋
𝑖

(
𝑤𝑌𝑗

)2
𝑤𝑍
𝑘
Θ𝑎 (𝑟𝑖 𝑗 )Θ𝑏 (𝑟 𝑗𝑘)

× Φ𝑋𝑌 (𝑟𝑎 , 𝜇𝑖 𝑗 )Φ𝑍𝑌 (𝑟𝑏 , 𝜇 𝑗𝑘)𝐿𝑝 (𝜇𝑖 𝑗 )𝐿𝑞 (𝜇 𝑗𝑘)
[
𝜁𝑋𝑌𝑍
𝑖 𝑗𝑘

+ 𝜉𝑋𝑍
𝑖𝑘

]
(
2𝐶𝑋𝑌

) 𝑝𝑞
𝑎𝑏

= 2𝛿𝑎𝑏 × (2𝑝 + 1) (2𝑞 + 1)(
𝑉𝑋 �̄�𝑋 �̄�𝑌 �̄�𝑋�̄�𝑌 𝑣𝑎

)2 ∑︁
𝑖≠ 𝑗

𝑛𝑋𝑖 𝑛
𝑌
𝑗

(
𝑤𝑋
𝑖 𝑤

𝑌
𝑗

)2
Θ𝑎 (𝑟𝑖 𝑗 )

×
(
Φ𝑋𝑌 (𝑟𝑎 , 𝜇𝑘𝑙)

)2
𝐿𝑝 (𝜇𝑖 𝑗 )𝐿𝑞 (𝜇𝑖 𝑗 )

[
1 + 𝜉𝑋𝑌𝑖 𝑗

]
.

Jackknife poses certain challenges to direct computation for the Legendre moments of the 2PCF. So far it has been suggested that the
shot-noise rescaling value(s) should be optimized with a jackknife estimate on angularly binned 2PCF (Philcox & Eisenstein 2019).

APPENDIX B: STATISTICS OF COMPARISON METRICS FOR NOISY SAMPLE COVARIANCE MATRIX

Here we provide derivations of the expectation values for comparison metrics between a noisy sample covariance and the true covari-
ance/precision matrix. This is useful for testing how close RascalC results are to the latter.

B1 KL divergence mean and variance

A more generic setup – two sample covariance matrices based on draws from a multivariate normal distribution – has been considered in
Appendix D of Philcox et al. (2020). However, the derivation was limited to the expectation value of the KL divergence between them, and we
have not been able to find a reference about the metric’s scatter around the mean (variance or standard deviation). In addition, we believe the
final result there is slightly incorrect, namely 1 should be subtracted from the number of samples. This is because for the estimate of sample
covariance commonly used with mocks

𝑋𝑎𝑏 =
1

𝑛𝑆 − 1

𝑛𝑆∑︁
𝑖=1

(𝑥𝑎,𝑖 − 𝑥𝑎) (𝑥𝑏,𝑖 − 𝑥𝑏) (B1)

the mean is not known beforehand but estimated from the sample as well: 𝑥𝑎 ≡ 1
𝑛𝑆

∑𝑛𝑆
𝑖=1 𝑥𝑎,𝑖 . This reduces the number of degrees of freedom

by one. Then the covariance of sample covariance matrix elements is

cov(𝑋𝑎𝑏 , 𝑋𝑐𝑑) =
𝐶0,𝑎𝑐𝐶0,𝑏𝑑 + 𝐶0,𝑎𝑑𝐶0,𝑏𝑐

𝑛𝑆 − 1
(B2)

instead of

cov(𝑋𝑎𝑏 , 𝑋𝑐𝑑) =
𝐶0,𝑎𝑐𝐶0,𝑏𝑑 + 𝐶0,𝑎𝑑𝐶0,𝑏𝑐

𝑛𝑆

as in Philcox et al. (2020). 𝑪0 is the true underlying covariance matrix of the Gaussian distribution the samples are drawn from. The sample
covariance estimate is unbiased, meaning that the expectation value is the true covariance: ⟨𝑿⟩ = 𝑪0. Then, considering two sample covariance
matrices X𝑖 obtained from 𝑛

(𝑖)
𝑆

samples each, decomposing them as X𝑖 = C0 + 𝛿X𝑖 , Taylor expanding and only leaving the leading nontrivial
(quadratic) order in 𝛿X𝑖 , we obtain 〈

𝐷KL
(
X−1

1 ,X2
)〉

≈ 𝑁bins (𝑁bins + 1)
4

©« 1

𝑛
(1)
𝑆

− 1
+ 1

𝑛
(2)
𝑆

− 1
ª®¬ (B3)
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instead of 〈
𝐷KL

(
X−1

1 ,X2
)〉

≈ 𝑁bins (𝑁bins + 1)
4

©« 1

𝑛
(1)
𝑆

+ 1

𝑛
(2)
𝑆

ª®¬
as in Philcox et al. (2020).

Since in this work we only consider one sample covariance matrix, while the RascalC results are not expected to follow the Wishart
distribution, the more relevant result is for the true precision matrix 𝚿0:

⟨𝐷KL (𝚿0,X)⟩ ≈ 𝑁bins (𝑁bins + 1)
4(𝑛𝑆 − 1) , (B4)

which can be obtained from Eq. (B3) by setting the first number of samples to infinity, reducing the noise in 𝑿−1
1 to zero.

For the further derivations, it is convenient to “normalize” the covariance. Let us take

𝒚𝑖 = 𝚿1/2
0 𝒙𝑖 , (B5)

where𝚿1/2
0 means the matrix square root of𝚿0 – a matrix with the same eigenvectors and eigenvalues equal to the square roots of corresponding

eigenvalues of the original matrix. Then

cov(𝑦𝑎,𝑖 , 𝑦𝑏, 𝑗 ) = 𝛿𝑖 𝑗𝛿𝑎𝑏 . (B6)

Let us also introduce �̄�𝑎 ≡ 1
𝑛𝑆

∑𝑛𝑆
𝑖=1 𝑦𝑎,𝑖 , define 𝛿𝑦𝑎,𝑖 ≡ 𝑦𝑎,𝑖 − �̄�𝑎 (so that

〈
𝛿𝑦𝑎,𝑖

〉
= 0) and finally compute the “normalized” covariance

matrix:

𝑌𝑎𝑏 ≡ 1
𝑛𝑆 − 1

𝑛𝑆∑︁
𝑖=1

𝛿𝑦𝑎,𝑖𝛿𝑦𝑏,𝑖 . (B7)

Then also

Y = 𝚿1/2
0 X𝚿1/2

0 . (B8)

Let us compute

cov(𝛿𝑦𝑎,𝑖 , 𝛿𝑦𝑏, 𝑗 ) =
〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑏, 𝑗

〉
= 𝛿𝑖 𝑗𝛿𝑎𝑏 − 2 × 1

𝑛𝑆
𝛿𝑎𝑏 + 𝑛𝑆 × 1

𝑛2
𝑆

𝛿𝑎𝑏 =

(
𝛿𝑖 𝑗 − 1

𝑛𝑆

)
𝛿𝑎𝑏 . (B9)

As a consequence, ⟨Y⟩ = I, and we can expand

Y = I + 𝛿Y (B10)

while ⟨𝛿Y⟩ = 0. Also,

cov(𝑌𝑎𝑏 , 𝑌𝑐𝑑) = ⟨𝛿𝑌𝑎𝑏𝛿𝑌𝑐𝑑⟩ =
𝛿𝑎𝑐𝛿𝑏𝑑 + 𝛿𝑎𝑑𝛿𝑏𝑐

𝑛𝑆 − 1
. (B11)

Now let us expand the KL divergence using the “normalized” covariance matrix, starting from

2𝐷KL (𝚿0,X) = tr (𝚿0X) − 𝑁bins − ln det (𝚿0X), (B12)

we can write 𝚿0 = 𝚿1/2
0 𝚿1/2

0 , use the cyclic property of trace and determinant to arrive to

2𝐷KL (𝚿0,X) = tr (Y) − 𝑁bins − ln det (Y), (B13)

remembering Eq. (B8). Then we expand in 𝛿Y (Eq. (B10)):

2𝐷KL (𝚿0,X) = tr (𝛿Y) − ln det (I + 𝛿Y). (B14)

Now using ln det A = tr ln A and expanding the second term in Taylor series up to quadratic order in 𝛿Y we obtain

2𝐷KL (𝚿0,X) ≈ 1
2

tr
[
(𝛿Y)2

]
=

1
2

𝑁bins∑︁
𝑎,𝑏=1

𝛿𝑌𝑎𝑏𝛿𝑌𝑎𝑏 . (B15)

Taking the expectation value of Eq. (B15) and using Eq. (B11), one can re-derive Eq. (B4). We will proceed to compute the variance:

Var
{
tr
[
(𝛿Y)2

]}
=

〈(
tr
[
(𝛿Y)2

] )2
〉
−
〈
tr
[
(𝛿Y)2

]〉2
=

𝑁bins∑︁
𝑎,𝑏,𝑐,𝑑=1

[⟨𝛿𝑌𝑎𝑏𝛿𝑌𝑎𝑏𝛿𝑌𝑐𝑑𝛿𝑌𝑐𝑑⟩ − ⟨𝛿𝑌𝑎𝑏𝛿𝑌𝑎𝑏⟩ ⟨𝛿𝑌𝑐𝑑𝛿𝑌𝑐𝑑⟩] . (B16)

Full expansion gives

𝑌𝑎𝑏𝑌𝑎𝑏𝑌𝑐𝑑𝑌𝑐𝑑 =
1

(𝑛𝑆 − 1)4

𝑛𝑆∑︁
𝑖, 𝑗 ,𝑘,𝑙=1

𝛿𝑦𝑎,𝑖𝛿𝑦𝑏,𝑖𝛿𝑦𝑎, 𝑗𝛿𝑦𝑏, 𝑗𝛿𝑦𝑐,𝑘𝛿𝑦𝑑,𝑘𝛿𝑦𝑐,𝑙𝛿𝑦𝑑,𝑙 . (B17)

MNRAS 000, 1–19 (2023)
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𝛿𝑦 are normally distributed and have zero means, so for them, we can use Wick’s theorem to split this into all possible pairs. (𝛿Y also has
zero mean, but not Gaussian distribution, this is why we need to go to a deeper level.) The total number of pairs is 8!/(4! × 24) = 105, so it is
easy to go over them in a computer program. Additionally, it is useful to check which are similar. It is apparent that the following five index
permutations leave the expression unchanged: 𝑎 ↔ 𝑏, 𝑐 ↔ 𝑑, 𝑖 ↔ 𝑗 , 𝑘 ↔ 𝑙 and (𝑎, 𝑏, 𝑖, 𝑗) ↔ (𝑐, 𝑑, 𝑘, 𝑙). Finally, some of the pairs will not
contribute to variance and can be excluded: contraction of a pair inside the same 𝑌 contribute to ⟨𝑌⟩ = I and must be subtracted; and if all the
contracted pairs correspond to 𝑌 ’s with the same indices, that contributes to the mean of 𝐷KL and has to be subtracted too.

We find there are 56 pair assignments contributing to ≈ 16(𝑛𝑆 − 1)4 Var[𝐷KL (Ψ0, 𝑋)], but no more than 8 of them are distinct after using
symmetries:

8
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑎, 𝑗

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑐,𝑙

〉 〈
𝛿𝑦𝑑,𝑘𝛿𝑦𝑑,𝑙

〉
=

8
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖 𝑗 − 1

𝑛𝑆

) (
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑐

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑐

(
𝛿𝑘𝑙 − 1

𝑛𝑆

)
= 8𝑁3

bins (𝑛𝑆 − 1) (B18)

16
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑎, 𝑗

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑑,𝑙

〉 〈
𝛿𝑦𝑑,𝑘𝛿𝑦𝑐,𝑙

〉
=

16
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖 𝑗 − 1

𝑛𝑆

) (
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑐

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑑

(
𝛿𝑘𝑙 − 1

𝑛𝑆

)
𝛿𝑑𝑐 = 16𝑁2

bins (𝑛𝑆 − 1) (B19)

8
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑏, 𝑗

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑎, 𝑗𝛿𝑦𝑑,𝑙

〉 〈
𝛿𝑦𝑑,𝑘𝛿𝑦𝑐,𝑙

〉
=

8
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖 𝑗 − 1

𝑛𝑆

)
𝛿𝑎𝑏

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑐

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑎𝑑

(
𝛿𝑘𝑙 − 1

𝑛𝑆

)
𝛿𝑐𝑑 = 8𝑁bins (𝑛𝑆 − 1) (B20)

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑑,𝑘

〉 〈
𝛿𝑦𝑎, 𝑗𝛿𝑦𝑐,𝑙

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑑,𝑙

〉
=

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑑

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑑 = 4𝑁2

bins (𝑛𝑆 − 1)2 (B21)

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑑,𝑘

〉 〈
𝛿𝑦𝑎, 𝑗𝛿𝑦𝑑,𝑙

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑐,𝑙

〉
=

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑑

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑎𝑑

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑐 = 4𝑁bins (𝑛𝑆 − 1)2 (B22)

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑐,𝑙

〉 〈
𝛿𝑦𝑎, 𝑗𝛿𝑦𝑑,𝑘

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑑,𝑙

〉
=

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿𝑖𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑐

(
𝛿 𝑗𝑘 − 1

𝑛𝑆

)
𝛿𝑎𝑑

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑑 = 4𝑁bins (𝑛𝑆 − 1) (B23)

8
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑐,𝑙

〉 〈
𝛿𝑦𝑎, 𝑗𝛿𝑦𝑑,𝑙

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑑,𝑘

〉
=

8
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿𝑖𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑐

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑎𝑑

(
𝛿 𝑗𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑑 = 8𝑁bins (𝑛𝑆 − 1) (B24)

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

〈
𝛿𝑦𝑎,𝑖𝛿𝑦𝑐,𝑘

〉 〈
𝛿𝑦𝑏,𝑖𝛿𝑦𝑑,𝑙

〉 〈
𝛿𝑦𝑎, 𝑗𝛿𝑦𝑐,𝑙

〉 〈
𝛿𝑦𝑏, 𝑗𝛿𝑦𝑑,𝑘

〉
=

4
∑𝑁bins

𝑎,𝑏,𝑐,𝑑=1
∑𝑛𝑆
𝑖, 𝑗 ,𝑘,𝑙=1

(
𝛿𝑖𝑘 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿𝑖𝑙 − 1

𝑛𝑆

)
𝛿𝑏𝑑

(
𝛿 𝑗𝑙 − 1

𝑛𝑆

)
𝛿𝑎𝑐

(
𝛿 𝑗𝑘 − 1

𝑛𝑆

)
𝛿𝑏𝑑 = 4𝑁2

bins (𝑛𝑆 − 1) (B25)

Gathering all together gives

Var
{
tr
[
(𝛿Y)2

]}
≈ 𝑁bins

(𝑛𝑆 − 1)3 [8𝑁
2
bins + 16𝑁bins + 8 + 4𝑁bins (𝑛𝑆 − 1) + 4(𝑛𝑆 − 1) + 4 + 8 + 4𝑁bins] =

4𝑁bins
(𝑛𝑆 − 1)3 [2𝑁

2
bins + 4𝑁bins + 4 + (𝑁bins + 1)𝑛𝑆] =

4𝑁bins
(𝑛𝑆 − 1)3 [(𝑁bins + 1) (𝑛𝑆 + 2𝑁bins + 2) + 2] . (B26)

Then, according to Eq. (B15), the variance of the KL divergence is approximately 16 times smaller:

Var[𝐷KL (𝚿0,X)] ≈ 𝑁bins [(𝑁bins + 1) (𝑛𝑆 + 2𝑁bins + 2) + 2]
4(𝑛𝑆 − 1)3 . (B27)

This is an approximation because in Eq. (B15) the Taylor expansion was truncated at the quadratic order in 𝛿Y. Other derivation steps are
exact.

B2 Inverse test

We considered how different 𝜒2 would result from one matrix compared to the other. If 𝒖 is an unit vector in 𝑁bins-dimensional space
(𝒖𝑇𝒖 = 1), then 𝒘 = C1/2

2 𝒖 gives an unit 𝜒2 according to 𝐶2: 𝒘𝑇C−1
2 𝒘 = 1. Here C1/2

2 means the matrix square root of C2 – a matrix with
the same eigenvectors and eigenvalues equal to the square roots of corresponding eigenvalues of the original matrix. Then we consider the 𝜒2

with respect to C1 (𝚿1): 𝒘𝑇𝚿1𝒘 and subtract the expected value of 1:

𝒘𝑇𝚿1𝒘 − 1 = 𝒖𝑇
[
C1/2

2 𝚿1C1/2
2 − I

]
𝒖. (B28)

Taking the RMS over all directions of 𝑢, one arrives at the RMS eigenvalue of this matrix, which can be expressed through the Frobenius norm:

𝑅inv (𝚿1,C2) =
1

√
𝑁bins

������C1/2
2 𝚿1C1/2

2 − I
������
𝐹
. (B29)
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The Frobenius norm can be recast as a trace and simplified further using its cyclic property:������C1/2
2 𝚿1C1/2

2 − I
������
𝐹

= tr
[(

C1/2
2 𝚿1C1/2

2 − I
)𝑇 (

C1/2
2 𝚿1C1/2

2 − I
)]

= tr
[(

C1/2
2 𝚿1C1/2

2 − I
)2
]

(B30)

= tr
(
C1/2

2 𝚿1C2𝚿1C1/2
2 − 2C1/2

2 𝚿1C1/2
2 + I

)
= tr (𝚿1C2𝚿1C2 − 2𝚿1C2 + I) = tr tr

[
(𝚿1C2 − I)2

]
.

This allows us to compute the quantity as

𝑅inv (𝚿1,C2) =

√√√
tr
[
(𝚿1C2 − I)2

]
𝑁bins

, (B31)

which is more computationally robust – it is better to avoid factorizing (and inverting) covariance matrices (especially the sample one) when
possible.

It is notable that this metric is related to the discriminant matrix

P =
√︁
𝚿𝑅

𝑇
C𝑆

√︁
𝚿𝑅 − I, (B32)

where
√
𝚿𝑅 is the lower Cholesky decomposition, used in Philcox et al. (2020); Philcox & Eisenstein (2019). Through a similar procedure,

one can find that its Frobenius norm is the same as above:

| |P| |2𝐹 = tr
[
(𝚿1C2 − I)2

]
. (B33)

However, the interpretation of elements of the discriminant matrix is less clear.
Now let us consider the square of this metric (to remove the root):

𝑅2
inv (𝚿0,X) = 1

𝑁bins
tr[Ψ0𝑋Ψ0𝑋 − 2Ψ0𝑋 + I] . (B34)

Remembering Eq. (B8), we arrive to

𝑅2
inv (𝚿0,X) = 1

𝑁bins
tr
[
Y2 − 2Y + I

]
. (B35)

Furthermore, expanding in 𝛿Y (according to Eq. (B10)), we get

𝑅2
inv (𝚿0,X) = 1

𝑁bins
tr
[
(𝛿Y)2

]
, (B36)

which is similar to Eq. (B15) up to a constant factor of 1/𝑁bins and lack of approximations. We can obtain the expectation value by plugging
in Eq. (B11): 〈

𝑅2
inv (𝚿0,X)

〉
=
𝑁bins + 1
𝑛𝑆 − 1

. (B37)

For variance we can use Eq. (B26):

Var
[
𝑅2

inv (𝚿0,X)
]
=

4[(𝑁bins + 1) (𝑛𝑆 + 2𝑁bins + 2) + 2]
𝑁bins (𝑛𝑆 − 1)3 . (B38)

Assuming Var
[
𝑅2

inv (𝚿0,X)
]
≪

〈
𝑅2

inv (𝚿0,X)
〉2

, we can take the square root to estimate the mean and variance of not-squared metric as

⟨𝑅inv (𝚿0,X)⟩ ≈
√︂〈

𝑅2
inv (𝚿0,X)

〉
=

√︄
𝑁bins + 1
𝑛𝑆 − 1

, (B39)

Var [𝑅inv (𝚿0,X)] ≈
Var

[
𝑅2

inv (𝚿0,X)
]

4
〈
𝑅2

inv (𝚿0,X)
〉 =

(𝑁bins + 1) (𝑛𝑆 + 2𝑁bins + 2) + 2
𝑁bins (𝑁bins + 1) (𝑛𝑆 − 1)2 . (B40)

Also, it is useful to note that 𝑅inv is related to the 𝜒2 approximation of minus log-likelihood, considering the covariance of all covariance
matrix elements. This is rather easy to see with 𝛿Y expression (Eq. (B36)). Since 𝛿Y is real and symmetric, we obtain

𝑁bins × 𝑅2
inv (𝚿0,X) = | |𝛿Y| |2𝐹 =

𝑁bins∑︁
𝑎,𝑏=1

(𝛿𝑌𝑎𝑏)2. (B41)

From Eq. (B11) we conclude that distinct elements of Y matrix have zero covariance (excluding the pairs symmetric with respect to the
diagonal), its diagonal elements have a variance of 2/(𝑛𝑆 − 1) and off-diagonal elements have a variance of 1/(𝑛𝑆 − 1). Then this covariance
is trivial to invert and we have to sum squares of deviation of independent elements divided by their variance to get the 𝜒2:

𝜒2 = (𝑛𝑆 − 1)
[

1
2

𝑁bins∑︁
𝑎=1

(𝛿𝑌𝑎𝑎)2 +
𝑁bins∑︁
𝑎=1

𝑁bins∑︁
𝑏=𝑎+1

(𝛿𝑌𝑎𝑏)2
]
=
𝑛𝑆 − 1

2

𝑁bins∑︁
𝑎,𝑏=1

(𝛿𝑌𝑎𝑏)2 =
(𝑛𝑆 − 1)𝑁bins

2
× 𝑅2

inv (𝚿0,X). (B42)

Since elements of Y are independent linear combinations of elements of sample covariance matrix X (via Eq. (B8), since 𝚿0 is not degenerate),
the same holds for X, but a direct computation without the “rotation” into Y would be significantly longer as the covariance of 𝑋𝑎𝑏 elements
(Eq. (B2)) has a more generic and complex structure.
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𝐷KL (Ψ0, 𝑋) 𝑅inv (Ψ0, 𝑋) 𝜒2
red (Ψ0, 𝑋)

Measurement space (45 bins) Theoretical 0.519 ± 0.024 0.2147 ± 0.0049 1.0000 ± 0.0067
Sampled 0.526 ± 0.023 0.2146 ± 0.0050 1.0000 ± 0.0067

Parameter space (5 quantities projected from 25 bins) Theoretical 0.0075 ± 0.0028 0.078 ± 0.014 1.000 ± 0.020
Sampled 0.0077 ± 0.0028 0.077 ± 0.014 1.000 ± 0.020

Table B1. Theoretical versus sampled mean ± std of covariance matrix comparison metrics with the true precision matrix. A close agreement can be seen.

B3 Mean chi-squared

We consider the sum of 𝜒2 associated with the deviation of data vectors in individual samples from the estimate of average:
𝑛𝑆∑︁
𝑖=1

𝑁bins∑︁
𝑎,𝑏=1

(𝑥𝑎,𝑖 − 𝑥𝑎)Ψ0,𝑎𝑏 (𝑥𝑏,𝑖 − 𝑥𝑏) = (𝑛𝑆 − 1)
𝑁bins∑︁
𝑎,𝑏=1

Ψ0,𝑎𝑏𝑋𝑎𝑏 = (𝑛𝑆 − 1) tr(Ψ0𝑋). (B43)

Remembering Eq. (B5), we can rewrite the LHS as
𝑛𝑆∑︁
𝑖=1

𝑁bins∑︁
𝑎,𝑏=1

(𝑦𝑎,𝑖 − �̄�𝑎)𝛿𝑎𝑏 (𝑦𝑏,𝑖 − �̄�𝑏) =
𝑁bins∑︁
𝑎=1

𝑛𝑆∑︁
𝑖=1

(𝑦𝑎,𝑖 − �̄�𝑎)2 ∼
𝑁bins∑︁
𝑎=1

𝜒2 (𝑛𝑆 − 1) ∼ 𝜒2 [𝑁bins × (𝑛𝑆 − 1)] . (B44)

Therefore the corresponding reduced 𝜒2 is

𝜒2
red =

1
𝑁bins

tr (𝚿0X). (B45)

B4 Validation of means and standard deviations

To check the theoretical results from the previous sections, we have performed a quick Monte-Carlo validation. 10,000 batches of 999 samples
having 45 bins each have been generated. For simplicity, we have taken the true covariance and precision to be unity matrices 𝐶0 = Ψ0 = I.
This should not affect the results, save for numerical instabilities in matrix operations. Full 45-bin sample covariance and precision matrices
have been estimated in each batch. Then, 25 bins were selected and projected into 5 quantities, for simplicity using 5 random orthonormal
vectors as parameter derivatives. Comparison between theoretical and sampled means and standard deviations are presented in Table B1.
Differences are most pronounced in 𝐷KL, but the disagreement is only in the second digit of standard deviation and fractions of standard
deviation on the mean. Therefore we report a close agreement, more than enough for the main part of the paper, where the scatter of RascalC
results is significantly larger than these standard deviations. We note that the results for 𝐷KL and 𝑅inv (Eq. (B4), (B27), (B39) and (B40)) are
approximate and we expect meaningful deviations from them, especially as 𝑁bins increases, while the derivations for 𝑅2

inv and 𝜒2
red (Eq. (B37),

(B37) and (B44)) are exact.
We have repeated this test with a realistic covariance matrix (RascalC Average NG for pre-reconstruction) and derivatives of the observables

with respect to the parameters (accordingly, for the BAO model before reconstruction) to confirm whether the comparison measures are indeed
not affected. We have obtained the same numbers as in simpler test (Table B1), and close agreement of 𝜎[𝜎(𝛼BAO)]/𝜎(𝛼BAO) with
[2(𝑛𝑆 − 1)]−1/2 according to Eq. (4.9).
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