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In recent years, structural health monitoring has received increasing attention in

the civil engineering research community with the objective to identify structural damage

at the earliest possible stage and evaluate the remaining useful life (damage prognosis) of

structures. Vibration-based, non-destructive damage identification is based on changes in

dynamic characteristics (e.g., modal parameters) of a structure for identifying structural

damage. Experimental modal analysis (EMA) has been used as a technology for

identifying modal parameters of a structure based on its measured vibration data. It should
xxvii



be emphasized that the success of damage identification based on EMA depends strongly

on the accuracy and completeness of the identified structural dynamic properties. 

The objective of the research work presented in this thesis is to develop new, and

improve/extend existing system identification and damage identification methods for

vibration based structural health monitoring. In the first part of the thesis, a new system

identification method is developed to identify modal parameters of linear dynamic

systems subjected to measured (known) arbitrary dynamic loading from known initial

conditions. In addition, a comparative study is performed to investigate the performance

of several state-of-the-art input-output and output-only system identification methods

when applied to actual large structural components and systems. In the second part of the

thesis, a finite element model updating strategy, a sophisticated damage identification

method, is formulated and computer implemented. This method is then successfully

applied for damage identification of two large test structures, namely a full-scale sub-

component composite beam and a full-scale seven-story R/C building slice, at various

damage levels. The final part of the thesis investigates, based on numerical response

simulation of the seven-story building slice, the effects of the variability/uncertainty of

several input factors on the variability/uncertainty of system identification and damage

identification results. The results of this investigation demonstrate that the level of

confidence in the damage identification results obtained through FE model updating is a

function of not only the level of uncertainty in the identified modal parameters, but also

choices made in the design of experiments (e.g., spatial density of measurements) and

modeling errors (e.g., mesh size). 
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 CHAPTER 1

INTRODUCTION

1.1   Background and Motivation

The deterioration of the civil infrastructure in North America, Europe and Japan

has been well documented. In the United States, 50% of all bridges were built before the

1940's and approximately 42% are structurally deficient (Stalling et al., 2000). In Canada,

more than 40% of all bridges were built before the 1970's and a large number of these

structures are in need of strengthening and rehabilitation (ISIS Canada, 2000a; 2000b). It

has been estimated that the investments needed to enhance the performance of deficient

infrastructures exceed 900 billion dollars worldwide (ISIS Canada, 2000a; 2000b). These

statistics underline the importance of developing reliable and cost effective methods for

the massive rehabilitation investments needed in the years ahead. In seismically active

regions such as the West Coast of the United States and Japan, the problem of the gradual

deterioration of civil structures over time is compounded by sudden damage events or the

exacerbation of existing damage due to the occurrence of earthquakes. Furthermore,

recent national attention has been focused on damage inflicted to the civil infrastructure

by acts of terrorism.

Therefore, in recent years, structural health monitoring has received increased

attention in the civil engineering research community with the objective to identify struc-
1
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tural damage at the earliest possible stage and evaluate the remaining useful life (damage

prognosis) of structures. Vibration-based, non-destructive damage identification is based

on changes in dynamic characteristics (e.g., modal parameters) of a structure as a basis for

identifying structural damage. Experimental modal analysis (EMA) has been used as a

technology for identifying modal parameters of a structure based on its measured vibra-

tion data. It should be emphasized that the success of damage identification based on

EMA depends strongly on the accuracy and completeness of the identified structural

dynamic properties. An extensive literature review on vibration-based damage identifica-

tion methods is provided in Chapter 2. 

1.2   Objectives and Scope

The objective of the research work presented in this thesis is to develop or

improve/extend the already existing system identification and damage identification meth-

ods for vibration based structural health monitoring. In the first part of this thesis, a new

system identification method is developed to identify modal parameters of linear dynamic

systems subjected to measured (known) arbitrary dynamic loading from known initial

conditions. In addition, a comparative study is performed to investigate the performance

of several state-of-the-art input-output and output-only system identification methods

when applied to actual large structural components and systems. 

In the second part of the thesis, the finite element model updating strategy, a

sophisticated damage identification method, is extended and computer implemented. This

method is then successfully applied for damage identification of two (large) test structures

which underwent several levels of damage. 
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The final part of the thesis investigates, based on numerical simulation of struc-

tural response, the effects of the variability/uncertainty of several input factors on the vari-

ability/uncertainty of system identification and damage identification results. The input

factors considered include: amplitude of excitation (and therefore of the response), mea-

surement noise, length of response measurement data used for system identification, spa-

tial density of sensors, estimation uncertainty of modal parameters, and finite element

mesh size (for damage identification).

1.3   Organization of Thesis

The research presented in this thesis is partitioned into three topics, namely (1)

system identification of structures considered as dynamic systems, (2) damage identifica-

tion of structures, and (3) uncertainty analysis of system and damage identification results.

A number of chapters is devoted to each of these topics. 

Chapter 2 presents a comprehensive review of the existing literature on vibration

based structural health monitoring. The first research topic is covered in Chapters 3 and 4.

In Chapter 3, the General Realization Algorithm (GRA) is developed to identify modal

parameters of linear multi-degree-of-freedom dynamic systems subjected to measured

(known) arbitrary dynamic loading from known initial conditions. The GRA extends the

well known Eigensystem Realization Algorithm (ERA) based on Hankel matrix decompo-

sition by allowing an arbitrary input signal in the realization algorithm. In Chapter 4, six

state-of-the-art system identification methods including three output-only and three input-

output methods are used to estimate the modal parameters (natural frequencies, damping
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ratios and mode shapes) of a full-scale seven-story reinforced concrete shear wall building

slice which was tested on the UCSD-NEES shake table and underwent several levels of

damage.

The second research topic damage identification of structures, is covered in Chap-

ters 5 and 6. The study presented in Chapter 5, leveraged a full-scale sub-component

experiment conducted in the Charles Lee Powell Structural Research Laboratories at the

University of California, San Diego. In this chapter, the modal parameters of a full-scale

composite beam are estimated at various damage levels, and are then used to identify the

damage in the beam through a finite element model updating strategy. Chapter 6 uses the

results obtained in Chapter 4 (system identification of shear wall test structure) as input to

identify several levels of damage in the shear wall test structure.

The third research topic is the subject of Chapters 7 and 8. From the studies pre-

sented in the previous chapters, it was observed that the estimation uncertainty in the sys-

tem and damage identification results is significant. This motivated the author to perform

an uncertainty analysis of these system and damage identification results. Chapter 7 inves-

tigates the performance of three different output-only system identification methods, used

for experimental modal analysis of the shear wall building slice, as a function of the uncer-

tainty/variability in different input factors. Chapter 8 investigates the performance of the

damage identification procedure based on FE model updating as a function of the variabil-

ity/uncertainty in different input factors. Finally, Chapter 9 summarizes the work done,

highlights important research findings and provides some suggestions for future research.
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 CHAPTER 2

LITERATURE REVIEW ON STRUCTURAL 
HEALTH MONITORING

In the last decade, the subject of structural health monitoring has received growing

interest from researchers in diverse fields of engineering who are interested in a wide

spectrum of applications ranging from health monitoring of aerospace structures to dam-

age identification in civil infrastructure systems. While there are many approaches and

techniques involved in nondestructive evaluation (NDE) of structural systems, they can all

be broadly categorized as local or global methods. The first category includes methods

designed to provide information about a relatively small region of the system of interest

by using local measurements (e.g., ultrasound, acoustic emission, infrared thermography).

On the other hand, methods from the second category are based on measurements from a

disperse array of sensors to obtain global information about the system condition. These

two types of approaches are complementary to each other. The optimum choice of an NDE

method depends on the scope of the problem at hand and the nature of the sensor network.

Among the global NDE methods that have a strong appeal to researchers in the applied

mechanics community are those based on signature analysis of vibration measurements in

order to obtain global information about the condition or state of health of the test struc-

ture. A comprehensive literature review of global NDE methods has been performed and

is presented in this chapter.
6
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Mottershead and Frizwell (1993) present a literature survey related to finite ele-

ment model updating, which has been used extensively for structural health monitoring.

Another overview of NDE approaches for condition assessment is available in the work of

Housner et al. (1997). Doebling et al. (1996, 1998) and Sohn et al. (2003) provide a com-

prehensive review of technical literature dealing with the detection, localization and quan-

tification of structural damage using techniques that examine changes in dynamic

signatures and/or properties inferred from dynamic measurement data. Zou et al. (2000)

summarize the methods available for vibration-based damage identification in composite

structures, with special emphasis on modeling techniques for delamination and methods

for detecting delaminations. 

The problem of damage identification is classified into four levels: (1) detection,

(2) localization, (3) quantification, and (4) prediction of future damage (damage progno-

sis). At the level of damage detection (level 1), the existence of damage can be detected,

while its location and severity are unknown. Information about location of the damage can

be provided by localization techniques at level 2. At the damage quantification level (level

3), both the location and severity of damage are estimated. Finally, at the prediction level

(level 4), the remaining life of the structure is estimated based on the (identified) current

damage state and future loads and damage propagation. Most of the methods summarized

in this review reach the second level of damage identification, which means they are able

to detect and localize damage in structures, and a few methods are also able to estimate the

severity of damage (level 3). As for the prediction level, it is still mainly an objective to

pursue. 
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In this survey, damage identification methods are divided into 13 categories,

namely methods based on: (1) Bayesian analysis, (2) control theory, (3) damage index, (4)

empirical mode decomposition and Hilbert-Huang transformation, (5) changes in electri-

cal impedance, (6) modal strain energy, (7) finite element model updating, (8) neural net-

work, novelty detection, and genetic algorithms, (9) principal component analysis and

singular value decomposition, (10) modal identification (these methods are themselves

subdivided into six sub-categories), (11) residual forces, (12) time domain data, and (13)

Wavelet transformation.

Although, a structure may experience various types of damage during its service

life, most of the damage identification methods reviewed here are based on the assumption

damage causes only a loss of stiffness in one or more regions of the structure but not a loss

of mass. Another challenge in structural health monitoring consists of separating changes

in the structural dynamic behavior due to damage from those caused by other sources such

as varying environmental conditions (i.e., humidity, wind, and most importantly tempera-

ture) and changes in operating conditions (e.g., light vs. heavy traffic on a bridge). Most of

the methods summarized in this review are based on the assumption that the changes in

structural dynamic behavior are caused by damage only. 

2.1   Methods Based on Bayesian Analysis

This section reviews Bayesian probabilistic approaches for damage identification.

The basic idea is to search for the most probable damage state/scenario based on the com-

puted posterior probabilities of the potential damage states/scenarios given the modal
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identification/estimation results extracted from dynamic measurement data. Formulation

of the posterior probabilities can be based on an output error, which is defined as the dif-

ference between the estimated modal parameters and their theoretical counterparts

obtained from an analytical model of the structure. Generally, the structure stiffness matrix

is represented as an assembly of substructure stiffness matrices and a dimensionless

parameter is introduced to model the stiffness contribution of each substructure. Assuming

a prior probability density function for the dimensionless parameter, the relative posterior

probability of an assumed damage state/scenario is formulated and a branch-and-bound

search scheme can be applied to identify the most likely damage states/scenarios. 

Sohn and Law (1997) applied a Bayesian probabilistic approach to detect the most

likely locations and extent of damage in a structure. In their work, the system stiffness

matrix was represented as an assembly of substructure stiffness matrices and a dimension-

less parameter was introduced to model the stiffness contribution of each substructure. To

assess the performance of their proposed method, they applied it to three example struc-

tures simulated numerically, namely a six-story shear frame structure, a two-story and a

five-story three-dimensional frame structures. As long as sufficient modal data sets are

available, their method is able to identify the damage locations and extent in most cases

where: (1) less than 10 percent noise levels are achieved in the estimated modal parame-

ters (i.e., modal parameter estimation errors with less than 10% coefficient-of-variation),

(2) 10-30 percent of all the degrees of freedom are recorded/measured, and (3) several

fundamental modes of vibration are estimated.
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Sohn and Law (2000) described the application of their Bayesian approach (Sohn

and Law 1997) to predict the locations of plastic hinge deformation using experimental

data obtained from vibration tests performed on a reinforced-concrete bridge column.

Their damage identification method was able to locate the damaged regions (i.e., plastic

hinges) using a simplified analytical model of the column and the modal parameters esti-

mated from the vibration test data. 

Sohn and Law (2001) discussed potential application of load-dependent Ritz vec-

tors and their incorporation into the previously proposed Bayesian framework (Sohn and

Law 1997) for damage diagnosis. They presented a procedure that extracts the Ritz vec-

tors based on a flexibility matrix estimated from experimentally identified modal parame-

ters. Damage diagnoses performed on a physical grid-type bridge model indicate that

better damage location results are obtained when using Ritz vectors than when using

modal vectors. For comparison purposes, they included the results obtained from the

application of the Minimum Rank Perturbation Theory (MRPT) (Kaouk and Zimmerman

1993) and the Sensitivity-Based Element-By-Element (SB-EBE) method (Farhat and

Hemez 1993) to the test data of the grid bridge structure considered. The results indicate

that the use of load-dependent Ritz vectors produces better damage diagnosis results than

the use of modal vectors. Also, the Bayesian probabilistic approach was shown to give

better damage diagnosis results than commonly used deterministic methods.

Ching and Beck (2004) used a two-step probabilistic structural health monitoring

approach to analyze the Phase II experimental benchmark studies sponsored by the IASC-

ASCE Task Group on Structural Health Monitoring. The two-step approach involves
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modal identification followed by damage assessment using the pre- and post-damage

modal parameters based on the Bayesian updating methodology. An Expectation Maximi-

zation algorithm was proposed to find the most probable values of the updating parame-

ters. It was shown that the brace damage was successfully detected and assessed from

either the hammer or ambient vibration data. The connection damage was much more dif-

ficult to detect reliably and assess because the identified modal parameters were less sen-

sitive to connection damage, allowing the modeling errors to have more influence on the

results.

Yuen et al. (2004) applied Bayesian updating of dynamic models of structures to

perform all four levels of structural damage identification and assessment: damage detec-

tion, finding its location and severity, and its impact on the structural reliability. The

numerical integration that is required in Bayesian updating is known to be computation-

ally prohibitive for problems of high dimensions. The proposed approach used the Markov

chain Monte Carlo simulation based on the Metropolis-Hastings algorithm to tackle this

problem in conjunction with an adaptive concept to obtain in an efficient manner informa-

tion about the important regions of the updated probability distribution. The approach was

applied to the ASCE-IASC benchmark structure, showing that it is capable of exhibiting

the impact on structural reliability of low levels of damage in the two different damage

identification cases.
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2.2   Methods Based on Control Theory

This Section presents the work of researchers who employed different control the-

ories for structural damage identification. Such control theories include feedback control,

adaptive control, Linear Matrix Inequality, Regulation Theory, and Least Mean Square fil-

tering. Housner et al. (1997) provided a point of departure for researchers to assess the

state-of-the-art in control and monitoring of civil engineering structures and gave a link

between structural control and other fields of control theory.

Lim and Kashangaki (1994) used the measured natural frequencies and mode

shapes from a modal test to determine the location and magnitude of damage in a space

truss structure. Damage was located by computing the Euclidean distances between the

measured mode shapes and the best achievable eigenvectors. The latter are the projection

of the measured mode shapes onto the subspace defined by the refined analytical model of

the structure and the measured natural frequencies. Loss of both stiffness and mass proper-

ties can be detected, located and quantified. A laboratory eight-bay truss structure, instru-

mented with three accelerometers at each node was tested to examine the performance of

the method. The method performed well to identify damage even though measurement

errors inevitably make the damage localization more difficult.

Ge and Soong (1998 a) presented a procedure for damage identification through

measured structural response. The cost function employed was based on the regulation

method for inverse problems. An optimization procedure using the Euler-Lagrange equa-

tion was developed to reduce the minimization problem to a two-point boundary value

problem. Compared to other existing techniques in solving the minimization problem, this



13
approach does not resolve to more advanced mathematical tool and is thus more easily

accepted in the engineering application field. Another distinct advantage of this method is

that the form of damage, be it stiffness losses, nonlinear functions, or hysteresis, do not

need to be assumed a priori. Numerical studies of 2-DOF and 10-DOF shear beam type

structures and experimental correlation with a three story model structure demonstrated

the feasibility and accuracy of the proposed approach and were reported in the companion

paper by Ge and Soong (1998 b).

Ray and Tian (1999) employed methods of enhancing sensitivity of modal fre-

quencies to small changes in structure parameters and local geometry through use of feed-

back control. These methods were developed for smart structures, i.e., those capable of

self-excitation, self-sensing, and closed-loop vibration control. Using state feedback,

closed-loop modal frequencies are placed at locations in the complex plane that enhance

sensitivity to particular types of damage. A simple example introduced the principle of

sensitivity enhancing control for a single-degree-of-freedom structure. Then, the method

was applied to finite element models of a cantilevered beam to demonstrate the magnitude

of sensitivity enhancement achievable for modest local damage. Simulation results

showed that significant enhancement in sensitivity of modal frequencies to damage can be

achieved using a single actuator and multiple strain sensors along the beam.

Gangadharan et al. (1999) presented an antioptimization-based method for testing

structural models and for identifying and detecting damage. This method used the maxi-

mum value of the ratio or the difference in the strain energies of two alternative models as

a metric of their difference. The paper presented applications of antioptimization for com-
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paring alternative finite element models using a real life complex automotive structure as

illustrative example. The proposed approach relies on the hypothesis that the antioptimiza-

tion load is located near the damage location. 

Gattulli and Romeo (2000) proposed an integrated procedure based on a direct

adaptive control algorithm to address a dual goal: (1) vibration suppression and (2) dam-

age detection. This was accomplished in the former by tracking a reference output of an

arbitrary model with desired damping characteristics and in the latter by detecting on-line

mechanical parameters variations. Applications to shear-type models showed that an

opportune selection of a reduced measure of the complete state variables guarantees exact

output reference tracking. 

Abdalla et al. (2000) employed linear matrix inequality (LMI) methods for compu-

tationally efficient solution of damage detection problems in structures. This problem was

formulated as a convex optimization problem involving LMI constraints on the unknown

structural stiffness parameters. The proposed techniques were applied to detect damage in

simulation examples and in a cantilevered beam test-bed using experimental data obtained

from modal tests. Both the LMI matrix update and the LMI parameter update resulted in

accurate detection of the damage locations. 

Nauerz and Fritzen (2001) presented a method for damage identification in struc-

tural models, which was particularly used for the localization and quantification of struc-

tural faults. Their proposed damage identification method is based on power spectral

densities. This offers the possibility of working with ambient excitation and using output-

only signals. The only assumption is that the input spectral density can be approximated
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by ergodic white noise. The lack of measurement information was treated by means of

dynamic condensation technique and the Kalman Bucy filter technique. The algorithm

was applied to two examples. The first example tested the proposed damage identification

method using the condensed model matrices and expanded displacements from a simu-

lated beam structure. In the second example, the proposed method was applied to a real

multistory frame. In both examples the location and the size of the deviation between the

measured structure and the finite element model could be obtained. 

Lin and Betti (2004) presented a robust on-line adaptive identification algorithm to

identify the structural parameters in non-linear systems, based on a recursive least squares

formulation. This approach used a variable forgetting factor technique to adaptively

update the adaptation gain matrix at every time step. 

Chase et al. (2005) presented methods for structural health monitoring (SHM) of

civil structures using adaptive least mean square filtering theory. Damage that occurs in

the structure can be identified by changes in the stiffness matrix. “One Step” and “Two

Step” adaptive LMS based methods were developed and tested. The proposed methods

were applied to both the 4 and 12 DOF cases of the SHM Task Group’s Benchmark prob-

lems, and the results showed that the adaptive LMS filtering is very effective for identify-

ing damage in real-time.

2.3   Damage Index Methods

The damage index method was originally developed by Stubbs (1992) to identify

the damage in structures using a ratio of strain energy in discrete structural elements
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before and after the occurrence of damage. Mode shapes before and after damage are

required in this method, but they do not need to be mass normalized. Cornwell et al.

(1999) extended this method to plate-like structures that are characterized by two-dimen-

sional curvature. Duffey et al. (2001) extended the damage index method to be applicable

to structures undergoing vibrations predominantly in axial or torsional modes. In Duffey

et al. (2001), the method was compared to the flexibility-change method presented by

Pandey and Biswas (1994). The two methods were applied to both simulated and experi-

mental spring-mass systems undergoing axial response. Both the flexibility-change

method and the damage index method were successful in detecting damage and in locating

damaged elements for 10-percent reduction in element stiffness in a simulated spring-

mass system.

Kim and Stubbs (2002) presented an improved damage index algorithm to over-

come the limits of the previous damage index algorithms, namely damage index algorithm

A (Kim and Stubbs 1995) and damage index algorithm B (Stubbs and Kim 1996). The two

existing algorithms and the new algorithm were evaluated by predicting damage location

and severity estimation in a theoretical model of a two-span continuous beam. The follow-

ing observations about the performance of the algorithms were made. First, the use of

damage index A for damage identification resulted in (1) relatively small Type I error

(inability to detect the true damage locations); (2) small localization error; (3) relatively

high Type II error (prediction of locations that are not damaged); and (4) high severity

estimation error. It consistently overestimated severities of damage by about 1.75 times

the true damage. Second, the use of damage index B resulted in no error related to damage



17
localization but high severity estimation error. It consistently underestimated severities by

about 0.15 times the true damage. Finally, the use of the improved damage index algo-

rithm resulted in no error related to damage localization and very small severity estimation

error. Compared to the other two algorithms, the new damage index algorithm enhanced

significantly the accuracy of the damage localization and severity estimation results.

Barroso and Roddriguez (2004) proposed a new methodology based on ratios

between stiffness and mass values from the eigenvalue problem to identify the undamaged

state (baseline) of the structure. In this paper, the first generation benchmark problem on

structural health monitoring developed by the ASCE Task Group on structural health mon-

itoring was considered. This problem consists of a frame model of an existing four-story

physical model at the University of British Columbia for which simulated data were used

to perform system identification. Modal parameters were extracted using the frequency

domain decomposition method (Brincker et al. 2000). The accuracy of the extracted base-

line information depended on the level of damage in the structure, with better results

obtained in the presence of small amounts of damage. Once the structural properties of

both the baseline and damaged structure were determined, the damage index method was

used to identify the location and severity of damage.

2.4   Methods Based on Empirical Mode Decomposition and Hilbert-

Huang Transformation

The empirical mode decomposition (EMD) is a new signal processing method,

which can decompose any data set into several intrinsic mode functions (IMFs) by a pro-
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cedure called sifting process. The sifting process is conducted by first constructing the

upper and lower envelopes of the signal through connecting its local maxima and local

minima by a cubic spline. The mean of the two envelopes is then computed and subtracted

from the original time history. The difference between the original time history and the

mean value is called the first IMF. The difference between the original signal and the first

IMF is then treated as a new time history and subjected to the same sifting process, giving

the second IMF. The sifting procedure continues until the residue becomes so small that it

is less than a predetermined value of consequence, or the residue becomes a monotonic

function. By decomposing the vibration signal in the time domain using the EMD, the

damage time instant and damage location can be identified using the signal feature of

damage spike. The damage time instant can then be identified in terms of the occurrence

time of the damage spike, and the damage location can be determined by the spatial distri-

bution of the observed damage spikes. The Hilbert-Huang transform (HHT) consists of the

empirical mode decomposition combined with Hilbert spectral analysis, with the EMD

method representing the core of the HHT.

Xu and Chen (2004) presented an experimental investigation on the applicability

of the EMD for identifying structural damage caused by a sudden change of structural

stiffness. A three-story shear building model was constructed and installed on a shaking

table with two horizontal springs connected to the first floor. Structural damage was simu-

lated by suddenly releasing the two pretensioned springs either simultaneously or succes-

sively. A series of free vibration, random vibration, and earthquake simulation tests were

performed on the building with sudden stiffness changes. The damage location was identi-
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fied by analyzing the spatial distribution of the damage spikes along the building height.

The EMD approach was found quite robust and not sensitive to the type of external excita-

tion. Small damage severity and multiple damage events could be identified using this

approach. 

Yang et al. (2004) proposed two damage identification methods based on the mea-

sured data that contain damage events of the structure. The first method, based on the

EMD, is capable of detecting the damage time instants and damage locations by identify-

ing the damage spikes due to a sudden change in structural stiffness similar to the method

of wavelet transform. The second method, based on EMD and Hilbert transform, is pro-

posed to quantitatively (1) detect the damage time instants and (2) identify the natural fre-

quencies and damping ratios of the structure before and after damage. The two proposed

methods were applied to the ASCE benchmark problem (Johnson et al. 2000). Using sim-

ulated structural vibration response data, the first method was able to detect damage spikes

if the measured data is free of noise pollution or the level of noise pollution is very small.

For the second method proposed, the simulation results demonstrated that the method is

capable of (1) accurately determining the time instant when the damage occurs regardless

of the noise level and (2) identifying the natural frequencies and damping ratios of the

structure before and after damage quite accurately. 

Law and Zhu (2005) studied the signatures of non-linear characteristics in the

vibration of damaged reinforced concrete beams using Hilbert-Huang transform with ref-

erence for possible use to detect damage in reinforced concrete structures. The measured

vibration signal from several reinforced concrete beams in different cracked damage states
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were decomposed into intrinsic mode functions (IMF) using the EMD, and the Hilbert-

Huang spectrum was subsequently obtained for each of them. The time history of the

instantaneous frequency of the beam, obtained from the IMFs, was found to correlate well

with the opening and closure of the cracks and the elastic deformation of the beam. 

2.5   Impedance Based Methods

Structural impedance is a function of the structural properties such as stiffness,

damping, and mass. When damage occurs in a structure, it leads to variations in stiffness,

damping, sometimes mass and, as a consequence, variations in the structural model and

structural impedance response.

Fasel et al. (2005) used auto-regressive coefficients from a frequency domain

ARX model as a powerful feature for non-linear damage diagnosis. The addition of

Extreme Value Statistics (EVS) as a tool for establishing confidence limits greatly

enhances this damage identification technique. The suitability of the ARX model, com-

bined with EVS, for non-linear damage identification was demonstrated using vibration

data obtained from a laboratory experiment of a three-story building model. The vibration-

based method (used for comparative purposes) was not able to localize damage in the test

structure, while the integration of the impedance-based active sensing method into the fre-

quency domain ARX model, showed very promising results with regard to damage local-

ization and data normalization.

Tseng et al. (2005) developed an impedance model to extract the structural imped-

ance response from the electric admittance measurements of piezoelectric transducer
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(PZT) patches bonded to the structure and to predict the dynamic output forces of PZT

patches on the host structure. A structural damage identification technique was then pre-

sented using the structural impedance response and the analytical system matrices. The

proposed damage identification technique is based on the assumption that there exists a

finite element model of the structure well correlated to the structural impedance response

in the frequency domain. The finite element model of the structure for the pre-damaged

state is then updated to represent the real damaged state and used to identify the structural

damage. A numerical example of a fixed-fixed beam was given to illustrate the effective-

ness of the proposed algorithm. 

2.6   Methods Based on Modal Strain Energy

A method based on changes of modal strain energy (MSE) in each structural ele-

ment before and after the occurrence of damage to localize the damage was developed by

Shi and Law (1998). The elemental MSE was defined as the product of the elemental stiff-

ness matrix and the second power of the mode shape component. The measured mode

shapes and elemental stiffness matrices are required in the identification algorithm. In

practice, the measured mode shapes are usually incomplete due to the limited number of

sensors. In order to apply this method for damage localization, the mode shape expansion

technique was used to expand the measured mode shape to the full dimension of the finite

element model. The modes expansion technique was discussed by Law et al. (1998), in

which a three-staged damage detection method was described. The incomplete measured

mode shapes were first expanded to the full dimension of the finite element model. The



22
modal strain energy of each element normalized with its potential energy was then used to

locate the damage domain. The measured modal frequency changes were employed to

determine the magnitude of damage through a sensitivity-based method. Instead of

expanding measured mode shapes to the full dimension of the finite element model, Shi et

al. (2000b and c) presented a sensitivity- and statistical-based method called the Multiple

Damage Location Assurance Criterion (MDLAC) to locate structural damage using

incomplete mode shapes directly. The damage sites were preliminarily located using

incomplete measured mode shapes without reconstruction of the unmeasured information.

The suspected damaged elements were assessed again using the more accurately measured

modal frequency information, to determine the true sites and the extent of damage. The

accuracy of damage localization using this method was closely related to the amount and

quality of the measured data.

Shi et al. (2000a) discussed the method of using element modal strain energy

change (MSEC) before and after damage to locate and quantify the damage. Results from

a numerical example of a beam and an experiment on a single-bay, two-story portal steel

frame structure were investigated. The obtained results indicate that the proposed method

is effective in locating the damage, but is noise sensitive in the damage quantification. In

order to reduce the truncation and modeling errors in the higher modes, Shi et al. (2002)

presented the improved modal strain energy method for structural damage quantification.

The improved algorithm used only a few lower analytical modes for damage quantifica-

tion. The numerical example of a fixed-end beam and experimental results from a two-

story steel portal frame demonstrated that the improved algorithm (1) reduces the trunca-
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tion error in computation; (2) avoids the finite element modeling errors in higher modes;

and (3) improves the rate of convergence in the computation.

Ren and De Roeck (2002a b) demonstrated that multiplying the damaged eigen-

value equations by the damaged modes or undamaged modes provides more equations

than the strain energy-based method does, which will improve the damage localization.

Several solution techniques were discussed and compared. The Moore-Penrose pseudo-

inverse method and the non-negative least-squares (NNLS) method (Lawson and Hanson

1974) were used in the paper. The NNLS technique was found to be one of the suitable

solution methods. The proposed method was verified by a simple beam and a continuous

beam with a number of simulated damage scenarios. This damage identification technique

was able to find the exact location and severity of the damaged elements. When simulated

noise was added to the modal data, a fairly good agreement between the predicted and the

assumed damage could still be achieved. The proposed method was also validated by an

experimental program of a reinforced concrete beam in Ren and De Roeck (2002 b).

Li et al. (2006) developed the modal strain energy decomposition method as a new

damage localization method, capable of identifying the damage of individual members for

three-dimensional frame structures. This method is based on decomposing the modal

strain energy of each structural member (or element) into two parts, one associated with

the element’s axial coordinates and the other with its transverse coordinates. Numerical

studies were conducted for a three-dimensional five-story frame structure and a compli-

cated offshore template platform, based on synthetic data generated from finite element
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models. Although the method was able to locate the damage for three-dimensional frame

structures, it did not perform well on estimating the corresponding severity of the damage. 

2.7   Methods Based on Finite Element Model Updating

Another class of damage identification methods is based on the modification of

structural model matrices such as mass, stiffness, and damping to reproduce as closely as

possible the measured static and dynamic response from the data. These methods update

the physical parameters of a FE model of the structure by minimizing an objective func-

tion expressing the discrepancy between FE predicted and experimentally identified struc-

tural dynamic properties that are sensitive to damage such as natural frequencies and

mode shapes. Comparisons of the updated model parameters to the original ones provide

an indication of damage and can be used to quantify the location and extent of damage.

The difference between various algorithms can be found in objective functions to be mini-

mized, constraints placed on the problem, and numerical scheme used to implement the

optimization. A few of common model updating algorithms are optimal matrix update

methods, sensitivity-based methods, eigenstructure assignment method and hybrid meth-

ods which use combination of two or more algorithms (Doebling et al. 1996). A thorough

review and description of the state of the art in finite element model updating was also

provided by Mottershead and Friswell (1993) and also in the book by Friswell and Motter-

shead (1995).

Zimmerman and Kaouk (1992) presented a damage identification methodology

based on a pre-damage refined FE model of the structure and the results of post-damage
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modal analysis. This algorithm determines perturbation matrices to the original FE model

such that the updated FE model exhibits the measured modal characteristics of the dam-

aged structure. The perturbation matrices were then examined to determine the location

and extent of structural damage. The algorithm was tested on both simulated and actual

experimental data. The algorithm performed well on the simulated test structure, and the

accuracy of results depended on the measured degrees of freedom in the mode shapes. The

algorithm was also tested using the results of an experimental modal test of a cantilever

beam. A comparison of measured and analytical frequency response functions indicated

the improvement made by the eigenstructure assignment algorithm used in this paper.

Zimmerman and Kaouk (1994) developed a computationally attractive algorithm

to provide an insight to the location and extent of structural damage. The algorithm made

use of an original finite element model and a subset of measured eigenvalues and eigen-

vectors. The developed theory approaches the damage localization and damage quantifica-

tion in a decoupled fashion. First, a theory was developed to determine the location of

structural damage. With the structural damage locations determined, an extent algorithm

was then developed. The extent algorithm is a minimum rank update. The algorithms were

demonstrated using both numerical and actual experimental data. The effects of eigenvec-

tor measurement and expansion errors were demonstrated and techniques to overcome the

effects of noise were discussed. 

Casas and Aparicio (1994) discussed a methodology for the use of dynamic

response as an inspection and surveillance tool for concrete structures (mainly bridges).

The method is based on FE model updating of stiffness characteristics (related to crack-
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ing) starting from modal parameters obtained from dynamic tests (impact hammer test).

Several damage-identification examples were performed on groups of reinforced concrete

beams with different and well-defined cracking patterns. This experimental verification

showed the effectiveness of the proposed method in the identification of location, exten-

sion, and amount of cracking.

Liu (1995) presented a methodology to identify damage in a truss structures. The

measured natural frequencies and mode shapes of the truss were used in the identification

process. The identification algorithm was formulated as an optimization problem in which

the error norm of the eigenequation is minimized. The finite element analysis was adopted

to derive the discretized eigenequation of the truss. The perturbation method was used to

investigate the influence of the measurement errors on the identification results. A simply

supported truss with 21 members and 10 nodes was used as a numerical example. This

numerical example demonstrated the effectiveness of the proposed method in parametric

identification of a truss. 

Alvin (1997) presented a FE model updating method based on a minimization of

dynamic residuals. The dynamic residual of interest was the force unbalance in the homo-

geneous equation of motion arising from errors in the model’s mass and stiffness when

evaluated with the identified modal parameters. The proposed algorithm is a modification

and extension of a previously-developed Sensitivity-Based Element-By-Element (SB-

EBE) method for damage detection and finite element model updating. In the proposed

algorithm, SB-EBE was generalized to minimize a dynamic displacement residual quan-

tity, which was shown to improve test-analysis mode correspondence. Furthermore, the
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algorithm was modified to include Bayesian estimation concepts, and the underlying non-

linear optimization problem was consistently linearized to improve the convergence prop-

erties. The resulting algorithm was demonstrated via numerical and experimental

examples to be an efficient and robust method for both localizing model errors and esti-

mating physical parameters. The numerical example was a planar truss with 44 transla-

tional DOF, 7 of which were measured. The experimental example was a tubular welded

frame formed into a ladder and representative of an automotive engine support, measures

by 96 accelerometers grouped in 16 locations and the excitation was hammer impact.

Cobb and Liebst (1997 a) used a FE model updating method to determine damaged

structural elements from measured modal data. This study was focused on prioritizing sen-

sor locations on a flexible structure. The proposed method is useful in applications where

only a small subset of the total structural degrees of freedom can be instrumented. The pri-

oritization was based on an eigenvector sensitivity analysis of a finite element model of

the structure. An analytical example was presented that illustrates the relationship between

the number of measured modes, the number of instrumented degrees of freedom, and the

extent to which damage can be localized. Additionally, an analysis of an experimental can-

tilevered eight-bay truss assembly consisting of 104 elements instrumented with eight sin-

gle-axis accelerometers was presented. The extent to which structural damage could be

localized from the measurement data was limited by the number of measured modes.

Cobb and Liebst (1997 b) discussed a damage identification method using a newly

developed Assigned Partial Eigenstructure (APE) method, which determines the required

stiffness changes consistent with the FE formulation, to achieve the maximum correlation
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with the measured eigendata. This method does not require the computation of the eigen-

structure sensitivities and the corresponding eigenanalysis during the iteration process.

This method was applied on both a fully instrumented and a sparsely instrumented experi-

mental structure, and was able to correctly determine the location and amount of structure

damage. The extent to which damage could be localized was limited by both model fidel-

ity and accuracy of the measured modes. 

Kim and Bartkowicz (1997) described a two-step damage identification approach

for large and complex structures with limited number of measurements. The first step

identifies a general area of structural damage using the optimal model updating method

and a hybrid model reduction/eigenvector expansion technique. The second step will then

locate a specific damaged structural component using a design sensitivity technique based

on a priori information from the first step. Eigensystem Realization Algorithm (ERA) was

used to extract the modal parameters. Performance of the proposed approach was demon-

strated with testing and analysis of a ten-bay hexagonal truss structure. The specific dam-

aged component was clearly located using sensitivity method together with initial damage

identification results. 

Fritzel et al. (1998) proposed a method to identify the location and extent of struc-

tural damage from measured vibration test data. The method is based on a mathematical

model representing the undamaged vibrating structure and a local description of the dam-

age (e.g., a finite element for a cracked beam). The concept of inverse sensitivity equa-

tions was used which can be based on any type of data such as modal data, FRFs, time

series, or a combination of them. An orthogonalization strategy was also used to reduce
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the parameter set. The method was validated through application to laboratory structures

in the frequency domain using frequency response functions and also in the time domain.

Kiddy and Pines (1998) showed that, although it is impossible to simultaneously

update both the full mass and stiffness matrices, it is possible to update both matrices

simultaneously if a constraint is added to the problem. Furthermore, it was shown that this

constraint does not drastically interfere with the capability of identifying damage as a

change in the mass and stiffness matrices. A simple example of cantilever beam with 3

elements was considered under axial loading. 

Lam et al. (1998) developed two techniques in their proposed method, namely the

Approximate Parameter Change (APC) technique and the Damage Signature Matching

(DSM) technique. The APC technique was able to locate the damage by calculating the

approximate change of system parameters based on two sets of modal data, which were

measured before and after the structure was damaged. The DSM technique was developed

as a supplement to the APC technique for more complicated cases. Based on the same sets

of modal data, measured damage signatures were determined. Predicted damage signa-

tures for different possible damage locations were determined with reference to the math-

ematical model. The damage and its location on the structure were then identified from the

pattern matching between the measured and predicted damage signatures. The proposed

method was verified by numerical and experimental case studies with particular reference

to steel-framed structures with damage at its connections. 

Papadopoulos and Garcia (1998) presented a method to improve the robustness of

current damage identification methodologies. Measured statistical changes in natural fre-
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quencies and mode shapes along with a FE model were used to assess the integrity of a

structure. The method was successful in identifying the probabilistic existence, location

and extent of simulated structural damage in a one dimensional three-degree-of-freedom

spring-mass system and on an Euler-Bernoulli cantilever aluminum beam.

Capecchi and Vestroni (1999) discussed a damage identification method based on

the minimization of an objective function that accounts for the difference between analyti-

cal and experimental identified modal frequencies. The procedures developed are applied

to sample cases: a supported beam, a clamped beam, a continuous beam and a shear-type

frame, using experimental and simulated data. The identification procedure was carried

out mainly by the computer code IDEFEM. When experimental data were used, the loca-

tion of damage was accurate, though some discrepancies remained in its quantification,

depending on which frequencies were selected from those available. The presence of mod-

eling and experimental errors, however, considerably complicated the problem to reach

the exact solution and more frequencies were required to reduce the effect of errors.

Zhang et al. (2000) presented a FE model updating procedure applied to complex

structures using an eigenvalue sensitivity-based updating approach. The method is based

on the first-order Taylor-series expansion of the eigenvalues with respect to some struc-

tural parameters selected to be adjusted. The changes in the updating parameters were

found iteratively by solving a constrained optimization problem. The proposed method

was applied to a 1/150 scaled suspension bridge model. Using 11 measured frequencies as

reference, the FE model was updated by adjusting ten selected structural parameters. The
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final updated FE model for the suspension bridge model was able to produce natural fre-

quencies in close agreement with the measured ones.

Brownjohn et al. (2001) described a sensitivity-based FE model updating method

and its application to structure condition assessment with particular reference to bridges.

The accuracy analysis of damage assessment by model updating was investigated through

a case study. A damaged steel portal frame was used to compare updated values of the

geometrical parameters at damaged zones with their known real values.

Hemez and Doebling (2001) presented several numerical and experimental test

beds that span a wide variety of applications (from non-linear vibrations to shock

response) and difficulty (from a single-degree-of-freedom system with localized non-lin-

earity to a three-dimensional multiple component assembly featuring non-linear material

response and contact mechanics). These test beds were developed at Los Alamos National

Laboratory. In the second part of this work, the state-of-the-art in the area of model updat-

ing for non-linear, transient dynamics was reviewed. The techniques identified as the most

promising were assessed using data from the numerical or experimental test beds. This

publication concluded with a brief description of current research directions in inverse

problem solving for structural dynamics.

Abdel Wahab (2001) investigated the effect of using modal curvatures as modal

parameters on the convergence of the updating algorithm for the purpose of damage iden-

tification. Simulated data of a simply supported beam were used to perform this study. A

sensitivity-based updating algorithm was used. It was found that using modal curvatures

in the model updating algorithm did not improve its convergence. Therefore, it was con-
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cluded that modal curvatures are useful parameters for damage identification when using

the response-based approach but not useful when using the model-based approach.

Cha and Switkes (2002) developed a new method to update the system mass,

damping, and stiffness matrices in turn using frequency-response data. The method

enforces the connectivity (or sparsity) information, therefore the size of the least-squares

problem is drastically reduced. This new updating method was applied to a numerical

example of 26 DOF shear building model. Numerical results verified the accuracy of the

updating algorithm for calibrating the structural system parameters using frequency-

response data.

Jang et al. (2002) considered a system identification method to identify structural

parameters in a FE model by minimizing the error between measured and analytically

computed responses. A regularization scheme was applied to alleviate the ill-posedness of

an inverse problem by adding a regularization function to the primary error function. Two

different algorithms were introduced depending on the type of measurements, static or

modal response, but the essential idea behind them is identical. To consider noise in the

measurements, a statistical evaluation scheme proposed by Yeo et al. (2000) was applied.

Static displacements from static loading and vertical accelerations from impact vibration

test were measured through laboratory experiments on a grid-type model bridge by accel-

erometers at 12 nodes. The baseline structural model and baseline properties were deter-

mined based on experimental data obtained from the tests on the undamaged model

structure. The applicability of the proposed damage assessment algorithm was investi-

gated through experimental examples. 
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Xia et al. (2002) proposed a method to identify structural damage based on com-

paring the measured frequencies and mode shapes before and after damage. The effects of

uncertainties in both the measured vibration data and finite element model were consid-

ered as random variables in model updating. The statistics (mean and standard deviation)

of the updated stiffness parameters in the damaged configurations were calculated with

perturbation method and Monte Carlo simulation. The probability of damage existence

was calculated to estimate the possibility of damage existence in the structural members.

The proposed method was applied to a laboratory tested steel cantilever beam and frame

structure. The results showed that the damage was identified correctly with high probabil-

ities of damage existence. Discussions were also made on the applicability of the method

when no measurement data of intact structure are available.

Pothisiri and Hjelmstad (2003) presented a global damage assessment algorithm

based on a parameter estimation method using a FE model and the measured modal

response of a structure. An optimization scheme was proposed to localize damaged

regions in the structure. Damage probability functions were computed upon completion of

the localization process for candidate elements. Monte Carlo methods were used to com-

pute the required probabilities based on the statistical distributions of the parameters for

the damaged and the associated baseline structure. The algorithm was tested in a numeri-

cal simulation environment using a planar bridge truss as a model problem. From the sim-

ulation results, it was concluded that the proposed algorithm can identify damage

successfully in the presence of measurement noise provided that the noise level is low.
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Xia and Hao (2003) developed a statistical damage identification algorithm based

on changes in natural frequencies to account for the effects of random noise in the vibra-

tion data and finite element modeling error. The structural stiffness parameters in the

intact state and damaged state were derived with a two-stage model updating process. The

statistics of the parameters were estimated by the perturbation method and verified by

Monte Carlo technique. The probability of damage existence was then estimated based on

the probability density functions of the parameters in the two states. A higher probability

implies a more likelihood of damage occurrence. The presented technique is applied to

detect damage in a numerical cantilever beam and a laboratory tested steel cantilever

plate. 

Fanning and Carden (2003) presented a damage identification algorithm which

relies on a single-input-single-output (SISO) measurement made at several frequencies

and a correlated numerical model of the structure. The feasibility of the algorithm was

based on a computationally efficient method of calculating a single FRF of the structure

when it undergoes a stiffness change in a limited number of elements. Initially, the undam-

aged structure was tested and a calibrated finite element model was generated. The algo-

rithm was shown to be successful numerically on a simple two-story frame structure when

the maximum number potential damage locations has been limited to two.

Kim et al. (2004) discussed an iterative method to solve the inverse problem of

dynamic structural systems. The structural modifications were sought for the characteris-

tic changes assigned from the design goals or modal measurements. A finite element

method was used for the system analysis and inverse problem. The method is based on the
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equilibrium equations of a set of selected degrees of freedom and the energy equation

associated with the frequency change. The mode shape change was expressed as a combi-

nation of the baseline mode shape and a complementary vector. A penalty function

method was employed, along with an objective function of least structural change. Two

numerical examples, a cantilever beam and a truss structure, were used to verify the pro-

posed method. It was found that errors in the modal data had significant effects on the

accuracy of the inverse solution. 

Bassevillea et al. (2004) addressed the vibration-based structural health monitoring

problem as the double task of detecting the damage, and localizing the detected damage

within (a FEM of) the monitored structure. The proposed damage detection algorithm is

based on a residual generated from a stochastic subspace-based covariance-driven identifi-

cation method and on the statistical local approach to the design of detection algorithms.

This algorithm basically computes a global test, which performs a sensitivity analysis of

the residuals to the damage, relative to uncertainties and noises. Damage localization was

stated as a detection problem. 

Hwang and Kim (2004) discussed methods to identify the locations and severity of

damage in structures using frequency response function (FRF) data. Basic methods iden-

tify the location and severity of structural damage by minimizing the difference between

test and analytic FRFs, which is a type of model updating or optimization method; how-

ever, the method proposed in this paper used only a subset of vectors from the full set of

FRFs for a few frequencies and calculates the stiffness matrix and reductions in explicit

form. To verify the proposed method, examples of a simple cantilever and a helicopter
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rotor blade were numerically demonstrated. The proposed method identified the location

of damage in these objects, and characterized the damage to a satisfactory level of preci-

sion.

Lam et al. (2004) discussed a damage identification method based on a statistical

model updating methodology which utilizes the measured vibration responses of the struc-

ture without any knowledge of the input excitation. The emphasis in this paper is on the

application of the proposed methodology in Phase I of the benchmark study set up by the

IASC-ASCE Task Group on structural health monitoring. The statistical model updating

methodology adopted in this paper was based on the Bayesian modal identification

approach presented in Katafygiotis and Yuen (2001). All six cases of the benchmark study

were considered in this paper assuming unknown input. The methodology did not fail to

identify damage in any of the cases considered, although the identified damage extent was

slightly overestimated for cases with modeling error.

Teughels and De Roeck (2004) described an iterative sensitivity based FE model

updating method in which the discrepancies in both the eigenfrequencies and unscaled

mode shape data obtained from ambient tests were minimized. Additionally the optimiza-

tion process was made more robust by using the trust region strategy in the implementa-

tion of the Gauss-Newton method, which was another original contribution of this work.

The updating procedure was validated with a real application to a prestressed concrete

bridge Z24 in Switzerland. The stochastic subspace technique was used to extract the

modal data from the measured vibration data. The damage in the highway bridge was
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identified by updating the Young’s and the shear modulus, whose distribution over the FE

model are approximated by piecewise linear functions.

2.8   Methods Based on Neural Network, Novelty Detection, and Genetic 

Algorithms

Artificial neural networks (ANNs) were developed as a methodology for emulat-

ing the biology of human brain, resulting in systems that learn by experience. Recently,

the use of ANN has been extended to identify the structural damage. Masri et al. (2000)

presented a nonparametric structural damage identification method based on neural net-

work approach. The approach relied on the use of vibration measurements from a

“healthy” system to train a neural network for identification purposes. Subsequently, the

trained network was fed comparable vibration measurements from the same structure in

order to monitor the health of the structure and thereby provide a relatively sensitive indi-

cator of damage in the structure. Although the authors advocated the efficiency of non-

parametric identification approaches such as the proposed neural networks, they also

pointed out the limitations of such approaches in locating the damage unless a prior

knowledge is available on states and their respective vibration signatures. Xu et al. (2003)

presented a four-step procedure to identify damage using neural network method. A neural

network emulator was first trained using the dynamic response from the healthy structure,

then the damage was detected from the error between the dynamic response predicted by

the emulator and their measured counterparts. A third step builds up a parametric neural
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network for the proper selection of the evaluation index and eventually it was used in step

four to quantify the damage. 

A unifying framework for techniques from a wide range of disciplines was devel-

oped to identify damage based on novelty detection (Bishop 1994; Worden 1997; Worden

et al. 2002). The philosophy of the approach is simply to establish a description of “nor-

mality” using features representing the undamaged condition of the structure and then test

for “abnormality” or “novelty” when new data becomes available. There are numerous

different methods of novelty detection including probability density estimation, artificial

neural networks, outlier analysis (Worden et al. 2000). The validity of novelty methods

were investigated by Worden et al. (2003) and Manson et al. (2003a, b). Worden et al.

(2003) presented the experimental validation of novelty detection algorithms based on

measured transmissibility FRFs from a simplified model of a metallic aircraft wing box.

Three different novelty detection algorithms, namely outlier analysis, density estimation

and an auto-associative neural network technique, were considered. All three methods

were shown to be successful to an extent, although a critical comparison indicated reserva-

tions about the density estimation approach when used on sparse data sets. Manson et al.

(2003 a) applied outlier analysis method on a more realistic structure, namely the wing of

a Gnat aircraft, as opposed to the previously investigated laboratory structure, then Man-

son et al. (2003 b) extended the novelty detection method from damage detection to dam-

age localization. 

In the application of neural network methods, the optimization techniques are

needed to find optimum values of the network weights such that the objective function is
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minimized. There are a lot of optimization techniques available for this purpose such as

the gradient-based methods, simulated annealing, genetic algorithms, and random pertur-

bation methods. Hong and Xia (2002) applied a genetic algorithm (GA) with real number

encoding to identify the structural damage by minimizing the objective function, which

directly compares the changes in the measurements before and after damage. Three differ-

ent criteria were considered, namely, the frequency changes, the mode shape changes, and

a combination of the two. A laboratory tested cantilever beam and a frame were used to

demonstrate the proposed technique. Numerical results showed that the damaged elements

could be detected by genetic algorithm, even when the analytical model was not accurate.

It is also demonstrated that the proposed method with a real-coded GA gives better dam-

age detection results for the beam than the conventional optimization method.

Moslem and Nafaspour (2002) applied Steady-Sate Genetic Algorithms (SSGA) as

an optimization tool to identify the extent of the damage in truss members. Two truss

structures, one small and the other a relatively large truss were examined to validate the

damage identification procedure proposed in this paper. Though the proposed algorithm

has the advantage of being systematic, the inevitable errors such as measurement noise,

model expansion, and especially model reduction errors presented difficulties in locating

possible damaged areas.
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2.9   Methods Based on Principal Component Analysis or Singular Value 

Decomposition

Bernal (2002) developed a damage localization method based on changes in mea-

sured flexibility through a singular value decomposition. This method identified the ele-

ments of the structure that were damaged as belonging to the set of elements whose

internal forces under the action of a certain set of load vectors are zero. These vectors,

which were designated as damage locating vectors (DLVs) define a basis for the null space

of the change in flexibility and were computed from the measured data without reference

to a model of the structure. The proposed method was demonstrated on two numerical

examples of a truss having 44 bars and 9 sensors. In the first example the flexibility matri-

ces for the truss were derived from state-space system identification of white noise excited

responses and the localization was carried out for two different damage scenarios (reduc-

tion in element area). The second example used a truncated basis of analytically computed

modes to assemble the flexibility matrices but examines 250 multiple damage cases to

gain a statistical sense of performance. 

Vanlanduit et al. (2005) proposed a system to identify damage in structures from

measurements taken under different conditions (i.e. different operational excitation levels,

geometrical uncertainties and surface treatments of the structure). This method is based on

a robust singular value decomposition (RSVD). Using the RSVD the distance of an obser-

vation to the subspace spanned by the intact measurements can be computed. The pro-

posed RSVD method was compared with an existing method based on the classical least-

squares SVD. This damage identification method was validated on an aluminium beam
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with different damage scenarios (a saw cut and a fatigue crack). In order to quantify the

sensitivity of the proposed technique a simulation was performed in this paper. From the

experimental results it was concluded that the classical least-squares SVD approach gives

incorrect decomposition (and hence an incorrect classification between damaged and

intact samples) when both damaged and intact measurements are used to compute the sub-

space. It was shown that the iterative SVD slightly improved the classification results.

However, in order to obtain reliable results, the introduced robust SVD should be used.

2.10   Modal Identification Based Methods 

The modal identification based methods rely on the fact that modal parameters of

the structure are functions of structural physical parameters, such as mass, stiffness, and

damping. Changes to the material and/or geometric properties of systems, including

changes to the boundary conditions and system connectivity, will produce changes in the

modal parameters. Thus changes from modal properties and quantities derived from these

properties such as mode shape curvature and dynamic flexibility matrix components can

be utilized in the damage identification. Sensitivity of measured modal properties to

potential damage in their practical application was studied by Alampalli et al. (1997),

Palacz and Krawczuk (2002), and Zhu and Xu (2005). In Alampalli et al. (1997), modal

tests were conducted through impact tests on a one-sixth scale multiple steel-girder model

bridge and a fracture critical field bridge, including both intact and simulated damage

states. Sensitivity of modal parameters to changes of the structural condition was studied

using statistical methods. Results showed that even though modal frequencies and mode
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shapes may be used to detect the existence of commonly observed bridge damage, it is dif-

ficult to identify their locations. The sensitivity coefficients of mode shapes, slopes and

curvatures of mode shapes of a mono-coupled periodic structure with respect to damage

was derived by Zhu and Xu (2005). The comparative study of a 10-element mono-coupled

periodic spring-mass system showed that among natural frequencies, mode shapes, slopes

and curvatures, the mode shape curvatures were the most sensitive dynamic features to

damage, but the slopes of mode shapes were more indicative of damage location. 

2.10.1   Methods Based on Changes in Natural Frequencies

Salawu (1997) presented a review on the use of changes in natural frequencies for

damage detection only. It is in general difficult to localize damage (i.e., obtain spatial

information on the detected structural damage) from changes in natural frequencies only.

Bicanic and Chen (1997) developed a formulation for damage prediction using only the

changes of natural frequencies. It was shown that the proposed method can predict the

location of damage and also determine the amount of damage from a limited number of

natural frequencies. Two computational procedures, the direct iteration (DI) technique and

the Gauss-Newton least squares (GNLS) technique, were developed to solve for the ele-

ment scalar damage indicators as primary unknowns. Different numerical examples were

used to demonstrate the effectiveness of the proposed method. 

Messina et al. (1998) extended the Multiple Damage Location Assurance Criterion

(MDLAC) by introducing two methods of estimating the size of defects in a structure. The

proposed methods only require information about the changes in a few of natural frequen-
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cies between the undamaged and damaged state. Both algorithms for localizing and quan-

tifying the damage are validated experimentally using a 3D beam test structure. 

2.10.2   Methods Based on Changes in Flexibility

Usually, the dynamically measured flexibility matrix is estimated from the mass-

normalized measured mode shapes and measured eigenvalue matrix. Damage is detected

using flexibility matrices by comparing the flexibility matrix indices computed using the

modes of the damaged structure to flexibility matrix indices computed using the undam-

aged structure. Pandey and Biswas (1994) presented changes in the flexibility matrix of

the structure as a candidate method not only for damage detection but also for damage

localization. It was shown that the flexibility matrix can be easily and accurately estimated

from a few of lower vibration modes of the structure. The effect of structural damage on

its flexibility was studied in simple analytical beam models. By using these analytical

models, the effectiveness of using changes in flexibility matrix in detecting and locating

damage was demonstrated. The procedure was then tested successfully with experimental

data collected on a wide-flange steel beam. 

Zhao and DeWolf (1999) presented a sensitivity study to determine which dynamic

parameters are best for monitoring purposes for application to bridges. This study

reviewed and investigated different diagnostic parameters, including the natural frequen-

cies, the mode shapes, and the modal flexibility. A spring-mass system with five degrees

of freedom was used to demonstrate the application of the sensitivity analysis. The mini-

mum and maximum values based on using sensitivity coefficient for the natural frequen-
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cies were 0.029 and 4.44, respectively. The minimum and maximum values for the mode

shapes were 0.009 and 3.74, respectively. The minimum and maximum values for the

modal flexibility were 3.70 and 524.6, respectively. The larger values for the modal flexi-

bility indicate that modal flexibility will more readily indicate changes in stiffness than

either the natural frequencies or mode shapes separately. 

Catbas and Aktan (2000) carried out an extensive study for evaluation of different

experimental and analytical techniques for damage identification of civil structures. A

three span steel-stringer bridge (Seymoure Bridge) was subjected to a regime of deliber-

ately induced damage to simulate many of the common deterioration and damage states

that may affect these bridges. Multiple Reference Impact Testing (MRIT) was used as a

testing procedure, for modal testing of the bridge. The damage was applied by removal of

one bearing plate of a girder from one abutment. A number of different indices were

employed for a comparative study on damage identification. A damage indicator (Bridge

Girder Condition Indicator) based on the deflections computed using modal flexibility

yielded very promising results for locating the damage and quantifying damaged response

for certain loading patterns.

Duan et al. (2005) proposed an approach to assemble a proportional flexibility

matrix (PFM) from arbitrarily scaled modes and modal frequencies with output only data.

Instead of real flexibilities, the PFMs are incorporated into the damage locating vectors

(DLV) method for damage localizations in ambient vibrations. PFMs for the pre- and post-

damaged structure need to be comparable before being integrated into the DLV procedure.

This requirements is guaranteed when there is at least one reference degree with



45
unchanged mass after damage. Two numerical examples showed that a small number of

measured modes can produce PFMs with sufficient accuracy to correctly locate the dam-

age by the DLV method from output-only data.

2.10.3   Methods Based on Changes in Frequency Response Functions

Lew (1995) presented a novel approach to locate the damage based on the compar-

ison of the transfer function parameters of a system before and after occurrence of dam-

age. A coherence approach was developed for locating the damage when the structural

damage is observed. A nine-bay truss example was used to demonstrate and verify the

approach developed. 

Wang et al. (1997) formulated a new damage identification algorithm to utilize an

original analytical model and frequency response function (FRF) obtained from measured

data prior and posterior to damage. Based on nonlinear perturbation equations of FRF, an

algorithm was derived which can be used to determine a damage vector indicating both

location and magnitude of damage from perturbation equations of FRF. For extension of

the proposed algorithm to cases of incomplete measurement in terms of coordinates, an

iterative version of the proposed algorithm was introduced. The validity, accuracy and

applicability of the proposed method was assessed by numerical and experimental studies

using a practical plane 3-bay frame structure. In the numerical case study, the proposed

algorithm accurately identified the location and extent of the damage even in presence of

5% measurement errors. In the experimental investigation, the identified damage slightly
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mismatched the real damage, which could be attributed to inaccurate modeling of the joint

elements and inaccurate representation of slot cut damage.

Sampaio et al. (1999) described the FRF curvature method theoretically and com-

pared it with two of the most referenced methods on literature: mode shape curvature

method and damage index method. The FRF curvature method is based on only the mea-

sured data without the need for any modal identification. This new damage identification

method was demonstrated using a numerical 10 DOF lumped-mass system and the exper-

imental data gathered from the I-40 Bridge. Results showed that the FRF curvature

method perform well in detecting, locating and quantifying damage, although this last

item (damage quantification) still has to be further developed and better characterized.

Ratcliffe (2000) presented a method for detecting and locating structural damage

using experimental vibration data. The method used measured FRFs to obtain displace-

ment as a function of frequency. The displacement functions were converted to curvature

functions, which were further processed to yield a frequency dependent damage index

using gapped-smoothing method. The location of the damage was revealed by showing

the damage index as a contour plot of frequency versus position. The method was able to

correctly locate the damage from the results of an experimental demonstration in which a

steel beam was damaged with a narrow slot.

Reich and Park (2000) presented a method that utilizes an invariance property of

transmission zeros of substructural frequency response functions. These functions were

obtained by partitioning the global dynamic flexibility into a substructural form. It was

shown that the transmission zeros of the frequency response functions of a damaged sub-
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structure are invariant whereas those of healthy substructures are affected. The present

method exploited this invariance property for the damage identification in a structure.

Numerical examples were presented to demonstrate the utility of the proposed method.

2.10.4   Methods Based on Changes in Modal Curvature

Pandey et al. (1991) introduced the concept of using curvature mode shapes for

damage localization. The difference in the modal curvature between the intact and the

damaged case was utilized to locate the crack. It was demonstrated that the modal curva-

ture is related to the stiffness of beam cross-sections and it was obtained numerically using

the centre difference approximation algorithm. Both a cantilever and a simply supported

beam models were used to demonstrate the modal curvature change as the damage indic-

tor to identify the damage. It was shown that changes in the modal curvatures are sensitive

to localized damage region, although the changes in mode shapes failed to localized the

damage. Furthermore, it was also found that the Modal Assurance Criterion (MAC) and

the Co-ordinate Modal Assurance Criterion (COMAC) are not sensitive enough to detect

damage for the case investigated. An important remark in this study was that the differ-

ence in modal curvature between the intact and the damaged beam showed not only a high

peak at the fault position but also some small peaks at different undamaged locations for

the higher modes.This can cause confusion to the analyst in a practical application in

which one does not know in advance the location of faults. In order to solve this problem,

Abdel Wahab and De Roeck (1999) investigated the accuracy of using the central differ-

ence approximation to compute the modal curvature and determine the reason of the pres-
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ence of misleading small peaks. In this paper, the authors introduced the concept of

curvature damage factor (CDF), in which the difference in mode shape curvature was

averaged over all modes. To establish the method, simply supported and continuous beams

containing damaged parts at different locations were tested using simulated data. When

the structure contains several damage locations, the CDF gave a clear identification of

these locations. The technique was further applied to a real structure, namely Bridge Z24.

It was found that the modal curvature of lower modes is in general more accurate than

those of the higher ones and when more than one fault exist in the structure, and it is not

possible to locate damage in all locations from the modal curvatures of only one mode.

Ratcliffe (1997) introduced a finite difference Laplacian function (which repre-

sents the curvature of mode shape) to identify the location of structural damage in a beam.

When damage was less severe, further processing of the Laplacian was needed. The post-

processing consisted of determining a cubic polynomial to fit the Laplacian locally at each

spatial co-ordinate. A difference function between the cubic and Laplacian provided the

information necessary to identify the location of damage. Mode shape data from the fun-

damental mode are most suited to the technique. However, data from the next three or four

natural frequencies could be of use, particularly for verification of the results from the fun-

damental mode. 

Oh and Jung (1998) proposed an improved damage identification algorithm based

on system identification. In this approach, the complete sets of modes or displacements

are not needed since the error function involved only the differences between components

of those vectors. The proposed approach allowed the use of hybrid data, which consisted
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of static displacements and eigenmodes. In the dynamic test, the curvature and slope of

mode shapes were introduced to formulate the error responses. Using these techniques, a

parametric study was conducted and the effectiveness of the method was discussed. A

series of simulated tests for a predetermined damaged two-span continuous beam and a

planar bowstring truss structure were performed. The damage identification results

obtained using the proposed method were in good agreement with the simulated damage.

2.10.5   Methods Based on Changes in Stiffness

Koh et al. (1995) presented an improved condensation method for identification of

local damage of multi-story frame buildings in terms of changes in story stiffness. Local

here refers to story level rather than individual members. Static condensation was

employed to reduce the system size. Identification was executed recursively on the reme-

dial model in order to yield integrity indices for all stories. Numerical study of a 12-story

building with various noise level showed the feasibility and computational efficiency of

this method. The efficiency of the method was further validated through an experimental

example of a 6-story laboratory model subjected to hammer impact tests.

Banks et al. (1996) discussed a theoretical, numerical and experimental investiga-

tion of the use of smart structures, parameterized partial differential equations and Galer-

kin approximation techniques to detect and locate damage. Smart structures refer to

structures with embedded and/or surface mounted piezoceramic patches which may be

used to sense and actuate vibrations of the host structure. Unlike many competing meth-

ods, this approach was independent of modal information from the structure. Changes in
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damping, mass and stiffness properties of the structure were estimated using time histories

of the input and vibration response of the structure, generated and measured by the piezo-

ceramic patches internal to the structure. Using data from beam experiments, the feasibil-

ity of this approach was demonstrated in obtaining reliable, physically meaningful

dynamic parameters such as stiffness, damping, and mass density, and hence identifying

damage from the changes in those physical coefficients. Although results were obtained

only for aluminum beams, the framework can be readily applied to plate, shell and beam

like structures. However in the case of crack damage and delamination, the partial differ-

ential equation model developed here cannot be applied directly.

Caicedo et al. (2004) developed a least squares optimization method to estimate

the stiffness parameters based on the measured modal parameters which were identified

using Natural Excitation Technique combined with Eigensystem Realization Algorithm

(NExT-ERA). The proposed method was applied to the simulated acceleration response

data from an analytical model of an existing physical structure. Noise in the sensors was

simulated in the benchmark problem by adding a stationary, broadband signal to the

response. In order to identify the damage, the stiffness of each floor in the damaged case

was compared to that of the undamaged case. The proposed method was applied using the

structural response data generated with two different models, different excitations, and

various damage patterns (12 DOF and 120 DOF model, wind and shaker excitations, six

different damage cases by removing braces). The proposed method was shown to be effec-

tive for detecting, localizing and quantifying the damage.
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Lus et al. (2004) briefly presented the theory for a system and damage identifica-

tion algorithm for linear systems, and discussed the effectiveness of such a methodology

in the context of a benchmark problem that was proposed by the ASCE Task Group in

Health Monitoring. The proposed approach has two well-defined phases: (1) identification

of a state space model using the Observer/Kalman filter identification algorithm, the

eigensystem realization algorithm, and a nonlinear optimization approach based on

sequential quadratic programming techniques, and (2) identification of the second-order

dynamic model parameters from the realized state space model. The location and amount

of the structural damage were determined by comparing the identified stiffness matrices

for the undamaged and damaged cases. The numerical results for all the cases contained in

the benchmark problem provided a good estimation of the location and amount of struc-

tural damage, even in the presence of substantial measurement noise and possible model-

ing errors.

2.10.6   Other Methods

This section reviews the system identification based methods which can not be cat-

egorized in any of above described groups. These methods use the same basic idea,

employing the system identification methodology to identify the modal properties and

track their changes to identify the damage.

Baruh and Ratan (1993) developed a method for detection and localization of

structural damage. The detection is carried out in two parts. First, the eigensolution of sys-

tem is computed using a modal parameter identification technique. Then the estimated



52
eigensolution is used together with the properties of the eigenvalue problem to identify the

damaged components. The method was applied to a truss structure (with 12 elements, 20

nodes). A sensitivity analysis was performed, where the effects of modeling errors and

inaccuracy in the identification procedure (estimation errors) were analyzed. It was

observed that such errors, when relatively small, do not affect the damage identification

results. 

Soeiro and Hajela (1993) described a method to identify damage in composite

structures that has its basis in methods of system identification. Two distinct analytical

models, one using two-dimensional (2D) elements in conjunction with the classical lami-

nation theory and another using three-dimensional (3D) elements were considered. The

output error method for system identification was employed to determine changes in the

analytical model necessary to minimize differences between the measured and predicted

response. Numerical simulation of measurements such as static deflections, strains, and

vibration modes were used in the identification procedure. The method has been imple-

mented for a series of example problems with encouraging results. 

Lim et al. (1996) employed a real-time modal parameter identification algorithm

for structural damage detection. Because the modal parameter extraction process was con-

ducted in real time, the algorithm is capable of identifying changes in structural properties

attributable to structural damage as soon as they occur. Using the algorithm and a labora-

tory truss structure, it was demonstrated experimentally that continuous, real-time moni-

toring of anomalies attributable to structural damage is feasible. This monitoring

capability will provide an early warning to an operator so that proper measures can be
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taken before a catastrophic failure occurs. The results of this damage detection study using

the truss were presented along with the description of the real-time modal parameter iden-

tification algorithm.

Hjelmstad and Shin (1997) developed a damage identification algorithm based on

parameter estimation with an adaptive parameter grouping scheme. An adaptive parameter

grouping scheme was proposed to localize damage in a structural system for which the

measured data are sparse. A data perturbation scheme was proposed both for the baseline

structure, to establish the damage threshold above which damage can be confidently dis-

cerned from noise, and for the damaged structure, to compute the damage indices. To

examine and demonstrate the damage identification algorithm, a numerical simulation

study on a planar bowstring truss structure was performed. The case studies showed that

the developed algorithm can identify damage in structural systems even under sparse and

noisy measured data.

Wong and Chen (2000) developed methods for the identification of structural dam-

age in nonlinear structures. The damage was defined as either a reduction of stiffness or a

change of restoring force characteristics from linear (undamaged state) to weak nonlinear

(damaged state). The first method used for identifying both the location and type of dam-

age is the location vector method (LVM). The LVM requires only the modal data from the

first few fundamental modes. The second method, which was for quantifying the damage,

is based on Fast Fourier Transform (FFT) and the least-squares method under the assump-

tions that the location of the damage can be identified. The methods were demonstrated by

a five degree-of-freedom Duffing’s nonlinear system. Measurement data were simulated
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in the time domain and in the frequency domain by using the Runge-Kutta method and

FFT, respectively. The robustness and effectiveness of the methods were examined by

using a simulated output time history contaminated by a 5% white noise, which repre-

sented more realistic levels of measurement errors.

Di Paola and Bilello (2004) proposed a damage identification procedure for Euler-

Bernoulli beams under static loads by using an integral formulation. This identification

procedure is based on a least-square constrained nonlinear minimization problem. A

proper objective function is defined as a function of theoretical and measured variations of

a structural response characteristic in the presence of damage. If the experimental mea-

surements are considered free from errors, the identification algorithm provides the exact

estimation of damage parameters using the minimum number of information. The perfor-

mance of the identification procedure was investigated in a rectangular cross-section beam

with different damage scenarios. The results showed that, for an adequately small ampli-

tude of noise, both mean errors and standard deviations of the estimated parameters are

reduced with increasing amounts of information, so proving the consistency of the estima-

tion.

Yoshimoto et al. (2005) presented a damage identification algorithm for structural

health monitoring based on the subspace identification and the complex modal analysis.

The proposed algorithm is applicable to any shear type structure. The algorithm is based

on participation factors to identify the input-output relations for each mode obtained from

the MIMO models. Introducing the substructure approach, the algorithm was tuned for

base-isolated buildings so that the required number of sensors would be significantly
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reduced. The effectiveness of the algorithm was examined through the simulations and the

experiments. Furthermore, applying the algorithm to the existing 7-story base-isolated

building that was equipped with an Internet-based monitoring system, the feasibility of the

algorithm was verified.

2.11   Methods Based on Residual Forces

The residual force method was shown to be effective in damage localization using

insufficient modal data as long as the modeling error is small for the undamaged structure

(Ricles and Kosmatka 1992). This method is usually employed combined with another

method. In Ricles and Kosmatka (1992), measured modal data along with a correlated

analytical structural model were used first to localize potentially damaged regions using

residual modal force vectors and then a weighted sensitivity analysis was conducted to

assess the extent of damage. In Chiang and Lai (1999), the residual forces method was

combined with the method of simulated evolution for damage identification. The damage

localization algorithm based on the residual forces method was shown to successfully

locate structural damage in the case that the analytical model used for damage identifica-

tion can well represent the dynamic system of interest within the frequency range of mea-

surement (eigenmodes) data. 

The residual forces concept was employed to so called subspace rotation damage

identification algorithm by Kahl and Sirkis (1996). The method was applied to identify the

damage in beam element using the strain-based data instead of displacement data. It was

found that the translational degrees of freedom are coupled to the rotational degrees of
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freedom in a beam such that the subspace rotation algorithm does not work when the rota-

tional degrees of freedom are condensed out. The relatively insensitivity of modal

response of beams to certain types of damage leads to the conclusion that as many modes

as possible must be used to locate damage event to add a degree of statistical confidence. 

Kosmatka and Ricles (1999) presented a new methodology for the nondestructive

evaluation of damage in flexible structures, the formulation and analytical studies of

which were reported in an earlier publication by the authors (Ricles and Kosmatka 1992).

The procedure was based on using experimentally measured natural frequencies and mode

shapes in conjunction with vibratory residual forces and a weighted sensitivity analysis to

estimate the extent of mass and/or stiffness variations in a structural system. Determina-

tion of the residual forces and weighted sensitivity analysis involved the use of an analyti-

cal model that is correlated to the experimental baseline data from a reference state. This

reference state defines the undamaged structural configuration. The method was demon-

strated by using a ten-bay space truss as an experimental test bed for various damage sce-

narios. The experimental results showed that the method can accurately predict the

location and severity of stiffness change as well as any change in mass for different dam-

age scenarios. The use of an analytical model that is correlated to the baseline test data

was shown to improve the prediction; however, reasonable results were also obtained

using an uncorrelated analytical model. 

Zimmerman et al. (2001) presented an algorithm for damage detection and local-

ization using expanded dynamic residuals. The methodology was shown to successfully

detect and locate damage on the NASA 8- bay truss test-bed when limited sensor informa-
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tion was utilized. The presented methodology, along with intelligent sensor placement,

showed that damage localization can be achieved using limited instrumentation. However,

it was observed that the success of this method is dependent on the number of sensors. 

2.12   Methods Based on Time Domain Data

Although the widely used modal parameters based damage identification method-

ology appears intuitive, its actual application poses many significant technical challenges.

One of the most fundamental challenges is that the experimental modal analysis will intro-

duce additional uncertainties and measurement errors to damage identification process. To

overcome this problem, another group of techniques are employed to detect identification

using the raw measurement in time domain directly. 

Majumder and Manohar (2003) developed a time-domain approach, within the

framework of finite element modeling, to detect damage in bridge structures using data on

vibration induced by a moving vehicle. The study reported in this paper accounted for sev-

eral complicating features associated with response of bridge and vehicle system, includ-

ing the effects due to dynamic interaction between vehicle and bridge, spatial

incompleteness of measured data, deck unevenness and presence of measurement noise.

The inclusion of vehicle inertia, stiffness and damping characteristics into the analysis

made the system time variant which, in turn demands treatment of the damage identifica-

tion problem in the time domain. The time-domain approach developed in this study leads

to a set of over determined linear algebraic equations for the damage indicator variables
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which were solved using pseudo-inverse theory. The performance of the procedures devel-

oped was demonstrated in a beam model using synthetically generated vibration data. 

Choia and Stubbs (2004) presented the damage index algorithm using time-domain

response data directly to identify the damage in the structure. The time-domain displace-

ment response measurements were assumed to be measured at a finite number of locations

in a structure and the mean strain energy over a specified time interval was obtained for

each element of the structure. The mean strain energy for the elements was used to build

an element damage index defined as the ratio of the stiffness parameter of the pre-dam-

aged to the post-damaged elements. The standardized damage indices were then used as

feature vectors in a classification scheme to identify damage. The classification scheme

used here was based on the statistical decision technique of hypothesis testing. The feasi-

bility of the methodology was demonstrated using simulated data from a continuous beam

structure. 

Lu and Gao (2005) proposed a novel time-domain auto-regressive model for dam-

age identification, which stems from the linear dynamic system theory and it is formulated

in the form of a prediction model of auto-regressive with exogenous input (ARX). The

model coefficients correlate with the dynamic properties of the structure and they can be

established from reference-state response signals. The residual error of the established

model when applied on measured signals reflects the structural change, and the standard

deviation of the residual error was found to be a damage sensitive feature. Numerical sim-

ulation studies of two structural models demonstrated that using the standard deviation of

the residual errors as a feature, the occurrence of damage can be detected. It was observed
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that the behavior of the proposed ARX model can be complicated when the location of the

response point selected as the ARX model input is near the location of the damage. The

standard deviation of the residual error of the ARX model, although sensitive to the occur-

rence of damage, did not give a precise indication of the extent of damage.

2.13   Wavelet Based Methods

Wavelet analysis may be viewed as an extension of the traditional Fourier trans-

form with adjustable window location and size, therefore, transient behavior of data can

be retained. Wavelet analysis has recently emerged as a promising tool for structural

health monitoring and damage identification. The occurrence of damage and the moment

when it happens can be identified by a spike or an impulse in the plots of higher resolution

details from wavelet decomposition of response. Location of damage can also be identi-

fied by a pattern of spikes. The wavelet approach is less model dependent in the sense that

only measurement data are required in the analysis. However, knowledge of structural

details will be helpful to interpret the results from the wavelet analysis. 

Hou and Noori (1999) presented a wavelet based approach for identification of

damage locations. Occurrence of the damage was detected by a spike or an impulse in the

acceleration response. Location of damage was identified by a pattern of spikes. This

approach may be implemented both off-line and on-line, therefore, has a great promise for

online health monitoring, integrated with structural control, and post-event damage

assessment. The method successfully identified and located the damage in a numerical
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example of a three degree-of-freedom spring-mass-dashpot system with multiple break-

able springs. 

Hou et al. (2000) discussed an extended version of their previous paper (Hou and

Noori 1999). A wavelet-based approach was proposed for structural damage identifica-

tion. The methodology was applied to simulation data generated from a simple structural

model subjected to a harmonic excitation. The model consisted of multiple breakable

springs, some of which could suffer irreversible damage when the response exceeds a

threshold value or the number of cycles of motion is accumulated beyond their fatigue life.

It was shown that structural damage or a change in system stiffness can be detected by

spikes in the wavelet decomposition of the response data, and the locations of these spikes

indicate the moments when the structural damage occurred. 

Sun and Chang (2002) proposed a wavelet packet transform (WPT) based method

for damage assessment of structures. One drawback of the Wavelet Transform (WT) is

that its resolution is rather poor in the high-frequency region. Since structural damage is

typically a local phenomenon captured most likely by high frequency modes, this potential

drawback can affect the application of the wavelet-based damage assessment techniques.

The WPT adopts redundant basis functions and hence can provide an arbitrary time-fre-

quency resolution. In this paper, dynamic signals measured from a structure were first

decomposed into wavelet packet components. Component energies are then calculated

and used as inputs into neural network models for damage assessment. Numerical simula-

tions were performed on a three-span continuous bridge under impact excitation. The
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results showed that the WPT-based component energies are good candidate indices that

are sensitive to structural damage.

Melhem and Kim (2003) studied two types of full-scale concrete structures sub-

jected to fatigue loads: (1) Portland Cement Concrete Pavements (PCCP) on grade; and

(2) a simply supported prestressed concrete beams. Fast Fourier Transform (FFT) and con-

tinuous wavelet transform (CWT) were used to analyze the dynamic impact response and

evaluate the degradation of the slab and the simply supported beam after fatigue damage

was gradually applied. Results from both procedures were compared. In the case of PCCP,

the natural frequency was not consistently changing as more cracks were developed, and

therefore damage could not be clearly identified. However, when analyzed by CWT, the

results showed a clear difference between before and after damage, and were consistent

with the damage progression. In case of the beam, both FFT and CWT produced satisfac-

tory results. In general, both FFT and CWT can identify which frequency components

exist in the signal. However, the advantage of the wavelet transform is that, in addition to

the frequency components, it also shows when a particular frequency occurs. 

Yuan et al. (2003) discussed an active monitoring method for damage identifica-

tion applied to composite structures. Honeycomb sandwich and carbon fiber composite

structures were studied. Two kinds of damage were considered: delamination and impact

damage. Wavelet analysis methods were adopted to post-process the raw monitored sig-

nal. The proposed method was shown to be effective, reliable, and straightforward for the

specimens considered in their study, which were composed of different materials and var-

ious levels of damage. 
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Hera and Hou (2004) presented an application of wavelet analysis for damage

detection and locating damage region(s) for the ASCE structural health monitoring bench-

mark data. The response simulation data were generated basically by a FEM program pro-

vided by the ASCE Task Group and damage was introduced in the middle of response by

breaking one or more structure elements such as inter-story braces. Wavelets were used to

analyze the simulation data. It was found that structural damage due to sudden breakage of

structural elements and the time when it occurred can be clearly detected by spikes in the

wavelet details. 

Law et al. (2006) analytically derived the sensitivity of wavelet coefficients from

structural responses with respect to the system parameters. It was then used in a sensitiv-

ity-based inverse problem for structural damage detection with sinusoidal or impulsive

excitation and acceleration and strain measurements. The sensitivity to the system param-

eters of wavelet coefficient was shown to be more significant than the response sensitivity

with an example of a single story plane frame. Simulation results showed that the damage

information was carried mostly in the higher vibration modes of the structure as diagnosed

with the corresponding wavelet coefficients from its dynamic responses.
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CHAPTER 3

GENERAL REALIZATION ALGORITHM 
FOR MODAL IDENTIFICATION OF 

LINEAR DYNAMIC SYSTEMS

3.1   INTRODUCTION

As the performance of computational algorithms and computers have drastically

increased, the problem of identifying the properties and conditions of structures from their

measured response to an external excitation has received considerable attention. There has

been a vast number of studies and algorithms concerning the construction of state-space

representations of linear dynamic systems in the time domain, starting with the work of

Gilbert (1963) and Kalman (1963). One of the first important results in this field is about

minimal state-space realization, indicating a model with the smallest state-space dimen-

sion among realized systems that have the same input-output relations within a specified

degree of accuracy (Juang and Pappa 1985). It was shown by Ho and Kalman (1965) that

the minimum representation problem is equivalent to the problem of identifying the

sequence of real matrices, known as the Markov parameters, which represent the impulse

response of a linear dynamic system. Numerous studies (Silverman 1971, Phan et al.

1991) have been conducted on the subject of Markov parameters and their relations to dif-

ferent representations of linear dynamic systems. 
77
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Following a time-domain formulation and incorporating results from control the-

ory, Juang and Pappa (1985) proposed the Eigensystem Realization Algorithm (ERA) for

modal parameter identification and model reduction of linear dynamic systems. ERA

extends the Ho-Kalman algorithm and creates a minimal realization that mimics the out-

put history of the system when it is subjected to a unit pulse input. Later, this algorithm

was refined to better handle the effects of noise and structural nonlinearities, and ERA

with data correlations (ERA/DC) was proposed (Juang et al. 1988). The Natural Excita-

tion Technique combined with ERA (NExT-ERA), first proposed by James et al. (1993), is

based on the same idea as ERA/DC in order to identify the modal parameters of a system

using ambient vibration data. Peeters and De Roeck (2001) reviewed several output-only

system identification methods which are useful for operational modal analysis under the

condition that the input excitation is broadband (ideally white noise). Although these

methods are powerful in generating dynamic models from impulse response and/or ambi-

ent vibration data, realization algorithms similar to ERA that can handle arbitrary input

signals are needed. For arbitrary input signal, identification methods based on prediction

error minimization (Ljung 1999) or subspace methods (Van Overschee and De Moore

1996) can be used. Unfortunately, prediction error methods require an intricate model

parametrization, specially for multivariable systems, along with a nonlinear optimization

to identify model parameters. These issues have been resolved in subspace based identifi-

cation, but the link with direct realization algorithms is not transparent. This paper estab-

lishes a straightforward extension of the well-known eigensystem realization algorithm,

by development of the General Realization Algorithm (GRA) on the basis of an arbitrary

input signal. 
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The proposed GRA allows for the realization of a state-space model on the basis of

input-output measurement data using a Hankel matrix based realization algorithm similar

to the well-known ERA. GRA allows for an explicit use of the input signal through con-

struction of a so-called weighted Hankel matrix from the input-output measurements. In

the special case where the input excitation is an impulse signal, GRA reduces down to

ERA in which a Hankel matrix is formed on the basis of impulse (free vibration) response

measurements. The explicit use of the input signal to construct the weighted Hankel

matrix in GRA shows an advantage in comparison to the case where only Markov param-

eter estimates are used to initiate a standard Hankel matrix based realization as in ERA.

This advantage is more significant when the input excitation is a short-duration and/or

non-broadband (colored) signal such as earthquake ground motions.

In this paper, the GRA is presented to identify the dynamic characteristics of linear

multi-degree-of-freedom dynamic systems subjected to arbitrary loading from zero (at

rest) or known non-zero initial conditions. The identified state-space matrices are

improved by a least squares algorithm, upon state reconstruction, to get the minimum pre-

diction error for the response. Statistical properties (i.e., bias, variance, and robustness to

added output noise) of the modal parameter estimators provided by the GRA are investi-

gated through a numerical simulation study based on a benchmark problem with non-clas-

sical damping. 
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3.2   IDENTIFICATION VIA STATE-SPACE REALIZATION

3.2.1   State-Space Representation of Linear Dynamic Systems

Consider a P degree-of-freedom (DOF) linear dynamic system represented by the

following second-order differential equation of motion and measurement equation: 

(3.1)

where  denotes the displacement response vector of the system as a function

of time t, the superimposed dot indicates a single differentiation with respect to time, and

the superscript T indicates the matrix transpose operation. Matrices M, D and K repre-

sent the  mass, damping and stiffness matrices of the system, respectively. The

input matrix B defines the spatial distribution (among the system DOFs) of the (measur-

able) external forcing function u(t). The output vector  represents the mea-

sured system response, and the output matrix C captures the possible linear combination of

the acceleration, velocity and displacement vectors in the measured response. 

A linear dynamic system can also be represented in state-space form, which is

often more suitable for system identification purposes, as

(3.2)

in which  (n = 2P) denotes an n-dimensional state vector consisting of an

arbitrary linear combination of the displacement, p(t), and velocity, , response vectors

Mp·· t( ) Dp· t( ) Kp t( )+ + Bu t( )=

y t( ) C p t( )T p· t( )T p·· t( )T 
T

=

p t( ) RP 1×∈

P P×( )

y t( ) Rm 1×∈

x· t( ) Fx t( ) Gu t( )+=
y t( ) Hx t( ) Eu t( )+=

x t( ) Rn 1×∈

p· t( )
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in Eq. (3.1). The state matrix , input matrix , output matrix

 and feed-through matrix  in Eq. (3.2) completely define a linear

dynamic system with an r-dimensional forcing function, u(t), and m-dimensional output

measurement, y(t). 

As an example, consider the measurement of  (i.e., ) using accelerome-

ters mounted on a structural system. By selecting  as (physical)

state vector and  in Eq. (3.2), it can be seen that Eq. (3.1) with

 can be re-written in the form of Eq. (3.2) with the following

state-space matrices: 

(3.3)

which are completely defined from the mass, damping, stiffness and input matrices of the

second-order system in Eq. (3.1). When identifying a state-space model of a dynamic sys-

tem, the identified state-space model correspond to a general state (different than physical

state) as in Eq. (3.2). The identified state-space model can be converted to an equivalent

model with physical state ( ) and state-space matrices defined in Eq. (3.3) through a

state transformation (similarity transformation)  where  is a non-

singular matrix. The transformed state-space model takes the form

F Rn n×∈ G Rn r×∈

H Rm n×∈ E Rm r×∈

p·· t( ) m P=

x t( ) p t( )T p· t( )T
T

=

y t( ) p·· t( )=

C 0 P P×( ) 0 P P×( ) I P P×( )=

F
0 P P×( ) I P P×( )

M 1– K–   M 1– D– 2P 2P×( )

  G,
0 P r×( )

M– 1– B 2P r×( )

= =

H M 1– K–   M 1– D– P 2P×( )
  E, M– 1– B

P r×( )
= =

x t( )

x t( ) Tx t( )= T Rn n×∈
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 (3.4)

where  and  have the form given in Eq. (3.3),

from which the second-order differential equation model could be derived. 

As a final step towards the representation of dynamic structural systems for identi-

fication purposes, the framework of discrete time domain systems is used in this paper.

Typically, measurements of the output y(t) and/or the input u(t) are obtained at discrete

times , k = 0, 1, 2, ..., with a constant sampling time . For a continuous time

system sampled at , a discrete time state-space model 

(3.5)

is needed to represent the dynamics of the structural system. Depending on the assumption

of inter-sample behavior of the input signal u(t) or the approximation of the differentiation

operator in discrete time, different equivalent discrete time models of the continuous time

system can be found (see Appendix I). The inter-sample behavior of the input u(t) can be

approximated by a constant value  for , yielding a

Zero Order Hold (ZOH) approximation. Such an approximation is viable in case of fast

sampling (small ) and slowly varying input signals. However, for fast changing input

signals due to shock-type excitation (pulse-like input force), a ZOH approximation of the

input yields an inaccurate discrete state-space model of the underlying continuous system.

A more accurate inter-sample behavior is to extrapolate the sample  so as to

x· t( ) Fx t( ) Gu t( )+=

y t( ) Hx t( ) Eu t( )+=

F TFT 1– G, TG H, HT 1–= = = E E=

t k ∆T= ∆T

∆T

x k 1+( )∆T( ) Ax k∆T( ) Bu k∆T( )+=
y k∆T( ) Cx k∆T( ) Du k∆T( )+=

u t( ) u k∆T( )= k∆T  t  k 1+( )∆T≤ ≤

∆T

u k∆T( )
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approximate linearly the continuous input signal u(t) in the time interval

, i.e.,

(3.6)

Such an approximation is known as triangle-hold equivalent (or first-order hold) and leads

to a causal discrete time system, although the impulse response of a triangular hold is non-

causal in continuous time (Franklin et al. 1998). Using a triangle-hold (T-H) approxima-

tion, the discrete time state-space model in Eq. (3.5) is related to the continuous time state-

space model in Eq. (3.2) via 

 (3.7)

where , , and  are computed from the solution of (Franklin et al. 1998) 

(3.8)

It can be seen from Eqs. (3.7) and (3.8) that the discrete time state matrix A for the T-H

approximation is identical to that for the ZOH approximation , yielding the

same discrete time poles as for the ZOH approximation. However, the input matrix B and

feed through matrix D for the T-H approximation differ from their ZOH counterparts and

the corresponding discrete time state-space model yields a better approximation of the

sampled output of the underlying continuous time model than its ZOH counterpart in the

case of a shock-type (pulse-like) or fast varying input signal. 

k∆T  t  k 1+( )∆T≤ ≤

u t( ) u k 1+( )∆T( ) u k∆T( )–
∆T

---------------------------------------------------------- t u k∆T( ) k 1+( ) u k 1+( )∆T( )k–+⋅≈

A �, =

C H, =

B �1 ��2 �2–+=

D E H�2+=

� �1 �2

exp
F∆T G∆T 0

0 0 I
0 0 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ � �1 �2

0 I I
0 0 I

=

A F∆T( )exp=
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3.2.2   Eigensystem Realization Algorithm (ERA)

In order to better present the main concepts behind the General Realization Algo-

rithm (GRA) for arbitrary input signals, first the Eigensystem Realization Algorithm

(ERA) for pulse input signal is briefly reviewed in this section; more details can be found

in Juang and Pappa (1985). In the next section, ERA is generalized for arbitrary input sig-

nals, which often characterize the input excitation of actual dynamic systems (e.g., seismic

excitation of a bridge or building structure). To simplify notations, the discrete time

impulse response measurements, , (also referred to as Markov parameters for unit

pulse input), are assumed to be vector valued (i.e., single input, multiple output system).

The formulation of ERA can be generalized to multiple input - multiple output systems

(Juang and Pappa 1985) that is avoided here in order to focus on the main concepts.

Given the discrete time state-space model of a linear dynamic system, as in Eq.

(3.5), the output  due to the arbitrary input signal  can be written explicitly

as

(3.9)

where G(i) denote the Markov parameters,  has been normalized to  for the

sake of notational brevity, and k indicates the input and output samples at discrete times t =

k (k = 0, 1, ..., 2N). Given the discrete output measurements y(k) and possibly the input

measurements u(k) for k = 0, 1, 2, ..., 2N, the objective is to determine the appropriate size

n (McMillan degree) of the state vector x(k) in Eq. (3.5) (i.e., order of the model to real-

g k∆T( )

y k∆T( ) u k∆T( )

y k( ) Du k( ) G i( )u k i–( )
i 1=

∞

∑+=     G i( ), CAi 1– B=

∆T ∆T 1=
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ize), and to estimate a discrete time state-space realization (A, B, C, D) of the dynamic

system considered. 

For the special case of a unit pulse input defined as

, (3.10)

the output y(k) corresponds to the Markov parameters, G(k), of the discrete time system.

To set up the realization algorithm on the basis of the impulse response measurements,

g(k) = y(k) (k = 0, 1, 2, ..., 2N), first an  Hankel matrix H is constructed as

(3.11)

and a corresponding shifted Hankel matrix of the same size is defined as

(3.12)

In case g(k) are noise free impulse response measurements generated by Eq. (3.5), it fol-

lows that

(3.13)

where B is the input matrix of the state-space model in Eq. (3.5). The Hankel matrix H in

Eq. (3.11) can be expressed as

(3.14)

u k( )
1   k, 0=
0   k 0≠,⎩

⎨
⎧

=

m N×( ) N×

H

g 1( ) g 2( ) … g N( )
g 2( ) g 3( ) … g N 1+( )
… … … …

g N( ) g N 1+( ) … g 2N 1–( ) m N×( ) N×

=

H

H

g 2( ) g 3( ) … g N 1+( )
g 3( ) g 4( ) … g N 2+( )
… … … …

g N 1+( ) g N 2+( ) … g 2N( ) m N×( ) N×

=

g k( ) G k( )
D,           for k 0=

CAk 1– B for k 0≥,⎩
⎨
⎧

= =

H H1H2=
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in which H1 and H2 are the observability and controllability matrices, respectively, 

(3.15)

For a discrete time state-space model, Eq. (3.5), of order (or McMillan degree) n, it can be

shown via the Cayley-Hamilton theorem that both H1 and H2 have full column rank n and

full row rank n, respectively. As a result, the Hankel matrix H has rank n. Furthermore,

from its definition, the shifted Hankel matrix  can be shown to have the following shift

property: 

(3.16)

where H1 and H2 are as defined as in Eq. (3.15). As both H1 and H2 have respectively full

column and row rank n, there exists a left inverse  and a right inverse  such that 

(3.17)

so that, from Eq. (3.16), 

(3.18)

The above left and right inverses are obtained as

(3.19)

H1

C
CA

CA2

…

CAN 1–
m N×( ) n×

     and           H2 B AB A2 B … AN 1– B
n N×

= =

H

H H1AH2=

H1
† H2

†

H1
†H1 In n×        and       H2H2

† In n×= =

A H1
† HH2

†=

H1
† H1

TH1[ ]
1–
H1

T=

H2
† H2

T H2H2
T[ ]

1–
=
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During the identification process, the decomposition of  into  and  accord-

ing to Eq. (3.14) can be performed through a singular value decomposition (SVD),

, where both U and V are orthonormal matrices and  is a diagonal matrix

with the (non-negative) singular values ordered in decreasing magnitude on the main diag-

onal. The SVD provides insight into the rank of H (Vandewalle and de Moor 1991), as the

rank of H is given by the number of non-zero diagonal elements (singular values) in  for

the case of noise free measurements. In the case where the rank of H is significantly larger

than n (due to the presence of measurement noise), a decision can be made regarding the

order n of the system (or effective rank of the Hankel matrix H) on the basis of the plot of

the singular values. In this case, the SVD allows to approximate the high rank Hankel

matrix H into a lower rank (n) matrix via a separation of large and small singular values of

matrix H. The use of SVD to compute a low rank decomposition of the Hankel matrix is

essential in the realization method and has been used in the classical Kung's realization

algorithm (Kung 1978) as well as in ERA (Juang and Pappa 1985). The SVD of the Han-

kel matrix H can be expressed as

(3.20)

in which  is split up in the two diagonal matrices  and , where  and  denote

the part of  with the s small (zero in the case of noise free measurements) singular values

and the part of  with the n large (non-zero in the case of noise free measurements) singu-

H H1 H2

H U�VT= �

�

H U�VT
Un Us

�n 0

0 �s

Vn
T

Vs
T

= =

� �n �s �s �n

�

�
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lar values, respectively. As already mentioned above, a decision on an appropriate value of

the rank n of the reduced-rank Hankel matrix can be made by plotting the singular values. 

Using the partitioned SVD in Eq. (3.20), the high rank Hankel matrix H can be

approximated by a reduced rank n matrix Hn of the same dimension as 

(3.21)

which can be shown to minimize  where  denotes the induced two-norm

or maximum singular value of a matrix. On the basis of the above rank n decomposition,

the matrices H1 and H2 in Eq. (3.14) can be estimated as

(3.22)

from which the expressions for the left inverse  and right inverse  simplify to 

(3.23)

From the results in Eqs. (3.21) through (3.23) and using Eqs. (3.13), (3.15) and (3.18), it

follows that the state-space matrices of the discrete time model in Eq. (3.5) are given by 

(3.24)

where the notations (1:m , :) and (: , 1) denote the first m rows and the first column of a

matrix, respectively. It should be noted that ERA is also readily applicable to free vibra-

tion response data. In this case, the Hankel matrix is constructed using free vibration data

(i.e., y(0) as first element of the Hankel matrix), and the identified input matrix  repre-

Hn UnΣnVn
T=

H Hn– 2 … 2

H1 Un�n
1 2⁄=

H2 �n
1 2⁄ Vn

T=

H1
† H2

†

H1
† �n

1 2⁄– Un
T=

H2
† Vn�n

1 2⁄–=

D g 0( )    C, H1 1:m, :( )    B, H2 : 1,( )   and   A H1
†HH2

†= = = =

B
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sents the non-zero initial state , which is related to the initial nodal displacements and

velocities in the physical state  through the linear transformation . 

3.2.3   General Realization Algorithm (GRA)

As discussed in the previous section, ERA assumes either a pulse input signal or

free vibration response to construct the Hankel matrix. In many practical situations, the

dynamic excitation acts over a finite-time or continually and the dynamic response of the

structure during forced vibration contains valuable information on the system dynamics.

Unfortunately, ERA cannot incorporate this information directly. The objective of this sec-

tion is to extend ERA to accommodate arbitrary excitation signals. 

Although ERA is not directly applicable to general excitation signals, estimates of

the Markov parameters can be obtained separately and fed into ERA. Such an estimation

can be achieved via (i) non-parametric estimation methods such as correlation analysis,

e.g., NExT-ERA by James et al. (1993), (ii) estimation of a Finite Impulse Response (FIR)

model, e.g., Oppenheim and Schafer (1989), (iii) inverse Fourier transformation of an

empirical transfer function estimate, e.g., Ljung (1999), or (iv) wavelet transformation,

e.g., Alvin et al. (2003). Unfortunately, for accurate estimation of the Markov parameters,

these methods require a broadband excitation signal u(k). A narrow band excitation will

lead to biased and noisy (large variance) estimation of the Markov parameters that will in

turn pollute the results of the subsequent application of ERA. An alternative would be to

reconstruct the Markov parameters from a Kalman filter or other state observer, as done in

Phan et al. (1992). Although this is a powerful method, it requires relatively long input-

x0

x0 x0 Tx0=
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output data in the least squares procedure used to compute the Markov parameters (Lus et

al. 2002). The method presented below aims at estimating the dynamic properties of the

structure based on a (short-time) input-output data sequence available. 

To illustrate the main idea behind GRA, consider the discrete time input-output

relationship given in Eq. (3.9) that can be rewritten in the following Hankel matrix based

representation 

(3.25)

where H is the truncated (the first i block rows with i < N) Hankel matrix given in Eq.

(3.11) and

(3.26)

In the above equation, H is the conventional Hankel matrix of impulse response coeffi-

cients g(k) and Y is a Hankel matrix consisting of the measured output data due to the

(arbitrary) input u(k). The input data is stored in the  square matrix U, which is non-

singular provided that . It is observed from Eqs. (3.25) and (3.26) that matrix E

contains terms defined as the sum of input signals weighted by the corresponding Markov

parameters, which can be estimated from input-output data. To show this, consider the

Y HU E+=

Y

y 1( ) y 2( ) … y N( )
y 2( ) y 3( ) … y N 1+( )
… … … …

y i( ) y i 1+( ) … y i N 1–+( ) m i×( ) N×

   U,

u 0( ) u 1( ) … u N 1–( )
0 u 0( ) … u N 2–( )
… … … …
0 0 … u 0( ) N N×

,= =

E

g 0( )u 1( ) g 0( )u 2( ) … g 0( )u N( )
g 0( )u 2( ) g 1( )u 1( )+ g 0( )u 3( ) g 1( )u 2( )+ … g 0( )u N 1+( ) g 1( )u N( )+

… … … …

g l( )u i l–( )
l 0=

i 1–

∑ g l( )u i l– 1+( )
l 0=

i 1–

∑ … g l( )u i N l– 1–+( )
l 0=

i 1–

∑
m i×( ) N×

=

N N×

u 0( ) 0≠
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input measurement u(0), which corresponds to the start of the non-zero input signal during

the experiment, to be normalized to u(0) = 1 without loss of generality1. This greatly sim-

plifies the formulation and with u(k) = 0 for k < 0, g(l) can be computed recursively from

the input-output data as

(3.27)

which is equivalent to

(3.28)

where U is given in Eq. (3.26) with u(0) = 1, and

(3.29)

Although matrix U is an upper triangular matrix with a determinant of one, this matrix can

be ill-conditioned, especially for a large number of data points N. Numerically, is it advan-

tageous to replace Eq. (3.28) by

(3.30)

where  is the Moore-Penrose pseudo-inverse (Noble and Daniel, 1988) of U with a tol-

erance on the singular values considered in computing this matrix. It should be noted that

the impulse response estimate (or Markov parameter estimates) can also be obtained using

different methods than the one shown in Eq. (3.30). Some of these methods such as

Observer/Kalman filter identification (Phan et al. 1991) can be used to estimate Markov

1. Both the input u and the output y are scaled by the same factor, namely the original/
unscaled value of u(0).

g l( ) y l( ) g k( )u l k–( )     g 0( ),
k 0=

l 1–

∑– y 0( )= =

GN YN U 1–⋅=

YN y 0( ) y 1( ) … y N 1–( ) m N×     and   GN g 0( ) g 1( ) … g N 1–( ) m N×==

GN YN U†⋅=

U†
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parameters without requiring knowledge of the initial conditions. The impulse response

estimates are then used to compute the elements of matrix E which can be calculated as

(3.31)

where  denotes the kth column of ith block row of matrix E and  is the

(l+1)th column of  matrix given in Eq. (3.30). In the case of noisy measurements ,

the variance of  increases with l. It can be observed from Eq. (3.31) that increasingly

values of l in  are needed to compute the successive block rows of the matrix E. To

mitigate the effects of the increasing variance (as a function of l) of the impulse response

estimates , a limited number i ( ) of block rows of matrix E of dimension

 is used such that  has a reasonably small variance. In the previous state-

ment, N denoted the total number of data points minus i, and n is the anticipated order of

the model to be estimated. Defining  as a weighted Hankel matrix, it

follows from the full rank property of U that rank ( H ) = rank ( R ). In the case of noise

free measurements, rank ( R ) is equal to the exact order of the system to be identified.

GRA allows a state-space realization of the system directly on the basis of the weighted

Hankel matrix R, from which the modal parameters of the system can be obtained. Alter-

natively to the above, matrix H could be computed via  (or ), but that

would require an additional inverse (or pseudo-inverse) of the possibly ill-conditioned

matrix U which would result in large variances of the high column entries of the Hankel

matrix H. 

E i k,( ) GN l 1+( )u k i l– 1–+( )
l 0=

i 1–

∑=

E i k,( ) GN l 1+( )

GN YN

GN l( )

GN l( )

GN l( ) n i≤ N<

m i×( ) N× GN i( )

R Y E– HU= =

H RU 1–= H RU†=
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To continue the development of GRA, a lower rank decomposition via SVD is

applied to R as

(3.32)

which is similar to Eq. (3.20) for Hankel matrix H. Using this SVD decomposition, matrix

R can be approximated by a rank n matrix Rn of the same dimensions as 

(3.33)

which can be shown to minimize . Therefore,  can be factorized as

(3.34)

in which

(3.35)

Similar to Hankel matrix  in Eq. (3.16), matrix R has the shift property

(3.36)

where  in which shifted matrix  is defined similar to  in Eq. (3.12) and  is

given by

(3.37)
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Vn
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Rn Un�nVn
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Rn R1R2=
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R R1AR2=
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From the above properties of matrix , it follows that a realization based algorithm simi-

lar to ERA based on the input-output data matrices  and  can be used to construct the

discrete time state-space matrices in Eq. (3.5) for the case of arbitrary input u(k). This is

achieved simply by replacing  by  in Eq. (3.24). 

The main idea behind GRA is to use the information of the input signal to create a

weighted Hankel matrix , instead of creating a (unweighted) Hankel

matrix H by first estimating a large number of Markov parameters on the basis of a short-

time and/or non-white input sequence. In the application of GRA, the Markov parameter

estimates are used to build up the error matrix E, which in turn is used to create the

weighted Hankel matrix R on which a realization algorithm is performed to compute a

state-space model. However, by carefully examining the formula and size of matrix E, it is

observed that only a small number of Markov parameter estimates is needed to create a

“large fat” (very high number of columns compared to the number of block-rows) matrix

E and consequently matrix . Therefore, the use of a “large fat” unweighted

Hankel matrix H for which a large number of Markov parameters would be required, is

avoided. In other words, as compared to ERA, the proposed GRA reduces the required

length of the Markov parameter sequence to obtain accurate system identification results.

To show that GRA is a generalization of ERA, it can be seen that for a unit pulse

input u(k) as defined in Eq. (3.10), matrix U becomes the  identity matrix, while

matrix E becomes a  zero matrix since u(k) = 0 for . In another special

case where the input signal u(k) is the unit step defined as

R

R R

H R

R Y E– HU= =

R Y E–=

N N×

m i×( ) N× k 0≠
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, (3.38)

which is typically applied to flexible mechanical (servo) systems in order to study their

transient dynamic behavior, matrix U is an upper triangular matrix and matrix E is a row-

wise listing of output signals as

(3.39)

as previously shown by de Callafon (2003). In the latter case, applying GRA to matrix R

which depends only on step response data yields significantly better results in terms of

system realization than applying ERA based on impulse response data obtained through

differentiating the step response measurements (de Callafon 2003). 

3.2.4   Refinement of State-Space Realization through Least Squares Optimization

Although Eq. (3.24) allows to identify the state-space matrices A, B and C based

on the SVD of a high-dimensional Hankel matrix both for ERA and GRA, the feed-

through matrix D is estimated from the single, possibly noisy, measurement g(0). Using

the estimates of the state matrix A and the input matrix B obtained through ERA or GRA,

the state vector x(k) can be reconstructed as

(3.40)

for k = 0, 1, ..., 2N. With the reconstructed state vector x(k), the realization algorithm

(ERA or GRA) that is used to compute matrices A and B can be followed by a standard

u k( )
1 k, 0≥
0 k 0<,⎩

⎨
⎧

=

U

1 1 … 1
0 1 … 1
… … … …
0 0 … 1 N N×

             E,

y 0( ) y 0( ) … y 0( )
y 1( ) y 1( ) … y 1( )
… … … …

y i 1–( ) y i 1–( ) … y i 1–( ) m i×( ) N×

= =

x k 1+( ) Ax k( ) Bu k( )       x 0( ),+ 0= =
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Least Squares (LS) optimization problem to improve the estimation of the state-space

matrices. The LS problem can be stated by rewriting Eq. (3.5) and adding the zero mean

noise vector V(k) as 

(3.41)

where 

 and (3.42)

in which w(k) represents the possible noise on the reconstructed state vector x(k) and v(k)

the noise on the measured output y(k) which includes measurement noise. Noise vector

V(k) could also include the effects of parameter estimation errors and modeling error.

Including all input-output data for k = 1, ..., 2N in a single matrix representation, Eq.

(3.41) can be rewritten as 

(3.43)

Then the state-space matrices in  can be updated via a standard least squares solution as

(3.44)

provided that matrix U has full row rank. The full row rank condition of matrix U is

related to the input excitation  and is trivially satisfied for broad-band forcing func-

tion (e.g., pulse/impact load, earthquake ground excitation). The least squares improve-

ment renders the estimated state-space matrices less sensitive to noise. If the input u(k)

and the reconstructed state x(k) are uncorrelated with the state noise w(k) and the measure-

ment noise v(k), i.e., , consistent estimates of the state-space

Y k( ) �U k( ) V k( )      k,+ 1, ... , 2N= =

Y k( ) x k 1+( )
y k( )

    �, A B
C D

    U k( ), x k( )
u k( )

= = = V k( ) w k( )
v k( )

=

Y �U V      Y,+ Y 0( ) Y 1( ) … Y 2N( )      U, U 0( ) U 1( ) … U 2N( )= = =

�

�̂ LS
N

YUT UUT[ ]
1–

=

u k( )

1 N⁄( ) VUT×
N ∞→

lim 0=
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matrices are obtained. This condition is satisfied asymptotically as  provided that

the experiments are conducted in such a way that the input excitation is uncorrelated with

the measurement noise. 

3.3   NUMERICAL VALIDATION

3.3.1   Definition of Benchmark Problem

In order to investigate the performance of the proposed GRA, the eight-story linear

elastic shear building model shown in Figure 3.1 subjected to seismic base excitation is

used as a case study. This shear building has a constant floor mass of 625 tons, a constant

story stiffness of 106 [kN/m], and damping properties represented through the non-classi-

cal damping matrix C (Veletsos and Ventura 1986). The latter was generated from an

assumed configuration of inter-multiple-story viscous dampers installed on the structure

(between floors 1 and 4, 2 and 6, and 3 and 8) and is given by

(3.45)

Viscously damped systems that do not satisfy the Caughey-O’Kelly condition

(Caughey and O’Kelly 1965) generally have complex-valued natural modes of vibration.

Such systems are said to be non-classically or non-proportionally damped. Foss (1958)

N ∞→

C 400

16 6– 0 4– 0 0 0 0
6– 15 5– 0 0 4– 0 0

0 5– 14 5– 0 0 0 4–
4– 0 5– 12 3– 0 0 0

0 0 0 3– 6 3– 0 0
0 4– 0 0 3– 8 1– 0
0 0 0 0 0 1– 2 1–
0 0 4– 0 0 0 1– 5

×      kN sec/m⋅[ ]=
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presented a generalization of the modal superposition method to evaluate the response of

such systems. The modal parameters of the shear building model considered here are

obtained through solving a complex eigenvalue problem in state-space. The computed nat-

ural frequencies and damping ratios are reported in Table 3.1. It is worth noting that the

natural frequencies of a non-classically damped system extracted through eigen-analysis

of the state matrix, referred to as pseudo-undamped natural frequencies (Veletsos and Ven-

tura 1986), differ from the corresponding natural frequencies of the associated undamped

system. This difference is due to the fact that the eigenvalues of the state matrix of a non-

classically damped system are functions of the damping in the system. Figure 3.2 shows

the complex-valued mode shapes of the shear building as rotating vectors in the complex

plane called polar plots. The indices on the vectors in each polar plot indicate the DOF

number (i.e., floor number). The polar plot representation of a mode shape displays the

degree of non-classical damping characteristics of that mode. If the components (or

DOFs) of a mode shape are collinear (i.e., in phase or out of phase) in the complex plane,

then this mode is classically (or proportionally) damped. The more a mode shape’s com-

ponents are scattered in the complex plane, the more this mode is non-classically damped.

Since the higher order mode shapes of the shear building considered here exhibit strong

non-classical characteristics (Figure 3.2), the real parts of these mode shape components

do not remain proportional as the complex vectors rotate, i.e., these (real-valued) mode

shapes change continuously within one vibration period. In Figure 3.3, the real part of all

eight complex mode shapes are plotted at four snapshots with 90 degree phase shifts dur-

ing a vibration period. 



99
3.3.2   Simulation of Measurement Data

The shear building model is subjected to a horizontal base excitation defined as the

strong motion part (2-30 sec) of the Imperial Valley, 1940 earthquake ground motion

recorded at the El Centro station (see Figure 3.4). The shear building output data used in

this study consist of the floor absolute acceleration responses to this earthquake excitation.

The differential equations of motion formulated in state-space are integrated via complex

modal analysis (Peng and Conte 1998), assuming a piecewise linear forcing function, and

using piecewise linear exact integration of the complex-valued first-order modal equations

of motion. A constant time increment of ∆T = 0.02 sec is used to integrate the equations of

motion. To model measurement noise, zero-mean Gaussian white noise processes are

added to the simulated output signals. The reason for considering up to high levels of mea-

surement noise (4% in root-mean-square ratio) is to allow for the higher vibration modes

to become more difficult to extract from the data due to decreasing signal-to-noise ratio at

higher frequencies, a phenomenon typically seen in real-life applications.

Fig. 3.1 Eight story shear building model
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The performance (e.g., statistical properties of estimated modal parameters) of the

new system identification procedure presented above is investigated under increasing

level of noise. For a given floor, the noise level is defined as the ratio (in percent) of the

root mean square (RMS) of the added noise process to the RMS of the floor absolute

acceleration response (computed over the time interval 2-30 sec). The added noise pro-

cesses at the various floors are simulated as statistically independent. Figure 3.5 compares

the added noise realizations of various amplitudes (1%, 2%, 3%, and 4%) to all eight

modal components of the noise free roof absolute acceleration response obtained as

explained in Appendix II. It is clearly observed that depending on the mode and noise

level, the modal absolute acceleration response may be buried in the noise, which renders

the corresponding modal parameters difficult to identify. 

Table 3.1 Modal parameters of shear building structure

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Undamped frequency 
[Hz] 1.175 3.484 5.675 7.673 9.409 10.825 11.873 12.516

Pseudo-undamped
frequency [Hz] 1.176 3.486 5.687 7.674 9.406 10.871 12.012 12.278

Damped frequency [Hz] 1.175 3.473 5.675 7.662 9.388 10.859 11.977 12.251

Damping ratio [%] 3.77 8.54 6.5 5.65 6.12 4.71 7.68 6.65
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3.3.3   Application of GRA and Discussion of Results

In order to apply GRA to the seismic input and simulated output data, matrices E

and  of size  are formed based on the whole length of the simulated data

(1440 data points) as described in Section 2.3. The identified modal natural frequencies

and damping ratios are obtained through eigen-analysis of the estimated discrete time state

matrix A, while the identified mode shapes are obtained as described in Appendix III. The

modal parameters (natural frequencies, damping ratios, and mode shapes) of all eight

modes of the shear building identified from noise free input-output data are in perfect

agreement with the corresponding exact values given in Table 3.1 and Figure 3.3. The sta-
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tistical properties (bias and variance) of the estimated modal parameters using GRA are

investigated as a function of the noise level. 

For this purpose, a set of 100 identifications was performed at each of nine differ-

ent noise levels (0%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%) for the same noise free

input-output data. The added vector (8-DOF) noise processes for the 100 identification tri-

als are simulated as statistically independent. Statistics (mean and mean +/- one standard

deviation) of the identified-to-exact natural frequency and damping ratios are shown in

Figures 3.6 and 3.7, respectively, as a function of the noise level and for the first six vibra-

tion modes. Due to the low contribution of the seventh and eighth modes to the total build-

ing response (see Figure 3.5) and therefore the very weak signal-to-noise ratio, the modal

parameters of these modes cannot be identified at and above the minimum level of added

noise considered here (0.5%) as the modal responses are buried in the noise. From Figures

3.6 and 3.7, it is observed that (i) the identified modal frequencies and damping ratios are

in very good agreement with their exact counterparts, and (ii) in general both bias and

variance of the modal frequency and damping ratio estimators based on GRA increase as a

Table 3.2 Statistics of modal parameters identified using
GRA based on 100 identification trials at 1% noise level

Identified-to-exact
natural frequency ratio

Identified-to-exact
modal damping ratio

mean cov [%] min max mean cov [%] min max

Mode 1 1.000 0.00 1.000 1.000 1.000 0.05 0.998 1.001

Mode 2 1.000 0.01 1.000 1.000 1.000 0.15 0.995 1.003

Mode 3 1.000 0.01 1.000 1.000 1.000 0.23 0.995 1.007

Mode 4 1.000 0.06 0.999 1.005 1.003 0.64 0.989 1.034

Mode 5 1.001 0.13 0.998 1.009 1.020 1.92 0.971 1.084

Mode 6 1.003 0.20 0.995 1.007 1.037 4.33 0.932 1.132
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function of the noise level. However, in the particular application, the estimated natural

frequencies of the first four modes appear to be quasi unbiased at the noise levels consid-

ered, which may be due to the significant contribution of these modes to the total response

(see Figure 3.5). 

Comparison of Figures 3.6 and 3.7 shows that both bias and standard deviation of the

modal damping ratio estimates are significantly larger than those of the natural frequency

estimates, as expected from the system identification literature. To complement Figures

3.6 and 3.7, the cumulative distribution functions of the identified-to-exact natural fre-

quencies and damping ratios are plotted in Figures 3.8 and 3.9, respectively, for 1%, 2%,

and 3% noise levels and for the first 6 vibration modes (modes 1, 2, and 3 in the left col-

umn and modes 4, 5, and 6 in the right column). Figures 3.6 through 3.9 show that (i) the
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variance of the estimated modal frequencies and damping ratios is significantly larger for

higher modes, and (ii) the estimated modal frequencies and damping ratios are generally

more sensitive to the noise level for the higher modes. These two observed trends may be

due to the fact that the higher modes contribute less to the total response as shown in Fig-

ure 3.5. Table 3.2 provides the statistics (mean, coefficient-of-variation, min, max) of the

estimated modal frequencies and damping ratios based on 100 identification trials in the

presence of 1% output noise. 

The modal assurance criterion (MAC) is used to compare the estimated mode

shapes with their exact counterparts at different levels of noise. The MAC value is

bounded between 0 and 1, measures the degree of correlation between an estimated mode

0 1 2 3 4
0.996

0.998

1

1.002

1.004
Mode 1

ξ i es
tim

at
ed

 / 
ξ i ex

ac
t

0 1 2 3 4
0.99

0.995

1

1.005

1.01
Mode 2

0 1 2 3 4
0.99

1

1.01

1.02

1.03
Mode 3

0 1 2 3 4
0.98

1

1.02

1.04

1.06
Mode 4

ξ i es
tim

at
ed

 / 
ξ i ex

ac
t

0 1 2 3 4
0.9

1

1.1

1.2

1.3
Mode 5

Noise level [%]
0 1 2 3 4

0.5

1

1.5

2

2.5
Mode 6

 

 

mean

mean +/− std

Fig. 3.7 Statistics of identified-to-exact modal damping ratios as a function of measurement noise



106
shape, , and its exact counterpart, , (MAC value of 1 for exactly esti-

mated mode shape), and is defined as

(3.46)

where superscript * denotes the complex conjugate transpose. The mean and coefficient-

of-variation (cov) of the MAC values between estimated and exact mode shapes based on

100 identification trials are reported in Table 3.3 for all noise levels considered herein and

for the first six modes. From these results, it is observed that (i) the first four mode shapes

are identified very accurately even in the presence of high amplitude output noise (4%),

and (ii) estimates of the higher mode shapes become less accurate with increasing level of

noise.
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Table 3.3 Mean and coefficient-of-variation (COV) [%] of MAC values between identified and 
exact mode shapes based on 100 identification trials at different noise levels

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Mean COV Mean COV Mean COV Mean COV Mean COV Mean COV

No noise 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00

0.5% noise 1.000 0.03 0.997 0.39 0.991 1.25 0.978 2.96 0.966 4.20 0.903 10.80

1% noise 1.000 0.03 0.997 0.38 0.990 1.27 0.976 3.06 0.959 4.42 0.901 7.35

1.5% noise 1.000 0.03 0.997 0.38 0.990 1.28 0.976 2.99 0.948 4.36 0.860 4.43

2% noise 1.000 0.03 0.997 0.40 0.988 1.31 0.970 3.11 0.937 4.13 0.827 5.78

2.5% noise 1.000 0.03 0.997 0.40 0.988 1.31 0.969 3.14 0.929 4.13 0.818 5.02

3% noise 1.000 0.04 0.997 0.40 0.988 1.31 0.970 3.14 0.922 4.14 0.803 5.61

3.5% noise 1.000 0.04 0.997 0.40 0.988 1.31 0.968 3.15 0.908 4.35 0.780 6.54

4% noise 1.000 0.03 0.997 0.40 0.989 1.31 0.968 3.10 0.888 4.49 0.741 8.98
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3.4   CONCLUSIONS

This paper presents the General Realization Algorithm (GRA), a new system real-

ization algorithm to identify modal parameters of linear dynamic systems based on gen-

eral input-output data. This algorithm is a generalization of the Eigensystem Realization

Algorithm (ERA), which is based on singular value decomposition (SVD) of a Hankel

matrix constructed from impulse response or free vibration response data. This generaliza-

tion is obtained through SVD of a weighted Hankel matrix of input-output data, where the

weighting is determined by the loading. Using GRA, the state-space matrices are esti-

mated in a two-step process that includes a state reconstruction followed by a least squares

optimization yielding a minimum prediction error for the response. An application exam-

ple consisting of an 8-story shear building model subjected to earthquake base excitation

is used for the multiple purposes of validating the new algorithm, evaluating its perfor-

mance, and investigating the statistical properties (i.e., bias/unbias, variance, and robust-

ness to added output noise introduced to model measurement noise and modeling errors)

of the GRA modal parameter estimates. Based on the extensive simulation study per-

formed, it is found that the proposed new algorithm yields very accurate estimates of the

modal parameters (natural frequencies, damping ratios, and mode shapes) in the case of

noise free input-output data or low output noise. The bias and variance of the modal

parameter estimates increase with the level of output noise and with vibration mode order

(due to the lower participation of higher modes to the total response and weak signal-to-

noise ratio in the application example considered). Both bias and variance of the modal

damping ratio estimates are significantly larger that those of the corresponding modal fre-
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quency estimates as expected from the system identification literature. In summary, appli-

cation of GRA is recommended for realization of linear dynamic systems subjected to

short-duration and/or non-broadband excitations such as earthquake and shake table exci-

tations when information about the input is available. 
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APPENDIX I: TIME DISCRETIZATION OF CONTINUOUS-TIME

STATE-SPACE DYNAMIC MODEL

Consider the continuous-time state-space model presented in Eq. (3.2)

(3.47)

Performing a Laplace transformation on the state equation yields

(3.48)

The solution of Eq. (3.48) in time domain is expressed as

(3.49)

or equivalently

(3.50)

By defining  and considering  and

, Eq. (3.50) can be rewritten as

(3.51)

For a linear time-invariant system, 

(3.52)
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and therefore the state equation at time  can be expressed as

(3.53)

Depending on the assumption of inter-sample behavior of the input signal u(t), dif-

ferent equivalent discrete time models of the continuous time system can be obtained. The

inter-sample behavior of the input u(t) can be approximated by a constant value

 for , yielding the following Zero Order Hold

(ZOH) approximation

(3.54)

Defining , the discrete-time state equation becomes

(3.55)

or , yielding the discrete-time state-space model as in Eq. (3.5)

(3.56)

The choice on inter-sample behavior of the input affects the derivation of the discrete

input matrix B and feed-through matrix D only, and has no effect on the derivation of the

discrete state matrix A and output matrix C. Therefore, the relationship between the poles

of a continuous-time system (s) and their discrete-time counterparts (z) (i.e., eigenvalues

of the continuous and discrete state matrices) is given by
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(3.57)

independently of the discretization scheme used for the input (see Eq. (3.52)).

In another class of time-discretization schemes, a discrete-time state-space model

can be obtained by approximating the time differentiation operator in discrete time using

finite difference methods such as the forward or backward Euler method. In this case, the

relationship between poles of a continuous-time system and their discrete-time counter-

parts do not follow Eq. (3.57).

z es ∆T⋅=
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APPENDIX II: MODAL CONTRIBUTIONS TO TOTAL RESPONSE

FROM STATE-SPACE REALIZATION

To uncouple the state-space differential equations, we transform the identified con-

tinuous-time state-space matrices (F, G, H, and E) through a state transformation matrix

 to obtain a new state vector , where T is the matrix of eigenvectors of the

identified state matrix F. The updated state-space formulation changes from its identified

format as shown in Eq. (3.74) to

(3.58)

in which  is a diagonal matrix with eigenvalues  of F on the diagonal so

that Eq. (3.58) represents a set of uncoupled first-order differential equations in the modal

coordinates/states zi

(3.59)

where . Defining the normalized complex modal responses as ,

the above equations become

(3.60)

Considering that the input u(t) is piece-wise linear in the time interval

 and is equal to , solution of the above differential

equation during this time period is given by
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(3.61)

The kth modal contribution of the identified state x is given by

(3.62)

where  denotes the ith column of eigen-matrix T and  and 

are complex conjugate pairs so that x(k) is real valued. Thus, the kth modal contribution of

the system output can be expressed as

(3.63)

The corresponding transfer function (in Laplace domain) between the input u and the kth

mode contribution to the response  can be expressed as

(3.64)

where  (only the (2k-1)th and 2kth diagonal terms are

non-zero). It is interesting to note that the kth complex mode shape of the system can be

computed by inserting  in Eq. (3.64) where  is an arbitrary frequency,

although the best choice for  is the kth modal natural frequency where the amplitude of

the transfer function is the largest. Figure 3.10 displays a block diagram of the modal

decomposition for a linear dynamic system presented in state-space formulation as in Eq.
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(3.58), where �k and hk refer to the kth row of matrix � and kth column of matrix ,

respectively. 

In the case that the input is an acceleration base excitation, the equation of motion

is written as

(3.65)

where  refers to the base acceleration. With the choice of state vector

 and output vector  (relative acceleration) the state-

space matrices are given by

(3.66)

H T⋅

Fig. 3.10 Modal decomposition of a linear dynamic system in state-space representation
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With the choice of output vector  (absolute or total acceleration) then

the feed-through matrix , therefore the modal compositions of the response 

sum up exactly to the total absolute acceleration (see Figure 3.10). Thus, in the case of

acceleration base excitation, the modal compositions of the output accelerations, com-

puted as explained above, are the absolute acceleration decompositions rather than relative

acceleration decompositions. It should be noted that the relative acceleration decomposi-

tions can also be computed by differentiating Eq. (3.61) as

(3.67)

and then the relative acceleration decompositions is given by

(3.68)
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APPENDIX III: EXTRACTING MODE SHAPES FROM STATE-

SPACE REALIZATION

Consider a P-degrees-of-freedom second-order linear dynamic system represented

by Eq. (3.1) recalled below: 

(3.69)

where  and  are the initial nodal displacement and nodal velocity

response vectors, respectively; M, D, K = mass, damping, and stiffness matrices, respec-

tively; B = input matrix; C = output matrix as already defined in Section 2.1. The second-

order matrix differential equation can be converted to the state-space formulation given in

Eq. (3.2) recalled below:

(3.70)

where . Note that by choosing C = [0 0 I] in Eq. (3.69), the output

(measured/observed response) vector y(t) = . With this choice of state vector x(t) and

output vector y(t), the state-space matrices in the state-space realization are given by Eq.

(3.3) recalled below for convenience:

(3.71)
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Notice that we can omit the term  in the output equation simply because it is

invariant under state transformation and does not get involved in the algorithm discussed

in this study. Performing an eigenvalue decomposition of matrix ,

(3.72)

where  is a diagonal matrix containing the eigenvalues of , and  is the matrix of

eigenvectors, , and  is the complex-valued displacement mode shape

matrix of the system. In the case of acceleration outputs, y(t) = ,

 and then

(3.73)

which is the complex-valued acceleration mode shape matrix. In the case of displacement

outputs, y(t) = ,  and  is the complex-valued displace-

ment mode shape matrix, while for the case of velocity outputs, y(t) = , 

and  is the complex-valued velocity mode shape matrix. Now to

show that the matrix  is invariant under any transformation of state, consider a state

transformation , with R a positive definite transformation matrix. With this choice

of , the state-space formulation in the transformed state is given by

(3.74)
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in which , ,  and  are the transformed state-space

matrices (generally the identified state-space are in this form). An eigenvalue decomposi-

tion of  gives

(3.75)

where  is a diagonal matrix containing the eigenvalues of  and  is the matrix of

eigenvectors. From linear algebra, it follows that  and , so that

 (3.76)

thus showing that HT is invariant under any state transformation R and always equal to

(displacement, velocity, or acceleration) mode shape matrix . This proof is also valid

for the discrete time state-space representation of a dynamic system due to the fact that

matrices H and T remain the same under any discretization method.
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CHAPTER 4

SYSTEM IDENTIFICATION OF SEVEN-
STORY REINFORCED CONCRETE 

BUILDING SLICE TESTED ON THE UCSD-
NEES SHAKE TABLE

4.1   INTRODUCTION

In recent years, structural health monitoring has received increased attention from

the civil engineering research community as a potential tool to develop methods through

which structural damage can be identified at the earliest possible stage and the remaining

useful life of structures evaluated (damage prognosis). Civil structures may be damaged

due to natural and man-made hazards such as earthquakes, hurricanes, and explosions.

Also under service load conditions, they undergo progressive damage in the form of aging

and deterioration due to environmental conditions. Damage identification consists of

detecting the occurrence of damage, localizing the damage area(s), and estimating the

extent of damage. Standard damage identification procedures involve conducting repeated

vibration surveys on the structure during its lifetime. Experimental modal analysis (EMA)

has been explored as a technology for identifying dynamic characteristics as well as con-

dition assessment and damage identification of structures. Extensive literature reviews

were provided by Doebling et al. (1996 and 1998) and Sohn et al. (2003) on damage iden-
123
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tification, based on changes in modal characteristics. It should be indicated that the suc-

cess of damage identification based on EMA depends strongly on the accuracy and

completeness of the identified structural dynamic properties. 

The UCSD-NEES shake table is located at the Englekirk Structural Engineering

Center, 15km east of the main campus of the University of California at San Diego

(UCSD). This unique facility, commissioned in October 2004, allows to perform landmark

seismic experiments on large- or full-scale structural and soil-foundation-structure interac-

tion systems. A full-scale seven-story reinforced concrete shear wall building slice was

tested on the UCSD-NEES shake table in the period October 2005 - January 2006. The

objective of this test program was to verify the seismic performance of a mis-rise rein-

forced concrete shear wall building designed for lateral forces obtained from a displace-

ment-based design methodology, which are significantly smaller than those dictated by

current force-based seismic design provisions in United States. The shake table tests were

designed so as to damage the building progressively through several historical seismic

motions reproduced on the shake table. At various levels of damage, several low ampli-

tude white noise base excitations were applied through the shake table to the building

which responded as a quasi-linear system with dynamic parameters depending on the level

of structural damage. In addition to white noise base excitation tests, ambient vibration

tests were also performed on the building specimen at different damage levels. Six differ-

ent state-of-the-art system identification methods, consisting of three input-output and

three output-only methods, were applied to dynamic response measurements obtained

using accelerometers and linear variable displacement transducers (LVDTs) in order to
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estimate modal parameters (natural frequencies, damping ratios and mode shapes) of the

building in its undamaged (baseline) and various damage states. The system identification

methods used include: (1) Multiple-reference Natural Excitation Technique in conjunction

with Eigensystem Realization Algorithm (MNExT-ERA); (2) Data-driven Stochastic Sub-

space Identification (SSI-DATA); (3) Enhanced Frequency Domain Decomposition

(EFDD); (4) Deterministic-Stochastic Subspace Identification (DSI); (5) Observer/Kal-

man filter Identification combined with ERA (OKID-ERA); and (6) General Realization

Algorithm (GRA). The first three algorithms are based on output-only data (from white

noise and ambient vibration tests) while the latter three are based on input-output mea-

sured data (from white noise tests). Finally, the identified modal parameters of the struc-

ture in its undamaged state were compared to their counterparts computed from a three-

dimensional finite element model of the building developed in structural analysis software

SAP2000 (Computers and Structures, Inc. 2004).

4.2   TEST SPECIMEN, TEST SETUP AND DYNAMIC EXPERI-

MENTS

4.2.1   Seven-Story Reinforced Concrete Shear Wall Building Slice

The test structure which represents a slice of a full-scale reinforced concrete shear

wall building consists of a main shear wall (web wall), a back wall perpendicular to the

main wall (flange wall) for transversal stability, a concrete slab at each floor level, an aux-

iliary post-tensioned column to provide torsional stability, and four gravity columns to

transfer the weight of the slabs to the shake table. Pin-pin slotted slab connections capable
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of transferring in-plane diaphragm forces are placed between the web and flange walls at

floor levels in order to minimize the moment transfer and coupling between the two walls.

Figures 4.1 and 4.2 show the test structure mounted on the shake table and an elevation

view with its general dimensions, respectively. Figure 4.3 displays a plan view of the

structure with walls and slab dimensions at different levels. More details about the test

structure can be found in Panagiotou et al. (2007).

Fig. 4.1   Test structure Fig. 4.2   Elevation of test structure (units: m)
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4.2.2   Instrumentation Layout

The test structure was instrumented with an extensive array of accelerometers,

strain gages, potentiometers, and Linear Variable Displacement Transducers (LVDTs), all

sampling data simultaneously using a nine-node distributed data acquisition system. The

accelerometer array consisted of 14 uni-axial accelerometers on the foundation/pedestal of

the test structure, 106 uni-axial accelerometers on the floor slabs and the web wall, 8 uni-

axial accelerometers on the platen of the shake table, 9 uni-axial accelerometers on the

reaction block of the shake table and 1 tri-axial accelerometer on the surrounding ground

(free field), resulting in a total of 140 channels of acceleration measurements. The 54

LVDTs were installed along both edges (east and west) of the web wall, while the 8 poten-

tiometers were installed diagonally along only the first two stories of the web wall. A total

of 231 strain gages were deployed on the test specimen consisting of 143 on the longitudi-

nal and horizontal steel reinforcement of the web wall, 64 on the longitudinal and horizon-

tal steel reinforcement of the flange wall, 16 on the gravity columns and 8 on the steel

braces connecting the slabs to the post-tensioned column. In addition, the displacement

response of selected points on the structure were measured in three dimensions using 6

global positioning system (GPS) sensors, 3 of them on the top floor slab, 2 on the flange

wall and 1 on the platen of the shake table. Table 4.1 provides a summary of the heteroge-

neous sensor array installed on the test structure. The technical characteristics of the accel-

erometers are: MEMS-Piezoresistive MSI model 3140, amplitude range: +/-5g, frequency

range (min): 0-300Hz, voltage sensitivity: 400mV/g. The technical characteristics of the

LDVTs are: Penny & Giles model MLS130, resolution: virtually infinite, repeatability: <
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0.01m, electrical stroke: 50/100mm depending on sensor location. The data acquisition

system used had 16 bits of resolution. 

In this study, measured response data from 28 longitudinal accelerometers (three

on each floor slab as shown in Figure 4.3 and one on the web wall at mid-height of each

story) as well as 28 LVDTs (six 0.41m-long LVDTs along each edge of the web wall for

the first and second stories and two 1.27m-long LVDTs along each edge of the web wall

for the third story) were used to identify the modal parameters of the test structure. Figure

4.4 shows six filtered (0.5-25Hz) absolute acceleration time histories recorded on the web

wall at floor levels 1, 4 and 7 during white noise base excitation (left column) and ambient

vibration (right column) tests performed on the test structure in its undamaged state. The

corresponding Fourier Amplitude Spectra (FAS) are given in Figure 4.5. From Figure 4.5,
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it is observed that: (1) the FAS plot is very jagged/noisy which can be due to some rattling

behavior caused by loose connections, especially at both ends of the steel braces connect-

ing the slabs to the post-tensioned column; (2) the first longitudinal vibration mode has a

predominant contribution to the total response, especially at the higher floors, which ren-

ders the identification of higher (than the first longitudinal) vibration modes more diffi-

cult; and (3) the FAS of the acceleration response histories at the first floor have a drop in

their amplitude around 11.5 Hz which is due to the application of a notch filter in the con-

trol loop of the shake table to reduce the effects of the oil column resonance. Figure 4.6

shows six strain time histories recorded by LVDTs attached to the web wall at the bottom

of the first, second and third stories during white noise base excitation (left column) and

ambient vibration (right column) tests with the structure in its undamaged state. Lack of

symmetry in the time histories during white noise base excitation can be due to the fact

that concrete cracks will open when a concrete section is in the tension therefore yielding

larger LVDT measurements during tension than compression. The corresponding strain

FAS are given in Figure 4.7. From Figures 4.6 and 4.7, it is observed that: (1) amplitude of

strain data measured during ambient vibration tests is smaller than the resolution of

LVDTs, therefore ambient vibration strain data are not used in this system identification

study. (2) The contribution of higher (> 6Hz) vibration modes to the total strain measure-

ments during white noise base excitation tests is very small, therefore these modes may

only be identified with a very high level of uncertainty.
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4.2.3   Dynamic Tests Performed

A sequence of dynamic tests (68 tests in total) was applied to the test structure dur-

ing the period October 2005 - January 2006 including ambient vibration, free vibration,

and forced vibration tests (white noise and seismic base excitations) using the UCSD-

NEES shake table. The shear wall structure was damaged progressively through a

sequence of four historical ground motion records used as table input motions and the

modal parameters of the test structure were identified at various damage states using six

different system identification methods based on different dynamic test data.

Table 4.1  Summary of instrumentation deployed on the test structure

Sensor Type Location Quantity

Accelerometer
(138)

Foundation/pedestal 14

Slabs and walls 106

Shake table platen 8

Reaction block 9

Free field 1 (tri-axial)

LVDT (54)
Web wall (levels 1-2) 34

Web wall (levels 3-7) 20

Potentiometer (8) Web wall (levels 1-2) 8

GPS (6)

Top floor 3

Flange wall 2

Platen 1

Strain Gage
(231)

Web wall 143

Flange wall 64

Gravity columns 16

Braces connecting slabs 
to post-tensioned column 8
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The four historical earthquake records applied to the test structure consist of (http://

peer.berkeley.edu/smcat): (1) longitudinal component of the 1971 San Fernando earth-

quake (M = 6.6) recorded at the Van Nuys station (EQ1), (2) transversal component of the

1971 San Fernando earthquake recorded at the Van Nuys station (EQ2), (3) longitudinal

component of the 1994 Northridge earthquake (M = 6.7) recorded at the Oxnard Boule-

vard station in Woodland Hill (EQ3), and (4) 360 degree component of the 1994

Northridge earthquake recorded at the Sylmar station (EQ4). The ground acceleration time

histories of these four earthquake records are shown in Figure 4.8. The input white noise

base excitation consisted of a realization of a banded white noise (0.25-25Hz) process

with a root-mean-square (RMS) amplitude of 0.03g as shown in Figure 4.9. Table 4.2
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describes the dynamic tests used in this study on system identification of the shear wall

building at various damage states. Figure 4.10 shows the pseudo-acceleration elastic

response spectra (Spa) of the four earthquake records and the input white noise base exci-

tation (0.03g RMS) for 5% damping ratio and a natural period of vibration between 0.001

and 5 seconds. The dominant vibration mode of the shear wall structure during these

dynamic tests is the first longitudinal mode with a natural period in the range between 0.5

and 1.0 second depending on the level of structural damage. From Figure 4.10, in can be

observed that in the natural period range 0.5-1.0 seconds: (1) the Spa of each earthquake

record is of higher amplitude than that of the previous earthquake record, except for EQ2

and EQ3 which are of similar magnitude, and (2) the Spa of the input white noise base

excitation (0.03g RMS) is almost half the Spa of EQ1. 
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4.3   REVIEW OF SYSTEM IDENTIFICATION METHODS USED

Six different state-of-the-art system identification methods were applied to esti-

mate the modal parameters of the test structure at various damage states. These methods

consist of: (1) Multiple-reference Natural Excitation Technique combined with the Eigen-

system Realization Algorithm (MNExT-ERA), (2) Data-driven Stochastic Subspace Iden-

tification (SSI-DATA), (3) Enhanced Frequency Domain Decomposition (EFDD), (4)

Deterministic-stochastic Subspace Identification (DSI), (5) Observer/Kalman filter Identi-

fication combined with ERA (OKID-ERA), and (6) General Realization Algorithm

Table 4.2  Dynamic tests used in this study 
(WN: white noise base excitation test and AV: ambient vibration test)

Test 
No. Date Test Description Damage 

State

37 11/18/05 8min WN (0.03g) S0

39 11/21/05 8min WN (0.03g) + 3min AV S0

40 “ EQ1

41 “ 8min WN (0.03g) + 3min AV S1

43 “ EQ2

45 11/22/05 2min WN (0.03g) S2

46 “ 8min WN (0.03g) + 3min AV S2

48 “ EQ3

49 “ 8min WN (0.03g) + 3min AV S3.1

56 12/5/05 8min WN (0.03g) S3.1

61 1/14/06 8min WN (0.03g) + 3min AV S3.2

62 “ EQ4

64 1/14/06 8min WN (0.03g) + 3min AV S4

67 “ 8min WN (0.03g) S4
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(GRA). These six methods are briefly reviewed in this section. The measured acceleration

and strain responses were sampled at a rate of 240Hz resulting in a Nyquist frequency of

120Hz, which is much higher than the modal frequencies of interest in this study (<

25Hz). Before applying the above mentioned system identification methods to the mea-

sured data, all the absolute acceleration and LVDT strain time histories were band-pass fil-

tered between 0.5Hz and 25Hz using a high order (1024) FIR filter. The absolute

horizontal acceleration measurements from white noise base excitation tests were also

converted to relative accelerations by subtracting the base/table horizontal acceleration. 
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Fig. 4.10   Pseudo-acceleration response spectra (with 5% damping ratio) of 
the four seismic records and the white noise base excitation (0.03g RMS)
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4.3.1   Output-Only System Identification Methods

The first three algorithms are based on output-only data and are applied to the

measured vibration data from both ambient vibration and white noise base excitation tests. 

4.3.1.1   Multiple-reference Natural Excitation Technique Combined with 

Eigensystem Realization Algorithm (MNExT-ERA)

The basic principle behind the NExT is that the theoretical cross-correlation func-

tion between two response measurements made along two degrees of freedom (DOF) col-

lected from an ambient (broad-band) excited structure has the same analytical form as the

free vibration response of the structure (James et al. 1993). Once an estimation of the

response cross-correlation vector is obtained for a given reference channel, the ERA

method (Juang and Pappa 1985) can be used to extract the modal parameters. A key issue

in the application of NExT is to select the reference channel so as to avoid missing modes

in the identification process due to the proximity of the reference channel to a modal node.

In the MNExT, instead of using a single reference response channel as in the NExT, a vec-

tor of reference channels (three reference channels in this study) is used to obtain an out-

put cross-correlation matrix. The response cross-correlation functions were estimated

through inverse Fourier transformation of the corresponding cross-spectral density (CSD)

functions. CSD function estimation was based on Welch-Bartlett’s method using Hanning

windows of length 116sec (27,840 samples) for white noise base excitation and 15sec

(3,600 samples) for ambient vibration, with 50 percent of window overlap. The estimated

cross-correlation functions were then down-sampled to 80Hz for acceleration measure-
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ments and 40Hz for LVDT strain measurements in order to improve the computational

efficiency and finally they were used to form Hankel matrices of size 

(28 output channels, 150 block rows and 150 columns) for applying ERA in the second

stage of the modal identification. After down-sampling, the Nyquist frequency (40Hz or

20 Hz) remains higher than the natural frequencies of vibration modes of interest which

are significantly excited (25Hz for accelerometer and 6Hz for LVDT measurements, see

Figures 4.5 and 4.7). The identified natural frequencies and damping ratios of the five

most significant vibration modes (longitudinal, torsional and coupled longitudinal-tor-

sional) are reported in Table 4.3 based on the ambient vibration data and in Tables 4.4 and

4.5 based on the white noise base excitation response (output) data. 

4.3.1.2   Data-Driven Stochastic Subspace Identification (SSI-DATA)

The SSI-DATA method determines the system model in state-space based on the

output-only measurements directly (Van Overschee and De Moor 1996). One advantage of

this method compared to two-stage time-domain system identification methods such as

covariance-driven stochastic subspace identification and NExT-ERA is that it does not

require any pre-processing of the data to calculate correlation functions or spectra of out-

put measurements for example. In addition, robust numerical techniques such as QR fac-

torization, singular value decomposition (SVD) and least squares are involved in this

method. 

28 150×( ) 150×
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In the implementation of SSI-DATA, the filtered acceleration data were down-sampled to

80Hz (40Hz for LVDT strain measurements) in order to increase the computational effi-

ciency. For each dynamic test, an output Hankel matrix was formed including 35 block

rows with 28 rows in each block (28 longitudinal acceleration channels) for both white

Table 4.3  Natural frequencies and damping ratios identified based on 
acceleration data from ambient vibration tests

State /
Test No.

System ID
Method

Natural Frequency [Hz] Damping Ratio [%]

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

S0 /
Test 39

MNExT-
ERA 1.92 - 7.05 10.49 24.79 3.0 - 5.0 2.5 0.9

SSI 1.89 - 7.07 10.53 24.58 1.9 - 4.1 2.4 0.4

EFDD 1.90 - 7.22 10.93 24.76 1.3 - 0.2 0.2 0.2

S1 /
Test 41

MNExT-
ERA 1.86 - 6.62 10.27 22.98 1.2 - 3.5 3.4 2.4

SSI 1.86 - 6.81 10.24 24.30 2.0 - 2.9 2.6 0.6

EFDD 1.88 - 6.62 10.33 23.45 0.5 - 0.3 0.6 0.0

S2 /
Test 46

MNExT-
ERA 1.67 2.04 7.58 10.34 22.78 2.1 1.0 3.4 1.6 1.4

SSI 1.67 2.05 7.58 10.16 22.60 1.3 0.9 3.0 1.4 0.9

EFDD 1.66 2.07 7.54 10.14 22.80 2.5 1.4 0.2 0.2 0.2

S3.1 /
Test 49

MNExT-
ERA 1.46 - 7.21 10.06 21.89 3.4 - 2.7 1.4 1.7

SSI 1.46 1.91 7.18 9.28 21.60 2.9 1.4 2.1 1.1 1.6

EFDD 1.44 - 7.03 9.28 21.81 0.8 - 0.1 0.2 0.1

S3.2 /
Test 61

MNExT-
ERA 1.58 1.95 - 8.39 22.97 1.5 0.5 - 2.3 1.2

SSI 1.58 1.95 - 8.52 22.83 1.4 1.1 - 2.8 1.0

EFDD 1.58 1.95 - 8.44 22.87 2.0 1.1 - 0.3 0.1

S4 /
Test 64

MNExT-
ERA 1.02 - - 5.68 15.04 1.2 - - 2.4 0.8

SSI 1.02 - - 5.69 15.05 1.0 - - 1.8 1.3

EFDD 1.00 - - 5.74 15.10 1.7 - - 0.2 0.1
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noise and ambient vibration tests, with 24,931 columns for white noise tests and 14,331

columns for ambient vibration tests. It should be noted that the lengths of the ambient

vibration tests (3min) and white noise base excitation tests (8min) are different (see Table

4.2). Therefore, different number of columns were used in their corresponding Hankel

matrices. The natural frequencies and damping ratios of the first five most significant

vibration modes identified using SSI-DATA are reported in Table 4.3 based on the ambi-

ent vibration data and in Tables 4.4 and 4.5 based on the white noise base excitation

response (output) data.

4.3.1.3   Enhanced Frequency Domain Decomposition (EFDD)

The Frequency Domain Decomposition (FDD), a non-parametric frequency-

domain approach, is an extension of the Basic Frequency Domain approach also referred

to as peak picking technique. According to the FDD technique, the modal parameters are

estimated through SVD of the CSD matrix performed at all discrete frequencies. Through

this SVD, CSD functions are decomposed into single degree of freedom (SDOF) CSD

functions, each corresponding to a single vibration mode of the dynamic system. Consid-

ering a lightly damped system, the contribution of different vibration modes at a particular

frequency is limited to a small number (usually 1 or 2). In the EFDD (Brincker et al.

2001), the natural frequency and damping ratio of a vibration mode are identified from the

SDOF CSD function corresponding to that mode. In doing so, the SDOF CSD function is

taken back to the time domain by inverse Fourier transformation, and the frequency and

damping ratio of the mode considered are estimated from the zero-crossing times and the
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logarithmic decrement, respectively, of the corresponding SDOF auto-correlation func-

tion. In applying the EFDD method, the measured acceleration and strain data were down-

sampled to 80Hz and 40Hz, respectively, and then the CSD functions were estimated

based on Welch-Bartlett’s method using Hanning windows with 50 percent overlap. After

estimating the CSD functions, the  response CSD matrix was singular value

decomposed at each discrete frequency. The modal parameters obtained as outlined above

are given in Table 4.3 based on the ambient vibration data and in Tables 4.4 and 4.5 based

on the white noise base excitation response (output) data.

4.3.2   Input-Output System Identification Methods

The three input-output system identification methods are only applied to the white

noise base excitation data during which the input base excitation is measured. 

4.3.2.4   Deterministic-Stochastic Subspace Identification (DSI)

The deterministic-stochastic state-space model for linear time-invariant systems

can be written as

(1)

where A, B, C and D refer to the state-space matrices,  and  denote the input

and output vectors, respectively, and  is the state vector. In the deterministic-stochas-

tic model, the process noise , corresponds to disturbances (small unmeasured excita-

tions) and modeling inaccuracies, while the measurement noise , model the sensor

28 28×( )

x k 1+( ) Ax k( ) Bu k( ) w k( )+ +=
y k( ) Cx k( ) Du k( ) v k( )+ +=

u k( ) y k( )

x k( )

w k( )

v k( )
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inaccuracies. However, in the stochastic subspace identification (SSI) output-only meth-

ods, both noise terms (w and v) also implicitly include the input information since it is

impossible to distinguish the input information from the noise terms. Considering the fol-

lowing two assumptions: (1) the deterministic input  is uncorrelated with the process

noise  and measurement noise , and (2) both noise terms are not identically

zero, a robust identification algorithm was developed by Van Overschee and De Moor

(1996) in order to identify the state-space matrices in the combined deterministic-stochas-

tic system. Similar to SSI-DATA, robust numerical techniques such as QR factorization,

SVD, and least squares are involved in this method. Using the DSI method, the state-space

matrices A, B, C, D are determined from the measured input and output vibration data

directly. Then, the modal parameters are identified based on these state-space matrices. In

the application of this method, the measured input (shake table acceleration) and the rela-

tive horizontal acceleration response data were down-sampled to 80Hz. For each dynamic

test, an input-output Hankel matrix was formed including 35 block rows with 29 rows in

each block (1 input and 28 output channels) and 24,931 columns using the down-sampled

data. The identified natural frequencies and damping ratios of the first five significant

vibration modes (first three longitudinal, first torsional and first coupled longitudinal-tor-

sional) are reported in Table 4.4.

u k( )

w k( ) v k( )



143
Table 4.4  Natural frequencies and damping ratios identified based on 
acceleration data from white noise base excitation tests (0.03g RMS)

State /
Test 
No.

System ID
Method

Natural Frequency [Hz] Damping Ratio [%]

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

S0 /
Test 39

MNExT-ERA 1.71 2.35 8.64 11.49 24.67 3.1 -1.1 5.4 4.8 1.3
SSI 1.66 - 8.67 11.65 24.61 2.2 - 3.6 4.4 0.2

EFDD 1.72 - 8.52 11.88 24.64 2.6 - 1.3 0.5 0.4
DSI 1.72 1.80 9.03 10.70 24.55 2.2 3.5 4.2 4.5 0.5

OKID-ERA 1.70 - 8.95 10.78 25.06 1.7 - 0.1 1.5 1.4
GRA 1.71 - 9.05 11.05 24.31 2.1 - 1.8 1.8 0.5

S1 /
Test 41

MNExT-ERA 1.54 2.34 8.51 11.35 24.65 4.3 1.1 4.7 7.7 0.9
SSI 1.51 1.73 8.37 11.25 24.57 2.4 4.0 4.9 3.3 0.2

EFDD 1.49 - 8.17 11.33 24.56 3.3 - 1.0 0.4 0.2
DSI 1.57 1.78 8.76 10.67 24.42 3.1 2.9 3.9 3.2 0.3

OKID-ERA 1.60 - - 10.75 24.57 3.8 - - 0.3 1.9
GRA 1.54 - 8.65 10.98 24.28 2.0 - 1.1 1.7 0.2

S2 /
Test 46

MNExT-ERA 1.22 - 7.42 10.88 21.26 3.4 - 6.0 0.3 3.9
SSI 1.25 - 7.26 11.10 22.82 4.5 - 4.2 4.9 2.0

EFDD 1.29 - 7.43 10.75 21.08 5.2 - 0.9 0.3 0.2
DSI 1.27 2.02 7.67 10.23 21.56 3.5 11.6 6.7 4.8 2.7

OKID-ERA 1.24 - 7.86 10.93 21.08 2.8 - -0.3 1.7 2.9
GRA 1.24 - 7.60 11.11 21.59 3.0 - 4.0 2.9 0.5

S3.1 /
Test 49

MNExT-ERA 1.11 - 7.01 10.24 19.77 3.5 - 8.6 7.0 5.6
SSI 1.13 2.13 7.14 9.87 20.40 3.9 10.7 3.7 1.9 2.3

EFDD 1.13 - 7.07 10.06 19.83 4.0 - 0.3 0.2 0.1
DSI 1.14 2.20 7.20 - 20.42 3.3 13.3 4.9 - 2.7

OKID-ERA 1.17 - 7.15 10.47 20.40 5.6 - 0.2 1.8 1.1
GRA 1.14 - 7.32 9.77 19.68 3.9 - 4.3 1.6 0.5

S3.2 /
Test 61

MNExT-ERA 1.18 2.37 - 11.00 21.32 5.0 0.0 - 6.0 5.7
SSI 1.20 2.62 - 10.89 21.04 3.5 4.3 - 5.4 2.0

EFDD 1.23 - - 10.41 20.68 4.6 - - 0.4 0.1
DSI 1.22 - - - 21.47 3.6 - - - 2.7

OKID-ERA 1.20 - - - 20.47 2.8 - - - 2.8
GRA 1.20 - - 10.45 21.11 3.5 - - 2.0 0.3
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4.3.2.5   Observer/Kalman Filter Identification Combined with ERA (OKID-ERA)

In this method, developed by Phan et al. (1992), the system input-output relation-

ship is expressed in terms of an observer, which is made asymptotically stable by an

embedded eigenvalue assignment procedure. The prescribed eigenvalues for the observer

may be real, complex, mixed real and complex, or zero (i.e., deadbeat observer). In this

formulation, the Markov parameters of the observer are identified from input-output data.

The Markov parameters of the actual system are then recovered from those of the observer

and then used to obtain a state-space model of the system by ERA. The method performs

quite well for finite-dimensional systems under the following conditions: (1) the input-

output data time histories are sufficiently long, (2) the noise is white and of zero-mean,

and (3) the noise-to-signal ratio is small (Lus et al. 2002). This approach seems attractive,

especially for single input systems as in the case of structures subjected to base excitation.

In the application of OKID-ERA, the filtered and then detrended acceleration responses

from white noise base excitation tests were down-sampled to 60Hz. An output matrix

 of size  and an input-output matrix

S4 /
Test 64

MNExT-ERA 0.83 - - 4.68 13.24 3.3 - - 7.6 0.4
SSI 0.85 - - 4.68 14.02 5.6 - - 5.5 2.9

EFDD 0.86 - - 4.71 13.81 3.8 - - 0.4 0.2
DSI 0.85 - - 4.72 13.31 3.6 - - 6.1 4.8

OKID-ERA 0.87 - - 4.79 14.69 2.9 - - 3.6 0.0
GRA 0.88 - - 4.81 13.29 5.5 - - 3.8 0.9

Table 4.4  Natural frequencies and damping ratios identified based on 
acceleration data from white noise base excitation tests (0.03g RMS)

State /
Test 
No.

System ID
Method

Natural Frequency [Hz] Damping Ratio [%]

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

Ŷ y 0( ) … y p( ) … y l 1–( )[ ]= 28 1000×( )
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 of size  are formed based

on inputs , outputs , and input-output vectors . Once the sys-

tem’s Markov parameters are identified, the ERA is used for estimation of the modal

parameters which are reported in Table 4.4. 

Table 4.5  Natural frequencies, damping ratios, and MAC values identified based on 
LVDT strain data from white noise base excitation tests (0.03g RMS)

Damage 
State /

Test No.

Vibration 
Mode

Natural Frequency [Hz] Damping Ratio [%] MAC

MNEx
T-ERA SSI EFDD MNEx

T-ERA SSI EFDD MNExT
& SSI

MNExT
& EFDD

SSI & 
EFDD

S0 /
Test 39

1st-L mode 1.66 1.69 1.68 3.2 2.6 3.2 1.00 1.00 1.00

2nd-T mode 3.33 3.30 3.26 3.7 2.8 0.3 1.00 1.00 1.00

S1 /
Test 41

1st-L mode 1.50 1.56 1.51 2.6 4.8 2.2 1.00 1.00 1.00

2nd-T mode 3.01 3.05 2.89 3.6 4.1 0.9 1.00 0.98 0.98

S2 /
Test 46

1st-L mode 1.26 1.19 1.24 5.5 5.0 5.4 0.96 0.99 0.98

2nd-T mode 2.45 2.45 2.44 3.3 4.8 1.5 0.97 0.95 0.99

S3.1 /
Test 49

1st-L mode 1.13 1.10 1.12 4.4 4.5 1.8 1.00 1.00 1.00

2nd-T mode 2.22 2.21 2.20 3.0 4.1 0.5 1.00 1.00 1.00

S3.2 /
Test 61

1st-L mode 1.18 1.18 1.18 4.3 5.9 1.6 0.95 1.00 0.96

2nd-T mode 2.35 2.38 2.34 3.4 5.3 0.7 0.94 1.00 0.96

S4 /
Test 64

1st-L mode 0.83 0.83 0.85 4.7 3.3 5.4 0.99 0.99 1.00

2nd-T mode 1.63 1.63 1.64 2.1 3.1 0.7 0.96 1.00 0.97

V

u 0( ) u 1( ) … u p( ) … u l 1–( )
0 � 0( ) … � p 1–( ) … � l 2–( )
… … … … … …
0 0 … � 0( ) … � l p– 1–( )

= 7251 1000×( )

u k( ) y k( ) � k( )
u k( )

x k( )
=
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4.3.2.6   General Realization Algorithm (GRA)

GRA (De Callafon et al., 2007) is a system realization algorithm to identify modal

parameters of linear dynamic systems based on general input-output data. This algorithm

is an extension of ERA. While ERA is based on singular value decomposition (SVD) of a

Hankel matrix constructed from impulse response or free vibration response data, GRA is

based on SVD of a weighted Hankel matrix, where the weighting is defined by the load-

ing. Using GRA, the state-space matrices are estimated in a two-step process that includes

a state reconstruction followed by a least squares optimization yielding a minimum pre-

diction error for the response. In the application of GRA, a weighted Hankel matrix of size

 is formed based on the input-output data. After performing an SVD of

this weighted Hankel matrix, a state-space realization of the system is estimated from

which the modal parameters are extracted. The natural frequencies and damping ratios

identified using GRA are reported in Table 4.4.

4.4   MODAL IDENTIFICATION RESULTS

Modal parameters of the test structure were identified using the system identifica-

tion methods outlined above based on output-only (for the first three methods) and input-

output (for the last three methods) data measured from low amplitude dynamic tests (i.e.,

ambient vibration tests and white noise base excitation tests) performed at various damage

states (S0, S1, S2, S3.1, S3.2, and S4). Damage state S0 is defined as the undamaged

(baseline) state of the structure before its exposure to the first seismic excitation (EQ1),

while damage states S1, S2, S3 and S4 correspond to the state of the structure after expo-

28 50×( ) 7000×
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sure to the first (EQ1), second (EQ2), third (EQ3), and fourth (EQ4) seismic excitation,

respectively (see Table 4.2). Damage state S0 does not correspond to the uncracked state

of the structure, since the structure had already been subjected to low-amplitude white

noise base excitations (0.02-0.03g RMS) for the purposes of checking the instrumentation

and data acquisition system and tuning the shaking table controller. It should be noted that

during damage state S3, the bracing system between the slabs of the test specimen and the

post-tensioned column was modified (stiffened). Therefore, damage state S3 is subdivided

into state S3.1 (before modification of the braces) and state S3.2 (after modification of the

braces). The identified modal parameters are presented and discussed in the following

three subsections based on the type of excitation (ambient or white noise base excitation)

and type of measurement data (acceleration from accelerometers or strains from LVDTs)

used in the identification process.

4.4.1   Modal Parameters Identified Based on Ambient Vibration Acceleration Data

The modal parameters identified based on acceleration data from ambient vibra-

tion tests are discussed in this section. Figure 4.11 shows in polar plots the complex-val-

ued mode shapes of the five most significantly excited modes of the test structure

identified using SSI-DATA based on data from Test 46 (damage state S2). The real parts

of these mode shapes are displayed in Figure 4.12. The five most significant vibration

modes identified at this damage state consist of the first three longitudinal (1st-L, 2nd-L,

3rd-L), the first torsional (1st-T) and the first coupled longitudinal-torsional (1st-L-T)

modes. The polar plot representation of a mode shape provides information on the degree
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of non-classical (or non-proportional) damping characteristics of that mode. If all the com-

ponents of a mode shape (each component being represented by a vector in polar plot) are

collinear, that vibration mode is classically damped. The more the mode shape compo-

nents are scattered in the complex plane, the more the system is non-classically (non-pro-

portionally) damped in that mode. However, measurement noise (low signal-to-noise

ratio), estimation errors, and modeling errors can also cause a truly classically damped

vibration mode to be identified as non-classically damped. From Figure 4.11, it is

observed that the first longitudinal and first torsional modes at damage state S2 are identi-

fied as perfectly classically damped. Some degree of non-proportional damping is identi-

fied for the other modes (2nd-L, 3rd-L, and 1st-L-T). 
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The natural frequencies and damping ratios of the five most significantly excited

modes identified based on ambient vibration acceleration data are given in Table 4.3 for

all damage states considered and the three output-only system identification methods

(MNExT-ERA, SSI, EFDD). The identified natural frequencies and damping ratios are

also represented in bar plots in Figures 4.13 and 4.14, respectively. 

From Table 4.3 and Figures 4.13 and 4.14, it is observed that: (1) The natural fre-

quencies identified using different methods are in good agreement at each damage state,

while the identified damping ratios display larger variability across the different system

identification methods. (2) The identified natural frequencies of the longitudinal modes
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only (1st-L, 2nd-L, 3rd-L) decrease with increasing level of damage, except from damage

states S3.1 to S3.2, during which the steel braces (see Figure 4.3) were modified (stiff-

ened), while the identified damping ratios do not show a clear trend as a function of

increasing structural damage. The fact that the identified natural frequencies of the other

two modes do not decrease with increasing damage could be explained by the fact that

under low amplitude ambient vibration conditions, concrete cracks do not open as much as

under forced based excitation and therefore damage does not affect the identified modal

parameters of these vibration modes. (3) The first torsional vibration mode (1st-T) could

only be identified at damage states S2, S3.1 and S3.2. (4) The identified damping ratios

are in a reasonable range (0-5%) validating the modal identification results. (5) The modal

damping ratios identified using EFDD are systematically lower than their counterparts

identified using the other two methods. This can be due to the fact that in the application

of EFDD, a high MAC value is used to decompose the noisy CSD functions to SDOF

CFD function which yields to estimation of a narrow peak (low-damped) SDOF CFD

function.

Modal Assurance Criterion (MAC) values (Allemang and Brown 1982) were com-

puted in order to compare the corresponding complex-valued mode shapes identified

using the three output-only system identification methods considered and are reported in

Table 4.6. The high MAC values obtained in most cases (each case being defined by a

vibration mode, a pair of system identification methods and a damage state) indicate a

good agreement in general between the mode shapes identified using different methods.

From Table 4.6, it is also observed that the MAC values between corresponding mode
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shapes identified using SSI-DATA & EFDD are in general the highest among the three

combinations of system identification methods (i.e., MNExT-ERA & SSI-DATA,

MNExT-ERA & EFDD, SSI-DATA & EFDD), implying that the mode shapes identified

using MNExT-ERA based on ambient vibration acceleration data are the least accurate

among the three output-only methods considered. This could be due to the fact that in the

application of MNExT-ERA, if the selected reference channels are close to modal nodes of

a vibration mode, the estimation uncertainty of that mode will be relatively large.
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4.4.2   Modal Parameters Identified Based on Acceleration Data from Shake Table 

Tests

The modal parameters identified based on acceleration data from white noise base

excitation tests are presented and discussed in this section. Figure 4.15 shows in polar

plots the complex-valued mode shapes of the five most significant modes of the building

identified using MNExT-ERA based on data from Test 39 (damage state S0). The real part

of these mode shapes are displayed in Figure. 4.16. The five most significant vibration

modes identified in this case consist of the first three longitudinal (1st-L, 2nd-L, 3rd-L), the

Table 4.6  MAC values between corresponding mode shapes identified using different 
methods based on acceleration data from ambient vibration tests

Damage 
State /

Test No.

System ID
Methods

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

S0 /
Test 39

MNExT & SSI 0.99 - 0.26 0.86 0.70

MNExT & EFDD 0.99 - 0.46 0.49 0.74

SSI & EFDD 1.00 - 0.82 0.77 0.97

S1 /
Test 41

MNExT & SSI 0.91 - 0.78 0.89 0.79

MNExT & EFDD 0.97 - 0.84 0.89 0.88

SSI & EFDD 0.79 - 0.84 0.98 0.89

S2 /
Test 46

MNExT & SSI 1.00 0.98 0.98 0.56 0.95

MNExT & EFDD 1.00 0.98 0.96 0.43 0.96

SSI & EFDD 1.00 1.00 0.98 0.97 0.95

S3.1 /
Test 49

MNExT & SSI 0.99 - 0.92 0.39 0.93

MNExT & EFDD 1.00 - 0.78 0.49 0.96

SSI & EFDD 0.99 - 0.92 0.96 0.98

S3.2 /
Test 61

MNExT & SSI 1.00 0.97 - 1.00 0.97

MNExT & EFDD 1.00 0.98 - 1.00 0.98

SSI & EFDD 1.00 0.98 - 1.00 0.99

S4 /
Test 64

MNExT & SSI 1.00 - - 0.99 0.96

MNExT & EFDD 1.00 - - 0.99 0.98

SSI & EFDD 1.00 - - 1.00 0.98
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first torsional (1st-T), and the first coupled longitudinal-torsional (1st-L-T) modes. From

Figure 4.15, it is observed that the first longitudinal (1st-L) vibration mode is identified as

nearly perfectly classically damped, while the other identified modes (1st-T, 1st-L-T, 2nd-

L, 3rd-L) display some non-classical damping characteristics. Figure 4.17 shows the

modal decomposition of the floor acceleration response, simulated using the state-space

model realized based on GRA, at floors 1, 4, and 7 during the white noise base excitation

test at damage state S0 (Test 39). This figure also provides a comparison of selected accel-

eration responses simulated using the realized model with their counterparts measured by

accelerometers from the test structure. It is observed that: (1) the simulated and measured

acceleration responses are in good agreement, validating the accuracy of the realized

model, and (2) the 1st-L mode has a predominant contribution to the total response of the

building, while the other identified modes do not contribute significantly to its total

response and are therefore characterized by a lower signal-to-noise ratio than the 1st-L

mode.
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Table 4.4 reports the natural frequencies and damping ratios of the five most significantly

excited vibration modes identified based on acceleration data from white noise base exci-

tation tests at all damage states considered. Figures 4.18 and 4.19 show in bar plots these

Fig. 4.16   Vibration mode shapes of the building at damage state S0 obtained using MNExT-ERA 
based on white noise test acceleration data
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natural frequencies and damping ratios, respectively, identified using the six system iden-

tification methods considered. From Table 4.4 and Figures 4.18 and 4.19, it is observed

that: (1) The natural frequencies identified using different methods are reasonably consis-

tent at each damage state, while the identified damping ratios exhibit much larger variabil-

ity. It appears that when a mode is not significantly excited, its modal damping estimate

using EFDD is consistently very low compared to other methods. (2) Some vibration

modes (especially the first torsional mode) could not be identified by each of the system

identification methods. (3) The identified natural frequencies of all the identified vibration

modes decrease with increasing level of structural damage, except from damage state S3.1

to S3.2, during which the steel braces (see Figure 4.3) were modified (stiffened), while the

identified damping ratios do not exhibit a clear trend as a function of damage. (4) The first

longitudinal modal frequencies identified based on white noise test acceleration data are

systematically lower than their counterparts identified based on ambient vibration acceler-

ation data at all damage states considered (compare Tables 4.3 & 4.4 as well as Figs 4.13

& 4.18). This is most likely due to the fact that the test structure is nonlinear (even at the

relatively low levels of excitation considered in this system identification study) with

effective modal parameters depending strongly on the amplitude of the excitation and

therefore of the structural response. (5) At each damage state, the identified modal param-

eters of the first longitudinal mode (1st-L) appear to be the least sensitive to the identifica-

tion method used, which could be due to the predominant contribution of this mode to the

total response. 
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Table 4.7 reports the MAC values calculated between corresponding complex-val-

ued mode shapes identified using the three output-only system identification methods (i.e.,

MNExT-ERA & SSI-DATA, MNExT-ERA & EFDD, SSI-DATA & EFDD), the three

input-output system identification methods (i.e., DSI & OKID-ERA, DSI & GRA, OKID-

ERA & GRA), and also between corresponding mode shapes identified using an output-

only and an input-output system identification method (SSI-DATA & GRA). From the

results in Table 4.7, it is observed that: (1) the MAC values calculated for the 1st-L mode

shape identified using different methods are very close to unity for all damage states con-

sidered, indicating the high level of accuracy (i.e., low level of estimation uncertainty) in

the identification of this mode shape. (2) Lower MAC values obtained for the 1st-L-T

mode shape indicates its larger estimation uncertainty. (3) In general, the MAC values cal-

culated across output-only methods are higher than those calculated across input-output

methods. It appears that the output-only methods perform very well (are very accurate)

when the hypothesis based on which they are developed are satisfied (i.e., when the input

excitation is a white noise sequence). (4) The MAC values between corresponding mode

shapes identified using SSI-DATA (output-only method) and GRA (input-output method)

are in general high indicating the corresponding mode shapes are in good agreement, espe-

cially for the three longitudinal mode shapes (i.e., 1st-L, 2nd-L, 3rd-L).
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Table 4.7  MAC values between corresponding mode shapes identified using different 
methods based on acceleration data from white noise base excitation tests

Damage 
State /

Test No.

System ID
Methods

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode

S0 /
Test 39

MNExT & SSI 1.00 - 0.90 0.96 0.99
MNExT & EFDD 0.99 - 0.82 0.94 0.97

SSI & EFDD 1.00 - 0.82 0.97 0.99
DSI & OKID 1.00 - 0.58 0.65 0.92
DSI & GRA 1.00 - 0.66 0.24 0.80

OKID & GRA 1.00 - 0.76 0.71 0.94
SSI & GRA 1.00 - 0.70 0.95 0.98

S1 /
Test 41

MNExT & SSI 1.00 0.96 0.51 0.99 0.99
MNExT & EFDD 1.00 - 0.75 0.96 0.99

SSI & EFDD 1.00 - 0.49 0.99 1.00
DSI & OKID 1.00 - - 0.54 0.83
DSI & GRA 1.00 - 0.49 0.39 0.88

OKID & GRA 1.00 - - 0.90 0.56
SSI & GRA 1.00 - 0.30 0.99 0.99

S2 /
Test 46

MNExT & SSI 1.00 - 0.76 0.97 0.67
MNExT & EFDD 1.00 - 0.82 0.98 0.86

SSI & EFDD 1.00 - 0.81 0.99 0.87
DSI & OKID 1.00 - 0.24 0.20 0.91
DSI & GRA 1.00 - 0.59 0.22 0.64

OKID & GRA 1.00 - 0.44 0.89 0.72
SSI & GRA 1.00 - 0.73 0.99 0.98

S3.1 /
Test 49

MNExT & SSI 1.00 - 0.54 0.97 0.73
MNExT & EFDD 1.00 - 0.42 0.98 0.76

SSI & EFDD 1.00 - 0.80 0.99 0.75
DSI & OKID 1.00 - 0.48 - 0.88
DSI & GRA 1.00 - 0.65 - 0.86

OKID & GRA 1.00 - 0.84 0.78 0.94
SSI & GRA 1.00 - 0.74 0.95 0.90

S3.2 /
Test 61

MNExT & SSI 1.00 0.70 - 0.94 0.99
MNExT & EFDD 1.00 - - 0.85 0.89

SSI & EFDD 1.00 - - 0.84 0.90
DSI & OKID 1.00 - - - 0.91
DSI & GRA 1.00 - - - 0.90

OKID & GRA 1.00 - - - 0.97
SSI & GRA 1.00 - - 0.72 0.98
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4.4.3   Modal Parameters Identified Based on LVDT Data from Shake Table Tests

In this section, the modal parameters of the two most significantly excited vibra-

tion modes identified based on LVDT strain data from white noise base excitation tests are

presented and discussed. Based on the identified natural frequencies of these strain mode

shapes and by comparison with those of the displacement mode shapes identified based on

acceleration data and those of the finite element model presented in a later section, it is

found that the two LVDT-based identified modes correspond to the first longitudinal (1st-

L) and second torsional (2nd-T) vibration modes of the test structure. Figure 4.20(a) shows

in polar plots the complex-valued strain mode shapes of these two modes identified using

MNExT-ERA based on LVDT strain data from white noise base excitation Test 39 (dam-

age state S0). The real parts of these strain mode shapes are displayed in Figure 4.20(b).

From Figure 4.20(a), it is observed that the 1st-L mode is identified as nearly perfectly

classically damped, while the 2nd-T mode displays some nonclassical damping character-

istics. 

S4 /
Test 64

MNExT & SSI 1.00 - - 0.99 0.51
MNExT & EFDD 1.00 - - 0.96 0.58

SSI & EFDD 1.00 - - 0.96 0.94
DSI & OKID 1.00 - - 0.97 0.68
DSI & GRA 1.00 - - 0.94 0.91

OKID & GRA 1.00 - - 0.93 0.77
SSI & GRA 1.00 - - 0.97 0.73

Table 4.7  MAC values between corresponding mode shapes identified using different 
methods based on acceleration data from white noise base excitation tests

Damage 
State /

Test No.

System ID
Methods

1st-L
mode

1st-T
mode

1st-L-T
mode

2nd-L
mode

3rd-L
mode
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Table 4.5 reports the natural frequencies, damping ratios, and MAC values calcu-

lated between corresponding complex-valued mode shapes identified using the three out-

put-only methods based on LVDT strain data from white noise base excitation tests at all

damage states considered. From the results in Table 4.5, it is observed that: (1) The natural

frequencies identified using different methods are in very good agreement at each damage

state. (2) Considering the larger estimation variability of the damping ratios (as compared

to natural frequencies), the identified damping ratios at each damage state are in relatively

good agreement, except for the damping ratio of the 2nd-T mode identified using EFDD

which is generally much lower than its counterparts identified using the other two meth-
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ods. (3) The identified natural frequencies decrease with increasing level of structural

damage except from damage state S3.1 to S3.2, while the damping ratios do not follow a

clear trend as a function of damage. (4) At each damage state, the first longitudinal mode

natural frequency and damping ratios identified based on white noise test data from

LVDTs are in excellent and good agreement, respectively, with their counterpart identified

based on white noise test data from accelerometers. (5) The MAC values calculated

between corresponding complex-valued strain mode shapes obtained using different sys-

tem identification methods are near unity for all damage states considered, implying that

these strain mode shapes have been accurately identified.

4.5   COMPARISON BETWEEN EXPERIMENTAL AND ANALYTI-

CAL MODAL PARAMETERS

In order to further validate and better understand the modal parameters identified

from ambient vibration and white noise base excitation test data, a three-dimensional (3D)

linear elastic finite element model of the shear wall test structure was developed in

SAP2000 (Computers and Structures, Inc. 2004). This finite element model is composed

of: (1) 126 frame elements to model the gravity columns, part of the post-tensioned col-

umn, and steel braces connecting the slabs to the post-tensioned column, (2) 1346 shell

elements to model the web wall, flange wall, floor slabs, and part of the post-tensioned

column. The distributed inertia properties of the structure are discretized into translational

lumped masses applied at the nodes. This finite element model has 8,907 degrees-of-free-

dom (DOFs). It was used for designing the shake table test sequence (including the low
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amplitude white noise base excitations between earthquake tests) and selecting the num-

ber, types and locations of sensors. The natural frequencies and mode shapes of the first

twenty vibration modes were computed from this 3D finite element model of the test

structure. Figure 4.21 shows these calculated natural frequencies and mode shapes for the

first five and the eleventh vibration modes. It should be noted that in the first torsional

mode (1st-T), the web wall rotates around the back wall while in the second torsional

mode (2nd-T), the web wall rotates around the post-tensioned column. These analytical

results show reasonable agreement with the modal parameters of the test structure in its

undamaged state (damage state S0) identified based on acceleration data (for the first three

longitudinal and the first torsional vibration modes) as well as LVDT strain data (for the

first longitudinal and the second torsional vibration modes). The natural frequencies com-

puted from the finite element model are in better agreement with those identified based on

ambient vibration test data than with those identified based on white noise base excitation

test data (see Tables 4.3-4.5). This is most likely due to the fact that uncracked section

properties (with section moment of inertia taken as gross section moment of inertia) were

assumed in developing the finite element model of the test structure. 
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4.6   CONCLUSIONS

A full-scale seven-story reinforced concrete shear wall building slice was tested on

the UCSD-NEES shake table in the period October 2005 - January 2006. The shake table

tests were designed so as to damage the building progressively through several historical

seismic motions reproduced on the shake table. At various levels of damage, several low

amplitude white noise base excitations were applied through the shake table to the build-

ing which responded as a quasi-linear system with modal parameters depending on the

level of structural damage. Six different state-of-the-art system identification methods

including three output-only and three input-output methods were used to estimate the

modal parameters (natural frequencies, damping ratios, and mode shapes) of the building

in its undamaged (baseline) and various damage states based on the response of the build-

ing to ambient as well as white noise base excitation measured using both accelerometers

and linear variable displacement transducers (LVDTs).

f1 = 2.11Hz f2 = 2.21Hz f3 = 3.78Hz f4 = 9.92Hz f5 = 10.16Hz f11 = 22.84Hz 

Fig. 4.21   Vibration mode shapes of the test structure computed from 3D finite element model

1st-T mode 2nd-T mode 1st-L-T mode 2nd-L mode 3rd-L mode1st-L mode
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From the results of this system identification study, it is observed that: (1) The nat-

ural frequencies identified using different methods are reasonably consistent at each dam-

age state, while the identified damping ratios exhibit much larger variability across system

identification methods. (2) The natural frequencies identified based on white noise test

data decrease with increasing level of damage except from damage state S3.1 to S3.2, dur-

ing which the steel braces were stiffened, while only the longitudinal modal frequencies

identified based on ambient vibration data decrease consistently with increasing level of

structural damage. This can be explained by the fact that under low amplitude ambient

vibration conditions, concrete cracks do not open as much as under forced base excitation

and therefore damage does not affects the identified modal parameters of some vibration

modes. (3) At each damage state, the identified modal parameters of the first longitudinal

mode appear to be the least sensitive to the identification method used, which is most

likely due to the predominant contribution of this mode to the total response. (4) The first

longitudinal modal frequency identified based on white noise test acceleration data is sys-

tematically lower than its counterpart identified based on ambient vibration acceleration

data at all damage states considered. This is most likely due to the fact that the test struc-

ture is nonlinear (even at the relatively low levels of excitation considered in this system

identification study) with effective modal parameters depending on the amplitude of the

excitation and therefore of structural response. 

In order to further validate and better understand the modal parameters identified

from ambient vibration and white noise base excitation test data, a three-dimensional lin-

ear elastic finite element model of the shear wall test structure was developed in SAP2000.
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The natural frequencies and mode shapes computed from the finite element model are in

reasonably good agreement with their identified counterparts (especially when modal

identification is based on the ambient vibration data) for the first three longitudinal and the

first two torsional vibration modes of the test structure in its undamaged state (damage

state S0). 

The results obtained in this study provide the input to a damage identification

method making use of a sensitivity-based finite element model updating strategy, which is

the subject of ongoing research by the authors.
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CHAPTER 5

DAMAGE IDENTIFICATION OF A 
COMPOSITE BEAM USING FINITE 

ELEMENT MODEL UPDATING

5.1   INTRODUCTION

In recent years, structural health monitoring has received increased attention in the

civil engineering research community with the objective to identify structural damage at

the earliest possible stage and evaluate the remaining useful life (damage prognosis) of

structures. Vibration-based, non-destructive damage identification is based on changes in

dynamic characteristics (e.g., modal parameters) of a structure as a basis for identifying

structural damage. Experimental modal analysis (EMA) has been used as a technology for

identifying modal parameters of a structure based on its measured vibration data. It should

be emphasized that the success of damage identification based on EMA depends strongly

on the accuracy and completeness of the identified structural dynamic properties. Exten-

sive literature reviews on vibration-based damage identification were provided by Doe-

bling et al. (1996 and 1998) and Sohn et al. (2003). 

Damage identification consists of detecting the occurrence of damage, localizing

the damage zones, and estimating the extent of damage. Numerous vibration-based meth-

ods have been proposed to achieve these goals. Salawu (1997) presented a review on the
168
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use of changes in natural frequencies for damage detection only. However, it is in general

impossible to localize damage (i.e., obtain spatial information on the structural damage)

from changes in natural frequencies only. Pandey et al. (1991) introduced the concept of

using curvature mode shapes for damage localization. In their study, by using a cantilever

and a simply supported analytical beam model, they demonstrated the effectiveness of

employing changes in curvature mode shapes as damage indicator for detecting and local-

izing damage. Bernal and Gunes (2004) have incorporated changes in modal flexibility

matrices (or flexibility proportional matrices) into the damage locating vector (DLV) tech-

nique to localize damage. Recently, Adeli and Jiang (2006a) presented a novel multi-para-

digm dynamic time-delay fuzzy wavelet neural network (WNN) model for non-parametric

identification of structures using the nonlinear auto-regressive moving average with exog-

enous inputs (NARMAX) approach. Jiang and Adeli (2005, 2006b) applied this WNN

model to high-rise building structures, for both nonlinear system and damage identifica-

tion. Methods based on changes in identified modal parameters to detect and localize dam-

age have also been further developed for the purpose of damage quantification. Among

these methods are strain-energy based methods (Shi et al., 2002) and the direct stiffness

calculation method (Maeck and De Roeck, 1999). Another class of sophisticated methods

consists of applying sensitivity-based finite element (FE) model updating for damage

identification (Friswell and Mottershead 1995). These methods update the physical

parameter of a FE model of the structure by minimizing an objective function expressing

the discrepancy between analytically predicted and experimentally identified features that

are sensitive to damage such as natural frequencies and mode shapes. Optimum solutions

of the problem are reached through sensitivity-based optimization algorithms. In recent
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years, sensitivity-based FE model updating techniques have been applied successfully for

condition assessment of structures (Teughels and De Roeck, 2004).

The study presented in this paper, which is an extension of an already published

conference paper (Moaveni et al. 2006), leveraged a full-scale sub-component experiment

conducted in the Charles Lee Powell Structural Research Laboratories at the University of

California, San Diego (UCSD). As payload project attached to a quasi-static test of a full-

scale composite beam, the authors acquired a high-quality set of low-amplitude vibration

response data from the beam at various damage levels. The Eigensystem Realization

Algorithm (ERA) (Juang and Pappa, 1985) was applied to identify the modal parameters

(natural frequencies, damping ratios, displacement and macro-strain mode shapes) of the

composite beam based on its impulse responses recorded in its undamaged and various

damaged states using accelerometers and long-gage fiber Bragg grating strain sensors.

These identified modal parameters are presented and compared at different levels of dam-

age. They are then used to identify damage in the beam using a sensitivity-based finite ele-

ment model updating procedure. 

5.2   COMPOSITE BEAM EXPERIMENT

The designed I-5/Gilman Advanced Technology Bridge is a 137m (450ft) long

cable-stayed bridge supported by a 59m (193ft) high A-frame pylon, and utilizing fiber

reinforced polymer (FRP) composite materials. The bridge system is a dual plane, asym-

metric cable-stayed design as shown in Figure 5.1. Before the I-5/Gilman Advanced Tech-

nology Bridge can be constructed, a Validation Test Program to evaluate the performance
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of the bridge was performed. The prototype test program, which was conducted at the

Charles Lee Powell Structural Research Laboratories at UCSD, evaluated the manufac-

tured FRP components at the material level, through coupon testing and other non-

destructive techniques on the members, and at the element level on full-scale sub-compo-

nent, connection and system tests (Brestel et al., 2003). The test leveraged in this study

was conducted on a full-scale sub-component longitudinal girder of the bridge (Test L2). 

The objective of this experiment was to validate the design of a concrete-filled composite

beam component of the planned I-5/Gilman Advanced Technology Bridge (Seible et al.,

1996). For this purpose, uni-directional quasi-static cyclic load tests (i.e., load-unload

cycles) of increasing amplitude were applied to the beam, gradually introducing damage.

After each of several sequences of loading-unloading cycles, a set of low-amplitude

dynamic tests was performed in order to investigate the changes in dynamic characteris-

tics (extracted from the vibration response data) as a function of increasing structural dam-

age. For this purpose, two different sources of dynamic excitation were used, namely (1) a

 

Fig. 5.1 Elevation of I-5/Gilman Advanced Technology Bridge (Brestel et al., 2003)
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computer-controlled electro-dynamic shaker, and (2) an impact hammer. The vibration

data obtained from the impact tests revealed to be the most informative to identify the

beam modal parameters at different levels of damage. The small-strain vibration response

data was measured at several damage levels using a set of four long-gage (1m) fiber Bragg

grating (FBG) strain sensors and a set of eight single channel piezoelectric accelerometers. 

5.2.1   Test Setup

The longitudinal girders for the I-5/Gilman Advanced Technology Bridge consist

of prefabricated carbon/epoxy shells filled with concrete. In the second phase of the longi-

tudinal girder test program, which is considered in this study, a girder shell specimen (L2)

of diameter 0.91m (3ft) and length 9.75m (32ft) was cut into two equal halves, spliced

together at mid-span with mild steel reinforcement, and filled with concrete (see Figures

5.2 and 5.3). 

Fig. 5.2 Elevation view of the tested composite beam



173
The splice using longitudinal steel reinforcement allows a ductile behavior of the connec-

tion. In the FRP shell, two rows of 51mm (2in) diameter holes were drilled along the top

edge of the girder and shear stirrups were embedded in the concrete core to provide inter-

facial shear resistance between the girder and the deck. 

A uni-directional quasi-static cyclic loading was applied to the girder using four

1335kN (300kips) displacement-controlled hydraulic actuators in a four-point bending test

(see Figure 5.3). Initially, the girder was loaded to a total of 1000kN (225kip) to establish a

well-lubricated pin connection at the supports of the simply supported girder. The increas-

ing level of the cyclic load progressively introduced damage in the beam through inelastic

(irreversible) deformations. The loading history for the test is summarized in Table 5.1 and

the plot of the total load applied versus the girder vertical displacement at mid-span is

shown in Figure 5.4. The load cycle targets for the initial yield ( ) and the displacement

Fig. 5.3 Schematic test setup: Side elevation (Brestel et al., 2003)
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ductility levels ( ) were determined pre-test from moment-curva-

ture analyses. More details of the test setup are provided by Brestel et al. (2003). 

After load cycles 2, 5, 7, 8, and 12, the loading fixtures were removed to perform a

sequence of dynamic tests for system and damage identification studies. This sequence of

dynamic tests was performed twice before starting the quasi-static loading cycles and the

corresponding undamaged states of the beam are referred to as states S0 and S1. States S2

to S6 refer to the state of the beam after loading cycles 2, 5, 7, 8 and 12, respectively,

shown in Figure 5.4. The repeated sequence of dynamic tests consisted of a set of forced

vibration tests using a 0.22kN (50lbs) force electro-dynamic shaker followed by a set of

µ∆ 1.0, 1.5, 2.0, 3.0, 4.0=

Table 5.1 Loading protocol

Loading Cycle 
Number

Load Cycle Target Peak Total Load 
(kN)

1 1000 kN 1016 
2 1000 kN* 
3 1779 

4  = 1.0 2278 

5 µ∆= 1.0* 
6 3000 µε tensile 

strain 
2713 

7 µ∆ = 1.5 2761 
µ∆ = 1.5* 

8 µ∆ = 2.0 3066 
µ∆ = 2.0* 

9 µ∆ = 3.0 3516 
10 µ∆ = 3.0 
11 µ∆ = 3.0 

µ∆ = 4.0 3743 
12 µ∆ = 4.0* 

Fy′

µ∆

* At the end of these cycles, the load fixtures were removed and a set of
dynamic tests were performed. 
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impact (free vibration) tests using an impact hammer with integrated load cell recording

the applied force. The forced vibration tests performed using the shaker consist of a set of

sixteen (Gaussian) white noise excitations followed by three (linear) sine sweeps across

the frequency ranges 12-22Hz, 38-48Hz, and 93-103Hz, respectively. These three fre-

quency ranges were selected so as to excite the first three vibration modes of the beam, the

frequencies of which were predicted using a finite element model of the beam. The free

vibration tests conducted using the impact hammer consisted of three vertical impact tests

at each of four locations along the top edge of the girder as shown in Figure 5.5. There-

fore, a total of 12 vertical impact tests were performed on the beam for each of 7 different

states (S0 through S6). It was found that the shaker-induced vibration data were of consid-

erably lower amplitude than the impact response data, resulting in a much lower signal-to-

noise ratio. Therefore, the modal identification results presented in this paper are based

only on the data collected from the vertical impact tests. 

Fig. 5.4 Total load vs. girder vertical displacement at mid-span
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5.2.2   Instrumentation

The girder was instrumented with strain gages, linear potentiometers, and incli-

nometers for the entire duration of the quasi-static cyclic tests. In addition, the girder was

instrumented with four long-gage fiber Bragg grating (FBG) strain sensors (1m gage

length) and eight accelerometers with the required sensitivity/accuracy for the purpose of

the (low-amplitude) payload dynamic tests. The FBG strain sensors were surface mounted

using brackets, with a pair of sensors located along the top and bottom of the beam at mid-

span, and the remaining two sensors located along the bottom edge of the beam at approx-

imately 1/3 of the beam length on either side of mid-span as shown in Figure 5.5. The

FBG strain sensors were pre-strained in their long-gage packages in order to measure

compression as well as tension. In addition to the FBG strain sensors, eight accelerometers

were attached to the girder specimen to measure vertical acceleration. Seven of these

Fig. 5.5 Locations of accelerometers, FBG sensors, vertical hammer impacts 
and electro-dynamic shaker
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accelerometers were approximately equally spaced along the bottom edge of the girder

and one was mounted on the moving mass of the electro-dynamic shaker to measure the

dynamic force applied to the beam (see Figure 5.5). The technical characteristics of the

accelerometers are: PCB model 393A03, amplitude range: 5g pk, frequency range (10%)

0.3-4000Hz, resolution g pk, voltage sensitivity 1000mV/g, excitation voltage 18

to 30VDC. For every dynamic test performed at each of the states S0 through S6, the

vibration response of the composite girder was measured by accelerometers a2 through a8,

while the four FBG strain sensors measured the vibration response for states S1 through

S5 only. Figure 5.6 illustrates the acceleration (left column) and FBG strain (right column)

measurements after an impact applied at location 1 (see Figure 5.5) at state S1. Figure 5.7

shows the Fourier Amplitude Spectra (FSA) of two acceleration and two FBG strain mea-

surements for the same impact test.

5.3   IDENTIFICATION OF MODAL PARAMETERS

In this study, the Eigensystem Realization Algorithm (ERA) (Juang and Pappa,

1985) followed by a least squares optimization (De Callafon et al., 2007) was employed

for identifying the modal parameters (natural frequencies, damping ratios, displacement

and macro-strain mode shapes) of the composite beam in its undamaged and damaged

states. The identified modal parameters using ERA are based on the impact test (free

vibration) data recorded by the accelerometers or FBG strain sensors, separately. Since

two separate data acquisition systems, not time-synchronized and with different sampling

rates, were used to collect the acceleration and macro-strain data, it was more convenient

5 10 6–×
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to apply ERA to the two types of measurements separately. A total of 12 vertical impact

tests were performed on the beam at each of the 7 states S0 to S6, with states S0 and S1

representing the beam in its undamaged condition. Two different cases of modal identifi-

cation are performed at each damage state, namely, (1) ERA is applied to a single test data

(i.e., one test at a time), and (2) ERA is applied to all 12 impact test data in a single identi-

fication.
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5.3.1   Identified Modal Parameters Based on Accelerometer Data

Figure 5.8 shows the natural frequencies of the first 5 modes identified using ERA

based on accelerometer data for each of  impact tests (each circle corresponds

to an identified frequency from one impact test). In each ERA realization (considering one

test at a time), a Hankel matrix of size  was constructed based on the

impulse response data sampled at 512Hz. Then, after performing a singular value decom-

position, a system of order n = 16 was realized based on the natural frequency stabilization

diagram (Peeters and De Roeck, 2001), from which a maximum of 8 physical modes of

vibration could be extracted. From Figure 5.8, it is observed that: (1) At each damage

state, the modal frequencies identified from each of the 12 impact tests are generally in

close agreement. The few cases when an identified modal frequency is not consistent with

the others could be explained by a low participation of the corresponding vibration mode
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(e.g., impact applied near a modal node) resulting in a low signal-to-noise ratio. (2) As

expected, the identified natural frequencies for states S0 and S1 are almost identical, since

both sets of results correspond to the undamaged state of the beam. (3) With increasing

level of damage in the beam, the identified modal frequencies decrease (with an exception

for the 5th mode at state S2), consistent with the stiffness degradation due to damage. 

It should be noted that the changes in the natural frequencies due to structural damage are

much more significant than the variability (due to changes in location and amplitude of the

impact force as well as the estimation uncertainty) of the identified natural frequencies

within one damage state. The statistics (mean and coefficient-of-variation) of the identi-

fied modal frequencies (based on 12 identifications) are reported in Table 5.2, while Table

5.3 provides the same statistics for the identified damping ratios. The coefficient-of-varia-
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tion of a random variable is defined as the ratio of its standard deviation to its (absolute)

mean value.

The second case of system identification was performed based on the same accel-

eration data, but including the data from all twelve impact tests (at each damage state) in a

single identification. The basic idea behind this identification strategy is to use simulta-

neously the information from all impact tests to identify the modal parameters. Therefore,

if a single test does not contain significant information about a vibration mode (for exam-

ple due to its low modal participation), this mode can still be identified well through other

Table 5.2 Mean [Hz] / coefficient-of-variation [%] of the natural frequencies identified using ERA 
based on acceleration data for states S0 to S6 (sets of 12 impact tests)

S0 S1 S2 S3 S4 S5 S6

Mode 1 17.35/0.1 17.34/0.1 16.10/0.1 15.37/0.2 15.17/0.1 15.02/0.1 14.09/0.2

Mode 2 42.97/3.5 42.78/3.5 40.93/0.8 39.47/2.2 38.93/0.5 38.58/0.9 35.68/17.2

Mode 3 97.58/0.1 97.49/0.1 89.26/0.1 86.82/0.2 84.90/0.2 84.05/0.2 79.91/0.2

Mode 4 167.67/0.0 167.72/0.0 158.87/0.1 153.64/0.3 143.23/0.2 143.21/0.1 142.81/0.1

Mode 5 246.42/0.3 246.22/0.3 255.91/0.1 244.85/0.1 232.39/0.1 228.35/0.2 219.80/0.1

Table 5.3 Mean [%] / coefficient-of-variation [%] of the damping ratios identified using ERA 
based on acceleration data for states S0 to S6 (sets of 12 impact tests)

S0 S1 S2 S3 S4 S5 S6

Mode 1 1.5/2.7 1.5/3.3 1.6/3.4 1.7/7.3 1.2/3.7 1.3/2.6 1.4/2.4

Mode 2 4.0/47.3 4.1/53.7 2.9/27.9 2.9/89.6 2.2/8.8 2.8/6.8 5.5/77.0

Mode 3 1.7/7.0 1.7/6.1 2.0/6.1 1.7/2.0 2.1/17.1 2.1/28.5 1.7/2.1

Mode 4 0.9/4.0 0.8/2.3 0.9/2.1 1.7/19.3 1.8/9.9 0.9/3.0 1.5/7.9

Mode 5 0.8/82.7 0.7/36.6 0.6/39.3 0.7/16.6 0.8/10.5 0.9/9.1 0.9/11.2
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impact test data that are more informative about this mode. For this purpose, ERA is

applied in its multiple input, multiple output (MIMO) formulation (Juang and Pappa,

1985), but instead of forming the Hankel matrix based on free vibration data from a truly

multiple input test, the block Hankel matrix is formed by including the response measure-

ments from (r) single input impact tests as

(5.1)

where  denotes the impulse response vector (at time ) from the ith impact

test. In this case, the block Hankel matrix was built including the data from all 12 impact

tests (r = 12) at each damage state. A model of order n = 16 (from which a maximum of 8

physical vibration modes could be extracted) was realized from the data, and then the

modal parameters were extracted from this state-space model. The natural frequencies and

damping ratios identified using this approach are reported in Table 5.4 for all damage

states considered. Figure 5.9 shows the normalized mode shapes (projection of complex

mode shapes on the real axis) corresponding to state S1 (undamaged state of the beam). In

Figure 5.9, the circles correspond to the identified mode shape at the sensor locations and

the dashed lines represent cubic spline interpolation through the circles. It should be noted

that, due to flexibility of the support structures relative to the beam, the mode shapes of

the beam-support system are generally not zero at the support locations. The equivalent
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stiffness of the two support structures was calculated based on their geometric and mate-

rial properties and was included in the FE model of the beam-support system. 

Table 5.4 Natural frequencies [Hz] and damping ratios [%] identified using ERA based on 
acceleration data at states S0 to S6 (all 12 impact tests considered in a single identification)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Freq.
[Hz]

Damping 
Ratio [%]

Freq.
[Hz]

Damping 
Ratio [%]

Freq.
[Hz]

Damping 
Ratio [%]

Freq.
[Hz]

Damping 
Ratio [%]

Freq.
[Hz]

Damping 
Ratio [%]

S0 17.35 1.5 43.48 4.3 97.57 1.7 167.70 0.8 246.63 0.4

S1 17.34 1.5 43.24 4.6 97.50 1.7 167.74 0.8 246.16 0.5

S2 16.09 1.7 40.72 2.7 89.24 2.0 158.90 0.9 254.51 1.1

S3 15.35 1.7 39.09 2.0 86.80 1.7 153.32 1.8 244.72 0.6

S4 15.17 1.3 38.91 2.2 84.82 2.2 143.24 1.3 232.25 0.8

S5 15.00 1.3 38.98 3.2 84.12 1.9 143.20 0.9 227.94 0.9

S6 14.08 1.4 33.04 2.1 79.93 1.7 142.84 1.4 219.71 0.9
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Fig. 5.9 Normalized (real) mode shapes of the composite beam at state S1
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Figure 5.10 plots the identified complex-valued mode shapes in polar plots (i.e.,

complex plane). This representation indicates the degree of non-proportional damping of a

vibration mode. If the components (each representing an observed degree of freedom) of a

complex-valued mode shape are collinear (i.e., in phase or out of phase), then this mode is

classically (or proportionally) damped. Scattering of the components of a mode shape in

the complex plane indicates that the mode is non-classically damped. From Figure 5.10, it

is observed that the first four identified modes are classically damped and the fifth identi-

fied mode is non-classically damped. It should be noted that due to low signal-to-noise

ratio and/or identification or modeling errors, a truly classically-damped mode could be

identified as non-classically damped. 

Figure 5.11 provides a comparison of the impulse response (impact applied at location 1)

simulated using the realized model with the corresponding response measured by acceler-

ometers a2, a4 and a6 (see Figure 5.5) at state S1, and the modal decomposition of the

simulated acceleration impulse response. This modal decomposition is obtained from the

realized model of the system (De Callafon et al., 2007). This figure shows that: (1) the

simulated and measured impulse responses are in excellent agreement, indicating the

accuracy of the realized model, and (2) the fifth vibration mode does not contribute signif-

  0.5
90

270

180

f
1
 = 17.34Hz

  1
90

270

f
2
 = 43.24Hz

  1
90

270

f
3
 = 97.50Hz

  1
90

270

f
4
 = 167.74Hz

  1
90

270

0

f
5
 = 246.15Hz

Fig. 5.10 Complex-valued (displacement) mode shapes in polar plots at state S1



185
icantly to the total response of the system and is therefore characterized by a lower signal-

to-noise ratio than the other modes. This could explain the non-classical damping charac-

teristics identified for the fifth mode (see Figure 5.10). The first four mode shapes identi-

fied (from a single state-space model realized based on all twelve impact test data) at three

increasing levels of damage (S0, S2 and S4) are shown in Figure 5.12. It is observed that

the damage-induced changes in these mode shapes are small. However, as shown in the

damage identification section, these small changes in some of the mode shapes are suffi-

cient to identify (localize) damage based on finite element model updating. 
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5.3.2   Identified Modal Parameters Based on FBG Strain Sensor Data

The impulse response data transduced from the FBG strain sensors were also used

to identify the modal parameters of the composite beam in the two identification cases

defined in Section 3. Figure 5.13 shows the natural frequencies identified using ERA

based on impact test data measured from the four FBG sensors at states S1 to S5. It should

be recalled that the FBG strain sensors were not available during the dynamic tests per-

formed at the first and last damage states of the beam (S0 and S6). From Figure 5.13, it is

observed that some of the vibration modes cannot be identified from some impact tests.

For example, at state S4, the second and fourth modal frequencies could not be identified
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and also the third mode was only identified for the first three and last three of the 12

impact tests (impacts at locations one and four in Figure 5.5). 

Table 5.5 provides the statistics (mean and coefficient-of-variation) of the identified modal

frequencies based on sets of 12 impact tests (considered one at a time) at beam states S1

through S5. By comparing the identified modal frequencies obtained from accelerometer

data with those obtained from FBG strain sensor data, it is observed that the second natu-

ral frequency is identified with less variability from acceleration data than from macro-

strain data, and the fifth natural frequency can only be identified from the acceleration

data. Table 5.6 reports the natural frequencies and damping ratios identified at states S1 to

S5 based on all 12 impact test FBG sensor data considered at once. It is observed that
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Fig. 5.13 Identified natural frequencies of the first 4 modes using ERA based on FBG sensor data 
at states S1-S5 (12 identifications at each damage state)
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these identified natural frequencies and damping ratios are in good agreement with their

counterparts obtained from acceleration data (see Table 5.4), except for the second mode. 

The corresponding identified macro-strain mode shapes are represented in polar plots in

Figure 5.14 for state S1. The fact that vibration modes 2, 3, and 4 are identified as non-

classically damped could be due to the low contribution of these modes to the total

response. Figure 5.15 shows the identified macro-strain mode shapes projected on the real

axis and normalized to a unit length for states S1, S2, S3 and S5. The second and fourth

macro-strain modes could not be identified at state S3. From Figure 5.15, it is observed

that the macro-strain mode shapes at FBG sensor #2 (see Figure 5.5) change significantly

Table 5.5 Mean [Hz] / coefficient-of-variation [%] of the natural frequencies identified using ERA 
based on FBG sensor macro-strain data at states S1 to S5 (sets of 12 impact tests)

S1 S2 S3 S4 S5

Mode 1 17.35/0.1 16.13/0.1 15.46/0.3 15.25/0.7 15.04/0.1

Mode 2 40.77/4.2 39.46/4.7 36.94/5.5 NA 36.76/6.4

Mode 3 96.98/0.5 88.89/0.4 86.86/0.4 84.39/1.4 81.12/3.4

Mode 4 167.56/0.1 158.77/0.1 152.35/0.3 NA 143.19/0.1

Table 5.6 Natural frequencies [Hz] and damping ratios [%] identified using ERA based on FBG 
sensor macro-strain data at states S1 to S5 (all 12 impact tests considered in a single identification)

Mode 1 Mode 2 Mode 3 Mode 4

Frequency 
[Hz]

Damping 
Ratio [%]

Frequency 
[Hz]

Damping 
Ratio [%]

Frequency 
[Hz]

Damping 
Ratio [%]

Frequency 
[Hz]

Damping 
Ratio [%]

S1 17.35 1.5 39.52 1.1 97.29 1.6 167.66 0.8

S2 16.12 1.6 37.13 0.6 89.06 2.0 158.86 0.9

S3 15.45 1.6 NA NA 86.76 1.7 NA NA

S4 15.17 1.0 NA NA NA NA NA NA

S5 15.07 1.1 34.23 0.7 81.07 1.5 143.10 1.0



189
due to damage beyond state S2. Figure 5.16 shows a comparison of the impulse response

(impact applied at location 1) simulated using the realized model with the corresponding

response measured by the four FBG strain sensors at state S1, and the modal decomposi-

tion of the simulated beam macro-strain impulse response. This figure indicates clearly

that: (1) the simulated and measured impulse responses are in very good agreement, vali-

dating the accuracy of the realized model, and (2) the contributions of modes 2, 3 and 4 to

the total impulse response are much smaller than that of the first mode.
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5.4   SENSITIVITY OF IDENTIFIED MODAL PARAMETERS TO 

DAMAGE

This section investigates the changes in identified natural frequencies and modal

assurance criterion (MAC) values (between corresponding mode shapes in undamaged

and damaged states) with increasing level of damage in the beam. MAC values are

bounded between 0 and 1 and measure the degree of correlation between corresponding

mode shapes in the undamaged and damaged states (MAC value of 1 for unchanged mode

shapes). Based on the force-displacement curve for the quasi-static tests shown in Figure
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5.4, the global tangent stiffness K of the beam structure is determined at several points

corresponding to states S0 to S6 along the envelope curve of the hysteresis loops. The nor-

malized changes in tangent stiffness  and normalized changes in modal frequencies

 are defined respectively as

(5.2)

in which the subscript Si denotes the damage state of the beam (e.g., S0, S1, ..., S6), KSi

represents the tangent stiffness at state Si, and  denotes the identified natural frequency

of the kth vibration mode at state Si. The normalized changes in tangent stiffness and natu-

ral frequencies are plotted in Figure 5.17 versus the damage level (S0-S6). 
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It is observed that with increasing level of damage, the tangent stiffness and natural fre-

quencies of the first five identified modes decrease monotonically, with an exception for

the 5th mode at state S2. MAC values are calculated between the identified mode shapes at

each state of the beam (S0-S6) and the corresponding mode shapes at the undamaged state

(S0) of the beam. Figure 5.18 displays the calculated MAC values for the first four vibra-

tion modes identified at states S0 to S6 (top plot) and the relative changes of these MAC

values, , as a function of damage level (bottom plot). 

From this figure, it is observed that: (1) the MAC value of the first mode has the least sen-

sitivity to damage, while the MAC value of the second mode is the most sensitive to dam-

age, which is consistent with the observed changes in normalized displacement mode

∆MAC 1 M– ACSi
k=

Mode1 Mode2 Mode3 Mode4
0.85

0.9

0.95

1

M
A

C

 

 

S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5 S6
0
1
2
3
4
5
6
7

∆M
A

C
 [

%
]

 

 

Mode1

Mode2

Mode3

Mode4

Fig. 5.18 MAC values (top plot) and their relative changes (bottom plot) at different damage levels 



193
shapes shown in Figure 5.12. (2) The MAC values obtained at states S4 and S6 are outliers

of the trend between MAC value and damage level. From the changes in modal frequen-

cies and MAC values, it is possible to detect the presence of damage, but it is very difficult

(if not impossible) to determine the location and extent of damage, since both of these

indicators are global in nature (i.e., aggregated quantities). 

5.5   DAMAGE IDENTIFICATION BASED ON FINITE ELEMENT 

MODEL UPDATING

Based on the identified modal parameters of the composite beam, an element-by-

element sensitivity-based finite element (FE) model updating approach (Conte and Liu,

2001; Teughels and De Roeck, 2004) was used to identify (detect, localize and quantify)

the damage in the beam at various damage levels. Two separate cases of damage identifi-

cation were performed using FE model updating: (1) the residuals used in the updating

process are based on the natural frequencies and displacement mode shapes identified

from the accelerometer data, and (2) the residuals used in the updating process are based

on the natural frequencies, displacement mode shapes identified from the accelerometer

data, and macro-strain mode shapes identified from the FBG strain sensor data. In both

cases, damage in the beam at the various damage levels is identified as a change in stiff-

ness (modulus of elasticity) in the finite elements. For this purpose, a linear elastic FE

model of the composite beam was developed in FEDEASLab (Filippou, 2004) using 10

Bernoulli-Euler beam elements for the composite beam (elements 1 to 10) and two truss

elements to model the flexible end supports (elements 11 and 12) as shown in Figure 5.19.



194
Both truss elements are pinned at their base (nodes 12 and 13) and the top node (node 2) of

the left support (element 11) is restrained in the horizontal direction (along the beam).

Nodes 3 to 9 are at the location of accelerometers a2 to a8 along the beam (see Figure

5.19). The beam elements (1-10) are assumed to have a constant mass density of 2320 Kg/

m3, while no mass is assigned to the truss elements (11-12). The element section proper-

ties are reported in Table 5.7, where A and I denote the assigned cross-section area and

moment of inertia, respectively. These two section properties are equivalent section prop-

erties accounting for the concrete (confined), composite, and steel (longitudinal reinforce-

ment) materials. Elements 4-7 have a larger cross-section area to account for the

longitudinal steel reinforcement at half-span (see Figure 5.3). The first step to identify

damage in the beam is to obtain a reference (baseline) FE model based on the modal

parameters identified at the undamaged state of the beam (state S1). 

Table 5.7 Element section properties for all 12 elements (El.)

El. 1 El. 2 El. 3 El. 4 El. 5 El. 6 El. 7 El. 8 El. 9 El. 10 El. 11 El. 12

Eref [GPa] 2.76 51.71 59.15 38.41 42.06 32.31 50.91 38.68 51.71 2.76 57.18 132.92

A [m2] 0.732 0.732 0.732 0.872 0.872 0.872 0.872 0.732 0.732 0.732 0.0026 0.0026

I [m4] 0.0298 0.0298 0.0298  0.0436  0.0436  0.0436  0.0436 0.0298 0.0298 0.0298 0 0

Fig. 5.19 Finite element model of the beam in FEDEASLab showing element and node numbers, 
locations of accelerometers, and FBG strain sensors
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In this study, the reference model was obtained through updating the moduli of elasticity

of all 12 elements from their nominal values using residuals based on the natural frequen-

cies and displacement mode shapes of the first five modes identified from accelerometer

data. The updated values for the moduli of elasticity in the reference model (Eref) for all 12

elements are also reported in Table 5.7. It should be noted that the updating parameters

(moduli of elasticity) act as effective moduli of elasticity reflecting the overall stiffness of

the structure, including the contributions of the structural components that are not directly

(or accurately) represented in the FE model or the parameters of which are not updated.

The low (unrealistic) values of the effective moduli of elasticity found for elements 1 and

10 are due to: (1) the fact that the confinement of the composite shell is much less effec-

tive at the ends of the beam than along the beam, and (2) the fact that the selected residuals

are not sensitive to the updating parameters of elements 1 and 10. The lack of symmetry in

the calibrated effective moduli of elasticity of the beam elements can be due to variability

in the quality of concrete and concrete filling within the composite shell. After a reference/

baseline model is obtained, the effective moduli of elasticity of elements 3, 4, 5, 6, 7, 8, 11

and 12 (total of 8 elements) are updated at states S2 to S6 through minimization of an

objective function. It should be noted that elements 1 and 10 are located outside of the two

supports and therefore did not experience any damage during the quasi-static loading of

the beam. In addition, the modal parameters used in the updating process (natural frequen-

cies, displacement and macro-strain mode shapes) are lowly sensitive to changes in the

moduli of elasticity of elements 2 and 9. Also, since there were no sensors between nodes

3 and 12 (foot of left support) as well as between nodes 9 and 13 (foot of right support),
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the use of the moduli of elasticity of all four elements 2, 9, 11, 12 as updating parameters

would result in compensation effects between elements 2 and 11 as well as between ele-

ments 9 and 12. Therefore, the moduli of elasticity of elements 1, 2, 9, and 10 were not

used as updating parameters. However, the installation of more sensors along the beam,

especially at the location of the supports, would have resulted in more refined damage

identification results (in terms of the spatial distribution of damage). After completion of

all the tests, the carbon shell was cut and removed in order to assess the quality of the

infilled concrete and the extent of damage. No significant damage was observed at the

location of elements 2 and 9. 

The objective (cost) function used in this study for damage identification based on

FE model updating is given by

(5.3)

where r denotes the residual vector, expressing the discrepancy between experimentally

identified modal parameters and their analytically predicted (using the FE model) counter-

parts, and W is a diagonal weighting matrix with each diagonal component inversely pro-

portional to the standard deviation of the natural frequency of the corresponding vibration

mode based on the 12 identifications at each damage state (see Table 5.2). The residual

vector can be partitioned as  where rf and rs define eigen-frequency and mode

shape residuals, respectively, as

f 1
2
--- r

T
Wr=

r
rf

rs
=
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(5.4)

where  and  denote the analytical and experimental eigenvalues corresponding to the

jth vibration mode, respectively, with  and  = natural frequency;  and 

denote the analytical and experimentally identified mode shape vectors, respectively. In

Equation (5.4), the superscript r indicates a reference component of a mode shape vector

(with respect to which the other components of the mode shape are normalized), the super-

script l refers to the components that are used in the updating process (i.e., at the locations

of the accelerometers or FBG strain sensors), and nm denotes the number of vibration

modes considered in the residual vector. 

In the first case of damage identification, the natural frequencies and displacement

mode shapes of the first five modes (see Figure 5.9) identified from acceleration data are

used to form the residual vector which has a total of 35 residual components consisting of

5 eigen-frequency and  displacement mode shape residuals. The model

parameters (effective moduli of elasticity) of the reference model are updated from state

S1 (reference model) through S6. In the second case of damage identification, in addition

to the natural frequencies and displacement mode shapes of the first five vibration modes

identified based on acceleration data, the macro-strain mode shapes of the first four vibra-

tion modes identified based on FBG strain sensor data are considered in the residual vec-

tor for a total of 47 residual components consisting of 5 eigen-frequency, 30 displacement

mode shape, and  macro-strain mode shape residuals. The reference

rf
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model (which is the same for both damage identification cases) is updated at states S2, S3,

and S5. It should be mentioned that the macro-strains obtained from the FBG sensors at

state S4 were significantly noisier than at the other states (due to the fact that the FBG sen-

sors were not re-tensioned at this damage state) and therefore the FE model was not

updated at this damage state. In the second case of damage identification, the mode shape

residual vector consists of two parts: residuals from displacement mode shapes  and

residuals from macro-strain mode shapes , as , where both parts are

defined separately as in the second part of Eq. (5.4). The analytical macro-strain mode

shapes are derived from the displacement mode shapes through a transformation matrix

Tms. This matrix connects the nodal degrees of freedom (DOF) of the FE model to the

deformation of the FBG sensors based on linear elastic Bernoulli-Euler beam theory with

exact displacement interpolation functions (Conte and Liu, 2001). 

The (dimensionless) damage factor of element e is defined as 

(5.5)

where Ee is the effective modulus of elasticity of element e. At each damage state, the

damage factors for elements 3, 4, 5, 6, 7, 8, 11, and 12 are updated in order to minimize

the objective function f defined in Eq. (5.3) based on a trust region Gauss-Newton optimi-

zation algorithm (Coleman and Li, 1996). The damage factors were constrained to be in

the range  for calibrating the reference model at state S1 in order to result in posi-
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tive moduli of elasticity. For updating the FE model at states S2 through S6, the relative

damage factor defined as  was con-

strained to be in the range [-0.2, 0.9]. The upper-bound of 90% was selected based on the

observed damage in the beam (i.e., it remained far from  even at the end of the

quasi-static tests), while the lower bound of -20% was selected considering that the identi-

fied effective moduli of elasticity are not expected to increase beyond 20% between two

consecutive damage states. The optimization process was performed using the function

“fmincon” in Matlab (Mathworks, 2005), with Jacobian and first-order estimate of the

Hessian matrices calculated analytically based on the sensitivities of modal parameters to

the updating variables (Fox and Kapoor 1968). It should be noted that the Fox and

Kapoor’s sensitivity formulas apply only for translational DOFs in the mode shapes. The

sensitivities of rotational DOFs, which are required in the second case of damage identifi-

cation for macro-strain mode shapes, were calculated based on the work of Conte and Liu

(2001). 

Table 5.8 reports the values of the updated effective moduli of elasticity (Ee) for

elements 3-8, 11, 12 (see Figure 5.19) as well as the damage factors of these elements cal-

culated relative to the reference/baseline state S1 at states S2 through S6 for the first case

of damage identification. For each state S2-S6, Table 5.9 presents the experimentally iden-

tified modal frequencies together with their analytical counterparts obtained from the

updated FE model as well as the MAC values between experimental and analytical mode

shapes for the first case of damage identification. It should be noted that the analytical

mode shapes were truncated at the locations of the accelerometers in order to match the

arel
e Eprevious_state

e Ecurrent_state
e–( ) Eprevious_state

e⁄=

arel
e 0.9=
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size of the experimental mode shapes. From Table 5.9, it is observed that: (1) the experi-

mentally identified modal parameters match very well their analytical counterparts, espe-

cially for the first four vibration modes, (2) the discrepancies between analytical (from

updated FE model) and experimental modal parameters tend to increase with increasing

damage, and (3) at each damage state, the largest discrepancies between analytical and

experimental modal parameters are exhibited by the fifth vibration mode. This is due to

the fact that (1) this mode has the lowest modal contribution to the total measured acceler-

ation response (see Figure 5.10), (2) the estimation variability of the identified modal

parameters is relatively large for this mode compared to the other modes (see Section 3),

and therefore smaller weights are assigned to the fifth mode residuals in the objective

function. It should be noted that the modal parameters of the fifth vibration mode were not

used in the FE model updating process at state S2. 

Table 5.8 Effective moduli of elasticity Ee [GPa] / damage factors ae [%] (relative to reference 
state S1) of updated elements (# 3-8, 11, 12) at states S2-S6 for first case of damage identification

El. 3 El. 4 El. 5 El. 6 El. 7 El. 8 El. 11 El. 12

S2  46.30/
21.7

31.35/
18.4

34.30/
18.5

31.41/
2.8

49.60/
2.6

32.15/
16.9

61.82/
-8.1

72.78/
45.2

S3 39.44/
33.3

35.92/
6.5

27.30/
35.1

30.68/
5.1

48.36/
5.0

30.19/
21.9

58.16/
1.7

 59.84/
55.0

S4 27.52/
53.5

35.42/
7.8

24.36/
42.1

33.49/
-3.6

52.48/
-3.1

28.01/
27.6

55.52/
2.9

70.82/
46.7

S5 27.64/
53.3

39.27/
-2.2

24.30/
42.2

26.93/
16.6

43.56/
14.4

27.62/
28.6

58.80/
-2.8

74.91/
43.6

S6 33.17/
43.9

26.72/
30.4

24.50/
41.8

25.81/
20.1

32.55/
36.1

25.39/
34.4

36.28/
36.5

77.91/
41.4



201
Figure 5.20 shows a bar plot of the updated values of Ee for beam elements 1-10 (as

explained above) at states S1 to S6 for the first case of damage identification. It is recalled

that the effective moduli of elasticity of elements 1, 2, 9, 10 are not updated beyond state

S1. From the results presented in Table 5.8 and Figure 5.20, it is observed that the effec-

tive moduli of elasticity display an overall decreasing trend with increasing level of dam-

age. There are some exceptions to this decreasing trend in some beam elements, which can

be due to: (1) measurement errors and estimation variability of the identified modal

parameters, (2) low sensitivity of the residuals to some of the updating parameters (Ee),

Table 5.9 Comparison of experimental and analytical modal frequencies [Hz] and MAC values 
between experimental and analytical mode shapes at states S1 through S6 

(first case of damage identification)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

S1
Freq. (experiment) 17.34 43.24 97.50 167.74 246.15
Freq. (updated model) 17.31 43.28 97.80 167.74 245.02
MAC 0.999 0.998 0.997 0.993 0.839

S2
Freq. (experiment) 16.09 40.72 89.24 158.90 -
Freq. (updated model) 16.08 40.97 89.16 158.93 -
MAC 1.000 0.999 0.994 0.993 -

S3
Freq. (experiment) 15.35 39.09 86.80 153.32 244.72
Freq. (updated model) 15.37 38.75 86.91 153.18 236.03
MAC 0.999 0.994 0.994 0.992 0.974

S4
Freq. (experiment) 15.17 38.91 84.82 143.24 232.25
Freq. (updated model) 15.10 39.24 83.80 145.99 233.30
MAC 1.000 0.998 0.982 0.977 0.898

S5
Freq. (experiment) 15.00 38.98 84.12 143.20 227.94
Freq. (updated model) 14.91 40.29 83.13 144.46 229.84
MAC 1.000 0.993 0.981 0.986 0.916

S6
Freq. (experiment) 14.08 33.04 79.93 142.84 219.71
Freq. (updated model) 13.94 34.60 80.05 144.19 224.47
MAC 0.999 0.996 0.991 0.967 0.935



202
(3) modeling errors and uncertainties, and (4) optimization errors in the FE model updat-

ing process (i.e., local but not global minimum).

For the second case of damage identification, Table 5.10 gives the updated Ee for

the updating elements (# 3-8, 11, 12) and the corresponding damage factors (relative to the

reference state S1) at states S2, S3 and S5, while Figure 5.21 shows in a bar plot the

updated Ee for all beam elements at states S1, S2, S3 and S5. Table 5.11 presents the

experimentally identified modal frequencies together with their analytical counterparts

obtained from the updated FE model as well as the MAC values between experimental

and analytical mode shapes (for both displacement and macro-strain mode shapes consid-

ered separately) at states S2, S3 and S5. 
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Fig. 5.20 Updated effective moduli of elasticity of 10 beam elements at different damage states 
(S1 to S6) for first case of damage identification
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Figure 5.22 compares the damage factors of all updating elements (3-8, 11, 12) obtained

from the two considered cases of damage identification at states S2, S3, and S5. From this

figure, it is observed that the damage factors computed from these two cases are in rela-

tively good agreement for elements 3, 5, 6, 11 and 12. Damage is identified along element

4 in the first case and not in the second case. Since FBG sensor # 1 is covering part of ele-

Table 5.10 Effective moduli of elasticity Ee [GPa] / damage factors ae [%] (relative to reference 
state S1) of updated elements (# 3-8, 11, 12) at states S2, S3, and S5 

for the second case of damage identification

El. 3 El. 4 El. 5 El. 6 El. 7 El. 8 El. 11 El. 12

S2 39.06/
34.0

38.23/
0.5

38.01/
9.6

32.09/
0.7

42.85/
15.8

36.78/
4.9

57.18/
0

 58.61/
55.9

S3 44.07/
24.4

38.41/
0

27.43/
34.8

28.16/
12.8

31.37/
38.4

35.70
7.7

57.18/
0

64.60/
51.4

S5 32.28/
45.4

38.36/
0.1

20.97/
50.1

32.01/
0.9

29.96/
41.2

37.67/
2.6

57.18/
0

66.16/
50.2
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Fig. 5.21 Updated effective moduli of elasticity of 10 beam elements at different damage states 
(S1, S2, S3 and S5) for second case of damage identification
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ment 4 (see Figure 5.5), it is expected that the results from the second case of damage

identification for element 4 are more accurate than those from the first case. In the first

case, damage is identified along element 8 with almost no damage along element 7, while

in the second case, damage is identified along element 7 with very small damage along

element 8. Again, the results from the second case of damage identification are expected

to be more accurate for elements 7 and 8, since most of FBG sensor #3 is contained in ele-

ment 8 (see Figure 5.5). This will be confirmed below by the observed damage in the

beam at the end of the experiments. The differences in the identified damage obtained

from the two different cases can be due to: (1) different type of residuals were used in two

cases (addition of macro-strain mode shapes in the second case), and (2) different weights

were assigned to residuals in the two cases. 

Table 5.11 Comparison of experimental and analytical modal frequencies [Hz] and MAC values 
between experimental and analytical mode shapes at states S2, S3 and S5 

(second case of damage identification)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

S2

Freq. (experiment) 16.09 40.72 89.24 158.90 254.51

Freq. (updated model) 16.01 38.59 89.19 160.40 -

MAC (acc. mode shapes) 1.000 0.999 0.988 0.988 -

MAC (strain mode shapes) 0.997 0.765 0.998 0.987 -

S3

Freq. (experiment) 15.35 39.09 86.80 153.32 244.72

Freq. (updated model) 15.26 39.20 87.70 156.56 234.31

MAC (acc. mode shapes) 0.999 0.993 0.995 0.994 0.980

MAC (strain mode shapes) 0.982 - 0.974 - -

S5

Freq. (experiment) 15.00 38.98 84.12 143.20 227.94

Freq. (updated model) 14.71 39.20 84.74 150.14 230.17

MAC (acc. mode shapes) 1.000 0.995 0.980 0.983 0.933

MAC (strain mode shapes) 0.972 0.823 0.996 0.937 -
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At the end of the experiments, the carbon shell was cut and removed from the con-

crete core to assess the quality of the infilled concrete and the extent of damage in the con-

crete, especially in the splice region. Figure 5.23 shows a picture of the damaged concrete

core at the splice location (i.e., mid-span of the girder). Significant flexural cracks can be

observed at the top and bottom of the gap region. This gap is located inside element 5 of

the FE model (see Figures 5.5 and 5.19), and therefore the high damage factors identified

at element 5 in both damage identification cases (see Figure 5.22) are in good agreement

with the observed damage. Figure 5.24 shows local failures in the composite shell at the

location of stirrups both near accelerometer a3 (next to the electro-dynamic shaker) inside

element 3 (close to element 4) and near accelerometer a7 at the limit between elements 7

and 8. Thus, the damage identification results at elements 3, 7, and 8 (see Figure 5.22) are

consistent with the observed damage in the composite shell.
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Fig. 5.22 Comparison of damage factors obtained from the two cases of damage identification 
at states S2, S3 and S5
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Furthermore, pitted and shrinkage-cracked concrete can be observed in the picture of Fig-

ure 5.25, corresponding to locations of elements 7 and 8, further validating the damage

identification results. Finally, it is worth noting that the large damage factor identified in

Fig. 5.23 Damage in the concrete core at the splice location

Fig. 5.24 Composite shell failure at location of stirrup holes: (a) near accelerometer a3, 
and (b) near accelerometer a7

(a) (b)
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element 12 (representing the north support) is likely due to the initial friction in the sup-

port pin, i.e., the pin was not well lubricated initially and broke free during the first set of

quasi-static tests leading to state S2. 

5.6   CONCLUSIONS

This paper presents the application of a state-of-the-art two-stage damage identifi-

cation method to a full-scale composite beam (sub-component) based on its measured

vibration response. In the first stage, modal parameters (modal frequencies, damping

ratios, displacement and macro-strain mode shapes) of the test structure are identified

based on its impulse response data measured using accelerometers and long-gage fiber

Fig. 5.25 Concrete core at north side of the splice (see Figures 2 and 4)
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Bragg grating (FBG) strain sensors. In the second stage, changes (from damage state to

damage state) in the modal parameters identified in the first stage are used to identify

(detect, localize and quantify) damage in the girder using an element-by-element sensitiv-

ity based finite element model updating algorithm. This damage identification study lever-

aged a full-scale sub-component experiment conducted in the Charles Lee Powell

Structural Research Laboratories at the University of California, San Diego, and consist-

ing of uni-directional quasi-static cyclic load tests. After each of several sequences of

loading-unloading cycles, a high-quality set of low-amplitude vibration response data was

acquired from the beam at various damage levels. Based on impulse (free vibration)

response data measured using accelerometers and FBG strain sensors from different

impact tests, the Eigensystem Realization Algorithm followed by a least squares optimiza-

tion was employed for modal parameter identification of the composite beam in its

undamaged (baseline) and various damaged states. The modal identification results from

different tests at a given damage state using different types of data (acceleration or macro-

strain) show very good agreement, thus validating the system identification results used in

the first stage of the damage identification procedure. 

The identified modal parameters are then used to identify the damage in the struc-

ture using a finite element model updating strategy. Two separate cases of damage identi-

fication were performed: (1) the residuals in the objective function used in the FE model

updating procedure are based on the natural frequencies and displacement mode shapes

identified from accelerometer data, and (2) the residuals are based on the natural frequen-

cies, displacement mode shapes identified from accelerometer data, and macro-strain
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mode shapes identified from FBG strain sensor data. From the obtained damage identifi-

cation results, it is observed that the effective moduli of elasticity (used as updating

parameters) display an overall decreasing trend with increasing level of damage, which is

consistent with the damage-induced stiffness degradation. The updated effective moduli of

elasticity obtained from the two different damage identification cases are found to be in

relatively good agreement and consistent with the damage observed in the composite

beam during and at the end of the experiments. This provides an important validation

example for vibration based damage identification using finite element model updating,

performed on a full-scale structural component tested in laboratory conditions. However,

similar studies are still needed to further evaluate the feasibility of vibration based struc-

tural health monitoring for large and complex structures in field conditions. 

ACKNOWLEDGEMENTS

Chapter 5, in full, is a reprint of the material as it is accepted for publication in

Journal of Computer-Aided Civil and Infrastructure Engineering (2008), Moaveni, B., He,

X., Conte, J.P., and De Callafon, R.A. The dissertation author was the first author and pri-

mary investigator of this paper.

This work was partially funded by the National Science Foundation, Grant No.

DMI-0131967 under a Blue Road Research STTR Project in which UCSD was the princi-

pal subcontractor, and a grant from Lawrence Livermore National Laboratory with Dr.

David McCallen as Program Leader. These sources of support are gratefully acknowl-

edged. The authors wish to thank Professor Vistasp Karbhari at UCSD, and Dr. Charles



210
Sikorsky at Caltrans for allowing them to perform the dynamic tests used in this research,

as a payload project to their full-scale sub-component experiment. The authors are also

grateful to Dr. Michael Fraser for his significant help in acquiring the acceleration data. 



211
REFERENCES

Adeli, H., and Jiang, X. (2006). “Dynamic fuzzy wavelet neural network model for struc-
tural system identification.” Journal of Structural Engineering, ASCE, 132(1),
102-111.

Bernal, D., and Gunes, B. (2004). “Flexibility based approach for damage characteriza-
tion: benchmark application.” Journal of Engineering Mechanics, ASCE, 130(1),
61-70.

Brestel, D., Van Den Einde, Y., Karbhari, V. M., and Seible, F. (2003). “Characterization
of concrete filled structural formwork.” Proceeding of the 48th International
SAMPE Symposium, Long Beach, CA, Book 2, 2115-2128, May 11-15.

Catbas, F. N., Brown, D. L., and Aktan, A. E. (2004). “Parameter estimation for multiple-
input multiple-output modal analysis of large structures.” Journal of Engineering
Mechanics, ASCE, 130 (8), 121-130.

Coleman, T. F., and Li, Y. (1996). “An interior, Trust Region approach for nonlinear mini-
mization subject to bounds.” SIAM Journal on Optimization, 6, 418-445. 

Computers and Structures, Inc. (2004). SAP2000 linear and nonlinear, static and dynamic
analysis and design of three-dimensional structures: getting started, version 9.
Berkeley, California, USA.

Conte, J. P., and Liu, M. (2001). Use of long-gage fiber optic sensors for earthquake
response monitoring and non-destructive evaluation of structures. CUREE Report,
Publication No. CKIII-04, CUREE-Kajima Joint Research Program - Phase III.

De Callafon, R. A., Moaveni, B., Conte, J. P., He, X., and Udd, E. (2007). “General Real-
ization Algorithm for modal identification of linear dynamic systems.” Journal of
Engineering Mechanics, ASCE, Under Review.

Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W. (1996). Damage identifi-
cation in structures and mechanical systems based on changes in their vibration
characteristics: a detailed literature survey. Los Alamos National Laboratory Rep.



212
No. LA-13070-MS, Los Alamos, N.M.

Doebling, S. W., Farrar, C. R., and Prime, M. B. (1998). “A summary review of vibration-
based damage identification methods.” The Shock and Vibration Digest, 30(2), 99-
105.

Filippou, F. C., and Constantinides, M., (2004). FEDEASLab getting started guide and
simulation examples. Technical Report NEESgrid-2004-22, http://fedeaslab.berke-
ley.edu.

Fox, R. L., and Kapoor, M. P. (1968). “Rates of change of eigenvalues and eigenvectors.”
AIAAJ, 6(12), 2426-2429. 

Friswell, M. I., and Mottershead, J. E. (1995). Finite element model updating in structural
dynamics. Kluwer Academic Publishers, Boston, USA.

Jiang, X., and Adeli, H. (2005). “Dynamic wavelet neural network for nonlinear identifi-
cation of highrise buildings.” Computer-Aided Civil and Infrastructure Engineer-
ing, 20(5), 316-330.

Jiang, X. and Adeli, H. (2006). “Pseudospectra, MUSIC, and dynamic wavelet neural net-
work for damage detection of highrise buildings.” International Journal for
Numerical Methods in Engineering, in press.

Juang, J. N. and Pappa, R. S. (1985). “An eigensystem realization algorithm for model
parameter identification and model reduction.” Journal of Guidance, Control, and
Dynamics, 8(5), 620-627.

Maeck, J., and De Roeck, G. (1999). “Dynamic bending and torsion stiffness derivation
from modal curvatures and torsion rates.” Journal of Sound and Vibration, 225(1),
153-170.

MathWorks Inc. (2005). Matlab - high performance numeric computation and visualiza-
tion software, user’s Guide. The MathWorks Inc., Natick, MA. 



213
Moaveni, B., He, X., Conte, J. P., and Udd, E. (2006). “Effect of damage on modal param-
eters using full-scale test data.” Proc. of International Conference on Modal Anal-
ysis (IMAC-XXIV), St. Louis, USA.

Pandey, A. K., Biswas, M., and Samman, M. M. (1991). “Damage detection from changes
in curvature mode shapes.” Journal of Sound and Vibration, 145(2), 321-332.

Peeters, B., and De Roeck, G. (2001). “Stochastic system identification for operational
modal analysis: A review.” Journal of Dynamic Systems, Measurement, and Con-
trol, 123, 1-9.

Salawu, O.S. (1997). “Detection of structural damage through changes in frequency: A
review.” Engineering Structures, 19(9), 718-723.

Seible, F., Hegemier, G. A., Karbhari, V. M., Davol, A., Burgueño, R., Wernli, M., and
Zhao, L. (1996). The I-5/Gilman advanced composite cable stayed bridge study.
Department Resport, University of California, San Diego, SSRP-96/05.

Shi, Z. Y., Law, S. S., and Zhang, L. M. (2002), Improved damage quantification from ele-
mental modal strain energy change, Journal of Engineering Mechanics, ASCE,
128(5), 521-529.

Smyth, A. W., Pei, J. S., and Masri, S. F. (2003). “System identification of the Vincent
Thomas suspension bridge using earthquake records.” Earthquake Engineering
and Structural Dynamics, 32, 339-367.

Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., and Nadler, B. R.
(2003). A review of structural health monitoring literature: 1996-2001. Los Ala-
mos National Laboratory Report LA-13976-MS.

Teughels, A., and De Roeck, G. (2004). “Structural damage identification of the highway
bridge Z24 by finite element model updating.” Journal of Sound and Vibration,
278(3), 589–610.

Zhu H. P., and Xu, Y. L. (2005). “Damage detection of mono-coupled periodic structures
based on sensitivity analysis of modal parameters.” Journal of Sound and Vibra-



214
tion, 285, 365–390.



CHAPTER 6

Damage Identification of Seven-Story 
Reinforced Concrete Building Slice Tested on 

the UCSD-NEES Shake Table

6.1   INTRODUCTION

In recent years, structural health monitoring has received increasing attention in

the civil engineering research community with the objective to develop methods through

which structural damage can be identified at the earliest possible stage and the remaining

useful life of structures evaluated (damage prognosis). Vibration-based, non-destructive

damage identification makes use of changes in dynamic characteristics (e.g., modal

parameters) to identify structural damage. Experimental modal analysis (EMA) has been

used as a technology for identifying modal parameters of a structure based on low ampli-

tude vibration data. It should be emphasized that the success of damage identification

based on EMA depends strongly on the accuracy and completeness of the identified struc-

tural dynamic properties. Extensive literature reviews on vibration-based damage identifi-

cation were provided by Doebling et al. (1996 and 1998) and Sohn et al. (2003). 

Damage identification consists of: (1) detecting the occurrence of damage, (2)

localizing the damage zones, and (3) estimating the extent of damage in the various dam-

age zones. Numerous vibration-based methods have been proposed to achieve these goals.
215
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Salawu (1997) presented a review on the use of changes in natural frequencies for damage

detection only. However, it is in general impossible to localize damage (i.e., obtain spatial

information on the detected structural damage) from changes in natural frequencies only.

Pandey et al. (1991) introduced the concept of using curvature mode shapes for damage

localization. In their study, by using a cantilever and a simply supported analytical beam

model, they demonstrated the effectiveness of employing changes in curvature mode

shapes as damage indicator for detecting and localizing damage. Bernal and Gunes (2004)

have incorporated changes in modal flexibility matrices (or flexibility proportional matri-

ces) into the damage locating vector (DLV) technique to localize damage. Recently, Adeli

and Jiang (2006) presented a novel multi-paradigm dynamic time-delay fuzzy wavelet

neural network (WNN) model for non-parametric identification of structures using the

nonlinear auto-regressive moving average with exogenous inputs (NARMAX) approach.

Methods based on changes in identified modal parameters to detect and localize damage

have also been further developed for the purpose of damage quantification. Among these

methods are strain-energy based methods (Shi et al., 2002) and the direct stiffness calcula-

tion method (Maeck and De Roeck, 1999). Another class of sophisticated methods con-

sists of applying sensitivity-based finite element (FE) model updating for damage

identification (Friswell and Mottershead 1995). These methods update the physical

parameters of a FE model of the structure by minimizing an objective function expressing

the discrepancy between FE predicted and experimentally identified structural dynamic

properties that are sensitive to damage such as natural frequencies and mode shapes. Opti-

mum solutions of the problem are reached through sensitivity-based constrained optimiza-

tion algorithms. In recent years, sensitivity-based FE model updating methods have been
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applied successfully for condition assessment of structures (Teughels and De Roeck,

2004).

The UCSD-NEES shake table is located at the Englekirk Structural Engineering

Center, 15km east of the main campus of University of California, San Diego (UCSD).

This unique facility, commissioned in October 2004, allows to perform landmark seismic

experiments on large- or full-scale structural and soil-foundation-structure interaction sys-

tems. A full-scale seven-story reinforced concrete shear wall building slice was tested on

the UCSD-NEES shake table in the period October 2005 - January 2006. The objective of

this test program was to verify the seismic performance of a mid-rise reinforced concrete

shear wall building designed for lateral forces obtained from a displacement-based design

methodology, which are significantly smaller than those dictated by current force-based

seismic design provisions in United States (Panagiotou et al. 2007). The shake table tests

were designed so as to damage the building progressively through several historical seis-

mic motions reproduced on the shake table. At various levels of damage, several low

amplitude white noise base excitations were applied through the shake table to the build-

ing which responded as a quasi-linear system with dynamic parameters depending on the

level of structural damage. In addition to white noise base excitation tests, ambient vibra-

tion tests were also performed on the building specimen at different damage levels. Differ-

ent state-of-the-art system identification methods were applied to acceleration response

measurements in order to estimate modal parameters (natural frequencies, damping ratios

and mode shapes) of the building in its undamaged (baseline) and various damage states. 
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In this study, a FE model updating strategy is applied for damage identification of

the structure in various damage states. The objective function for damage identification is

defined as a combination of natural frequency and mode shape residuals measuring the

discrepancy between the analytically predicted (using a FE model) and experimentally

identified modal parameters. Two cases of damage identifications are considered in this

study, namely (1) residuals are constructed from the modal parameters identified based on

ambient vibration data, and (2) residuals are formed using the modal parameters identified

based on white noise base excitation test data. The identified damage from both cases is

then compared to the damage observed in the test structure.

6.2   TEST SPECIMEN, TEST SETUP AND DYNAMIC EXPERI-

MENTS

6.2.1   Seven-Story Reinforced Concrete Shear Wall Building Slice

The test structure which represents a slice of a full-scale reinforced concrete shear

wall building consists of a main shear wall (web wall), a back wall perpendicular to the

main wall (flange wall) for transversal stability, a concrete slab at each floor level, an aux-

iliary post-tensioned column to provide torsional stability, and four gravity columns to

transfer the weight of the slabs to the shake table. Pin-pin slotted slab connections capable

of transferring in-plane diaphragm forces are placed between the web and flange walls at

floor levels in order to minimize the moment transfer and coupling between the two walls.

Figures 6.1 and 6.2 show the test structure mounted on the shake table and an elevation

view with its general dimensions, respectively. Figure 6.3 displays a plan view of the
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structure with walls and slab dimensions at different levels. Details about construction

drawings and material test data are available in Panagiotou et al. (2007).

6.2.2   Instrumentation Layout

The test structure was instrumented with an extensive array of accelerometers,

strain gages, potentiometers, and Linear Variable Displacement Transducers (LVDTs), all

sampling data simultaneously using a nine node distributed data acquisition system. The

accelerometer array consisted of 14 uni-axial accelerometers on the foundation/pedestal of

the test structure, 106 uni-axial accelerometers on the floor slabs and the web wall, 8 uni-

axial accelerometers on the platen of the shake table, 9 uni-axial accelerometers on the

Fig. 6.1   Test structure Fig. 6.2   Elevation of test structure (units: m)
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reaction block of the shake table and 1 tri-axial accelerometer on the surrounding ground

(free field), resulting in a total of 140 channels of acceleration measurements. The 54

LVDTs were installed along both edges (east and west) of the web wall, while the 8 poten-

tiometers were installed diagonally along only the first two stories of the web wall. A total

of 231 strain gages were deployed on the test specimen consisting of 143 on the longitudi-

nal and horizontal steel reinforcement of the web wall, 64 on the longitudinal and horizon-

tal steel reinforcement of the flange wall, 16 on the gravity columns and 8 on the steel

braces connecting the slabs to the post-tensioned column. 

In addition, the displacement response of selected points on the structure were measured

in three dimensions using 6 global positioning system (GPS) sensors, 3 of them on the top

floor slab, 2 on the flange wall and 1 on the platen of the shake table. Table 6.1 provides a
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summary of the heterogeneous sensor array installed on the test structure. The technical

characteristics of the accelerometers are: MEMS-Piezoresistive MSI model 3140, ampli-

tude range: +/-5g, frequency range (min): 0-300Hz, voltage sensitivity: 400mV/g. The

data acquisition system used had 16 bits of resolution. 

In this study, measured response data from 14 longitudinal accelerometers on the

web wall (at each floor level as shown in Figure 6.3 and at mid-height of each story) were

used to identify the modal parameters of the test structure. The measured acceleration

responses were sampled at a rate of 240Hz resulting in a Nyquist frequency of 120Hz,

Table 6.1    Summary of instrumentation deployed on the test structure

Sensor Type Location Quantity

Accelerometer
(138)

Foundation/pedestal 14

Slabs and walls 106

Shake table platen 8

Reaction block 9

Free field 1 (tri-axial)

LVDT (54)
Web wall (levels 1-2) 34

Web wall (levels 3-7) 20

Potentiometer (8) Web wall (levels 1-2) 8

GPS (6)

Top floor 3

Flange wall 2

Platen 1

Strain Gage
(231)

Web wall 143

Flange wall 64

Gravity columns 16

Braces connecting slabs 
to post-tensioned column 8
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which is much higher than the modal frequencies of interest in this study (< 25Hz). Before

applying the system identification methods, all the measured data were band-pass filtered

between 0.5Hz and 25Hz using a high order (1024) FIR filter. Figure 6.4 shows six filtered

absolute acceleration time histories recorded on the web wall at floor levels 1, 4 and 7 dur-

ing white noise base excitation (left column) and ambient vibration (right column) tests

performed on the test structure in its undamaged state. 

The corresponding Fourier Amplitude Spectra (FAS) are given in Figure 6.5. From

Figure 6.5, it is observed that: (1) the FAS plots are very jagged/noisy which can be due to

some rattling behavior caused by loose connections, especially at both ends of the steel

braces connecting the slabs to the post-tensioned column; (2) the first longitudinal vibra-

tion mode has a predominant contribution to the total response, especially at the higher
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floors, which renders the identification of higher (than the first longitudinal) vibration

modes more difficult; and (3) the FAS of the acceleration response histories at the first

floor have a drop in their amplitude around 11.5 Hz which is due to the application of a

notch filter in the control loop of the shake table to reduce the effects of the oil column

resonance. 

6.2.3   Dynamic Tests Performed

A sequence of dynamic tests (68 tests in total) was applied to the test structure dur-

ing the period October 2005 - January 2006 including ambient vibration, free vibration,

and forced vibration tests (white noise and seismic base excitations) using the UCSD-

NEES shake table. The shear wall structure was damaged progressively through a
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sequence of four historical ground motion records used as table input motions and the

modal parameters of the test structure were identified at different damage states using six

different system identification methods based on various dynamic test data. The four

earthquake records applied to the test structure consist of (http://peer.berkeley.edu/smcat):

(1) longitudinal component of the 1971 San Fernando earthquake (M = 6.6) recorded at

the Van Nuys station (EQ1), (2) transversal component of the 1971 San Fernando earth-

quake recorded at the Van Nuys station (EQ2), (3) longitudinal component of the 1994

Northridge earthquake (M = 6.7) recorded at the Oxnard Boulevard station in Woodland

Hill (EQ3), and (4) 360 degree component of the 1994 Northridge earthquake recorded at

the Sylmar station (EQ4). The input white noise base excitation consisted of a realization

of a banded white noise (0.25-25Hz) process with a root-mean-square (RMS) amplitude of

0.03g. Table 6.2 describes the dynamic tests used in this study on system identification of

the shear wall building at different damage states.

Table 6.2    Dynamic tests used in this study 
(WN: white noise base excitation test and AV: ambient vibration test)

Test 
No. Date Test Description Damage 

State

37 11/18/05 8min WN (0.03g) S0

39 11/21/05 8min WN (0.03g) + 3min AV S0

40 “ EQ1

41 “ 8min WN (0.03g) + 3min AV S1

43 “ EQ2

45 11/22/05 2min WN (0.03g) S2

46 “ 8min WN (0.03g) + 3min AV S2

48 “ EQ3

49 “ 8min WN (0.03g) + 3min AV S3.1



225
6.3   SYSTEM IDENTIFICATION RESULTS

Modal parameters of the test structure were identified using state-of-the-art system

identification methods based on measured data from low amplitude dynamic tests (i.e.,

ambient vibration tests and white noise base excitation tests) performed at various damage

states S0, S1, S2, S3.1, S3.2, and S4 (Moaveni et al. 2007). Damage state S0 is defined as

the undamaged (baseline) state of the structure before its exposure to the first seismic

excitation (EQ1), while damage states S1, S2, S3 and S4 correspond to the state of the

structure after exposure to the first (EQ1), second (EQ2), third (EQ3), and fourth (EQ4)

seismic excitations, respectively (see Table 6.2). Damage state S0 does not correspond to

the uncracked state of the test structure, since the latter had already been subjected to low-

amplitude white noise base excitations (0.02-0.03g RMS) for the purposes of checking the

instrumentation and data acquisition system and tuning the shaking table controller. It

should be noted that during damage state S3, the bracing system between the slabs of the

test specimen and the post-tensioned column was stiffened. Therefore, damage state S3 is

subdivided into S3.1 (before modification of the braces) and S3.2 (after modification of

the braces). In this study, the natural frequencies and mode shapes of the first three longi-

56 12/5/05 8min WN (0.03g) S3.1

61 1/14/06 8min WN (0.03g) + 3min AV S3.2

62 “ EQ4

64 1/14/06 8min WN (0.03g) + 3min AV S4

67 “ 8min WN (0.03g) S4

Table 6.2    Dynamic tests used in this study 
(WN: white noise base excitation test and AV: ambient vibration test)
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tudinal vibration modes are used for damage identification of the test structure at damage

states S1, S2, S3.1, and S4. Figure 6.6 shows in polar plots the complex-valued mode

shapes of the first three longitudinal vibration modes (1st-L, 2nd-L, 3rd-L) of the test struc-

ture identified using the Multiple-reference Natural Excitation Technique combined with

Eigensystem Realization Algorithm (MNExT-ERA) based on ambient vibration data from

Test 39 at damage state S0. The real part of each of these identified mode shapes is dis-

played in Figure 6.7. The polar plot representation of a mode shape provides information

on the degree of non-classical (or non-proportional) damping characteristics of that mode.

If all the components of a mode shape (each component being represented by a vector in

polar plot) are collinear, that vibration mode is classically damped. The more the mode

shape components are scattered in the complex plane, the more the system is non-classi-

cally (non-proportionally) damped in that mode. However, measurement noise (low sig-

nal-to-noise ratio), estimation errors, and modeling errors can also cause a truly classically

damped vibration mode to be identified as non-classically damped. From Figure 6.6, it is

observed that the first longitudinal mode at damage state S0 is identified as perfectly clas-

sically damped. Some degree of non-proportional damping is identified for the 3rd-L

mode, while the 2nd-L mode is identified with high level of non-proportional damping,

which is probably caused at least in part by the high estimation uncertainty characterizing

this vibration mode. 
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Tables 6.3 and 6.4 report the natural frequencies, damping ratios, and modal assur-

ance criterion (MAC) values of these three longitudinal vibration modes (1st-L, 2nd-L, 3rd-

L) identified based on acceleration data from ambient vibration and white noise base exci-

tation tests, respectively, at all damage states considered. The MAC values are calculated

between normalized mode shapes identified at various damage states with their counter-

parts identified at the undamaged state of the building. Normalization was performed by

projecting all mode shape components onto their major principal axis (in the complex

plane) and then scaling this projected mode shape vector for a unit value of its largest

component. This normalization results in real valued mode shapes which are more suitable
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Fig. 6.6   Polar plot representation of complex-valued mode shapes of the building at 
damage state S0 obtained using MNExT-ERA method based on ambient vibration data

Fig. 6.7   Vibration mode shapes of the building at damage state S0 obtained using 
MNExT-ERA method based on ambient vibration data
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to be used in FE model updating. From Tables 6.3 and 6.4, it is observed that: (1) The

identified natural frequencies decrease with increasing level of damage, except from dam-

age states S3.1 to S3.2, during which the steel braces (see Figure 6.3) were modified (stiff-

ened and strengthened), while the identified damping ratios do not show a clear trend as a

function of increasing structural damage. (2) The calculated MAC values exhibit a general

decreasing trend with increasing level of damage. This trend is less consistent than that of

the identified natural frequencies. 

6.4   FINITE ELEMENT MODEL UPDATING FOR DAMAGE IDEN-

TIFICATION

In this study, a sensitivity-based FE model updating strategy is used to identify

(detect, localize and quantify) the damage in the test structure. The residuals used in the

updating procedure are based on the identified natural frequencies and mode shapes for

the first thee longitudinal modes of the shear wall building slice. Damage in the structure

Table 6.3    Natural frequencies, damping ratios and MAC values identified based on 
acceleration data from ambient vibration tests

Damage 
State

Natural Frequency [Hz] Damping Ratio [%] MAC

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

S0 1.91 10.51 24.51 2.3 2.4 0.5 1.00 1.00 1.00

S1 1.88 10.21 24.31 2.9 2.7 0.6 1.00 1.00 1.00

S2 1.67 10.16 22.60 1.3 1.4 0.9 1.00 0.97 0.96

S3.1 1.44 9.23 21.82 2.7 1.3 1.4 1.00 0.96 0.92

S3.2 1.58 8.48 22.72 1.3 1.9 1.2 1.00 0.99 0.99

S4 1.02 5.67 15.09 1.0 1.7 1.0 0.99 0.87 0.81
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is identified as a change in material stiffness (effective modulus of elasticity) of the finite

elements in the different substructures of the FE model used for damage identification. For

the purpose of damage identification, the effective moduli of elasticity of elements in var-

ious substructures (each assumed to have a uniform value of the effective modulus of elas-

ticity) are updated at each damage state. Each time, the effective moduli of elasticity of the

various substructures are updated from the reference/baseline model through constrained

minimization of an objective function. 

6.4.1   Objective Function

The objective function for damage identification is defined as

(6.1)

Table 6.4    Natural frequencies, damping ratios, and MAC values identified based on 
acceleration data from white noise base excitation tests (0.03g RMS)

Damage 
State

Natural Frequency [Hz] Damping Ratio [%] MAC

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

S0 1.71 11.05 24.31 2.1 1.8 0.5 1.00 1.00 1.00

S1 1.54 10.98 24.28 2.0 1.7 0.2 1.00 0.98 0.96

S2 1.24 11.11 21.59 3.0 2.9 0.5 1.00 0.87 0.77

S3.1 1.14 9.77 19.68 3.9 1.6 0.5 1.00 0.85 0.92

S3.2 1.20 10.45 21.11 3.5 2.0 0.3 1.00 0.69 0.79

S4 0.88 4.81 13.29 5.5 3.8 0.9 0.98 0.37 0.62

min
�

 f �( ) r �( )TWr �( ) a �( ) a0–( )
T

Wa a �( ) a0–( )+=

wiri �( )2[ ] wk
a ak �( ) ak

0–( )
2

[ ]
k
∑+

i
∑=



230
where  = set of physical parameters (effective moduli of elasticity) which must be

adjusted in order to minimize the objective function;  = residual vector containing the

differences between analytically computed (FE predicted) and experimentally identified

modal parameters;  = vector of dimensionless damage factors representing the level

of damage in each of the substructures of the FE model used for damage identification

(see next section);  = vector of initial damage factors used as starting point in the opti-

mization process. At each damage state,  is selected as the identified damage factors for

the previous damage state and  for damage state S1. In Equation 6.1, W is a

weighting matrix for modal residuals, a diagonal weighting matrix with each component

assigned based on the estimation uncertainty (coefficient-of-variation) of the correspond-

ing mode natural frequency as well as the modal contribution of considered mode. The

first vibration mode has a predominant contribution to the total response of the structure at

all damage states, and therefore its corresponding residuals are assigned the largest

weights among the three vibration modes. Still in Equation 6.1,  is a weighting matrix

for damage factors, a diagonal weighting matrix with each diagonal component defining

the relative cost (or penalty) of changing/updating the corresponding damage factor. The

weights for damage factors reduce the estimation error of the damage factors in the pres-

ence of estimation uncertainty in the modal parameters, especially for the substructures

with updating parameters to which the used residuals are less sensitive. In this study, these

weight are set to  with  where  denotes the number

of substructures considered in FE model updating and  is the weight assigned to the
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modal residual associated to the natural frequency of the first mode. A combination of

residuals in natural frequencies, and mode shape components is used in the objective func-

tion as

 (6.2)

in which  and  represent the eigen-frequency and mode shape residuals,

respectively, as

(6.3)

where  and  denote the analytical (FE predicted) and experimental eigenvalues,

respectively, corresponding to the jth vibration mode with  and  = natural

circular frequency;  and  denote the analytical (FE predicted) and experimentally

identified mode shape vectors, respectively. It should be noted that for each vibration

mode, the mode shapes  and  are normalized in the same way, i.e., scaled to a

reference component. In Equation 6.3, the superscript r indicates the reference component

of a mode shape vector (with respect to which the other components of the mode shape are

normalized), the superscript l refers to the mode shape components that are used in the FE

model updating process (i.e., at the locations and in the directions of the sensors), and nm

denotes the number of vibration modes considered in the damage identification process. In

this study, the natural frequencies and mode shapes of the first three longitudinal vibration
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modes of the structure (see Figure 6.7) are used to form the residual vector  which

has a total of 42 residual components (when using 14 sensors) consisting of 3 eigen-fre-

quency and  mode shape component residuals, respectively. 

6.4.2   Damage Factors and Modal Residual Sensitivities

In the process of FE model updating, the material stiffness (effective modulus of

elasticity) of each of the damage substructures are used as updating parameters in the FE

model of the structure. Instead of the absolute value of each updating parameter, a dimen-

sionless damage factor is defined as

(6.4)

where  is the effective modulus of elasticity of all finite elements in substructure k

( ). Thus, the damage factor  indicates directly the level of damage (rel-

ative change in effective modulus of elasticity) in substructure k when FE model updating

is used for the purpose of structural damage identification. The sensitivity of the modal

residuals with respect to the damage factor  can be obtained from Equation 6.3 using

the modal parameter sensitivities as

 and (6.5)
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where the modal sensitivities  and  are available in Fox and Kapoor (1968).

Notice that according to Equation 6.5, the sensitivity of the reference mode shape compo-

nent with respect to  equals zero as it should be.

6.4.3   Optimization Algorithm

The optimization algorithm used to minimize the objective function defined in

Equation 6.1 is a standard Trust Region Newton method (Coleman and Li, 1996), which is

a sensitivity-based iterative method available in the MATLAB optimization Toolbox

(Mathworks, 2005). The damage factors were constrained to be in a selected range (see

Section 6.5) at each damage state. The optimization process was performed using the

“fmincon” function in Matlab, with the Jacobian matrix and a first-order estimate of the

Hessian matrix calculated analytically based on the sensitivities of modal parameters to

the updating variables as given in Equation 6.5. The use of the analytical Jacobian, rather

than the Jacobian estimated through finite difference calculations, increases significantly

the efficiency of the minimization of the objective function.

6.4.4   Finite Element Modeling of Test Structure in FEDEASLab

A three dimensional linear elastic FE model of the test structure was developed

using a general-purpose FE structural analysis program, FEDEASLab (Filippou and Con-

stantinides, 2004) as shown in Figure 6.8. This model is defined by 340 nodes and 322 lin-

ear elastic shell and truss elements. A four-node linear elastic flat shell element (with four
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Gauss integration points) borrowed from the FE literature was implemented in FEDEA-

SLab in order to model the web wall, flange wall, concrete slabs, and the post-tensioned

column (He et al., 2006). This shell element is based on the mixed discrete variational

principle proposed by Hughes and Brezzi (1989) in conjunction with Allman type interpo-

lation (Allman, 1988) for the membrane part and the discrete Kirchhoff plate element

derived by Batoz and Tahar (1982) for the plate part. The resulting finite element has six

degrees of freedom (DOFs) per node, including a true drilling DOF. In this FE model, the

web wall at each of the first three stories is modeled using 16 shell elements, while the

higher stories (5 to 7) are modeled using 4 shell elements each. The 4th story of the web

wall is modeled using 8 shell elements. The floor slabs are modeled using 24 shell ele-

ments for each of the first three floors and 12 shell elements for each of the higher floors

(4 to 7). The flange wall and the post-tensioned column are modeled using 8 and 10 shell

elements per story, respectively. The gravity columns and braces connecting the post-ten-

sioned column to the building slabs are modeled using truss elements. The inertia proper-

ties of the test structure are discretized into lumped translational masses at each node of

the FE model. This initial FE model of the shear wall building slice is based on the mea-

sured material properties and blue prints of the test structure (i.e., average material proper-

ties over 2 samples per story). Table 6.5 reports the measured moduli of elasticity (through

concrete cylinder tests) at various heights (stories) of the test structure, which are used in

the initial FE model of the test structure.
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6.5   DAMAGE IDENTIFICATION

In this study, two different cases of damage identification are performed using the

FE model updating algorithm described above based on two different sets of identified

modal parameters of the test structure, namely (1) the modal parameters identified based

on ambient vibration data, and (2) the modal parameters identified based on white noise

base excitation test data. In each of these cases, the first step to identify damage in the test

structure consists of obtaining a reference/baseline FE model based on the modal parame-

ters identified at the undamaged (or baseline) state of the building (S0). In this step, the

initial FE model is updated to match the identified modal parameters at the undamaged

state of the test structure by updating the stiffness (effective moduli of elasticity) of seven-

teen (in the first case of damage identification) or twenty four (in the second case of dam-

Fig. 6.8   Finite element model of the shear wall building slice in FEDEASLab



236
age identification) substructures. The effective modulus of elasticity is assumed to be

uniform/constant over each substructure. Therefore all finite elements of a substructure

share the same value of the effective modulus of elasticity.

The seventeen substructures considered in the first damage identification case con-

sist of: 10 substructures along the web wall (6 along the first three stories, every half story

each, and 4 along higher stories, every story each) as shown in Figure 6.9, and 7 substruc-

tures consisting each of a floor slab. The twenty four substructures considered in the sec-

ond damage identification case consist of the same seventeen substructures as those

considered in the first damage identification case and 7 additional substructures contain-

ing each the braces (4 components) connecting one of the seven slabs to the post-ten-

sioned column. It should be noted that the steel braces appeared to play an important role

in the response of the test structure during the white noise base excitation tests due to the

partial slackness (stick-slip behavior) of their connections to the slabs and post-tensioned

column. The partial slackness of these connections was not fully exercised during the low-

amplitude ambient vibration tests which did not cause any rattling behavior of the brace

connections (i.e., the brace connections remained in the stick phase of their stick-slip

behavior). 

The effective moduli of elasticity of the various substructures obtained based on

the modal parameters identified at the undamaged state S0 of the test structure, referred to

herein as reference values, are reported in Table 6.5 for both cases of damage identifica-

tions together with the corresponding measured values of the concrete modulus of elastic-

ity (on the day of the test) used in the initial FE model. For both cases of damage



237
identification, the “damage factors” are constrained in the range  for updating the

initial FE model to the reference FE model in order to result in positive effective moduli of

elasticity. From the results obtained in Table 6.5, the following observations can be made:

(1) The reference (calibrated) effective moduli of elasticity of the web wall differ from the

corresponding measured (initial) values, especially in the second case which is based on

white noise base excitation test data. This is due to the facts that (1) the updating parame-

ters (moduli of elasticity) act as effective moduli of elasticity reflecting the overall stiff-

ness of the test structure, including the contributions of other structural components such

as flange wall, post-tensioned column and gravity columns for which the parameters are

not calibrated/updated, and (2) the structure under white noise base excitation behaves as a

cracked structure as opposed to the mainly uncracked behavior of the test structure under

ambient excitation.

Fig. 6.9   Substructures along the web wall considered for damage identification
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Table 6.5    Measured and effective moduli of elasticity of structural components at 
different substructures of initial and reference FE models

Substructure

Moduli of Elasticity [GPa]

Initial FE 
model

Reference FE model 
based on ambient 

vibration data

Reference FE model 
based on white noise 

test data

Web wall, 1st story (bot.) 24.5 17.1 31.9

Web wall, 1st story (top) 24.5 21.6 18.6

Web wall, 2nd story (bot.) 26.0 27.4 7.8

Web wall, 2nd story (top) 26.0 25.9 22.4

Web wall, 3rd story (bot.) 34.8 35.3 45.0

Web wall, 3rd story (top) 34.8 37.5 49.1

Web wall, 4th story 30.2 33.9 49.7

Web wall, 5th story 28.9 28.4 44.3

Web wall, 6th story 32.1 34.4 50.4

Web wall, 7th story 33.5 34.6 43.3

Slab, 1st floor 24.5 22.9 29.1

Slab, 2nd floor 26.0 24.6 23.6

Slab, 3rd floor 34.8 35.6 27.0

Slab, 4th floor 30.2 26.2 30.6

Slab, 5th floor 28.9 25.5 32.8

Slab, 6th floor 32.1 28.0 37.3

Slab, 7th floor 33.5 28.9 39.2

Steel braces, 1st floor 200 200a 252

Steel braces, 2nd floor 200 200a 18

Steel braces, 3rd floor 200 200a 42

Steel braces, 4th floor 200 200a 215

Steel braces, 5th floor 200 200a 306

Steel braces, 6th floor 200 200a 10

Steel braces, 7th floor 200 200a 2
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6.5.1   Case I: Damage Identification Based on Ambient Vibration Data

In this case of damage identification, once the reference model is determined, 10

updating parameters (corresponding to 10 substructures) are updated from the reference

FE model to damage states S1, S2, S3.1, and S4. These 10 substructures are selected along

the web wall 6 along the first three stories (every half story each), and 4 along higher sto-

ries (every story each) as shown in Figure 6.9(b). The value of the other updating parame-

ters (moduli of elasticity of other substructures considered in Table 6.5) are fixed as in the

reference FE model. In each of the considered damage states, the natural frequencies and

mode shapes of the first three longitudinal vibration modes are used in the objective func-

tion for damage identification, resulting in a residual vector with 42 components (i.e., 3

natural frequencies and 3 vibration mode shapes of  components each).

For updating the FE model to states S1 through S4, the dimensionless damage fac-

tors were constrained to be in the range [0, 0.95]. The upper-bound of 95% was selected

based on the observed damage in the test structure, while the lower bound of 0% was

selected considering that the identified effective moduli of elasticity are not expected to

increase with increasing damage. As already mentioned in Section 6.4.1, at each damage

state the initial damage factors used as starting point in the optimization process are

selected as the identified damage factors for the previous damage state or zero for damage

state S1. The damage factors (relative to the reference FE model or reference state)

obtained at different damage states are presented in a bar plot in Figure 6.10. These results

a. These parameters were not updated for the reference FE model based on ambient vibration 
data.

14 1– 13=
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indicate that: (1) the severity of structural damage increases as the structure is exposed to

stronger earthquake excitations; and (2) the extent of damage decreases rapidly along the

height of the structure (damage concentrated in the two bottom stories), except for a false

alarm in the fourth story at damage state S4. The large identified damage factor in the

fourth story may be due to the facts that: (i) the identified modal parameters at damage

state S4 are characterized by a higher level of estimation uncertainty than at the previous

damage states; and (ii) the optimization algorithm used is not a global optimization algo-

rithm and the probability to converge to a local minimum (which is not the global mini-

mum) increases with increasing difference between the identified modal parameters at two

consecutive damage states.

Table 6.6 presents the natural frequencies computed from the updated FE model at

each damage state together with their counterparts identified from ambient vibration data

as well as the MAC values between analytical (FE computed) and experimental mode
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Fig. 6.10   Identified damage factors at various substructures for damage identification 
case I (based on ambient vibration data)



241
shapes. It should be noted that the analytical (FE computed) mode shapes were truncated

at the locations of the accelerometers in order to match the size of the experimental mode

shapes. Figure 6.11 shows the comparison between analytical and experimental natural

frequencies in bar plots. From Table 6.6 and Figure 6.11, it is observed that: (1) in general,

the discrepancies between analytical and identified natural frequencies are larger (in both

absolute and relative terms) for the second and third modes than for the first mode. This is

due to the fact that the identified modal parameters of the second and third modes are not

as accurate as (i.e., have a larger estimation uncertainty than) those of the first mode,

resulting in smaller weight factors being assigned to their corresponding residuals. (2) The

MAC values between analytical and identified mode shapes are very close to unity at all

damage states except damage state S4 at which the MAC values for the second and third

modes are lower. This will result in a lower level of confidence for the identified damage

at damage state S4. Pictures of the actual damage at the bottom two stories of the web wall

at damage state S4 are shown in Figures 6.12 to 6.15. Figures 6.12 and 6.13 show that hor-

izontal flexural cracks as well as inclined/diagonal cracks are developed at the first two

stories of the web wall. During the seismic test EQ4, a lap-splice failure (i.e., debonding

between longitudinal steel reinforcement bars and the surrounding concrete) occurred in

the web wall at the bottom of the second story on the west side as shown in Figure 6.15.

Figure 6.16 shows the envelope of concrete tensile strains along the shear wall height for

the first two stories measured from LVDTs during the four seismic tests. Figure 6.17

shows the envelope of steel tensile strains along the vertical steel reinforcement bars mea-

sured from strain gages during the four seismic tests. Figures 6.14 and 6.15 together with

the envelope of the tensile strains along the concrete of the web wall and in the longitudi-
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nal steel reinforcement bars in Figures 6.16 and 6.17 provide a physical observation/mea-

sure of the damage in the wall. The damage identification results (see Figure 6.10)

obtained in this study are consistent with the actual damage observed in the test structure.

They capture correctly the concentration of damage in the first two stories of the web wall

and the fact that in each of these two stories there is more damage in the bottom half than

in the top half. 

Table 6.6    Comparison of FE computed and experimentally identified modal parameters 

Damage 
State

Experimentally Identified 
Natural Frequencies [Hz]

FE Computed 
Natural Frequencies [Hz] MAC

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

S0 1.91 10.51 24.51 1.89 10.37 25.03 1.00 0.99 0.96

S1 1.88 10.21 24.31 1.86 10.25 24.91 1.00 0.99 0.97

S2 1.67 10.16 22.60 1.69 9.82 22.43 1.00 0.98 0.98

S3.1 1.44 9.28 21.82 1.46 9.06 21.36 1.00 0.97 0.96

S4 1.02 5.67 15.09 1.01 5.82 15.59 1.00 0.90 0.88
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Fig. 6.11   Natural frequencies computed from the updated FE model at each damage 
state together with their counterparts identified from ambient vibration data
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Fig. 6.12   Observed cracks at the first story of the web wall at damage state S4

Fig. 6.13   Observed cracks at the second story of the web wall at damage state S4
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Fig. 6.14   Observed damage at the bottom of the first story of the web wall on the west 
side at damage state S4

Fig. 6.15   Splitting crack due to lap-splice failure at the bottom of the second story of the 
web wall on the west side at damage state S4

(a) (b)
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6.5.2   Case II: Damage Identification Based on White Noise Base Excitation Data

In the second case of damage identification, 24 updating parameters (correspond-

ing to 24 substructures) are updated to damage states S1, S2, S3.1, and S4. These 24 sub-

structures are the same as those used for updating the initial FE model to the reference FE

model. The twenty four substructures consist of 10 substructures along the web wall (6

along the first three stories, every half story each, and 4 along the higher stories, every

story each), 7 substructures consisting each of a floor slab, and 7 substructures each con-

taining the set of four steel braces connecting one of the seven slabs to the post-tensioned

column. As already mentioned, the steel braces appeared to play an important role in the

response of the test structure for the case of white noise base excitation due to the partial

slackness (stick-slip behavior) of their connections to the slabs and post-tensioned col-

umn. This phenomenon was not significant in the ambient vibration tests which were of

too low amplitude to exercise the stick-slip (rattling) behavior of the brace connections. At

each damage state, the initial damage factors used as starting point in the optimization pro-

cess are selected as the identified damage factors for the previous damage state or zero for

damage state S1. In updating the reference FE model to states S1 through S4, the dimen-

sionless damage factors for the first seventeen substructures (web wall and floor slabs)

were constrained to be in the range [0, 0.95]. The damage factors for the seven substruc-

tures each consisting of a set of steel braces connecting a floor slab to the post-tensioned

column were constrained to be in the range [-2.00, 0.95]. The lower bound of -2.00 was

selected since after some of the seismic tests, the braces were modified to remove the par-

tial slackness of their connections, with the most significant modification (retrofit) made



247
after EQ3. The identified damage factors (relative to the reference state) obtained for the

web wall and floor slabs at various damage states are presented in bar plot in Figure 6.18.

These results indicate that: (1) the severity of structural damage increases as the structure

is exposed to stronger earthquake excitations; (2) in general, the level of damage identified

in the floor slabs is smaller than that identified in the web wall; and (3) at each damage

state, the most severe damage is identified at the first story (top and bottom) and second

story (bottom) of the web wall. However, at damage state S4, severe damage is spuriously

identified at the top of the third and the fifth stories. The large identified damage factors at

these two locations can be due to the following facts: (1) the estimation uncertainty in the

identified modal parameters at damage state S4 (especially for the third mode) is higher

than at lower damage states; (2) the optimization algorithm used to update the FE model

parameters is not a global optimization algorithm and becomes less robust for larger

changes in identified modal parameters between two consecutive damage states; and (3)

with increasing level of damage, the level of nonlinearity in the structural response (even

to the relatively low amplitude 0.03g RMS white noise base excitation) increases. There-

fore, the assumption that the structure behaves as a linear dynamic system is violated and

a linear dynamic model (modal model) is not strictly able to represent well the structure

(modal parameters become effective modal parameters). 
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Table 6.7 presents the natural frequencies computed from the updated FE model at

each damage state together with their counterparts identified from white noise base excita-

tion test data as well as the MAC values between analytical (FE computed) and experi-

mental mode shapes. The analytical (FE computed) mode shapes were truncated at the

locations and directions of the accelerometers in order to match the size of the experimen-

tal mode shapes. Figure 6.19 represents the identified and FE computed natural frequen-

cies in bar plots. From Table 6.7 and Figure 6.19, it is observed that: (1) the discrepancies

between analytical and identified natural frequencies are larger (in both absolute and rela-

tive terms) for the second and third modes than for the first mode. This is due to the fact

that the identified modal parameters of the second and third modes are not as accurate as

(i.e., have a larger estimation uncertainty than) those of the first mode and therefore

smaller weight factors are assigned to their corresponding residuals in the objective func-

tion. (2) The MAC values between analytical and identified mode shapes of the first and

third longitudinal modes are close to unity for all damage states, indicating the high corre-

lation obtained between analytical and identified mode shapes for these vibration modes.
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However the low MAC value obtained for the second vibration mode can be due to the

fact that the estimation uncertainty for this mode was relatively large (maybe due to the

proximity of the natural frequency of this vibration mode to the oil-column frequency of

the shake table). By comparing these results (on the match between analytical and identi-

fied modal parameters at all damage states considered) to their counterparts from damage

identification case one, it is observed that the analytical and experimental modal parame-

ters in case one are in better agreement than in case two. This could be due to larger mod-

eling error in case two in which the assumption of linear dynamic behavior was not as well

satisfied as in case 1 even for the relatively low amplitude of dynamic excitation (0.03g

RMS acceleration). Therefore, the results from the first case of damage identification are

expected to be more accurate. 

Table 6.7    Comparison of FE computed and experimentally identified modal parameters 

Damage 
State

Experimentally Identified 
Natural Frequencies [Hz]

FE Computed 
Natural Frequencies [Hz] MAC

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

1st-L
mode

2nd-L
mode

3rd-L
mode

S0 1.71 11.05 24.31 1.73 10.48 23.87 1.00 0.99 0.99

S1 1.54 10.98 24.28 1.55 9.93 24.06 1.00 0.97 0.99

S2 1.24 11.11 21.59 1.28 9.34 19.43 1.00 0.81 0.91

S3.1 1.14 9.77 19.68 1.10 8.54 19.42 1.00 0.58 0.93

S4 0.88 4.81 13.29 0.84 4.90 13.64 0.99 0.85 0.93
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The differences in the identified damage results obtained from the two different

cases can be due to a number of reasons: (1) different identified modal parameters are used

in the two cases, each with different level of estimation uncertainty (the ambient vibration

data satisfy better the assumption of system linearity and therefore are more appropriate as

inputs for linear FE model updating inputs), (2) different reference/baseline models are

considered for the two identification cases, (3) different weights were assigned to the

modal residuals in the two cases (due to different estimation uncertainties), and (4) differ-

ent numbers of updating parameters are used in the two cases. 

6.6   CONCLUSIONS

A full-scale seven-story reinforced concrete shear wall building slice was tested on

the UCSD-NEES shake table in the period October 2005 - January 2006. The shake table

tests were designed so as to damage the building progressively through several historical

seismic motions reproduced on the shake table. At various levels of damage, low ampli-
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Fig. 6.19   Natural frequencies computed from the updated FE model at each damage 
state together with their counterparts identified from white noise test data
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tude white noise base excitations were applied through the shake table to the building

which was assumed to respond as a quasi-linear system with modal parameters depending

on the level of structural damage. In addition to white noise base excitation tests, ambient

vibration tests were performed on the building specimen at various damage levels. Based

on the modal parameters identified at different damage states, a sensitivity-based finite

element model updating strategy is applied for damage identification of the test structure.

Accordingly, damage in the test structure is identified as a change in stiffness (effective

modulus of elasticity) of finite elements in the different substructures the structural model

is subdivided into. In the FE model updating procedure, the objective function is defined

as a weighted sum of modal residuals in natural frequencies and mode shape components

of the first three longitudinal vibration modes of the test structure. The optimization algo-

rithm used to minimize the objective function is a standard Trust Region Newton method,

which is a sensitivity-based iterative method available in the MATLAB optimization Tool-

box. Analytical sensitivities of the objective function to the updating parameters are used

in the optimization algorithm.

Two different cases of damage identification are performed using the FE model

updating algorithm based on two different sets of identified modal parameters of the test

structure, namely (1) the modal parameters identified based on ambient vibration data, and

(2) the modal parameters identified based on white noise base excitation test data. From

the damage identification results obtained the following observations can be made. (1) In

both damage identification cases as expected, the severity of structural damage increases

as the structure is exposed to stronger earthquake excitations. (2) At each damage state,
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the most severe damage is identified at the first story (top and bottom) and second story

(bottom) of the web wall. The damage identification results obtained in this study are con-

sistent with the actual damage directly observed in the test structure or inferred from strain

gages and LVDT measurement data. They capture correctly the concentration of damage

in the bottom two stories of the web wall. However, at damage state S4, severe damage is

spuriously identified at some higher stories of the web wall (fourth story in case I, third

and fifth stories in case II). The large identified damage factors at these locations can be

due to the following facts: (i) the estimation uncertainty in the identified modal parameters

at damage state S4 (especially for the third mode) is higher than at lower damage states;

(ii) the optimization algorithm used to update the FE model parameters is not a global

optimization algorithm and becomes less robust for larger changes in identified modal

parameters between two consecutive damage states; and (iii) with increasing level of dam-

age, the level of nonlinearity in the structural response (even to the relatively low ampli-

tude 0.03g RMS white noise base excitation) increases. Therefore, a linear dynamic model

(modal model) is not strictly able to represent well the actual test structure. 

The differences in the identified damage results obtained from the two different

cases can be due to a number of reasons: (1) different identified modal parameters are used

in the two cases, each with different level of estimation uncertainty (the ambient vibration

data are more representative of a linear system and are therefore more appropriate for lin-

ear FE model updating), (2) different reference/baseline models are considered for the two

identification cases, (3) different weights were assigned to the modal residuals in the two

cases, and (4) different numbers of updating parameters are used in the two cases. 
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The analytical modal parameters obtained from the updated FE models are in bet-

ter agreement with their experimentally identified counterparts in case I than in case II.

This could be due to a larger modeling error in case II in which the assumption of linear

dynamic behavior was not as satisfied as in case I, even for the relatively low amplitude of

dynamic excitation (0.03g RMS acceleration). Therefore, the results from case I of dam-

age identification are expected to be more accurate. Finally, it should be noted that the

success of vibration-based damage identification depends significantly on the accuracy

and completeness of the available identified modal parameters. Clearly, if estimation

uncertainty in the modal parameters is larger than their changes due to damage, it is

impossible to resolve/identify the actual damage in the structure. 
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CHAPTER 7

UNCERTAINTY ANALYSIS OF MODAL 
PARAMETERS OBTAINED FROM THREE 

SYSTEM IDENTIFICATION METHODS

7.1   INTRODUCTION

In recent years, structural health monitoring has received increased attention from

the civil engineering research community as a potential tool to identify damage at the ear-

liest possible stage and evaluate the remaining useful life of structures (damage progno-

sis). Standard damage identification procedures involve conducting repeated vibration

surveys on the structure during its lifetime. Experimental modal analysis (EMA) has been

explored as a technology for identifying dynamic characteristics as well as identifying

damage in structures. Extensive literature reviews on damage identification methods

based on changes in dynamic properties are provided by Doebling et al. (1998) and Sohn

et al. (2003). It should be indicated that the success of damage identification based on

EMA depends strongly on the accuracy and completeness of the identified structural

dynamic properties. This study investigates that the level of confidence which can be

placed in the identified structural dynamic properties for structural health monitoring pur-

poses is a function of, not only the magnitude of damage, but also choices made to design

the experimental procedure, collect and process the measurements.
257
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A full-scale seven-story reinforced concrete (R/C) shear wall building slice was

tested on the UCSD-NEES shake table in the period October 2005 - January 2006. The

shake table tests were designed so as to damage the building progressively through several

historical seismic motions reproduced on the shake table. At various levels of damage,

several low amplitude white noise base excitations were applied, through the shake table,

to the building that responded as a quasi-linear system with design parameters evolving as

a function of damage. Three state-of-the-art system identification algorithms based on out-

put-only data were used to estimate the modal parameters (natural frequencies, damping

ratios and mode shapes) of the building at its undamaged (baseline) and various damage

states (Moaveni et al., 2006). In this study, the performance of these system identification

algorithms is systematically investigated as a function of uncertainty/variability in the fol-

lowing input factors: (1) amplitude of input excitation (considered at 3 levels), (2) spatial

density of measurements (considered at 3 levels), (3) measurement noise (considered at 4

levels), and (4) length of response data used in the identification process (considered at 4

levels). This uncertainty analysis is performed based on the response of the structure sim-

ulated with a three-dimensional nonlinear finite element model generated in the analysis

framework OpenSees (Mazzoni et al., 2006). A full factorial design of experiments is used

that considers 3 x 3 x 4 x 4 = 144 combinations of the aforementioned four factors. Due to

the random characteristics of the added noise vector processes, at each combination of the

four factors studied, 100 independent noise vector processes are generated and added to

the simulated response which results in a total of 14,400 identification runs for each

method considered or 43,200 overall identification runs for the three methods. The mean

and standard deviation values of the identified modal parameters over these 100 identifi-
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cation runs with independent noise vector processes are considered in this study. The over-

all 43,200 system identification runs are performed in Matlab using a fast server computer

with Intel Xeon processor (3.0GHz) and the total computation time is approximately 108

hours. Two methods are employed to quantify the variability of the identified modal

parameters due to variation of the four input factors: (1) effect screening through analysis-

of-variance (ANOVA) (Saltelli et al., 2000), and (2) meta-modeling (Wu et al., 2000).

7.2   NUMERICAL SIMULATION OF BUILDING SLICE RESPONSE 

DATA

The full-scale seven-story R/C building slice tested on the UCSD-NEES shake

table consists of a main wall (web wall), a back wall perpendicular to the main wall

(flange wall) for lateral stability, concrete slabs at each floor level, an auxiliary post-ten-

sioned column to provide torsional stability, and four gravity columns to transfer the

weight of the slabs to the shake table. Figure 7.1 shows a picture of the test structure, a

drawing of its elevation, and a rendering of its finite element (FE) model. Also, a plan

view of the structure is presented in Figure 7.2. Details about construction drawings, mate-

rial test data, and other information on the experimental set-up is available at the UCSD-

NEES web site (http://nees.ucsd.edu/7Story.html). A three dimensional nonlinear finite

element model of the building is developed using the object-oriented software framework

OpenSees for advanced modeling and response simulations of structural and/or geotechni-

cal systems with applications in earthquake engineering (Mazzoni et al., 2006). 
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The FE model shown in Figure 7.1(c) is composed of 509 nodes, 233 beam-col-

umn elements and 315 linear elastic shell elements. Both the web and flange walls are

(a) Test structure (b) Elevation dimensions (unit: m) (c) Finite element model

Fig. 7.1 R/C shear wall building slice
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Fig. 7.2 Plan view of the test structure (unit: m)
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modeled as force-based nonlinear beam-column elements with fiber cross-sections. These

elements consider the spread of plasticity along the height of the walls. The fiber cross-

sections are defined from the cross-sectional geometry, longitudinal reinforcement bars,

and material properties of the walls. As illustration, one of the fiber elements and its com-

ponents are shown in Figure 7.3. For each story, the web wall is discretized into four ele-

ments, and along the length of each element four Gauss-Lobatto integration points are

used. From the foundation to the first level, the fiber cross-section of the web wall con-

tains the following sub-regions: two regions near the ends of the wall containing confined

concrete; one region near one of the ends also containing confined concrete but with a dif-

ferent level of confinement; and the cover and central regions containing unconfined con-

crete. From the second to the last story, the entire cross-sections of both the web and

flange walls are modeled with unconfined concrete material. All the longitudinal reinforc-

ing steel bars are discretized at the locations specified on the construction drawings. The

material type Concrete04 is used to model both the unconfined (cover) and confined con-

crete regions. This new OpenSees uni-axial material constitutive model is based on the

modified Kent-Park model to represent the concrete compressive stress-strain curve

enhanced by using the pre- and post-peak curves proposed by Popovics in 1973 (Mazzoni

et al., 2006). The unloading and reloading stress-strain characteristics are based on the

work by Karsan and Jirsa (1969). Tension capacity and softening are also specified for the

concrete material models used in the FE model. The properties of the confined concrete

fibers are determined according to Mander’s model (Mazzoni et al., 2006). The deformed

mild steel reinforcement is modeled using the Steel02 material model, which corresponds

to the Menegotto-Pinto model that is able to reproduce the Bauschinger effect (Paulay and
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Priestley, 1992). The fiber section accounts properly for the nonlinear material coupling

between the axial and bending behaviors, and the linear-elastic shear force-deformation

behavior is aggregated in an uncoupled way at the section level. Shear behavior is coupled

to the bending behavior only at the element level through equilibrium. For more details

about the models used and the underlying theory, the interested reader is referred to the

OpenSees User’s Manual (Mazzoni et al., 2006).

The gravity columns, braces and post-tensioned column are assumed to remain lin-

ear elastic during the analyses, so they are modeled as linear elastic elements. For the

same reason, the slabs are also modeled as linear elastic shell elements. The slotted con-

nection between the slab and flange wall is modeled using shell elements with reduced

thickness. All tributary masses and corresponding gravity loads are applied to the slab

nodes. Rayleigh damping is assigned to the model by matching a damping ratio of 2.5% at

2Hz and 10Hz, which is based on the results from previous system identification studies

on this structure (Moaveni et al., 2006). During the analysis, the gravity loads are first

Fig. 7.3 Force-based nonlinear beam-column element
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applied to the model quasi-statically followed by the rigid-base excitation, which is

applied dynamically. As base acceleration records, three records are generated as Gaussian

banded white noise processes (between 0.25Hz and 30Hz) with a root mean square accel-

eration of 0.03g, 0.06g or 0.09g, respectively, where g denotes the acceleration of gravity.

The implicit Newmark integration procedure with a time-step of 1/120sec is used as time-

stepping scheme. The longitudinal acceleration response histories are recorded at 28 dif-

ferent locations that correspond to the sensor locations on the test structure. They include

three accelerometers at each floor level (Figure 7.2) and one at the mid-height of each

story. The first three longitudinal mode shapes together with their corresponding natural

frequencies and damping ratios are shown in Figure 7.4. 

These mode shapes and natural frequencies were computed based on the initial

tangent stiffness matrix (after application of gravity loads) and are in good agreement with

their experimentally identified counterparts for the undamaged structure (Moaveni et al.,

2006). The FE model is validated by comparing the simulated response histories with their

experimental counterparts when subject to the same input excitations. The maximum roof

Fig. 7.4 First three longitudinal mode shapes of FE model of test structure 
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displacements closely match their experimentally measured counterparts for the same

amplitudes of excitations considered in this study.

7.3   DESCRIPTION OF INPUT FACTORS STUDIED AND DESIGN 

OF EXPERIMENTS

As already mentioned, the objective of this study is to analyze and quantify the

variability of the modal parameters obtained using three system identification methods

due to the variability of four input factors: (1) excitation amplitude (level of nonlinearity

in the structural response), (2) spatial density of the sensors, (3) level of measurement

noise, and (4) length of structural response records used for system identification. Selec-

tion of these four factors is based on expert judgment and previous experience (Moaveni

et al., 2006).

7.3.1   Excitation Amplitude

The three above-mentioned system identification methods produce estimates of

the modal parameters of a linear structure. In reality, with increasing level of input excita-

tion, most structures start to behave nonlinearly. To study the performance of these system

identification methods as applied to nonlinear structural data, the nonlinear response of the

test structure is simulated for three levels of banded white noise input excitation (0.25-

30Hz) with root mean square (RMS) of 0.03, 0.06, and 0.09g, respectively. Figure 7.5

plots the coherence function between the base input excitation and the roof acceleration

response for the three different levels of excitation. From this figure, it can be seen that the
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response nonlinearity increases significantly as the input RMS exceeds 0.03g. This is con-

sistent with the moment-curvature hysteretic plots at the bottom of the web wall, in which

the plastic curvature increases significantly as the input RMS exceeds 0.03g.

7.3.2   Spatial Density of Sensors

An instrumentation array of 28 acceleration channels is simulated for each of the

three base excitation levels using the nonlinear FE model of the structure in OpenSees.

This array of 28 acceleration channels consists of three channels on each floor slab as

shown in Figure 7.2 and one channel on the web wall at mid-height of each story. To study

the performance of the system identification methods as a function of the spatial density of

the sensor array (i.e., number of sensors), three different subsets of the 28 sensor array are

considered. The three configurations of accelerometers consist of: (1) 7 accelerometers on
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the web wall at floor levels (i.e., top of each story wall), (2) 14 accelerometers on the web

wall at floor levels and mid-height of each story, and (3) full array of 28 accelerometers.    

7.3.3   Measurement Noise

In this study, the measurement/sensor noise is modeled as a zero-mean Gaussian

white noise process that is added to all channels of simulated acceleration response. This

type of measurement noise is commonly used in research to approximate modeling errors

(e.g., missing high frequency dynamics). Four levels of measurement noise, namely 0%,

20%, 40% and 60%, are considered here to study the effect of measurement noise on the

variability of the identified modal parameters. The noise level is defined as the ratio of the

RMS of the noise process to the RMS of the acceleration response process at each chan-

nel. This ratio is kept constant for all channels for a given noise level. The noise process

added to each acceleration channel is statistically independent from the noise processes

added to the other channels. Due to the random characteristics of the added noise vector

processes, for each combination of the four factors studied (excitation amplitude, spatial

density of the sensors, measurement noise, and length of output records), a set of 100 iden-

tification runs is performed using independent Gaussian white noise vector processes.

Variability of the mean and standard deviation statistics of the identified modal parameters

for these 100 identification trials is studied as a function of the input factors. As an illus-

tration, Figure 7.6 shows the roof acceleration response with four different levels of noise

added.
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7.3.4   Length of Response Measurement Data

Four different lengths of output data are used in this uncertainty study: (1) 600 data

points (5sec), (2) 2,400 data points (20sec), (3) 9,600 data points (80sec), and (4) 38,400

data points (320sec). From previous experience, this factor is expected to play an impor-

tant role in the variability of the identified modal parameters.

Table 7.1 summarizes the input factors and their levels considered in this study. A

design of experiments (DOE) provides an organized approach for setting up experiments

(physical or numerical). A common experimental design with all possible combinations of

the input factors set at all levels is called a full factorial design. A full factorial design is

used in this study, therefore a total of  identification runs are

performed for each of the three identification methods (i.e., 43,200 runs in total). These
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43,200 system identification runs were performed using a fast server computer with Intel

Xeon processor (3.0GHz) with a total computation time of about 108 hours.

7.4   BRIEF REVIEW OF SYSTEM IDENTIFICATION METHODS 

APPLIED

Three different state-of-the-art output-only system identification methods are

applied to estimate the modal parameters of the FE structural model used to generate the

response/output data. The system identification methods used consist of: (1) Natural Exci-

tation Technique combined with the Eigensystem Realization Algorithm (NExT-ERA), (2)

Data-driven Stochastic Subspace Identification (SSI-DATA), and (3) Enhanced Frequency

Domain Decomposition (EFDD). These three methods are briefly reviewed in this section.

The acceleration responses are simulated at a rate of 120Hz resulting in a Nyquist fre-

quency of 60Hz, which is higher than the modal frequencies of interest in this study (<

25Hz). Before applying the aforementioned system identification methods to the simu-

Table 7.1 Description of factors studied and their levels considered

Factor Description Levels

M System identification method 3 levels (NExT, SSI, EFDD)

A Excitation amplitude 3 levels (0.03, 0.06, 0.09g)

S Spatial density of sensors 3 levels (7, 14, 28)

N Noise level 4 levels (0, 20, 40, 60%)

L Length of measured data 4 levels (5, 20, 80, 320sec)

T Measurement noise trial 100 seed numbers



269
lated data, all acceleration response time histories are low-pass filtered below 30Hz using

a high order (1,024) FIR filter with a sharp corner frequency.

7.4.1   Natural Excitation Technique Combined with Eigensystem Realization 

Algorithm (NExT-ERA)

The basic principle behind the NExT is that the theoretical cross-correlation func-

tion between two response/output channels from an ambient (broad-band) excited struc-

ture has the same analytical form as the free vibration response of the structure (James et

al., 1993). Once an estimation of the response cross-correlation vector is obtained for a

given reference channel, the ERA method (Juang and Pappa, 1985) can be used to extract

the modal parameters. A key issue in the application of NExT-ERA is to select the refer-

ence channel so as to avoid missing modes in the identification process due to the proxim-

ity of the reference channel to a modal node. In this study, the reference channel selected

depends on the configuration of the sensor array considered in the identification. In the

case of 7 or 14 channels, the sensor at the second floor on the web wall is selected as refer-

ence channel. In the case of 28 acceleration channels, one of the two channels on the sec-

ond slabs is selected as reference channel. The response cross-correlation functions are

estimated through inverse Fourier transformation of the corresponding cross-spectral den-

sity (CSD) functions. Estimation of the CSD functions is based on Welch-Bartlett’s

method using three Hanning windows of equal length with 50 percent of window overlap.

Cross-correlation functions are then used to form Hankel matrices for applying ERA in

the second stage of the modal identification. 
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7.4.2   Data-Driven Stochastic Subspace Identification (SSI-DATA)

The SSI-DATA method determines the system model in state-space based on the

output-only measurements directly (Van Overshee and De Moore, 1996). One advantage

of this method compared to two-stage time-domain system identification methods such as

covariance-driven stochastic subspace identification and NExT-ERA is that it does not

require any pre-processing of the data to calculate correlation functions or spectra of out-

put measurements. In addition, robust numerical techniques such as QR factorization, sin-

gular value decomposition (SVD) and least squares are involved in this method. In the

implementation of SSI-DATA, the filtered acceleration response data are used to form an

output Hankel matrix including 20 block rows (10 block rows when using a signal length

of 5sec) with either 7, 14 or 28 rows in each block (equal to the number of acceleration

channels considered). 

7.4.3   Enhanced Frequency Domain Decomposition (EFDD)

The Frequency Domain Decomposition (FDD), a non-parametric frequency-

domain approach, is an extension of the Basic Frequency Domain approach also referred

to as the peak picking technique. The FDD technique estimates the vibration modes using

a SVD of the power spectral density (PSD) matrices at all discrete frequencies. Based on

this SVD, single-degree-of-freedom (SDOF) systems are estimated, each corresponding to

a single vibration mode of the dynamic system. Considering a lightly damped system, the

contribution of different vibration modes at a particular frequency is limited to a small

number (usually 1 or 2). In the EFDD (Brincker et al., 2001), the natural frequency and
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damping ratio of a vibration mode are identified from the PSD function estimate of the

SDOF system corresponding to that mode. In this approach, the estimated PSD function

corresponding to a vibration mode is taken back to the time domain by inverse Fourier

transformation, and the frequency and damping ratio are estimated from the zero-crossing

times and the logarithmic decrement of the corresponding SDOF auto-correlation function

(i.e., free vibration response), respectively. In the application of the EFDD method, the

PSD functions are estimated based on Welch-Bartlett’s method using Hanning windows of

length 300, 600, 1,200, and 2,400 samples, respectively, for the 4 levels of measurement

length, with 50 percent of window overlap. After estimating the auto/cross spectral den-

sity functions, the response PSD matrices at all discrete frequencies are subjected to singu-

lar value decomposition. The modal parameters are then estimated as explained above.

7.5   UNCERTAINTY QUANTIFICATION

In this section, two methods are employed to quantify the variability of the modal

parameters identified using NExT-ERA, SSI, or EFDD due to variation of the four input

factors (i.e., excitation amplitude, spatial density of the sensors, measurement noise, and

length of measured response). These two methods are: (1) effect screening which is

achieved using analysis-of-variance (ANOVA) (Saltelli et al., 2000), and (2) meta-model-

ing (Wu et al., 2000). Figure 7.7 shows the spread of mean values of the identified modal

parameters (natural frequencies, damping ratios, and MAC values between the identified

mode shapes and their nominal counterparts computed from the FE model) over 100 iden-

tification trials with statistically independent added measurement noise for the three iden-
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tification methods used and the first three longitudinal modes. The spread of the sample

mean of the identified modal parameters comes from varying the four input factors A, S,

N, and L resulting in  combinations. It should be noted that for each

combination of these four factors, 100 system identifications are performed based on 100

statistically independent measurement noise trials resulting in a total of 14,400 runs for

each method (i.e., each of the 144 points in this figure corresponds to the mean over 100

identification trials with independent noise processes). This analysis can be viewed as a

crude variance reduction technique that reduces the variability of the output features

(modal parameters) due to selection of the noise vector process (i.e., seed number of the

noise process). Figure 7.7, however, does not quantify the contribution of each input or

combination of inputs to the total variability of the identified modal parameters. 
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Table 7.2 reports the mean and coefficient of variation (COV) of the 14,400 sets of identi-

fied modal parameters for each of the three system identification methods. It should be

noted that the large bias and variance in the modal identification results can be expected,

since these methods are used for some extreme identification cases such as 60% measure-

ment noise level, or the use of only 5sec long data records.  

7.5.1   Effect Screening through ANOVA

To investigate where the observed variability of the identified modal parameters

comes from, ANOVA is performed and its results are discussed in this section. The theo-

retical foundation of ANOVA is that the total variance of the output features can be

decomposed into a sum of partial variances or correlation coefficients, each representing

the effect of varying an individual factor independently from the others. The correlation

coefficients are estimated by the R-square values. The input factor with the largest value

of R-square for an output feature has the most contribution to the variability of that output

Table 7.2 Mean and coefficient of variation (COV) of the 14,400 sets of 
identified modal parameter

Method
Natural Frequency [Hz] Damping Ratio [%] MAC

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

Nominal 
(FE Model) 2.12 10.48 24.15 2.4 2.6 5.2 1 1 1

NExT-ERA
Mean 2.00 9.94 21.51 7.2 2.7 1.8 0.995 0.991 0.869

COV [%] 18.0 3.0 2.5 55.9 42.5 92.8 4.2 1.2 10.3

SSI
Mean 2.20 9.99 21.38 16.6 2.6 3.1 0.998 0.997 0.967

COV [%] 31.7 2.9 2.0 120.9 52.2 57.3 0.8 0.6 5.0

EFDD
Mean 2.07 10.01 21.52 4.4 1.5 0.4 0.998 0.995 0.881

COV [%] 13.3 3.0 3.5 68.0 40.8 82.5 0.2 0.6 13.5
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feature. In this study, ANOVA is applied to 144 data sets of output features (mean and

standard deviation of the identified modal parameters over the set of 100 identification tri-

als with independent measurement noise processes) using a full-factorial design where the

four factors A, S, N, and L (see Table 7.1) are varied in the design space for each of the

three system identification methods. The full-factorial design requires a set of 100 identifi-

cation trials for each combination of factors (M, A, S, N, and L), but it offers the advan-

tage of minimizing aliasing during the ANOVA. Figure 7.8 shows the R-square values of

the mean of the identified modal parameters for the first three longitudinal vibration

modes using NExT-ERA, SSI, and EFDD due to variation of the four input factors A, S,

N, and L. The R-square values are scaled such that their sum over all factors equates

100%. From Figure 7.8, it can be observed that: (1) the variability in the spatial density of

the sensors (number of sensors) produces the least amount of variability in the modal

parameters identified using all three methods considered, (2) variability of the mean value

of the identified natural frequencies is most sensitive to factors L and A (i.e., signal length

and amplitude of input excitation) for all three methods, and (3) the mean values of the

identified damping ratios and mode shapes (MAC value between identified mode shapes

and their nominal counterparts from the FE model) are sensitive to three factors A, N, and

L, but the relative contributions of these factors to the total variance change for different

methods and vibration modes. Similarly, Figure 7.9 shows the corresponding R-square

values of the standard deviation (over 100 identification trials) of the output features. By

comparing Figures 7.8 and 7.9, it can be concluded that the level of measurement noise

contributes significantly to varying the standard deviation of the identified modal parame-

ters, which is not the case for the mean values of the identified modal parameters. 
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A linear interaction ANOVA (Saltelli et al., 2000) is also performed to investigate

the influence of coupling effects such as AS, AN, AL, SN, SL, and NL to the observed

total variance of the output features. Linear interaction ANOVA is based on the same prin-
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ciple as the main effect ANOVA, except that the factors are varied in pairs. The R-square

statistics for the linear interaction ANOVA for the mean of the identified natural frequen-

cies are shown in Figure 7.10. From this figure, it can be observed that different pairs of

input factors have almost equal influence on the mean value of the identified natural fre-

quencies. The analysis of variability based on ANOVA explains how the modal parame-

ters vary over the entire design space of input factors (A, S, N, and L). It is emphasized

that these statistical techniques are more powerful than local sensitivity analysis. Local

sensitivity refers to the estimation of derivatives, such as the derivative of a resonant fre-

quency with respect to the excitation amplitude A, using analytical equations or finite dif-

ferences. Derivatives only provide local information that does not explain the overall

variability of modal parameters.
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7.5.2   Global Sensitivity Analysis

In addition to ANOVA, sensitivities of the identified modal parameters are investi-

gated as a function of data length, as well as measurement noise. Statistical properties

(bias, variance and consistency) of the modal parameters identified via NExT-ERA, SSI

and EFDD are investigated for seven different lengths of data (750, 1500, 3000, 6000,

12000, 24000, and 48000 data points), while the other input factors remain fixed. Values

of the other fixed factors are: 0.03g excitation RMS amplitude; 20% measurement noise;

and 28 acceleration records in the array of sensors. For this purpose, a set of 100 identifi-

cations is performed for each of the seven different lengths of data used. The added noise

vector processes for the 100 identification trials are simulated as statistically independent. 
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Figure 7.11 shows mean and mean +/- one standard deviation of the identified-to-nominal

natural frequencies, damping ratios and MAC values as a function of data length and for

the first three longitudinal vibration modes. This figure shows that: (1) variances of the

identified modal parameters decrease with increasing length of data used, and (2) identi-

fied modal parameters of the 1st mode converge to their nominal counterparts with

increasing length of data, which is not the case for the identified modal parameters of the

2nd and 3rd modes.

Changes in the statistical properties of the identified modal parameters are also

studied as functions of measurement noise for nine different noise levels (0, 10, 20, 30, 40,

50, 60, 70, and 80% in the RMS sense) while the other input factors remain fixed. Values

of the other fixed factors are: 0.03g excitation RMS amplitude; data length of 9,600 points

(80sec); and 28 acceleration records in the array of sensors. A set of 100 identification tri-

als is performed at each of the nine different levels of measurement noise and the statistics

of the identified modal parameters are computed over these 100 identification trials. Fig-

ure 7.12 plots the mean and mean +/- one standard deviation of the identified-to-nominal

natural frequencies, damping ratios and MAC values as a function of measurement noise

and for the first three longitudinal vibration modes. From these results, it is observed that:

(1) variances of the identified modal frequencies and MAC values are very small even at

high levels of measurement noise, (2) variances of the identified modal parameters

increase with increasing level of added measurement noise, and (3) bias of the identified

natural frequencies (also damping ratios identified using NExT-ERA and SSI) are rather
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insensitive to the level of noise which is not the case for the MAC values and damping

ratios identified using EFDD.

7.5.3   Meta Modeling

Meta-models (also known as surrogate models) represent the relationship between

input factors and output features without including any physical characteristics of the sys-

tem (i.e., black-box models). The advantage of surrogate models is that they can be ana-

lyzed at a fraction of the cost it would take to perform the physics-based simulations.

Meta-models must be trained, which refers to the identification of their unknown func-

tional forms and coefficients. Their quality can be evaluated independently of the training
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step. In this section, a polynomial model is fitted to the identified modal parameters by

including all main effects and linear interactions as expressed by 

(7.1)

It should be noted that: (1) the values of the input factors are scaled between -1 and 1, and

(2) the identified natural frequencies and damping ratios are normalized by their nominal

counterparts so that the estimated  coefficients all have dimensionless units and the same

order of magnitude for different features, and (3) the value of  corresponds to the mean

value of the output feature. Figure 7.13 shows the absolute values of regression coeffi-

cients obtained by best-fitting polynomials (based on least-squares) for the mean values

(over a set of 100 identification trials) of modal parameters identified with the three iden-

tification methods. 
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From Figure 7.13, it can be observed that: (1) the identified natural frequencies are more

sensitive to factors A, L (as already indicated by ANOVA), and the linear interaction AL,

(2) the dependency of the damping ratios and mode shapes (MAC values) on the input fac-

tors are not as consistent across the three identification methods as for the natural frequen-

cies. Overall, the modal damping ratios and MAC values are more sensitive to the noise

level than the natural frequencies.

7.6   CONCLUSIONS

A full-scale seven-story reinforced concrete (R/C) shear wall building slice was

tested on the UCSD-NEES shake table in the period October 2005 to January 2006. Three

output-only system identification methods, namely (1) Natural Excitation Technique com-

bined with the Eigensystem Realization Algorithm (NExT-ERA), (2) Data-driven Sto-

chastic Subspace Identification (SSI-DATA), and (3) Enhanced Frequency Domain

Decomposition (EFDD) were used to extract the modal parameters (natural frequencies,

damping ratios, and mode shapes) of the building at different damage states. In this study,

the performance of these system identification methods is systematically investigated

based on the response of the structure simulated using a three-dimensional nonlinear finite

element model developed in OpenSees. The variability of the identified modal parameters

due to the variability of four input factors is analyzed and quantified through effect screen-

ing and meta-modeling. The four input factors are: (1) amplitude of input excitation (level

of nonlinearity in the structural response), (2) spatial density of measurements (number of
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sensors), (3) measurement noise, and (4) length of response data used in the identification

process. A full-factorial design of experiments is considered for these four input factors. 

From the results of effect screening, it is observed that: (1) the variability in spatial

density of the sensors (number of sensors) introduces the least amount of variability in the

modal parameters identified using all three methods considered, (2) the mean value of the

identified natural frequencies is most sensitive to factors L and A (i.e., record length and

amplitude of input excitation) for all three methods, (3) the mean value of the identified

damping ratios and mode shapes (MAC value between identified mode shapes and their

nominal counterparts from the FE model) are sensitive to the three factors A, N, and L, but

the relative contributions of these three factors to the total variance of these identified

modal parameters changes for different methods and vibration modes, and (4) different

combinations of input factor interactions have almost equal influence on the mean values

of the identified natural frequencies. In addition to ANOVA, polynomial meta-models are

best-fitted (using least-squares method) to the identified modal parameters by including

all main effects and linear interactions. From the estimates of the meta-model coefficients

it is observed that: (1) the identified natural frequencies are most sensitive to the main

input factors A, L (as already indicated by ANOVA), and also the linear interaction AL,

(2) the sensitivities of the identified damping ratios and mode shapes (MAC values) to

input factors are not as consistent across different identification methods as that of the

identified modal frequencies, but overall these identified modal parameters are more sen-

sitive to the measurement noise level than the identified frequencies. In addition to

ANOVA, sensitivities of the identified modal parameters are investigated as a function of
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data length as well as measurement noise, while the other input factors remain fixed. From

this analysis, it is seen that: (1) the variances of the identified modal parameters decrease

with increasing record length and increase with increasing level of added measurement

noise, (2) the identified modal parameters of the first mode converge to their nominal

counterparts with increasing record length, which is not the case for the identified modal

parameters of the second and third modes, and (3) the variances of the identified modal

frequencies and MAC values are very small even at high levels of measurement noise.

This systematic investigation demonstrates that the level of confidence which can be

placed in structural health monitoring is a function of, not only the magnitude of damage,

but also choices made to design the experimental procedure, collect and process the mea-

surements.
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CHAPTER 8

UNCERTAINTY ANALYSIS OF DAMAGE 
IDENTIFICATION RESULTS OBTAINED 

USING FINITE ELEMENT MODEL 
UPDATING

8.1   INTRODUCTION

In recent years, structural health monitoring has received increasing attention in

the civil engineering research community with the objective to identify structural damage

at the earliest possible stage and evaluate the remaining useful life (damage prognosis) of

structures. Vibration-based, non-destructive damage identification is based on changes in

dynamic characteristics (e.g., modal parameters) of a structure. Experimental modal anal-

ysis (EMA) has been used as a technology for identifying modal parameters of a structure

based on its measured vibration data. It should be emphasized that the success of damage

identification based on EMA depends strongly on the accuracy and completeness of the

identified structural dynamic properties. Extensive literature reviews on vibration-based

damage identification are provided by Doebling et al. (1996, 1998) and Sohn et al. (2003). 

Damage identification consists of (1) detecting the occurrence of damage, (2)

localizing the damage zones, and (3) estimating the extent of damage. Numerous vibra-

tion-based methods have been proposed to achieve these goals. Salawu (1997) presented a
287
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review on the use of changes in natural frequencies for damage detection only. However, it

is in general impossible to localize damage (i.e., obtain spatial information on the struc-

tural damage) from changes in natural frequencies only. Pandey et al. (1991) introduced

the concept of using curvature mode shapes for damage localization. In their study, by

using a cantilever and a simply supported analytical beam model, they demonstrated the

effectiveness of employing changes in curvature mode shapes as damage indicator for

detecting and localizing damage. Other methods for damage localizations include strain-

energy based methods (Shi et al., 2002) and the direct stiffness calculation method (Maeck

and De Roeck, 2004). A class of sophisticated methods consists of applying sensitivity-

based finite element (FE) model updating for damage identification (Friswell and Motter-

shead, 1995). These methods update the physical parameters of a FE model of the struc-

ture by minimizing an objective function expressing the discrepancy between numerically

predicted and experimentally identified features that are sensitive to damage such as natu-

ral frequencies and mode shapes. Optimum solutions of the problem are reached through

sensitivity-based optimization algorithms. Recently, sensitivity-based FE model updating

techniques have been applied successfully for condition assessment of structures

(Teughels and De Roeck, 2004).

A full-scale seven-story reinforced concrete (R/C) shear wall building slice was

tested on the UCSD-NEES shake table in the period October 2005 - January 2006. The

shake table tests were designed so as to damage the building progressively through several

historical seismic motions reproduced on the shake table. A sensitivity-based FE model

updating approach was used to identify damage at each of several damage states of the
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building based on its identified modal parameters. The estimation uncertainty in both the

system identification and damage identification results was observed to be significant

(Moaveni et al., 2006, 2008a, 2008b; He et al., 2006). This motivated the authors to per-

form (through numerical simulation) an uncertainty analysis on these system and damage

identification results. In an earlier study (Moaveni et al., 2007), the authors investigated

the performance of three different output-only system identification methods, used for

experimental modal analysis of the shear wall building, as a function of the uncertainty/

variability in the following input factors: (1) amplitude of input excitation, (2) spatial den-

sity of measurements, (3) measurement noise, and (4) length of response data used in the

identification process. This paper, which is an extension of the above mentioned study,

investigates the performance of damage identification using FE model updating based on

the identified modal parameters of the first three longitudinal vibration modes. In this

study, the identified modal parameters of the damaged structure are generated numerically

using a three-dimensional FE model of the test structure with different levels of damage

simulated (numerically) along the height of the structure. The uncertainty of the identified

damage (location and extent) is quantified through analysis-of-variance (ANOVA) and

meta-modeling due to variability of the following input factors: (1-3) level of uncertainty

in the (identified) modal parameters of the first three longitudinal modes (M1, M2, M3),

(4) spatial density of measurements (number of sensors) (S), and (5) mesh size in the FE

model used for damage identification (modeling error) (E). A full factorial design of

experiments is considered for these five input factors. In addition to ANOVA and meta-

modeling for effect screening, this study investigates the sensitivity of the identified dam-

age to the level of uncertainty in the identified modal parameters for the first three longitu-
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dinal modes. This global sensitivity analysis is performed through one-at-a-time (OAT)

perturbation of individual input factors M1, M2 and M3.

8.2   FINITE ELEMENT MODEL OF TEST STRUCTURE

The full-scale seven-story R/C building slice tested on the UCSD-NEES shake

table consists of a main wall (web wall), a back wall perpendicular to the main wall

(flange wall) for lateral stability, concrete slabs at each floor level, an auxiliary post-ten-

sioned column to provide torsional stability, and four gravity columns to transfer the

weight of the slabs to the shake table. Figure 8.1 shows a picture of the test structure, a

drawing of its elevation, and a rendering of its FE model with fine mesh (one of the two

FE models used in this study). Also, a plan view of the structure is presented in Figure 8.2.

Details about construction drawings, material test data, and other information on the set-

up and conducting of the experiments are available in (Panagiotou et al., 2007). 

A three dimensional linear elastic FE model of the test structure was developed

using a general-purpose FE structural analysis program, FEDEASLab (Filippou and Con-

stantinides, 2004). A four-node linear flat shell element (with four Gauss integration

points) borrowed from the FE literature was implemented in FEDEASLab in order to

model the web wall, back wall, and concrete slabs (He et al., 2006). This shell element is

based on the mixed discrete variational principle proposed by Hughes and Brezzi (1989)

in conjunction with Allman type interpolation (Allman, 1988) for the membrane part and

the discrete Kirchhoff plate element derived by Batoz and Tahar (1982) for the plate part.

The resulting finite element has six degrees of freedom (DOFs) per node, including a true
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drilling DOF. In the FE model of the test building, the gravity columns and braces con-

necting the post-tensioned column to the building slabs are modeled using truss elements.

The inertia properties of the test structure are discretized into lumped translational masses

at each node of the FE model. In this study, two FE models of the building with different

mesh sizes (i.e., numbers of elements) are used in the FE model updating process in order

to investigate the effects of mesh size (modeling error) on the damage identification

results. The FE model with fine mesh is also used for generating the modal parameters of

the damaged structure with damage simulated as change in material stiffness (effective

moduli of elasticity) distributed over the finite elements of the web wall. Table 8.1 reports

the measured moduli of elasticity (through concrete cylinder tests) at various heights (sto-

ries) of the test structure, which are used in both FE models representing the test structure

in its undamaged/baseline state. 

(a) Test structure (b) Elevation dimensions (unit: m) (c) Finite element model
with fine mesh

Fig. 8.1  R/C shear wall building slice
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The natural frequencies and mode shapes of the first three longitudinal modes are

used in the damage identification process. Figure 8.3 shows the modal parameters of the

first three longitudinal modes computed from the fine mesh FE model representing the

Table 8.1 Measured moduli of elasticity at different heights of the test structure

Concrete Components Measured Modulus of 
Elasticity (GPa)

First story 24.47

Second story 26.00

Third story 34.84

Fourth story 30.20

Fifth story 28.90

Sixth story 32.14

Seventh story 33.54

Fig. 8.2  Plan view of the test structure (unit: m)
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building in its undamaged state. These mode shapes and natural frequencies are in rela-

tively good agreement with their counterparts identified experimentally based on ambient

measurement data recorded on the undamaged test structure (Moaveni et al., 2006,

2008a). 

  

Fig. 8.3  Mode shapes of first three longitudinal modes of fine mesh FE model 
representing undamaged structure

8.3   DESCRIPTION OF INPUT FACTORS STUDIED AND DESIGN 

OF EXPERIMENTS

As already mentioned, the objective of this study is to analyze and quantify the

uncertainty of the identified damage obtained using a FE model updating strategy due to

the variability of five input factors: (1-3) level of uncertainty in the (identified) modal

parameters of each of the first three longitudinal modes (M1, M2, M3), (4) spatial density

of measurements (number of sensors) (S), and (5) mesh size in the FE model used for

damage identification (a type of modeling error) (E). A number of other factors could be

F
1
 = 2.33 Hz F

2
 = 11.06 Hz F

3
 = 25.12 Hz
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considered such as modeling assumptions (e.g., type of finite elements), number of updat-

ing parameters (number of sub-structures), type and number of residuals and their weights

used in the objective function. This study is restricted to the above mentioned 5 factors

which are selected based on previous experience and expert opinion (Moaveni et al., 2006,

2008a, 2008b; He et al., 2006). This section briefly describes each of the input factors con-

sidered in this study and the design of experiments considered.

8.3.1   Uncertainty in Modal Parameters 

In practice, the main source of uncertainty in damage identification results arises

from the uncertainty in the estimates of modal parameters that are used in the damage

identification process. In a previous study by the authors (Moaveni et al., 2007), it was

observed that the estimation uncertainty of the modal parameters identified using three

state-of-the-art output-only system identification methods (i.e., Natural Excitation Tech-

nique combined with Eigensystem Realization Algorithm, Data-driven Stochastic Sub-

space identification, and Enhanced Frequency Domain Decomposition) depend

significantly on the variability of various input factors such as amplitude of excitation

(i.e., level of nonlinearity in the response), level of measurement noise, and length of mea-

sured data used for system identification. In this study, the modal parameters of the first

three longitudinal vibration modes are used in the damage identification process. Two lev-

els of uncertainty, namely 0.5% and 1.0% coefficient-of-variation (COV), are considered

for the natural frequencies and mode shape components of these three modes. These con-

sidered levels of uncertainty in modal parameters are selected based on previous experi-
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ence with this test structure (Moaveni et al., 2006, 2008a). In this study, the modal

parameter estimators are assumed to be unbiased (i.e., mean value of parameter estimates

coincides with the “exact” parameter value). For each natural frequency and mode shape

component of a vibration mode at a considered level of uncertainty, 20 noise realizations

are generated from zero-mean Gaussian distributions with standard deviations scaled to

result in the considered COV. The random estimation errors added to the natural frequen-

cies and mode shape components are statistically independent (across the realizations and

across natural frequencies and mode shape components). Statistics in terms of mean and

standard deviation (over the 20 identification runs for each combination of input factors)

of the identified damage extent at each location (i.e., substructure) are studied as a func-

tion of the variability/uncertainty of the input factors. 

8.3.2   Spatial Density of Sensors

During the dynamic testing of the shear wall building, the web wall of the test

structure was instrumented with 14 longitudinal accelerometers. The measured data were

used later for modal identification of the test structure. To study the performance of FE

model updating for damage identification as a function of the spatial density of the sensor

array (i.e., number of sensors), two different subsets of the 14 sensor array are considered,

namely (1) 10 accelerometers on the web wall at all floor levels (i.e., top of floor slabs)

and at mid-height of the first three stories, and (2) 14 accelerometers on the web wall at all

floor levels and at mid-height of each story.
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8.3.3   Mesh Size of FE Model Used for Damage Identification

The last input factor considered in this study is the modeling error due to the mesh

size of the FE model (i.e., spatial discretization of the test structure) used for damage iden-

tification. This input factor is considered at two levels, i.e., two FE models of the building

are used in the FE model updating process. The first model is defined by 340 nodes and

322 shell and truss elements. The web wall at each story is modeled using 4 shell elements

and the floor slabs are discretized into 12 shell elements each. The second model, which

has a more refined mesh, is defined by 423 nodes and 398 elements. In this model, the web

wall at each of the first three stories is modeled using 16 shell elements, while the higher

stories (5 to 7) are modeled using 4 shell elements each. The 4th story of the web wall is

modeled using 8 shell elements. The floor slabs are modeled using 24 shell elements for

each of the first three floors and 12 shell elements for each of the higher floors (4 to 7).

The back wall, post-tensioned column, gravity columns and steel braces are modeled in

the same way in both FE models. It should be noted that these two FE models with differ-

ent mesh size have different modal parameters (especially for the 3 modes considered in

this study), even though the same material properties are used in the two models. The

modal frequencies computed using the first model (coarse mesh) are

  Hz (8.1)

which are slightly higher than their counterparts obtained using the second model (fine

mesh) (see Figure 8.3). The “true” modal parameters of the damaged structure are com-

puted using the second model (fine mesh) with damage represented as change of material

stiffness (i.e., effective modulus of elasticity) distributed spatially and intensity-wise over

fCoarse Mesh 2.35 11.19 25.34=



297
the FE model according to the observed damage in the actual test structure (Moaveni et

al., 2008b). 

Table 8.2 summarizes the input factors and their levels considered in this study. A

design of experiments (DOE) provides an organized approach for setting up experiments

(physical or numerical). A common DOE with all possible combinations of the input fac-

tors set at all levels is called a full factorial design. A full factorial design is used in this

study and therefore a total of  identification runs are per-

formed for the damaged case considered. These 640 damage identification runs were per-

formed using two fast server computers with dual-core Intel Xeon processors (3.0GHz)

and also parallel computation on the “On Demand Cluster” of the San Diego Supercom-

puter Center (SDSC). Each of these identifications takes approximately an hour of CPU

time on the fast server computers (for the fine mesh FE model).

Table 8.2 Description of factors studied and their levels considered

Factor Description Levels

M1 Uncertainty in modal parameters of mode 1 2 levels (0.5, 1.0% COV)

M2 Uncertainty in modal parameters of mode 1 2 levels (0.5, 1.0% COV)

M3 Uncertainty in modal parameters of mode 1 2 levels (0.5, 1.0% COV)

S Spatial density of sensors 2 levels (10, 14 sensors)

E FE mesh size 2 levels (322, 398 finite elements)

2 2 2 2 2 20××××× 640=
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8.4   SENSITIVITY BASED FINITE ELEMENT MODEL UPDATING 

FOR DAMAGE IDENTIFICATION

In this study, a sensitivity-based FE model updating strategy (Friswell and Motter-

shead, 1995; Teughels and De Roeck, 2004) is used to identify (detect, localize and quan-

tify) the numerically simulated damage in the structure. The residuals in the objective

function used for the FE model updating process are based on the natural frequency and

mode shape estimates of each of the first three longitudinal modes of the test structure. It

should be recalled that the modal parameter estimates are based on the exact modal

parameters computed from the FE model of the damaged structure and then polluted with

random noise added at the level of estimation uncertainty considered. As already men-

tioned, damage in the structure is introduced as changes (reduction) in material stiffness

(effective modulus of elasticity) distributed over the finite element mesh of the web wall

in the (fine mesh) FE model. For the purpose of damage identification, the web wall is

subdivided into ten sub-structures (each assumed to have a uniform value of the effective

modulus of elasticity), 6 along the first three stories (every half story each) and 4 along the

4th to 7th stories (every story each). The level of damage simulated in these sub-structures

is selected based on the profile of the observed damage in the real test structure as

 (8.2)

from bottom to top of the web wall, where the damage factors  in percent represent

the reduction in effective material modulus relative to the undamaged state. The bottom of

the second story was observed to be the most damaged location in the building due to a

aexact 45% 25% 66% 20% 10% 7% 4% 4% 2% 1%
T

=

aexact
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lap-splice failure of the longitudinal steel reinforcement at this location. In order to iden-

tify damage in the structure, the effective moduli of elasticity of the sub-structures in the

FE models are updated through minimization of an objective function. It should be noted

that the sub-structures used in the updating process are the same as those used in simulat-

ing the damaged structure, which makes it possible to identify the exact damage in the

absence of estimation uncertainty in the modal parameters. The natural frequencies of the

first three longitudinal modes computed using the fine mesh FE model of the structure

with simulated damage given in Equation 2 are

 Hz (8.3)

8.4.1   Objective Function

The objective function used for damage identification is defined as

(8.4)

where  = residual vector containing the differences between FE computed and exper-

imentally estimated modal parameters;  = a set of physical parameters (effective moduli

of elasticity), which must be adjusted in order to minimize the objective function; W = a

diagonal weighting matrix with each diagonal component inversely proportional to the

square of the COV of the natural frequency of the corresponding vibration mode

(Christodoulou and Papadimitriou, 2007). A combination of residuals in natural frequen-

cies and mode shape components is used to define the objective function as

fDamaged Structure 1.97 9.97 22.96=

min
�

 f �( ) r �( )TWr �( ) wjrj �( )2[ ]
j
∑= =

r �( )

�
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(8.5)

in which  and  = natural frequency and mode shape residual vectors, respec-

tively. The two types of residuals are expressed, respectively, as

(8.6)

where ,  = FE computed and experimentally identified eigenvalues

(i.e., ), respectively;  and  = FE computed and experimentally

identified mode shape vectors. In Equation 6, the superscript r indicates a reference com-

ponent of a mode shape vector (with respect to which the other components of the mode

shape are normalized), the superscript l refers to the components that are used in the

updating process (i.e., at the sensor locations), and nm denotes the number of vibration

modes considered in the residual vector. In this study, the natural frequencies and mode

shapes of the first three longitudinal modes (see Figure 8.3) of the structure are used to

form the residual vector that has a total of 42 (when using 14 sensors) or 30 (when using

10 sensors) residual components consisting of 3 eigen-frequencies and 

or  mode shape residuals, respectively. 

r �( )
rf �( )

rs �( )
=

rf �( ) rs �( )

rf �( )
λj �( ) λ̃j–

λ̃j
------------------------         rs,

� j
l

�( )

� j
r

�( )
--------------- �̃ j

l

�̃ j
r

------–= = j 1 … nm, ,=

λj �( ) λ̃j

λj �( ) 2π f⋅ j( )2= �j �( ) �̃j

3 14 1–( )× 39=

3 10 1–( )× 27=
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8.4.2   Damage Factors and Residual Sensitivities

In the process of FE model updating, the effective moduli of elasticity of the ten

sub-structures are used as updating parameters. These ten sub-structures are distributed

along the height of the web wall, with 6 of them along the first three stories (one per half

story) and 4 from the fourth to the seventh story (one per story). Instead of the absolute

value of each updating parameter, a dimensionless damage factor  is defined as

(8.7)

where  is the effective modulus of elasticity of the elements in sub-structure j

( ). The damage factor  indicates directly the level of damage in sub-

structure j (relative reduction in effective modulus of elasticity). The sensitivity of the

residuals with respect to the damage factors  can be obtained through the modal param-

eter sensitivities as

 and (8.8)

where the modal sensitivities  and  are available in Fox and Kapoor (1968). 

a j
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j E damaged
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8.4.3   Optimization Algorithm

The optimization algorithm used to minimize the objective function defined in

Equation 3 is a standard Trust Region Newton method (Coleman and Li, 1996), which is a

sensitivity-based iterative method available in the MATLAB optimization Toolbox (Math-

works Inc., 2005). The damage factors were constrained to be in the range [0  0.90] for

updating the undamaged FE model. The upper-bound of 90% was selected because no

sub-structure of the building is expected to be damaged even close to 90% (largest simu-

lated damage factor is 66%), while the lower bound of zero was selected considering that

the identified effective moduli of elasticity cannot increase due to damage. The optimiza-

tion process was performed using the “fmincon” function in Matlab, with Jacobian and

first-order estimate of the Hessian matrices calculated analytically based on the sensitivi-

ties of the modal parameters to the updating variables, as given in Equation 8. It is impor-

tant to mention that the proposed method was verified to be able to identify the exact

simulated damage (given in Equation 2) in the absence of estimation uncertainty in the

modal parameters used. 

8.5   UNCERTAINTY QUANTIFICATION

In this section, two methods are employed to quantify the uncertainty of the identi-

fied damage factor at each sub-structure due to variation of the five input factors consid-

ered. These two methods are: (1) effect screening which is achieved using analysis-of-

variance (ANOVA) (Saltelli et al., 2000), and (2) meta-modeling (Wu and Hamada, 2000).

Figure 8.4 shows the spread of the identified damage factors at the different sub-structures
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along the web wall height for all 640 damage identification runs. The horizontal solid line

in each subplot indicates the value of the exact simulated damage for the corresponding

substructure. The ensemble of identified damage factors is obtained by varying the five

input factors M1, M2, M3, S and E, resulting in  combinations.

For each combination of these five factors, 20 damage identification runs are performed

based on modal parameters polluted with statistically independent realizations of the esti-

mation errors, resulting in a total of  identification runs. 

Figure 8.5 shows in box plots the distributions of the identified damage factors

together with their exact value (red solid line) at the different sub-structures. In such plots,

the endpoints of the boxes are formed by lower and upper quartiles of the data, namely
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 and . The vertical line within the box represents the median , and the mean is

displayed by the large dot. The bar on the right of the box extends to the minimum of

 and . In a similar manner, the bar on the left of the box

extends to the maximum of  and . The observations falling

outside of these bars are shown with crosses. Table 8.3 reports the mean and standard

deviation of the 640 sets of identified damage factors at the different sub-structures. The

large bias and standard deviation in the identified damage factors in some sub-structures

are due to the fact that the residuals used in the objective function are less sensitive to the

updating parameters representing in these sub-structures. 
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The uncertainty quantification is performed on the mean and standard deviation of the

identified damage factors (over the sets of 20 damage identification runs each). This anal-

ysis can be viewed as a crude variance reduction technique that reduces the variability of

the output features (identified damage factors) arising from the 20 seed numbers corre-

sponding to the 20 realizations of the random modal estimation errors. Figures 8.6 and 8.7

show the spread of the mean and standard deviation of the identified damage factors,

respectively, at the different sub-structures for all 32 combinations of the input factors.

From Figures 8.6 and 8.7, it is not possible to quantify the contribution of each input factor

or combination of input factors to the total uncertainty of the mean or standard deviation

of the identified damage factors. Therefore ANOVA and meta-modeling are used for the

uncertainty quantification of the mean and standard deviation.

Table 8.3 Mean and standard deviation (STD) of identified damage factors 
at different substructures 

Substructures Loca-
tion

Exact [%] Mean [%] STD

Seventh story 1 1.6 2.8

Sixth story 2 1.6 2.6

Fifth story 4 5.0 4.4

Fourth story 4 3.7 4.9

Third story (top) 7 5.4 8.3

Third story (bottom) 10 18.3 14.5

Second story (top) 20 19.7 10.9

Second story (bottom) 66 64.9 3.1

First story (top) 25 22.1 7.9

First story (bottom) 45 48.2 3.9
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8.5.1   Effect Screening through ANOVA

To investigate the source of the observed uncertainty of the mean and standard

deviation of identified damage factors shown in Figures 8.6 and 8.7, ANOVA is per-

formed and the results are presented and discussed in this section. The theoretical founda-

tion of ANOVA is that the total variance of the output features can be decomposed into a

sum of partial variances, each representing the effect of varying an individual factor inde-

pendently from the others. These partial variances are estimated by the so-called R-square

values. The input factor with the largest R-square value for an output feature has the most

contribution to the uncertainty of that output feature. In this study, ANOVA is applied to
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32 data sets of output features (i.e., mean and standard deviation of the identified damage

factors over the set of 20 identification runs with independent realizations of the modal

estimation errors, see Figures 8.6 and 8.7). A full-factorial design of experiments is used,

where the five factors M1, M2, M3, S, and E (see Table 8.2) are varied in the design space.

The full-factorial design requires a total of 640 damage identification runs (a set of 20

identification runs for each combination of factors), but it offers the advantage of mini-

mizing aliasing during the ANOVA (Saltelli et al., 2000). Figure 8.8 shows the R-square

values of the mean and standard deviation of the identified damage factors for the 10 sub-

structures considered. These R-square values are scaled such that their sum over all factors

equates 100%. From Figure 8.8, the following observations can be made. (1) Mesh size

(E) is the most significant input factor in introducing uncertainty in the mean value (i.e.,

estimation bias) of the identified damage. (2) Variability in the spatial density of the sen-

sors (S) produces the least amount of uncertainty in the mean value of the identified dam-

age factors at the different locations. However, this input factor has more relative

contribution on the standard deviation of the identified damage. (3) In general, the level of

uncertainty in the modal parameters (as measured by COV of estimated modal parame-

ters) of the second and third longitudinal modes (M2 and M3) introduces more uncertainty

on both mean and standard deviation of the identified damage than the uncertainty in the

modal parameters of the first longitudinal mode (M1). This can be due to the fact that

mode shape curvatures are well known to be one of the most sensitive features to local

damage and higher modes have higher curvatures. (4) Mesh size (E) also introduces con-

siderable amount of uncertainty to the standard deviation of the identified damage. How-
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ever, this factor contributes less to the total uncertainty of the standard deviations than to

that of the mean values of the identified damage. 

8.5.2   Meta Modeling

Meta-models (also known as surrogate models) represent the relationship between

input factors and output features without including any physical characteristics of the sys-

tem (i.e., black-box models) (Wu and Hamada, 2000). The advantage of surrogate models

is that they can be analyzed at a fraction of the cost it would take to perform the physics-

based simulations. Meta-models must be trained, which refers to the identification of their

unknown functional forms and coefficients. Their quality can be evaluated independently

of the training step. In this section, a linear polynomial model is fitted to the identified

damage factors by including all input factors considered here and is expressed as

(8.9)

where  denotes the jth output feature (i.e., mean identified damage factor at jth sub-

structure), and ’s are the meta-model coefficients to be determined. In the above equa-

tion: (1) the values of the input factors are scaled between -1 and +1; (2) the identified

damage factors are normalized by their corresponding exact values so that the estimated 

coefficients all have dimensionless units and the same order of magnitude for different

output features (damage factors); and (3) the value of  corresponds to the mean value of

the output feature (over all 640 damage identification runs). Figure 8.9 shows the absolute

values of the regression coefficients obtained by least-square fitting the polynomial in

Y j β 0
j βM1

j M1 βM3
j M3 βS

jS βE
jE+ + + +=

Y j

β j

β

β 0
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Equation 9 to the mean values (over sets of 20 identification runs) of identified damage

factors at different sub-structures. Notice the different scales on the vertical axes of the

subplots in Figure 8.9. From Figure 8.9, the following observations can be made. (1) For

each sub-structure, the regression coefficient corresponding to the mesh size ( ) has the

largest value indicating that E is the most significant input factor in introducing uncer-

tainty in the mean value of the identified damage, which is consistent with the ANOVA

results. (2) The regression coefficients for the first two stories are in general smaller than

their counterparts for the higher stories, indicating less uncertainty in the mean value of

the identified damage factors (i.e., less damage identification bias) at lower stories. (3)

Uncertainty of the identified damage due to the first four input factors (M1, M2, M3, S) is

not consistent across the different sub-structures. 
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8.5.3   One-at-a-Time (OAT) Sensitivity Analysis

In addition to ANOVA and meta-modeling, this study investigates the sensitivity

of the identified damage to the level of uncertainty in the identified modal parameters of

the first three longitudinal modes. This global sensitivity analysis is performed through

one-at-a-time (OAT) perturbation of the individual input factors M1, M2 and M3. Statisti-

cal properties (mean/bias and standard deviation) of the identified damage are investigated

for six different levels of uncertainty (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% COV) in the modal

parameters of the mode considered, while the other input factors remain fixed. Values of

the other fixed factors are: uncertainty of 0.5% in COV for the modal parameters of the

other two longitudinal modes, spatial density of 14 sensors along the web wall, and fine

mesh FE model (i.e., 398 elements). A set of 10 identifications is performed for each of

the six different levels of uncertainty. The random estimation errors added to the natural
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frequencies and mode shape components are statistically independent. This global sensi-

tivity analysis of M1, M2 and M3 results in an additional   identification runs. Figure 10

shows the mean and mean +/- one standard deviation of the identified damage factors at

the 10 sub-structures as a function of the OAT perturbation in the uncertainty level of the

modal parameters of the three longitudinal modes considered. Each column of subplots

corresponds to the perturbation in the uncertainty level of the modal parameters of one

vibration mode, while the other input factors remain fixed. 
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From this figure the following conclusions can be made. (1) The mean/bias and

standard deviation of the identified damage factors are very little sensitive to the level of

uncertainty in the modal parameters of the first longitudinal mode for the range of uncer-

tainty level considered in this study (0.5-3% COV). (2) The mean/bias and standard devi-

ation of the identified damage factors at the first (top) and second (bottom and top) stories

increase when the level of uncertainty in the modal parameters of the second mode

increases from 0.5% to 1% COV, and remain almost constant for higher levels of uncer-

tainty (1-3% COV). (3) The mean/bias and standard deviation of the identified damage

factors at the first (bottom and top), second (bottom), sixth and seventh stories tend to

increase monotonically with increasing level of uncertainty in the modal parameters of the

third longitudinal mode. In general, the uncertainty level in the modal parameters of the

third longitudinal mode has the most significant influence (among the three modes) on the

estimation uncertainty (mean and standard deviation) of the damage identification results.

8.6   CONCLUSIONS

A full-scale seven-story reinforced concrete (R/C) shear wall building slice was

tested on the UCSD-NEES shake table in the period October 2005 - January 2006. The

shake table tests were designed so as to damage the building progressively through several

historical seismic motions reproduced on the shake table. A sensitivity-based finite ele-

ment (FE) model updating strategy was used to identify damage at each of several damage

states of the building based on changes in its identified modal parameters. The estimation

uncertainty in both the system identification and damage identification results was
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observed to be significant. This motivated the authors to perform (through numerical sim-

ulation) an uncertainty analysis on these system and damage identification results. In this

study, the performance of FE model updating for damage identification is systematically

investigated. The damaged structure is simulated numerically through a change in stiff-

ness in selected regions of a FE model of the shear wall test structure. The uncertainty of

the identified damage (location and extent) is quantified through analysis-of-variance

(ANOVA) and meta-modeling due to variability/uncertainty of the following input factors:

(1-3) level of uncertainty in the (identified) modal parameters of the first three longitudi-

nal modes (M1, M2, M3), (4) spatial density of measurements (number of sensors) (S),

and (5) mesh size in the FE model used for damage identification (modeling error). A full

factorial design of experiments is used in this study, resulting in 

combination of the input factors. For each combination of these five factors, 20 damage

identification runs are performed based on modal parameters polluted with statistically

independent realizations of the estimation errors, resulting in a total of 

identification runs. 

From the results of ANOVA, the following observations can be made. (1) Mesh

size (E) is the most significant input factor affecting the uncertainty in the mean value

(i.e., estimation bias) of the identified damage. (2) Variability in the spatial density of the

sensors (S) produces the least amount of uncertainty in the mean value of the identified

damage factors. However, the relative contribution of this input factor (S) is stronger for

the standard deviation of the identified damage. (3) In general, uncertainty in the modal

parameters of the second and third longitudinal modes (M2 and M3) affects more signifi-

2 2 2 2 2×××× 32=

32 20× 640=
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cantly both the mean and standard deviation of the identified damage than the uncertainty

in the modal parameters of the first longitudinal mode (M1). This is most likely due to the

fact that mode shape curvature is well known to be one of the most sensitive features to

local damage and higher modes have higher curvatures. In addition to ANOVA, polyno-

mial meta-models are best-fitted (using least-squares method) to the mean identified dam-

age factors by including all the main factors. From the regression coefficients of the best-

fitted polynomials, the following observations can be made. (1) For each sub-structure, the

regression coefficient corresponding to the mesh size has the largest value indicating that

E is the most significant input factor affecting the mean value of the identified damage,

which is consistent with the ANOVA results. (2) The regression coefficients for the first

two stories are in general smaller than those for the higher stories, indicating less uncer-

tainty in the mean value of the identified damage factors (i.e., less damage identification

bias) at lower stories, where the damage is largest. 

Finally, sensitivities of the identified damage factors are investigated as a function

of the level of uncertainty in the modal parameters of the first three longitudinal modes.

This global sensitivity analysis is performed through one-at-a-time (OAT) perturbation of

the individual input factors M1, M2 and M3. Statistical properties (mean/bias and standard

deviation) of the identified damage factors are investigated for six different levels of

uncertainty in the modal parameters of the considered mode, while the other input factors

remain fixed. From this global OAT sensitivity analysis, the following observations can be

made. (1) In general, the uncertainty level in the modal parameters of the third longitudi-

nal mode has the most significant influence (among the three modes) on the estimation
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uncertainty (mean and standard deviation) of the damage identification results. (2) The

mean/bias and standard deviation of the identified damage factors at the first (top) and

second (bottom and top) stories increase when the level of uncertainty in the modal

parameters of the second mode increases from 0.5% to 1% COV, and remain almost con-

stant for higher levels of uncertainty (1-3% COV). 

This systematic investigation demonstrates that the level of confidence in the dam-

age identification results obtained through FE model updating is a function of not only the

level of uncertainty in the identified modal parameters, but also choices made in the

design of experiments (e.g., spatial density of measurements) and modeling errors (e.g.,

mesh size).
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CHAPTER 9

CONCLUSIONS

9.1   SUMMARY OF CONTRIBUTIONS AND HIGHLIGHT OF 

FINDINGS

The research work presented in this thesis contributes to three different research

areas: (1) system identification of structures considered as linear dynamic systems, (2)

damage identification of structures, and (3) uncertainty analysis of system and damage

identification results. 

The principal contributions and major findings of this research work are summa-

rized below:

(1) The General Realization Algorithm (GRA) is developed to identify modal parameters

of linear multi-degree-of-freedom dynamic systems subjected to measured (known)

arbitrary dynamic loading from known initial conditions. The GRA is a generaliza-

tion of the Eigensystem Realization Algorithm (ERA), which is based on singular

value decomposition (SVD) of a Hankel matrix constructed from impulse (or free

vibration) response data. This generalization is obtained through SVD of a weighted

Hankel matrix of input-output data, where the weighting is determined by the loading.

Using GRA, the state-space matrices are estimated in a two-step process that includes
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a state reconstruction followed by a least squares optimization yielding a minimum

prediction error for the response. 

An application example consisting of an eight-story shear building model subjected to

earthquake base excitation is used for the multiple purposes of validating the new

algorithm, evaluating its performance, and investigating the statistical properties (i.e.,

bias/unbias, variance, and robustness to added output noise introduced to model mea-

surement noise and modeling errors) of the GRA modal parameter estimates. Based

on the extensive simulation study performed, it is found that the proposed new algo-

rithm yields very accurate estimates of the modal parameters (natural frequencies,

damping ratios, and mode shapes) in the case of noise free input-output data or low

output noise. The bias and variance of the modal parameter estimates increase with

the level of output noise and with the vibration mode order (due to the lower partici-

pation of higher modes to the total response and weak signal-to-noise ratio in the

application example considered). 

(2) As payload project leveraging a quasi-static test of a full-scale sub-component com-

posite beam, a high-quality set of low-amplitude vibration response data was acquired

from the beam at various damage levels. The Eigensystem Realization Algorithm was

applied to identify the modal parameters (natural frequencies, damping ratios, dis-

placement and macro-strain mode shapes) of the composite beam based on its

impulse responses recorded in its undamaged and various damaged states using accel-

erometers and long-gage fiber Bragg grating strain sensors. The modal identification

results from different tests at a given damage state using different types of data (accel-

eration or macro-strain) show very good agreement, thus validating the system identi-
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fication results used in the first stage of the damage identification procedure. This

study also investigates the sensitivity of the identified modal parameters to actual

structural damage. 

The identified modal parameters are then used to identify the damage in the beam

through a finite element model updating strategy. Two separate cases of damage iden-

tification are performed. In case I, the modal residuals in the objective function used

in the FE model updating procedure are based on the natural frequencies and dis-

placement mode shapes identified from accelerometer data. In case II, the modal

residuals are based on the natural frequencies, displacement mode shapes identified

from accelerometer data, and macro-strain mode shapes identified from FBG strain

sensor data. From the damage identification results obtained, it is observed that the

effective moduli of elasticity (used as updating parameters) display an overall

decreasing trend with increasing level of damage, which is consistent with the dam-

age-induced stiffness degradation. The updated effective moduli of elasticity obtained

from the two different damage identification cases are found to be in relatively good

agreement and consistent with the damage observed in the composite beam during

and at the end of the experiments. This provides an important validation example for

vibration based damage identification using finite element model updating based on a

heterogeneous sensor array, performed on a full-scale structural component tested in

laboratory conditions.

(3) A comprehensive comparative study of six state-of-the-art system identification meth-

ods is performed. These system identification methods including three output-only and

three input-output methods were used to estimate the modal parameters (natural fre-
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quencies, damping ratios, and mode shapes) of a seven-story reinforced concrete shear

wall building slice tested on the UCSD-NEES shake table in its undamaged (baseline)

and various damage states. These methods were applied to the response of the building

to ambient as well as white noise base excitation measured using both accelerometers

and linear variable displacement transducers (LVDTs). 

From the results of this system identification study, it is observed that: (1) The natural

frequencies identified using different methods are reasonably consistent at each dam-

age state, while the identified damping ratios exhibit much larger variability across

system identification methods. (2) The natural frequencies identified based on white

noise test data decrease with increasing level of damage except from damage state

S3.1 to S3.2, during which the steel braces were stiffened, while only the longitudinal

modal frequencies identified based on ambient vibration data decrease consistently

with increasing level of structural damage. This can be explained by the fact that

under low amplitude ambient vibration conditions, concrete cracks do not open as

much as under forced base excitation and therefore damage does not affects the iden-

tified modal parameters of some vibration modes. (3) At each damage state, the iden-

tified modal parameters of the first longitudinal mode appear to be the least sensitive

to the identification method used, which is most likely due to the predominant contri-

bution of this mode to the total response. (4) The first longitudinal modal frequency

identified based on white noise test acceleration data is systematically lower than its

counterpart identified based on ambient vibration acceleration data at all damage

states considered. This is most likely due to the fact that the test structure is nonlinear

(even at the relatively low levels of excitation considered in this system identification
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study) with effective modal parameters depending on the amplitude of the excitation

and therefore of the structural response.

In order to further validate and better understand the modal parameters identified

from ambient vibration and white noise base excitation test data, a three-dimensional

linear elastic finite element model of the shear wall test structure was developed in

SAP2000. The natural frequencies and mode shapes computed from the finite ele-

ment model are in reasonably good agreement with their identified counterparts

(especially when modal identification is based on the ambient vibration data) for the

first three longitudinal and the first two torsional vibration modes of the test structure

in its undamaged state (damage state S0).

(4) A finite element model updating strategy is applied for damage identification of the

full-scale seven-story reinforced concrete building slice tested on the UCSD-NEES

shake table. The shake table tests were designed so as to damage the building progres-

sively through a sequence of historical earthquake records reproduced on the shake

table. Two different cases of damage identifications are performed based on two dif-

ferent sets of identified modal parameters of the test structure, namely (1) the modal

parameters identified based on ambient vibration data, and (2) the modal parameters

identified based on white noise base excitation test data. 

From the damage identification results obtained, the following observations can be

made. (1) In both damage identification cases, as expected the severity of structural

damage increases as the structure is exposed to stronger earthquake excitations. (2) At

each damage state, the most severe damage is identified at the first story (top and bot-

tom) and second story (bottom) of the web wall. The damage identification results
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obtained in this study are consistent with the actual damage observed directly in the

test structure and inferred from strain gauge and LVDT measurement data recorded

during the damaging seismic tests. They capture correctly the concentration of dam-

age at the bottom two stories of the web wall. However, at damage state S4, severe

damage is spuriously identified at some higher stories of the web wall (fourth story in

case I, third and fifth stories in case II). The large identified damage factors at these

locations can be due to the following facts: (i) the estimation uncertainty of the identi-

fied modal parameters at damage state S4 (especially for the third mode) is higher

than at lower damage states; (ii) the optimization algorithm used to update the FE

model parameters is not a global optimization algorithm and becomes less robust for

larger changes in identified modal parameters between two consecutive damage

states; and (iii) with increasing level of damage, the level of nonlinearity in the struc-

tural response (even to the relatively low amplitude 0.03g RMS white noise base

excitation) increases. Therefore, the assumption that the structure behaves as a linear

dynamic system is violated and a linear dynamic model (modal model) is not strictly

able to represent well the structure (modal parameters become effective modal param-

eters).

The analytical modal parameters obtained from the updated FE models are in better

agreement with their experimentally identified counterparts in case I than in case II.

This could be due to a larger modeling error in case II in which the assumption of lin-

ear dynamic behavior is not as well satisfied as in case I even for the relatively low

amplitude of dynamic excitation (0.03g RMS acceleration). Therefore, the results

from case I of damage identification are expected to be more accurate. Finally, it
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should be noted that the success of damage identification depends significantly on the

accuracy and completeness of the available identified modal parameters. Clearly, if

estimation uncertainty in the modal parameters is larger than their change due to dam-

age, it is impossible to resolve/identify the actual damage in the structure. 

(5) Performance of three state-of-the-art output-only system identification methods is

investigated based on the response of the seven-story building structure simulated

using a three-dimensional nonlinear finite element model thereof. Analysis-of-vari-

ance (ANOVA) and meta-modeling are used to quantify the variability of the identi-

fied modal parameters due to variability of the following input factors: (1) amplitude

of input excitation (level of nonlinearity in the response) (A), (2) spatial density of

measurements (number of sensors) (S), (3) measurement noise (N), and (4) length of

response data used in the identification process (L). 

From the results of effect screening through ANOVA and meta-modeling, it is

observed that: (1) the variability in spatial density of the sensors (number of sensors)

introduces the least amount of variability in the modal parameters identified using the

three methods considered, (2) the mean value of the identified natural frequencies is

most sensitive to factors L and A (i.e., record length and amplitude of input excita-

tion) for the three methods, (3) the mean value of the identified damping ratios and

mode shapes (MAC value between identified mode shapes and their nominal counter-

parts from the FE model) are sensitive to the three factors A, N, and L, but the relative

contributions of these three factors to the total variance of these identified modal

parameters depend on the system identification used and the vibration mode, and (4)
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pairwise interactions of input factors have almost equal influence on the mean values

of the identified natural frequencies. 

In addition to ANOVA and meta-modeling, sensitivities of the identified modal

parameters are investigated as a function of data length and measurement noise,

respectively, while the other factors remain fixed. From this analysis, it is seen that:

(1) the variances of the identified modal parameters decrease with increasing record

length and increase with increasing level of added measurement noise, (2) the identi-

fied modal parameters of the first mode converge to their nominal (FE computed)

counterparts with increasing record length, which is not the case for the identified

modal parameters of the second and third modes, and (3) the variances of the identi-

fied modal frequencies and MAC values are very small even at high levels of mea-

surement noise.

(6) The performance of FE model updating for damage identification is systematically

investigated. The damaged structure was simulated numerically through a change in

stiffness in selected regions of a FE model of the shear wall test structure. The uncer-

tainty of the identified damage (location and extent) due to variability of five input

factors is quantified through analysis-of-variance (ANOVA) and meta-modeling.

These five input factors are: (1-3) level of uncertainty in the (identified) modal

parameters of each of the first three longitudinal modes (M1, M2, M3), (4) spatial

density of measurements (number of sensors) (S), and (5) mesh size in the FE model

used in the FE model updating procedure (modeling error) (E). A full factorial design

of experiments is considered for these five input factors. 
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From the results of effect screening through ANOVA and meta-modeling, the follow-

ing observations can be made. (1) Mesh size (E) is the most significant input factor

affecting the uncertainty in the mean value (i.e., estimation bias) of the identified

damage. (2) Variability in the spatial density of the sensors (S) produces the least

amount of uncertainty in the mean value of the identified damage factors. However,

the relative contribution of this input factor (S) to the variability of the standard devi-

ation of the identified damage is stronger. (3) In general, uncertainty in the modal

parameters of the second and third longitudinal modes (M2 and M3) affects more sig-

nificantly both the mean and standard deviation of the identified damage than the

uncertainty in the modal parameters of the first longitudinal mode (M1). This is most

likely due to the fact that mode shape curvature is one of the most sensitive features to

local damage and higher modes have higher curvatures. 

Finally, sensitivities of the identified damage factors are investigated as a function of

the level of uncertainty in the modal parameters of the first three longitudinal modes.

This global sensitivity analysis is performed through one-at-a-time (OAT) perturba-

tion of the individual input factors M1, M2 and M3. From this global OAT sensitivity

analysis, the following observations can be made. (1) In general, the uncertainty level

in the modal parameters of the third longitudinal mode has the most significant influ-

ence (among the three modes) on the estimation uncertainty (mean and standard devi-

ation) of the damage identification results. (2) The mean/bias and standard deviation

of the identified damage factors at the first (top half) and second (bottom and top

halves) stories increase when the level of uncertainty in the modal parameters of the
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second mode increases from 0.5% to 1% COV, and remain almost constant for higher

levels of uncertainty (1-3% COV). 

This systematic investigation demonstrates that the level of confidence in the damage

identification results obtained through FE model updating is a function of not only the

level of uncertainty in the identified modal parameters, but also choices made in the

design of experiments (e.g., spatial density of measurements) and modeling errors

(e.g., mesh size). 

9.2   RECOMMENDATIONS FOR FUTURE WORK

Based on the research work performed and presented herein, several research areas

have been identified as open to and in need of future work.

(1) An important issue not addressed in this study is the effect of environmental condi-

tions on system and damage identification results. An interesting topic of future

research is to study the variability in system and damage identification results due to

variability of environmental conditions such as temperature and humidity. 

(2) Separation of changes in modal parameters due to structural damage from those due

to other sources such as changes in environmental conditions is another important

subject of future research in vibration based structural health monitoring. 

(3) Based on the results obtained and experience gained through the research presented

herein, it is concluded that probabilistic damage identification methods are preferable.

Such methods must allow to account for all pertinent sources of uncertainty and must

express the damage identification results in probabilistic terms. The development of
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probabilistic damage identification methods (e.g., Bayesian FE model updating) is

therefore an area in need of future research. Such methods should be applied to labo-

ratory and/or field measurement data and validated against observed damage in real

structural components and structures. 

(4) Further investigation of the effects of modeling errors on model based damage identi-

fication methods is needed. 

(5) Application of FE model updating for damage identification of the seven-story shear

wall building slice based on a denser and heterogeneous array of sensors (including

accelerometers, LVDTs, and strain gages) is a worthy area of future work. 

(6) The development of analytical or semi-analytical methods to propagate uncertainties

through system identification and damage identification algorithms is an important

area of future research. It will allow system identification and damage identification

results to be expressed in probabilistic terms. 
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