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ABSTRACT: We study dynamical flavor symmetry breaking in the context of a class of N = 1

supersymmetric SU(nc) and USp(2nc) gauge theories, constructed from the exactly solvable N = 2

theories by perturbing them with small adjoint and generic bare hypermultiplet (quark) masses. We

find that the flavor U(nf ) symmetry in SU(nc) theories is dynamically broken to U(r) × U(nf −
r) groups for nf ≤ nc. In the r = 1 case the dynamical symmetry breaking is caused by the

condensation of monopoles in the nf representation. For general r, however, the monopoles in the

nf
Cr representation, whose condensation could explain the flavor symmetry breaking but would

produce too-many Nambu–Goldstone multiplets, actually “break up” into “magnetic quarks” which

condense and induce confinement and the symmetry breaking. In USp(2nc) theories with nf ≤ nc+1,

the flavor SO(2nf ) symmetry is dynamically broken to U(nf ), but with no description in terms of

a weakly coupled local field theory. In both SU(nc) and USp(2nc) theories, with larger numbers of

quark flavors, besides the vacua with these properties, there exist also vacua with no flavor symmetry

breaking.
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1. An interesting phenomenon has been observed in N = 2 supersymmetric SU(2) gauge theories

with various flavors and with adjoint mass perturbation [1, 2]: confinement is caused by condensation

of magnetic monopoles carrying nontrivial flavor quantum numbers (see also [3] for further details):

spontaneous flavor symmetry breaking is caused by the same dyamical mechanism responsible for

confinement in these models. We wish to know what happens in more general classes of models,

and through a systematic analysis, to gain a more microscopic understanding of these phenomena

and related ones in Quantum Chromodynamics. As we see below, the generalization from SU(2) to

higher-rank gauge groups turns out to be quite subtle.

We discuss here models constructed from exactly solvable N = 2 SU(nc) and USp(2nc) gauge

theories with all possible numbers of flavor compatible with asymptotic freedom, by perturbing

them with a small adjoint mass (reducing supersymmetry to N = 1) and keeping small, generic bare

hypermultiplet (quark) masses. The advantage of doing so is that the only vacua retained are those

in which the gauge coupling constant grows in the infrared. Another advantage is that in this way

all flat directions are eliminated and one is left with a finite number of isolated vacua; keeping track

of this number allows us to perform highly nontrivial checks of our analyses at various steps. Our

analysis heavily relies on the breakthrough works by Seiberg and Witten [1, 2], and those which

followed them [4]. Also crucial will be Seiberg’s N = 1 electromagnetic duality [5, 6], and newly

discovered universal classes of (super) conformally invariant theories [5]-[8].

The special cases of SU(2) = USp(2) theories with nf = 1, 2, 3, 4 were studied in [2]. For

nf = 1, 4, there is no dynamical flavor symmetry breaking. For nf = 2, monopoles in the (2, 1)+(1, 2)

(spinor) representation of the flavor [SU(2) × SU(2)]/Z2 = SO(4) group is found to condense after

N = 1 perturbation µTr Φ2: the flavor symmetry is necessarily broken to U(2). For nf = 3,

monopoles in the 4 (spinor) representation of the flavor SO(6) group condense with µ 6= 0 and

the flavor symmetry is broken to U(3) while there is another vacuum where a flavor-singlet dyon

condenses and the flavor symmetry is unbroken. This result naturally leads to a conjecture that the

condensation of monoples with non-trivial flavor transformation property explains the confinement à

la ‘t Hooft [9] and the flavor symmetry breaking simultaneously. However, a simple thought reveals a

problem with this picture. As we will see later, the monopoles in USp(2nc) theories transform under

the spinor representation of SO(2nf ) flavor symmetry, and their effective low-energy Lagrangian

coupled to the magnetic U(1) gauge group would have an accidental SU(2nf−1) flavor symmetry,

and their condensation would lead to far too many Nambu–Goldstone multiplets. The case of SU(2)

gauge theories was special because the flavor symmetries of the monopole action precisely coincide

with the symmetry of the microscopic theories due to the small number of flavors. This argument

suggests that the phenomenon of flavor symmetry breaking is richer in higher rank theories.

Argyres, Plesser and Seiberg [10] studied higher-rank SU(nc) theories with nf ≤ 2nc−1 (asymp-

totically free) in detail. They showed how the non-renormalization theorem of the hyperKähler met-

ric on the Higgs branch could be used to show the persistence of unbroken non-abelian gauge group

at the “roots” of the Higgs branches (non-baryonic and baryonic branches) where they intersect the

Coulomb branch. Some isolated points on the non-baryonic roots with SU(r) (r ≤ [nf/2]) gauge
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group as well as the baryonic root (single point) with SU(ñc) = SU(nf − nc) gauge group were

found to survive the µ 6= 0 perturbation. Their main focus, however, was the attempt to “derive”

Seiberg’s duality between SU(nc) and SU(ñc) gauge theories relying on the baryonic root,1 and the

issue of flavor symmetry breaking was not studied at any depth. The analysis also left a puzzle

why there were “extra” theories at the non-baryonic roots which seemingly had nothing to do with

Seiberg’s dual theories. Another paper by Argyres, Plesser and Shapere addressed similar questions

in SO(nc) and USp(2nc) theories [11].

In the present paper, we find that the flavor U(nf ) symmetry in SU(nc) theories can be dynam-

ically broken to various U(r) × U(nf − r) groups. We find that in the r = 1 vacua the dynamical

symmetry breaking is indeed caused by the condensation of monopoles in the nf representation.

For general r, however, the monopoles in the nf
Cr representation, whose condensation could have

explained the flavor symmetry breaking but would have produced too-many Nambu–Goldstone mul-

tiplets, actually “break up” into “magnetic quarks” whose baryonic composites under the unbroken

SU(r) gauge group match the monopoles. The baryonic roots are shown always to coincide with the

non-baryonic roots with r = ñc. The non-baryonic roots are shown to be necessary ingredients of the

Seiberg’s dual theories rather than being “extra.” The vacua with unbroken flavor symmetries are

associated with the baryonic roots. The situation with USp(2nc) theories is even less trivial. The

low-energy theories are non-trivial superconformal theories with no description in terms of a weakly

coupled local field theory. In obtaining these results, counting of the number of vacua proved to be

an extremely useful tool. The counting was done in the semi-classical limit, large µ limit, using the

curve, as well as using low-energy effective Lagrangians and they all agree with each other.

2. First we perform a preparatory analysis, by minimizing the scalar potential following from the

Lagrangian valid in the semi-classical regime (when both µ and m are large). N = 1 supersymmetry

and holomorphy guarantee the absence of phase transitions between large µ, m to small µ, m.

Therefore these vacua are related to quantum vacua in other regimes one by one.

The Lagrangian of the models has the structure

L =
1

8π
Im τcl

[∫

d4θΦ†eV Φ +

∫

d2θ
1

2
WW

]

+ L(quarks) + ∆L, (1)

where

∆L =

∫

d2θ µTrΦ2 (2)

is the adjoint mass breaking the supersymmetry to N = 1 and

L(quarks) =
∑

i

[∫

d4θ {Q†
ie

VQi + Q̃ie
−V Q̃†

i} +

∫

d2θ {
√

2Q̃iΦQ
i +miQ̃iΦQ

i}
]

(3)

describes the nf flavors of hypermultiplets (“quarks”), and τcl ≡ θ0/π + 8πi/g2
0 is the bare θ pa-

rameter and coupling constant. The N = 1 chiral and gauge superfields Φ = φ +
√

2 θ ψ+ . . . , and
1This “derivation,” however, was incomplete as it did not produce all components of the “meson” superfield.

Moreover, the effective low-energy theory was perturbed by a relevant operator (the mass term for the mesons) and

did not flow to the Seiberg’s magnetic theory correctly. We thank P. Argyres for discussions on this point.
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Wα = −iλ + i
2 (σµ σ̄ν)β

α Fµν θβ + . . . are both in the adjoint representation of the gauge group, while

the quarks are taken in the fundamental representation. In the limit mi → 0, and µ → 0, these

models possess an exact flavor symmetry, U(nf )×Z2nc−nf
or SO(2nf )×Z2nc+2−nf

, for SU(nc) or

USp(2nc) gauge groups, respectively. In the equal quark mass limit, the symmetry of the symplec-

tic gauge theory is reduced to U(nf ). The models are asymptotically free as long as nf < 2nc (for

SU(nc) gauge theory) or nf < 2nc + 2 (for USp(2nc)).

We find

N =

min {nf ,nc−1}
∑

r=0

(nc − r)nf
Cr (4)

semi-classical solutions for SU(nc) gauge theory with nf flavors, while for Usp(2nc) theory with nf

flavors, the number of N = 1 vacua is

N =

min{nc, nf}∑

r=0

(nc − r + 1) nf
Cr . (5)

The factor nc − r or nc − r + 1 appearing in the sum originates from Witten’s index for unbroken

gauge group. For small number of flavors, these expressions simplify somewhat:

N1 = (2nc − nf ) 2nf−1, (SU(nc) with nf ≤ nc); (6)

N1 = (2nc + 2 − nf ) 2nf−1, (USp(2nc) with nf ≤ nc + 1). (7)

It is amusing that these different expressions all reproduce correctly the number of N = 1 vacua in

the case of SU(2) theory (which is a special case, both of SU(nc) and of USp(2nc)) with nf = 0 ∼ 4,

N = nf + 2. (8)

3. We next determine the possible patterns of dynamical flavor symmetry breaking in these

theories. This is done most easily by studying these theories at large fixed µ ≫ Λ, mi → 0.2 Such

an analysis is possible since at large adjoint mass the low-energy effective superpotential can be read

off from the bare Lagrangian by integrating out the heavy adjoint field and by adding to it the known

exact instanton–induced superpotentials of the corresponding N = 1 theories. By minimizing the

superpotential, we found in all cases the correct number of vacua Eqs.(4)-(7). N = 1 supersymmetry

kept intact throughout guarantees that there are no phase transitions as µ is varied; we can thus

determine the symmetry breaking pattern in each N = 1 vacuum from the first principles. The

analysis is straightforward, but is not entirely trivial for large nf because the non-perturbative

effects among the low-energy degrees of freedom (dual quarks and mesons) have to be correctly

taken into account despite the fact that they are in a “free magnetic phase”[5].

For instance, for SU(nc) theory with nf < nc the effective superpotential reads

W = − 1

2µ

[

TrM2 − 1

nc
(TrM)2

]

+ Tr(mM) +
Λ

(3nc−nf )/(nc−nf )
1

(detM)1/(nc−nf )
, (9)

2We also investigated the limit µ → ∞ while mi ≪ Λ fixed, which is suited for studying the decoupling of the

adjoint fields. We checked this way the consistency with the known results about N = 1 theories.
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where M j
i ≡ Q̃a

iQ
j
a, and Λ1 = (µncΛ2nc−nf )

1

3nc−nf is the scale of the N = 1 theory. The minima of

the potential are characterized by the set of vacuum expectation values (in the mi → 0 limit),

M = diag (λ1, λ2, . . . , λnf
), (10)

λ1 = . . . = λr = −(nc + r − nf )Z, λr+1 = . . . = λnf
= (nc − r)Z, (11)

where

Z = C
(

µnc−nf Λ
3nc−nf

1

)1/(2nc−nf )

ωk, (k = 1, 2, . . . 2nc − nf ; ω = e2πi/(2nc−nf )), (12)

with C ∼ O(1) a constant that depends on nf , nc and r. In a vacuum characterized by r, the flavor

symmetry of the model is broken spontaneously as

U(nf ) → U(r) × U(nf − r). (13)

To avoid double counting, we can restrict r ≤ [nf/2] with all k, and for the special case of r = nf/2

(possible only when nf is even), k = 1, · · · , nc −nf/2, for each choice of r flavors out of nf . We find

a total

N1 = (2nc − nf ) · 2nf−1 (14)

of such vacua, after summation over r. The number for nf = nc is given by the same formula using

the “quantum modified constraint” among the mesons and baryons following Seiberg. For nf ≤ nc

the above exhausts the number of the vacua. In the case nf = nc + 1 we used the appropriate

effective Lagrangian involving mesons and baryons to find that there are N1 vacua with various

symmetry breaking (13) plus one vacuum with no flavor symmetry breaking. The total number

N1 + 1 reproduces (4) correctly.

The situation for larger numbers of flavor (nf > nc + 1) is more subtle. The effective low-energy

action in these cases has the form (we set the “matching scale” to unity to simplify expressions)

W = q̃Mq + Tr(mM) − 1

2µ

[

TrM2 − 1

nc
(TrM)2

]

, (15)

where q’s are nf flavors of dual quarks [5] in the fundamental representation of the dual gauge group

SU(ñc), where ñc = nf − nc. The minima of the potential following from Eq.(15) can be found

straightforwardly, and gives

N2 =

ñc−1∑

r=0

nf
Cr (ñc − r) (16)

vacua. The solutions have a color-flavor diagonal form for q’s and q̃’s, with r nonzero elements,

di, d̃i, where

di = d̃i =



−mi −
1

nc + r − nf

nf∑

j=r+1

mj





1/2

, i = 1, 2, . . . , r. (17)
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The meson vacuum expectation value (VEV) is orthogonal to the squark VEVS,

M = diag (0, 0, . . . , 0, λr+1, λr+2, . . . , λnf
), λi = µ



mi +
1

nc + r − nf

nf∑

j=r+1

mj



 . (18)

All VEVS of fields carrying flavor quantum numbers thus vanish in the limit mi → 0, showing that

the flavor symmetry remains unbroken in this class of vacua.

The problem is that the number of vacua found this way is too small, since we know that the

exact number of vacua is N (Eq.(4)), N > N2. Where are other vacua?

This apparent puzzle can be solved once the nontrivial SU(ñc) instanton effects are taken into

account properly.3 If the meson vacum expectation values have rank nf , the dual quarks can be

integrated out, leaving the effective superpotential,

Weff = − 1

2µ

[

TrM2 − 1

nc
(TrM)2

]

+ Tr(Mm) + Λ
(3nc−nf )/(nc−nf )
1 (detM)1/(nf−nc). (19)

Minimization of this effective action gives N1 = (2nc − nf ) · 2nf−1 solutions, having the same forms

as Eq.(10)-Eq.(12). At this point, one can make a highly nontrivial consistency check: by changing

r → nf − r and rearranging terms, one shows that the total number of quantum vacua is equal to

N1 + N2 =

nc−1∑

r=0

(nc − r)nf
Cr = N , (20)

i.e., equal to the total number of semi-classical vacua.

We find therefore that there are two types of vacua: the first of them, with finite VEVS of mesons

(in mi → 0 limit), are present for all values of flavors. They are classified by an integer r ≤ [nf/2],

and the flavor symmetry is spontaneously broken as U(nf ) → U(r)×U(nf − r). In the second type

of vacua, present only for large flavors (nf ≥ nf + 1), the flavor symmetry remains unbroken. The

second type of vacua are closely related to the emergence of the dual gauge group of Seiberg.

The analysis in the case of USp(2nc) models is similar, but the result is qualitatively different.

We find again two types ofN = 1 vacua. The first type of vacua has finite meson vacuum expectation

values M ij ∝ J ij (symplectic matrix) with the flavor SO(2nf ) symmetry broken as

SO(2nf ) → U(nf ), (21)

in all vacua of this class. This phenomenon is quite reminiscent of what is believed to occur in the

standard QCD. The number of this type of vacua is given by

N1 = (2nc + 2 − nf ) 2nf−1, (22)

3In fact, a related puzzle is how Seiberg’s dual Lagrangian [5] - the first two terms of Eq. (15) - can give rise to

the right number of vacua for the massive N = 1 SQCD with nf > nc + 1. By following the same method as below

but with µ = ∞, we do find the correct number (nc) of vacua.
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which is the number of vacua for (nf < nc + 2).

As in the SU(nc) case, when the number of the flavor is sufficiently large (nf ≥ nc + 2) we find

also another class of vacua in which the flavor SO(2nf ) symmetry is unbroken. There are

N2 =

nf−nc−2
∑

r=0

(nf − nc − 1 − r) nf
Cr (23)

of them, and together with those of the first group, they make up the total number

N = N1 + N2 =

nc∑

r=0

(nc + 1 − r) nf
Cr (24)

which is the correct number of N = 1 vacua for USp(2nc) (see Eq.(5)).

4. We now seek for a microscopic understanding of the mechanism of dynamical flavor symmetry

breaking. We do so by studying the N = 2 vacua on the Coulomb branch which survive µ 6= 0

perturbation. We start from the auxiliary genus nc − 1 (nc) curves for SU(nc) (USp(2nc)) theories

y2 =

nc∏

k=1

(x− φk)2 + 4Λ2nc−nf

nf∏

j=1

(x +mj), SU(nc), nf ≤ 2nc − 2, (25)

with φk subject to the constraint
∑nc

k=1 φk = 0, and

xy2 =

[

x

nc∏

a=1

(x − φ2
a)2 + 2Λ2nc+2−nfm1 · · ·mnf

]2

− 4Λ2(2nc+2−nf )

nf∏

i=1

(x+m2
i ), USp(2nc). (26)

The VEVS of aDi, ai are constructed as integrals over the non-trivial cycles of the meromorphic

differentials on the curves. We require that the curve is maximally singular, i.e. nc − 1 (or nc for

USp(2nc)) pairs of branch points to coincide: this determines the possible values of {φa}’s. These

correspond to the N = 1 vacua, with the particular N = 1 perturbation, Eq.(2). Note that as we

work with generic and nonvanishing quark masses, this is an unambiguous procedure to identify all

the N = 1 vacua of our interest. 4

We find in this way precisely the same number (N ) of N = 1 vacua, where N was determined

earlier by the semi-classical and large µ analyses. In each vacuum, there are nc − 1 (or nc) different

kinds of massless magnetic monopoles, corresponding to maximal Abelian subgroup of SU(nc) or of

USp(2nc).

At small generic quark masses, we observe that these singularities group into approximate mul-

tiplets of vacua, with multiplicities nf
Cr, r = 0, 1, 2, . . . , [nf/2], in the case of SU(nc), while they

appear in 2nf−1-plets plus certain number of other vacua, in the case of USp(2nc) theories. Their

positions are compatible with the approximate discrete symmetries, Z2nc−nf
or Z2nc+2−nf

. We have

4There are other kinds of singularities of N = 2 QMS at which, for instance, three of the branch points meet. These

correspond to N = 1 vacua, selected out by different types of perturbations such as TrΦ3, which are not considered

here.
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made an extensive numerical study in the case of rank two gauge groups with all possible numbers

of flavor, as well as general analytical study of these phenomena for higher-rank groups.

As mi → 0 (or equal mass limit in the case of SU(nc)) each multiplet of vacua collapse into

one multiple vacuum. This behavior might suggest a more or less straightforward generalization of

what occurs in SU(2) gauge theories, mentioned at the beginning. Indeed, monopoles can acquire

nontrivial flavor quantum numbers as shown by Jackiw and Rebbi [12] through the fermion zero

modes. In SU(nc) theories, by acting fermion zero mode operators di, d
†
j on the monopole state |Ω〉,

such as

d†i |Ω〉, d†i1d
†
i2
|Ω〉, . . . , d†i1 · · ·d

†
inf

|Ω〉, (27)

we find semi-classical monopoles belonging to anti-symmetric tensor representations of U(nf ). It

might appear then the dynamical flavor symmetry breaking (13) is caused by the condensation of

such monopoles. As mentioned earlier, however, this picture would lead to far too many Nambu–

Goldstone multiplets (except for r = 0, 1). The same analysis for USp(2nc) case shows that the

semi-classical monopoles are in the spinor representation of SO(2nf ), and their condensation would

give the symmetry breaking (21) and the number of vacua 2nf−1. We would again run into a paradox

of having a too-large SU(2nf−1) symmetry.

Actually the theories avoid falling into this kind of paradox, but do so in a subtle way. Let us

discuss below physics of SU(nc) and USp(2nc) gauge theories separately.

5. In the SU(nc) case, the N = 1 vacua can all be generated from the various classes of super-

conformal theories with mi = µ = 0, by perturbation by masses mi. The first type of vacua (with

multiplicity N1) correspond to the curves

y2 ∼ x2r(x− α1)
2 · · · (x− αnc−r−1)

2(x− β)(x − γ), r = 0, 1, 2, . . . , [nf/2], (28)

that is

diagφ = ( 0, 0, . . . , 0
︸ ︷︷ ︸

r

, φ1, . . . φnc−r),

nc−r∑

a=1

φa = 0, (29)

with φa’s chosen such that the nonzero 2(nc − r− 1) branch points are paired. These correspond to

the so-called class 1 (r < nf/2) and 3 (r = nf/2, with nc − nf/2 odd) superconformal theories [8],

while the case, r = nf/2, nc − nf/2 even, may be interpreted as belonging to class 4. Since these

adjoint VEVS break the discrete symmetry spontaneously, they appear in 2nc − nf copies.5 When

(generic) quark masses are turned on, these vacua split into nf
Cr-plet of single vacua. The second

class of vacua stem from the (trivial) superconformal theory

y2 ∼ x2ñc(xnc−ñc − Λ2)2, ñc = nf − nc, (30)

5There is an exception to this. In the case of r = nf/2 with nf even, the explicit configuration of φa’s can be

found by using the Chebyshev polynomials. This vacuum respects Z2 subgroup of the Z2nc−nf
symmetry, showing

that it appears in nc − nf/2 copies rather than 2nc − nf . This fact is crucial in the vacuum counting below Eq.(38).
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corresponding to the singularity

diagφ = ( 0, 0, . . . , 0
︸ ︷︷ ︸

ñc

,Λω, . . . ,Λωnc−ñc) (31)

with ω = e2πi/(nc−ñc). Actually there is no vacuum of the first type with r = ñc.

The most detailed description of these N = 1 vacua comes from the considerations based on

nonrenormalization theorem of the Higgs branch metric [10]. The first class of vacua with given r

is an SU(r) × U(1)nc−r gauge theory with nf “quarks” and nc − r singlet monopoles ek’s, with an

effective Lagrangian,

Wnonbar =
√

2Tr(qφq̃) +
√

2ψ0Tr(qq̃) +
√

2

nc−r−1∑

k=1

ψkekẽk + µ

(

Λ

nc−r−1∑

i=0

xiψi +
1

2
Trφ2

)

, (32)

where φ and ψk’s are part of the SU(r)×U(1)nc−r N = 2 vector multiplets and xi ∼ O(1) constants.

These are at the roots of the so-called “non-baryonic” branches [10], where they meet the Coulomb

branch. They describe an infrared-free (i.e., non asymptotic free) effective theory for r < nf/2. We

now add the mass terms

Tr(mqq̃) −
∑

k,i

Si
kmiekẽk (33)

and minimize the potential. We find nf
Cr solutions characterized by the vacuum expectation values

(q and q̃ having color-flavor diagonal form, with nonvanishing elements, di and d̃i)
6

ψ0 = − 1√
2 r

r∑

i=1

mi, ψk = O(mi), (34)

did̃i = −µ



mi −
1

r

r∑

j=1

mj



− 1√
2 r
µΛx0; ekẽk ∼ µΛ. (35)

The multiplicity nf
Cr arises from the choice of r (out of nf) quark masses used to construct the

solution. In the massless limit we find

di = d̃i ∼
√

µΛ, i = 1, 2, . . . r : (36)

this leads to the correct symmetry breaking pattern, U(nf ) → U(r) × U(nf − r).

For r = nf/2, the theory at the singularity becomes a non-trivial superconformal theory. There

is no description of this singularity in terms of weakly coupled local field theory. The monodromy

around the singularity shows that the theory is indeed superconformal (we checked this explicitly

6Actually, Eq.(32) and Eq.(33) allow for a number of other solutions in which the vev of ψ0 is of O(Λ); these are

the first group of N = 1 vacua found in [10]. Such solutions, involving fluctuations much larger than both mi and

µ, however, lie beyond the validity of the low-energy effective Lagrangian. They should therfore be regarded as an

artefact of the approximation and must be discarded.
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for nc = 3 and nf = 4). Careful perturbation of the curve by the quark masses shows that there are

(nc − nf/2) nf
Cnf /2 vacua.7

The total number of the vacua of this type is (nf ≤ nc):

(2nc − nf )

(nf−1)/2
∑

r=0

nf
Cr = (2nc − nf) 2nf−1, (nf = odd) (37)

(2nc − nf )

nf /2−1
∑

r=0

nf
Cr +

2nc − nf

2
nf
Cnf /2 = (2nc − nf ) 2nf−1, (nf = even), (38)

which exhausts N , Eq.(6). In Eq.(38) we have taken into account the fact that for even nf , the

vacua with r = nf/2 do not transform under Z2nc−nf
but only under Znc−nf /2. When nf > nc, we

need to exclude the term r = ñc = nf − nc from the sum because it gives the second type of vacua.

We obtain therefore N1 − (2nc − nf ) nf
Cñc

vacua.

As for the second group of vacua, Eq.(30), Eq.(31), they are an SU(ñc)×U(1)nc−ñc gauge theory

with nf “quarks” and nc − ñc singlet monopoles ek’s [10]. The effective low-energy Lagrangian for

this theory is given by

Wbar =
√

2Tr(qφq̃)+

√
2

ñc
Tr(qq̃)

(
nc−ñc∑

k=1

ψk

)

−
√

2

nc−ñc∑

k=1

ψkekẽk +µ

(

Λ

nc−ñc∑

i=1

xiψi +
1

2
Trφ2

)

. (39)

where φ and ψk’s are now in SU(ñc)×U(1)nc−ñc N = 2 vector multiplets. We add the mass terms

Tr(mq) −
∑

k,i

Si
kmiekẽk. (40)

We find two types of vacua of the effective low-energy Lagrangian. The first type has ek = ẽk =

(µΛxk/
√

2)1/2 for all k = 1, · · ·nc − ñc. Minimizing the potential in this case, we find

N2 =

ñc−1∑

r=0

(ñc − r) nf
Cr (41)

N = 1 vacua, characterized by the vevs

φ =
1√
2
diag (−m1, . . . ,−mr, c, . . . , c) ; c =

1

ñc − r

r∑

k=1

mk (42)

di, d̃i ∼
√
µm

mi→0−→ 0, ek, ẽk ∼
√

µΛ. (43)

The unbroken SU(ñc− r) gauge group gives ñc− r vacua each. These vacua describe the vacua with

unbroken SU(nf) symmetry, which are known to exist from the large µ analysis.

7Due to some reason, however, the naive application of the effective Lagrangian Eq. (32,33) gives the correct

number.
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The second type of vacua in Eqs. (39,40) has one of the ek = ẽk = 0 (hence nc − ñc = 2nc − nf

choices) while ∂W/∂ψk = 0 requires quarks to condense with q = q̃ ∼ √
µΛ. Dropping ek = ẽk = 0

from the Lagrangian, it becomes the same as that of the non-baryonic root Eqs. (32,33) and gives

(2nc − nf ) nf
Cñc

vacua. This precisely compensates the exclusion of r = ñc in the sum for the

non-baryonic roots and the correct total number of vacua N1 + N2 is obtained.

We thus find that both the number and the symmetry properties of the N = 1 theories at small

adjoint mass µ exactly match those found at large µ, without encountering any paradoxical situation.

We postpone a discussion of physical aspects of SU(nc) theories to the end (point 7 below).

6. In the USp(2nc) gauge theories, the first type of vacua can be identified more easily by first

considering the equal but novanishing quark masses. The adjoint vevs in the curve Eq.(26) can be

chosen so as to factor out the behavior

y2 = (x+m2)2r [. . .], r = 1, 2, . . . (44)

which describes an SU(r) × U(1) gauge theory with nf quarks. These (trivial) superconformal

theories belong in fact to the same universality classes as in the SU(nc) gauge theory as pointed out

by [8]. They are therefore described by exactly the same Lagrangian Eq.(32). At each vacuum with

r, the symmetry (of equal mass theory, U(nf )) is broken spontaneously as

U(nf ) → U(r) × U(nf − r) : (45)

as in Eq.(13). When a small mass splitting is added among mi’s, each of the r vacuum split into

nf
Cr vacua, leading to the total of

(2nc + 2 − nf )

(nf−1)/2
∑

r=0

nf
Cr = (2nc + 2 − nf ) 2nf−1, (nf = odd) (46)

(2nc + 2 − nf )

nf /2−1
∑

r=0

nf
Cr +

2nc + 2 − nf

2
nf
Cnf /2 = (2nc + 2 − nf ) 2nf−1, (nf = even), (47)

vacua of this type, consistently with Eq. (7).8

In the massless limit the underlying theories possess a larger, flavor SO(2nf ) symmetry. We know

also from the large µ analysis that in the first group of vacua (with finite vevs), this symmetry is

broken spontaneously to U(nf ) symmetry always. How can such a result be consistent with Eq.(45)

of equal (but nonvanishing) mass theory?

What happens is that in the massless limit various N = 1 vacua with different symmetry prop-

erties Eq.(45) (plus eventually other singularities) coalesce. The location of this singularity can be

obtained exactly in terms of Chebyshev polynomials. At the singularity there are mutually non-local

dyons and hence the theory is at a non-trivial infrared fixed point (in the example of USp(4) theory

with nf = 4, we have explicitly verified this by determining the singularities and branch points at

8These N = 1 vacua seem to have been overlooked in [11].
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finite equal mass m and by studying the limit m→ 0.) There is no description in terms of a weakly

coupled local field theory, just as in the case r = nf/2 for SU(nc) theories. Since the global flavor

symmetry is SO(2nf ) these superconformal theories belong to different universality classes as com-

pared to those at finite mass. We find this behavior resonable because the semi-classical monopoles

are in the spinor representation of the SO(2nf ) flavor group and, in contrast to the situation in

SU(nc) theories, cannot “break up” into quarks in the vector representation. They are therefore

likely to persist at the singularity and makes the theory superconformal. Once the quark masses

are turned on, however, the flavor group reduces to (at least) U(nf ) and it becomes possible for

monopoles to break up into quarks; this explains the behavior in the equal mass case.

As for the second group of vacua, the situation is more analogous to the case of SU(nc) theories.

The superpotential reads in this case (by adding mass terms to Eq.(5.10) of [11]):

W = µ



Trφ2 + Λ

2nc+2−nf∑

a=1

xaψa



+
1√
2
qi
aφ

a
b q

i
c J

bc +
mij

2
qi
aq

j
b J

ab

+

2nc+2−nf∑

a=1

(
ψa ea ẽa + Si

ami ea ẽa

)
, (48)

where J = iσ2 ⊗ 1nc
and

m = −iσ2 ⊗ diag (m1,m2, . . . ,mnf
) . (49)

By minimizing the potential, we find

N2 =

ñc∑

r=0

(ñc − r + 1)nf
Cr (50)

vacua, which precisely matches the number of the vacua of the second group, with squark vevvs

behaving as

qi, q̃i ∼
√
µmi

mi→0−→ 0. (51)

These are the desired SO(2nf ) symmetric vacua.

7. To summarize, we have studied the dynamics of N = 1 SU(nc) and USp(2nc) gauge theories

obtained by perturbing N = 2 theories with nf hypermultiplets in the fundamental representation

with a finite adjoint mass µTrΦ2, determining the possible flavor symmetry breaking patterns.

There are vacua in confinement phase with symmetry breaking U(nf ) → U(r) × U(nf − r) (r =

0, 1, · · · , [nf/2]) and SO(2nf ) → U(nf ), respectively. There also are non-confining vacua with

no flavor symmetry breaking for nf ≥ nc + 1, nf ≥ nc + 2 for SU(nc) and USp(2nc) theories,

respectively.

With small but generic quark masses, the order parameter of confining vacua is indeed the

condensation of magnetic monopoles for every U(1) factor on the Coulomb branch à la ’t Hooft, in

both types of gauge theories. The massless limit, however, is non-trivial and much more interesting.
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In SU(nc) theories, in vacua with r = 1 magnetic monopoles are in the fundamental represen-

tation of U(nf ) flavor group, and are charged under one of the U(1)’s: flavor-singlet monopoles are

charged under other U(1)’s. Their condensation realizes the confinement and the flavor symmetry

breaking at the same time.

In vacua labelled by r, 2 ≤ r < nf/2 but r 6= nf −nc, the grouping of the associated singularities

on the Coulomb branch might suggest the condensation of monopoles in the rank-r anti-symmetric

tensor representation. Actually, this does not occur. The correctness of the effective action Eq.(32)

shows that the low-energy degrees of freedom of these theories are (magnetic) quarks plus a number

of singlet monopoles of an effective SU(r)×U(1)nc−r gauge theory. Monopoles in a higher represen-

tation of SU(nf ) flavor group probably exist semi-classically as seen in a Jackiw–Rebbi type analysis

[12]. Such monopoles can be interpreted as “baryons” made of the magnetic quarks, which, inter-

actions being infrared-free, break up before they become massless at singularities on the Coulomb

branch. The condensation of the magnetic quarks induces the confinement and flavor symmetry

breaking, U(nf ) → U(r) × U(nf − r), at the same time. This is how the system avoids falling into

a paradox of having too many Nambu-Goldstone multiplets.

In the special cases with r = nf/2, the interactions among the monopoles are so strong that

the low-energy theory describing them is a nontrivial superconformal theory (conformal invariance

explicitly broken by the adjoint or quark masses). Although the symmetry breaking pattern is known

(U(nf ) → U(nf/2) × U(nf/2)), the low energy degrees of freedom are fields whose interactions are

not described by a local action.

Finally, in the group of vacua labelled by r = nf − nc, the interactions among monopoles are

described by an effective infrared-free SU(nf − nc) gauge theory. There are two physically distinct

groups of vacua in this case: one in which the magnetic quarks condense (i.e. confinement phase)

with the unbroken symmetry U(nf−nc)×U(nc), and the other with no magnetic-quark condensation

and hence with unbroken U(nf ) symmetry (i.e. the free magnetic phase).

In USp(2nc) theories, physics for non-vanishing and equal quark masses resembles that in the

vacua with generic r of SU(nc) theory. In the massless limit, however, where the flavor group

enlarges to SO(2nf ), the situation is more similar to the r = nf/2 case of SU(nc): the low-energy

degrees of freedom are fields with relatively non-local interactions, and the effective theory is a

non-trivial superconformal one. Although no local effective Lagrangian is available, we know that

the flavor SO(2nf ) symmetry is spontaneously broken to diagonal U(nf ) symmetry in all confining

vacua. For large number of flavor, there are also vacua in free-magnetic phase.

A more extensive account of our analysis will appear elesewhere.
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