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Large servo-hydraulic shaking table systems are essential tools in experimental 

earthquake engineering. They provide effective ways to subject structural components, 

substructures, or entire structural systems to dynamic excitations similar to those 

induced by real earthquakes. A typical shake table system includes mechanical, 

hydraulic, and electronic components. 



 xx

The main objective of this study is to develop a comprehensive mechanics-based 

virtual model for the large NEES-UCSD shake table under bare and loaded table 

conditions. The shake table model developed in this study includes a virtual replica of 

the actual controller, four servovalve models, two single-ended actuators, two 

effective accumulators, a two-dimensional mechanical subsystem model, and 

linear/nonlinear specimens modelled using the finite element analysis framework 

OpenSees. OpenSees is integrated to the rest of the simulation model in Matlab-

Simulink® using a client-server technique developed within this work. Test-

simulation correlation studies show that the virtual system model developed is capable 

of reproducing the nonlinear dynamic response behaviour of the NEES-UCSD shake 

table.   

An extensive set of shake table tests using harmonic and earthquake acceleration 

records as reference/commanded signals were performed on the NEES-UCSD table to 

assess its signal reproduction fidelity after tuning the table controller and using an 

iterative time-history matching technique. These tests were designed to quantify the 

effects of the amplitude of the signal used for tuning the table on the signal 

reproduction fidelity. It was found that the level of fidelity in signal reproduction 

achieved for a specific amplitude of the commanded signal under the corresponding 

optimum tuning of the table cannot be maintained when reproducing the same signal 

at different amplitudes. This is a clear indication that shake tables are highly nonlinear 

systems and the current state-of-the-art controller and tuning techniques fall short of 

compensating accurately for these inherent system nonlinearities.  



 xxi

The mechanics-based virtual system model developed is extremely useful for: (i) 

understanding the underlying coupled nonlinear dynamics of a large shake table 

system; (ii) investigating the most significant sources of signal distortion; (iii) offline 

tuning of the actual table either by using only the virtual replica of the existing 

controller or by combining it with simulation-based iterative time history matching 

techniques; (iv) investigating shake table - linear/nonlinear specimen interaction 

problem; and (v) future more advanced control algorithm developments. 



1 

INTRODUCTION 

Large servo-hydraulic shaking table systems are essential tools in experimental 

earthquake engineering. They provide effective ways to subject structural components, 

substructures, or entire structural systems to dynamic excitations similar to those 

induced by real earthquakes. The typical shake table system includes a variety of 

mechanical (platen, yaw/pitch/roll restraining systems, vertical and lateral bearings, 

reaction block, foundation, and linear/nonlinear specimen), hydraulic (pumps, 

hydraulic lines, accumulator bank, distributed accumulators along hydraulic line, 

servovalves, and actuators), and electronic (controller, various types of transducers, 

signal conditioning units, data acquisition system) components.  

The main objective of a shaking table system is to reproduce acceleration time 

history records within a reasonable accuracy therefore subject structural systems to 

real time input excitations thereof retaining realistic inertial and damping effects. 

However, reproduction of a prescribed acceleration time history record (e.g., 

earthquake accelerations) with such systems remains to be imperfect (Rinawi and 

Clough, 1991; Kusner et al., 1992; Clark 1992; Crewe, 1998; Conte and Trombetti, 

2000; Crewe and Sewern, 2001; Trombetti and Conte, 2002). Within the Network for 

Earthquake Engineering and Simulation Consortium (NEES) major shake table 

facilities have been added to the shake table inventory of the Unites States (e.g., NEES 

at Buffalo, NEES at Reno, and NEES at San Diego). These large facilities are 
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currently used to investigate aspects of structural and geotechnical seismic behavior 

that cannot be readily extrapolated from testing at smaller scales, or under quasi-static 

or pseudo-dynamic conditions. With the recent advancements of experimental test 

methods, numerical simulation tools, and high-speed communication networks 

researchers are able to conduct also geographically distributed tests using these state-

of-the-art testing facilities. Geographically distributed testing combines the 

capabilities of two or more sites to conduct tests on structural systems that could not 

be performed at one site due to limited site capacity (Takahashi and Fenves, 2005). 

New testing facilities and their innovative usages bring new challenges to the field of 

shake table testing. One of these challenges is in high-fidelity control of shake table 

systems. 

Dynamic tests with shake tables require the table platform to follow a 

reference signal (e.g., displacement or acceleration). Controller is the electronic device 

(analog or digital) that supplies the appropriate command to the servovalve(s) in order 

to drive the table along the correct trajectory (i.e., path). Shake table control systems 

are usually based on linear control algorithms in which it is assumed that the plant can 

be modeled as a set of linear differential equations and the dynamic parameters of the 

plant are known and fixed during experiments (Stoten and Gomez, 2001). Linear 

controllers can be tuned with high degree of precision when the plant has known 

parameters and behaves linearly. On the other hand, linear controllers are not well 

suited for non-linear regimes and do not respond as expected if the plant parameters 

change or have been wrongly estimated (Gomez, 1999). Earlier works on the 
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performance characterization of shake tables reveal that shake tables are highly 

nonlinear devices that the table response is a function of the input amplitude level in 

which it operates (Clark, 1983; Kusner et al., 1992; Clark, 1992; Zhao et al., 2005). 

Some of the major sources of nonlinearities in shake table systems are servovalve(s), 

nonlinear viscous and friction dissipative sources, total system leakage including 

servovalve(s) and actuator(s), changes in volumes of actuator chambers, and system 

pressure fluctuations.  

As large shake table facilities become available (e.g., NEES-UCSD shake table 

in U.S.A and NIED E-Defense table in Japan etc.), testing full scale specimens on 

shake tables is now more and more frequent. In large scale shake table tests, often the 

specimen is more massive than the table and can exhibit nonlinear behavior under the 

reproduced table motion and its characteristics can change suddenly especially if a 

collapse situation occurs. For such test conditions, one of the most significant 

problems arises from the fact that the dynamics of the specimen is as relevant to the 

dynamic model of the overall system as the table itself (Clark, 1984; Crewe, 1998; 

Gomez 1999; Stoten and Gomez, 2001). Nonlinear table/specimen interaction as well 

as other sources of nonlinearities further complicates the accurate control of shake 

tables with linear controllers.  

Adjusting control parameters to optimize the response of the shake table 

system is called tuning. Ideally, a tuned shake table system would have a transfer 

function between the reference and achieved signals (total table transfer function) 

characterized by unit gain and zero phase shift across the entire operating frequency 
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range under loaded (i.e., with a specimen) table conditions. With linear controllers, 

due to the reasons explained above, it is not possible to achieve such total transfer 

functions. To remedy the inaccuracies in linear controller tuning, prior to the actual 

test usually an offline or an online (iterative) time history matching technique is 

employed. A simple offline approach for compensating the controller deficiencies is to 

apply a pre-filter (e.g., inverse total table transfer function estimated prior to the test) 

once  to the reference signal which results in a modified reference signal (i.e., drive 

signal) accounting for the dynamics of the system (Hwang et al., 1987; Twitchell and 

Symans, 2003). Inverse transfer function is estimated using white noise while the 

specimen is mounted on the table to take into account the table/specimen interaction. 

One very important drawback in offline approach is that when the transfer function is 

estimated, if the amplitude of white noise is too high the specimen on the table may be 

damaged; on the other hand if the amplitude of white noise is too low then 

nonlinearities in amplitude scaling of the drive signal may mean that the transfer 

function estimated from low level amplitude white noise is not representative of the 

actual system performance with large amplitude earthquake signals. In online 

(iterative) time history matching technique, command signal is repeatedly modified by 

addition of a fraction of the pre-filtered error between the actual and desired table 

motion. The error is pre-filtered by the inverse of the total table transfer function and it 

can be the initial estimation or an updated one from the last iteration (Crewe, 1998). 

The iteration process is repeated until the errors fall within a desired level. Online time 

history matching techniques can deal with the repeatable nonlinearities such as 
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servovalve nonlinearities. Both in offline and online techniques, extreme care has to 

be given to the specimen for not prematurely damaging it. 

A recent test study done by Luco et al. (2008) on the NEES-UCSD shake table 

investigates the effect of amplitude scaling in tuning of shake tables under bare table 

conditions. The tests were designed to quantify the effect that the tuning amplitude has 

on the level of signal fidelity. For these tests, first the table response was optimized, as 

much as possible, by adjusting the gains of the linear controller. This step was 

followed by an online time history matching technique applied to a scaled down or 

scaled up versions of the intended acceleration motions. Drive inputs obtained at the 

end of the iteration process were scaled up or down according to several test 

amplitudes and the resulting motions were reproduced on the table. A number of 

comparisons and measures were used to evaluate the signal reproduction capability of 

the shake table which included direct comparisons of the acceleration time histories, 

peak accelerations, constant ductility response spectra for the achieved and intended 

platen accelerations, and relative root mean square error value to offer a cumulative 

measure in signal reproduction. Based on these different comparisons, it was 

concluded with certainty that a signal fidelity level achieved for a specific amplitude 

by a certain tuning cannot be maintained at a different amplitude. Especially, 

difficulties encountered with tuning at low amplitudes and testing at much higher 

amplitudes indicate the need for an accurate virtual tuning of the table based on a 

detailed mechanics-based model of the complete system and, eventually, for a more 

advanced controller. It should be noted here that for a loaded table conditions, tuning 
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at low amplitudes and testing at higher amplitudes is the only option since the 

specimen can not be sacrificed during table tuning. Offline and/or online time history 

matching techniques are not the solution to achieve high fidelity in signal reproduction 

for loaded table conditions. 

The complex dynamics of large shaking table systems emanate from multiple 

dynamic interactions and nonlinearities among various system components (Dyke et 

al., 1995; Conte and Trombetti, 2000; Trombetti and Conte, 2002; Ozcelik et al., 

2008(1); Ozcelik et al., 2008(2)). In the literature, we find a limited number of studies 

focusing on modeling and simulation of complete servo-hydraulic testing systems 

(Hwang et al., 1987; Rinawi and Clough, 1991; Clark, 1992; Dyke et al., 1995; Dimig 

et al., 1999; Conte and Trombetti, 2000; Williams et al., 2001; Twitchell and Symans, 

2003; Thoen and Laplace, 2004; Zhao et al., 2005; Zhao et al., 2006). Dyke et al. 

(1995) developed a linear model for a servovalve/actuator system attached to a linear 

shear type structure for investigating the role of control-structure interaction; the 

analytical model also includes a displacement controller and force feedback loop. 

Conte and Trombetti (2000) developed a linear analytical model of a small-to-medium 

size shake table system accounting for servovalve time delay, actuator dynamics, oil 

leakage through the actuator seals, foundation flexibility, and linear elastic multi-

degree-of-freedom (MDOF) specimen dynamics. Williams et al. (2001) have 

developed a realistic numerical model of a dynamic structural testing system, which 

includes a nonlinear model of the servovalve actuator system, servovalve leakage, 

controller, and the specimen modeled as a linear elastic single-degree-of-freedom 
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(SDOF) system. Thoen and Laplace (2004) presented a comprehensive numerical 

model of a medium size shake table for off-line tuning purposes; their model includes 

the real-time controller software, servovalve spool dynamics, a nonlinear servovalve-

actuator model, an accumulator model, a linear payload model, a nonlinear friction 

model, and foundation dynamics. Recently, Zhao et al. (2005) presented a numerical 

model for the effective force testing system in which a detailed nonlinear servovalve 

model is used where two independent sources of servovalve flow nonlinearities were 

taken into account; leakage within the servovalve and inside the actuator chambers is 

modeled as an effective total system leakage and is found to be equivalent to damping 

of actuator dynamics. 

Overview of the NEES-UCSD LHPOST. NEES-UCSD Large Performance 

Outdoor Shake Table (LHPOST) located at a site 15 km away from the main campus 

of the University of California at San Diego (32 53 37 N° ′ ′′  and117 06 32 W° ′ ′′ ), is a 

unique outdoor experimental facility that enables next generation seismic tests to be 

conducted on very large structural and soil-foundation-structure interaction systems. A 

three-dimensional rendering of the overall shake table system is shown in Figure 

I.1(a). The LHPOST consists of a moving steel platen (7.6m wide by 12.2m long); a 

reinforced concrete reaction block; two servo-controlled dynamic actuators with a 

force capacity in tension/compression of 2.6MN and 4.2MN, respectively; a platen 

sliding system (6 pressure balanced vertical bearings with a force capacity of 9.4MN 

each and a stroke of ±0.013m); an overturning moment restraint system (a pre-

stressing system consisting of two Nitrogen-filled hold-down struts with a hold-down 
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force capacity of 3.1MN each); a yaw restraint system (two pairs of slaved pressure 

balanced bearings along the length of the platen); a real-time multi-variable controller, 

and a hydraulic power supply system. The technical specifications of the LHPOST 

include a stroke of ±0.75m, a peak horizontal velocity of 1.8m/s, a peak horizontal 

acceleration of 4.2g for bare table conditions and 1.28g for a rigid payload of 400tons, 

a horizontal force capacity of 6.8MN, an overturning moment capacity of 50MN-m, 

and a vertical payload capacity of 2000tons where the peak platen acceleration reduces 

to 0.3g.  The frequency bandwidth is 0-20Hz. Other detailed specifications of the 

NEES-UCSD LHPOST can be found elsewhere (Conte et al., 2004; Van Den Einde et 

al., 2004). 

Figure I.1(b) shows the detailed schematic representation of the major 

components of LHPOST and the way they interact with each other. There are two 

pumps in the system providing hydraulic power to various parts of the table. Pump 1 

supplies hydraulic power to the servovalves, vertical and yaw bearings (not shown in 

schematics) by providing 720lit/min flow at 21.0MPa (190gpm at 3000psi) pressure. 

Hydraulic line carrying the flow from Pump 1 is indicated as PP which stands for pilot 

pressure. Pump 2 charges the accumulator bank; flow provided by this pump is 

416lit/min at 21.0MPa (114gpm at 5000psi) pressure. 9500 liter capacity accumulator 

bank charged up to 35.0MPa provides the high flow needed to simulate transient 

earthquake signals. Blow-down valve converts the high pressure oil from the 

accumulator bank to a system pressure of 21.0MPa for controlling the actuators. 

Hydraulic supply line carrying the regulated oil is indicated as P which stands for 



 9

main pressure. Also shown Figure I.1(b) are the small in-line accumulators each with 

capacity of 95 liters and charged up to 13.8MPa (2000psi) pressure. There are two 

actuators on the West and East sides of the table platen. Each actuator has two high 

performance servovalves attached on them (therefore there are total of four 

servovalves on the system). Close-coupled (C.C.) accumulators are attached to the 

actuators and they are 57 liters each and are also charged up to 13.8MPa (2000psi) 

pressure. Low-pressure return flow is collected in the surge tank. Actuators drive the 

table platen which slides on the low friction vertical bearings, pre-charged hold-down 

struts pull the platen down with constant vertical forces in order to restrain the pitch 

motion of the platen. Forces generated by the system are reacted by the foundation 

block and surrounding soil. Controller on the system sends control signal computed 

using the reference and feedback signals to the servovalves in order to move the platen 

along a desired path. 

The reaction block and the surrounding soil are shown in Figure I.1(b) as parts 

of the shake table system. Large forces that the actuators of LHPOST exert on the 

reaction block and surrounding soil suggests the need to determine the induced ground 

motion in the vicinity of the table in order to evaluate the effects that any motion of 

the block itself would have on the control of the shake table. In order to study dynamic 

soil-foundation interaction effects, an extensive forced vibration test study using 

eccentric mass shakers has been carried out on the foundation block of LHPOST prior 

to the construction of the shake table. Forces exerted by the shakers are normalized to 

the maximum force (6.8MN) that actuators can exert on the foundation. Results of this 
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study reveal that the foundation block essentially translates as a rigid body along East-

West (EW) direction with slight out-of-plane deformation of the East and West end 

walls; the block also bends in addition to rocking about the North-South (NS) axis. 

The frequency response of the EW motion peaks at 10 Hz with amplification factor of 

1.3; vertical frequency response indicates that the amplitudes of the vertical 

displacements increase with horizontal distance to the NS axis of rotation at least for 

frequencies below 15 Hz. Experimentally obtained frequency response curves indicate 

that the maximum scaled horizontal and vertical displacements for the maximum 

theoretical harmonic actuator force of 6.8MN amplitude at 10 Hz frequency would be 

0.26mm and 0.17mm, respectively. These displacements are sufficiently small to have 

no effect on the control of the shake table which relies on the assumption that the 

relative displacement of the platen with respect to the reaction block represents the 

absolute displacement of the platen (Luco et al., 2008). 

The main objective of this study is to develop a comprehensive mechanics-

based model of the large NEES-UCSD shake table for bare and loaded table 

conditions. The model includes the virtual replica of the controller, four servovalve 

models including servovalve spool dynamics and two independent servovalve flow 

nonlinearities, two single-ended actuators with variable internal volumes, two 

accumulators modelling the average supply pressure drop, two-dimensional 

mechanical subsystem model extended from the previously identified one-dimensional 

mechanical subsystem model which includes the effects of effective mass of the 

platen, nitrogen-filled hold-down struts, and various viscous and Coulomb dissipative 
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mechanisms, and finally linear/nonlinear specimens modelled using a generic finite 

element analysis software. Based on the forced vibration test results of the foundation 

block, the soil-foundation compliance effects will be ignored in the virtual model by 

assuming them to be rigid. This mechanics-based virtual model will be extremely 

useful for: (i) understanding the underlying coupled nonlinear dynamics of a large 

shake table system therefore providing insight into the sources of various signal 

distortions; (ii) off-line tuning of the actual table; (iii) future advanced control 

algorithm developments; and (iv) investigating shake table-linear/nonlinear specimen 

interaction problem. 
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Figure I.1: (a) 3D rendering of the NEES-UCSD shake table; (b) schematics of the 

overall hydraulic, mechanical, and electronic components. 
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CHAPTER 1  

THREE-VARIABLE CONTROLLER (TVC) 

1.1. Three-Variable Controller (TVC) Transfer Functions 

In this section, transfer functions for the constitutive parts of the Three-

Variable Controller (TVC) will be given. 

1.1.1. Three-Variable Controller 

The controller of the LHPOST is the digital MTS Three Variable Controller 

(TVC). It is known in control theory as a state variable controller. It has additional 

special features to compensate for linear and nonlinear system distortions for both 

harmonic and broadband command signals (e.g., amplitude/phase control, adaptive 

harmonic cancellation, adaptive inverse control, on-line iteration, and notch filters). 

The three state variables controlled by the TVC are displacement, velocity, and 

acceleration. The controller can be set to run under displacement, velocity or 

acceleration control mode. Depending on the control mode only one state variable 

becomes the primary control variable while others serving only as compensation 

(feed-forward and/or feedback) signals to improve damping and stability of the 

system. The transfer functions between all the inputs and outputs of the TVC are 

provided by the MTS Systems Corporation (Thoen, 2004). 
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A block diagram of the TVC is given in Figure 1.1.  The reference generator 

takes the reference signal, which represents the desired displacement, velocity, or 

acceleration depending on the control mode, and creates the reference states refu , refu , 

refu , and refu  (i.e., jerk reference signal), which are used as feedforward signals in the 

controller. The feedback states fbku , fbku , and fbku  are generated by the feedback 

generator which combines displacement and acceleration sensors (feedback signals), 

each with their respective bandwidth limitations to create wideband estimates of the 

feedback states. 

The reference and feedback states are weighted by the reference and feedback 

gains, respectively, shown in the figure. It should be noted here that the displacement 

feedback gain is the only non-zero feedback gain. Therefore, it can be said that the 

TVC is simply a displacement controller with sophisticated reference (feed-forward) 

gains (Thoen, 2004). The high-pass filter applied on the force feedback signal 

(equivalent to the delta-pressure signal multiplied by the actuator effective piston area) 

removes static and low frequency components from the force feedback, prior to input 

it into the TVC to damp the oil column resonance. Five notch filters are also 

incorporated in the controller to compensate for resonances and anti-resonances. Each 

notch filter frequency response is defined by three parameters: the center frequency, 

3dB bandwidth, and notch depth (Thoen, 2004). Note the presence of scale factors to 

convert input signals denominated in engineering units to volts.  This way physically 

different unit signals can be blended together in some what consistent way. Another 

important reason for using volts scaling is so that the controller gains have units of 
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volts per volt so that if the units of the controller are changed, the controller need not 

be retuned.  The scale factors are max10 / D , max10 /V , max10 / A , and max10 / F  which are 

applied to displacement, velocity, acceleration, and force input signals, respectively. 

Quantities MAXD , MAXV , and MAXA  are the calibrated engineering unit maximums 

corresponding to 10 volts output of the conditioners.  Note that the scale factor applied 

to acceleration is also applied to jerk (Thoen, 2004). 

Three Variable Controller shown in Figure 1.1, can be represented in a more 

compact form by the transfer function view of its constitutive parts. The representation 

shown in Figure 1.2 will facilitate the derivations of these transfer functions  

The transfer functions of the constitutive parts of TVC, (i.e., RG , DG , VG , AG , 

and FG ) can not be given here in this study due to proprietary reasons. In the 

following sections, some details about these parts will be presented. 

1.1.2. Reference Generator GR 

The Reference Generator takes the reference signal, which represents desired 

displacement, velocity, or acceleration depending on control mode, and creates the 

reference states refu , refu , refu , and refu , which are used as feed-forward signals in the 

controller.  

Note that signals of physical dimensions of displacement, velocity, and 

acceleration are blended together (Figure 1.1).  In order for this to occur correctly, the 

signals must first be converted into a consistent, canonical set of units, namely, units 

consisting only of displacement units and time.  For example, if displacement units are 

inches, then canonical velocity units are inches/sec and canonical acceleration units 
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are inches/sec/sec.  The canonical factors canonD , canonV  and canonA  convert user units to 

canonical units.  The displacement canonical factor canonD  is always unity. canonV  and 

canonA  are often non-unity depending on user velocity and acceleration units. Note that 

the canonical factor applied to acceleration is also applied to jerk (Thoen, 2004). The 

parameters of the Reference Generator are high-pass cut-in frequency: HPf ; low-pass 

cut-off frequency: LPf ; and damping coefficient: ζ (always set to 0.707).  

1.1.3. Feedback Generator 

In a typical shaking table configuration, measured displacement and an LVDT 

and accelerometer generate acceleration data for each axis of the machine. Often 

LVDT data is valid over the low-medium frequency range (typically, 0-15 Hz), but 

above this range the data is unusable, due to the combined effects of mechanism 

backlash and the problem of resolving small amplitude signals with finite accuracy 

analogue-to-digital conversion. On the other hand, accelerometer signals are accurate 

in the medium-high frequency range (i.e. typically up to ~50 Hz) (Stoten et al., 2001). 

Therefore the problem is to determine a suitable combination of displacement and 

accelerometer signals to cover the entire frequency range of operation. The technique 

used to do this is called the composite filtering. 

The Feedback Generator in TVC combines displacement and acceleration 

sensors, each with their respective bandwidth limitations, to create wideband estimates 

of the feedback states (i.e. improved estimates of the states) fbku , fbku , and fbku . The 

improvements are intended to provide estimates of unmeasured data (e.g. velocity), 
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and to obtain more consistent estimates of measured data over a wider frequency 

range. It should be noted that the Feedback Generator is considered as a part of the 

plant, not the controller (Thoen, 2004).  

The fundamental assumptions behind the synthesis method (i.e. composite 

filtering) can be summarized as follows (Stoten et al., 2001) 

i. the acceleration signal rawu  can have a non-zero mean, 

ii. the acceleration signal must be integrated twice, with the effects of the bias 

removed after a suitably short transient period, 

iii. the signal from (ii) is filtered by the high-pass component of the 

complementary filter, 

iv. the displacement signal is filtered by the low-pass component of the 

complementary filter, 

v. both filter components must be proper and of minimal order, and 

vi. the gain and phase of the resulting composite filter are unity and zero. 

The general configuration of the groups of filters is shown in Figure 1.3, where 

( )hG s′  is the high-pass complement, and ( )lG s′ is the low-pass complement and 

{ }, ( , , )fcy f d v a= , is the required composite signal. In series with each 

complementary filter, there are auxiliary filters (i.e. integrators or differentiators). The 

number of integrators or differentiators is dependent upon the composite signal to be 

generated (Table 1.1).  

From (iv), it is required that 

 ( ) ( ) 1h lG s G s′ ′+ =  (1.1) 
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1.1.4. ad2d: Composite Filter for Displacement 

For the ad2d composite filter, below given high-pass and low-pass 

complementary filters are used 
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2 1 0
3 2 3 2

2 1 0 2 1 0

( )   ( )h l
a s a s asG s G s

s a s a s a s a s a s a
+ +′ ′= =

+ + + + + +
 (1.2) 

From (1.2), it is clear that (1.1) is satisfied. The coefficients of the high and low pass 

filters given in (1.2) can be calculated as 

 3 2
0 1 2; 2 ; 2a a a a a a= = =  (1.3) 

where a is the cross-over frequency in rad/s, and it is the same for both of the 

complementary filters. a determines the range where below that value LVDTs work 

better, and above accelerometers. Figure 1.4 shows the bode plots of complementary 

high-pass and low-pass filters for two different values of a . 

From Table 1.1, 2nh = −  and 0nl =  for the ad2d filter, therefore the 

composite filters ( )hG s  and ( )lG s  take the following forms 

 3 2
2 1 0

( )h
sG s

s a s a s a
=

+ + +
 (1.4) 
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 (1.5) 

The estimated fbku  by the composite filtering technique summarized above can be 

written as 
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 ( ) ( ) ( ) ( ) ( )raw rawcanon
xfbk h xfbk l xfbk

canon

Au s G s u s G s u s
D

= ⋅ +  (1.6) 

As for the Reference Generator, continuous time integration operator,1/ s , is 

approximated with backward Euler discrete time integration. Similar expressions as 

given in (1.6) can be derived for estimating the velocity and accelerations feedback 

states (Stoten et al., 2001) 

1.1.5. Force Feedback Low-pass Filter 

The force feedback low-pass filter removes high frequency components from 

the force feedback (equivalent to the delta-pressure signal multiplied by the actuator 

piston area.  This filter is a second-order Butterworth low-pass in which the cutoff 

frequency is determined by the 3dB frequency. 

In the real controller the cut-in frequency of this filter is set always to 1000 Hz. 

It is effect on the acquired force signal is negligible; therefore TVC model presented 

here will not include this filter. In the real-time software 469D, the low-pass force 

filter has been recently removed. 

1.1.6. Force Feedback High-pass Filter 

The force feedback high-pass filter removes static and low frequency 

components from the force feedback (equivalent to the delta-pressure signal multiplied 

by the actuator piston area), prior to being input to the TVC as a feedback signal to 

increase the damping of the oil column resonance.  This filter is a second-order 

Butterworth  
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1.1.7. Reset Integrator 

The reset integrator removes DC offsets between displacement reference and 

displacement feedback.  Its transfer function is given as follows 

1.1.8. Notch Filters 

The notch filters are used to suppress resonances and boost anti-resonances, 

there are total of five notch filters in TVC. The parameters of each notch filter are: 

center frequency 0f , 3dB bandwidth wb , and notch depth depth . The effect of these 

parameters on the notch filter frequency response is shown below schematically. Note 

that the notch depth can be set to positive or negative. 

Each notch is implemented as an all-pass filter )(zA with the filter input and 

output weighted and summed as follows 
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( ) ( ) 1 ,  1, 2, ,5

1 / 2,  / 2
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NOT ii

i i

wG z w A z i
w

w depth w depth
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⎣ ⎦
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…
 (1.7) 

It is important here to revisit some of the properties of all-pass filters. The 

frequency response ( )jA e ω  of an all-pass filter exhibits unit magnitude at all 

frequencies 

 
2

( ) 1 for all jA e ω ω=  (1.8) 

The transfer function of such a filter has all poles and zeros occurring in conjugate 

reciprocal pairs, and takes the form given below 
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For stability reasons kγ  must satisfy 1kγ <  condition for all k  to place all poles 

inside the unit circle. An alternative form of (1.9) by using the fact that the poles and 

zeros of a all-pass filter occur in complex conjugate pairs 

 
1( )( )

( )

Mz D zA z
D z

− −

=  (1.10) 

Therefore, the numerator polynomial is obtained from the denominator polynomial by 

reversing the order of the coefficients. As an example, 
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In this case, the numerator and denominator polynomials are said to form a mirror-

image pair. When the coefficients of all-pass filter are not real, then the numerator and 

denominator coefficients form a Hermitian mirror-image pairs. The (Hermitian) 

mirror-image symmetry relation between the numerator and denominator polynomials 

of an all-pass transfer function can be exploited to obtain a computationally efficient 

filter realization with minimum number of multipliers (Regalia et al., 1988). 

From (1.8), setting ( ) ( ) / ( )A z Y z U z=  reveals that 

 
2 2

( ) ( )  for all j jY e U eω ω ω=  (1.12) 

By integrating both sides from to ω π π= −  and applying Parseval’s relation, the 

following expression can be found 
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=∑ ∑  (1.13) 

The interpretation of expression given in (1.13) is that the output energy and input 

energy of an all-pass filter is equal to each other therefore all-pass filter is lossless. 

Another useful property of interest is the change in phase for real coefficient 

all-pass filter over the frequency range [0, ]ω π∈ . An thM order real all-pass function 

satisfies the property given below (Regalia et al., 1988) 

 
0

( )d M
π

τ ω ω π=∫  (1.14) 

where ( )τ ω is the group delay function of an all-pass filter and defined as 

 ( ) [arg  ( )]jd A e
d

ωτ ω
ω

= −  (1.15) 

The interpretation of (1.14) is that the change in phase of the all-pass function as 

ω goes from 0 to π  is Mπ−  radians. 
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The transfer function given in (1.16) is directly used in the real-time controller, but 

since everything else is in the simulation model of the TVC is in continuous form, the 

transfer function ( )NOTG z  is transformed to continuous time and implemented in that 

format in the simulation model by bilinear approximation (Tustin) to the derivative. 

The way the notch filters are implemented in TVC allows the independent 

tuning (“orthogonal” tuning, Regalia et al., 1988) of the notch frequency 0f  (i.e. 

center frequency), bandwidth wb , and the depth depth. Figure 1.6 through Figure 1.8 

illustrates the orthogonal tuning property of the notch filters in TVC. 

1.1.9. TVC Transfer Functions 

RG , DG , VG , AG , and FG  are the transfer functions of the constituent parts of 

TVC. Details of these constituent parts are given below, again note that the feedback 

generator is not considered as a part of TVC but as a part of the plant, i.e. belong to 

the plant, not specifically to the TVC. By referring to Figure 1.1, and referring to the 

feed-forward and feed-back gains given shown in Figure 1.2 the following expressions 

can be written (Thoen, 2004) 

 
5

1

( ) ( ) ( )i
COM M INT NOT

i

G s k G s G s
=

= ∏  (1.17) 

 max max

max max

10 10( ) ( ) [ ( ) ( )

10 10                             ( ) ( ) ]

R COM PF RD VF RV

AF RA JF RJ

G s G s k G s k G s
D V

k G s k G s
A A

= ⋅ ⋅ + ⋅ +

+ ⋅ + ⋅
 (1.18) 

 
max

10( ) ( )D P COMG s k G s
D

= − ⋅  (1.19) 
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max

10( ) ( )V V COMG s k G s
V

= − ⋅  (1.20) 

 
max

10( ) ( )A A COMG s k G s
A

= − ⋅  (1.21) 

 
max

10( ) ( ) ( )F DP COM DPG s k G s G s
F

= ⋅  (1.22) 

1.1.10. Closed-Loop Transfer Function 

The closed-loop transfer function of the plant can be derived by using Figure 

1.9. Note that the feed-back generator is considered to be the part of the plant. The 

transfer function of the closed loop system can be computed from the transfer 

functions of the individual components derived above. It is useful to first derive the 

open-loop transfer function (from the signal out to purple arrow in Figure 1.9). This is 

easily done by block diagram algebra as follows 

 ( )OL D D V V A A F FG G H G H G H G H= − + + +  (1.23) 

When the shaking table is in the displacement mode, i.e. the reference signal is 

displacement, the closed loop transfer function becomes 

 
1

xfbk R D

OL

u G H
R G

=
+

 (1.24) 

In velocity mode, i.e. the reference signal is velocity, closed-loop transfer function 

takes the following form 

 
1

xfbk R V

OL

u G H
R G

=
+

 (1.25) 
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In acceleration mode, i.e. the reference signal is acceleration, closed-loop transfer 

function would be 

 
1

xfbk R A

OL

u G H
R G

=
+

 (1.26) 
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Table 1.1: Auxiliary filter indices for acceleration and displacement measurements. 

Composite Signal, fcy  nh  nl  

dcy  -2 0 

vcy  -1 +1 

acy  0 +2 
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Figure 1.2: Transfer function view of Three Variable Controller. 
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Figure 1.3: Feedback Generator in transfer function view. 
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Figure 1.4: Bode plots of the complementary filters for two different values of cross-

over frequency a . 
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Figure 1.5: Effect of notch filter parameters on the frequency response of notch filters. 
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Figure 1.6: Effect of tuning parameter 1k , related to the center frequency 0f . 
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Figure 1.7: Effect of tuning parameter 2k , related to bandwidth wb  
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Figure 1.8: Effect of tuning parameter 3k , related to depth depth. 
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Figure 1.9: TVC and the plant.  
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CHAPTER 2  

SERVOHYDRAULIC SYSTEM EQUATIONS 

2.1. General Servovalve Analysis   

The servovalve model shown in Figure 2.1 is classified in the literature as a 

four-way, three-land flow-control valve. The quantity ( )vx t  is the displacement of the 

fourth stage spool of servovalve, and positive direction of the spool displacement is 

also shown in the figure. 

The flow coefficient is defined as 

 2 /v dK C ρ= ⋅  (2.1) 

where dC  is the discharge coefficient and ρ  is the mass density of the fluid. Since we 

are interested only in steady-state characteristics, the compressibility flows are zero 

and the continuity equations for the two valve chambers are 

 L A SA ARq q q q= = −  (2.2) 

and 

 L B SB BRq q q q= = −  (2.3) 
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here Lq  is the flow through the load (going in and out of actuator chambers) and 

therefore called the load flow. Assuming that the leakage flows are zero, when 0>vx  

SAA qq =  and BRB qq −= , and when 0<vx  ARA qq −=  and SBB qq = . Here positive flow 

indicates that flow is going into the actuator, and negative flow indicates that flow is 

coming out of the actuator. 

The load pressure or pressure drop across the load is defined as 

 L A BP P P= −  (2.4) 

Notice that depending on the servovalve main spool displacement, PL can be positive 

or negative; a negative load pressure, PL, indicates that the actuator piston is moving 

along the negative direction. Notice that negative and positive directions of the 

actuator are dictated by the positive and negative sign convention of the servovalve 

main spool. 

Based on the orifice equation for potential flows, also called the square root 

orifice law, or Bernoulli’s equation, the flow through each orifice can be written as 

 ( )SA v SA v S Aq K A x P P= −  (2.5) 

 ( )AR v AR v A Rq K A x P P= −  (2.6) 

 ( )SB v SB v S Bq K A x P P= −  (2.7) 

 ( )BR v BR v B Rq K A x P P= −  (2.8) 
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Most orifice flows occur at high Reynolds numbers. Flows at high Reynolds number 

are called turbulent flows, while flows at low Reynolds number are called laminar 

flows. The relationship between pressure drop and flow changes depending on the 

flow regime. For example, in laminar flow regimes flow becomes linearly proportional 

with pressure drop, not with the square-root of the pressure drop (Merritt, 1967). 

The orifice areas depend on valve geometry and four equations are required to 

define the areas , , ,SA BR SB ARA A A A  as a function of spool displacement. 

 
( ) ( )
( ) ( )

   0

   0
SA SA v BR BR v v

SB SB v AR AR v v

A A x A A x x

A A x A A x x

= = >

= − = − <
 (2.9) 

Thus eleven equations are necessary to define load flow as a function of valve opening 

and and load pressure 

 ( ),L L v LQ Q x P=  (2.10) 

The plot of (2.10) is known as “pressure-flow curves”. In the vast majority of cases the 

servovalve orifices are “matched” and “symmetrical”, although this is not the case for 

LHPOST valves, it is still very important to understand the flow characteristics of 

matched and symmetric valves. 

Matched orifices require that  

 SA BR

SB AR

A A
A A

=
=

  (2.11) 

and symmetrical orifices require 
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( )
( )

( )

( )
SA v SB v

BR v AR v

A x A x

A x A x

= −

= −
 (2.12) 

Based on the matched and symmetric nature of the orifices, all the areas can be 

defined with a single area Av. It should be noted that during the manufacturing process, 

great care is taken to ensure that the orifice areas are matched and symmetrical, 

otherwise valves will exhibit peculiar valve coefficients near neutral (Merritt, 1967).  

If the orifices are both matched and symmetrical, flows will exhibit the 

following property 

 SA BRq q=  (2.13) 

 SB ARq q=  (2.14) 

this translates into A Bq q=  assuming that the leakage flows are negligible. Substitute 

(2.5), (2.8) and (2.11)a into (2.13) and assuming that PR is zero will yield the 

following 

 S A BP P P= +  (2.15) 

Notice that equation (2.14) will yield the same result. If equations (2.4) and (2.15) are 

solved for PA and PB, the following expressions can be found 

 
2

S L
A

P PP +
=  (2.16) 

 
2

S L
B

P PP −
=  (2.17) 
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For a matched and symmetrical valve with no load, i.e. PL = 0, the pressure in each 

actuator chamber will be the same. As load is applied, the pressure in one chamber 

will increase as the other will decrease the same amount. Thus, the pressure drop 

across the orifices (AS) and (BR) will be the same and total pressure drop across the 

valve will be LP ; this verifies (2.13). Similarly (2.14) can be verified, use 

0<−= BAL PPP  and (2.15), then solve for PA and PB. Note that the equal pressure 

drop property across the orifices for a matched and symmetric valve is a property that 

is sought after also for non-matched/non-symmetric orifices. 

2.1.1. Load Flow Equation 

Now we can derive the load flow equation for an ideal critical center valve 

with matched and symmetrical orifices based on the above observations. Ideal critical 

center valve is defined as the orifice edges are perfectly square with no rounding and 

that there is no radial clearance between the spool and the sleeve. Since the geometry 

is assumed to be ideal, we can assume that the leakage flows ARq   and SBq  are zero 

for vx >0, and BRq  and SAq  are zero for vx <0. Based on this simplification, we can 

write the following equation by substituting (2.16) and (2.5) into (2.2) 

 ( )L SA AR SA v v v S Lq q q q K A x P P= − = = −   vx >0 (2.18) 

Notice that / 2v vK K=  in (2.18), and 0ARq = . For the negative spool displacement 

ARq  becomes the return flow from the corresponding actuator chamber to the return 

line, and again assuming that the leakage flows are zero, we can obtain the load flow 
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equation for the negative spool displacement, substitute (2.16) and (2.6) into (2.2) 

(assuming that PR is equal to zero) 

 ( )L SA AR AR v v v S Lq q q q K A x P P= − = − = − +  for vx <0 (2.19) 

Equations (2.18) and (2.19) are the pressure - flow equations for an ideal critical 

center valve with matched and symmetrical orifices. These two equations can be 

combined into one equation as follows 

 ( ) v v
L v v v s L

v v

x xq K A x P P
x x

= − , max
vv xx <  (2.20) 

Equation (2.20) can further be elaborated for deriving an expression showing a 

relationship between actuator force, actuator piston velocity (proportional to the flow) 

and servovalve spool displacement.  

At this point assume that rectangular ports are used for the orifices; this way 

derivations become more tractable. For the rectangular orifice area, we can write 

 ( )v vA x wx=  (2.21) 

where w  is the constant area gradient of the servovalve orifices and vx  is the spool 

displacement. With a constant area gradient, (2.20) can be written as  

 v
L v v s L

v

xq K wx P P
x

= − , max
vv xx <  (2.22) 

 max
max

v v
L v v s L

v v

x xq K wx P P
x x

= −  (2.23) 
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 max
max 1v v L

L v v s
v v s

x x Pq K wx P
x x P

= −  (2.24) 

Note that the maximum load flow occurs when there is a full pressure drop ( sP ) across 

the servovalve and the orifice area is fully open. This flow can be written as 

 max max
max v v s v v sq K w x P K A P= ⋅ ⋅ ⋅ = ⋅ ⋅  (2.25) 

where max
vA  is the maximum orifice area. By using (2.25), (2.24) can be written as 

 max max 1v v L
L

v v s

x x Pq q
x x P

= ⋅ −  (2.26) 

 max
max

1v vL L

v v s

x xq P
q x x P

= −  (2.27) 

Equation (2.27) is the dimensionless relationship between the load flow and the load 

pressure. Load pressure, LP , can be written from (2.27) as 

 
2

max
max1v L

L s
v v v

x q qP P
x x x

⎡ ⎤⎛ ⎞
⎢ ⎥= ⋅ − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.28) 

Multiply both sides of (2.28) by the actuator area  

 ( )
2

max
max1veq eq L

L act s act
v v v

x q qP A P A
x x x

⎡ ⎤⎛ ⎞
⎢ ⎥⋅ = ⋅ ⋅ ⋅ − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.29) 

 
2

max
max max1vact L

act v v v

xF q q
F x x x

⎡ ⎤⎛ ⎞
⎢ ⎥= ⋅ − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.30) 
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( ) ( ) 2max

max max1
eq eq

act act act actvact

act v v v

V A V AxF
F x x x

⎡ ⎤⎛ ⎞⋅ ⋅⎢ ⎥⎜ ⎟= ⋅ −
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 (2.31) 

 
2max

max max1vact act act

act v v v

xF V V
F x x x

⎡ ⎤⎛ ⎞
⎢ ⎥= ⋅ − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.32) 

Where actF  and actV  are the instantaneous actuator force and piston velocity, 

respectively. In order to emphasize the dimensionless character of (2.32), a set of new 

parameters are introduced: 0 max
act

act

FF
F

= : dimensionless actuator force; 0 max
act

act

VV
V

= : 

dimensionless velocity of the actuator piston; max
v

v
v

xx
x

= : dimensionless servovalve 

spool displacement. By using the dimensionless parameters, (2.32) can be written in 

the following form 

 
2

0 0
0

0

1
v

V VF
V x

⎡ ⎤⎛ ⎞
⎢ ⎥= ⋅ − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

,  1vx <  (2.33) 

Equation (2.33) expresses the actuator force as a function of actuator piston velocity 

and servovalve spool displacement in a dimensionless way. It is called as the servo- 

hydraulic system equation. It should be emphasized that (2.33) is a direct result of the 

square root orifice law (or Bernoulli’s equation).  

 Figure 2.2 is the plot of (2.33) for different normalized spool displacements. 

These curves can be interpreted as the phase plane capacity for motion of the actuator 

servovalve combination. It is interesting to note that in the second and fourth 
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quadrants it is possible to obtain a normalized velocity greater that unity although the 

effective supply pressure remains constant. In these quadrants the servovalve is acting 

as a throttling device for taking energy from the load (Clark, 1983). 

In quadrants I and III the actuator velocity reaches to its maximum value 

actuator force reaches to zero, and when the actuator force reaches its maximum the 

actuator velocity reaches to zero. Two observations can be made from Figure 2.2: (i) 

nonlinearity of flow (proportional to the piston velocity) - load pressure relation 

increases with increasing load pressure, and (ii) non-linearity between piston velocity 

and actuator force is also a function of spool opening.  

Equation (2.33) can be rearranged to give an expression for spool displacement 

as 

 
1

o
v

o
o

o

Vx
V F
V

=
−

 (2.34) 

Again note that (2.34) is a direct result of Bernoulli’s equation. In order to investigate 

the effect of Bernoulli’s equation on the spool movement, it is assumed that a 

harmonic motion is reproduced by the servovalve-actuator combination given as 

 0 0

0 0

cos( )
cos( )

V V
F F

θ

θ

=

=
 (2.35) 

Two amplitude sets are considered for the velocity and force amplitudes as 

0 00.8,  0.8V F= =  and 0 00.6,  1.0V F= = . The plot of spool motion, (2.34), versus 

cycle position θ  for the harmonic motions given in (2.35) with the specified 
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amplitudes are shown in Figure 2.3. Note the skewed and anti-symmetric distortion 

caused by the Bernoulli’s equation, and the “switching” at zero velocity (or maximum 

force) of the servovalve spool opening. Another way to look at the pressure switching 

phenomenon can be possible through superimposing the plots of (2.35) on the phase 

plane.   

The harmonic motion shown as an ellipse given in dark green line passes 

through the peak force and the harmonic motion shown as a circle with light green line 

forces spool displacement to pass beyond the 80% opening curve (shown as dashed 

purple line). It is documented in Clark (1983) that a possible safe design can be made 

from two conditions: (i) keep the required force less than or equal to 95% of the 

maximum, and (ii) keep the required spool opening to less than or equal to 80%. The 

harmonic motions given in (2.35) violate the given safe design criterion which shows 

itself as extreme motion of the spool motion at zero velocity. 

2.2. Servovalves on LHPOST and Minimum Waveform Distortion Criteria 

Following figure shows a servovalve and a single ended actuator in “Extent” 

and “Retract” directions. V  and V  are the extent and retract velocities of the actuator 

piston, respectively; SP and RP  are the supply and return pressures; 1P and 2P  are the 

actuator chamber pressures for the extent direction, whereas 1P  and 2P  are the 

chamber pressures for the retract direction; 1A  and 2A  are the tension and 

compression areas, respectively. 
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Design criterion for achieving minimum-waveform-distortion for single-ended 

actuators is to keep the no load pressures, i.e. zero force on the actuator, within the 

actuator the same for each direction of travel while maintaining the same constant 

velocity for both the extent and retract directions. This way there will be no pressure 

discontinuity in the actuator chambers when the actuator piston changes direction of 

motion.  

It is known that for servovalves with matched and symmetric orifices supply 

pressure can be written in terms of actuator chamber pressures as (Merritt, 1967) 

 1 2SP P P= +  (2.36) 

In Equation (2.36) it is assumed that the return pressure is zero. We can write the 

following for the no load ( 0LP = ) pressure case 

 1 1 2 2P A P A⋅ = ⋅  (2.37) 

Notice that 1P  and 2P  are set to be 1 1 1P P P= =  and 2 2 2P P P= = , and V V V= =  as 

the “minimum-wave-form-distortion” criteria requires. From (2.36) and (2.37) we can 

write 

 2
1

1 2
S

AP P
A A

=
+

 (2.38) 

 1
2

1 2
S

AP P
A A

=
+

 (2.39) 
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By using above constraints 1 1 1P P P= = , 2 2 2P P P= =  and V V V= =  in parallel with 

(2.36) and (2.37), we can find the valve port window ratios necessary for achieving 

minimum waveform distortion for single ended actuators. 

Four flows shown in Figure 2.5 can be found using Bernoulli’s equation; note 

that in the following equations RP  is set to zero. For the extent direction, flows are 

 1 1 1 1v sv Sq A V K w x P P= ⋅ = −  (2.40) 

 2 2 2 2v svq A V K w x P= ⋅ =  (2.41) 

and for the retract direction, flows are 

 3 1 3 1v svq A V K w x P= ⋅ =  (2.42) 

 4 2 4 2v sv Sq A V K w x P P= ⋅ = −  (2.43) 

Where 1 2 3, ,w w w  and 4w are valve port window widths, svx  is the servovalve spool 

displacement, which is taken to be the same for each direction, and vK  is a constant. 

Notice that the port window width times the servovalve spool displacement gives us 

the orifice area. From (2.40), (2.41), (2.42) and (2.43) we can write the following 

 1
1

1
v sv

S

A VK w x
P P

=
−

 (2.44) 

 2
2

2
v sv

A VK w x
P

=  (2.45) 
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 1
3

1
v sv

A VK w x
P

=  (2.46) 

 2
4

2
v sv

S

A VK w x
P P

=
−

 (2.47) 

The servovalves provided for LHPOST have rated peak flow value of 

2700gpm when there is 1000psi pressure drop across the actuator control ports- 500psi 

drop on an individual flow path, and the valve port window is fully open. 2700gpm 

rating is for the actuator compression area to return flow path, which is indicated with 

the label number three in Figure 2.5. Port number three has the maximum window 

width of 10in (Gram, Marty from MTS, personal communication). Therefore port 

window widths for the four flow paths will be normalized with respect to the port 

window three. 

By using (2.36), (2.37) and (2.44), (2.45), (2.46), (2.47) we can find port 

window ratios required for minimum waveform distortion as follows 

 
1/ 2 3/ 2

31 2 2 2 4 2

3 1 3 1 3 3 1

  1    ww A w A w A
w A w A w w A

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.48) 

Notice that the port windows are a function of actuator areas. For LHPOST, actuator 

piston area ratio is designed as 2

1
0.64A

A = ; by using it, we can find the numerical 

values of the ratios given in (2.48) 

 31 2 4

3 3 3 3

0.8  0.512  1   0.64ww w w
w w w w

= = = =  (2.49) 



 56

For a given servovalve spool displacement, with these port window ratios velocity of 

the actuator piston and the pressure inside the actuator chambers will be the same for 

each direction, therefore achieving minimum waveform distortion criteria. Figure 2.6 

shows the orifice port windows for LHPOST servovalves designed to compensate for 

unequal area actuators. max
vx is the valve stroke, which is manufactured to be ± 0.75in.  

Now consider the case in which a standard servovalve with same orifice areas 

is used. We can write the flows for the extent and retract directions respectively as 

follows, 

 1 1 1v sv sv Sq A V K w x P P= = −  (2.50) 

 2 2 2v sv svq A V K w x P= =  (2.51) 

And 

 3 1 1v sv svq A V K w x P= =  (2.52) 

 4 2 2v sv sv Sq A V K w x P P= = −  (2.53) 

Notice that, one of the requirements, (2.36), for minimum waveform distortion must 

be relaxed which in turn automatically relaxes the same velocity for each direction 

requirement. From (2.37) and (2.50), (2.51), (2.52), (2.53) we can find the actuator 

chamber pressures in psi for the extent and retract directions as follows (here the 

supply pressure is assumed to be 3000psi), 

 1 2 1 2623  P 974  P 1521  P 2376P = = = =  (2.54) 
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With these pressure values, one can find that the extent velocity is 25% larger than the 

retract velocity and also there will be a discontinuity in chamber pressures when ever 

the actuator piston changes directions. 

2.3. Single-ended Actuators 

Figure 2.7 shows the flows 1Q  and 2Q  from servovalve going in and out of the 

actuator chambers and another flow path within the actuator chambers indicated with 

dotted arrows. Continuity equations can be written for the actuator chambers (i.e., 

control volumes) 1 and 2 by neglecting the flows within the actuator chambers as 

follows 

 

( )

( )

11 1
1

22 2
2

d VdM dV dV
dt dt dt dt

d VdM dV dV
dt dt dt dt

ρ ρρ

ρ ρρ

= = +

= = +

 (2.55) 

where 1M  and 2M  are the liquid masses inside the actuator chambers 1 and 2, 

respectively, and 1V  and 2V  are the instantaneous actuator chamber volumes 1 and 2, 

respectively. By using the fact that density of the fluid inside control volumes changes 

in small amounts as a function of pressure only therefore using just the linear terms of 

the Taylor’s series expansion of dρ  (Merritt, 1967), and assuming that the 

temperature remains constant inside the chambers, (2.55) can be simplified 

 

1 1 1
1

2 2 2
2

e

e

dV V dPQ
dt dt
dV V dPQ
dt dt

β

β

= +

= +
 (2.56) 
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where eβ  is the effective bulk modulus of fluid within the chambers. By substituting 

1 10 1pV V x A= +  and 2 20 2pV V x A= −  for the first terms in (2.56), where px is the piston 

displacement, and 10V  and 20V  are the initial chamber volumes when the actuator 

piston is centered, equations of continuity for actuator chambers 1 and 2 can be 

obtained 

 

1 1
1 1

2 2
2 2

p

e

p

e

dx V dPQ A
dt dt
dx V dPQ A
dt dt

β

β

= +

= − +
 (2.57) 

First and second terms in (2.57) are the flows needed to satisfy the continuity equation 

due to the motion of the piston and due to the compressibility of the fluid inside the 

chambers. Instantaneous actuator chamber volumes as a function of piston 

displacement can be written as follows 

 

( ) ( )

( ) ( )

1 10

2 20

1

1

p
max
p

p
max
p

x t
V t V

x

x t
V t V

x

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.58) 

where max
px  is the actuator stroke. Substituting (2.58) into (2.57) and after rearranging 

terms, equations for chamber pressures 1P  and 2P  can be found 

 

1 1

1
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2 2

2
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dx
Q Ax dtP dt

V L x
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−
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+

+
=

−

∫

∫

 (2.59) 
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where integrals are evaluated over the duration of a time step. Using 1P  and 2P , 

actuator driving force can be obtained as 1 1 2 2actF A P A P= − . 

In Figure 2.7, another flow path from the 1st actuator chamber to the 2nd is 

indicated with the dotted arrows. This flow is called the actuator cross-port leakage. 

Actuator cross-port leakage flow is proportional to the load pressure, indicated as LP  

in the figure, and can be written as l l Lq c P= . lc  is the leakage coefficient and it 

accounts for damping within the actuators (Dyke et al., 1995; Conte and Trombetti, 

2000; Williams et al., 2001; Zhao et al., 2005). In this paper, damping due to the 

cross-port leakage and other sources of viscous damping are included within the 

mechanical subsystem. Mechanical subsystem model will be presented in Chapter 6. 

2.4. Accumulator Model 

In order to simulate the average supply pressure drop, adiabatic gas law will be 

applied to two “fictitious” accumulators attached one on each actuator. Adiabatic 

condition exists when there is no heat gain or loss by the system (e.g., accumulator 

tank). For this condition to hold, it is assumed that the gas chamber volume is not 

changing too quickly (i.e. no internal friction or very little exists in the gas), and there 

is no heat flow through the walls of the tank. Based on these assumptions, adiabatic 

gas law can be written 

 1 1 2 2PV PVγ γ=  (2.60) 
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where 1P  and 2P  are gas chamber pressures associated with volumes 1V  and 2V , 

respectively, and γ  is the adiabatic exponent. Note that smaller volume is associated 

with high pressure and larger volume is associated with smaller pressure. 

Equation (2.60) can be used to compute hydraulic supply pressure change with 

flow demand. Flow demand in excess of hydraulic pump flow discharges the 

accumulators which in turn cause supply pressure to drop. On the other hand, an 

excess of hydraulic pump flow charges the accumulators, hence causing the supply 

pressure to rise. Implementation details along with other modeling issues for the 

accumulator model used in this work are discussed in Chapter 10. 
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Figure 2.1: Sketch of a three-land four-way servovalve. 
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Figure 2.2: Normalized force-velocity curves for a servo-hydraulic system. 
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Figure 2.3: Effect of pressure switching on servovalve spool movement. 
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Figure 2.4: Harmonic motions on the phase plot. 
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Figure 2.5: 4th stage of the LHPOST servovalve in extent and retract directions and 

corresponding four flow paths. 
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Figure 2.7: Sketch of a snapshot of a single-ended actuator. 
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CHAPTER 3  

EXPERIMENTAL CHARACTERIZATION, MODELING 
AND IDENTIFICATION OF THE NEES-UCSD SHAKE 

TABLE MECHANICAL SYSTEM 

3.1. Introduction 

3.1.1. Objectives of the Study 

Large servo-hydraulic shaking table systems are essential tools in experimental 

earthquake engineering. They provide effective ways to subject structural components, 

substructures, or entire structural systems to dynamic excitations similar to those 

induced by real earthquakes. In general, components of shake tables can be grouped 

into three sub-systems: mechanical, hydraulic and electronic. Typically, the steel 

platen, vertical and lateral bearings, hold-down struts, and actuators are included in the 

mechanical category; pumps, accumulators, servo-valves, actuators and surge tank are 

included in the hydraulic category, and finally, controller, signal conditioning units, 

and feedback sensors are included in the electronic category. A mathematical model of 

the complete shake table system is required for the planning of future experiments, for 

the development of safety measures, and for the optimization of the system. The first 

objective of this study is to develop a simplified analytical model for the mechanical 
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sub-system of the new NEES-UCSD Large High Performance Outdoor Shaking Table 

(LHPOST) located at the Englekirk Structural Engineering Center at Camp Elliot 

Field Station. The second objective is to identify the parameters of the model using the 

experimental data generated during the extensive shake down tests of the NEES-

UCSD LHPOST. The third objective is to validate the model and identified parameters 

through detailed comparisons of analytical predictions and corresponding 

experimental data from tests of different types including periodic tests, white noise 

tests and earthquake simulation tests. Analytical modelling of shake table systems 

addressing the complex dynamic interaction between the various sub-systems has been 

and remains the subject of significant research (Hwang et al., 1987; Rinawi et al., 

1991; Clark, A., 1992; Conte and Trombetti, 2000; Williams et al., 2001; Shortreed et 

al., 2001; Crewe and Severn, 2001; Trombetti and Conte, 2002; Twitchell and 

Symans, 2003; Thoen and Laplace, 2004). A final objective of this paper is to add to 

this body of knowledge by specific consideration of the large NEES-UCSD LHPOST.   

It is envisioned that the resulting analytical model of the mechanical sub-system will 

be used in future studies to comprehensively model the entire shake table system 

including all sub-systems mentioned above.  

3.1.2. Overview of the NEES-UCSD LHPOST 

The new NEES-UCSD LHPOST located at a site 15 km away from the main 

campus of the University of California at San Diego (32 53 37 N° ′ ′′  and117 06 32 W° ′ ′′ ), 

is a unique outdoor experimental facility that enables next generation seismic tests to 

be conducted on very large structural and soil-foundation-structure interaction systems 
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(Figure 3.1). The LHPOST consists of a moving steel platen (7.6m wide by 12.2m 

long); a reinforced concrete reaction block; two servo-controlled dynamic actuators 

with a force capacity in tension/compression of 2.6MN and 4.2MN, respectively; a 

platen sliding system (6 pressure balanced vertical bearings with a force capacity of 

9.4MN each and a stroke of ±0.013m); an overturning moment restraint system (a pre-

stressing system consisting of two Nitrogen-filled hold-down struts with a stroke of 

2m and a hold-down force capacity of 3.1MN each); a yaw restraint system (two pairs 

of slaved pressure balanced bearings along the length of the platen); a real-time multi-

variable controller, and a hydraulic power supply system. The technical specifications 

of the LHPOST include a stroke of ±0.75m, a peak horizontal velocity of 1.8m/s, a 

peak horizontal acceleration of 4.2g for bare table conditions and 1.0g for a rigid 

payload of 400 tons, a horizontal force capacity of 6.8MN, an overturning moment 

capacity of 50MN-m, and a vertical payload capacity of 20MN.  The frequency 

bandwidth is 0-20Hz. Other detailed specifications of the NEES-UCSD LHPOST can 

be found elsewhere (Van Den Einde et al., 2004). 

3.1.3. Model Formulation and Identification Approach 

The large lateral displacement of the platen of ± 0.75m and the resulting 

rotation and elongation of the hold-down struts raise the possibility of non-negligible 

nonlinear terms in the equations of motion of the mechanical system. As a first task, 

the equations of motion including nonlinear terms are derived using a Lagrangian 

approach, and the order of magnitude of the nonlinear terms is estimated. On the basis 

of the known physical properties of the system and of the operational limits of the 
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shake table, it is shown that the contributions of the nonlinear terms are small and that 

a simplified model with a mass, horizontal stiffness, and a dissipative mechanism 

composed of Coulomb friction and viscous resisting forces is sufficient to capture the 

salient characteristics of the mechanical sub-system of the LHPOST. Even though 

more complex models are available in the literature for modelling friction and viscous 

forces (Bondonet and Filiatrault, 1997), classical discontinuous Coulomb friction and 

viscous damping models are adopted in this initial study.  

The characteristics of the mechanical system are obtained by analysis of the 

hysteresis loops relating the total feedback actuator force with the feedback 

displacement, velocity and acceleration of the platen recorded during periodic tests. 

The procedure takes advantage of the periodicity of the table motion to isolate the 

inertial, elastic and dissipative forces and their respective dependence on acceleration, 

displacement and velocity. The approach is restricted to periodic tests, but does not 

assume a priori a linear model. Other complementary identification approaches will 

be presented elsewhere.  

3.1.4. Shakedown Test Program 

A large shakedown test program was performed on the LHPOST system to 

verify compliance with the design specifications, and also to identify the fundamental 

characteristics of the NEES-UCSD shake table. The tests included periodic, 

earthquake, and white noise tests. Twelve sinusoidal (S) and twelve triangular (T) tests 

with rounded waveforms were used with amplitude and frequency characteristics 

spanning the operational frequency range of the system Table 3.1 and 1.2). For the 
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earthquake tests, full and scaled versions of historical earthquake records with 

different characteristics were used. Finally, several white noise tests with different 

root-mean-square accelerations were performed.  

The periodic tests were performed with forces of 0, 1042 and 2085 kN in each 

of the two hold-down struts. These forces correspond to internal pressures in the hold 

down struts of 0, 6.9 and 13.8 MPa, respectively. These tests were aimed at 

determining the effective horizontal stiffness associated with the hold-down struts and 

also to investigate the effect of vertical loads on the dissipative (friction, damping) 

forces. All other tests were performed with the operational force of 2085 kN (13.8 

MPa Nitrogen pressure) in each of the two hold-down struts. All tests were repeated at 

least two times to check for repeatability.  

3.1.5. Sensors and Data Acquisition System. 

Data were acquired by the same built-in sensors and data acquisition (DAQ) 

system used to control the shake table. The DAQ system has low-pass anti-aliasing 

filtering capabilities and a default sampling rate of 1024Hz. The displacement of the 

platen relative to the reaction block was measured by two digital displacement 

transducers (Temposonics® linear transducers) located on the East and West 

actuators. The platen acceleration response was measured by two Setra®-Model 141A 

accelerometers with a range of 8g± and a flat frequency response from DC to 300Hz. 

However, the signal conditioners used for the accelerometers included a built-in 

analog low-pass filter with cut-off frequency set at 100 Hz.  Pressure in the actuator 

chambers were measured by four Precise Sensors®-Model 782 pressure transducers 
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with a pressure range from 0 to 68.9 MPa and a (sensor/DAQ) resolution of 689.5 Pa. 

These pressure transducers are located near the end caps of each actuator. Measured 

pressures are converted to actuator forces by multiplying them by the corresponding 

actuator piston areas and combining the contributions from both chambers. The 

pressure recordings were high-pass filtered to remove static pressure components, but 

were not low-pass filtered. The velocity of the platen is not measured directly but is 

estimated by use of a crossover filter that combines the differentiated displacement 

with the integrated acceleration (Thoen, 2004). The MTS 469D Seismic Controller 

Recorder software was used to record the digitized data. The sampling rate of the 

recorder was set at 512 Hz during the tests, and the built-in anti-aliasing digital filter 

was enabled during the tests.  

In all the tests performed, two apparent harmonic signals at 10.66 Hz and 246 

Hz were observed repeatedly mainly in the total actuator force and, to a lesser degree, 

on the table acceleration records. The signal at 10.66 Hz corresponds to the oil column 

frequency of the system (Conte and Trombetti, 2000; Thoen and Laplace, 2004) which 

is excited when there is a sudden change in the motion of the platen such as a direction 

reversal. The most likely source of the second harmonic signal at 246 Hz is the 

resonance between the pilot stage and the third stage of the servo-valves. Due to low-

pass filtering of the acceleration records at 100 Hz, this 246 Hz harmonic signal can be 

observed only slightly in the acceleration records.  
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3.2. Analytical Model of the Mechanical Sub-System of the Shake Table 

3.2.1. Mechanical Components of the Shake Table System 

Figure 3.2 shows a three-dimensional rendering of the mechanical components 

of the LHPOST including the moving steel platen, two servo-controlled dynamic 

actuators, a platen sliding system composed of six pressure-balanced bearings, a yaw 

restraint system with two pressure-balanced bearings on each longitudinal side of the 

platen, and two pre-stressed Nitrogen-filled hold-down struts  providing the 

overturning moment restraint. The forces exerted on the platen by the horizontal 

actuators are balanced by: (1) the inertia force due the mass of the platen, hold-down 

struts and moving parts of the actuators; (2) the elastic restoring force due to the 

Nitrogen pressure inside the hold-down struts that are inclined when extended; (3) the 

Coulomb type dissipative forces due to (i) sliding of the platen (wear plates) on the 

vertical and lateral bearings, (ii) rotation of hinges (swivels) at both ends of the hold-

down struts, and (iii) sliding of the actuator arm and piston inside each of the two 

horizontal actuators; and finally (4) the viscous type dissipative forces due to various 

sources, such as (i) oil film between the wear plates and the vertical and lateral 

bearings, (ii) air flow in and out of the hold-down struts, and (iii) cross-port leakage in 

the horizontal actuators, which accounts for the damping within the actuators (Zhao et 

al., 2005). It is important to note that the sub-system considered here does not include 

the compressible oil columns in the actuator chambers.  The recorded actuator forces 

obtained from the pressures on both sides of the pistons already incorporate the oil 

column effect. However, some contamination with the oil column arises because the 
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pressure transducers are located at the end caps of the actuators and not directly on the 

pistons.  

3.2.2. Conceptual Model and Summary of Equations of Motion 

As a first approximation, the platen is treated as a rigid body of mass plM  

which undergoes a total translation xu along the longitudinal x-axis. The six vertical 

bearings and the four lateral bearings are modeled as dissipative elements including 

Coulomb friction and viscous damping. The hold-down struts contribute to the inertial, 

elastic and dissipative forces on the system. The equation of motion for the 

mechanical sub-system of the NEES-UCSD LHPOST can be written as  

 ( ) ( ) ( )( )I E D AF t F t F t F t+ + =  (3.1) 

where ( )AF t  is the resultant horizontal longitudinal force from both actuators, and IF , 

EF , and DF  are the inertia, elastic, and damping  forces, respectively. These forces 

can be expressed as   
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where the meaning of the various terms is given below. 

Effective Masses.  The effective mass terms appearing in Equation (3.2) are 

given approximately by 
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where plM  is the mass of the platen; actM  is the mass of the moving parts of a single 

actuator; 1M  and 2M  are the masses of the piston and cylinder of one hold down 

strut, respectively; and 0l  and h  are the corresponding lengths. 

The second term in Equation (3.2) amounts to less than 0.05% of the first term, 

and can be ignored. The last term in Equation (3.2) corresponds to a force of less than 

0.25 kN which is also negligible. Thus only the first term in Equation (3.2) is 

significant. Finally, the combined effective mass 2 eM of the hold-down struts is of the 

order of 3% of the mass plM  of the platen. 

Effective Horizontal Stiffness due to Hold-Down Struts.  Assuming 

adiabatic conditions, the effective stiffness terms appearing in Eq. (3.3) can be 

obtained from 

 0

0
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2e e e

p A hK K K
h l
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⎝ ⎠
 (3.6) 

where 0p  is the initial pressure inside the Nitrogen-filled chamber of a hold-down 

strut, A is the cross-section area of the strut cylinder, h  is the (fixed) height from pin-

to-pin of the hold-down strut in its initial configuration ( 0xu = ), 0l  is the initial length 

of the piston, andγ  is the gas constant corresponding to the ratio of the heat capacity 

at constant pressure to that at constant volume. For the hold-down struts of the UCSD-
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NEES Table, 3.3h m= , 0 2.1l m= , =1.44γ  and 0.75xu m≤ .  In this case, the 

ratio ( )2/e x eK u h K′ amounts to less than 3.3 percent. Therefore, the relative 

contribution of the nonlinear elastic restoring force term is small and can be neglected 

in most cases. However, for large displacements ( 0.75xu ≈  m), the elastic force 

associated with the nonlinear term can reach a value of about 30 kN which is 

comparable to some of the components of the dissipative force. 

Effective Lateral Dissipative Forces. Finally, the first term in Equation (3.4) 

corresponds to the Coulomb  frictional force  given by 

 ,   2e hd e pl act e l e e hg
aF F F F
hµ µ µ µ µ µ µ κ+

⎛ ⎞′ ′′ ′′′ ′ ′′= + + = + ⎜ ⎟
⎝ ⎠

 (3.7) 

where 02hdF p A=  is the initial vertical force due to pre-charge Nitrogen pressure in 

the hold-down struts, pl actF +  is the combined weight of the platen and part of the 

actuators supported by the vertical bearings; lF  is the time dependent total normal 

force on the lateral bearings; eµ′′  and eµ′′′  are the Coulomb friction coefficients on the 

vertical and lateral bearings, respectively; hgµ  is the Coulomb friction coefficient in 

the swivels of the hold-down struts; a  is the radius of the hinge and κ  is a constant 

that depends on the distribution of forces on the hinge. The second term in Equation 

(3.4) represents viscous damping in the actuators in which eC  is an effective viscous 

damping constant and 0 1α≤ ≤ .  The third term in Equation (3.4) represents viscous 

damping in the hold down struts with 0 1β≤ ≤ . Finally, the last term in Equation 
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(3.4) is a nonlinear term involving friction on the hinges of the hold down struts. In 

that term 
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3.3. Parameter Estimation by Analysis of Hysteresis Loops 

In this section, the hysteresis loops relating actuator force to displacement, 

velocity, or acceleration of the table during periodic triangular or sinusoidal tests will 

be used to determine the most important characteristics of the shake table mechanical 

system.  The basic conceptual model of the system, inspired in part by Equations (3.1) 

through (3.4) is expressed by  

 ( ) ( ) ( ) ( ) ( )e x x E x D x AM u u t F u F u F t+ + =  (3.9) 

where ( )xu t  is the horizontal longitudinal total displacement of the platen, eM  is the 

effective mass, and EF , DF , and AF  are the total elastic, dissipative, and actuator 

forces, respectively.  It is assumed that ( )e xM u  is an even function of xu , and that 

( )E xF u  and ( )D xF u  are odd functions of xu  and xu , respectively. The simplified 

model given by Equation (3.9) excludes dependence of EF  and DF  on the history of 

xu  and xu , and ignores certain possible inertial and dissipative terms that depend on 

products of xu  and xu . 

The data from periodic tests used in the parameter identification were low-pass 

filtered, except where noted, with a cut-off frequency of 4 times the fundamental 

frequency of the test in an attempt to keep the first few harmonics of the potentially 
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nonlinear response while filtering out higher frequencies.  To ensure that the steady-

state response had been reached, the analysis of the response was based on the second 

to last cycle of each test.  Finally, in the case of the triangular tests, only the portions 

of the time histories over which constant velocities had been reached were used in the 

identification procedure. 

The identification approach used here takes advantage of the periodic nature of 

( )xu t , ( )xu t , and ( )xu t  during a test cycle ( )0 t T< < .  Selecting the cycle of test 

data so that the displacement ( )xu t  is positive over the first half ( )0 2t T< <  of the 

cycle; the following time instants 1t , 2t , 3t , and 4t  are considered: 10 4t T< <  , 

2 12t T t= − , 3 12t T t= + , and 4 1t T t= − .  With this notation, the periodicity leads to  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2 1

4 3 4 3 4 3

,   ,   

,   ,   
x x x x x x

x x x x x x

u t u t u t u t u t u t

u t u t u t u t u t u t

= = − =

= = − =
 (3.10) 

and 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

4 1 4 1 4 1

3 2 3 2 3 2

,   ,   

,   ,   
x x x x x x

x x x x x x

u t u t u t u t u t u t

u t u t u t u t u t u t

= − = = −

= − = = −
 (3.11) 

Applying Equation (3.9) at times 1t  and 2t , 3t  and 4t , 1t  and 4t , and 2t and 3t  leads to 

 ( )( ) ( ) ( )( ) ( ) ( )1 1 1 1 2 2e x x E x A AM u t u t F u t F t F t+ = +⎡ ⎤⎣ ⎦  (3.12) 

 ( )( ) ( ) ( )( ) ( ) ( )3 3 3 3 4 2e x x E x A AM u t u t F u t F t F t+ = +⎡ ⎤⎣ ⎦  (3.13) 

 ( )( ) ( ) ( )1 1 4 2D x A AF u t F t F t= +⎡ ⎤⎣ ⎦  (3.14) 

 ( )( ) ( ) ( )2 2 3 2D x A AF u t F t F t= +⎡ ⎤⎣ ⎦  (3.15) 
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Equations (3.14) and (3.15) indicate that the dissipative forces can be obtained directly 

from the data.  On the other hand, Equation (3.12) and (3.13) indicate that additional 

considerations need to be made to separate the inertial and elastic forces. 

3.3.1. Estimation of Elastic Forces and Effective Horizontal Stiffness  

To separate the elastic forces from the inertial and dissipative forces, use is 

made of the results of periodic triangular tests in which the horizontal acceleration xu  

of the platen is zero for intervals of time.  In this case, Equations (3.12) and (3.13) 

reduce to  

 
( )( ) ( ) ( )

( ) ( ) ( ) ( )

1 2   
2

1 2 , 0 4
2

E x A A

x x x

F u t F t F T t

u t u t u T t t T

= + −⎡ ⎤⎣ ⎦

= + − < <⎡ ⎤⎣ ⎦

 (3.16) 

and 

 
( )( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 2
2

1 3 2 , 2 3 4
2

E x A A

x x x

F u t F t F T t

u t u t u T t T t T

= + −⎡ ⎤⎣ ⎦

= + − < <⎡ ⎤⎣ ⎦

 (3.17) 

which provide estimates of ( )E xF u  for 0xu >  and 0xu < , respectively.  

The basic data for the procedure are illustrated in Figure 3.3 (Left) which 

shows time histories of the recorded platen displacement, velocity and acceleration, 

and of the actuator force ( )AF t  for one cycle of test 6T  

max max( 62.5 cm , 25.0  cm s , 10 s)u u T= = = . The plots show the original unfiltered 

data as well as the filtered data after use of a low-pass filter with a cut-off frequency of 

0.4 Hz .  The unfiltered actuator force data contain harmonic components at the oil 
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column frequency of 10.66Hz  and at 246 Hz. It is apparent from Figure 3.3 (Left) that 

over portions of the cycle the displacement varies linearly with time, and that the 

acceleration is practically zero during these intervals. 

The relation between EF  and xu  can be obtained from Equations (3.16) and 

(3.17) by using the time t as an internal variable relating ( )xF u t⎡ ⎤⎣ ⎦  and ( )xu t .  As an 

illustration, the results obtained for test T4 max max( 50 cm, 10 cm s, 20 s)u u T= = =  

for pressures of 0, 6.9 MPa , and 13.8 MPa  in the hold-down struts are shown in 

Figure 3.4.  It is apparent from Figure 3.4 that the total elastic restoring force depends 

linearly on the platen displacement, that the elastic force is essentially zero when the 

hold-down force is zero, and that the elastic force for a hold-down pressure of 6.9 MPa 

is half of that for the operational hold-down pressure of 13.8 MPa. 

The results in Figure 3.4 as well as similar results for other triangular tests, 

indicate that the elastic restoring force acting on the platen is essentially provided by 

the Nitrogen pre-charge pressure in the hold-down struts.  The effective horizontal 

stiffness values obtained from the slopes of the lines in Figure 3.4 correspond to 

1.27 MN meK =  for the operational pressure of 13.8 MPa, and 0.65MN meK =  for 

a pressure of 6.9 MPa.  The estimates of the stiffness eK  at the operational pressure 

(13.8 MPa) obtained from all triangular tests are listed in Table 3.1 decreases slightly 

for tests involving velocities above 50 cm/s (T9-T11). Since the triangular pulses are 

severely distorted at high velocities, the average stiffness 1.266eK =  MN/m from 

tests T1-T8 will be taken as the representative value for the effective stiffness. The 
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experimentally obtained stiffness 1.266MN meK =  agrees almost exactly with the 

theoretical combined stiffness 02eK Ap h=  of the two hold-down struts which takes 

the value 1.26MN meK =  for 20.15 mA =  (effective cross-section area of Nitrogen 

chamber in each strut), 0 13.8 MPap =  (internal pressure), and 3.3 mh =  (length of 

hold-down struts). 

Finally, the theoretical equations of motion presented in Section 2 indicate that 

the total non-dissipative force for 0xu =  can be expressed by 

( ) ( )2 22e x e x x e x xK u K u h u M u h u′ ′+ +  where eK , eK ′ , and eM ′  are given by Equations 

(3.5) and (3.6). The linear nature of the experimentally determined elastic force EF  

confirms that the second (cubic) term is negligible compared with the first term. The 

last term ( )22 e x xM u h u′  is an inertial term associated with the rotation of the hold-

down struts. For triangular tests in which 2
xu  is constant, this term can be confounded 

with the first term e xK u  as both are proportional to xu . The results in Fig. 4 for tests 

with different velocities, as well as the vanishing stiffness obtained for zero hold-down 

pressure confirm that the effect of this inertia term is negligible. 

3.3.2.  Estimation of Effective Mass  

Having established that ( )E x e xF u K u=  where 1.266MN meK =  

( )0for  13.8MPap = , then Equations (3.12) and (3.13) can be used to obtain estimates 

of the effective mass ( )e xM u  in the form  
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( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2
2 2
1 2 , 0 4
2

e x x A e x A e x

x x x

M u t u t F t K u t F T t K u T t

u t u t u T t t T

= − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= + − < <⎡ ⎤⎣ ⎦

 (3.18) 

for 0xu > , and  

 
( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 3 2 3 222
1 3 2 , 2 3 4
2

e x A e x A e x

x x x

M u t u t F t K u t F T t K u T t

u t u t u T t T t T

= − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤= + − < <⎣ ⎦

(3.19) 

for 0xu < .  

Since during triangular tests, the acceleration spikes at the time of change in 

velocity and is nearly zero at any other times, sinusoidal tests are preferred to 

determine the effective horizontal mass. The typical data including ( )xu t , ( )xu t , 

( )xu t , and ( )AF t  are illustrated in Figure 3.3 (Right) for one cycle of the sinusoidal 

test S9 ( )max max max20 cm , 75.4 cm/s, 0.29 , 1.67su u u g T= = = =  performed under 

the operational hold-down pressure of 13.8 MPa.  The original data and the data after a 

low-pass filter with cut-off frequency of 2.4 Hz had been applied are superimposed in 

Figure 3.3 (Right). The unfiltered data includes components at the oil-column 

frequency of 10.66 Hz which are excited each time the velocity of the table changes 

sign. 

The relation between the inertia force ( )e x xM u u  and the acceleration xu  for 

sine tests S9 ( )max 0.29u g=  and S10 ( )max 0.51u g=  is shown in Figure 3.5 for the 

operational hold-down pressure of 13.8 MPa.  The results obtained indicate that the 

inertial force for the sinusoidal tests is essentially a linear function of the acceleration 
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xu , and consequently, that the effective mass eM  is a constant. The slope of the 

curves in Figure 3.5 indicate that 144eM = tons.  The results for other sinusoidal tests 

with peak accelerations in the range between 0.1g and 1.2g are similar as shown in 

Table 3.2:  For tests (S1, S2, S3) involving extremely small accelerations (< 0.2% g), 

the inertial forces are extremely small and the results obtained are not reliable. For test 

S12 involving large velocities (180 cm/s) and accelerations (1.6g) the sinusoidal 

pulses are distorted and the results for eM  are not reliable. 

The estimate of the effective horizontal longitudinal mass ( 144eM = tons) can 

be compared with the mass of the platen estimated from drawings to be about 134.8 

tons. Also, data recorded on the six vertical pressure balance bearings when the hold-

down struts were not pressurized indicate a total weight of 1.613 MN including the 

weight of the platen and of the cylinders of the two hold-down struts, and part of the 

weights of the two actuators. The corresponding total mass is 164.5 tons. The effective 

lateral mass should be smaller than the total vertical mass obtained from the vertical 

bearings because only the mass of the pistons of the actuators and a fraction of the 

mass of the hold-down struts affect the lateral mass. Also, the flexibility of the platen, 

albeit small, would result in a smaller effective mass.  

3.3.3. Estimation of the Effective Total Dissipative Forces  

Equations (3.14) and (3.15) are used here to separate the total dissipative 

forces from the inertial and elastic components of the total actuator force. In particular, 

the dependence of the total dissipative forces on velocity is given by 
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( )( ) ( ) ( )

( ) ( ) ( )
2

2
D x A A

x x

F u t F t F T t

u t u t u T t

= + −⎡ ⎤⎣ ⎦
= + −⎡ ⎤⎣ ⎦

 (3.20) 

with 0 4
Tt< <  for 0xu > ,  and 4 2

T Tt< <   for 0xu < . 

The typical data required to apply the proposed identification procedure is 

illustrated in Figure 3.3 (Center) which includes one cycle of the filtered and 

unfiltered time history plots of the platen response and the total actuator force obtained 

during test S4 ( max 10 /u cm s= , 2.5sT = ). The unfiltered time history of the total 

actuator force shows that the signal is contaminated by high frequency noise and by 

two harmonic signals at 10.66 Hz and 246 Hz. A close examination of the velocity and 

the total actuator force time histories reveals that a jump in the total actuator force 

occurs whenever the platen changes direction of motion (i.e., velocity changes sign). 

To preserve this jump while removing other spurious signals, a FIR filter of order 512 

with a cut-off frequency of 8 Hz was used for all tests. This cut-off frequency is well 

above the frequencies of the tests, but is below the oil-column frequency. The filtered 

time history in Figure 3.3 (Center) shows that the jump in the total actuator force is 

preserved, while the high frequency components of this signal are filtered out. 

Figure 3.6 illustrates the relation between the total dissipative force and platen 

displacement (a, b) as well as the relation between the total dissipative force and 

platen velocity (c, d)  for sinusoidal tests S1 ( max 1.0u =  cm/s), and S4 ( max 10u =  

cm/s). It is apparent from the results in Figure 3.6 and from additional results for tests 

S2 ( max 1.5u =  cm/s), and S3 ( max 2.5u =  cm/s) that the total dissipative force, after 

reaching a peak of 35 - 45 kN at very low velocities, decreases slightly to 30-35 kN at 
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a velocity of 1-2 cm/s, and then increases again to about 40 kN for a velocity of 10 

cm/s. The initial drop may be associated with a change of the Coulomb friction 

coefficient from its static value to its dynamic value. The increment of the total 

dissipative force at higher velocities probably reflects viscous type dissipative forces 

which do not appear to increase linearly with velocity. Finally, the slightly different 

behavior at low velocities for the different tests suggests that the dissipative force is 

not only a function of the instantaneous velocity, but also of some other characteristics 

of the time-history of motion. 

The variation of the total dissipative force at higher velocities can be studied 

by considering the total dissipative forces obtained at the maximum achieved platen 

velocities in each of the sinusoidal and triangular tests performed under 13.8, 6.9 and 

0.0 MPa Nitrogen pressures in the hold-down struts. The results shown as individual 

points in Figure 3.7 indicate that the total dissipative force increases with both hold-

down pressure and some fractional power of velocity. After some numerical 

experimentation, it was decided to consider a model of the type  

 0.5( ) ( )
eD e xF t F C u tµ= +  (3.21) 

in which 
e

Fµ  denotes a Coulomb friction force, while eC  is a fractional-power viscous 

damping coefficient. When this model was applied to the sinusoidal tests for the 

nominal hold-down pressure of 13.8 MPa, best-fit values of 26.00
e

Fµ =  kN and 

44.58eC =  1 2kN/(m/sec)  were obtained. The parameter eC  was then kept fixed at 

44.58 1 2kN/(m/sec)  and the best fit values of 
e

Fµ  for the six groups of tests shown in 
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Figure 3.7 were obtained. The resulting values of 
e

Fµ  for sinusoidal tests with hold-

down pressures of 0.0, 6.9, and 13.8 MPa are 5.63, 15.65 and 26.00 kN, respectively. 

The corresponding values of 
e

Fµ  for the triangular tests are 9.69, 16.75 and 25.74 kN, 

respectively. Clearly, the parameters obtained for the sinusoidal and triangular tests 

are in reasonable agreement for hold-down pressures of 6.9 and 13.8 MPa. The 

comparisons of the model and data shown in Figure 3.7 also show a reasonable 

agreement for these pressures but not for the case of zero pressure. 

3.3.4. Decomposition of the Total Dissipative Force 

To study further the nature of the dissipative forces, the average of the values 

of the terms 
e

Fµ  obtained from sinusoidal and triangular tests are plotted in Figure 3.8 

versus the total vertical force zF  acting on the vertical bearings for the three different 

hold-down pressures considered. The average values of 
e

Fµ  for hold-down Nitrogen 

pressures of 0.0, 6.9, and 13.8 MPa are 7.66, 16.20, and 25.87 kN, respectively. The 

corresponding resultant vertical forces zF  based on pressure readings on the six 

vertical bearings are 1.613, 3.698, and 5.783 MN, respectively. The results in Figure 

3.8  indicate that there is a linear relation between 
e

Fµ  and zF , i.e. 
e e zF Fµ µ= , 

implying that the term 
e

Fµ does represent a Coulomb friction force acting on the 

vertical bearings with a friction coefficient of 0.44%eµ = . This result would also 

suggest that the friction force on the lateral bearings is negligible. 

The results shown in Figure 3.7 (a, b) indicate that the dissipative forces 

obtained during the low velocity tests (S1, S2, S3, T1, T2, T3) are somewhat larger 
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than those calculated from the model. An enlargement of the low velocity zone shown 

in Figure 3.7 (c, d) indicates that the small differences between model and data appear 

to be independent of the hold-down pressure level. As shown in Figure 3.7 (c, d), these 

differences can be accounted for by the additional term ( 78.5 )12.04 xue −⋅  kN for xu  in 

m/sec. This term could represent a correction to the assumed 0.5
xu velocity 

dependence for low velocities, or a transition from static to dynamic friction 

coefficients. 

The assumed decomposition of the dissipative force as  

 0.5 ( )( ) xb u
D e z e xF t F C u aeµ −= + +  (3.22) 

where e = 0.44% µ , 1 2
eC = 44.58 kN/(m/sec) , 12.04a =  kN and 78.5b =  s/m, is 

shown in Figure 3.9 (low velocity correction is not shown) for the case of nominal 

hold-down Nitrogen pressure z(F = 5,783 kN) . In this case, the Coulomb friction force 

in the vertical bearings amounts to 26.0 kN, while the viscous component adds a 

dissipative force of 44.6 kN at a velocity of 1.0 m/s. The low-velocity correction term 

adds a force of 12.0 kN at zero velocity, but this term becomes negligibly small for 

velocities higher than 3 cm/s. 

To verify the quality of the identified model of the dissipative forces, the 

identified and simulated total dissipative forces vs. table displacement curves for tests 

S1 and S4 are compared in Figure 3.6 (a, b). Also shown in Figure 3.6 (c, d) are the 

corresponding identified and simulated total dissipative force versus table velocity 
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curves. It is apparent that the low-velocity correction term needs to be included for test 

S1 in which the peak velocity is only 1 cm/s. 

A final comparison is presented in Figure 3.10 in which the scatter plot of 

instantaneous values of DF (t) versus xu (t) for tests S1 through S11 is shown together 

with the analytical model given by Equation (3.22). It is apparent from Figure 3.10:  

that the model fits the general trend of the data, and that the scatter is of the order of 

20 kN± . Clearly, it is difficult to isolate the dissipative forces from the inertial and 

elastic forces as the amplitudes of these forces are significantly larger. The dissipative 

forces are typically less than 0.08 MN (Test S10) while the inertial and elastic forces 

can be as large as 2.3 MN (Test S12) and 0.95 MN (Test T8), respectively.  

3.3.5. Hysteresis Loops for Triangular Tests 

The previous discussion of the dissipative forces is based mostly on the results 

obtained during sinusoidal tests which involve platen displacements that do not exceed 

20 cm. On the other hand, many of the triangular tests involve platen displacements 

that exceed 50 cm and velocities exceeding 50 cm/s. Because of the large volumes of 

oil involved (large swept displacements), these triangular tests are of short duration (3-

12 seconds) and include only a few (2-3) cycles. Under these conditions, the hysteresis 

loops for triangular tests exhibit some features which are not clearly observable in the 

hysteresis loop for the sinusoidal tests.  

Figure 3.11 (a, b) show the hysteresis loops relating the instantaneous reduced 

force, ( ) ( ) ( ) ( )R A e x e xF t F t M u t K u t= − − , and the corresponding recorded platen 

displacement ( )xu t  for tests T8, and T10. These tests are characterized by maximum 
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platen velocities of 50, and 100 cm/s, respectively. The values of eK  listed in Table 

3.1 ( 1.27 /eK MN m=  for T8, and 1.25 /eK MN m=  for T10) were used in an attempt 

to have the reduced force ( )RF t represent the total dissipative force ( )DF t  without 

contamination by the apparent changes of stiffness. A value of 144eM =  tons was 

used in both cases. Also shown in Figure 3.11 (a, b) are the values of ( )DF t  calculated 

by use of Equation (3.22) for the maximum velocity attained during each test. The 

results suggest that there is an additional nonlinear component of the dissipative force 

not included in Equation (3.22), which appears to increase with both instantaneous 

displacement and velocity. This additional dissipative force reaches a peak of 20-70 

kN and appears to be significant only when the platen displacement exceeds 50 cm 

and the platen velocity exceeds 75 cm/s. 

3.4. Model Validation  

The parameters of the NEES-UCSD LHPOST model identified in the previous 

section are based on system response data for periodic sinusoidal and triangular 

excitations. It is important to verify that the resulting model is also capable of 

representing the more common shake table tests involving earthquake ground motions 

and white noise excitations. To verify the accuracy of the model, the total actuator 

force will be simulated by using 

 ( )( ) ( ) ( ) ( ) ( ( ))
eA e x e x e x xF t M u t K u t C u t F sign u tα

µ= + + +  (3.23) 
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and the results will be compared with the total actuator force recorded during various 

tests. Note that the simulations are based on the actual recorded displacement, velocity 

and acceleration. 

Comparisons of the recorded and simulated total actuator force time- histories 

for three different tests are shown in Figure 3.12. The comparisons correspond to 

triangular test T4 ( max 50u =  cm, max 10u = cm/s, 20T =  s), to an earthquake 

simulation test using the Northridge 1994 Cedar Hills Station ground motion with a 

peak acceleration of 1.81g, and a white noise test with 0.10g root mean square 

acceleration (WN10%g). In order to see the details of the comparisons, only amplified 

segments of the time histories are shown.  It is apparent from the results in Figure 3.12 

and, from the rest of the time histories, that the model given by Equation (3.23), with 

the model parameters estimated previously, is capable of reproducing the recorded 

total actuator force for different types of tests.  

An alternative type of verification consists of using the model to obtain the 

motion of the platen by integration of Equation (3.23) using the recorded total actuator 

force as input. The results of such analysis for sinusoidal test SR9 

max max max( 0.38 m, = 1.20 m/s, = 0.384 , = 2 s) u u u g T= are shown in Figure 3.13. The 

recorded total actuator force was low-pass filtered with cut-off frequency of 0.6 Hz 

and Equation (3.23) was integrated numerically using the fixed-step Runge-Kutta 

method. The agreement between the recorded and simulated table velocity and 

displacement is excellent. 
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3.5. Conclusions 

1. A mathematical model for the mechanical components of the NEES-UCSD 

LHPOST has been presented. It has been shown that several non-linear terms arising 

from the significant displacements and rotations of the hold-down struts are small, and 

that a simplified model including an effective horizontal mass, an effective horizontal 

stiffness due to the pre-charge pressure in the hold-down struts, and dissipative force 

terms composed of classical Coulomb friction and viscous damping elements is 

sufficient to simulate the response of the system. 

2. The identification of the parameters of the mechanical sub-system of the 

NEES-UCSD LHPOST by use of the experimental hysteresis loops leads to the 

following conclusions:  

(i) The experimental results indicate that the elastic restoring force acting on 

the platen is essentially provided by the pre-charge Nitrogen pressure in the hold-

down struts, the elastic force is essentially a linear function of the longitudinal 

displacement of the platen, and the effective horizontal stiffness corresponds to 

1.27 MN meK =  for the operational pressure of 13.8 MPa. 

(ii) The best estimate of the effective horizontal longitudinal mass of the table 

is 144eM =  tons. This vertical mass includes the mass of the platen and of the 

cylinders of the two hold-down struts, and part of the mass of the two actuators. The 

experimental data confirm that non-linear inertial terms are small within the range of 

table motions considered.  
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(iii) The analysis appears to show that the total dissipative force can be broken 

down into three main components: (i) Coulomb friction acting on the vertical bearings 

with a friction coefficient of 0.44%, (ii) a viscous force proportional to the square root 

of the velocity and with a damping constant of 44.6 0.5kN/(m/sec) , and (iii) a small 

force decreasing exponentially with the table velocity given by ( 78.5 )12.04 xue −⋅  kN for 

velocity in m/s. This last component may reflect a transition from static to dynamic 

friction and becomes negligibly small once the velocity has exceeded a threshold of 

say 5 cm/s. Additional dissipative forces, not fully identified, arise for large platen 

displacements (> 50 cm) and velocities (> 75 cm/s).  

3. Although the parameters of the model considered herein have been 

identified by use of the response during periodic sinusoidal and triangular excitations, 

it has been shown that the resulting model is also capable of representing the more 

common shake table tests involving earthquake ground motions and white noise 

excitations. 

Chapter 3 is a reprint of the material accepted for publication in Earthquake 

Engineering and Structural Dynamics (2008), Ozcelik, O., Luco, J.E., Conte, J.P., 

Trombetti, T., and Restrepo, J.I. The dissertation author was the first author of this 

paper. 
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Table 3.1: Estimates of the Effective Horizontal Stiffness eK  from Triangular Tests 

(13.8 MPa Hold-Down Nitrogen Pressure) 

Test T1 T2 T3 T5 T7 T9 T4 T6 T10 T12 T8 T11 

Frequency 

[Hz] 
0.05 0.05 0.05 0.10 0.10 0.40 0.05 0.10 0.40 0.67 0.17 0.50 

maxu  

[cm] 
5 7.50 12.50 25 37.50 46.88 50 62.50 62.50 67.50 75 75 

maxu  

[cm/s] 
1 1.50 2.50 10 25 75 10 25 100 180 50 150 

eK   

[MN/m] 
1.25 1.27 1.27 1.25 1.27 1.25 1.27 1.27 1.25 1.24 1.27 1.25 
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Table 3.2: Estimates of Effective Horizontal Longitudinal Mass eM  from Sinusoidal 

Tests (13.8 MPa Hold-Down Nitrogen Pressure) 

Test S4 S6 S5 S7 S9 S10 S8 S11 S12 

Frequency [Hz] 0.40 0.40 1.00 0.80 0.60 0.80 1.20 1.20 1.43 

maxu [cm] 4 10 4 10 20 20 10 20 20 

maxu [cm/s] 10.05 25.12 25.12 50.24 75.36 100.48 75.36 150.72 179.61

maxu [g] 0.026 0.064 0.161 0.257 0.29 0.515 0.579 1.158 1.644 

eM  [tons] 150 158 144 144 144 144 144 144 120 
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Figure 3.1: NEES-UCSD LHPOST with a full-scale 21m high wind turbine mounted 

on it. 
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Figure 3.2: Mechanical sub-system of NEES-UCSD LHPOST. 
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Figure 3.3: Filtered and unfiltered time history plots of tests T6, S4, and S9. 
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Figure 3.4: Estimates of the horizontal stiffness by hysteresis loop approach from 

triangular test T4 for 0, 6.9 and 13.8 MPa Nitrogen pressure in the hold-down struts. 
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Figure 3.5: Estimates of effective mass obtained by hysteresis loop approach from 

sinusoidal tests S9 and S10 for 13.8 MPa Nitrogen pressure in the hold-down struts. 
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Figure 3.6:  Comparison of recorded and simulated total dissipative forces vs. table 

displacement (a-b) and velocity (c-d) for tests S1 and S4 (13.8 MPa Nitrogen 

pressure in hold-down struts). 
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Figure 3.7: Total dissipative forces at maximum obtained velocities during sinusoidal 

(a), and triangular tests (b) performed under 0.0, 6.9, and 13.8 MPa Nitrogen pressures 

in the hold-down struts, and  total dissipative forces observed during the sinusoidal (c), 

and triangular (d) low velocity tests. Curves labeled I and II correspond to Eqs. (3.22) 

and (21), respectively. 
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Figure 3.8: Coulomb friction force obtained from average of sinusoidal and 

triangular test results as a function of total vertical force. 
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Figure 3.9: Decomposition of the total dissipative force into its major components. 
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Figure 3.10: Scatter plot of instantaneous dissipative force vs. instantaneous velocity 

for tests S1 through S11 (13.8 MPa Nitrogen pressure in the hold-down struts). 

Analytical model is shown as solid line. 
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Figure 3.11: Instantaneous total dissipative forces vs. instantaneous platen 

displacement for Tests T8 (a), and T10 (b) (13.8 MPa Nitrogen pressure in the hold-

down struts). Analytical model is shown with solid lines. 
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Figure 3.12: Comparisons of recorded and simulated total actuator forces for the 

following tests: (a) T4, (b) Northridge-1994 earthquake (100%), and (c) WN10%g 

(13.8 MPa Nitrogen pressure in the hold-down struts). 
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Figure 3.13: Comparison of recorded and simulated table velocity (a) and 

displacement (b) using as input the recorded total actuator force (c) for test SR9. 
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CHAPTER 4  

IDENTIFICATION OF THE MECHANICAL 
SUBSYSTEM OF THE NEES-UCSD SHAKE TABLE BY A 

LEAST SQUARES APPROACH 

4.1. Introduction 

The new UCSD-NEES Large High Performance Outdoor Shaking Table 

(LHPOST) located at the Englekirk Structural Engineering Center at Camp Elliot 

Field Station, a site 15 km away from the main UCSD campus, is a unique facility that 

enables next generation seismic experiments to be conducted on very large structural 

and soil-foundation-structure-interaction systems. Large tests of a 21 m tall wind 

turbine, and a tall seven story, reinforced concrete shear wall building model (Figure 

4.1) have been conducted on the table. Optimization of the shake table performance 

during the tests, as well as the optimization of the experiments themselves, including 

sensor location and safety precautions, requires the use of a detailed and reliable 

mathematical model of the complete facility. In general, a complete model of a shake 

table system needs to include the mechanical, hydraulic and electronic sub-systems. 

Typically, the steel platen, vertical and lateral bearings, hold-down struts, and 

actuators are included in the mechanical sub-system; pumps, accumulator bank, line 

accumulators, servo-valves, and surge tank are part of the hydraulic sub-system; and 
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finally, controller, signal conditioners, sensors and built-in analog filters are included 

in the electronic sub-system.  

In a previous paper (Ozcelik et al., 2008) the authors developed a simplified 

analytical model for the mechanical sub-system of the UCSD-NEES Shaking Table, 

identified the parameters of the model using the data collected during the extensive 

shake down tests of the table, and validated the model by detailed comparisons with 

experimental data. The model and parameter identification approach used in the 

previous study was based on analysis of the hysteresis loops relating the feedback total 

actuator force to the feedback displacement, velocity and acceleration of the platen 

recorded during periodic tests (both triangular and harmonic). The procedure took 

advantage of the periodicity of the motion of the table during sinusoidal or triangular 

tests, to isolate the inertial, elastic and dissipative forces and their respective 

dependence on acceleration, displacement and velocity. The approach is restricted to 

periodic tests, but does not assume a priori a linear model. Since the table motion for 

most future pre-tests will consist of scaled down seismic motions or random white 

noise acceleration signals, it is necessary to develop and test identification methods 

that do not depend on the periodicity of the excitation. 

The first objective of this study is to test the applicability of a parameter 

identification approach based on the standard least square method for shake table tests 

with very different excitations including periodic tests, white noise tests and seismic 

tests. Of primary interest is the robustness of the parameter estimates across different 

types of tests. A second objective is to compare the results of the least squares 



 117

identification approach with those obtained by consideration of the hysteresis loops for 

periodic tests. A third objective of the study is to further validate the model and 

identified parameters by detailed comparisons with experimental data from different 

types of tests. Finally, the steady-state frequency response of the shake table 

mechanical sub-system to commanded harmonic displacement of the shake table is 

examined. This analysis provides an additional verification of the non-linear damping 

model used in the study and illustrates the response of the table in the vicinity of the 

characteristic frequency of the mechanical sub-system. It is envisioned that the 

analytical model of the mechanical sub-system obtained in this and the previous paper 

(Ozcelik et al., 2007) will be used in future studies to model the entire shake table 

system including all subsystems mentioned previously.  

It is expected that the present study will add to the growing literature on the 

modelling of shake table systems (Hwang et al. 1987; Rinawi and Clough 1991; Clark 

1992; Conte and Trombetti 2000; Williams et al. 2001; Shortreed et al. 2001; Crewe 

and Severn 2001; Trombetti and Conte 2002; Twitchell and Symans 2003; Thoen and 

Laplace 2004). 

4.1.1. Overview of the UCSD-NEES Shake Table 

The Large High Performance Outdoor Shaking Table (LHPOST) consists of a 

moving steel platen (7.6m wide by 12.2m long); a reinforced concrete reaction block; 

two servo-controlled dynamic actuators with a force capacity in tension/compression 

of 2.6MN and 4.2MN, respectively; a platen sliding system (6 pressure balanced 

vertical bearings with a force capacity of 9.4MN each and a stroke of ±0.013m); an 
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overturning moment restraint system (a pre-stressing system consisting of two 

Nitrogen-filled hold-down struts with a stroke of 2m and a hold-down force capacity 

of 3.1MN each); a yaw restraint system (two pairs of slaved pressure balanced 

bearings along the length of the platen); a real-time multi-variable controller, and a 

hydraulic power supply system. The technical specifications of the LHPOST include a 

stroke of ±0.75m, a peak horizontal velocity of 1.8m/s, a peak horizontal acceleration 

of 4.2g for bare table conditions and 1.0g for a rigid payload of 3.92 MN, a horizontal 

force capacity of 6.8MN, an overturning moment capacity of 50MN-m, and a vertical 

payload capacity of 20MN.  The frequency bandwidth is 0-20Hz. Other detailed 

specifications of the NEES-UCSD LHPOST can be found elsewhere (Van den Einde 

et al. 2004). 

4.1.2. Experimental Data 

The experimental data used to model and identify the fundamental 

characteristics of the UCSD-NEES shake table were recorded during shake-down tests 

which were performed in the period June-September, 2004 to verify that the 

performance of the shake table complies with the design specifications. 

The tests designed for system characterization and identification purposes 

include periodic, earthquake, and white noise tests. For the periodic tests, sinusoidal 

(S) and triangular (T) waveforms were used with amplitude and frequency 

characteristics carefully selected so as to span the entire operational frequency range 

of the system. For the earthquake tests, full and scaled versions of historic earthquake 

records with different characteristics were used. Finally, several white noise tests with 
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different root mean square table accelerations were performed on the system. All of 

these tests were incorporated in the identification process to make sure that the 

identified fundamental characteristics of the system do not change across test types 

and test characteristics. The details of the tests performed on the system are 

summarized in Table 4.1 and Table 4.2. 

Triangular and sinusoidal tests were performed with zero, 1042.4 kN (6.9 MPa 

Nitrogen pressure), and 2084.8 kN (13.8 MPa Nitrogen pressure) forces in each of the 

two hold-down struts in order to determine the effective horizontal stiffness produced 

by the hold-down struts, and also to investigate the effect of vertical forces on the 

dissipative (friction, damping) forces. All triangular waves were rounded at their peak 

displacement values (at the change of velocity) with a phase of duration equal to 1/10 

of the wave period and constant acceleration not exceeding 2g’s. All earthquake and 

white noise tests were performed with a force of 2084.8 kN (13.8 MPa Nitrogen 

pressure) in each of the two hold-down struts. All triangular, sinusoidal, earthquake 

and white noise tests were conducted several times in order to check for repeatability 

of the results. 

The total actuator force recorded during the last two sine and triangular tests, 

namely S11, S12, T11 and T12, which had a maximum velocity near the velocity 

capacity of the table, were distorted to such an extent that they could not be used for 

the purpose of parameter identification. For this reason, these four tests were not 

considered in all facets of this study. 
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4.1.3. Sensors and Data Acquisition System 

Data were acquired by the built-in sensors and data acquisition (DAQ) system 

used for controlling the shaking table. The sampling frequency of the DAQ system is 

set at the default rate of 1024Hz. This DAQ system also has low-pass anti-aliasing 

filtering capabilities. The displacement of the platen relative to the reaction block was 

measured by two digital displacement transducers (Temposonics® linear transducers) 

located on the East and West actuators. The platen acceleration response was 

measured by two Setra®-Model 141A accelerometers with a range of  ±8g’s and a flat 

frequency response from DC to 300Hz. It should be noted here that the signal 

conditioners used for the accelerometers include a built-in analog low-pass filter with 

cut-off frequency set at 100 Hz; implying that acceleration records have frequency 

content only up to 100 Hz.   Pressure in the various actuator chambers were measured 

by four Precise Sensors®-Model 782 pressure transducers (located in the tension and 

compression chambers of each actuator) with a pressure range from 0 to 68.9 MPa and 

a (sensor/DAQ) resolution of 689.5 Pa. These pressure transducers are located near the 

end caps of each actuator. Measured pressures are converted to actuator forces by 

multiplying them with the corresponding actuator piston areas and combining the 

contributions from both chambers. At this point, it is important to mention that 

pressure recordings were high-pass filtered to remove their static pressure 

components, but were not low-pass filtered. The velocity of the platen is the only 

response quantity measured indirectly. To obtain a wideband estimate of velocity, the 

differentiated displacement sensor signal is combined with the integrated acceleration 
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sensor signal via a crossover filter.  This filter ensures that the velocity estimate of the 

platen consists primarily of differentiated displacement at low-to-medium frequencies 

for which the displacement sensor is more accurate, and integrated acceleration at 

medium-to-high frequencies for which the acceleration sensor is more accurate (Thoen 

2004). 

The MTS 469D Seismic Controller Recorder software was used to record the 

digitized data; this software is an integral part of the MTS 469D Digital Controller. 

The sampling rate of this software can be set at a different rate than the one used by 

the controller (1024 Hz). The sampling rate of the recorder was set at 512 Hz during 

the tests. Again, to prevent aliasing, the anti-aliasing digital filter built-in the recorder 

was enabled during the tests. The sampling rate used on the recorder was sufficiently 

high for all the tests performed on the system. 

To interpret the results presented in the following sections, two important 

general observations about the recorded data need to be pointed out here. In all the 

tests performed, two harmonic signals at 10.66 Hz and 246 Hz were observed 

repeatedly mainly in the total force and table acceleration records. The signal at 10.66 

Hz corresponds to the oil column frequency of the system. The effective table mass of 

the system and the oil column within the actuators give rise to a mass-spring system 

with a natural frequency referred to as the oil column frequency (Thoen and Laplace 

2004; Conte and Trombetti 2000; Kusner et al. 1992). This oil column resonance 

frequency tends to be excited when there is a sudden change in the motion of the 

platen such as a direction reversal. The most likely source of the second harmonic 
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signal at 246 Hz is the resonance between the pilot stage and the third stage of the 

servo-valves. Due to low-pass filtering of the acceleration records at 100 Hz, this 246 

Hz harmonic signal can be observed only slightly in the acceleration records, but it is 

clearly observed in the actuator force records that are only subjected to high-pass 

filtering. The discrepancy between the filtering of the actuator force and platen 

acceleration data does not allow to simulate the high frequency harmonic components 

of the total actuator force by use of the recorded table motion. 

4.2. Model and Parameter Estimation by Least Squares Approach 

4.2.1. Conceptual Model 

A detailed analysis of the dynamics of the platen and hold-down struts 

(Ozcelik et al., 2007) indicates that several non-linear terms affecting the inertial and 

elastic forces are small and can be neglected. Under these conditions, a simplified 

mathematical model of the shake table system with a relatively small number of 

unknown parameters can be formulated. This model is represented in Figure 4.2, 

where ( )actF t = the total effective actuator force applied on the pistons of the two 

horizontal actuators, eM = effective mass of the platen (including the mass of the 

moving parts of the horizontal actuators and a portion of the mass of the hold-down 

struts), eK = total effective horizontal stiffness provided by the two hold down struts, 

eC = effective viscous damping coefficient, and 
e

Fµ = effective Coulomb friction force 

due to various sources, and ( )xu t = total horizontal displacement of the platen along 

the longitudinal direction. 
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According to this simplified model, the equation of motion of the shake table 

can be written as  

 ( )( ) ( ) ( ) ( ( )) ( )
ee x e x e x x actM u t K u t C u t F sign u t F tα

µ+ + + =  (4.1) 

where the exponent α  is a constant. The model parameters to be identified ( eM , eK , 

eC ,
e

Fµ ,α ) are all effective in nature, as different sources are lumped into the same 

type of resisting force (e.g. various physical sources of energy dissipation contribute to 

the viscous damping coefficient eC ). 

4.2.2. Basic Least Squares Formulation  

The parameters ( eM , eK , eC ,
e

Fµ ) of the mathematical model given in (4.1) 

are identified by use of the linear least squares method for a given value of α . The 

objective function to be minimized is given by 

 
( ) 2
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2

1 0

( ) ( )
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e

j

TN

i act e x e x e x x
i
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j act
j

F t M u K u C u F sign u dt

F t dt

α
µλ

λ

=

=

⎡ ⎤− − − +⎢ ⎥⎣ ⎦
∈ =

∑ ∫

∑ ∫
 (4.2) 

where ∈ = normalized error to be minimized for a given value of α , N  = number of 

tests considered, iT  = duration of the thi  test, and iλ  = weight assigned to the thi  test. 

Equation (4.2) can be rewritten in the following alternative form:  

 2 1 T T∈ = + − − Ty ay b y y b  (4.3) 

where y , a , and b  are defined as: 
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 ( ), , ,
e

T
e e eM K C Fµ=y  (4.4) 
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iTN
T

i
i

dtλ
=

=∑ ∫a RR  (4.5) 
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i

F t dtλ
=

=∑ ∫b R  (4.6) 

in which  

 ( ) ( )( )( ), ( ), ( ) ( ) , ( )T
x x x x xu t u t u t sign u t sign u tα=R  (4.7) 

The normalized weights iλ  appearing in Equations (4.5) and (4.6) are defined as 

 
2

1 0

( )
j

i
i TN

j act
j

F t dt

λλ

λ
=

=

∑ ∫
 (4.8) 

Vectors y  and R  are referred to as the parameter vector and the measured response 

vector, respectively. It should be noted that the components of the response vector R  

as well as the actuator force ( )actF t  are known from the recorded test data. 

The model parameters 0y  that minimize the error measure 2∈  satisfy the 

normality conditions 

 
2∂∈
=

∂
0

y
 (4.9) 

which after considerations of (4.3) leads to 

 0 =ay b  (4.10) 
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After finding the optimum parameters, 0y , by solving (4.10), the minimum squared 

error can be obtained as 

 2
0 01 T∈ = −b y  (4.11) 

Since the tests performed on the system involve widely different amplitudes 

(Table 4.1 and Table 4.2), it is necessary to consider the use of weighting factors iλ . 

For this purpose, we define i∈  as the normalized weighted error in the thi  test for the 

optimum values of the parameters as 
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 (4.12) 

By using (4.12), the minimum squared error 2
0∈  can be written as 

 2 2
0

1 0

( )
iTN

i act i
i

F t dtλ
=

⎡ ⎤⎧ ⎫⎪ ⎪∈ = ∈⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∑ ∫  (4.13) 

One possible choice for the weights iλ  is given by 

 2

0

1 ( )
iT

i actF t dtλ = ∫  (4.14) 

In this case, the minimum squared error reduces to 

 2
0

1

1 N

i
iN =

∈ = ∈∑  (4.15) 



 126

indicating that the choice of iλ  given in (4.14) has the advantage of assigning equal 

relative importance to all tests, regardless of their force amplitudes. 

A second possible choice is to select 1iλ =  ( 1, , )i N= … . In this case, the 

minimum squared error takes the form 

 2 2 2
0

1 10 0

( ) ( )
ji TTN N

act act i
i j

F t dt F t dt
= =

⎛ ⎞
∈ = ∈⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫  (4.16) 

Indicating that the tests performed at lower force amplitudes are given less relative 

importance than those performed at larger force amplitudes. Many other choices are 

possible for iλ  and some are considered in the sequel. 

4.2.3. Estimation of Parameterα   

The proposed linear least square approach to determine the model parameters 

( eM , eK , eC , 
e

Fµ ) presumes that the parameter α  controlling the viscous dissipative 

force model ( )eC x α  is known. In an attempt to determine the optimum value of α , 

the minimum least square error 0∈  was computed for a set of values of α  in the range 

from 0.0 to 1.0. In this process, all the triangular tests for a Nitrogen pressure of 13.8 

MPa in the hold-down struts were considered with four choices for the weights iλ , 

namely (1) 1iλ = , (2) 2

0
1/ ( )iT

i xu dtλ = ∫ , 
1/ 2

(3) 2

0
1/ ( )iT

i xu dtλ ⎡ ⎤= ⎢ ⎥⎣ ⎦∫  and 

(4) 2

0
1/ ( )iT

i actF t dtλ = ∫ , were used. 
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The results obtained for 0∈  as a function of α  and the types of weights iλ  are 

presented in Figure 4.3 which shows that 0∈  is relatively independent of the types of 

weights iλ  and of the value of parameter α . These results indicate that the overall 

minimum least square error combining several tests may not be the best criterion to 

determine the optimum value of the parameter α . Instead, the stability of the 

parameters eC  and 
e

Fµ  identified from individual tests at different amplitudes is used 

to determine the optimum value of parameter α . Thus, the least square identification 

procedure was applied separately to the data from each of the sinusoidal tests S1 

through S10 of increasing peak velocity for several values of parameterα . The 

resulting estimates of 
e

Fµ  and eC  for α = 1 and α = 1/2 are presented in Figure 4.4. In 

the case of a linear viscous force model (α =1), the estimate of the Coulomb friction 

force 
e

Fµ  is relatively constant from test to test (Figure 4.4a), but the viscous 

coefficient eC  decreases with test order and velocity (Figure 4.4c). This result 

indicates that the dissipative forces during sinusoidal tests cannot be represented by a 

simple combination of Coulomb friction and linear viscous damping.  The results for a 

nonlinear viscous force (α = 1/2) show a more constant estimate for eC  (Figure 4.4d), 

but the estimated friction force 
e

Fµ  changes somewhat from test to test in this case 

(Figure 4.4b). Attempts with other values of α  do not lead to results significantly 

more uniform than those obtained for α = 1/2. Thus, the value α = ½ was adopted in 

this study. 
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Figure 4.4e and Figure 4.4f show the estimated total dissipative force at the 

maximum achieved velocity for each test plotted versus the peak velocity. The total 

dissipative force is calculated as 

 )( ( )
ed e x xF C u F sign uα

µ= +  (4.17) 

where 
e

Fµ and eC  are the parameter values estimated by the least squares approach for 

each particular test. Comparison of the results in Figure 4.4e and Figure 4.4f indicate 

that two significantly different models ( 5.0=α  and 0.1=α ) lead to essentially the 

same total dissipative force. Thus, it appears that individual test data may not be 

sufficient to discriminate between the different combinations of α , 
e

Fµ and eC  (i.e., 

eliminate compensation effects).  

4.2.4. Equivalent Linear Viscous Damper 

To understand the trade-offs between the Coulomb friction force ( )sign
e xF uµ  

and the viscous damping force ( )signe x xC u uα , it is convenient to introduce an 

equivalent linear viscous damper characterized by the damping coefficient eC .  This 

constant, eC , is defined such that the energy dissipated by the equivalent linear 

viscous damper over a cycle of periodic response of duration T is equal to that 

dissipated by the complete model in Eq. (4.17). The resulting expression for eC  is 

given by  

 1-
1 2ee eC F v C v α

µγ γ= +  (4.18) 
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where v  denotes the peak velocity, and  

 2
1

0 0

T T

x xv u dt u dtγ = ∫ ∫  (4.19) 

 11 2
2

0 0

/
T T

x xv u dt u dtααγ +−= ∫ ∫  (4.20) 

In the particular case of a periodic triangular test with velocity v and period T, it can 

be shown that 1 2 1γ γ= =  and 1-
ee eC F v C v α

µ= + . In the case of a sinusoidal test 

with velocity ( ) ( )sin 2xu t v t Tπ=  characterized by the peak velocity v  and period T, 

the factors 1γ  and 2γ  become 

 1
4γ
π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.21) 

 ( )
( )

2

2

22
1

α ααγ
π α α

Γ⎛ ⎞= ⎜ ⎟+ Γ⎝ ⎠
 (4.22) 

where ( )Γ ⋅  denotes the Gamma function. In particular, for the special case 1 2α = , 

then 1 1.273γ = , 2 1.113γ = , and 1.273 1.113
ee eC F v C vµ= + . 

Equation (4.18) indicates that for a given value of the peak velocity v , 

different combinations of 
e

Fµ and eC  can lead to the same equivalent linear viscous 

damping coefficient and thus to the same total energy dissipation. Hence, to properly 

identify the Coulomb and viscous dissipative forces, it is necessary to consider 

simultaneously several tests with very different velocities. The last term in Eq. (4.18)
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and the results in Figure 4.4c for the estimated linear viscous damping coefficient 

( 1=α ) suggest that an effective viscous damper with a fractional power law is a more 

suitable representation of the data. 

In what follows, the data from different sets of tests will be pooled together, 

and the parameter α  will be set to 0.5 on the basis of the relative stability of the 

estimates of 
e

Fµ and eC  obtained from different tests. The resulting estimates of eM , 

eK  and of the total dissipative force are relatively independent of the assumed value 

for the parameter α . 

4.3. Parameter Estimation 

The parameter identification was conducted separately for nine sets of pooled 

data. Three of the sets consist of the combination of 10 sinusoidal tests for hold-down 

pressures of 0, 6.9, and 13.8 MPa, respectively. A second group of three sets involve 

the combination of 10 triangular tests also for hold-down Nitrogen pressures of 0, 6.9, 

and 13.8 MPa, respectively. The seventh set corresponds to the three scaled El Centro 

seismic tests at the operating hold-down Nitrogen pressure of 13.8 MPa. The eighth 

set consists of data from three white noise tests with rms amplitudes 0.03g, 0.05g, and 

0.07g, respectively, conducted at the operating hold-down Nitrogen pressure. Finally, 

the ninth set is defined by two white noise tests with rms amplitude of 0.10g and 

0.13g, respectively, conducted at the operating hold-down Nitrogen pressure. 
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4.3.1. Effective Mass Estimation  

The results of the least squares identification for the effective mass eM  are 

presented in Table 4.3 for two choices of the weights corresponding to (1)
i iλ λ=  and 

(2)
i iλ λ= . With one exception, the estimated effective masses obtained from different 

test types, different Nitrogen pressure conditions in the hold-down struts, and different 

weights are in good agreement. It appears that eM  increases slightly with the nitrogen 

pressure in the hold-down struts, thus suggesting some correlation with the effective 

stiffness eK . The average of the estimates of eM  for the periodic tests at the hold-

down Nitrogen operating pressure of 13.8 MPa is 144 tons.  The estimate of eM  from 

the white noise tests at 0.10g and 0.13g rms acceleration is also 144 tons matching the 

average result for the triangular and sine tests. The average estimates of the effective 

mass from the white noise tests with smaller amplitudes (0.03-0.05-0.07g rms 

acceleration) is 143.6 tons, which is also close to the average estimate from the 

periodic tests. The estimates of eM  from higher frequency earthquake tests are on the 

average 1.4 percent larger than those obtained from lower frequency triangular and 

sine tests.  

The one deficient estimate of the effective system mass occurs for the 

sinusoidal tests at zero hold-down Nitrogen pressure and for the weights (2)
i iλ λ= . 

The problem is associated with the low amplitudes, velocities, and accelerations 

achieved during tests S1 through S4. When these four tests are removed from the pool, 

the estimate of the effective mass increases from 114.1 to 146.9 ton. Also, when all S1 
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through S10 tests are used but the viscous damping coefficient is constrained (as 

described later), then the estimate of the effective mass is 146.1 ton. 

4.3.2. Effective Horizontal Stiffness Estimation  

The results obtained for the effective horizontal stiffness, eK , are reported in 

Table 4.4. It should be noted here that, for tests corresponding to zero Nitrogen 

pressure in the hold-down struts there is no horizontal stiffness acting on the system. 

The estimates of the effective stiffness eK  obtained from the periodic tests 

increase linearly with the Nitrogen pressure in the hold-down struts from an average 

value of 0.635 MN/m for a pressure of 6.9 MPa to an average value of 1.263 MN/m 

for a pressure of 13.8 MPa. The triangular tests involve larger forces in the hold-down 

struts and smaller inertia forces than the sinusoidal tests and appear to yield more 

stable estimates of eK .  

The average estimate of eK  obtained from the El Centro tests is 1.238 MN/m, 

which is 2% lower than the corresponding average estimate obtained from the periodic 

tests. The results in Tables 3 and 4 indicate that for the earthquake tests there is some 

compensation effects between the estimates of eM  and eK , with eM  being 1.3% 

larger and eK  2% lower than the corresponding estimates from the periodic tests.  The 

average estimate of eK  from the 0.10 and 0.13g RMS acceleration white noise tests is 

1.405 MN/m, which is 11.2% larger than the corresponding average estimate from the 

periodic tests. The estimates of eK  based on the low-amplitude (0.03, 0.05, and 0.07g 

RMS acceleration) white noise tests are significantly higher than the other estimates 
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and appear to be in error. The low amplitude white noise tests involve extremely small 

displacements but significant accelerations. Under these conditions the elastic forces 

are much smaller than the inertia forces, and the stiffness can not determined 

accurately. 

From the above results, it can be concluded that the effective horizontal 

stiffness of the system is approximately 1.263 MN/m in the nominal case 

corresponding to a Nitrogen pressure of 13.8 MPa in the hold-down struts. For a 

Nitrogen pressure of 6.9 MPa, the effective stiffness is reduced to 0.63 MN/m.  

4.3.3. Estimation of Dissipative Force 

The estimates of the dissipative force parameters 
e

Fµ and eC  obtained from the 

nine pooled sets of data for 0.5α =  and weighting factors ( (1)
i iλ λ= and (2)

i iλ λ= ) are 

reported in Table 5 in the columns labelled “unconstrained”. The results indicate that 

both 
e

Fµ and eC  increase with the hold-down Nitrogen pressure. The average values of 

e
Fµ over the two weighting factors and the two types of tests (triangular and 

sinusoidal), are 16.7, 25.9, and 29.5 kN for the three hold-down Nitrogen pressures 

(0.0, 6.9, and 13.8 MPa). The corresponding average values of eC  are 18.4, 34.5, and 

46.0 0.5( / )kN s m . Although the unconstrained estimates of 
e

Fµ  are fairly stable for a 

given hold-down Nitrogen pressure, the corresponding unconstrained estimates of eC  

vary significantly with weighting factor and test type. 

A second set of estimates for 
e

Fµ was obtained by repeating the least-squares 

based estimation process with eC  constrained to be equal to 46.0 [ 0.5kN(s/m) ] 
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corresponding to the average estimate of eC  over the sinusoidal and triangular tests 

for a hold-down nitrogen pressure of 13.8 MPa. The resulting constrained estimates of 

e
Fµ  are also given in Table 4.5. The constrained estimates of 

e
Fµ  are more stable 

across test type and weighting factor. The average constrained value of 
e

Fµ  over the 

sinusoidal and triangular tests and the two weighting factors are 8.2, 22.1 and 26.5 kN 

for the hold-down Nitrogen pressures of 0, 6.9, and 13.8 MPa, respectively. The 

constrained estimates of the friction force
e

Fµ from the scaled El Centro tests and from 

the two sets of white noise tests are 28.3, 26.1, and 24.4 kN, respectively, which are 

close to the average estimate of 26.5 from the periodic tests.  The deviations from the 

average of the periodic tests are as high as 8%, but these differences amount to less 2.1 

kN which is well within the margin of error in estimating the dissipative forces from 

the measured data. 

Both the constrained and unconstrained estimates of 
e

Fµ  suggest that the 

friction forces depend on the hold-down Nitrogen pressure and, consequently, are 

mostly associated with friction on the vertical bearings of the platen. The 

unconstrained estimates of the effective viscous damping coefficient eC  also depend 

on the hold-down Nitrogen pressure suggesting that the dissipative viscous forces are 

also related to the vertical bearings. The constrained estimate of eC  is selected to be 

independent of the hold-down Nitrogen pressure and would be consistent with viscous 

forces in the lateral bearings of the platen and in the actuators instead of the vertical 

bearings. Both set of estimates of 
e

Fµ  and eC  lead to essentially the same total 
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dissipative forces (within the margin of error) and, consequently, it is not possible to 

discriminate between these two possibilities. The constrained estimates will be used in 

the sequel. 

The results given in Table 4.7 indicate that the constrained estimate of 
e

Fµ  

based on the scaled El Centro tests is within 7% of the average value of 
e

Fµ based on 

sinusoidal and triangular tests. The corresponding difference for white noise tests is 

less than 8%. Thus, the constrained least squares approach can identify the total 

friction force from a variety of tests.  

4.3.4. Decomposition of the Total Friction Force 

The two major sources of Coulomb-type friction in the system are the vertical 

and lateral bearings. The inferred values for the total friction force 
e

Fµ  obtained from 

tests performed under different hold-down Nitrogen pressures can be used to quantify 

these two sources of friction. The average of the estimates of 
e

Fµ  obtained from 

sinusoidal and triangular tests for different levels of Nitrogen pressure in the hold-

down struts are shown in Figure 4.5 versus the total corresponding vertical force 

acting on the vertical bearings. The total vertical force was obtained experimentally 

from readings of the pressures on the vertical bearings for the different hold-down 

pressures. The forces correspond to 1.613, 3.698, and 5.783 MN for hold-down 

Nitrogen pressures of 0.0, 6.9 and 13.8 MPa, respectively. A least square fit to the 

three points thus obtained leads to a line with a slope of 0.39% and an intercept of 4.1 

kN. It appears then that the total friction force 
e

Fµ  can be expressed as 
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,e lat e zF F Fµ µ µ= + , where zF = total vertical force acting on the vertical 

bearings, , 4.1latFµ =  kN = friction force exerted by the lateral bearings, and 

0.39%eµ = = Coulomb friction coefficient in the vertical bearings. 

A decomposition of the dissipative forces into friction components on the 

horizontal and vertical bearings, and viscous forces is presented in Figure 4.6 based on 

tests performed under the nominal hold-down Nitrogen pressure of 13.8 MPa. Similar 

results were found from triangular tests performed under the same hold-down 

Nitrogen pressure. 

The results in Figure 4.6 indicate that for a table velocity of 75 cm/sec for 

example, 6% of the total dissipative force is due to Coulomb friction on the lateral 

bearings, 34% to Coulomb friction on the vertical bearings, and 60% to viscous 

damping forces.  

Figure 4.6 also shows a comparison between the total dissipative force 

obtained by use of the overall inferred model represented by Eq. (4.1) (curve in Figure 

4.6) and the corresponding forces obtained through (constrained) least squares 

parameter estimation for individual sinusoidal and triangular tests (symbols in Figure 

4.6). It is observed that the inferred model slightly underestimates the total dissipative 

force for sinusoidal tests, but overestimates the total dissipative force for triangular 

tests. 
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4.4. Comparison of Parameters Identified by Periodic, White Noise, and 

Earthquake Simulation Tests 

Before comparing the parameter identification results obtained by applying the 

least squares method to different types of tests including periodic, white noise and 

earthquake tests, a comparison of the results obtained from two different identification 

methods based on periodic sinusoidal and triangular test data is presented. The values 

of the parameters identified in the present paper by the (constrained) least squares 

approach are compared in Table 6 with those obtained previously (Ozcelik et al., 

2007) by analysis of the observed hysteresis loops. The estimates of the effective 

mass, eM , and effective stiffness, eK , obtained using the two identification methods 

are in excellent agreement. The details of the parameters related to the dissipative 

forces are slightly different, but the values of the viscous damping coefficient eC  are 

within 3 %. Also, the total static Coulomb friction forces 
e

Fµ obtained by the two 

methods differ by 2.7% corresponding to 0.7 KN, which is well below the margin of 

error. The results obtained by the least squares approach lead to slightly larger 

dissipative forces (2.8% at a velocity of 1 m/sec), but the difference amounts to about 

2.0 KN for a velocity of 1 m/sec.  

Next, we examine the stability of the results of parameter identification by the 

least squares method when applied to different types of tests including periodic, white 

noise and earthquake tests. A summary of the results obtained is presented in Table 7. 

Comparison of the results indicates that for the scaled earthquake tests, the estimated 

mass is slightly larger (1.4%), the estimated stiffness slightly smaller (2.0%), and the 
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(constrained) friction force slightly larger (6.8%) than for the periodic tests. The 

estimate of the effective mass based on the white noise tests is accurate but the 

effective stiffness is overestimated. 

Table 4.5 includes two sets of estimates for the viscous damping coefficient, 

eC , and the Coulomb friction force. In the first set, the values of eC  were left 

unconstrained while in the second set, the constants eC  were constrained to 

46.0 0.5kN(s/m) . It is apparent that the constrained parameter estimation results for the 

Coulomb friction are similar across the various types of tests; but the unconstrained 

estimates of the viscous damping coefficient and Coulomb friction force obtained 

from the white noise tests are in error. 

In conclusion, the least squares approach appears to be equally capable of 

identifying the key system parameters from scaled earthquake tests and periodic 

sinusoidal and triangular tests. For white noise tests, the approach leads to the correct 

effective mass, but the obtained values for the other parameters are questionable. 

4.5. Experimental Validation of the Proposed Model of the NEES-UCSD 

Shake Table Mechanical System 

4.5.1. Comparison between Analytical and Experimental Total Actuator Force 

The results of the least squares parameter identification obtained here are very 

similar to those obtained previously by analysis of the observed hysteresis loops. 

Those results had been validated by detailed comparisons of simulated and recorded 

actuator forces for test T4, 100% Northridge earthquake simulation test, and a white 
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noise test with a 10%g root mean square amplitude (Ozcelik et al., 2008). As 

additional validation, the total actuator force recorded during the 300% El Centro 

earthquake test will be compared with the simulated actuator force obtained from Eq. 

(4.1) using the recorded actual table displacement, velocity and acceleration as inputs 

and 0.5α = . 

Figure 4.7 shows a 2-seconds segment of the recorded and simulated total 

actuator force time-histories for the El Centro earthquake record scaled to PGA= 

1.11g. It is observed that the analytical prediction based on the estimated model 

parameters given above is in excellent agreement with the recorded total actuator 

force. An alternative way of comparing test results with simulations is presented in 

Figure 4.8 that shows plots of recorded and simulated total actuator forces versus 

recorded platen velocities for the 300% El Centro earthquake test. For sake of clarity, 

only one sec segment of the test is shown. Again, the agreement between analytical 

and experimental results is excellent. 

4.5.2. Comparison between Analytical and Experimental Steady-State 

Frequency Response  

The mechanical system described by Eq. (4.1) has an undamped natural 

frequency given by /e e eK Mω =  corresponding to a frequency of 0.471 Hz (period 

of 2.12 sec). One way of testing the energy dissipation model included in Eq. (4.1) is 

to consider the steady-state response of the system to harmonic excitation with 

frequencies in the vicinity of the system natural frequency eω . In the vicinity of eω , 
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the inertial and elastic forces approximately cancel each other, and the actuator force 

is approximately equal to the damping force.  

With the above objective in mind, the equation of motion of the system, 

Eq.(4.1), was integrated numerically for a sinusoidal actuator force 

0( ) sin(2 )actF t F f tπ= , and the peak amplitude maxu  of the steady-state displacement 

was obtained for different values of the excitation frequency f  and the force 

amplitude 0F . Theoretical dynamic amplification factors max 0/( / )d eR u F K=  for 

different values of 0F  in the range from 49 to 250 kN were calculated and are shown 

versus frequency f  (in Hz) in Figure 4.9 in the form of several frequency response 

curves. Also shown in Figure 4.9 are the values of the experimental ratios 

max max/( / )eu F K  obtained for several sinusoidal tests plotted versus the frequency of 

the test. Since the system is nonlinear, these two ratios are not strictly comparable. In 

the experimental ratio, maxu  is the maximum value of the feedback table displacement 

(which may not be exactly sinusoidal) for a commanded sinusoidal displacement, and 

maxF is the peak value of the recorded total actuator force which also may not be 

exactly sinusoidal. In the theoretical dynamic amplification factor dR , the actuator 

force is sinusoidal, but the calculated displacement response is not exactly sinusoidal. 

In spite of these differences, the theoretical dynamic amplification factors (curves in 

Figure 4.9) and the experimental ratios (black dots in Figure 4.9) follow the same 

trends. The experimental ratios for tests S3, SR7 and SE4, all with frequencies below 

the frequency of the system, fall on the left branches of the dynamic amplification 
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curves. The measured peak actuator forces during these tests were 83, 262, and 384 

kN, respectively, and the corresponding experimental ratios fall close to the dynamic 

amplification curves shown for 100.8 and 250 kN. The experimental ratios for tests 

SE5, SR9, S9, S7 and S5, which have peak actuator forces in the range from 133 to 

242 KN, fall between the descending branches of the dynamic amplification curves for 

100 and 250 kN. The experimental ratio for test S6 which has a peak actuator force of 

66.4 kN falls on the dynamic amplification curve for 66.4 kN. Finally, the 

experimental ratio for test S4 with a peak actuator force of 49 kN falls very close to 

the amplification curve for 49 kN. The comparisons between analytical and 

experimental results in Figure 4.9 give further indication that the inferred model of the 

NEES-UCSD shake table mechanical system is consistent with the data.  

A better understanding of the dynamic response of the shake table can be 

reached by obtaining estimates of the equivalent linear viscous damping ratio eξ  for 

different velocities of the table. This equivalent damping ratio can be obtained from 
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e e
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=  (4.23) 

where eC is the equivalent viscous damping coefficient given by Eq. (4.18). 

Substitution from (4.18) into (4.23) leads to  
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⎛ ⎞ ⎛ ⎞
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 (4.24) 

where v  denotes the peak table velocity in m/s. After substitution of the inferred 

values of the model parameters, (4.24) reduces to 
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 ( )3.97 5.97 100eξ ν ν= +  (4.25) 

Numerical values for the equivalent linear viscous damping ratio eξ  for different 

platen velocities are given in Table 4.8. 

The approximate equivalent linear viscous damping ratio eξ  can be used to 

estimate the frequency mf  at which the amplification ratio reaches its peak value mA .  

The standard relations for the equivalent linear system are 

 ( )2 21 2 ,  1 2 1m e e m e ef f Aξ ξ ξ= − = −  (4.26) 

where 2
e

e
f π

ω= .  The amplitudes of the platen displacement and the actuator force at 

the peak amplification point ( ),m mf A  are given by ( )max 2 mu fν π= , and 

0 maxe mF K u A= , respectively.  The values of max, ,m mf A u  and 0F are also given in 

Table 4.8. The points ( ),m mf A  as a function of maxu , ν , or 0F  describe the 

approximate locus of the peak amplification points in Figure 4.9 and can be used to 

define future sinusoidal tests of the shake table that would help to further validate the 

dissipative force model described herein. 

4.6. Conclusions 

In this paper, the parameters characterizing a mathematical model of the 

mechanical sub-system of the NEES-UCSD large shake table are estimated from test 

data by use of a least squares approach. The parameters identified include the effective 

mass, effective horizontal stiffness induced by the Nitrogen-filled hold-down struts, 
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the Coulomb friction forces on the vertical and lateral bearings, and the effective 

viscous damping coefficients.  

In the case of periodic sinusoidal and triangular tests, the parameter estimates 

obtained in the present paper by the least squares approach are in close agreement with 

those obtained previously (Ozcelik et al., 2008) by analysis of the observed hysteresis 

loops. The effective mass, eM , and effective horizontal stiffness, eK , obtained by two 

methods are essentially the same. The viscous damping coefficients eC  and total 

Coulomb friction forces 
e

Fµ obtained by the two methods differ by about 3%. The 

results obtained by the least squares approach lead to slightly larger dissipative forces 

(3%) but the differences amounting to about 2 kN for a velocity of 1 m/s are well 

below the margin of error in estimating the dissipative forces from the measured data. 

The main finding of the paper is that the least squares approach appears to be 

equally capable of identifying the key system parameters from scaled earthquake tests, 

and periodic sinusoidal and triangular tests. For white noise tests, the least squares 

approach leads to the correct effective mass, and the correct total friction force if the 

viscous damping coefficient is constrained, but the values obtained for the effective 

stiffness are in error. The smaller the amplitude of the white noise tests, the larger the 

error in the estimate of the effective stiffness. If the viscous damping coefficient is left 

unconstrained, the identified values for the friction force and viscous damping 

coefficient from white noise tests are very different from those estimated from 

periodic and earthquake tests. 
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The NEES-UCSD shake table mechanical sub-system considered, which does 

not include the effects of the oil columns in the actuators, has a frequency of 0.47 Hz 

that is clearly observable in the theoretical and experimental steady-state frequency 

response curves for the system. This characteristic frequency is of course very 

different from the oil column frequency, which for the NEES-UCSD shake table 

system is 10.66 Hz. The theoretical dynamic amplification (or frequency response) 

curves depend on the amplitude of the actuator force and match closely the 

experimental results. 

As part of the study presented herein, it has also been found that the 

relationship between the viscous forces and table velocity is not linear but can be 

represented by a power law; that the friction forces on the vertical bearings can be 

separated from those on the lateral bearings; and that the dissipative forces typically 

represent a very small fraction of the total actuator force. 

Chapter 4 is a reprint of the material accepted for publication in the Journal of 

Engineering Mechanics (2008), Ozcelik, O., Luco, J.E., and Conte, J.P. The 

dissertation author was the first author of this paper. 

 



 145

LIST OF TABLES 

Table 4.1: Characteristics of the Triangular and Sinusoidal Tests Performed on the System 146 
Table 4.2: Characteristics of Earthquake and White Noise Tests Performed on the System. 147 
Table 4.3: Estimates of the Effective Mass of the System for Different Test Types and 

Different Levels of Nitrogen Pressure in the Hold-Down Struts ( 0.5α = ) ........ 148 
Table 4.4: Estimates of the Effective Horizontal Stiffness of the Hold-down Struts for 

Different Test Types and Different Levels of Nitrogen Pressure in the Hold-Down 

Struts ( 0.5α = ) ................................................................................................... 149 
Table 4.5: Estimates of Coulomb Friction Force and Viscous Damping Coefficients Obtained 

by Least Squares Approach with Pooled Datasets ( 0.5α = ).............................. 150 
Table 4.6: Comparison of Model Parameters Estimated from Two Different Methods Based on 

Data from Periodic Tests (Sinusoidal and Triangular) Performed Under Nominal 

Hold-Down Nitrogen Pressure of 13.8 MPa ........................................................ 151 
Table 4.7: Comparison of Model Parameters Identified Based on Periodic, Earthquake, and 

White Noise Tests (Hold-Down Nitrogen Pressure of 13.8 MPa) ....................... 152 
Table 4.8: Equivalent Linear Viscous Damping Ratio, (4.25), for Different Platen Velocities, 

and Characteristics of Peak Amplification Points ................................................ 153 

 



 146

Table 4.1: Characteristics of the Triangular and Sinusoidal Tests Performed on the 

System 

Tests 
Displacement 

[cm] 

Velocity

[cm/s] 

Frequency

[Hz] 
Tests

Displacement

 [cm] 

Velocity 

[cm/s] 

Acceleration

[g] 

Frequency

[Hz] 

T1 5.00 1.00 0.05 S1 4.00 1.00 0.0003 0.04 

T2 7.50 1.50 0.05 S2 4.00 1.51 0.0006 0.06 

T3 12.50 2.50 0.05 S3 4.00 2.51 0.0016 0.10 

T4 50.00 10.00 0.05 S4 4.00 10.05 0.0257 0.40 

T5 25.00 10.00 0.10 S5 4.00 25.12 0.1608 1.00 

T6 62.50 25.00 0.10 S6 10.00 25.12 0.0643 0.40 

T7 37.50 25.00 0.167 S7 10.00 50.24 0.2573 0.80 

T8 75.00 50.00 0.167 S8 10.00 75.36 0.5789 1.20 

T9 46.88 75.00 0.40 S9 20.00 75.36 0.2895 0.60 

T10 62.50 100.00 0.40 S10 20.00 100.48 0.5146 0.80 

T11 75.00 150.00 0.50 S11 20.00 150.72 1.1578 1.20 

T12 67.50 180.00 0.667 S12 20.00 179.61 1.6442 1.43 
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Table 4.2: Characteristics of Earthquake and White Noise Tests Performed on the 

System 

Tests PGA 
[g] 

RMS Amplitude 
[g] 

Scaling 
[%] 

El Centro - 1 0.07 N/A 20 
El Centro - 2 0.37 N/A 100 
El Centro - 3 1.11 N/A 300 
Northridge 1.84 N/A 100 

WN3%g 0.12 0.03 100 
WN5%g 0.22 0.05 100 
WN7%g 0.32 0.07 100 
WN10%g 0.45 0.10 100 
WN13%g 0.49 0.13 100 
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Table 4.3: Estimates of the Effective Mass of the System for Different Test Types and 

Different Levels of Nitrogen Pressure in the Hold-Down Struts ( 0.5α = ) 

eM  [ tons ]  
Test Type – Nitrogen Pressure 

(1) , 1, ,12i i iλ λ= = … (2) , 1, ,12i i iλ λ= = …

Sine – 0.0 MPa 134.7  114.1  

Triangular – 0.0 MPa 138.4  139.0  

Sine – 6.9 MPa 143.2  143.5  

Triangular – 6.9 MPa 144.3  144.4  

Sine – 13.8 MPa 143.9  144.5  

Triangular – 13.8 MPa 143.9  143.8  

El Centro Tests – 13.8 MPa 146.2  145.7  

WN (0.03, 0.05, 0.07g RMS) – 13.8 MPa 143.6  143.5  

WN (0.10, 0.13g RMS) – 13.8 MPa 144.0  144.0  
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Table 4.4: Estimates of the Effective Horizontal Stiffness of the Hold-down Struts for 

Different Test Types and Different Levels of Nitrogen Pressure in the Hold-Down 

Struts ( 0.5α = ) 

eK  [MN/m]  
Test Type – Nitrogen Pressure 

(1) , 1, ,12i i iλ λ= = … (2) , 1, ,12i i iλ λ= = …

Sine – 6.9 MPa 0.611  0.640  

Triangular – 6.9 MPa 0.644  0.645  

Sine – 13.8 MPa 1.246  1.281  

Triangular – 13.8 MPa 1.261  1.262  

El Centro Tests – 13.8 MPa 1.221  1.255  

WN (0.03, 0.05, 0.07g RMS) – 13.8 MPa 1.916  2.132  

WN (0.10, 0.13g RMS) – 13.8 MPa 1.392  1.417  
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Table 4.5: Estimates of Coulomb Friction Force and Viscous Damping Coefficients 

Obtained by Least Squares Approach with Pooled Datasets ( 0.5α = ) 

Unconstrained Constrained 

e
Fµ  

[KN] 

eC  

1/ 2[ ( / ) ]kN s m
e

Fµ  

[KN] 

eC  

1/ 2[ ( / ) ]kN s m

Tests Types – Nitrogen 

Pressure 

(1)λ  (2)λ (1)λ  (2)λ  (1)λ  (2)λ  (1)λ  (2)λ

Sine – 0.0 MPa 17.4 16.6 21.4 17.6 12.4 5.7 45.9 45.9 

Triangular – 0.0 MPa 17.1 15.8 13.1 21.5 8.7 5.9 45.9 45.9 

Sine – 6.9 MPa 26.1 26.8 41.1 36.1 23.8 19.8 45.9 45.9 

Triangular – 6.9 MPa 24.8 26.0 31.2 29.4 20.7 24.2 45.9 45.9 

Sine – 13.8 MPa 30.1 30.6 49.4 48.4 27.5 23.9 45.9 45.9 

Triangular – 13.8 MPa 27.9 29.2 42.3 43.8 25.9 28.6 45.9 45.9 

El Centro Tests – 13.8 MPa 25.6 28.0 51.3 62.1 26.4 30.2 45.9 45.9 

WN (0.03, 0.05, 0.07g RMS)

– 13.8 MPa 
14.14 14.6 140.03 149.8 25.8 26.3 45.9 45.9 

WN (0.10, 0.13g RMS) – 

13.8 MPa 
9.19 9.4 120.21 123.1 24.3 24.4 45.9 45.9 
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Table 4.6: Comparison of Model Parameters Estimated from Two Different Methods 

Based on Data from Periodic Tests (Sinusoidal and Triangular) Performed Under 

Nominal Hold-Down Nitrogen Pressure of 13.8 MPa 

Model Parameters Least Squares 
Hysteresis Loops 

Approach 

eM  [tons] 144 144 

eK  [MN/m] 1.263 1.266 

eC  [KN (s/m)^0.5] 46.0 44.6 

eµ  [%] 0.39 0.45 

,latFµ  [KN] 4.1 0.0 

e
Fµ  [KN] 26.7 26.0 
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Table 4.7: Comparison of Model Parameters Identified Based on Periodic, Earthquake, 

and White Noise Tests (Hold-Down Nitrogen Pressure of 13.8 MPa) 

Model 
Parameters  

Periodic 
Tests 

El Centro 
Tests  

White Noise Tests  
(10-13%g RMS) 

White Noise Tests 
(3-5-7%g RMS) 

eM  [tons] 144.0 146.0 144.0 143.6 

eK  [MN/m] 1.263 1.238 1.405 2.024 

eC  [kN(s/m)0.5]* 45.9 45.9 45.9 45.9 

Coulomb Friction 
Force [kN]* 26.5 28.3 24.4 26.1 

eC  [kN(s/m)0.5]** 45.9 57.6 121.7 144.9 

Coulomb Friction 
Force [kN]** 27.7 26.8 9.3 14.4 

*    eC  constrained 

**   eC  unconstrained 
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Table 4.8: Equivalent Linear Viscous Damping Ratio, (4.25), for Different Platen 

Velocities, and Characteristics of Peak Amplification Points 

v  eξ  mf  mA  maxu  0F  

[cm/sec] [%] [Hz] - [cm] [kN] 

20.00 33.20 0.416 1.60 7.65 60.5 

25.12 27.72 0.433 1.88 9.23 62.2 

50.24 16.32 0.458 3.11 17.46 71.1 

75.36 12.15 0.464 4.15 25.85 78.9 

100.5 9.91 0.466 5.07 34.32 85.7 

125.00 8.52 0.468 5.89 42.51 91.2 

150.72 7.50 0.468 6.69 51.26 97.0 

180.00 6.67 0.469 7.52 61.08 102.8 
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Figure 4.1: Seven-story full-scale R/C building slice, 19.2m high. 



 156

 

Figure 4.2: Conceptual mechanical model of the table with model parameters eM , 

eK , eC , and
e

Fµ  to be identified through periodic, earthquake and white noise tests. 
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Figure 4.3: Minimum least square error 0∈  as a function of parameter α  and for 

different types of weights iλ  ( 1 12i = … ). 
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Figure 4.4: (a), (b): Coulomb friction forces; (c), (d): viscous damping coefficient; 

and (e), (f): total dissipative force estimated from each of 10 different sine tests for 

1.0α =  and 0.5α = . 

 



 159

 

 
Figure 4.5: Average Coulomb friction forces ( (1)λ  and (2)λ ) as a function of total 

vertical force on vertical bearings (dispersion bounds for sine and triangular tests). 
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Figure 4.6: Decomposition of the total dissipative force into its three major 

components. 
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Figure 4.7: Comparison of recorded and simulated total actuator forces for the 300% 

El Centro earthquake test (13.8 MPa Nitrogen pressure in the hold-down struts). 
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Figure 4.8: Recorded and simulated total actuator force versus recorded table velocity 

plots for 300% El Centro earthquake test (13.8 MPa pressure in the hold-down 

struts). 
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Figure 4.9: Dynamic amplification curves for the nonlinear model in (4.1) of the 

NEES-UCSD shake table mechanical system. 
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CHAPTER 5  

2D MODEL OF THE ASSEMBLY OF THE PLATEN AND 
A GENERIC SPECIMEN 

5.1. Introduction  

The simple conceptual mathematical model for the mechanical subsystem of 

the NEES-UCSD shake table is given below. For the detailed discussion about the 

one-dimensional model refer to Ozcelik et al., (2008)(1). 

 ( )( ) ( ) ( ) ( ( )) ( )e x e x e x e v x actM u t K u t C u t F sign u t F tα µ+ + + =  (5.1) 

where eM  is the effective mass, eK  is the effective stiffness, eC  is the effective 

viscous damping, eµ  is the effective Coulomb friction coefficients and vF  is the 

vertical force acting on the vertical bearings. Identified parameters of the model in 

(5.1) are given in Table 5.1. 

The equation of motion given in (5.1) can be extended to incorporate the rigid 

motion of the platen in three degrees-of-freedom 0 0 0

T

x z yu u θ⎡ ⎤⎣ ⎦  while preserving 

the nature of the identified dissipative mechanism (i.e. ( )( ) ( )e x e v xC u t F sign uα µ+ ). It 
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is anticipated that these three degrees of freedom would be enough to simulate the 

table-specimen dynamic interaction to a sufficient degree. 

The reaction block and the surrounding soil are assumed to be rigid and this 

assumption has been proven to be sufficient by experimental observations (Luco et al., 

2008). The platen is also assumed to be rigid. This assumption may not be realistic 

when the table platen is loaded with heavy specimens (e.g., more than two times the 

weight of the platen). 

The assembly of the rigid platen, a generic specimen and the rigid reaction 

block is given in Figure 5.1. The mechanical components such as vertical bearings, 

hold-down struts are represented as linear springs and the identified dissipative 

mechanism is represented by dashpots and Coulomb friction elements. Spring 

constants for the vertical bearings were not estimated from experimental data but by 

considering the physical characteristics of the vertical bearings, i.e. effective bearing 

area, oil column length, bulk modulus of the oil. The generalized coordinates where 

the equation of motion has been derived for is indicated as “O” in Figure 5.1. 

The main purpose of the derivations given here is to extend the model given in 

(5.1) to two-dimension so that it incorporates the dynamic effects of rigid body motion 

of the platen and a generic specimen. In order to be more general in the derivations, 

eccentricity of xe  is introduced between the center line of the platen, “G”, and the 

center line of the specimen, “O”, and it is assumed to be negative to the left of point 

“O”. 

The motion of the platen at point “O” is defined as 
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 0 0 0 0

T

x z yu u θ⎡ ⎤= ⎣ ⎦u  (5.2) 

The parameters of the assembly introduced in Figure 5.1 are vbK = stiffness of one of 

the vertical bearings; eK  = total horizontal stiffness provided by the hold-down struts; 

eC  and eµ  = effective viscous damping and the Coulomb friction coefficients  of the 

identified dissipative mechanism, respectively; eM  and yIθ = effective mass and mass 

moment of inertia about the principal y axis of the platen, respectively; ( )actWF t  and 

( )actEF t  = scalar actuator forces on the west and the east side of the platen, 

respectively (these forces are generated by the servo-hydraulic components of the 

shake table (Chapter 2); and iu  = relative floor displacement of the specimen (note 

that any specimen model can be coupled to the mechanical subsystem). Point “G” in 

Figure 5.1 indicates the center of gravity of the platen, and it is assumed to be positive 

downward.  Numerical values of the parameters of the mechanical subsystem as well 

the dimensions of the assembly shown in Figure 5.1 are given in Table 5.2 and 7.3. 

Equation of motion of the assembly with respect to the generalized coordinates 

at “O” can be written as follows 

 0 0 ( ) ( ) ( ) ( ) ( ) ( )act spr damp coul spet t t t t t= − − − −Μ u F F F F F  (5.3) 

where 0M  = [ ]3 3×  mass tensor of the platen, ( )act tF  = [ ]3 1× actuator force vector, 

( )spr tF  = [ ]3 1×  spring forces due to the horizontal and vertical springs, 

( )damp tF =[ ]3 1×  viscous dissipative forces, ( )coul tF  = [ ]3 1×  Coulomb friction forces, 
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and ( )spe tF  = [ ]3 1×  resisting forces due to the specimen mounted on the platen. In the 

following sections, details derivations for each of these force components will be 

given. 

5.2. Mass Tensor of the Platen 

The mass tensor of the platen with respect to the principal axis passing through 

point “G” can be written in the following form due to the symmetry of the platen 

geometry 

 
0 0

0 0
0 0

eff

O eff

y

m
m

Iθ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  (5.4) 

Following relation exists between the coordinates at “G” and the coordinates at “O” 

 0 0G G=u R u  (5.5) 

where  

 0

1 0
0 1
0 0 1

G

G x

h
e

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

R  (5.6) 

By using (5.5) and (5.6) the mass matrix with respect to the generalized coordinates at 

“O” can be found 
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0 0 0

0
2 2

0
0

T
G G G

eff G eff

eff x eff

G eff x eff G eff G eff y

m h m
m e m

h m e m h m e m Iθ

=

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− + +⎣ ⎦

M R M R

M

 (5.7) 

5.3. Actuator Force 

( )actWF t  and ( )actEF t  are the scalar actuator forces generated by the servo-

hydraulic component of the shake table system. Here the details of transforming these 

scalar quantities to generalized coordinates are given. 

Motions at points 1A  and 2A , where the actuators are connected to the platen, 

are assumed to be in the following form 

 
( )

( ) 1, 2
A

ixA
i

iz

u
i

u
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

u  (5.8) 

Transformation matrices which transform these motions to generalized 

coordinates at “O” for the west and the east actuators, indicated as indices 1 and 2 

respectively, can be written as 

 

( ) ( )
1 10 0

0

1 0
      

0 1 ( )

A A

a

x

c
a e

=

⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

u R u

u
 (5.9) 

and 
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( ) ( )
2 20 0

0

1 0
      

0 1 ( )

A A

a

x

c
a e

=

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

u R u

u
 (5.10) 

Note that the eccentricity xe  is chosen to be positive to the left of the center line of 

platen. Actuator vectors between the points where the actuators are connected to the 

reaction block and the points where the actuators are connected to the platen ( 1A  

and 2A ) are given as 

 
( ) ( )

1 1 1

( ) ( )
2 2 2

TA A
A x a z

TA A
A x a z

u l u

u l u

⎡ ⎤= +⎣ ⎦

⎡ ⎤= − + −⎣ ⎦

r

r
 (5.11) 

where al  is the length of each actuator. If we assume that the norm of the vectors 

given in (5.11) is approximately equal to al , then the scalar actuator forces ( )actWF t  

and ( )actEF t can be written in vector form as follows 

 

(1)
1

(2)
2

( )( )

( )( )

actW
actW A

a

actE
actE A

a

F tt
l

F tt
l

=

=

F r

F r
 (5.12) 

Actuator force vectors in (5.12) can be transformed to point “O” by using 

equations (5.8) through (5.12) 

 

( ) ( ) ( )
10 10 10 0

( ) ( ) ( )
20 20 20 0

1 ( )( ) ( )
0

1 ( )                   ( )
0

T T

T T

A A AactW
act actW

a

A A AactE
actE

a

F tt F t
l

F tF t
l

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
⎡ ⎤

−⎢ ⎥
⎣ ⎦

F R R R u

R R R u
 (5.13) 
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If we carry out the multiplications given in (5.13), the following expression can be 

found,  

 

0
2 2

0
2 2

1 1 0
( )( ) ( ) 0 0 1

( )

1 1 0
( )                   ( ) 0 0 1

( )

a
actW

act actW x
a

a a x a x

a
actE

actE x
a

a a x a x

c
F tt F t a e

l
c c a e c a e

c
F tF t a e

l
c c a e c a e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦

F u

u

 (5.14) 

(5.14) shows that forces are acting on the platen not only along the x-direction (main 

direction where the actuators are exerting forces on the platen) but also along other 

degrees of freedom. 

Note that the equations given here are very general. For example the geometric 

parameters of actuators do not have to be the same, meaning that the point of action of 

each actuator, ( , )aa c− −  for the west one and ( , )aa c− for the east one, can be set to 

different values. This way any manufacturing or construction defect can be taken into 

account in the simulations. This aspect of the simulation framework presented here is 

applicable to each component of the equation given in (5.3) 

5.4. Vertical Spring Forces 

Oil-column effects within each vertical bearing are modeled as vertical springs. 

The oil-column stiffness, i.e. stiffness of a vertical bearing, can be calculated as 

follows 

 vb
vb

oil

AK
L
β

=  (5.15) 
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where β  (0.82 GPa) is the bulk modulus of the oil, vbA ( 2 0.519×  m2) is the effective 

area and oilL  (0.0127 m) is the oil-column length of a vertical bearing, respectively. 

The numerical value of vbK  is given in Table 5.2. 

Motion at each point where the vertical springs are attached to the platen can 

be transformed to the motion at point “O” using the following relation 

 ( ) ( )
0 0 1, 2,3VB VB

zi i xu i= =R u  (5.16) 

where 

 

[ ]
[ ]

[ ]

( )
10

( )
20

( )
30

0 1 ( )

0 1

0 1 ( )

VB
v x

VB
x

VB
v x

a e

e

a e

= − +

= −

= −

R

R

R

 (5.17) 

Vertical force on each vertical bearing can be written as 

 ( ) ( ) ( )  1, 2,3VB VB
zi vb ziF K u t i= =  (5.18) 

Using equations (5.16) through (5.18), forces at point “O” due to the vertical springs 

can be found as 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
10 10 20 20 30 30 0

T T TVB VB VB VB VB VB VB
spr vbK= + +F R R R R R R u  (5.19) 

If we carry out the multiplications in (5.19) the following equation can be found 
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2 2

( )
0

2

0 0 0 0 0 0
0 1 0 1
0 ( ) 0

( )
0 0 0
0 1
0 ( )

v x x

v x v x x xVB
spr vb

v x

v x v v x

a e e
a e a e e e

t K

a e
a e a e

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − + − +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦⎜ ⎟=
⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥+ −⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥− −⎣ ⎦⎝ ⎠

F u  (5.20) 

5.5. Horizontal Spring Forces 

Horizontal springs, eK , shown in Figure 5.1 represent the effect of nitrogen 

filled hold-down struts. Its identified value is given in Table 5.2. 

The motion at points where the hold-down struts are attached to the platen can 

be transformed to the motion at point “O” using the following relation 

 ( ) ( )
0 0 1, 2HD HD

xi i xu i= =R u  (5.21) 

where  

 
( )
( )

( )
10

( )
20

1 0

1 0

HD
h

HD
h

c

c

=

=

R

R
 (5.22) 

Horizontal force at each spring can be written as 

 ( ) ( ) ( )   1, 2
2

HD HDe
xi xi

KF u t i= =  (5.23) 

By using the relations given in (5.21), through (5.23) the forces at point “O” due to the 

horizontal springs can be found as 

 ( )( ) ( ) ( ) ( ) ( )
10 10 20 20 0( )

2
T THD HD HD HD HDe

spr
Kt = +F R R R R u  (5.24) 
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If we carry out the multiplications given in (5.24), ( ) ( )HD
spr tF can be written as follows 

 ( )
0

2 2

1 0 1 0
0 0 0 0 0 0

2
0 0

h h
HD e

spr

h h h h

c c
K

c c c c

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

F u  (5.25) 

Equation (5.25) models the portion of the hold-down forces acting on the 

platen which are functions of the platen displacements. Hold-down struts also exert 

constant vertical forces on the platen in order to increase the overturning moment 

capacity of the table. Effects of the vertical forces will be included in the simulation 

model by transforming the point of action of these forces to point “O” using the 

following transformation matrices 

 
( )

( )

( )
10

( )
20

0 1

0 1

THD
z H x

THD
z H x

a e

a e

= − +⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

R

R
 (5.26) 

where Ha  is the horizontal distance between the midpoint of the platen to the points 

where hold-down struts are attached, and xe is the eccentricity between center of 

gravity of the platen and the center line of the specimen (i.e., specimen offset). Using 

(5.26), hold-down forces at point “O” can be found as follows 

 
( ) ( )

( ) ( ) ( )

0 0
1 1HD HD HD

const z z

H x H x

F F
a e a e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦

F  (5.27) 

where ( )HD
zF  is the constant vertical hold-down force from one hold-down strut which 

is equal to 62.085 10× N. Notice that the hold-down struts are in tension. 
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Using (5.20), (5.25), and (5.27) total force acting on the platen due vertical, 

horizontal springs as well as constant vertical hold-down forces at the generalized 

coordinates “O” can be found  

 ( ) ( ) ( )( ) ( ) ( )VB HD HD
spr spr spr constt t t= + +F F F F  (5.28) 

5.6. Viscous Damping Forces 

Dissipative force mechanism identified for the mechanical subsystem for the 

shake table includes Coulomb friction, and nonlinear viscous damping components. 

For convenience, the identified viscous dissipative model of the mechanical sub-

system is repeated below 

 ( )
0( ) ( )   1, 2

2
DPe

damp xi x
CF t u sign u i

α
= =  (5.29) 

where, ( ) ( ) 1, 2DP
xiu t i =  is the horizontal motion of the points where fictitious viscous 

dampers are attached to the platen, Figure 5.1, and 0 ( )xu t  is the horizontal motion of 

the platen (recall that the platen is assumed to be rigid). The points where these 

viscous dampers are attached ( 1A  and 2A ) to the platen were decided based on the fact 

that the most of the viscous damping comes from the cross-port leakage within the 

actuators (Zhao, 2005). As detailed in Ozcelik et al. (2008)(1), the viscous coefficient 

eC  identified for the mechanical subsystem is an effective value representing the 

various viscous damping sources within the system; but the most important of these 

sources identified to be the cross-port leakage. 
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Likewise before, the motion at the points where the viscous dashpots are 

attached can be transformed to the motion at point “O” by the following equation 

 ( ) ( )
0 0 1, 2DP DP

xi i xu i= =R u  (5.30) 

where 

 
( )
( )

( )
10

( )
20

1 0

1 0

DP
a

DP
a

c

c

=

=

R

R
 (5.31) 

By using (5.29), (5.30), and (5.31) the viscous damping forces acting at these points 

can be transformed to the generalized coordinates at “O” 

 ( )( ) ( ) ( ) ( )
10 10 0 20 20 0( ) ( )

2
T TDP DP DP DPe

damp ox
Ct sign u

α α
= +F R R u R R u  (5.32) 

5.7. Coulomb Friction Forces 

Dissipative forces identified for the mechanical subsystem includes also a 

Coulomb friction component as mentioned earlier. For convenience, the identified 

Coulomb friction force model is repeated below 

 0( ) ( ) ( )   1, 2,3
zicoul e xF t F t sign u iµ= =  (5.33) 

where, ( )ziF t  is the vertical force acting on each vertical bearing, and 0 ( )xu t  is the 

horizontal motion of the platen at “O”, and eµ  is the identified effective Coulomb 

friction coefficient representing the various Coulomb friction sources within the 

mechanical subsystem (Ozcelik et al., 2008(1)). The force ( )ziF t  can be written as a 

function of vertical motion at each vertical bearing as follows 
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 ( )( ) ( )   1, 2,3VB
zi vb ziF t K u t i= =  (5.34) 

The vertical motions at these points can be transformed to the motion at point “O” by 

the following relation 

 ( ) ( )
0 0 1, 2,3VB VB

zi i xu i= =R u  (5.35) 

where  

 

[ ]
[ ]

[ ]

( )
10

( )
20

( )
30

0 1 ( )

0 1

0 1 ( )

VB
v x

VB
x

VB
v x

a e

e

a e

= − +

= −

= −

R

R

R

 (5.36) 

Effective Coulomb fiction force identified in (5.33) is acting along the longitudinal 

direction, x ,  therefore Coulomb forces acting on the horizontal plane at the  interface 

between the vertical bearings and wear plates (Figure 5.1) must be transformed to 

point “O” with transformation vectors different than the ones given in (5.36), these 

vectors are given as follows, and they are indicated with subscript “ x ” to distinguish 

them from (5.36) 

 

[ ]
[ ]
[ ]

( )
10

( )
20

( )
30

1 0

1 0

1 0

VB
x v

VB
x v

VB
x v

c

c

c

=

=

=

R

R

R

 (5.37) 

By using equations (5.34) through (5.37), the Coulomb friction forces acting at these 

points can be transformed to the generalized coordinates at “O” as 

 
( ) ( ) ( ) ( )
10 10 0 20 20 0

, 0( ) ( )
30 30 0

( ) ( )

T T

T

VB VB VB VB
x z x z

coul dyn e vb xVB VB
x z

t K sign uµ
⎛ ⎞+ +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

R R u R R u
F

R R u
 (5.38) 
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Above equations formulate the vertical displacement dependent part of the 

Coulomb friction forces on the vertical bearings. Due to the weight of the platen and 

the vertical hold-down forces, constant Coulomb friction forces exist in the system. 

This constant friction force eFµ  has been estimated in Ozcelik et al. (2008)(1) to be 

326.70 10× N. Since only three bearings were modeled in the 2D model of the platen-

specimen assembly, constant Coulomb force on each vertical bearing is 

3
1 2 3 0.89 10e e eF F Fµ µ µ= = = × N (Figure 5.1). These forces can be transformed to point 

“O” using the following expression 

 ( ), 1 2 3 0

1 1 1
0 0 0coul const e e e x

v v v

F F F sign u
c c c

µ µ µ

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

F  (5.39) 

Using (5.38) and (5.39), the total Coulomb force acting on the platen at point “O” can 

be found as follows 

 , ,( ) ( )coul coul dyn coul constt t= +F F F  (5.40) 

5.8. Resisting Forces due to Specimen 

The total floor displacement tu  of a generic specimen is given below 

 0t = +u u αu  (5.41) 

whereα  is the [3 3]N ×  matrix of totally geometric quantities, i.e. influence vector, 

which transforms the input motion 0u  to story motions (story degrees of freedom), N 

is the number of nodes. In other words, 0αu  is the rigid body motion of the specimen 
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due to the input motion at point “O”. As an example, tu  for a two story shear-frame is 

given below where in this case α  would be a [2 3]×  matrix  

 
0

1
0

2
0

1 0
1 0 2

x
spe

t z
spe

y

u
hu

u
hu

θ

⎛ ⎞
−⎡ ⎤⎛ ⎞ ⎜ ⎟

= + ⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎣ ⎦ ⎜ ⎟
⎝ ⎠

u  (5.42) 

The equation of motion for the specimen excited by effective forces given in (5.41) 

can be written as follows 

 0spe spe spe spe+ + = −M u C u K u M αu  (5.43) 

where eM  is the mass, speC  is the damping and speK  is the stiffness matrices of the 

specimen. Damping in the specimen is modeled as Rayleigh damping 

 0 1spe spe spea a= +C M K  (5.44) 

0a  and 1a  are the Rayleigh damping coefficients which can be obtained by setting 

damping ratios of any two modes to a specified damping ratio (Chopra, 2007).  

From the relative floor responses (i.e., u ) total resisting forces at point “O” 

can be calculated from the absolute floor accelerations 

 0( ) T T
spe spe spet = +F α M αu α M u  (5.45) 

Force terms given in (5.45) are due to rigid body motion, and flexibility of the 

specimen. Notice that ( )spe tF  is calculated from the absolute floor accelerations, 

therefore it includes also the damping forces. 
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5.9. Implementation Details of Equation of Motion 

Equation of motion given in (5.3) can be written in the following alternative 

form in order to implement in Simulink 

 { }1
0 0( ) ( ) ( ) ( ) ( ) ( )act spr damp coul spet t t t t t−= − − − −u Μ F F F F F  (5.46) 

For linear specimen models with not many degrees of freedom, the specimen can be 

modeled within Simulink. For such cases the implementation of (5.2) in block diagram 

format is given in Figure 5.2. 

For cases in which specimen can not be modeled linearly with few degrees of 

freedom, a general finite element program will be necessary to model it. Figure 5.3 

shows the implementation of (5.46) again with one difference: instead of modeling the 

specimen within Simulink, in this case specimen is modeled within OpenSees by the 

custom block developed to integrate OpenSees and Simulink called OpenSimConn.dll 

(Chapter 9). 

Simulink implementation of the mechanical subsystem shown in Figure 5.3 

can easily be integrated with the rest of the shake table model which includes the 

controller and the servo-hydraulic components of the shake table system. 

5.10. Linearized Equation of Motion of the Platen with Linear Two-Story Shear 

Frame 

In this section, the linearized model of the platen in 2D will be given. This 

linearized model will be used later on in the study to test the implementation details of 

some of the components of the shake table model due to its simplicity. The linearized 
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model presented here will have the platen, actuator, vertical, and horizontal springs 

components same as the nonlinear model presented above. Only difference between 

the linear and nonlinear models will arise due to dissipative force mechanisms 

assigned to them. In the nonlinear case, the identified nonlinear dissipative force 

mechanisms is used (Eq.(5.1)) whereas for the linear model, the nonlinear mechanism 

is linearized using an equivalent linear viscous dashpot. The details of this 

linearization are given in Chapter 5, and the result is repeated below for convenience 

 1.273 1.113
eeq ec F v C vµ= +  (5.47) 

where 
e

Fµ is the effective Coulomb friction force, eC  is the effective viscous damping 

constant, and v  is the velocity of the platen. Numerical values for these parameters are  

given in Table 5.4. Note that the equivalent linear viscous damping coefficient is 

velocity dependent (Ozcelik et al., 2008(2)). At 100 cm/s platen velocity, equivalent 

viscous damping is equal to 384.82 10×  Ns/m. 

The platen and the reaction block are assumed to be rigid. The assembly of the 

platen with a two-story shear-frame along with the other linearized mechanical 

components are shown in Figure 5.4. Note that the mechanical components are 

discretized with linear springs and dashpots. Equation of motion of this assembly with 

respect to point “O” can be written as follows 

 O O act spr diss spe= − − −Μ u F F F F  (5.48) 

where oM  is the [ ]3 3×  mass matrix of the platen, ( )act tF is the [ ]3 1× actuator force 

vector, ( )spr tF is the [ ]3 1×  spring forces due to both the horizontal and vertical 
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springs, ( )diss tF is the [ ]3 1×  dissipative forces due to horizontal equivalent viscous 

dashpots, and ( )spe tF is the [ ]3 1×  resisting force vector acting on the platen due to the 

specimen mounted on the platen. Notice the similarities between (5.48) and (5.3). 

Since the details regarding oM , ( )act tF , and ( )spr tF are the same as in the previous 

discussion, in the following sections only the details regarding ( )diss tF  and ( )spe tF  will 

be given. 

Viscous Damping Forces. Dissipative forces identified for the mechanical 

subsystem of the plant includes Coulomb friction type nonlinearity, and also a 

nonlinear viscous damping force component (refer to the Earthquake Engineering and 

Structural Dynamics paper for details). Here in this study, an equivalent linear viscous 

damping coefficient is used to model the dissipative forces in the plant. For this 

purpose two linear dashpots are used for representing viscous type dissipative forces, 

and they are assumed to be attached at the two points where the actuators are attached; 

but note that these simplifications are not necessary for the framework presented here; 

fully nonlinear dissipative force model can be used with the same framework.  

Likewise before, the motion at the points where the linear viscous dashpots are 

attached can be transformed to the motion at point “O” by the following relations 

 ( ) ( ) 1, 2DP DP
xi iO Oxu i= =R u  (5.49) 

where 
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20

1 0
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c

c

=

=

R

R
 (5.50) 
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By using the relations given in (5.50),  the viscous damping forces acting at these 

points can be transformed to the point “O” 

 ( )( ) ( ) ( ) ( ) ( )
10 10 20 20

T THD DP DP DP DP
diss eq Oc= +F R R R R u  (5.51) 

(5.51) can be written in more detailed format 

 
2 2

1 0 1 0
0 0 0 0 0 0

0 0

a a

diss eq O

a a a a

c c
c

c c c c

⎛ − − ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

F u  (5.52) 

Resisting Forces due to Shear Specimen. The total floor displacement tu  is 

given below 

 t O= +u u αu  (5.53) 

whereα  is a purely geometric matrix with size [2 3]× . (5.53) can be written in a 

detailed way as follows 

 1

2

1 0
1 0 2

Ox
s

t Oz
s

Oy

u
hu

u
hu

θ

⎛ ⎞
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= +⎜ ⎟ ⎢ ⎥ ⎜ ⎟
⎝ ⎠ ⎣ ⎦ ⎜ ⎟

⎝ ⎠

u  (5.54) 

Equation of motion for the specimen can be written as follows 

 spe spe spe spe O+ + = −M u C u K u M αu  (5.55) 

The matrices describing the equation of motion of the specimen are given below 

 

0 1

0
0
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spe
spe

spe

spe spe
spe

spe spe

spe spe spe

m
m

k k
k k

a a

⎡ ⎤
= ⎢ ⎥
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−⎡ ⎤
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= +

M

K

C M K

 (5.56) 
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Damping in the specimen is modeled using Rayleigh damping, note this damping is 

inherent to only specimen, and 0a  and 1a  are the Rayleigh damping coefficients 

which can be obtained by setting damping ratios of first two modes to be any damping 

ratio; but here it is set to 3%. 

From relative floor displacements resisting forces at point “O” can be 

calculated as follows 

 ( ) T T
spe spe O spet = +F α M αu α M u  (5.57) 

First term in (5.57) is the force due to the rigid motion of the specimen, and the second 

term is due to the flexibility of the specimen. Notice that ( )spe tF  is calculated from the 

absolute floor accelerations, and therefore it includes also the damping forces. 

The linear 2D mechanical subsystem presented here will be used later on in the 

study to check implementation issues. 
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Table 5.1: Identified model parameters for the mechanical subsystem. 

eM  [tons] eK  [MN/m] eC  [KN (s/m)^0.5] eµ  [%] α  

144 1.263 44.6 0.39 0.5 
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Table 5.2: Numerical values of the mechanical subsystem parameters. 

zF  

[N] 

yIθ  

[kg m2] 

vbK  

[N/m] 

1,2,3eFµ  

[N] 
62.085 10×  61.843 10×  667,020 10×  30.89 10×  
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Table 5.3: Dimensions of the mechanical subsystem. 

a  

[m] 
xe  

[m] 

Gh  

[m] 

al  

[m] 

va  

[m] 

ha  

[m] 

ac  

[m] 

vc  

[m] 

hc  

[m] 

6.13 0.0 0.87 6.15 4.88 4.92 1.27 1.21 2.21 
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Table 5.4: Numerical values for the parameters of the linear platen-specimen model. 

speh  

[m] 

eqc  

[Ns/m] 

eFµ
(*) 

[N] 

spem  

[kg] 

spek  

[N/m] 

3.50 384.82 10×  326.70 10×  345 10×  31800 10×  

(*) eFµ  corresponds to the Coulomb force in which the vertical forces acting on the 

bearings due to the platen weight and the hold-down struts with pre-charged pressure 

of 13.8MPa are 5.78 MN. 
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Figure 5.1: Rigid platen, rigid reaction block, rigid soil, and a generic specimen 

assembly along with springs, dashpots, and Coulomb friction elements to model 

mechanical subsystem. 
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Figure 5.2: Simulink implementation of equation of motion of the mechanical sub-

system (“All Simulink Model”, i.e. specimen is also modeled in Simulink). 
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Figure 5.3: Simulink implementation of equation of motion of the mechanical sub-

system with OpenSimConn.dll custom block. 
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Figure 5.4: Rigid platen and two story shear specimen assembly with linearized 

dissipative force mechanism. 
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CHAPTER 6  

CONTROL-TABLE-STRUCTURE INTERACTION 

6.1. Linearized Open and Closed-Loop Table Transfer Functions 

6.1.1. Open-Loop Table Transfer Functions 

In this section of the study, formulations for open-loop model of a linear 

servovalve-actuator with rigid platen and a single degree of freedom specimen will be 

given. 

Linearized flow about the origin from a servovalve can be written as 

 q c
fq k c k
A

= −  (6.1) 

where qk  = linearized flow gain, c = valve command, f = force generated by the 

actuator, ck = leakage constant, and A  = effective actuator piston area. Flow q from 

the servovalve into actuator chambers can be expressed using the flow continuity 

equation as follows 

 
2

Vq Ax f
Aβ

= +  (6.2) 
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where x  is the velocity of the actuator piston, V  is the hydraulic fluid volume for the 

actuator, and β  is the bulk modulus of hydraulic fluid. From (6.1) and (6.2) open-loop 

actuator dynamics can be obtained 

 2 c
q

kAf k c f Ax
V A
β ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 (6.3) 

For the sake of simplicity the platen is assumed to be rigid with an effective 

mass of plm . Block diagram representation of (6.3) with a rigid platen is given in 

Figure 6.1. The open-loop transfer function from c  (valve command) to f  (actuator 

force) can be written as follows 

 2
2

2
( )( )

2 2( )

q

fc
c

pl

k A
sf s VG s

k Ac s s s
V Vm

β

β β
= =

+ +
 (6.4) 

Equation (6.4) has a very similar form as a linear single degree of freedom (SDOF) 

system with mass, dashpot, and spring excited by an external force. From (6.4), it can 

be said that an actuator attached to a mass behaves like a mass-damper-spring system 

with a single resonant frequency given as 

 
22

oil
pl

A
Vm
βω =  (6.5) 

This resonant frequency is called the oil-column frequency. From (6.5), the following 

can also be defined  
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 2 2c
oil oil

k
V
β ξ ω=  (6.6) 

Notice that the actuator damping is related to leakage constant ck . Numerical values 

given in Table 6.1 for model in (6.4) will be used in order to investigate the magnitude 

response of the open-loop transfer function. 

Figure 6.2 shows the magnitude response of the open-loop model in given in 

(6.4). Figure 6.2 clearly shows the oil column frequency at 11.3 Hz. Notice that the 

transfer function from the valve command to platen acceleration can be readily 

obtained by dividing ( )fcG s  by the platen mass, plm  (i.e. 1( ) ( )xc fc
pl

G s G s
m

= ). 

The model shown in Figure 6.1 can be modified to incorporate the effect of an 

single-degree-of-freedom specimen.  Figure 6.3 shows the modified version of Figure 

6.1  when a specimen is mounted on the platen. The transfer function ( )hG s  is given 

as follows 

 ( )

2

h

c

AG s V s k
β

=
+

 (6.7) 

The total resisting force acting on the platen due to a linear SDOF specimen is Sf  (i.e. 

2( ) ( )s S Sf s m x x s= + ). The transfer function ( )SG s  from the platen acceleration x , to 

the total resisting force Sf , can be written as follows 

 
2

2 2

( )( ) 1S S
S S

S S S

f s s mG s m
s x s m sc k

⎛ ⎞
= = −⎜ ⎟+ +⎝ ⎠

 (6.8) 
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where Sm  is the mass, Sc  is the viscous damping constant, and Sk  is the stiffness 

coefficient of the specimen. The block-diagram within the dotted box in Figure 6.3 is 

denoted as ( )xfG s . It is the transfer function from the actuator force to the 

displacement of the platen (or actuator piston displacement, since the platen is 

assumed to be rigid) 

 
( )2

1( )xf
pl S

G s
s m G s

=
⎡ ⎤+⎣ ⎦

 (6.9) 

By substituting (6.8) into (6.9), the following expression can be found for ( )xfG s  

 
2 2

2
2 2

2( ) 1( )
( ) 2(1 ) (1 )

S S S
xf

S Spl
S S S

pl pl

s sx sG s m mf s s m s s
m m

ξ ω ω

ξ ω ω

+ +
= = ⋅

+ + + +
 (6.10) 

where sξ  is the damping ratio, and sω  is the natural undamped frequency of the 

specimen. The denominator of (6.10) can be written in a simpler way by defining two 

new parameters 

 

1

1

S
T S

pl

S
T S

pl

m
m

m
m

ξ ξ

ω ω

= +

= +

 (6.11) 

therefore (6.10) takes the following form 

 
2 2

2 2 2

2( ) 1( )
( ) 2

S S S
xf

pl T T T

s sx sG s
f s s m s s

ξ ω ω
ξ ω ω

+ +
= = ⋅

+ +
 (6.12) 
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By using ( )xfG s , Figure 6.3 can be redrawn in a simpler way as shown in Figure 6.4 

By block diagram algebra, the transfer function ( )spe
fcG s  from the valve 

command c  to the actuator force f  can be found 

 
( )

( )
1 ( ) ( )

q hspe
fc

xf h

k G s
G s

sAG s G s
=

+
 (6.13) 

In order to investigate the magnitude and phase response of the open-loop transfer 

function in (6.13), in addition to the parameters given in Table 6.1 numerical values 

for the specimen parameters have to be defined (Table 6.2). Figure 6.5 shows the 

magnitude and phase plots of (6.13). 

The open-loop transfer function of the model given in (6.13) can be written in 

numerical form as follows 

 
( )8 2 8 10

4 3 2 5

1.31 10 1.434 10 3.003 10
( )

1.094 5270 3801 7.96 10
spe
fc

s s s
G s

s s s s
× + × + ×

=
+ + + + ×

 (6.14) 

Zeros and poles of (6.14) will be helpful for understanding the physical origins of the 

peaks and valleys seen in the magnitude response plot of  (6.14). Zeros of (6.14) are 

given as follows 

 
1

2

2

0
0.5473 15.1307
0.5473 15.1307

z
z i
z i

=
= − +
= − −

 (6.15) 

One natural frequency can be extracted from the complex-conjugate zero pair given in 

(6.15) as 1 15.1zω =  rad/s (2.42 Hz). This value corresponds to the natural frequency 

Tω , which is defined in (6.11). Therefore it can be said that at this particular 
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frequency, the open-loop model given (6.13) has limited ability to apply forces (the 

valley seen in Figure 6.5). The poles of (6.14) are given as follows 

 

1

2

3

4

0.181 71.5
0.181 71.5
0.366 12.5
0.366 12.5

p i
p i
p i
p i

= − +
= − −
= − +
= − −

 (6.16) 

Two distinct natural frequencies can be extracted from the two complex-conjugate 

poles given in (6.16) as 1 12.5pω =  rad/s (1.98 Hz) and 2 71.5pω =  rad/s (11.38 Hz). 

These frequencies are very close to the natural vibration frequency of the specimen 

(2.0 Hz), and the oil column frequency (11.3 Hz). Therefore, it can be said that the 

model given in (6.13) has two resonant frequencies: one corresponds to the specimen 

natural frequency and the other to the oil column frequency (two peaks seen in Figure 

6.5). 

6.1.2.  Closed-Loop Table Transfer Function 

The open-loop model of the servovalve-actuator-rigid platen-specimen model 

(6.13) is expanded by keeping the model parameters as variables as follows 

 
( )

( ) ( )
( )

3 2 2

4 3 2 2 2

2 2 2 2

2
( )

2 2 4

2 2

q T T Tspe
fc

T T oil oil T oil oil T T oil

oil oil T S S oil oil S

k s s s
G s

s s s

s

ξ ω ω

ξ ω ξ ω ω ξ ω ξ ω ω

ξ ω ω ξ ω ω ω ω

+ +
=
⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 (6.17) 

Equation (6.17) shows that the numerator contains the valve flow gain, 

damping and natural vibration frequency of the combined mechanical system of rigid 

platen and a SDOF specimen, and the 1st, 2nd and the 3rd derivative of the valve 
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command signal. This last observation is valuable in the sense that in order for 

actuator to move the table at higher frequency range, any feedforward control signal 

added onto the valve command signal c  shown in Figure 6.4 must be proportional 

with the velocity, acceleration, and the jerk (3rd derivative) of the command signal in a 

displacement control strategy. Figure 6.6 shows the block diagram of displacement 

control strategy with force feedback and feedforward terms applied on the velocity, 

acceleration, and jerk command signals.  

In Figure 6.6 u is the command displacement, Pk  is the proportional gain, VFk , 

AFk , and JFk  are the velocity, acceleration and jerk lead gains, respectively, and DPk  

is the force feedback gain. The closed-loop transfer function from the command 

displacement u  to the actuator force f can be found using the block diagram algebra 

as follows 

 
( )

( )
2 3( )

( )
1 ( ) ( ) ( ) ( )

q h p VF AF JF
fu

h q p xf DP h xf

k G s k sk s k s k
G s

G s k k G s k sG s G s A

+ + +
=
⎡ ⎤+ − +⎣ ⎦

 (6.18) 

Equation (6.18) shows the effective topology of the controller of NEES-UCSD 

shake table with proportional and force feedback loops, and feedforward terms of 

velocity, acceleration, and jerk signals. 

6.2. Control-Table-Structure Interaction  

The roots of the numerator of (6.12) are related to the dynamics of the 

specimen (i.e. damping, and natural frequency), and the roots of its denominator are 

related to the dynamics of the combined mechanical system (i.e. rigid platen and 
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SDOF specimen), which are in turn also closely related to the characteristics of the 

specimen. 

The block diagram given in Figure 6.6 shows that the dynamics of the structure 

(embedded in ( )xfG s ) directly affect the dynamics of the actuator through a feedback 

path called the natural velocity feedback (Dyke et al., 1995). This interaction can be 

seen clearly in the closed-loop transfer function from the command input u  to the 

actuator force f , which is given in (6.18). By representing this transfer function in 

terms of its respective numerators and denominators, the following equation can be 

written 

 
( )2 3

( )

1

h
q p VF AF JF

fu h
fu

fu xf xfh h
q p DP

h xf h xf

n k k sk s k s kn dG s
d n nn nk k k s A

d d d d

+ + +
= =

⎡ ⎤⎛ ⎞
+ − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6.19) 

where n and d stand for numerator and denominator, respectively. Equation (6.19) can 

be reorganized to obtain the following equation 

 
( )2 3

( ) h q p VF AF JF xffu
fu

fu h xf h q p xf DP xf h xf

n k k sk s k s k dn
G s

d d d n k k n k d sn n A
+ + +

= =
+ − +

 (6.20) 

From (6.20) it is observed that the poles of the transfer function ( )xfG s , which are 

closely related to the specimen, become the zeros of the transfer function ( )fuG s . Since 

the poles of the combined mechanical system (i.e. xfd ) are the zeros of ( )fuG s , shake 

tables exciting a lightly damped structure have a limited ability to apply forces at the 

natural frequencies of the combined mechanical system. Similar observations have 
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been done by various researchers for actuators which are directly attached to the 

specimens (Dyke et al., 1995; Dimig et al., 1999; Zhao et al., 2005). 

6.2.1. Three-Variable-Controller (TVC) 

In this section, open-loop transfer function given in (6.13) will be integrated 

with the controller of UCSD-NEES shake table, namely Three-Variable-Controller 

(TVC). TVC is a displacement controller with a force feedback loop for force 

stabilization and with feedforward (i.e. lead) terms of velocity, acceleration, and jerk 

to enhance the table control at higher operating frequencies. Feedforward states in 

TVC are generated by the Reference Generator. The Reference Generator takes the 

reference signal, which represents desired displacement, velocity, or acceleration 

depending on control mode, and creates the reference states xrefu , xrefu , xrefu , and 

xrefu . In TVC there are five notch filters to compensate for the resonances and anti-

resonances. Measured force feedback is high-pass filtered by TVC before being added 

to the valve command signal to damp-out oil column resonance.  

More details regarding the constitutive parts of TVC and the feedback 

generator, which is assumed to be the part of the plant (i.e. not a part of TVC), can be 

found in Thoen (2004) and Chapter 1. The block diagram of TVC is given in Figure 

6.7 fbku , fbku , fbku are the displacement, velocity, and acceleration feedback states 

which are generated by the feedback generator, and the fbkf  is the force feedback 

filtered by a low-pass filter. It should be noted here that the Feedback Generator and 

the low-pass force filter are included in the plant, not in TVC, and hence not shown in 

Figure 6.7.  
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The transfer function ( )RG s  is given as follows 

 max max

max max

10 10( ) ( ) [( ) ( ) ( )

10 10                              ( ) ( ) ]

R COM PF P RD VF RV

AF RA JF RJ

G s G s k k G s k G s
D V

k G s k G s
A A

= ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅
 (6.21) 

where 

 
5

1

( ) ( ) ( )i
COM M INT NOTCH

i

G s k G s G s
=

= ∏  (6.22) 

PFk  is the displacement feedforward gain (this gain is rarely, if ever used), Mk  is the 

master gain (always set to unity) and maxD , maxV , and maxA  are the normalization 

constants corresponding to the maximum displacement, velocity and acceleration that 

the shake table can reach, respectively.  In majority of the shake table tests, the signal 

desired to be reproduced on the table is an acceleration record (i.e. reference signal is 

acceleration); therefore TVC is set to run under acceleration control mode. Since this 

is the case, the transfer functions ( )RDG s , ( )RVG s , ( )RAG s , and ( )RJG s given below are 

specialized to the acceleration control mode of TVC .Transfer functions corresponding 

to the other control modes of TVC are given in Chapter 1. 

 
3

3 2 2 3( )
(2 1) (2 1)

xref
RA

HP HP HP

u sG s
R s s sζ ω ζ ω ω

= =
+ + + + +

 (6.23) 

 2

1( ) ( )ref ref
RD

u u
G s s

R s R
= =  (6.24) 
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 1( ) ( )ref ref
RV

u u
G s s

R s R
= =  (6.25) 

 ( ) ref ref
RJ

u u
G s s

R R
= =  (6.26) 

where HPω  is the cut-in frequency and ξ  is the damping ratio, which always set to 

0.707, of the high-pass filter given in (6.23). 

The discrete time transfer functions of the notch filters on TVC are given as 

follows 

 
1 2

0 1 2 0 1 1 1 0 2
1 2

1 2

( ) ( ) ( )( )   1 5
1

i i i i i i i i i
i
NOTCH i i

w w a w w a z w w a zG z i
a z a z

− −

− −

+ + + + +
= =

+ +
…  (6.27) 

where 

 

1 0

2

1 1 2

2 2

0

1

cos(2 )
1 tan( )
1 tan( )

(1 )

1 / 2

/ 2

i
i

i i

i
i i i

i i

i
i

i
i

k f T
bwTk
bwT

a k k

a k

w depth

w depth

π
π
π

= −

−
=

+

= +

=

= +

= −

 (6.28) 

where T is the sampling time, 0if  is the center frequency, ibw  is the width, and idepth  

is the depth of the ith notch filter. Discrete transfer functions given in (6.27) are 

transformed into continuous time by Tustin’s method (also known as bilinear 

transformation) using the following mapping between z-domain to s-domain 
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 2 1
1

zs
T z

−
=

+
 (6.29) 

The transfer function of the reset integrator ( )INTG s  is given as follows 

 ( ) 1 I
INT

kG s
s

= +  (6.30) 

where Ik  is the reset integrator gain. The rest of the transfer functions of TVC are 

given below  

 
max

10( ) ( )D P COMG s k G s
D

= − ⋅  (6.31) 

 
max

10( ) ( )V V COMG s k G s
V

= − ⋅  (6.32) 

 
max

10( ) ( )A A COMG s k G s
A

= − ⋅  (6.33) 

 
max

10( ) ( ) ( )F DP COM DPG s k G s G s
F

= ⋅  (6.34) 

maxF  is the force normalization constant, and ( )DPG s  is a second order high-pass 

Butterworth filter with 3dB cutoff frequency at DPω  

 
2

2 2
( )

2DP
DP DP

sG s
s sω ω

=
+ +

 (6.35) 

The command to the servovalve c  shown in Figure 6.7 can be written as follows 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R D fbk V fbk A fbk F fbkc s G s r s G s u s G s u s G s u s G s f s= + + + +  (6.36) 
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where ( )r s is the reference signal (in this case it is acceleration). 

TVC is implemented in Matlab-Simulink using the above given transfer 

functions. In order to check the implementation of TVC, Simulink model of TVC is 

excited by an impulse acceleration (i.e. reference signal is an impulse), and the TVC 

output (i.e. command to the servovalve(s)) is recorded, then the transfer function 

between these two signals are estimated. The same impulse acceleration is inputted to 

the real-time control software 469D and the transfer function between the same input 

and output is estimated. Then the resulting transfer functions are compared. Table 6.3 

and 6.4 gives the numerical values of the TVC parameters used for this comparison. 

The feedback gains Vk  and Ak (i.e. velocity and acceleration, respectively) are 

set to zero which is the case for servo-hydraulic control systems (Thoen 2004). Only 

one notch filter is used, and the numerical values of its parameters are given in Table 

6.4. 

The comparison of transfer function estimations is shown in Figure 6.8. 

Agreement between the two transfer functions is excellent. Discrepancies seen in 

Figure 6.8, mainly in the high frequency range, are due to implementing the 

continuous time version of TVC in Simulink and in reality discrete time nature of the 

469D real-time software. 

Closed-loop block diagram of the linear servovalve-actuator-rigid platen-

specimen model and TVC as the controller is given in Figure 6.9. The plot also shows 

the low-pass filter and the Feedback Generator that exist in the real shake table (i.e. 

real plant). In the real plant, these two components are required due to practical 
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necessities. Feedback Generator is needed because feedback measurements of 

displacements and accelerations are done by LVDTs and accelerometers, respectively, 

and these two types of sensors perform better in different regions of the frequency 

spectrum (Stoten, 2001). Therefore, it is possible to make better measurements of 

feedback states and obtain better estimate of unmeasured feedback state (i.e. velocity) 

by blending displacement and acceleration readings through composite filters. On the 

other hand low-pass filter is necessary for eliminating the possible control problems 

due to spurious pressure spikes in pressure transducer measurements. More 

information about these two components can be found in Chapter 1. There is no need 

for such components for the linear simulation model presented here, since feedback 

measurements are done directly (i.e. not through sensors). Therefore low-pass filter 

and the Feedback Generator are omitted for the rest of the study (i.e. fbkf f= , 

fbkx u= , fbkx u= , and fbkx u= ). The closed loop transfer function from the reference 

signal to the actuator force is given below 

( ) ( )2

( ) ( )
( )

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
q R H

q H D xf F H xf q V A

k G s G s
H s

k G s G s G s G s G s G s sA k sG s s G s
=

⎡ ⎤+ − + + +⎣ ⎦

 (6.37) 

6.3. Effect of TVC Control Gains on the Closed-Loop Transfer Function 

In this section, two parametric studies will be presented. The first one is to 

investigate the effect of feedback and feedforward control gains, and the second one is 

for to investigate the effect of notch filter parameters on the magnitude-phase response 
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of the closed-loop transfer function given in (6.37). Input as the reference signal and 

output as the actuator force is chosen for the parametric study, since the controller-

specimen interaction as well as the oil-column resonant peak is more visible in the 

transfer function between these two signals.  

Table 6.5 shows the details of the first parametric study; notch filter parameters 

and all the other unmentioned TVC gains are set to zero. In order to see the effect of 

individual TVC gains on the closed system transfer function, gains are changed one at 

a time while the others are kept zero; except the proportional gain Pk . Results of the 

first parametric study are given in Figure 6.10 through 7.13. The reference TVC gain 

setting is assumed to be the case (a2), therefore all the other cases are compared with 

respect to this one. Equation (6.18) will be used just for the interpretations of some of 

the results, since it shows clearly the effective topology of the controller TVC.  

Figure 6.10, it can be seen that as the value of Pk  increases, the magnitude of 

the system transfer function (i.e. system gain) at low frequency range increases as 

well, the oil column resonant peak is slightly lowered. The system gain remains 

unaffected at high frequency range due to changes in Pk . Therefore it can be said the 

system response can be effectively changed at low-frequency range by the 

proportional gain Pk .  

Figure 6.10 also shows the effect of force feedback gain DPk  (i.e. (b1) and 

(b2)). As the value of DPk  increases, the system gain at the vicinity of oil-column 

frequency (11.3 Hz) decreases. Increase in DPk  basically moves the poles 
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corresponding to the oil-column frequency of the closed-loop system transfer function 

further toward the left-half of s-plane, therefore the damping of the closed-loop system 

increases. 

Figure 6.11 shows the effect of VFk  on the system transfer function. As it can 

be seen from the figure, as VFk  increases the system gain from the natural frequency of 

the combined mechanical system up to oil-column frequency increases as well. This is 

due to the fact that the gain VFk  is proportional to the derivative of the command 

signal (i.e. ( )su s  given in (6.18)). Therefore, if the system gain needs to be adjusted at 

this frequency range, the velocity feedforward gain should be the main gain candidate 

to achieve this task. 

Figure 6.12 shows the effect of AFk  on the system transfer function. Again 

magnitude response plot shows that this particular gain increases the system gain at 

high frequency range (i.e. the oil-column frequency and onward). This is due to the 

fact that the gain AFk  is proportional to the second derivative of the command signal 

(i.e. 2 ( )s u s ). Also notice that the AFk  exuberates the effect of control-specimen 

interaction at the combined natural frequency of the specimen and the platen. 

Figure 6.13 shows the effect of JFk  on the system transfer function. As it is 

clearly seen from the figure, JFk does not change the system gain at lower frequency 

range. On the other hand, system gains are highly sensitive to this feedforward gain at 

medium to high frequency range. Notice that the system gains are particularly 
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sensitive to this gain at the high-end of the spectrum, since JFk  is proportional to the 

third derivative of the command signal (i.e. 3 ( )s u s ). 

Table 1.6 shows the details of the second parametric study for to investigate 

the effect of notch filter parameters on the magnitude and phase response of the 

system transfer function given in (6.37). All the other gains are set to zero, except the 

displacement feedback gain Pk , which is set to 1.5. As in the previous parametric 

study, the effects of notch filter parameters are compared with respect to the reference 

case (a2). 

Figure 6.14 shows the effect of center frequency parameter 0f  on the system 

transfer function. As it is expected, the notch filter decreases the system gain at the 

vicinity of the center frequency 0f . The curve labeled as (f1) in Figure 6.14 

corresponds to the case where the center frequency of the notch filter is set to 5.0 Hz, 

therefore the system transfer function shows a sudden magnitude drop at this 

frequency with respect to the reference case labeled as (a2), whereas the curve labeled 

as (f2) shows a sudden drop at 11.0 Hz. 

Figure 6.15 shows the effect of the notch filter parameter bw  on the system 

transfer function. As the width parameter increases (from (g1):2 Hz to (g2): 20 Hz) the 

system gains drop down over the entire frequency range as well as at the vicinity of 

the center frequency 0f . 

Figure 6.16 shows the effect of notch filter parameter depth on the system 

transfer function. As it is expected, as the depth  parameter increases (from (f1): -0.2 
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V/V to (f2): -0.90 V/V), the system gain drops at the vicinity of the center 

frequency 0f , which is set to 11.0 Hz. Therefore this parameter is particularly useful to 

filter out fixed (fixed to a particular frequency) mechanical resonances that might exist 

within the shake system. 
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Table 6.1: Numerical values of the parameters used for the open-loop servovalve-

actuator-rigid platen model. 

A  

[m2] 

β  

[MPa] 

qk  

[m3/sec/Volts]

V  

[m3] 
ck  

[m3/MPa] 

plm  

[kg] 

0.3324 819 0.06 0.2493 0.0 144,000 
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Table 6.2: Numerical values of the parameters of the single degree of freedom 

specimen model. 

Sm  

[kg] 

Sξ  

[%] 

Sω  

[rad/s] 

65,000 3% 12.5664 
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Table 6.3: Numerical values of TVC gains. 

PFk  

[V/V] 

VFk  

[V/V] 

AFk  

[V/V] 

JFk  

[V/V] 

Pk  

[V/V] 

DPk  

[V/V] 

DPω  

[V/V] 

Mk  

[V/V] 

Ik  

[V/V] 

0.00 0.35 0.45 0.0004 1.50 -0.15 0.50 1.00 0.00 
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Table 6.4: Numerical values of TVC’s notch filter. 

0f  

[Hz] 

bw  

[Hz] 

depth  

[V/V] 

10.00 5.00 -0.80 



 220

Table 6.5: Evolution of the TVC gains for the parametric study. 

TVC Gains (a1) (a2) (b1) (b2) (c1) (c2) (d1) (d2) (e1) (e2) 

Pk  0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

DPk  0 0 -0.2 -0.4 0 0 0 0 0 0 

VFk  0 0 0 0 0.2 0.6 0 0 0 0 

AFk  0 0 0 0 0 0 0.2 0.6 0 0 

JFk  0 0 0 0 0 0 0 0 0.02 0.06 
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Table 6.6: Evolution of the notch filter parameters for the parametric study. 

Notch Filter 

Parameters 
(f1) (f2) (g1) (g2) (h1) (h2) 

0f  5.0 11.0 11.0 11.0 11.0 11.0 

bw  5.0 5.0 2.0 20 5.0 5.0 

depth  -0.6 -0.6 -0.6 -0.6 -0.2 -0.9 
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Figure 6.1: Open–Loop servovalve-actuator-rigid platen model. 
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Figure 6.2: Magnitude plot of the open-loop servovalve-actuator-rigid platen model 

with no servovalve or cross-port actuator leakage. 
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Figure 6.3: Open–Loop servovalve-actuator-rigid platen-specimen model. 
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Figure 6.4: Simplified open-loop block diagram of servovalve-actuator-rigid platen-

specimen model. 
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Figure 6.5: Magnitude and phase plot of servovalve-actuator-rigid platen-specimen 

model. 
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Figure 6.6: Displacement control strategy for servovalve-actuator-rigid platen-

specimen model with force feedback, and velocity, acceleration, jerk feedforward 
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Figure 6.7: Block-diagram of the Three-Variable-Controller. 
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Figure 6.8: Comparison of open-loop transfer function of TVC as implemented in 

Matlab-Simulink and as obtained from the real-time control software 469D. 
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Figure 6.9: Closed-loop block diagram of the linear servovalve-actuator-rigid platen-

specimen (i.e. plant) with Three-Variable Controller (TVC). 
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Figure 6.10: (a1), (a2): effect of Pk , and (b1), (b2): effect of DPk . 
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Figure 6.11: (c1), (c2): effect of VFk on the closed-loop transfer function. 
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Figure 6.12: (d1), (d2): effect of AFk  on the closed-loop transfer function. 
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Figure 6.13: (e1), (e2): effect of JFk on the closed-loop transfer function. 
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Figure 6.14: (f1), (f2): effect of 0f on the closed-loop transfer function. 
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Figure 6.15: (g1), (g2): effect of bw  on the closed-loop transfer function. 
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Figure 6.16: (h1), (h2): effect of depth on the closed-loop transfer function. 
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CHAPTER 7  

ACCELERATION TRACKING PERFORMANCE OF THE 
NEES-UCSD SHAKE TABLE  

7.1. Introduction  

Large servo-hydraulic shake tables such as the NEES-UCSD large high 

performance outdoor shake table (LHPOST) at the University of California, San 

Diego, are complex systems designed to subject large structural or geotechnical 

specimens to extreme seismic environments such as those found in the near source 

region of major earthquakes. These facilities are used to investigate aspects of 

structural and geotechnical seismic behavior that cannot be readily extrapolated from 

testing at smaller scales, or under quasi-static or pseudo-dynamic conditions. The 

severe environment in which these shake table systems must operate is illustrated by 

the technical specifications of the LHPOST which include a stroke of ±0.75m, a peak 

horizontal velocity of 1.8m/s, a peak horizontal acceleration of 4.2g (design value) for 

bare table conditions and 1.0g (design value) for a rigid payload of 3.92 MN, a 

horizontal force capacity of 6.8MN, an overturning moment capacity of 50MN-m, a 

vertical payload capacity of 20MN, a platen area of 7.6mx12.2m, and a platen 
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effective mass of 144 tons.  The frequency bandwidth is 0-25Hz (Ozcelik et al. 2008, 

Van Den Einde et al. 2004). 

The typical shake table system includes a variety of mechanical (platen, 

yaw/pitch/roll restraining systems, vertical and lateral bearings, reaction block, 

foundation, and linear/nonlinear specimen), hydraulic (pumps, hydraulic lines, 

accumulator bank, inline and close-coupled accumulators, servovalves, and actuators), 

and electronic (controller, various types of transducers, signal conditioning units, data 

acquisition system) components. The complexity of the system arises from the many 

linear and nonlinear interactions among various components (Ozcelik et al., 2008; 

Zhao et al., 2005; Thoen and Laplace, 2004; Williams et al., 2001; Conte and 

Trombetti, 2000; Kusner et al., 1992; Dyke et al., 1995; Clark, 1983). 

The severity of the simulated ground motions, the size of the specimens, and 

the complexity of the system requires the use of a robust controller to force the table 

platform to follow (track) a prescribed (command/target) motion. Most existing shake 

table systems operate in displacement control mode in which a displacement feedback 

loop is used to control the motion of the table. In this case, the control signal is the 

weighted error between the table command and feedback (i.e. achieved) 

displacements. In servo-hydraulic control systems, force stabilization is provided by 

an additional actuator force feedback loop which helps to damp out the oil column 

resonance (Conte and Trombetti, 2000; Thoen and Laplace, 2004). Since seismic 

inertia forces are related to acceleration, the key element in shake table tests is the 

capability of the system to accurately reproduce prescribed acceleration records which 
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are usually broad-band signals. For this reason the displacement control strategy is 

usually augmented with additional feedforward control signals in order to increase the 

fidelity in acceleration reproduction. Feedforward gains usually act on the velocity 

and/or acceleration command signals (Crewe, 1998; Thoen, 2004). The controller of 

the LHPOST falls in the category of displacement control with additional feedforward 

terms (e.g. velocity, acceleration, and jerk: third derivative of displacement). It also 

has extra features such as notch filters, adaptive and iterative control techniques to 

improve the system performance and to compensate for linear and/or nonlinear 

sources of signal distortion (Thoen, 2004). 

The process of “tuning” the shake table to optimize signal reproduction (i.e., 

maximize fidelity in reproducing the target platen motion) requires adjusting a number 

of control parameters (e.g., feedback and feedforward gains) and some 

preconditioning of the command motion. Since there may be a significant interaction 

between the specimen and the table, the tuning process must be conducted with the 

specimen mounted on the table. The need to prevent premature damage to the 

specimen requires that the shake table tuning process be conducted with scaled-down 

inputs with amplitudes much lower than those of the final or actual test. Even when 

this precaution is followed, the specimen is subjected to many cycles of motion in the 

course of tuning, and low-level fatigue damage can result (Thoen and Laplace, 2004). 

A major concern with tuning at low amplitude is that the fidelity achieved at low 

amplitudes may not hold for the actual larger amplitude tests. It should be noted that 

high fidelity is not required in all tests. In many cases, comparisons between the 
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obtained and calculated structural response can be done a posteriori using the obtained 

platen motion as input for the calculations of the response. In other cases, such as 

those involving hybrid testing or geographically distributed testing, accurate tracking 

is paramount. 

The first objective of this Chapter is to investigate the tracking (signal 

reproduction) capability of the NEES-UCSD shake table system by a series of broad-

band and harmonic experiments with different tuning and test amplitudes. A second 

objective is to obtain quantitative relations between different measures of the signal 

reproduction error and the amplitude of the excitation used to tune the table. These 

relations can be used as guidelines for future seismic tests to be performed on the 

LHPOST, or on shake tables with similar controllers. The third objective is to consider 

the effectiveness of the existing iterative distortion compensation techniques and their 

applications. The final objective is to propose some improvements to the current shake 

table tuning practice. 

7.2. 469D Control Software and Tuning of Shake Tables 

The Three Variable Controller (TVC) of the LHPOST is an integral part of the 

MTS control software 469D (Thoen, 2004). TVC can be set to run under 

displacement, velocity, and acceleration modes. In acceleration and velocity modes 

(velocity mode is rarely, if ever, used for shake table tests), the controller is still in 

displacement control, but the control signal to the servovalves is a blend of weighted 

displacement error and feedforward terms including weighted velocity, acceleration, 

and jerk command signals. 
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The process of adjusting multiple control parameters (e.g., feedback and 

feedforward gains) and of preconditioning the input motion to optimize the response 

of the shake table system is called “tuning”. Ideally, a tuned shake table system would 

have a transfer function between the command and feedback signals (total table 

transfer function) characterized by unit gain and zero phase shift across the entire 

operating frequency range under loaded (i.e., with a specimen) table conditions. 

Current shake table tuning practice involves a three step process. The first step 

involves an iterative process in which the control parameters of the TVC are adjusted 

iteratively in small increments while the loaded table is in motion. Typically, this step 

is performed under a band-limited (e.g. 0.25 – 25 Hz) white noise (WN) input 

acceleration with an RMS amplitude sufficiently high to obtain a good signal to noise 

ratio in the feedback acceleration and a reliable total transfer function estimation 

between command and feedback accelerations, but low enough to avoid damage of the 

specimen. The parameter adjustment process continues until the total table transfer 

function (estimated recursively) is deemed satisfactory. As an example, Figure 7.1 

shows the amplitude of the resulting total table transfer function after TVC tuning of 

the LHPOST with a white noise acceleration input with 7%g RMS amplitude (~0.25g 

PGA).  

Many shake table tests, but not all, require high fidelity in signal reproduction. 

In these cases, the tuning process requires two additional steps. The second step 

corresponds to obtaining an estimate of the inverse model of the plant. This model is 

provided by the Adaptive Inverse Controller (AIC) program (Thoen 2004) in which 
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the parameters of the inverse controller are estimated by an adaptive inverse modeling 

process also known as adaptive controller “training” (Widrow and Stearns 1985).  The 

quality of the estimated inverse model depends on noise level, input amplitude level, 

and nonlinearities in the system. Inverse model estimation with AIC is also done under 

white noise acceleration with RMS amplitude matching to that used in the first step to 

“fine tune” the TVC parameters. An example of the estimated inverse model of the 

LHPOST plant at the end of AIC training is shown in Figure 7.1. 

The third step in the tuning process involves the use of an iterative signal 

matching technique. The iterative time history matching technique employed in 469D 

is called Online Iteration. OLI is a control technique that repeatedly modifies the 

command input to the shake table (e.g. an earthquake acceleration record) until the 

shake table response gets as close as possible to the desired (e.g. target) motion 

(Thoen 2004). This online technique generates the next command to the table (e.g. 

next drive file) by running the table in real-time with the current drive file as the 

command to the table, calculating the error between the desired and feedback (i.e. 

achieved), and updating the current drive file by adding a fraction (i.e. determined by 

the iteration gain) of the response error filtered through the inverse plant model on the 

current drive. The generation of new drive files are continued until satisfactory match 

is achieved between the desired and feedback signals. The general trend of response 

RMS error vs. iteration number during an OLI process is shown in Figure 7.2. 

Response RMS error is defined as the root mean square of the error between desired 

and feedback (i.e. achieved) accelerations. Figure 7.2 shows that the response RMS 
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error initially decreases with iteration number but after a certain iteration is reached 

the response RMS error starts increasing. The drive file achieving the minimum 

response RMS error is considered to be the “converged drive file”.  Theoretically, OLI 

can correct for any remaining deficiencies in the tuning of TVC, and moreover can 

compensate for existing linear/nonlinear sources of signal distortions within the 

system (e.g. friction, servovalves, table/specimen interactions etc). The application of 

OLI process requires a prior estimate of the inverse plant model provided by the 

Adaptive Inverse Controller (AIC) program which is wired into the OLI program to 

serve this purpose (Thoen 2004). The OLI is performed with a scaled-down version of 

the intended target ground motion to avoid damage of the specimen.  After a 

satisfactory tuning is achieved the converged file is scaled up to the amplitude of the 

intended ground motion, and the actual tests are performed on the table. The current 

tuning process is labor intensive and the results are highly dependent on the expertise 

level of the operator.  

7.3. Shake Table Seismic Performance Test Program 

An extensive set of 74 shake table tests were performed in December 2007 and 

January 2008 to assess the fidelity of LHPOST in reproducing a prescribed platen 

motion. The tests were designed to quantify the effect that the tuning amplitude has on 

the level of signal fidelity. For this purpose, four different acceleration records 

corresponding to the 360 degree component of the 1994 Northridge earthquake record 

at Sylmar station, the north-south component of 1940 Imperial Valley earthquake 

record at El Centro station, and two harmonic acceleration records with frequencies of 
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1.0 Hz and 4.1 Hz, were selected. It should be noted that 4.1 Hz corresponds to the 

corner frequency where the maximum velocity and maximum acceleration that the 

table can reach intersect.  For each of these acceleration records, the table was tuned at 

scaled down or scaled up versions of the record on the basis of several “Calibration 

PGA” amplitudes and the corresponding OLI converged files were obtained. Each 

converged drive file was then scaled up or down according to several “Test PGA” 

amplitudes and the resulting motions were reproduced on the table. The table fidelity 

was assessed by comparison of the original acceleration time-history scaled by the 

Test PGA with the obtained acceleration for a given Calibration PGA. The test 

matrices for each of the selected acceleration records are listed in Table 7.1. The tests 

were performed without a specimen on the table and thus represent bare table 

conditions. 

The tuning of the table in preparation for the tests followed the standard three-

step procedure. The first two steps are common for all of the tests whereas the third 

step differs for each acceleration record and Calibration PGA. The first two steps 

including TVC parameter adjustment and AIC inverse model identification were 

performed under a band-limited (0.25 – 25 Hz) white noise acceleration input with 

7%g RMS amplitude (~0.25g PGA). During the third step of the tuning process 

corresponding to the OLI preconditioning of the input motion, the tuning results 

obtained from the previous two steps were kept fixed. 
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7.4. Test Results 

A number of comparisons and measures are used to evaluate the signal 

reproduction capability of the NEES-UCSD shake table. These include direct 

comparisons of the acceleration time histories, peak accelerations, and constant 

ductility response spectra for the achieved and intended platen accelerations. Also to 

offer a cumulative measure of the error in signal reproduction, the relative root mean 

square (RMS) error measure defined by   
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is used. In Equation (7.1), desx  is the desired (command) acceleration, fbkx  is the 

achieved (i.e. feedback) acceleration, and N is the number of data point within the time 

window chosen to calculate the error. For earthquake records this time window was 

chosen to be the time interval between the 5% and 95% contribution of the command 

acceleration to the Arias intensity ( 2
desx dt∫ ). The resulting time windows for the 

Sylmar and El Centro records were found to be between 11.46 to 16.80 seconds and 

12.25 to 36.81 seconds, respectively. The achieved acceleration was shifted in time to 

correct for any delay introduced by the plant. The appropriate shift was found by 

minimizing the relative RMS error. In the case of harmonic excitation, the time 

windows for error calculations were chosen so that the maximum amplitude levels for 
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that particular test was reached which occurs after two cycles of ramping up. The 

windows covered at least for two cycles. 

7.4.1. Comparison of Acceleration Time Histories  

To gain an overall view of the signal fidelity performance of the LHPOST, it is 

convenient to compare the achieved and intended acceleration time-histories. Figure 

7.3 shows two time-history reproduction results for the Sylmar record. The top plot 

corresponds to the case in which the OLI tuning was performed at 0.170g Calibration 

PGA amplitude while the test was performed at 0.852g Test PGA amplitude by 

scaling up the converged drive file by the scale factor 0.852/ 0.170.  The lower plot 

shows the case in which both OLI and the test were performed at the same PGA 

amplitude (i.e. Calibration PGA = Test PGA = 0.852g). In other words, the converged 

drive file obtained at 0.852g Calibration PGA was reproduced directly on the table 

without any additional scaling. The time history plots shown in Figure 7.3 indicate that 

good signal reproduction fidelity (relative RMS error of 10.9%) is obtained when both 

the OLI tuning and the test are performed at the same high PGA amplitude levels 

(0.852g in this case). On the other hand, the use of a more realistic lower calibration 

PGA (0.170g) amplitude and a test with higher test PGA amplitude (0.852g) results in 

significantly lower fidelity (relative RMS error of 33.3%). 

Similar results are shown in Figure 7.3 for the El Centro excitation. The top 

plot in Figure 7.4 shows the case where OLI was performed at 0.146g Calibration 

PGA amplitude while the test was performed at 1.098g Test PGA amplitude by 

scaling up the converged drive file with the scale factor 1.098/ 0.146.  The lower plot 
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in Figure 7.4 shows the case in which both OLI and the test were performed at the 

same PGA amplitude (i.e. Calibration PGA = Test PGA = 1.098g). Again, the signal 

reproduction is better (relative RMS error of 16.2% vs. 35.5%) when the tuning is 

done at the same amplitude as the test. 

Figure 7.5 shows the time history plots for a set of tests with intended 

harmonic accelerations with a frequency of 4.1 Hz and various amplitudes. The results 

in Figure 7.5(a), 5(b), 5(c) and 5(d), correspond to cases in which the converged OLI 

drive file was obtained for 0.591g Calibration PGA and then test results at Test PGAs 

of 0.591, 1.182, 2.364, and 3.547g were obtained by running the appropriately scaled 

OLI file on the table. It is clear from the plots that although a near perfect replica of 

the desired signal was achievable in case (a), scaling of the converged drive file to 

higher test amplitudes resulted in decreasing signal fidelity (i.e. increasing waveform 

distortion as the scale factor increases). The relative RMS errors for cases (a) through 

(d) corresponded to 7.9%, 17.0%, 22.8%, and 22.8%, respectively. Fourier amplitude 

spectra of the achieved signals (i.e. feedback) show that odd harmonics of the test 

frequency are the predominant causes of this distortion indicating a significant 

nonlinear system response. Such nonlinear distortions at a specific amplitude can be 

compensated by OLI, but the converged drive file cannot compensate distortions at a 

higher amplitude level. Figure 7.5(e) corresponding to the case in which the 

calibration and test were conducted at the same high amplitude of 2.364g shows that 

OLI is effective at high amplitudes and to obtain good waveform reproduction, the 

tuning and the test must be conducted at similar amplitudes. 
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In the case of harmonic excitation, the MTS 469D control software offers the 

option of using an Amplitude Harmonic Cancellation (AHC) control method instead 

of OLI to compensate for nonlinear plant distortions. AHC measures the harmonic 

distortions for a harmonic input with a specific frequency and amplitude, then in real-

time determines and adapts a distortion canceling signal, and applies this additional 

signal onto the plant input (Thoen, 2004). AHC requires that a forward plant model be 

estimated. An example of the application of the AHC method instead of OLI is 

presented in Figure 7.6which shows  results obtained from an earlier (2005) set of 

harmonic tests with a frequency of 3 Hz. For the tests shown in Figure 7.6 the AHC 

was performed at 0.433g amplitude and the tests were run at 0.433, 0.865, 1.730, 

2.595 and 3.464g with properly scaled input files. The time history reproduction 

results in Figure 7.6 are very similar to the ones obtained from the recent tests with 

OLI (Figure 7.5) indicating that OLI is not significantly better than AHC 

compensation.  The relative RMS errors for the five cases shown in Figure 7.6 

corresponded to 17.5%, 24.7%, 32.6%, 35.0%, and 34.7%, respectively. The forward 

plant model for the earlier tests was estimated by running WN acceleration with 10%g 

RMS amplitude on the table.  

7.4.2. Error in Peak Accelerations  

For tests involving stiff and brittle specimens the reproduction of the peak 

acceleration is important. The results shown in Figure 7.3 through Figure 7.6 indicate 

that the obtained peak accelerations can be significantly higher than the intended 

values. The errors of the achieved peak acceleration with respect to the intended peak 
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acceleration are shown in Figure 7.7(a) and Figure 7.7(b) for the Sylmar and El Centro 

excitations, respectively. The errors are shown versus Target PGA for different 

Calibration PGA. The error can be as large as 30% for high amplitude tests with 

calibration amplitudes of less than 10%g. Increasing the calibration amplitudes tends 

to reduce the error in peak accelerations. The results obtained for harmonic excitation 

shown in Figure 7.8(a) and Figure 7.8(b) exhibit similar trends as those for seismic 

excitation except that the errors in the harmonic case tend to be larger and, particularly 

so for the case of 1Hz excitation. Also, the shake table overshoots the target peak 

accelerations for both harmonic tests. 

7.4.3. Reproduction of Response Spectra  

The capability of the shake table to reproduce the response spectrum of the 

prescribed acceleration time-history is another measure of the performance of the 

table. To investigate the effect of the tuning process on the response spectrum 

reproduction capability of the table, linear and nonlinear acceleration response spectra 

from reproduced acceleration time-histories were calculated and compared with the 

response spectra of the desired acceleration record. For this purpose three different 

acceleration time-histories have been considered: (i) the original Sylmar acceleration 

time- history with 0.852g PGA amplitude; (ii) the feedback acceleration time-history 

of the table when the command input to the table was a modified version of the 

original Sylmar record which was obtained by OLI at 0.170g Calibration PGA level 

and scaled up to 0.852g Test PGA level; and (iii) the feedback acceleration time-

history of the table  when the command to the table was again obtained by OLI but 



 253

this time the Calibration PGA level of 0.852g PGA was the same as the Test PGA 

level. 

Linear ( 1µ = ), and constant ductility (for 2µ = , 4µ = , and 8µ = ) pseudo-

acceleration response spectra corresponding to these three acceleration time-histories  

with 3% damping are presented in Figure 7.9. It is clear from the plots that the linear 

and nonlinear response spectra of the obtained motion match well with the 

corresponding desired counterparts when the table is tuned at the same amplitude as in 

the test (0.852g). On the other hand, major discrepancies between the desired and 

reproduced response spectra can be observed when the table is tuned at lower 

amplitudes. The largest errors in response spectrum reproduction are observed in the 

vicinity of the period T = 0.09 sec which corresponds to the oil column resonance of 

the system. For periods shorter than 0.2 seconds the errors are positive, while for 

periods longer than 0.5 seconds, the errors are mostly negative. 

In the period range from 0.02 to 0.2 seconds, the maximum errors for 

ductilities of 1, 2, 4 and 8 correspond to 84.7%, 70.1%, 47.6%, and 21.7%, 

respectively. Thus for short periods, the error tends to decrease as the ductility 

increases. In the period range from 0.2 to 0.5 seconds, the corresponding maximum 

errors are 19.2%, 15.0%, 15.1%, and 48.1%, respectively. Finally, in the period range 

from 0.5 to 1.5 seconds, the maximum errors for ductilities of 1, 2, 4 and 8 correspond 

to 14.0%, 43.7%, 16.3%, and 17.8%, respectively. 
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7.4.4. Relative RMS Error  

The relative RMS errors obtained for the Sylmar and El Centro excitations are 

shown in Figure 7.10 as a function of Target PGA for different values of the 

Calibration PGA. The following general trends are apparent: (i) the relative RMS error 

for Calibration PGA lower than 0.17g and high Test GPA can reach values in the 

range from 35 to 55%, (ii) the relative RMS error can be reduced by increasing the 

Calibration PGA amplitude, (iii) the smallest relative RMS errors of 10.9% and 16.2% 

are achieved at Calibration PGA amplitudes of 0.852g and 1.098g for the Sylmar and 

El Centro excitations, respectively, (iv) poor signal reproduction fidelity is obtained 

when both the Calibration and  Test PGA amplitudes are low, (v) the relative RMS 

error is relatively independent of Target PGA for Target PGA amplitudes larger than 

0.75-0.80g, , and (vi) in the unlikely case of  high Calibration PGA and low Test PGA, 

the system performs very poorly in terms of signal reproduction fidelity. The relative 

RMS errors obtained in an earlier set of tests (September 2005) are shown in Figure 

7.11. The tuning approach followed during the earlier tests was the same as the one 

followed during the recent tests with the exception that TVC parameter adjustments 

and AIC training for these tests were performed under 10%g RMS amplitude WN 

acceleration input (~0.35g PGA) instead of the 7%g RMS amplitude WN acceleration 

input (~0.25g PGA) used in the recent tests. For OLI, the same 1940 Imperial Valley 

El Centro record was used. Comparison of the results in Figure 7.10 and Figure 7.11 

indicate that although the trends observed for Calibration PGA of 0.073g for the two 

tests are similar, higher fidelity in signal reproduction (i.e. smaller relative RMS 
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errors) was achieved in the earlier tests. In addition, the earlier relative RMS error 

curves (Figure 7.11) reach their minima when the Calibration PGA amplitudes 

coincide with the Test PGA amplitudes. This is a more intuitive result since the table 

should perform better at the amplitude level in which OLI has been performed. Two 

possible reasons can be given to explain the differences observed suggest that the 

quality of the inverse model estimation increases as the RMS amplitude of the white 

noise input increases and that the table performance is a function of the experience 

level of the table operator.  

Relative RMS error curves for harmonic tests with frequencies of 1.0 Hz and 

4.1 Hz are shown in Figure 7.12. The general trends are: (i) For a calibration PGA of 

0.144g, the relative RMS error exceeds 20%, (ii) the relative RMS error decreases as 

the calibration PGA amplitudes increases, (iii) minimum relative RMS errors of the 

order of 5-8% can be achieved for Calibration PGA larger than 0.577g when the Test 

and Calibration amplitudes coincide, and (iv) the relative RMS errors for a given 

Calibration PGA appear to reach an asymptotic value as the Test PGA increases. 

7.5. Table Performance Curves 

The relative RMS error data shown in Figure 7.10, Figure 7.11 and Figure 7.12 

have been used to construct the table performance curves shown in Figure 7.13, Figure 

7.14, and Figure 7.15. These curves relate the Calibration PGA and Test PGA for a 

desired signal fidelity measured by the relative RMS error.  These curves are intended 

to serve as guidance in the selection of appropriate calibration amplitudes for future 

tests with pre-selected Test PGA and relative RMS error. The curves quantify the 
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trade-off between higher signal fidelity (smaller relative RMS error) and probability of 

premature damage to the specimen by use of larger calibration amplitudes.  

Figure 7.13 shows a set of RMS error vs. Calibration PGA curves for harmonic 

tests with 1.0 and 4.1 Hz frequencies and 0.9g and 1.2g Target amplitudes, 

respectively, Sylmar test with 1.2g, and El Centro test with 0.7g, 1.1g, and 1.5g Target 

PGA amplitudes. The relative RMS error trends in Figure 7.13 clearly show that 

achieving higher levels of signal fidelity requires higher Calibration PGA amplitudes. 

This observation holds for harmonic as well as earthquake records.  

Figure 7.14 shows the table performance curves obtained from the earlier set of 

tests using the same El Centro record but a somewhat stronger white noise excitation 

(peak acceleration of 0.35g vs. 0.25g for the more recent tests) during the TVC 

parameter adjustment and for the adaptive inverse modeling (AIC) phase of the OLI. 

Figure 7.14 can be used to find the OLI calibration amplitude required for a desired 

level of signal fidelity. For example, these curves suggest that 0.36g Calibration PGA 

amplitude is necessary in order to have 30% relative RMS error. Results given in 

Figure 7.14 show the same trends as seen in Figure 7.13: higher fidelity in signal 

reproduction requires a higher calibration level which in turn brings the problem of 

higher risk of premature damage to the specimen during table tuning. 

The table performance curves for harmonic excitation with frequencies of 1.0 

Hz and 4.1 Hz are shown in Figure 7.15. As an example of the use of these curves, 

assume that a harmonic record with a frequency of 4.1 Hz and peak amplitude of 3.0g 

needs to be reproduced on the table. If the users of the shake table decide that a 
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relative RMS error of 20% is satisfactory for their test, then the data in Figure 7.15(b) 

indicates that the OLI has to be performed at a Calibration PGA of 0.76g to obtain the 

required level of signal fidelity. 

7.6. Conclusions 

The results obtained from broadband and harmonic tests performed on the 

NEES-UCSD Large High Performance Outdoor Shake Table suggest the following 

conclusions: 

(1) High fidelity in reproduction of the platen acceleration (10-20% relative RMS 

error) is achievable for both broadband and narrowband excitations only if OLI is 

performed at sufficiently high Calibration amplitudes. Large relative RMS errors 

should be expected when the Calibration PGA amplitudes are considerably smaller 

than the actual Test PGA amplitudes.  At reasonable Calibration PGA levels (i.e. 

amplitudes not posing too much risk to specimen during tuning), the relative RMS 

error ranges between 30-40% for the Sylmar record, and between 30-60% for the El 

Centro record. 

(2) For Calibration PGA amplitudes of the order of 7-8%g and tests at higher 

amplitudes the obtained platen peak acceleration can be 30% higher than the intended 

peak acceleration for seismic excitation and substantially higher for harmonic 

excitations. 

 (3) Linear and constant ductility response spectra can be accurately reproduced if the   

Calibration PGA amplitude is sufficiently high (e.g. calibration at 0.852g PGA). At 

low Calibration PGA but high Test PGA cases (e.g. calibration at 0.170g PGA and 
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testing at 0.852g PGA for Sylmar record) the ability of the table to reproduce linear 

and constant ductility response spectra deteriorates and large errors can be obtained 

particularly for periods shorter than 0.2 seconds.  

(4) While it is possible to obtain an almost a perfect replica of a harmonic waveform 

for a given Calibration PGA amplitude by using OLI when the converged drive file 

corresponding to this Calibration PGA amplitude is scaled up to another amplitude 

level, the signal fidelity deteriorates very quickly and large RMS errors and waveform 

distortions are obtained. The same observation holds for AHC compensation 

technique. Shake tables are nonlinear systems and therefore a signal fidelity level 

achieved for a specific amplitude by a certain tuning cannot be maintained at a 

different amplitude.   

(5) Sets of Table Performance Curves have been obtained. These performance curves 

give the shake table user a quantitative guide to decide on the level of Calibration 

PGA amplitude that should be used to obtain a desired level of signal fidelity for a 

given Test PGA amplitude. The curves help to resolve the crucial problem of 

balancing the increased risk of premature damage to specimens by increasing the 

calibration amplitudes with the need for adequate signal fidelity.  

(6) The RMS amplitude level of the white noise input used for TVC parameter 

adjustment is also important for obtaining better signal reproduction performance as 

revealed by comparisons with the earlier El Centro tests. Minimum RMS amplitudes 

of 0.07-0.10 g appear to be necessary.  
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(7) Shake table tuning practice with current state-of-the-art control tools is highly 

dependent on the skills of the operator. 

(8) Finally, the difficulties encountered with tuning at low amplitudes and testing at 

much higher amplitudes indicate the need for an accurate virtual tuning of the table 

based on a detailed mathematical model of the complete system and, eventually, for a 

more advanced controller. 
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Table 7.1: Calibration and Target PGA test matrices for Sylmar, El Centro and 

harmonic records. 

Sylmar Record 
Calibration PGA 

[g] 
Test PGA (or Target PGA) 

[g] 
0.085 0.085 0.170 0.511 0.852 1.193 
0.170 0.085 0.170 0.511 0.852 1.193 
0.511 0.085 0.170 0.511 0.852 1.193 
0.852 0.085 0.170 0.511 0.852 1.193 

El Centro Record 
Calibration PGA 

[g] 
Test PGA (or Target PGA) 

[g] 
0.073 0.073 0.146 0.366 0.732 1.098 1.464 
0.146 0.073 0.146 0.366 0.732 1.098 1.464 
0.366 0.073 0.146 0.366 0.732 1.098 1.464 
0.732 0.073 0.146 0.366 0.732 1.098 1.464 
1.098 0.073 0.146 0.366 0.732 1.098 1.464 

4.1 Hz Harmonic Tests 
Calibration PGA 

[g] 
Test PGA (or Target PGA) 

[g] 
0.59 0.59 1.18 2.36 3.55 3.81 
1.18 N/A 1.18 2.36 3.55 3.81 
2.36 N/A N/A 2.36 3.55 3.81 

1.0 Hz Harmonic Tests 
Calibration PGA 

[g] 
Test PGA (or Target PGA) 

[g] 
0.14 0.14 0.29 0.58 0.87 0.93 
0.29 N/A 0.29 0.58 0.87 0.93 
0.58 N/A N/A 0.58 0.87 0.93 
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Figure 7.1: Magnitude response plots of the total transfer function of the plant after 

TVC tuning and the estimated inverse plant model. 
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Figure 7.2: Response RMS error vs. OLI iteration number for Sylmar Record at 

0.852g Calibration PGA amplitude (for this OLI case the converged drive file is 

reached at the 7th iteration). 
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Figure 7.3: Sylmar Tests: (a) OLI performed at 0.170g Calibration PGA amplitude and 

the test performed at 0.852g Test PGA amplitude (relative RMS Error is 33.3%); (b) 

OLI performed at 0.852g Calibration PGA amplitude and the test performed at 0.852g 

Test PGA amplitude (relative RMS Error is 10.9%). 

 

(a) 

(b) 
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Figure 7.4: El Centro Tests: (a) OLI performed at 0.146g Calibration PGA amplitude 

and the test performed at 1.098g Test PGA amplitude (relative RMS Error is 35.5%); 

(b) OLI performed at 1.098g Calibration PGA amplitude and the test performed at 

1.098g Test PGA amplitude (relative RMS Error is 16.2%). 

 

(a) 

(b) 
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Figure 7.5: 4.1 Hz harmonic tests with corresponding relative RMS errors: (a) OLI and 

the test are performed at 0.591g PGA amplitude; and OLI is performed at 0.591g 

Calibration PGA amplitude and the tests are performed at (b) 1.182g, (c) 2.364g, (d) 

3.547g Test PGA amplitudes and (e) Calibration PGA is same as Test PGA of 2.364g. 
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Figure 7.6: 3.0 Hz harmonic tests with corresponding relative RMS errors: (a) AHC 

and the test are performed at 0.433g PGA amplitude; and AHC is performed at 0.433g 

Calibration PGA amplitude and the tests are performed at (b) 0.865g, (c) 1.730g, (d) 

2.595g, and (e) 3.460g Test PGA amplitudes. 
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Figure 7.7: Error between the maximum achieved and maximum desired PGA 

amplitudes, (a) Sylmar and (b) El Centro records. 

(a) (b) 
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Figure 7.8: Amplitude error vs. Target (or Test) PGA for (a) 1.0 Hz and (b) 4.1 Hz 

harmonic acceleration records, respectively. 

 

(a) (b) 
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Figure 7.9: Desired and reproduced constant ductility response spectrums for four 

different ductility levels for Sylmar record. 
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Figure 7.10: Relative RMS error vs. Target (or Test) PGA curves for (a) Sylmar, and (b) 

El Centro earthquake records. AIC training has been done under 7%g RMS amplitude 

WN acceleration. 

 

(a) (b) 
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Figure 7.11: Relative RMS error vs. Target (or Test) PGA curves for El Centro record 

from an earlier set of tests. AIC training has been done under %10g RMS amplitude 

WN acceleration. 
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Figure 7.12: Relative RMS error vs. Target (or test) PGA curves for (a) 1.0 Hz, and 

(b) 4.1 Hz harmonic acceleration tests. 

 

(a) (b) 
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Figure 7.13: RMS Error vs. Calibration PGA curves using harmonic and broadband 

tests for Target PGA amplitudes between 0.9g and 1.5g. 
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Figure 7.14: Table performance curves obtained from the earlier set of tests for El 

Centro earthquake record (the inverse plant model is estimated while running 10%g 

RMS amplitude WN acceleration on the table). 
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Figure 7.15: Table performance curves for (a) 1.0 Hz and (b) 4.1 Hz harmonic records 

(the inverse plant model was estimated while running 7%g RMS amplitude WN 

acceleration on the table) 

 

(a) (b) 
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CHAPTER 8  

A TOOL DEVELOPED TO INVESTIGATE SHAKE 
TABLE – SPECIMEN INTERACTION 

8.1. Introduction  

In this section a simulation tool which would combine simulation capabilities 

of Matlab-Simulink® and OpenSees (Open System for Earthquake Engineering 

Simulation) will be developed, tested, and used in order to investigate shake table 

linear/nonlinear specimen interaction problem. This section will give the details of 

integrating OpenSees and Simulink. 

Simulink provides an excellent platform to model entire shake table systems 

with linear simple structural systems with few degrees of freedom mounted on the 

platen. Since shake tables, in general, are used to test specimens going under large 

inertial forces, tested specimens are almost always forced to go into their nonlinear 

regimes. Therefore, in order to investigate shake table / nonlinear specimen interaction 

problem, simulation capabilities of Simulink has to be extended. In this chapter, the 

details of integrating finite element software OpenSees with Simulink will be given. 

OpenSees and Simulink are both large software frameworks. Directly linking 

and compiling them together would require huge amount of effort if not totally 
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impossible. One way to achieve this complicated task is to call OpenSees from 

Simulink at every time step, let OpenSees perform a one-step analysis and send the 

necessary results back to Simulink, save (e.g., export) the current states of the 

structural model in a file (e.g., database), turn itself off, and run itself again when 

Simulink needs it, retrieve the current states from the file (i.e., import the states from 

the database), and perform the next time step analysis. This importing-exporting 

process would continue until the end of the entire simulation. As it can be anticipated, 

“linking” OpenSees and Simulink this way would not be efficient due to the necessity 

of saving and retrieving the current states of a realistic large structural model at every 

time step from a file. The efficient communication between OpenSees and Simulink is 

a crucial problem for the entire simulation tool (i.e., Simulink and OpenSees) to solve 

large problems. 

An efficient but yet still simple way to achieve this integration is to make 

Simulink the simulation coordinator by enabling it to call the FEA software whenever 

it is necessary while the FEA software and the structural model are still in the 

memory, in other words by letting OpenSees to be persistent in the memory so that the 

communication between Simulink and OpenSees becomes efficient (or easily 

accessible).  

8.2. Integration OpenSees into Matlab-Simulink by Client-Server Technique 

In the Client-Server (CS) technique, the finite element analysis (FEA) software 

OpenSees is set as a server and Simulink as a client. Setting OpenSees as a server 

enables OpenSees and the structural model to be persistent in the memory, and 
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therefore the client (Simulink) can connect to the server and request from server to 

execute OpenSees analysis commands and retrieves the necessary structural responses 

in order to incorporate their effect into the simulation. Note that the model of the table 

and the model of the structure mounted on the table are in interaction, in other words 

their responses affect each other because they are in close loop. The communication 

between the client and the server is through the standard Internet protocol TCP/IP. 

OpenSees is an open source FEA software used for modeling structural 

systems and simulating their earthquake responses (McKenna et al., 2000). OpenSees’ 

interface is based on a command-driven scripting language Tool Command Language 

(TCL) which enables OpenSees users to create more-versatile model and input files 

(Welch, 2000).  It is worth to note here that OpenSees does not need to be further 

programmed to act as the server, it remains intact. Instead a set of TCL functions are 

used to achieve the communication between the server and the client through a simple 

TCL network communication channel (or socket) based on TCP network protocol. 

The client includes few short TCL commands.  

The integration using CS technique is schematically described in Figure 8.1.  

At the server side, OpenSees creates the model and performs gravity load analysis. 

Then it stops and waits for commands to arrive from the client (Simulink) which will 

drive further actions. Once OpenSees receives commands and/or inputs (e.g., platen 

accelerations) for specific action from the client, it performs the requested analysis and 

sends the required structural responses back to the client.  For shake table application, 

these responses are base shear and overturning moment (e.g., base reaction forces). At 
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the client side, at every time step an algorithm in Simulink will ask OpenSees to run 

an analysis with current platen accelerations as inputs. Then it will receive structural 

responses (e.g., resisting forces) from OpenSees and incorporates these responses to 

advance the simulation. To perform receiving action from an outside software (in this 

case OpenSees), a user-defined function within Simulink written in C++ is linked and 

compiled with a cheap client written also in C++. User-defined functions in Simulink 

are called the S-functions. The client is a C++ object which persists in the memory 

therefore holding the connection with the server continuously and handling the 

communication with it. The framework of server side and client side configurations is 

given as follows and the details of the whole software are given in the Appendix: 

Server Side. In the server side, following TCL scripts are used to create the 

server 

source model.tcl 

socket -server accept 7200 

vwait forever 

where model.tcl is the finite element (FE) model of the specimen on the table, the TCL 

command source will run the model.tcl  to set up the model and to perform analysis 

under initial loadings (e.g., gravity loads). The second command socket creates the 

server socket with the port number 7200 (it can be any port number) and a callback 

procedure accept  to execute commands whenever the client connects to this server 

socket. The third command vwait sets the server to wait for requests from the client. 

The callback procedure accept will accept commands from the client to analyze the 
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model, get the response from FE analysis, and send necessary responses back to the 

client through the same socket. Since the model is persistent in the memory, the 

procedure accept can visit any variable in the FE model directly from the memory and 

can perform certain actions on them and send them back to the client. More 

information on the TCL commands can be found in the literature (Welch, 2000). 

Client Side. The client is a persistent C++ object called OpenSeesHandler 

which is linked to the user-defined S-function OpenSimConn in Simulink. To take 

advantage of the TCL library (e.g., TCP socket), OpenSimConn is also linked with this 

library. In OpenSeesHandler, for OpenSees to perform certain actions necessary TCL 

commands are created and then sent to the server. Detailed discussion about writing 

C++ S-functions in Simulink can be found in the literature (Dabney and Harman, 

2004). 

At the very beginning of the entire analysis, OpenSeesHandler is created inside 

the S-function. It will run the following TCL commands in its constructor function in 

order to set up and hold the connection with the server 

set s [socket localhost 7200]  

fconfigure $s -buffering none  

At every time step Simulink will operate OpenSeesHandler client by calling the S-

function and will form and run the following commands 

puts $s "tryOpenSeesOneStep  $currentTime  $accel_i" 

gets $s 
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where puts $s will pass the command to the server side. “tryOpenSeesOneStep” 

command is a user defined macro written in TCL in the server side to run OpenSees at 

the time currentTime specified or controlled by the client Simulink. Parameters 

$accel_i are the platen accelerations with respect to the generalized coordinate axes 

defined in Chapter 6. In this version of the software longitudinal, vertical, and rocking 

accelerations are passed from Simulink to OpenSees. The TCL command “gets $s” 

gets the response from the server and saves them into variable “s” which will then be 

incorporated into simulation by Simulink to advance (continue) the simulation in time. 

Advantages of the CS technique in general are as follows: (i) It is efficient 

and flexible. The users are allowed to update the FE model or loading parameters at 

any time step. The FE model and its state variables in the server side persist in the 

memory, therefore the server allows all state variables to be visited and updated by the 

client at any time step. Furthermore with commands like tryOneStep, 

revertToLastStep, and commitOneStep, FE analysis software is able to work together 

with implicit (i.e., iterative type) as well as explicit (e.g., Runge-Kutta) solvers 

developed for solving initial value problems. Data transfer between the client and 

server can be implemented using TCP/IP or other protocols. The size of the data is 

usually very small and the speed and quality of this transfer are excellent; (ii) it is 

robust. The connection between the client and server is set up only once at the very 

beginning of the analysis and will be held at all time. This saves tremendous amount 

of time (20 times faster than exporting-importing method). Once connection is set up, 

a reliable communication method between the client and the server is established due 
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to robustness of the Internet protocol; (iii) it is easy to program and maintain. In the 

client side a cheap component can be easily programmed and integrated into any 

higher-level software platforms (in this case Simulink). The client C++ object 

OpenSeesHandler is integrated into Simulink with very little programming work; 

therefore it is easy to change and maintain the integration software. 

8.3. 4th Order Runge-Kutta 

The shake table simulation model in Simulink is advanced in time suing the 4th 

order Runge-Kutta (RK) initial value problem solver. Therefore, first a brief 

description on the 4th order Runge-Kutta will be given and then the details of handling 

OpenSees for making it compatible with this solver will be presented. For further 

information on the initial value problem solvers refer to the literature (Bewley, 2008; 

Lee, 2004). 

Consider a vector, first order, possibly nonlinear ordinary differential equation 

 0 0( , ),    ( )t t= =y f y y y  (8.1) 

where ( )ty  is the response to be determined for some 0t > , ( , )tf y  is a function of 

time t  and the solution itself y , and 0y  is the initial conditions. Advancing ( )ty  in 

time can be achieved by evaluating the following integral 
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4th order Runge-Kutta method computes (or approximates) the integral given in (8.2) 

as follows 
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where 1 2 3 4,  ,  ,  and k k k k  are the slopes at time steps ,  ,
2n n
tt t ∆

+  ,  and 
2n n
tt t t∆

+ + ∆ , 

respectively and these time steps are called the minor time steps in Simulink. Notice 

that 2 3 4,  ,  and k k k  are calculated using the slopes 1 2 3,  ,  and k k k , respectively and 

in (8.3) the slopes 3 4 and k k are given more weights for calculating the average slope 

(second term in (8.3)). Runge-Kutta method is an explicit time marching method 

meaning that in order to advance the simulation from time n  to 1n + , only ny  needs 

to be known. Geometrical interpretation of RK4 method is shown in Figure 8.2. 

As mentioned earlier Simulink uses RK4 to simulate the shake table model. 

OpenSees is integrated into this model using the client-server technique, and therefore 

must be compatible with the ordinary differential equation solver used in Simulink. 

OpenSees has to provide the necessary inputs (e.g., reaction forces at the base of the 

structure) to Simulink during the minor time steps to calculate the average slope and 

while doing that states of the structural model in OpenSees must not be committed and 

be committed only at major time steps where the true platen accelerations are 
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calculated using (8.3). Once the true accelerations are known, Simulink sends 

OpenSees the true platen accelerations, OpenSees runs the structural model using 

these accelerations and this time commits the states of the model.  

It is clear from the above discussion that Simulink needs to control OpenSees 

when to commit and when not to commit but just provide the necessary outputs to 

Simulink in order to be compatible with the RK4 method. To do this, inside Simulink 

minor and major time steps have to be tracked. This can be done by using Simulink 

macros ssIsMinorTimeStep(S) and ssIsMajorTimeStep(S). Once the simulation time of 

Simulink is known (i.e., minor and major time steps) OpenSees can be controlled 

based on this information by using two special commands written and embedded in 

OpenSees software framework: tryOneStep and commitOneStep. With tryOneStep 

OpenSees performs intermediate analyses needed for RK4 method (Eq. (8.4)) and 

returns Simulink the base reaction forces by using the intermediate platen 

accelerations but does not commit the states of the structural model. With 

commitOneStep OpenSees performs one last analysis using the true platen 

accelerations and this time commits the states of the structural model. Details of 

implementing the above outlined procedure are given in Appendix. 

8.4. Testing Client-Server Technique using Simple Shake Table Applications 

In this section two different approaches will be given for checking Simulink 

OpenSees integration technique outlined above: (i) by comparing analytically and 

numerically obtained transfer functions of a simple linear shake table model with a 

linear SDOF specimen mounted on it; and (ii) by integrating the platen-specimen 
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assembly excited by “reduced actuator force” using Newmark numerical integration 

method. 

8.4.1. Analytical Vs. Numerical Transfer Function Comparison 

Analytical transfer function of the linear shake table with a SDOF specimen 

controlled by the Three-Variable-Controller has been derived in Chapter 7. For 

convenience, the closed-loop transfer function of the model shown in Figure 8.3(a) 

from the reference signal to the actuator force is repeated here 
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 (8.5) 

The details and the assumptions made for deriving (8.5) have been given in the related 

chapter. Bode plot of (8.5) will be compared to the transfer function estimated using 

the same shake table modeled using Simulink and OpenSees where the link between 

them is  provided by the client-server technique (Figure 8.3(b)).  

Table 8.1 and 8.2 show the numerical values of the model parameters used. 

Control gains used for the simulation are 1.50 V/VPk = , 0.15 V/VDPk = − , and the 

rest of the control gains are set to zero (i.e., only nonzero gain is the proportional 

gain). 

The magnitude-phase response plots of the model shown in Figure 8.3(b) was 

obtained by running the simulation model under a band-limited white noise (WN) 

input ([0.25 - 20] Hz) with 13%g RMS amplitude. Actuator forces generated by the 

Simulink-OpenSees model was recorded and a transfer function between the 
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command input (i.e., command acceleration) and the recorded actuator force has been 

estimated and it was compared with the analytical transfer function given in (8.5). 

Figure 8.4 shows that the analytical and the numerically obtained transfer 

functions. The match between them is excellent. WN acceleration input was band-

limited therefore the system was not excited at very low frequency range (i.e. <0.25 

Hz) and therefore discrepancies were observed at very low frequencies. Slight 

discrepancies may be due to resolution problems in the transfer function estimation 

procedure (i.e. not due to client-server technique), the peak and notch pair observed 

around the natural vibration frequency of the SDOF specimen is slightly missed in the 

numerically obtained transfer function. This estimation was based on the Welch-

Bartlett’s method which uses input-output data of 120 seconds long white noise 

excitation with 50% overlapping five Hanning windows, therefore the frequency 

resolution was 0.042 Hz. 

8.4.2. Integration of the Reduced Equation of Motion of the Platen-Specimen 

Assembly by Newmark Method 

In this section, Simulink-OpenSees link will be checked by integrating the 

equation of motion of the platen-specimen assembly where only the assembly is 

excited by harmonic reduced actuator force with a certain frequency and amplitude. 

The reason to use “reduced” actuator force will be clear later. Since the purpose is to 

check the Simulink and OpenSees link by integrating the same system by another 

method, only the specimen and platen assembly is considered (i.e., servo-hydraulic 

model and the controller have taken out of the picture). In order to use Newmark 
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numerical integration scheme, the nonlinear platen model given in Chapter 6 had to be 

linearized. Linear version of the platen model is provided also in Chapter 6. Details 

regarding the derivations of the equation of motion of the platen and with a two story 

shear-structure (specimen) are given in the related Chapter and repeated below for 

convenience  

 O O spr diss spe act+ + + =Μ u F F F F  (8.6) 

Notice that (8.6) is written for a generalized coordinates at “O” where OM  is the 3 3×  

generalized platen mass tensor, Ou  is the 3 1×  displacement response of the platen, 

sprF , dissF , speF  are the 3 1×  elastic spring forces, viscous dissipative forces, and 

specimen  reaction forces acting on the platen, respectively, and actF  is the 3 1×  

actuator force exciting the assembly. (8.6) can also be written in the following form 

due to the linear nature of the platen-specimen assembly 

 ( )T T
O O O O O O spe O spe act+ + + + =Μ u C u K u α M αu α M u F  (8.7) 

where OC  and OK  are the 3 3×  viscous damping and stiffness matrices of the platen 

only, and speM  is the 2 2×  mass matrix of the specimen,α  is the 2 3× , and u  is the 

2 1×  relative displacement response of the specimen. Notice that the term in the 

parenthesis is the total force at the base of the specimen and it includes the rigid-body 

motion of the specimen as well. By rearranging (8.7) the following equation can be 

found 

 ( )T T
O spe O O O O O act spe act+ + + = − =Μ α M α u C u K u F α M u F  (8.8) 



 292

The right hand side of (8.8) is the modified actuator force that excludes the 

forces acting on the platen due to the relative motion of the specimen with respect to 

the platen. This modified actuator force is called the reduced actuator force. Therefore 

if we know the right hand side of equation (8.8), we can solve for the equation of 

motion of the platen only by using Newmark-Beta method programmed separately 

(not using Simulink). Cross-checking will use the results obtained from running the 

Simulink model of the whole assembly given in Figure 8.5 where the specimen is 

modeled using OpenSees. In Simulink the solver is set to RK4 which is the default 

solver for all simulations. t∆  is set to 1/1024 seconds (9.765625e-4 sec). Relative 

displacement of the specimen can be recorded during the simulation. Once the relative 

displacement of the specimen u  are known, modified actuator force actF  can be 

calculated. Using actF , equation of motion  given in (8.8) can be integrated by 

Newmark’s method. Note that, Newmark’s method to solve (8.8) is programmed 

separately in Matlab. If Simulink implementation of the whole linear platen and 

specimen assembly is correct then the platen accelerations from both solutions must 

match. 

Figure 8.5 shows the comparison of platen displacements 0xu  obtained by 

Simulink and Newmark’s method (also, platen accelerations and/or velocities can be 

compared, they would give the same information). Match between the two solutions is 

excellent. Therefore it can be concluded that the Simulink implementation of the 

platen and specimen assembly using OpenSees-Simulink link works correctly. 
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APPENDIX 

TCL Server Source Code 

# This version is for case of only 3 input accels. 

source getTotalResistingForce_currentTime.tcl 

proc accept {sock ip port} { 

# Configure the socket to be non-blocking. 

fconfigure $sock -blocking 1 -buffering none ;#line 

# Call the 'respond' proc whenever 

# the socket has data for us. 

fileevent $sock readable [list respond $sock] 

} 

proc respond {sock} { 

        if {[eof $sock] || [catch {gets $sock data}]} { 

  close $sock 

  puts "Close $sock" ;# $echo(addr,$sock)" 

 } else { 

  puts $data  

                       set command1 [lindex [split $data] 0] 

              if {$command1 == "nextRun"} {  

                     set filename [lindex [split $data] 1]  

          wipe 

          global fileID 
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   if { [catch {eof $fileID}] == 0 }  { 

                     close $fileID 

   } 

        source model.tcl 

            set fileID [open $filename  "w"] 

        return  

                             }  

       elseif {$command1 == "tryOpenSeesOneStep" } { 

                  eval  $data  

                                  set patternNumber [lindex [split $data] 1];  

             global Fx 

            global Fz 

             global My 

             getTotalResistingForce; # into Fx, Fy, Fz, Mx, My, Mz.  

            puts $sock  "$patternNumber, $Fx, $Fz, $My" 

            flush $sock 

      return 

             } else { 

                     eval  $data   

                     return   

                } 

                 } } 
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source model.tcl 

set filename test1 

set fileID [open $filename  "w"] 

global fileID 

global currentTime 

global committedTime 

set currentTime   0.0 

set committedTime   0.0 

# Create our server on port 7272 

socket -server accept 7272 

# Drop Tcl into the event loop 

vwait forever 

The above code uses GetTotalResistingForce_CurrentTime.tcl and model.tcl files to 

calculate resisting forces acting on the platen due to the structural model mounted on 

the platen. The source TCL codes of these procedures are given below. 

Source Code of GetTotalResistingForce_CurrentTime.tcl 

proc getTotalResistingForce {} { 

 global mass1 

 global h 

 global Fx 

 global Fz 

 global My 
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 set Fx 0 

 set Fz 0 

 set My 0 

global acc1 

global acc2 

global acc3 

set accel_2_x [nodeAccel 2 1]          

set accel_2_x [expr $accel_2_x + $acc1 - $acc3 * $h]              

set Fx [expr $mass1*$accel_2_x] 

set My [expr -$mass1*$accel_2_x*$h]  } 

proc tryOpenSeesOneStep { numOfTimeStep   pCurrentTime  currentAcc_1  

currentAcc_2  currentAcc_3}  {     

 global mass1 

global h 

global acc1 

global acc2 

global acc3 

global committedTime 

global currentTime 

set currentTime $pCurrentTime 

set acc1  $currentAcc_1 

set acc2  $currentAcc_2 
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set acc3  $currentAcc_3 

remove  loadPattern 1    

set Hor_Force1 [expr $currentAcc_1 * $mass1- $currentAcc_3 * $h * $mass1] 

pattern Plain 1  " Series -time {  $currentTime   } -values { -1.0 }" {  ;# -1 due to 

inertia force 

load   2   $Hor_Force1  0  0   } 

set timeStep [expr $currentTime - $committedTime] 

tryOneStep  [expr $timeStep]    }  

proc commitOpenSeesOneStep {}  { 

# ---- update the history variables -- 

commitOneStep; 

global committedTime 

global currentTime 

set committedTime $currentTime  } 

Source Code of model.tcl 

# Linear SDOF Structure 

model BasicBuilder -ndm 2 -ndf 3 

global mass1 

global h 

set h 1.0;                # Story Height 

set mass1 65.0000e+003;   # 

set Area  4.8876e-5;      # 2 Hz 
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node  1          0         0       -mass    0.0    0.0     0.0     

node  2          $h       0       -mass   $mass1   0.0     0.0 

fix  1   1  1 1 

fix  2   0  1 1 

set E 2.1e11;     # Initial Modulus 

uniaxialMaterial Elastic 1 $E 

element   truss   1       1      2    $Area    1 

 constraints Plain 

test NormDispIncr 1.D-12 25  0 

algorithm Newton 

numberer RCM 

system BandGeneral 

recorder Node -file Node2L.out -time -node 2 -dof 1 disp 

recorder Element -file ele1L.out -time -ele 1 force 

set w1 [expr 2.0*3.141593*2.0]; 

set ksi  0.03 

set a0 0.0 

set a1 [expr $ksi*2.0/($w1)]; 

integrator Newmark   0.5     0.25      $a0      0       $a1        0. 

analysis Transient   

Source Code of S-Function OpenSimConn.cpp 

#include "tcl.h" 
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#include "stdlib.h" 

#include "stdio.h" 

# include "OpenSeesHandler.h" 

# include "OpenSeesHandler.cpp" 

#define S_FUNCTION_LEVEL 2 

#define S_FUNCTION_NAME  OpenSimConn 

#include "simstruc.h" 

#define IS_PARAM_DOUBLE(pVal) (mxIsNumeric(pVal) && !mxIsLogical(pVal) 

&&\ 

!mxIsEmpty(pVal) && !mxIsSparse(pVal) && !mxIsComplex(pVal) && 

mxIsDouble(pVal)) 

#define D_macro *mxGetPr(ssGetSFcnParam(S,0)) 

static void mdlInitializeSizes(SimStruct *S) 

{ 

    // No expected parameters 

    ssSetNumSFcnParams(S, 1); 

    // Parameter mismatch will be reported by Simulink 

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 

        return;   } 

    // Set the Number of States 

    ssSetNumContStates( S, 0);   /* number of continuous states           */ 

    ssSetNumDiscStates( S, 0);   /* number of discrete states             */ 
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   // Specify I/O 

    if (!ssSetNumInputPorts(S, 1)) return; 

    ssSetInputPortWidth(S, 0, 3); 

    ssSetInputPortDirectFeedThrough(S, 0, 1); 

    ssSetInputPortDirectFeedThrough(S, 1, 1); 

    ssSetInputPortDirectFeedThrough(S, 2, 1); 

   if (!ssSetNumOutputPorts(S,1)) return; 

    ssSetOutputPortWidth(S, 0, 3); 

    ssSetNumSampleTimes(S, 1); 

    // Reserve place for C++ object 

    ssSetNumPWork(S, 1); 

    ssSetOptions(S, 

                 SS_OPTION_WORKS_WITH_CODE_REUSE | 

                 SS_OPTION_EXCEPTION_FREE_CODE | 

                 SS_OPTION_USE_TLC_WITH_ACCELERATOR);    } 

// Function: mdlInitializeSampleTimes  

static void mdlInitializeSampleTimes(SimStruct *S) 

{ 

     ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 

    ssSetOffsetTime(S, 0, 0.0); 

    ssSetModelReferenceSampleTimeInheritanceRule(S, 

DISALLOW_SAMPLE_TIME_INHERITANCE);     
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} 

// Function: mdlStart  

#define MDL_START 

static void mdlStart(SimStruct *S) 

{ 

    double dT=D_macro; 

    ssGetPWork(S)[0] = (void *) new OpenSeesHandler(7272,3,dT); // store new C++    

object in the 

 OpenSeesHandler *theHandler = (OpenSeesHandler *) ssGetPWork(S)[0];// 

pointers vector 

    theHandler->setAccel(0.0,0.0,0.0);  

} 

// Function: mdlOutputs  

static void mdlOutputs(SimStruct *S, int_T tid) 

{  

    // Get data addresses of I/O 

    InputRealPtrsType  u = ssGetInputPortRealSignalPtrs(S,0); 

    real_T *y = ssGetOutputPortRealSignal(S,0); 

    boolean_T isMajor =  ssIsMajorTimeStep(S); 

    boolean_T isMinor =  ssIsMinorTimeStep(S); 

    real_T currentTime = ssGetT(S,0); 
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   OpenSeesHandler *theHandler = (OpenSeesHandler *) ssGetPWork(S)[0]; // 

retrieve C++ object from stack 

    theHandler->setAccel(*u[0],*u[1],*u[2]);     // prepare accel. data to be sent to 

opensees  

   ofstream * theTemp = new ofstream( "debug.out", ios::app); 

     // ====== Mar. 4 2008 ==== 

    // The sequence is: Major Minor Minor Minor (commit here) Major Minor Minor 

Minor ... 

    // 

    if (isMajor){ 

        *theTemp<<"Major, do commmit. " <<"\n"; 

        *theTemp<<"current time: " << currentTime <<"\n\n";         

        theHandler->commitOpenSeesOneStep(); 

        theTemp->close();    

        return; 

    }    

    theHandler->setCurrentTime(currentTime); 

    theHandler->tryOpenSeesOneStep();                  // run OpenSees once and get 

response. 

    for (int i=0; i<theHandler->getRespSize();i++) 

  y[i] =(theHandler->getResponse())[i]; 

    if(isMinor){ 
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        *theTemp<<"Minor, not commit. " <<"\n"; 

        *theTemp<<"current time: " << currentTime <<"\n"; 

        *theTemp<<"\n" <<"\n"; 

    } 

    theTemp->close();      

} 

// Function: mdlTerminate // Abstract: 

//   In this function, you should perform any actions that are necessary 

//   at the termination of a simulation.  For example, if memory was 

//   allocated in mdlStart, this is the place to free it. 

static void mdlTerminate(SimStruct *S) 

{ 

    OpenSeesHandler *theHandler = (OpenSeesHandler *) ssGetPWork(S)[0]; 

    delete theHandler; 

} 

// Required S-function trailer 

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 

#include "simulink.c"      /* MEX-file interface mechanism */ 

#else 

#include "cg_sfun.h"       /* Code generation registration function */ 

#endif 
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Table 8.1: Numerical values of the parameters used for the open-loop servovalve-

actuator-rigid platen model. 

A  

[m2] 

β  

[MPa] 

qk  

[m3/s/Volt] 

V  

[m3] 
ck  

[m3/MPa] 

plm  

[kg] 

0.3324 819 0.06 0.2493 0.0 144,000 
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Table 8.2: Numerical values of the parameters of the single degree of freedom 

specimen model. 

Sm  

[kg] 

Sξ  

[%] 

Sω  

[rad/s] 

65,000 3% 12.5664 
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Figure 8.2: Geometric interpretation of 4th order Runge-Kutta method also known as 
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is extrapolated to from nt to find 3k , and 3k is extrapolated to from nt to find 4k . 

Average of these four slopes is used to advance (march) ny  to 1n+y . 
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Figure 8.3: Closed-Loop block diagram of the linear servovalve-actuator-rigid platen-

specimen with Three-Variable Controller (TVC) with (a) specimen is modeled within 

Simulink, and (b) specimen is modeled within OpenSees. 
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Figure 8.4: Bode plot of the analytical model of the linear table with a SDOF 

specimen and TVC and force feedback control algorithm with its numerical 

counterpart using Simulink and OpenSees linked by the client-server technique. 
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Figure 8.5: Simulink implementation of equation of motion of the linear platen-SDOF 

specimen assembly where the specimen is model with OpenSees using the custom 

block OpenSimConn.dll. 
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Figure 8.6: Comparison of platen displacements 0xu found by using Simulink and 

Newmark’s method. 
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CHAPTER 9  

COMPREHENSIVE MECHANICS-BASED VIRTUAL 
MODEL OF THE NEES-UCSD SHAKE TABLE (BARE 

TABLE CONDITION) 

9.1. Introduction 

Large servo-hydraulic shaking table systems are essential tools in experimental 

earthquake engineering. They provide effective ways to subject structural components, 

substructures, or entire structural systems to dynamic excitations similar to those 

induced by real earthquakes. The typical shake table system includes a variety of 

mechanical (platen, yaw/pitch/roll restraining systems, vertical and lateral bearings, 

reaction block, foundation, and linear/nonlinear specimen), hydraulic (pumps, 

hydraulic lines, accumulator bank, distributed accumulators along hydraulic line, 

servovalves, and actuators), and electronic (controller, various types of transducers, 

signal conditioning units, data acquisition system) components.  

The main objective of a shaking table system is to reproduce prescribed 

acceleration time history records within a reasonable accuracy thus subjecting 

structural systems to real time input excitations retaining realistic inertial and damping 

effects. Currently, the reproduction of a prescribed acceleration time history record 



 316

(e.g., earthquake accelerations) with such systems remains imperfect goal (Rinawi and 

Clough, 1991; Kusner et al., 1992; Clark 1992; Crewe, 1998; Conte and Trombetti, 

2000; Crewe and Sewern, 2001; Trombetti and Conte, 2002). Within the Network for 

Earthquake Engineering and Simulation (NEES) several major shake table facilities 

have been added to the shake table inventory of the Unites States (e.g., NEES at 

Buffalo, NEES at Reno, and NEES at San Diego). These large facilities are currently 

used to investigate aspects of structural and geotechnical seismic behavior that cannot 

be readily extrapolated from testing at smaller scales, or under quasi-static or pseudo-

dynamic conditions. With the recent advancements of experimental test methods, 

numerical simulation tools, and high-speed communication networks researchers are 

able to conduct also geographically distributed tests using these state-of-the-art testing 

facilities. Geographically distributed testing combines the capabilities of two or more 

sites to conduct tests on structural systems that could not be performed at one site due 

to limited site capacity (Takahashi and Fenves, 2005). New testing facilities and their 

innovative use bring new challenges to the field of shake table testing. One of these 

challenges is in high-fidelity control of shake table systems. 

Dynamic tests with shake tables require the table platform to follow a 

reference signal (e.g., displacement or acceleration). Controller is the electronic device 

(analog or digital) that supplies the appropriate command to the servovalve(s) in order 

to drive the table along the correct trajectory (i.e., path). Shake table control systems 

are usually based on linear control algorithms in which it is assumed that the plant can 

be modeled as a set of linear differential equations and the dynamic parameters of the 
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plant are known and fixed during the experiments (Stoten and Gomez, 2001). Linear 

controllers can be tuned with high degree of precision when the plant has known 

parameters and behaves linearly. On the other hand, linear controllers are not well 

suited for non-linear regimes and do not respond as expected if the plant parameters 

change or have been wrongly estimated (Gomez, 1999). Earlier works on the 

performance characterization of shake tables reveal that shake tables are highly 

nonlinear device in which the table response is a function of the input amplitude level 

at which it operates (Clark, 1983; Kusner et al., 1992; Clark, 1992; Zhao et al., 2005). 

Some of the major sources of nonlinearities in shake table systems are servovalve(s), 

nonlinear viscous and friction dissipative sources, total system leakage including 

servovalve(s) and actuator(s), changes in volumes of actuator chambers, and system 

pressure fluctuations.  

As large shake table facilities become available (e.g., NEES-UCSD shake table 

in U.S.A and NIED E-Defense table in Japan etc.), testing full scale specimens on 

shake tables is now more and more frequent. In large scale shake table tests, often the 

specimen is more massive than the table and can exhibit nonlinear behavior under the 

reproduced table motion. Also characteristics of the specimen can change suddenly 

especially if a collapse situation occurs. For such test conditions, one of the most 

significant problems arises from the fact that the dynamics of the specimen is as 

relevant to the dynamic model of the overall system as the table itself (Clark, 1984; 

Crewe, 1998; Gomez 1999; Stoten and Gomez, 2001). Nonlinear table/specimen 
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interaction as well as other sources of nonlinearities further complicates the accurate 

control of shake tables with linear controllers.  

Adjusting control parameters to optimize the response of the shake table 

system is called tuning. Ideally, a tuned shake table system would have a transfer 

function between the reference and achieved signals (total table transfer function) 

characterized by unit gain and zero phase shift across the entire operating frequency 

range under loaded (i.e., with a specimen) table conditions. With linear controllers, 

due to the reasons explained above, it is not possible to achieve such total transfer 

functions. To remedy the inaccuracies of typical linear controllers a tuning process is 

employed. The process conducted prior to the actual test usually involves an offline or 

an online (iterative) time history matching technique. A simple offline approach for 

compensating the controller deficiencies is to apply a pre-filter (e.g., inverse total table 

transfer function estimated prior to the test) once  to the reference signal which results 

in a modified reference signal (i.e., drive signal) accounting for the dynamics of the 

system (Hwang et al., 1987; Twitchell and Symans, 2003). Inverse transfer function is 

estimated using white noise while the specimen is mounted on the table to take into 

account the table/specimen interaction. One very important drawback in offline 

approach is that when the transfer function is estimated, if the amplitude of white 

noise is too high the specimen on the table may be damaged; on the other hand if the 

amplitude of white noise is too low then nonlinearities in amplitude scaling of the 

drive signal may mean that the transfer function estimated from low level amplitude 

white noise is not representative of the actual system performance with large 
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amplitude earthquake signals. In online (iterative) time history matching technique, 

command signal is repeatedly modified by addition of a fraction of the pre-filtered 

error between the actual and desired table motion. The error is pre-filtered by the 

inverse of the total table transfer function which can be the initial estimation or an 

updated one from the last iteration (Crewe, 1998). The iteration process is repeated 

until the errors fall within a desired level. Online time history matching techniques can 

deal with repeatable nonlinearities such as servovalve nonlinearities. Both in offline 

and online techniques, extreme care has to be given to the specimen to avoid 

premature damage. 

A recent test study done by Luco et al. (2008) on the NEES-UCSD shake table 

investigates the effect of amplitude scaling in tuning of shake tables under bare table 

conditions. The tests were designed to quantify the effect that the tuning amplitude has 

on the level of signal fidelity. For these tests, first the table response was optimized, as 

much as possible, by adjusting the gains of the linear controller. This step was 

followed by an online time history matching technique applied to a scaled down or 

scaled up versions of the intended acceleration motions. Drive inputs obtained at the 

end of the iteration process were scaled up or down according to several test 

amplitudes and the resulting motions were reproduced on the table. A number of 

comparisons and measures were used to evaluate the signal reproduction capability of 

the shake table which included direct comparisons of the acceleration time histories, 

peak accelerations, constant ductility response spectra for the achieved and intended 

platen accelerations, and relative root mean square error value to offer a cumulative 
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measure in signal reproduction. Based on these different comparisons, it was 

concluded with that the signal fidelity level achieved for a specific amplitude by a 

certain tuning cannot be maintained at a different amplitude. The difficulties 

encountered with the typical case of tuning at low amplitudes and testing at much 

higher amplitudes indicate the need for an accurate virtual tuning of the table based on 

a detailed mechanics-based model of the complete system and, also, for a more 

advanced controller. It should be noted here that for a loaded table conditions, tuning 

at low amplitudes and testing at higher amplitudes is the only option since the 

specimen can not be sacrificed during table tuning. Offline and/or online time history 

matching techniques are not the solution to achieve high fidelity in signal reproduction 

for loaded table conditions. 

The complex dynamics of large shaking table systems emanate from multiple 

dynamic interactions and nonlinearities among various system components (Dyke et 

al., 1995; Conte and Trombetti, 2000; Trombetti and Conte, 2002; Ozcelik et al., 

2008(1); Ozcelik et al., 2008(2)). In the literature, we find a limited number of studies 

focusing on modeling and simulation of complete servo-hydraulic testing systems 

(Hwang et al., 1987; Rinawi and Clough, 1991; Clark, 1992; Dyke et al., 1995; Dimig 

et al., 1999; Conte and Trombetti, 2000; Williams et al., 2001; Twitchell and Symans, 

2003; Thoen and Laplace, 2004; Zhao et al., 2005; Zhao et al., 2006). Dyke et al. 

(1995) developed a linear model for a servovalve/actuator system attached to a linear 

shear type structure for investigating the role of control-structure interaction; the 

analytical model also includes a displacement controller and force feedback loop. 
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Conte and Trombetti (2000) developed a linear analytical model of a small-to-medium 

size shake table system accounting for servovalve time delay, actuator dynamics, oil 

leakage through the actuator seals, foundation flexibility, and linear elastic multi-

degree-of-freedom (MDOF) specimen dynamics. Williams et al. (2001) have 

developed a realistic numerical model of a dynamic structural testing system, which 

includes a nonlinear model of the servovalve actuator system, servovalve leakage, 

controller, and the specimen modeled as a linear elastic single-degree-of-freedom 

(SDOF) system. Thoen and Laplace (2004) presented a comprehensive numerical 

model of a medium size shake table for off-line tuning purposes; their model includes 

the real-time controller software, servovalve spool dynamics, a nonlinear servovalve-

actuator model, an accumulator model, a linear payload model, a nonlinear friction 

model, and foundation dynamics. Recently, Zhao et al. (2005) presented a numerical 

model for an effective force testing system in which a detailed nonlinear servovalve 

model is used where two independent sources of servovalve flow nonlinearities were 

taken into account. In this work, leakage within the servovalve and inside the actuator 

chambers is modeled as an effective total system leakage and is found to be equivalent 

to damping of actuator dynamics. 

9.1.1. Overview of the NEES-UCSD LHPOST 

The NEES-UCSD Large Performance Outdoor Shake Table (LHPOST) 

located at a site 15 km away from the main campus of the University of California at 

San Diego (32 53 37 N° ′ ′′  and117 06 32 W° ′ ′′ ), is a unique outdoor experimental facility 

that enables next generation seismic tests to be conducted on very large structural and 
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soil-foundation-structure interaction systems. A three-dimensional rendering of the 

overall shake table system is shown in Figure 9.1(a). The LHPOST consists of a 

moving steel platen (7.6m wide by 12.2m long); a reinforced concrete reaction block; 

two servo-controlled dynamic actuators with a force capacity in tension/compression 

of 2.6MN and 4.2MN, respectively; a platen sliding system (6 pressure balanced 

vertical bearings with a force capacity of 9.4MN each and a stroke of ±0.013m); an 

overturning moment restraint system (a pre-stressing system consisting of two 

Nitrogen-filled hold-down struts with a hold-down force capacity of 3.1MN each); a 

yaw restraint system (two pairs of slaved pressure balanced bearings along the length 

of the platen); a real-time multi-variable controller, and a hydraulic power supply 

system. The technical specifications of the LHPOST include a stroke of ±0.75m, a 

peak horizontal velocity of 1.8m/s, a peak horizontal acceleration of 4.2g for bare 

table conditions and 1.28g for a rigid payload of 400tons, a horizontal force capacity 

of 6.8MN, an overturning moment capacity of 50MN-m, and a vertical payload 

capacity of 2000tons for which the peak platen acceleration reduces to 0.3g.  The 

frequency bandwidth is 0-20Hz. Other detailed specifications of the NEES-UCSD 

LHPOST can be found elsewhere (Conte et al., 2004; Van Den Einde et al., 2004). 

Figure 9.1(b) shows a detailed schematic representation of the major components 

of LHPOST and the way they interact with each other. There are two pumps in the 

system providing hydraulic power to various parts of the table. Pump 1 supplies 

hydraulic power to the servovalves, vertical and yaw bearings (not shown in 

schematics) by providing 720lit/min flow at 21.0MPa (190gpm at 3000psi) pressure. 
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Hydraulic line carrying the flow from Pump 1 is indicated as PP which stands for pilot 

pressure. Pump 2 charges the accumulator bank; flow provided by this pump is 

416lit/min at 21.0MPa (114gpm at 5000psi) pressure. A 9500 liter capacity 

accumulator bank pressured up to 35.0MPa provides the high flow needed to simulate 

transient earthquake signals. Blow-down valve converts the high pressure oil from the 

accumulator bank to a system pressure of 21.0MPa for controlling the actuators. 

Hydraulic supply line carrying the regulated oil is indicated as P which stands for 

main pressure. Also shown Figure 9.1(b) are the small in-line accumulators each with 

capacity of 95 liters and charged up to 13.8MPa (2000psi) pressure. There are two 

actuators on the West and East sides of the table platen. Each actuator has two high 

performance servovalves attached on them (therefore there are total of four 

servovalves on the system). Close-coupled (C.C.) accumulators are attached to the 

actuators and they are 57 liters each and are also charged up to 13.8MPa (2000psi) 

pressure. Low-pressure return flow is collected in the surge tank. Actuators drive the 

table platen which slides on low-friction vertical bearings, pre-charged hold-down 

struts hold the platen down with constant vertical forces in order to restrain the pitch 

motion of the platen. Forces generated by the system are reacted by the foundation 

block and surrounding soil. The controller on the system sends control signal 

computed using the reference and feedback signals to the servovalves in order to move 

the platen along a desired path. 

The reaction block and the surrounding soil are shown in Figure 9.1(b) as parts 

of the shake table system. Large forces that the actuators of LHPOST exert on the 
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reaction block and surrounding soil suggests the need to determine the induced ground 

motion in the vicinity of the table in order to evaluate the effects that any motion of 

the block itself would have on the control of the shake table. In order to study dynamic 

soil-foundation interaction effects, an extensive forced vibration test study using 

eccentric mass shakers has been carried out on the foundation block of LHPOST prior 

to the construction of the shake table. Forces exerted by the shakers are normalized to 

the maximum force (6.8MN) that actuators can exert on the foundation. Results of this 

study reveal that the foundation block essentially translates as a rigid body along East-

West (EW) direction with slight out-of-plane deformation of the East and West end 

walls; the block also bends in addition to rocking about the North-South (NS) axis. 

The frequency response of the EW motion peaks at 10 Hz with amplification factor of 

1.3; vertical frequency response indicates that the amplitudes of the vertical 

displacements increase with horizontal distance to the NS axis of rotation at least for 

frequencies below 15 Hz. Experimentally obtained frequency response curves indicate 

that the maximum scaled horizontal and vertical displacements for the maximum 

theoretical harmonic actuator force of 6.8MN amplitude at 10 Hz frequency would be 

0.26mm and 0.17mm, respectively. These displacements are sufficiently small to have 

no effect on the control of the shake table which relies on the assumption that the 

relative displacement of the platen with respect to the reaction block represents the 

absolute displacement of the platen (Luco et al., 2008). 

The main objective of this section is to develop a comprehensive mechanics-

based model of the large NEES-UCSD shake table for bare table conditions. The 
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model includes the virtual replica of the controller, four servovalve models including 

servovalve spool dynamics and two independent servovalve flow nonlinearities, two 

single-ended actuators with variable internal volumes, two accumulators modelling the 

average supply pressure drop, and a two-dimensional mechanical subsystem model 

generalized from the previously identified one-dimensional mechanical subsystem 

model which includes the effects of effective mass of the platen, nitrogen-filled hold-

down struts, and various viscous and Coulomb dissipative mechanisms. Based on the 

forced vibration test results of the foundation block, the soil-foundation compliance 

effects will be ignored in the virtual model. This mechanics-based virtual model will 

be extremely useful for understanding the underlying coupled nonlinear dynamics of a 

large shake table system therefore providing insight into the sources of various signal 

distortions, for off-line tuning of the actual table, and for future advanced control 

algorithm developments.  This model will be used in Chapter 11 to investigate the 

shake table – nonlinear specimen interaction problem. 

9.2. MTS Three-Variable Controller  

The control software used in LHPOST is called 469D. The three-Variable-

Controller (TVC) is an integral part of the software 469D (Thoen, 2004). TVC can be 

a classified as a displacement controller with additional feedforward control terms. It 

is a displacement control since the control signal is the weighted-error between the 

command and feedback (i.e. achieved) displacement signals. Since seismic inertia 

forces are related to acceleration, the key element in shake table tests is the capability 

of the system to accurately reproduce prescribed acceleration records. For this reason, 
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the displacement control strategy is usually augmented with additional feedforward 

control signals in order to increase the fidelity in acceleration reproduction. 

Feedforward terms on TVC are velocity, acceleration, and the jerk (i.e., third 

derivative of displacement) which are computed from the reference signal. The 

reference signal (i.e., command signal) can be displacement, velocity, or acceleration 

depending on the control mode. TVC can be set to run under all these control modes. 

In acceleration and velocity modes (velocity mode is rarely, if ever, used for shake 

table tests), the controller is still in displacement control but the control signal to the 

servovalves is a blend of feedback and reference velocity, acceleration, and jerk 

feedforward control signals. In displacement control mode, the only control signal is 

the weighted error between the reference and feedback displacement signals (i.e., no 

feedforward term is used). 

In TVC, force stabilization is provided by an additional actuator force 

feedback loop which helps to dam out the oil column resonance (Conte and Trombetti, 

2000; Dyke et al., 1995). The force measurement is filtered by a high-pass filter before 

being used as a control signal. Cut-in frequency of the high-pass filter is set by the 

filter parameter DPω . 

In addition to the above features, TVC also has five notch filters to be used in 

order to compensate for mechanical resonances and anti-resonances. Notch filters in 

TVC are implemented in such a way that independent (i.e., orthogonal) tuning of the 

notch filter parameters center frequency 0f , 3dB bandwidth wb , and depth depth can 

be possible (Regalia et al., 1988). Orthogonal tuning allows users to independently 
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tune (i.e., adjust) one notch filter parameter without changing a specified tuning on the 

remaining ones; but since the phase response of the notch filter changes with changes 

in notch filter parameters, effects of the fixed parameters on the table response will be 

altered even though its value remains fixed. 

Figure 9.2 shows the block diagram of TVC along with the Reference and 

Feedback Generators, where PFk , VFk , AFk , JFk  are the displacement, velocity, 

acceleration, and jerk feedforward gains, respectively; Pk , Vk , Ak , DPk  are the 

displacement, velocity, acceleration, and force feedback gains, respectively; and Mk  is 

the master gain which is always set to unity.  

Seismic data is usually recorded by accelerometers therefore only acceleration 

records (i.e., acceleration reference) are readily available before a seismic test. 

Depending on the control mode, TVC requires other reference states (i.e., velocity, 

acceleration, and jerk) to be known beforehand for control purposes. Reference 

Generator in TVC computes these reference states by using the reference signal which 

represents desired displacement, velocity, or acceleration depending on the control 

mode, and creating the reference states refu , refu , refu , and refu  using a state variable 

filter (Thoen, 2004). 

Table displacement and acceleration responses are measured using linear-

variable-displacement-transformers (LVDTs) and accelerometers, respectively. Often 

LVDT data is valid over the low-to-medium frequency range (typically 0-15 Hz), but 

above this range the data is unusable due to the combined effects of mechanism 

backlash and the problem of resolving small amplitude signals with finite accuracy 
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analogue-to-digital conversion. On the other hand, accelerometer signals are accurate 

in the medium-to-high frequency range (typically up to ~50 Hz) (Stoten et al., 2001). 

Therefore the problem is to determine a suitable combination of displacement and 

accelerometer signals to cover the entire frequency range of operation. The technique 

used to do this in MTS 469D control software is composite filtering. The Feedback 

Generator in 469D combines displacement and acceleration sensors, each with their 

respective bandwidth limitations, to create wideband estimates of the feedback states 

fbku , fbku , and fbku . These improvements are intended to provide estimates of 

unmeasured data (e.g. velocity) and to obtain more consistent estimates of measured 

data over a wider frequency range (Thoen, 2004). 

The TVC block diagram shows that signals with different units are blended 

together. Blending of different unit signals to obtain a hybrid command signal to the 

servovalves is possible through normalization of the various signals to their respective 

maximum values (e.g., Dmax, Vmax, Amax, and Fmax) and conversion to Volt units (i.e., 

respective maximums correspond to 10 Volts). 

TVC is implemented in Matlab-Simulink® using the transfer functions 

describing TVC and Feedback Generator. These transfer functions were provided by 

MTS Systems Corporation and they can not be given explicitly here due to proprietary 

reasons. In order to check the Simulink implementation of TVC, Simulink model of 

TVC is excited by a unit impulse acceleration (i.e. reference signal is an impulse), and 

the TVC output (i.e., command to the servovalve(s)) is recorded. Then a transfer 

function between these two signals is estimated. The same unit impulse acceleration is 
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inputted to the real-time control software 469D and the TVC output is recorded, then a 

transfer function between these two signals is estimated. Numerical values used for 

TVC parameters for both the Simulink model and the real-time software are 

0.0PFk = V/V, 0.35VFk = V/V, 0.45AFk = V/V, 0.0004JFk = V/V,  1.50Pk = V/V, 

0.15DPk = − V/V, 0.50DPω = V/V, 1.0Mk = V/V. These numerical values are typical of 

those used on the real system. The feedback gains Vk  and Ak  are set to zero which is 

the case for servo-hydraulic control systems (Thoen, 2004). Only one notch filter is 

used, and the numerical values of its parameters are 0 10.0f = Hz, 5.0bw = Hz, and 

0.80depth = − V/V. It should be mentioned here that 0depth < corresponds a trough 

and 0depth >  corresponds to a peak in the magnitude response of the notch filer. 

Value of depth  must be confined between -1.0 and 1.0. The comparison of transfer 

function estimations is shown in Figure 9.3. Agreement between the two transfer 

functions is excellent, therefore it can be said that the Simulink model of TVC can be 

substituted in place of the real-time TVC in the Simulink model of the entire plant. 

9.3. Servovalve Model 

9.3.1. LHPOST High Performance Servovalves 

There are four four-stage servovalves on LHPOST, two on each actuator. The 

four stage servovalves on LHPOST consist of an MTS Series 256 three stage 

servovalve and an additional fourth stage (MTS Systems Corporation, USA). Figure 

9.4 shows the picture of an MTS four stage servovalve similar to the ones used on 

LHPOST. LHPOST servovalves are specially manufactured to achieve the high 



 330

performance requirements of the system. MTS Series 256 servovalve is an electro-

hydraulic three stage servovalve consisting of a high-flow, four-way (i.e., four flow 

paths exist) spool valve and a smaller two stage valve (pilot valve). First stage of the 

pilot valve is the torque motor stage. This stage consists of coils, an upper and lower 

pole piece, an armature and two magnets. Its purpose is to convert electrical input 

signal (servovalve control signal) into physical movement of the armature. The second 

stage of the pilot valve consists of a spool valve which controls hydraulic fluid flow to 

the third stage and a feedback spring which provides mechanical linkage between the 

armature/flapper and the spool. Servovalves are driven by the input current sent by the 

controller. This causes rotation of the electromagnetic flapper assembly (i.e., pilot 

stage) which in turn causes displacement of the second stage spool. The third stage is 

similar to the 2nd stage of the pilot valve except that it has a larger spool and its 

position is monitored by an LVDT. Third stage flow goes into the fourth stage to 

move the spool at this stage by causing pressure difference between the two ends of 

the spool. Fourth stage (main stage) of the servovalve has a larger spool than the third 

stage and its movement is also monitored by an LVDT. LVDTs on the 3rd and the 4th 

stage spools provide output signals to the valve inner controllers which are 

proportional to the spool positions. These measured displacement signals are 

compared to the desired position in the valve inner controller. Any difference between 

the desired position and the LVDT signal causes the valve controller to alter the 

servovalve control signal. Figure 9.5 shows the inner as well as outer (i.e., TVC) 

control loops on LHPOST along with dither and feedback conditioner adjustments. 
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Inner control loop on the third stage is a proportional-derivative (PD) controller, and 

the one on the fourth stage is proportional-integral-derivative (PID) controller. 

The servovalve model presented in this work does not take into account the 

dynamics of inner controller loops, conditioner filters, dither, and the dynamics of 

pilot stage servovalve. These simplifications have been made due to the complexity of 

the entire shake table system (i.e., the plant) and the need to capture the salient 

dynamic characteristics of the whole plant with a reasonable complexity. Since the 

spool movements determine the amount of flow going into the actuators which in turn 

determines the amount of generated actuator force that moves the platen, most of the 

servovalve modeling efforts has been focused on the identification of the third and 

fourth stage spool dynamics. This has been proved to be a reasonable modeling 

assumption based on the experimental observations. 

9.3.2. Servovalve Spool Dynamics 

For most physical systems, servovalve spool dynamics is not the primary 

dynamic element, so it is only necessary to represent the valve spool dynamics 

throughout a relatively low frequency spectrum. For example if a servovalve-actuator 

is coupled to a load which exhibits a 50 Hz resonant frequency, it is meaningful only 

to represent valve dynamic response up 50 Hz (Thayer, 1965). LHPOST’s frequency 

bandwidth is between 0-25 Hz, therefore it is sufficient to model the 3rd and 4th stage 

spool dynamics with reasonable accuracy up to 25 Hz. Servovalve spool displacement 

within servovalve exhibit second order dynamics (Thayer, 1965; Thoen and Laplace, 

2004; Zhao et al., 2005). On LHPOST these dynamics were measured by exciting the 
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table with white noise (WN) input and recording the valve driver commands (i.e., 3rdc  

and 4thc ) and valve spool displacements (i.e., 3rdf  and 4thf ) while the main hydraulics 

was turned off (i.e., actuators are taken off the loop). Eight parametric black-box 

ARMAX models of type given in (9.1) are fitted to the input-output pairs of the third 

and fourth stages of four servovalves (WA and WB on the West actuator, and EA and 

EB on the East actuator) 

 ( ) ( ) ( ) ( ) ( ) ( ) 1, 2,3,4i i i i i iA q f t B q c t nk C q e t i= − + =  (9.1) 

where iA , iB , and iC  are model parameters to be estimated with orders 2, 2, and 2, 

and nk  is the delay term between the driver command and feedback spool 

displacement which is of order 1. Estimation data is a 240 seconds long WN 

acceleration input band limited between 0.25-40 Hz with 10%g RMS amplitude. 

Figure 9.6 shows the Bode plots of the estimated parametric models for the 4th stages 

of the WA and EA servovalves and the non-parametric transfer function estimations 

using Welch-Bartlett method. Transfer function estimations for the 3rd stage spool 

dynamics of WA, WB, EA, and EB valves as well for the 4th stage dynamics of WB 

and EB valves are not shown due to space limitations but have similar qualities as the 

ones shown. Figure 9.7 shows the comparison of simulation results using the 

estimated parametric models of WA and EA servovalves and the recorded spool 

displacements from a WN test. The test was 3%g RMS amplitude WN acceleration 

band-limited between 0.25-40 Hz commanded to the servovalves. The excellent match 

between the simulated and the actual displacement responses shows that the estimated 
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parametric models can be used in the simulation model to capture the 3rd and 4th stage 

spool dynamics of the actual servovalves. Notice that eight independent spool 

dynamics are modeled in the virtual model. 

9.3.3. Servovalves’ Port Orifice Widths 

The sctuators on LHPOST are single-ended actuators. Single-ended actuators 

have unequal piston areas on both sides of the piston. Figure 9.8 shows the assembly 

of the West single-ended actuator with the 4th stages of WA and WB servovalves. 

Sketch of the East single-ended actuator and the EA and EB 4th stage spool assembly 

would look exactly the same except that the East actuator would be the mirror image 

of the West one. Figure 9.8(a) shows the actuator piston movement along the extent 

direction (positive direction of the actuator motion) with extent velocity V  and 

associated 4th stage spool movement and actuator chamber pressures 1P  and 2P ; 

Figure 9.8(b) shows the actuator movement along the retract direction (negative 

direction of the actuator motion) with retract velocity V  and associated 4th stage spool 

movement and actuator chamber pressures 1P  and 2P ; 1A  and 2A  are the actuator 

piston areas; SP  and RP  are the supply and return pressures, respectively. 

The 4th stage spool position determines the sizes of the orifices which allow 

flow into and out of actuator control ports WC1 and WC2. When the actuator piston 

moves along the extent direction, load flow orifices 1 and 2 are open and 3 and 4 are 

closed and when the piston moves along the retract direction, load flow orifices 3 and 

4 are open and 1 and 2 are closed. The same control signal is sent to both servovalves 

on the West actuator therefore servovalves’ load flow orifices open the same amount 
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with slight differences due to different spool dynamics associated with them. To the 

servovalves on the East actuator, the same control signal as the one on the West 

servovalves is sent but with opposite polarity (i.e., the same amplitude but opposite 

sign). As an example, let’s assume that the West actuator piston is moving along the 

extent direction, so the East actuator piston must move along the retract direction. 

Hence on the West servovalves load orifices 1 and 2 would be directing flow in and 

out of the actuator chambers, whereas on the East servovalves load orifices 3 and 4 

would be. Something missing, in other words, at each instant of time four load flow 

orifices are directing flows to two actuators. 

Servo-hydraulic actuators which need to perform with high fidelity in signal 

reproduction are normally made using actuators with equal piston areas (i.e., double-

ended). Actuator average internal pressure is 1/ 2 SP×  in double-ended actuators 

controlled by servovalves with matched and symmetric orifices regardless of 

actuator’s direction of motion (Merritt, 1967). In single-ended actuators the internal 

pressure depends on the direction of actuator motion therefore causing pressure 

discontinuity within the actuator each time the actuator changes direction of motion, 

which results in waveform distortion (Gram, M., personal communication, MTS 

System Corp.). On LHPOST, single-ended actuators had to be used in order to reduce 

the length of the actuator piston and to reduce the excavation cost for the foundation. 

Therefore, LHPOST servovalves are built in order to compensate for the 

unconventional nature of the LHPOST actuators. Sleeves of the servovalves on 

LHPOST (shown in Figure 9.4) are cut with load flow port window widths designed 
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for the piston area ratio of  2

1

0.64A
A

= . By imposing V V=  for a given 4th stage 

servovalve spool displacement svx , 1 1P P= , and 2 2P P=  while no load is attached to 

the actuators, and using Bernoulli’s flow equation for four orifices as shown in Figure 

9.8, the following relationships for the port widths as a function of piston area ratio 

can be found 
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 (9.2) 

Return pressure RP  is assumed to be zero in the derivation of (9.2). With these orifice 

port widths, the actuator internal pressures are the same for motions in both the extent 

and retract directions; this minimizes waveform distortion in single-ended actuators. 

Also, for a given svx , velocity is the same for each direction. Notice that port widths 

in (9.2) are normalized with respect to the port width 3 (i.e., 3w ). Figure 9.9 shows the 

schematics of the load flow ports of one of the servovalves on LHPOST. Notice that 

there are eight servovalves on LHPOST and each has port windows as shown in 

Figure 9.9 where max
svx  is the stroke of the 4th stage spool. 

Figure 9.10 shows the displacement and velocity responses of the table and 4th 

stage spool displacement of the WA servovalve from a harmonic test with 4.1 Hz 

excitation frequency and 2.364g amplitude. Amplitudes of the recordings are all 

normalized with respect to the table velocity so that maxima, minima, and zero 
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crossings of the responses can easily be compared and be mapped to the flow paths’ 

opening-closing sequences. Four different servovalve-orifice-port states can be 

identified from Figure 9.10: (i) from “O1” to “a”, flow paths 3 and 4 are totally close 

and flow paths 1 and 2 are closing therefore velocity decreases along extent direction, 

this is referred to as closing sequence of 1 and 2; (ii) from “a” to “O2”, flow paths 1 

and 2 are totally close and 3 and 4 are opening therefore velocity is increasing towards 

retract direction, this is referred to as opening sequence of 3 and 4; (iii) from “O2” to 

“b”, flow paths 1 and 2 are totally close and 3 and 4 are closing therefore velocity is 

decreasing along retract direction, this is referred to as closing sequence of 3 and 4; 

(iv) from “b” to “O2”, flow paths 3 and 4 are totally close and flow paths 1 and 2 are 

opening therefore velocity increases towards extent direction, this is referred to as 

opening sequence of 1 and 2. Notice that the spool displacement follows the velocity 

response of the table although slightly ahead of the piston velocity, this is due to 

response delay of the table. All of the servovalve port orifices are closed at points “a” 

and “b”, therefore the table velocity is zero at these points. At zero velocity points 

(i.e., zero velocity crossings or table motion reversal points), supply pressure to the 4th 

stage switches from flow path 1 to flow path 4 (i.e., port 1 to 4) or vice versa. This 

switching has certain implications in table response which will be pointed out later. 

9.3.4. Servovalve Nonlinearities 

Bernoulli’s flow equation which is applicable for steady, inviscid (i.e., 

nonviscous), turbulent flow can be used to determine flow from an orifice 
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where vK  is flow coefficient of the servovalve that depends on the orifice geometry 

and the fluid density and it has a unit of ( )2 / secm N ⋅ , (9.3) is valid for 0svx >  or 

for extent direction, and (9.4) is valid for 0svx <  or for retract direction. Notice that 

 i svw x  corresponds to the open area of load flow ports where 1,2,3,4i = . Since there 

are four servovalves on LHPOST, equations (9.3) and (9.4) are implemented four 

times in the virtual model. Servovalve flows contain two major types of nonlinearity: 

(i) Pressure drop – flow nonlinearity which is explicitly represented by the square root 

term; and (ii) nonlinear flow gain or nonlinear flow vs. spool displacement 

nonlinearity which is related to the term vK .  

9.3.4.1.Pressure Drop – Flow Nonlinearity 

Pressure drop – flow nonlinearity (or square root nonlinearity) reflects the 

nonlinear relation between the flow through the servovalve orifices (ports) and the 

pressure drop across the orifice (Zhao et al. 2005). This nonlinearity increases with 

increasing actuator force demand, and it is also a function of servovalve spool 

opening. Square-root nonlinearity shows itself in overall spool motion as skewed and 

anti-symmetric distortion (Clark 1983) and manifests itself clearly in periodic actuator 

motion as distortions due to the odd harmonics of the test frequency. Another source 
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of signal distortion is due to the pressure-switching phenomenon which occurs when 

the actuator force approaches a maximum value (i.e., at zero velocity). This 

phenomenon is independent from the square-root nonlinearity and it is inherent to the 

way servovalves work since supply pressure has to switch from one flow path to 

another in order for the actuator to change direction of motion (Figure 9.10). Pressure 

switching shows itself in servovalve spool motion as a sudden jump from zero opening 

to a certain finite value and its pronounced mostly during high force tests compared 

with the maximum force capacity of the actuator. 

9.3.4.2. Flow Gain Nonlinearity 

Flow gain vK  is given below 

 ( )2 /v d S v SK C w P K w Pρ= =  (9.5) 

where dC  is the discharge coefficient, ρ  is the density of the fluid, and w  is the width 

of the orifice (Meritt, 1967). Notice that vK  has the unit of flow per unit spool 

opening hence is called the flow gain or no load flow gain. vK  is a nonlinear function 

due to nonlinearity in flow discharge coefficient dC . Flow discharge rate decreases as 

the spool opening increases or in other words as the orifice area svw x×  increases 

(Zhao et al. 2005). Also notice that vK  is also a function of SP , therefore it is affected 

by supply pressure fluctuations. Generally in a shake table system, supply pressure is 

regulated by accumulators therefore fluctuations are not that extreme. Especially 

during shake table tests with light specimens (i.e., specimen masses comparable to the 
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platen mass) or bare table conditions. In this paper, the change in supply pressure will 

be taken into account by modeling fictitious accumulators coupled closely to the 

actuators. Assumptions and details regarding the accumulator model will be presented 

later in the paper. Nonlinear behavior of flow gain vK  is complicated and 

experimental identification is usually necessary (Zhao et al. 2005). Zhao et al. (2005) 

devised a method to identify servovalve flow as a function of spool displacement: 

Periodic signal with gradually increasing amplitude are commanded to the servovalves 

while the actuator is detached from specimen (i.e., no load); then by measuring the 

corresponding actuator piston velocity and calculating the flow controlled by 

servovalves by multiplying piston velocity and actuator piston area, nonlinear flow vs. 

spool displacement curves are obtained. Note that the slope of this curve would be the 

no-load flow gain of the servovalve’s ports. This method of identifying flow vs. spool 

displacement curve is deemed impractical for LHPOST due to actuators being 

attached to the platen permanently (actuators are not free of load) and also due to 

multiple servovalves and more complicated nature of servovalves’ flow ports. 

Therefore, in this paper, a more pragmatic approach is taken to assign nonlinear flow 

curves to the servovalves’ ports. It should be noted here that nonlinear flow gain 

becomes important during high velocity tests compared to the maximum actuator 

piston velocity. 

A nonlinear curve of the type given below is used to construct the backbone of 

flow vs. spool displacement curves for the four ports of each servovalve 

 ( )1 ,  1, 2,3,4i svx
i iQ e iαβ −= − =  (9.6) 
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where iQ  is the flow from the ith port of one of the servovalves, iβ  and iα  are the 

estimated flow model parameters for the ith port, and svx  is the 4th stage spool 

displacement. Flow model parameters are estimated minimizing the sum of squares of 

errors between the exponential function given in (9.6) and the prototype input-output 

data pair given below 
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 (9.7) 

where max
svx is the stroke of the 4th stage spool, ,max iQ  is the associated maximum flow 

from the ith port of one of the servovalves (i.e., at maximum spool opening at system 

pressure), trial
svx  is the spool opening where half of the maximum flow (i.e., ,

2
max iQ

) 

from the ith port occurs. trial
svx  is used to calibrate the flow curves based on the 

observed table responses obtained from the high velocity tests. ,max iQ  value can be 

obtained from the rated servovalve flow value which is provided by the manufacturer. 

Rated flow is the flow in which there is ~3.5 MPa (500 psi) pressure drop on an 

individual flow path or ~7.0 MPa (1000 psi) pressure drop across the actuator pressure 

chambers when the servovalve port is fully open. Rated flow value for 3w
ratedQ  is 

provided by the manufacturer for the port number 3 shown in Figure 9.8 (when the 3rd 

flow path is fully open). Rated flows for the ports 1, 2, and 4 are found using the ratios 

given in (9.2) and then the rated flows for four ports are extrapolated to the 10.5 MPa 
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(1500 psi) by multiplying the rated flows by 3 . 10.5 MPa correspond to the pressure 

drop on an individual flow path and it is equivalent to 21.0 MPa pressure drop across 

the actuator pressure chambers. These extrapolated values will be used for ,max iQ  in 

order to find the necessary nonlinear flow curves. Figure 9.11 shows the nonlinear 

flow vs. spool opening curves obtained for one of the servovalves using 
3.5

max
trial sv
sv

xx =  

(i.e., ,

2
max iQ

 occurs at 29% of spool opening) which gives the best correlation with the 

test results and this will be shown later in the work. The same nonlinear flow curves 

shown in Figure 9.11 are assigned to all four servovalves. 

9.3.5. Simulink Implementation of Servovalve Model 

Figure 9.12(a) shows the Simulink implementation of the WA servovalve 

model which includes the 3rd and 4th stage spool dynamics, flow vs. spool 

displacement nonlinearity and pressure drop – flow nonlinearity for each one of four 

orifices. The gain /10max
svx  is used to convert volts to 4th stage spool displacements. 

Nonlinear flow vs. spool displacement curves are implemented using “Look-Up 

Table” block in Simulink which finds the flow of each orifice using as input the 4th 

stage spool displacements. Notice that depending on the direction of the 4th stage spool 

motion only two of the four servovalve ports are active. Blocks confined with the 

dotted box are added to the servovalve model since the flow gains have to be adjusted 

based on the supply pressure fluctuations which is simulated by the accumulator 

model. Figure 9.12(b) shows the details of the “Pressure Drop – Flow Nonlinearity 
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Orifice 1” block; other orifices have similar details. There are four servovalves 

therefore four Simulink models similar to the one shown in Figure 9.12(a) are 

implemented. Recall that the servovalves on the East actuator are commanded by the 

same control signal as on the West ones except with opposite polarity. Supply pressure 

to the 4th stage comes from the accumulator model and return pressure is set to a fixed 

value. Flows 1WQ  and 2WQ  are the flows going in/out actuator chambers depending on 

the direction of the servovalve motion. These flows will be used as inputs in the 

actuator model to determine the actuator driving force. 

9.4. Actuator Model 

Controller and servovalve models developed thus far determine the oil flow 

into the chambers of the actuators. Differential force (or load pressure) that drives the 

mass attached to the piston can be derived using equations of continuity (Williams et 

al, 2001). Figure 9.13 shows the flows 1Q  and 2Q  from servovalve going in and out of 

the actuator chambers and another flow path within the actuator chambers indicated 

with dotted arrows. Continuity equations can be written for the actuator chambers (i.e., 

control volumes) 1 and 2 by neglecting the flows within the actuator chambers as 

follows  

 

( )

( )

11 1
1

22 2
2

d VdM dV dV
dt dt dt dt

d VdM dV dV
dt dt dt dt

ρ ρρ

ρ ρρ

= = +

= = +

 (9.8) 
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where 1M  and 2M  are the liquid masses inside the actuator chambers 1 and 2, 

respectively, and 1V  and 2V  are the instantaneous actuator chamber volumes 1 and 2, 

respectively. By using the fact that density of the fluid inside control volumes changes 

in a small amount as a function of pressure therefore using just the linear terms of the 

Taylor’s series expansion of dρ  (Merritt, 1967), and assuming that the temperature 

remains constant inside the chambers, ends to the simplification of (9.8) can further be 

simplified  

 

1 1 1
1

2 2 2
2

e

e

dV V dPQ
dt dt
dV V dPQ
dt dt

β

β

= +

= +
 (9.9) 

where eβ  is the effective bulk modulus of fluid within the chambers. By substituting 

1 10 1pV V x A= +  and 2 20 2pV V x A= −  for the first terms in (9.9), where px is the piston 

displacement, and 10V  and 20V  are the initial chamber volumes when the actuator 

piston is centered, the following equations of continuity for actuator chambers 1 and 2 

can be obtained 

 

1 1
1 1

2 2
2 2

p

e

p

e

dx V dPQ A
dt dt
dx V dPQ A
dt dt

β

β

= +

= − +
 (9.10) 

The first and second terms in (9.10) are, respectively, the flows needed to satisfy the 

continuity equation due to the motion of the piston and due to the compressibility of 
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the fluid inside the chambers. Instantaneous actuator chamber volumes as a function of 

piston displacement can be written as follows 

 

( ) ( )

( ) ( )

1 10

2 20

1

1

p
max
p

p
max
p

x t
V t V

x

x t
V t V

x

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (9.11) 

where max
px  is the actuator stroke. Substituting (9.11) into (9.10) and after rearranging 

terms, equations for chamber pressures 1P  and 2P  can be found 

 

1 1

1
10

2 2

2
20

p
max

e p

p p

p
max

e p

p p

dx
Q A

x dt
P dt

V L x

dx
Q A

x dt
P dt

V L x

β

β

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
+

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
−

∫

∫

 (9.12) 

where the integrals are evaluated over the duration of a time step and pL  is the stroke 

of actuator. Using 1P  and 2P , actuator driving force can be obtained as 

1 1 2 2actF A P A P= − . Recall that LHPOST has two mirror-imaging single-ended 

actuators therefore (9.12) has to be implemented twice in order to find the total 

actuator force exerted on the platen. Once the West and East actuators’ chamber 

pressures are known, total actuator force driving the platen can be found 

 ( )1 1 2 2 2 2 1 1act W E W EF P A P A P A P A= + − +  (9.13) 
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where 1WP , 1EP , and 2WP , 2EP  are the pressures of chambers 1 and 2 of the West and 

East actuators, respectively. Simulink implementation of (9.12) for the West actuator 

is given in Figure 9.14. The implementation of the East actuator is the same as for the 

West actuator. 

Interaction of the spring effect of fluid and the mass of mechanical parts results 

in a resonance in shake table systems. In most cases, this resonance is the main 

limitation to the dynamic performance (Merritt, 1967). The fluid spring is 

characterized by the value for the bulk modulus. The modulus of a fluid can be 

substantially lowered by entrapped air, mechanical compliance, and operating 

temperature. Typical value for the bulk modulus of petroleum-based fluids without 

entrapped air is around 1.5 GPa, but 1% entrapped air can reduce this value to as low 

as 0.36 GPa (Merritt, 1967). Therefore an effective bulk modulus of the oil in the 

system must be estimated. Oil column resonance of LHPOST is estimated by running 

the table with low level random excitation and measuring the 4th stage spool feedback 

displacement as input and actuator force as output and fitting a transfer function 

between them. The resonance peak seen in the transfer function would be the oil 

column resonance and the corresponding frequency is the oil column frequency oilf . 

The effective bulk modulus of the system can now be estimated using oilf   

 ( ) 22
2

e p
e oil

eq

M L
f

A
β π=  (9.14) 

where eM  is the effective mass of the table platen, and 1 2eqA A A= +  is the piston area 

of a double-ended actuator equivalent to the two single-ended actuators. The effective 
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bulk modulus eβ  computed by (9.14) represents not only the stiffness of the oil with 

entrapped air, but also the stiffness of the actuator swivels and additional oil volume 

inside the servovalves’ manifolds (Thoen and Laplace, 2004). 

In Figure 9.14, another flow path from the 1st actuator chamber to the 2nd is 

indicated with the dotted arrows. This flow is called the actuator cross-port leakage. 

Actuator cross-port leakage flow is proportional to the load pressure, indicated as LP  

in the figure, and can be written as l l Lq c P= , where lc  is the leakage coefficient 

which it accounts for damping within the actuators (Dyke et al., 1995; Conte and 

Trombetti, 2000; Williams et al., 2001; Zhao et al., 2005). In this paper, damping due 

to the cross-port leakage and other sources of viscous damping are included within the 

mechanical subsystem. The mechanical subsystem model used in this work will be 

presented later. 

9.5. Hydraulic System of LHPOST 

In LHPOST hydraulic power is supplied to the actuators by a main 

accumulator bank. It is charged by a pump with 416 lit/min flow capacity at 35.0 MPa 

pressure, therefore the accumulator bank can be pressurized up to 35.0 MPa. High-

pressure oil in the bank is regulated down to the system pressure of 21.0 MPa before it 

is sent to the actuators; pressure regulation is achieved by the blow-down control. The 

blow-down valve at the exit of the accumulator bank regulates the output pressure of 

the bank using a control algorithm which combines the error signal between the 

pressure set-point of 21.0 MPa and the pressure readings (i.e., feedback) at a point on 
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the hydraulic line close to the actuators with the feedforward control signal 

proportional to the reference velocity. Pressure-regulated oil leaves the blow-down 

valve, travels along the hydraulic line, and gets passively regulated at several points by 

in-line accumulators pre-charged to 13.8 MPa pressure. The purpose of these small in-

line accumulators is to regulate small pressure drops in the line as well as to filter the 

possible pressure pulsations (Merritt, 1967). 

The pipe carrying the regulated pressurized oil at system pressure is connected 

to the main pressure entrance of the servovalves which is located at the 4th stage 

(Figure 9.4). From the 4th stage, pressurized oil is directed to the actuator chambers 

through the 4th stage flow ports. There is one main pressure entrance at each actuator. 

On LHPOST, in addition to the accumulator bank and the in-line accumulators, there 

are two accumulators closely coupled to each actuator pre-charged to 13.8 MPa 

pressure. Close-coupled accumulators are attached to the same entrance where the 

main pressure line is attached to the servovalves, therefore regulating the 

instantaneous pressure drops and filtering the pressure pulsations at the main pressure 

entrance. The working principle of accumulators can be stated as follows: flow 

demand in excess of available flow discharges the accumulator which in turn causes 

the accumulator pressure to drop, whereas flow demand less than the available flow 

charges the accumulator causing the accumulator pressure to rise.  

Platen acceleration and the pressure in the West close-coupled accumulator 

recorded during two different tests are shown in Figure 9.15. Figure 9.15(a) shows the 

acceleration and pressure recordings obtained while reproducing 1994 Northridge 
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earthquake acceleration record at Sylmar station and Figure 9.15(b) shows the 

acceleration and pressure recordings during a harmonic acceleration test with a 

frequency of 1.0 Hz and 0.577g amplitude. In both tests, pressure inside the 

accumulator drops steadily below the nominal system pressure of ~21.0 MPa as the 

table reproduces the commanded motion. This drop in the system pressure is 

accompanied by high frequency pressure oscillations around steadily decreasing 

system pressure. Once the table comes to a rest, high frequency pressure oscillations 

stop and pressure inside the accumulator starts increasing to the nominal system 

pressure. These pressure oscillations are due to pressure switching phenomenon 

occurring every time actuator changes direction and they amount about 8-10% 

pressure variations from the average supply pressure level.  

A complete mechanics-based model of the hydraulic system of LHPOST has to 

include mathematical models of the pumps, accumulator bank, blow-down valves and 

their controllers, in-line and close-coupled accumulators, as well as transient flow 

conditions that might exist within the hydraulic line. The most general transient flow 

condition within a pipe emerges when both the fluid inertia effects and the elastic 

effects of fluid and pipe have to be retained in order to obtain an accurate 

characterization of the flow (Streeter and Wylie, 1975; Larock et al., 2000). 

Furthermore flow regime (i.e., laminar, transitional turbulence, or turbulent regimes) 

in the hydraulic line has to be taken into account when formulating the transient flow 

conditions. In this first mechanics-based modeling effort, only a model for the 

hydraulic system simulating the steady drop observed at the closed-coupled 
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accumulators will be given. In this way, the average supply pressure drop at the 4th 

stages of the West and the East servovalves will be captured to a sufficient degree. 

9.5.1. Modeling Average Supply Pressure Drop 

In order to simulate the average supply pressure drop at the 4th stage level, 

adiabatic gas law will be applied to two fictitious effective accumulators attached one 

on each actuator. Adiabatic condition exists when there is no heat gain or loss by the 

system (e.g., accumulator tank). For this condition to hold, it is assumed that the gas 

chamber volume is not changing too quickly (i.e. no internal friction or very little 

exists in the gas), and there is no heat flow through the walls of the tank. Based on 

these assumptions, adiabatic gas law can be written 

 1 1 2 2PV PVγ γ=  (9.15) 

where 1P  and 2P  are gas chamber pressures associated with volumes 1V  and 2V , 

respectively, and γ  is the adiabatic exponent. Note that smaller volume is associated 

with high pressure and larger volume is associated with smaller pressure. Figure 9.16 

shows the sketch of one of the fictitious accumulators at two limit states and the 

supply line at the 4th stage. These states are: (i) oil within the accumulator tank reaches 

its maximum level, oil
maxV ; and (ii) gas within the accumulator tank reaches its 

maximum level, gas
max bottleV V= , or 0.0oil

minV = . In Figure 9.16, bottleV  is the total volume 

of the accumulator tank, sP  is the nominal supply pressure in the hydraulic line and 

preP  is the pre-charged pressure of the accumulator’s gas chamber. Accumulators are 

pre-charged up to a certain pressure with gas (e.g., nitrogen) when there is no or little 



 350

supply pressure in the hydraulic line. Therefore when supply pressure reaches to its 

maximum level, oil volume within the accumulator can only reach 

1/

1 preoil
max bottle

S

P
V V

P

γ⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (i.e., oil
maxV  is less than bottleV  due to the pre-charged gas). 

Figure 9.17 shows the Simulink implementation of the fictitious accumulator 

on the West actuator. Block diagram confined with the dotted box shows the 

implementation of (9.15) and pumpQ  is the constant pump flow to the West 

accumulator at nominal supply pressure. Notice that absolute value of the 

instantaneous “west actuator flow” is subtracted from the pump flow to find the flow 

which will either charge or discharge the accumulators. This flow is called the net 

flow. Net flow can be positive or negative depending on the pump capacity. By 

integrating the net flow, instantaneous oil volume can be found. This oil volume is set 

to be bounded between 0.0oil
minV =  and oil

maxV . When instantaneous oil volume reaches to 

its minimum value, supply pressure will be equal to the pre-charge pressure preP , 

whereas when it reaches to its maximum value, supply pressure will be equal to the 

nominal system pressure SP . At instantaneous oil volumes between these two bounds 

supply pressure will fluctuate between preP  and SP . 

9.6. Mechanical Subsystem Model 

9.6.1. Identified Mechanical Subsystem 

A mathematical model for the mechanical components of LHPOST has been 

proposed, and its model parameters have been identified and validated using an 
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extensive set of experimental data in a previous work (Ozcelik et al., 2008). In Ozcelik 

et al. (2008), it has been shown that several non-linear terms arising from the 

significant displacements and rotations of the hold-down struts are small, and that a 

simplified model including an effective horizontal mass, an effective horizontal 

stiffness due to pre-charge pressure in the hold-down struts, and dissipative force 

terms composed of classical Coulomb friction and viscous damping elements are 

sufficient to simulate the response of the mechanical subsystem. This model is 

represented in Figure 9.18(a), where ( )actF t = the total effective actuator force applied 

on the pistons of the two horizontal actuators, eM = effective mass of the platen 

(including the mass of the moving parts of the horizontal actuators and a portion of the 

mass of the hold-down struts), eK = total effective horizontal stiffness provided by the 

two hold down struts, eC = effective viscous damping coefficient, and 
e

Fµ = effective 

Coulomb friction force due to various sources, and ( )xu t = total horizontal 

displacement of the platen along the longitudinal direction ( ( ) ( )x pu t x t= since the 

platen is assumed to be rigid). The equation of motion of the conceptual mechanical 

subsystem of LHPOST can be written as follows 

 ( )( ) ( ) ( ) ( ( )) ( )
ee x e x e x x actM u t K u t C u t F sign u t F tα

µ+ + + =  (9.16) 

where the exponent α  is a constant. Identified model parameters (i.e., eM , eK , eC , 

e
Fµ , α ) are all effective in nature, as different sources are lumped into the same type 

of resisting force (e.g. various physical sources of viscous energy dissipation including 
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viscous damping due to cross-port actuator leakage contribute to the coefficient eC  of 

the viscous damping force model). In the next section, the mathematical model given 

in (9.16) will be extended to 2D in order to take into account the rigid body motion of 

the platen. 

9.6.2. Two-dimensional Mechanical Subsystem 

Figure 9.18(b) shows the 2D model of the mechanical subsystem in which the 

reaction block and the surrounding soil are assumed to be rigid. The mechanical 

components such as vertical bearings, hold-down struts are represented as linear 

springs and the identified dissipative mechanism is represented by dashpots and 

Coulomb friction elements.  

Three vertical bearings are attached at points indicated as V1, V2, and V3 are 

represented as springs with constants vbK . Constant friction force eFµ  is evenly 

distributed to three points V1, V2, and V3 on the platen and are represented with 

constant friction forces 1eFµ , 2eFµ , and 3eFµ . Vertical motion of the platen generates 

vertical spring forces which in turn generates additional Coulomb forces on the platen. 

These extra friction forces will be computed using the effective Coulomb friction 

coefficient eµ  which is estimated in the previous work (Ozcelik et al., 2008). Viscous 

dissipative forces are modeled with two dashpots each with viscous damping 

coefficient of / 2eC . These dashpots are attached to the points indicated as W and E. 

Two vertical hold-down struts are attached to the points on the platen indicated as H1 

and H2. Hold-down struts exert horizontal as well as constant vertical forces on these 
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two points. Horizontal forces due to hold-down struts are represented by two 

horizontal springs each having spring coefficient / 2eK . Constant vertical forces are 

represented with ( 1)HD
zF  and ( 2)HD

zF . ( )actWF t  and ( )actEF t  are scalar time dependent 

actuator forces generated by the West and East actuators, respectively. Actuator forces 

are acting to the points on the platen indicated as W and E. 

Dimensions of the platen as well as the locations of points of action of the 

actuators and the other forces described above are shown in Figure 9.18(b). Point G 

indicates the center of gravity of the equivalent prismatic platen. The equivalent 

prismatic platen has the same weight and width as the original platen but have 

different heights. Difference between the center of gravity of the original platen and 

the equivalent prismatic platen is about 1.0 cm. The terms xe  and Gh  represent the 

horizontal and vertical distances between points G and O, respectively. The equation 

of motion of the 2D mechanical subsystem (derived with respect to the generalized 

coordinates at point O) is given by  

 ( ) ( ) ( ) ( ) ( )O O act spr damp coult t t t t= − − −Μ u F F F F  (9.17) 

where 
T

O Ox Oz Oyu u θ⎡ ⎤= ⎣ ⎦u , 0M  is the ( )3 3×  mass tensor, ( )act tF  is the ( )3 1×  

actuator force vector, ( )spr tF  is the ( )3 1×  force vector representing the horizontal and 

vertical spring forces as well as the constant hold-down forces, ( )damp tF  is the ( )3 1×  

viscous dissipative force vector, and ( )coul tF  is the ( )3 1×  Coulomb friction force 

vector. In the following sections, details of each term in (9.17) will be given. 
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9.6.2.1. Mass Tensor OM  

The mass tensor of the platen with respect to the principal axis passing through 

point G can be written as follows 

 
0 0

0 0
0 0

e

G e

y

M
M

Iθ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  (9.18) 

where yIθ  is the mass moment of inertia of the prismatic platen. Using the kinematic 

relationship between points G and O, the following relation can be written 

 G GO O=u R u  (9.19) 

where  

 0

1 0
0 1
0 0 1

G

G x

h
e

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

R  (9.20) 

where Gh  and xe  are assumed to be positive downwards and to the right of the center 

line of platen, respectively. The generalized mass tensor at O is then given by 

 T
O GO G GO=M R M R  (9.21) 

9.6.2.2. Actuator Force Vector actF  

The scalar actuator forces generated by the West and East actuators are 

represented by ( )actWF t  and ( )actEF t , respectively. The displacement vectors at points 

W and E in which the actuators are attached to the platen are given by 
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( )

( ) ,
A

ixA
i

iz

u
i W E

u
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

u  (9.22) 

The vectors in (9.22) can be related to the motion at point O as follows 

 

( ) ( )

1 0
      

0 1 ( )

A A
W WO O

a
O

x

c
a e

=
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 (9.23) 

and 

 

( ) ( )

1 0
      

0 1 ( )

A A
E EO O

a
O

x

c
a e

=

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

u R u

u
 (9.24) 

The displacement vectors between the points where the actuators are attached to the 

rigid reaction block (i.e., RW and RE) and the points W and E on the platen can be 

written as follows  

 
( ) ( )

( ) ( )

TA A
WA Wx a Wz

TA A
EA Ex a Ez

u l u

u l u

⎡ ⎤= +⎣ ⎦

⎡ ⎤= − + −⎣ ⎦

r

r
 (9.25) 

where al  is the length of each actuator. If we assume that the norm of the vectors in 

(9.25) is approximately equal to al , the vector actuator thus can be written in the form 

 

( )( )

( )( )

actW
actW WA

a

actE
actE EA

a

F tt
l

F tt
l

=

=

F r

F r
 (9.26) 
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where ( )actWF t  and ( )actEF t  are the scalar actuator forces. Equation (9.26) can be 

transformed to point O using equations (9.23) through (9.25) as follows 

 

( ) ( ) ( )
1 1 1

( ) ( ) ( )
2 2 2

1 ( )( ) ( )
0

1 ( )                   ( )
0

T T

T T

A A AactW
act actW O O O O
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actE O O O O

a

F tt F t
l

F tF t
l

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
⎡ ⎤

−⎢ ⎥
⎣ ⎦

F R R R u

R R R u
 (9.27) 

Notice that the actuator force vector given in (9.27) will exert forces on the platen not 

only along x direction but also in the z direction. A moment along the y axis is also 

excited. 

9.6.2.3. Vertical Spring Force Vector ( )VB
sprF  

The oil column within each vertical bearing acts like a spring. The oil column 

stiffness of a vertical bearing can be calculated as follows 

 e vb
vb

oil

AK
L
β

=  (9.28) 

where eβ  is the effective bulk modulus of the oil, vbA  is the effective bearing area, and 

oilL  is the oil column length. 

The vertical force at each vertical spring can be written as 

 ( ) ( ) ( )  1,  2,  3VB VB
zi vb ziF K u t i V V V= =  (9.29) 

where ( ) ( ) VB
ziu t is the vertical motion of the platen at points V1, V2, and V3 (notice that 

these points are fixed to the springs not to the platen). Vertical motions at these points 

can be related to the motion at point O as follows 
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 ( ) ( ) 1,  2,  3VB VB
zi iO Oxu i V V V= =R u  (9.30) 

where 
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 (9.31) 

Using equations (9.29) and(9.30), the generalized spring force vector at O due to the 

vertical spring forces can be written as 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3

T T TVB VB VB VB VB VB VB
spr vb V O V O V O V O V O V O OK= + +F R R R R R R u  (9.32) 

9.6.2.4. Horizontal Spring Force Vector ( )HD
sprF  

The horizontal force at each horizontal spring can be written as 

 ( ) ( ) ( )   1,  H2
2

HD HDe
xi xi

KF u t i H= =  (9.33) 

where ( )HD
xiu  is the horizontal motion at points H1 and H2 where the hold-down struts 

are attached to the platen.  

The horizontal motion at points H1 and H2 where the horizontal springs are 

attached to the platen can be related to the motion at point O as follows 

 ( ) ( )( )  1,  2HD HD
xi iO Oxu t i H H= =R u  (9.34) 

where  
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Using equations (9.33) and (9.34), the generalized spring force vector at O due to the 

horizontal springs is given by 

 ( )( ) ( ) ( ) ( ) ( )
1 1 2 2( )

2
T THD HD HD HD HDe

spr O O O O O
Kt = +F R R R R u  (9.36) 

Equation (9.36) models the portion of the hold-down force which is a function of the 

horizontal platen displacement. Constant vertical forces ( 1)HD
zF  and ( 2)HD

zF  exerted on 

the platen by the pre-charged hold-down struts can be transformed to point O as 

follows 

 
( ) ( )

( ) ( 1) ( 2)

0 0
1 1HD HD HD

const z z

H x H x

F F
a e a e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦

F  (9.37) 

Notice that the hold-down struts are in tension.  

Using equations (9.32), (9.36), and (9.37), the total force acting on the platen at 

point O due to vertical and horizontal springs, and the constant hold-drown vertical 

forces can be written as 

 ( ) ( ) ( )( ) ( ) ( )VB HD HD
spr spr spr constt t t= + +F F F F  (9.38) 

9.6.2.5. Viscous Damping Force dampF  

The previously identified viscous dissipative force model is given by 

 ( )( ) ( )   ,DP
damp e xi xOF t C u sign u i W E

α
= =  (9.39) 
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where ( )DP
xiu  is the horizontal motion at points W and E where the viscous dampers are 

attached on the platen. Although the identified viscous damping coefficient eC  is an 

effective value representing all the viscous damping sources within the system 

(Ozcelik et al., 2008(1), Ozcelik et al., 2008(2)), it is assumed that the main source of 

viscous dissipative forces is the cross-port leakage within the actuators, therefore 

dashpot elements are attached to the same points on the platen where the West and 

East actuators are attached.  

Horizontal motion at points W and E can be transformed to point O as follows 

 ( ) ( ) ,  DP DP
xi iO Oxu i W E= =R u  (9.40) 

where 

 
( )
( )

( )

( )

1 0

1 0

DP
WO a

DP
EO a

c

c

=

=

R

R
 (9.41) 

Using equations (9.39) and (9.40),  the viscous damping forces can be transformed to 

point O by 

 ( )( ) ( ) ( ) ( )( ) ( )
2

T TDP DP DP DPe
damp WO WO O EO EO O Ox

Ct sign u
α α

= +F R R u R R u  (9.42) 

9.6.2.6. Coulomb Friction Force coulF  

The vertical motion of the platen will generate vertical spring forces on the 

bearings which in turn will generate Coulomb friction forces. These forces for each 

bearing can be written as 

 ( ) ( ) ( )   1,  2,  3coul e zi xOF t F t sign u i V V Vµ= =  (9.43) 
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where ( )ziF t  are the vertical spring forces acting on the platen at points V1, V2, and V3 

due to vertical motion of the platen. Thus forces are given in (9.29). The coefficient 

eµ  is the identified effective Coulomb friction coefficient (Ozcelik et al., 2008). 

Vertical motions at points V1, V2, and V3 can be transformed to point O using (9.30) 

and(9.31). Coulomb fiction forces given in (9.43) are acting along x  direction and can 

be transformed to point O using the following transformation vectors 

 

[ ]
[ ]
[ ]

( )
1

( )
2

( )
3

1 0

1 0

1 0

VB
V Ox v

VB
V Ox v

VB
V Ox v

c

c

c

=

=

=

R

R

R

 (9.44) 

Using equations(9.29), (9.30), (9.31), and (9.43), the Coulomb friction forces due to 

the vertical motions at V1, V2, and V3 can be transformed to point O as follows 

 
( ) ( ) ( ) ( )

1 1 2 2

, ( ) ( )
3 3

( ) ( )

T T

T

VB VB VB VB
V Ox V O O V Ox V O O

coul dyn e vb OxVB VB
V Ox V O O

t K sign uµ
⎛ ⎞+ +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

R R u R R u
F

R R u
 (9.45) 

Equation (9.45) gives the part of the Coulomb friction forces related to vertical 

motion. Due to the weight of the platen and the vertical hold-down forces, a constant 

Coulomb friction force identified as eFµ  also has to be taken into account. Since only 

three bearings are modeled in the 2D model of the mechanical subsystem, constant 

Coulomb force on each vertical bearing is set to 1 2 3 / 3e e e eF F F Fµ µ µ µ= = = . These 

forces can be transformed to point O using the following expression 
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 ( ), 1 2 3 0
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0 0 0coul const e e e x

v v v

F F F sign u
c c c

µ µ µ

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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F  (9.46) 

Using (9.45) and(9.46), the total Coulomb forces acting on the platen at point O can be 

found 

 , ,( ) ( )coul coul dyn coul constt t= +F F F  (9.47) 

Figure 9.19 shows the Simulink implementation of the 2D mechanical 

subsystem given in(9.17). The terms ( )actWF t and ( )actEF t  are the scalar actuator forces 

generated by the West and East actuators, respectively. Platen acceleration vector Ou  

is integrated once to obtain platen velocity vector Ou , the platen velocity vector is 

integrated one more time to obtain platen displacement vector Ou . Platen responses 

along x direction are sent back to TVC to control the motion of the table. 

9.7. Simulink Implementation of the Complete Shake Table 

In order to perform the simulation, it is necessary to assign numerical values to 

the numerous model parameters introduced in the previous sections. The values used 

for the simulation work are given in Table 9.1. The majority of these are specific to 

the equipment used and were taken from the manufacturer’s technical specifications. 

Mechanical subsystem parameters and effective bulk modulus are estimated by 

previous experimental work. Values assigned for the hydraulic system 

parameters pumpQ , bottleV , and preP  are not taken from product specifications but are 

chosen so that the average simulated supply pressure drop at the 4th stage of 
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servovalves can capture the average supply pressure drop during actual tests. Control 

parameters are taken directly from actual TVC settings which are used for set of bare 

table tests. 

Figure 9.20 shows the Simulink implementation of the complete virtual model 

of LHPOST under bare table conditions. The virtual model of LHPOST is 

implemented in a modular fashion such that different versions of a table component 

can easily be replaced without changing the whole wiring of the virtual model. For 

instance, a new controller can easily be added to the model to assess the performance 

of the new controller without changing anything else in the model. Similarly, an 

improved version of the existing servovalve model can replace the current version 

without changing the model for the actuators. 

9.7.1. Bare Table Experiments 

The quality of simulations using the mechanics-based virtual model is 

evaluated by comparing the simulation results to those of experiments performed on 

the actual table. Results from four bare table tests will be used for comparison 

purposes: (i) harmonic input with 4.1 Hz frequency and 0.591g amplitude (Input H1); 

(ii) harmonic input with 4.1 Hz frequency and 3.547g amplitude (Input H2); (iii) 360 

degree component of the 1994 Northridge earthquake record at Sylmar station (Input 

Q1); and (iv) the north-south component of 1940 Imperial Valley earthquake record at 

El Centro station scaled up to 300% (Input Q2). Inputs H1, Q1, and Q2 are the 

modified versions of the original signals by using an iterative time history matching 

technique called the Online Iteration in order to increase the fidelity in reproducing 



 363

these signals on the table. Input H2 is the scaled up version of the modified input H1 

by a factor of six. Inputs commanded to the actual table are commanded to the 

simulation model of the table. More on the Online Iteration technique for input 

modifications can be found in Chapter 8.  

The motivation of using modified inputs is that these inputs are compensated 

for the deficiencies of the TVC tuning and for the nonlinearities of the real system; 

therefore if the simulation model has the same underlying dynamics and nonlinearities 

as the real table, modified inputs should compensate the same deficiencies and 

nonlinearities of the simulation model. Comparisons of platen acceleration, velocity, 

displacement, actuator driving force, closed coupled accumulator pressures, and 4th 

stage spool displacements obtained using the simulation model with those recorded 

during the experiments are presented in the following section. It should be noted here 

that TVC control gains on the virtual model are the same as those used on the real 

system (Table 9.1). 

9.7.2. Test-Simulation Correlations 

9.7.2.1. Harmonic Tests 

Figure 9.21(a) shows a comparison of the simulated platen acceleration, 

velocity, and displacements with the corresponding experimental quantities when the 

command is Input H1. Actual platen responses match very well with the simulation 

results. The top figure in Figure 9.21(a) also shows the desired acceleration signal. 

The delay between the desired and the actual feedback is captured by the simulation 

model. Figure 9.21(b) shows the recorded and simulated 4th stage spool displacements 
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of four servovalves. Simulation and the actual recorded spool displacements match 

very well. Figure 9.22(a) shows the comparison of recorded and simulated actuator 

driving forces. The match between these quantities is also excellent. Figure 9.22(b) 

shows the comparisons of the recorded pressure in the West and East close-coupled 

accumulators and the simulated supply pressures at the 4th stages of the West and East 

servovalves. It is clear that the simulation model captures the average of the pressure 

fluctuations in the real system with in a reasonable degree. Note that the high 

frequency oscillations seen in the real pressure recordings do not have any effect on 

the platen responses. 

Figure 9.23 and Figure 9.24 show the comparison of recorded and simulated 

table responses when the command to the actual table and the simulation model is 

Input H2. All the recorded and simulated responses match very well except for the 

pressures at the 4th stages of the servovalves. Note that the high pressure oscillations 

and overshooting of the nominal system pressure (~21.0 MPa) have no effect on the 

platen responses. The key finding is that the distortions seen in the actual platen 

acceleration response are captured by the simulation model indicating that the virtual 

model is capable of simulating the existing nonlinearities in the actual table. 

9.7.2.2. Earthquake Tests 

Figure 9.25(a) shows the comparison of the simulated platen acceleration, 

velocity, and displacement with those experimentally recorded when the command to 

the virtual model and the actual table is Input Q1. Actual platen acceleration, velocity, 

and displacement responses are captured very well by the simulation model. Figure 
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9.25(b) shows the recorded and simulated 4th stage spool displacements of the four 

servovalves. The simulation and actual recorded spool displacements match perfectly. 

Figure 9.26(a) shows the comparison of recorded and simulated actuator driving 

forces. The match between the two signals is very good. Figure 9.26(b) shows the 

comparisons of the recorded pressures in the West and East close-coupled 

accumulators and the simulated pressures at the 4th stages of the West and East 

servovalves. The simulation model is able to capture the average pressure drop 

observed during the test. Notice that the amplitude of pressure oscillations increase at 

instants where high flow is required to reproduce high amplitude motions. 

Figure 9.27 shows the power spectrum estimations of the actual feedback (i.e., 

recorded feedback) and the simulated feedback accelerations. Comparison of the 

power spectra of the feedback signals show that the frequency content of the actual 

and simulated feedback acceleration signals match well. Discrepancies are observed 

mainly at frequencies higher than ~3.0 Hz, and mainly around the oil-column 

frequency of the system at ~11.0 Hz. In general, the simulation model overshoots 

slightly the frequencies above 3.0 Hz. 

Figure 9.28 and Figure 9.29 show the comparison of recorded and simulated 

table responses when the command is Input Q2. All the recorded and simulated 

responses match very well including the average pressure drops at the 4th stages of the 

servovalves (except the high pressure oscillations which seem to have no effect on the 

platen responses). 
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9.7.2.3. Simulations with Linear Vs. Nonlinear Servovalve Models 

Based on the test-simulation correlation study presented above, it can be said 

that the current simulation model is able to capture the main dynamics and 

nonlinearities of the actual table under harmonic and earthquake inputs. Harmonic 

inputs are especially useful in pointing out some of the sources of signal distortions 

observed in the system. Since they contain only one frequency, any multiple of the 

fundamental frequency observed in the reproduced signal will be due to a source of 

nonlinearity. For instance, distortions in the acceleration feedback shown in Figure 

9.23(a) are due to the odd harmonics of the fundamental frequency. 

Since the virtual model is mechanics-based, it is possible to determine the 

mechanical sources of signal distortions. One such simulation result is presented in 

Figure 9.30 where two harmonic inputs with the same frequency (4.1 Hz) but two 

different amplitudes (0.591g and 3.547g) are commanded to the virtual model of the 

table. Figure 9.30(a) and Figure 9.30(b) show the cases where the amplitudes of the 

harmonics are 0.591g and 3.547g, respectively. Two different simulations are 

performed: (i) table with linear servovalve model; and (ii) table with nonlinear 

servovalve model. In the linear servovalve model, flow into the actuator chambers is 

computed by multiplying the 4th stage spool displacements by the flow-gain constant. 

The models for the other parts of the shake table are kept exactly the same.  

In the simulations with linear servovalves, distortions seen in the harmonic 

signal reproduction disappears, whereas the distortions are clearly visible in the 

simulation results with nonlinear servovalves. Therefore, it can be said that the 
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mechanical source of this distortion is the nonlinearities in the servovalve model (i.e., 

the pressure drop-flow and the flow gain nonlinearities). It was found that the odd 

harmonics of the fundamental frequency cause this distortion in the feedback signal. 

Figure 9.31(a) and (b) show the comparison of experimental results from a 

harmonic test with 1.0 Hz frequency and 0.769g amplitude (unmodified) with those 

obtained using the virtual model with two different servovalve models: (i) linear 

servovalve; and (ii) nonlinear servovalve models. Figure 9.31(a) shows the simulation 

results obtained using the linear servovalve model. It is clear that with linear 

servovalves, the simulation model is not able to capture the distortions seen in the 

actual acceleration and velocity feedback signals whereas the simulation model with 

nonlinear servovalves captures the distortions seen in the actual feedback signals with 

a reasonable accuracy as shown in Figure 9.31(b). 

9.8. Conclusions 

A mechanics-based virtual model for the NEES-UCSD shake table has been 

presented. The virtual model includes: (i) a virtual replica of the controller; (ii) four 

servovalve models including servovalve spool dynamics and two independent 

servovalve flow nonlinearities; (iii) two single-ended actuators with variable internal 

volumes; (iv) two accumulators modelling the average supply pressure drop at the 4th 

stages of the servovalves; and (v) two-dimensional mechanical subsystem model 

based on a previously identified one-dimensional mechanical subsystem model. Based 

on the results of extensive forced vibration test of the foundation block, the soil-

foundation compliance effects are not included in the virtual model. 
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The virtual shake table model is able to replicate the actual platen responses 

under narrow and broadband inputs with the same TVC gain settings as those on the 

actual system. Moreover, 4th stage spool displacements and actuator driving force 

from the actual tests are reproduced accurately with the simulation model. Pressure 

drops and oscillations observed during the actual tests at the 4th stages of the 

servovalves are captured well in the average sense with the fictitious accumulator 

model. It is observed that the nonlinearities in servovalves are the main source of 

signal distortion in servo-hydraulic shake table systems. The virtual shake table model 

with a linear servovalve is not capable of capturing the distortions seen in the actual 

feedback signals. Both the pressure drop - flow nonlinearity (square-root nonlinearity) 

and the flow gain nonlinearity need to be incorporated in the servovalve model in 

order to match the actual responses of the table with the simulated ones. The virtual 

model developed in this study can be used for offline tuning purposes. Based on the 

test-simulation correlation studies, it is observed that the simulation results are 

sensitive to flow gain nonlinearity therefore experimental determination of these 

curves for each orifice on four servovalves are deemed necessary for using the 

simulation model developed here safely for offline tuning purposes. 
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Table 9.1: Parameter values used for the virtual model. 

Parameter Value 
Controller  

Displacement feedforward gain PFk  0.0 V/V 

Velocity feedforward gain VFk  0.382 V/V 

Acceleration feedforward gain AFk  0.45 V/V 

Jerk feedforward gain JFk  0.00469 V/V 

Proportional gain Pk  1.50 V/V 

Velocity feedback gain Vk  0.0 V/V 

Acceleration feedback gain Ak  0.0 V/V 

Dynamic force gain DPk  -0.145 V/V 

Dynamic force frequency DPω  0.50 V/V 

Master gain Mk  1.0 V/V 

Notch center frequency 0f  11.3 Hz 

Notch bandwidth bw  15.0 Hz 
Notch depth depth  -0.90 V/V 

Servovalves  
Port width 1 1w  203.2 mm 

Port width 2 2w  130.05 mm 

Port width 3 3w  254.0 mm 

Port width 4 4w  152.4 mm 

4th stage maximum spool displacement max
svx  19.05 mm 

Rated flow port 1 1w
ratedQ  8176 lt/min 

Rated flow port 2 2w
ratedQ  5233 lt/min 

Rated flow port 1 3w
ratedQ  10220 lt/min 

Rated flow port 1 4w
ratedQ  6540 lt/min 

Maximum drive voltage maxV  10 Volts 
Actuators  

Maximum piston displacement max
px  0.75 m 

Internal volume of chamber 1 10V  0.152 m3 

Internal volume of chamber 2 20V  0.097 m3 

Piston cross-sectional area 1A  0.2027 m2 

Piston cross-sectional area 2A  0.1297 m2 
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Table 9.1 (Contd.): Parameter values used for the virtual model. 

Parameter Value 
Hydraulic Supply System  

Nominal supply pressure SP  21.0 MPa 

Return pressure RP  0.35 MPa 

Effective pump flow to each actuators pumpQ  2274 lt/min 

West and East fictitious accumulator bottle volume bottleV  0.7571m3 

Accumulators’ pre-charge pressure preP  19.8 MPa 
Adiabatic gas constant γ  1.8 
Effective bulk modulus eβ  0.82 Gpa 

Mechanical Subsystem  
Effective platen mass eM  144,000 kg 

Effective horizontal stiffness eK  1.266 MN/m 

Effective viscous damping eC  44.6 kN(s/m)0.5 

Effective Coulomb friction coefficient eµ  0.39% 
Dissipative force constant α  0.5 
Effective Coulomb friction forces on each bearing eiFµ  8.9 kN 

Constant vertical hold-down force ( 1)HD
zF , ( 2)HD

zF  2085 kN 

Vertical bearings’ oil column length vbL  12.7 mm 

Vertical bearings’ effective bearing areas 2 vbA×  2 0.519× m2 

Vertical bearings’ spring constant vbK  67.02 GPa 
Platen Dimensions  

Gh  0.87 m 

xe  0.0 m 
a  6.13 m 

va  4.88 m 

ha  4.92 m 

ac  1.27 m 

vc  1.21 m 

hc  2.21 m 

al  6.15 m 
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Figure 9.1: (a) 3D rendering of the NEES-UCSD shake table; (b) schematics of the 

overall hydraulic, mechanical, and electronic components. 
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(b) 
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Figure 9.3: Bode plot comparison of the transfer functions of the real-time TVC and 

its Simulink implementation. 
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Figure 9.4: Four-stage valves similar to the ones used on LHPOST (Courtesy of MTS 

Systems Corporations, MN, USA). 
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Figure 9.5: Schematics of the inner and outer control loops of LHPOST servovalve 

and actuator. 
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Figure 9.6: Bode plot comparisons of the ARMAX models and non-parametric 

transfer functions for the 4th stage spool dynamics estimated using a WN input (during 

the tests main hydraulics was off). 



 381

 

15 15.1 15.2 15.3 15.4 15.5
-0.2

-0.1

0

0.1

0.2

0.3

Time [sec]

D
is

pl
ac

em
en

t [
V

]

Cmd
Fbk
Sim

 

15 15.1 15.2 15.3 15.4 15.5
-0.3

-0.2

-0.1

0

0.1

0.2

Time [sec]

D
is

pl
ac

em
en

t [
V

]

Cmd
Fbk
Sim

 
Figure 9.7: Time history comparison between simulated feedback displacement using 

the estimated parametric models and the recorded feedback displacement from a WN 

input (during the tests main hydraulics was off). 
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Figure 9.8: Sketch of the 4th stages of the WA and WB servovalves on the West single 

ended actuator: (a) extent direction; (b) retract direction. Also shown load-flow 

orifices 1-2 and 3-4 associated with extent and retract directions, respectively. 

(a) 

(b) 
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Figure 9.9: Port windows for one of the servovalves of LHPOST and active port areas 

(1, 2, 3, and 4) with associated 4th stage spool motions. 
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Figure 9.10: Normalized table responses from a harmonic test with 4.1 Hz frequency 

and 2.364g amplitude and 4th stage servovalve spool opening-closing sequence and 

corresponding flow paths. 



 385

 
Figure 9.11: Servovalve’s nonlinear flow curves used to model the nonlinear relation 

between flow vs. spool opening. This model is used for all four servovalves on the 

system. 
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Figure 9.12: (a) Simulink model of the WA servovalve; (b) implementation details of 

Pressure Drop – Flow Nonlinearity Orifice 1 block. 
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Figure 9.13: Sketch of a snapshot of a single-ended actuator. 
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Figure 9.14: Simulink model of the West single-ended actuator. 
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Figure 9.15: Platen accelerations and pressure recordings from the accumulator on the 

West actuator: (a) Sylmar earthquake test; (b) harmonic test with 1.0 Hz frequency 

and 0.577g amplitude.  
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Figure 9.16: Sketch of a fictitious accumulator at two limit states: oil volume reaches 

to (i) its maximum level and (ii) its minimum level inside the accumulator tank. 
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Figure 9.17: Simulink implementation of the fictitious accumulator model on the West 

actuator. 
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Figure 9.18: (a) Previously identified conceptual mechanical subsystem; (b) 2D 

mechanical subsystem with rigid reaction block and surrounding soil. 
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(b) 
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Figure 9.19: Simulink implementation of the 2D mechanical subsystem of LHPOST. 
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Figure 9.21: 4.1 Hz harmonic with 0.591g amplitude: comparisons of simulated and 

recorded (a) platen acceleration, velocity, and displacement; and (b) 4th stage spool 

displacements. 
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Figure 9.22: 4.1 Hz harmonic with 0.591g amplitude: comparisons of simulated and 

recorded (a) actuator driving force; and  (b) closed coupled accumulator pressures. 
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Figure 9.23: 4.1 Hz harmonic with 3.547g amplitude: comparisons of simulated and 

recorded (a) platen acceleration, velocity, and displacement; and (b) 4th stage spool 

displacements. 
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Figure 9.24: 4.1 Hz harmonic with 3.547g amplitude: comparisons of simulated and 

recorded (a) actuator driving force; and (b) closed coupled accumulator pressures. 
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Figure 9.25: Sylmar record: comparisons of simulated and recorded (a) platen 

acceleration, velocity, and displacement; and (b) 4th stage spool displacements. 
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Figure 9.26: Sylmar record: comparisons of simulated and recorded (a) actuator 

driving force; and (b) closed-coupled accumulator pressures. 
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Figure 9.27: Comparison of power spectrum estimations of recorded and simulated 

acceleration feedback signals from Sylmar record. 
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Figure 9.28: El Centro 300% record: comparisons of simulated and recorded (a) platen 

acceleration, velocity, and displacement; and (b) 4th stage spool displacements. 
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Figure 9.29: El Centro 300% record: comparisons of simulated and recorded (a) 

actuator driving force; and (b) closed coupled accumulator pressures. 
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Figure 9.30: Shake table virtual model with linear and nonlinear servovalve models. 

Command signal is a harmonic signal with 4.1 Hz frequency and (a) 0.591g; and (b) 

3.547g amplitudes. 
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Figure 9.31: Comparison of the recorded platen acceleration, velocity, and 

displacement responses from an harmonic test with 1.0 Hz frequency with 0.769g 

amplitude with those of simulation responses using: (a) linear servovalve model; and 

(b) nonlinear servovalve model. 

 

(a) 
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CHAPTER 10  

COMPREHENSIVE MECHANICS-BASED VIRTUAL 
MODEL OF THE NEES-UCSD SHAKE TABLE (LOADED 

TABLE CONDITION) 

10.1. Introduction 

In this section of the study, the previously developed mechanics-based virtual 

model will be extended in order to incorporate linear/nonlinear specimen effects. The 

mechanics-based virtual shake table model will include the virtual replica of the 

controller, four servovalve models including servovalve spool dynamics and two 

independent servovalve flow nonlinearities, two single-ended actuators with variable 

internal volumes, two accumulators modeling the average supply pressure drop, two-

dimensional mechanical subsystem model extended from the previously identified 

one-dimensional mechanical subsystem model, and finally linear/nonlinear specimen 

models. 

10.2. A Tool Developed for Linking Simulink® with OpenSees 

In this section, the details of a tool developed which combines the simulation 

capabilities of Matlab-Simulink® and OpenSees (Open System for Earthquake 
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Engineering Simulation) will be given. The tool will be used to investigate shake table 

linear/nonlinear specimen interaction problem.  

Simulink provides an excellent platform to model entire shake table systems 

with linear structural systems with few degrees of freedom mounted on the platen. 

Since shake tables, in general, are used to test specimens under going large inertial 

forces, tested specimens are almost always forced to go into their nonlinear regimes. 

In order to investigate shake table - nonlinear specimen interaction problem, the 

simulation capabilities of Simulink has to be extended. 

OpenSees and Simulink are both large software frameworks. Directly linking 

and compiling them together would require huge amount of effort if not totally 

impossible. One way to achieve this complicated task is to call OpenSees from 

Simulink at every time step, let OpenSees perform a one-step analysis and send the 

necessary results back to Simulink, save (e.g., export) the current states of the 

structural model in a file (e.g., database), turn itself off, and run itself again when 

Simulink needs it, retrieve the current states from the file (i.e., import the states from 

the database), and perform the next time step analysis. This importing-exporting 

process would continue until the end of the entire simulation. As it can be anticipated, 

“linking” OpenSees and Simulink this way would be inefficient due to the necessity of 

saving and retrieving the current states of a structural model at every time step from a 

file. The efficient communication between OpenSees and Simulink is a crucial 

problem for the entire simulation tool (i.e., Simulink and OpenSees) to solve large 

nonlinear problems. 
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An efficient but simple way to achieve this integration is to make Simulink the 

simulation coordinator by enabling it to call the FEA software whenever it is 

necessary while the FEA software and the structural model are still in the memory, in 

other words by letting OpenSees to be persistent in the memory so that the 

communication between Simulink and OpenSees becomes efficient (easily accessible).  

10.3. Integration of OpenSees into Matlab-Simulink by Client-Server 

Technique 

In the Client-Server (CS) technique, the finite element analysis (FEA) software 

OpenSees is set as a server and Simulink as a client. Setting OpenSees as a server 

enables OpenSees and the structural model to be persistent in the memory, and 

therefore the client (Simulink) can connect to the server and request from server to 

execute OpenSees analysis commands and retrieves the necessary structural responses 

in order to incorporate their effects into the simulation. The communication between 

the client and the server is enabled through the standard Internet protocol TCP/IP. 

Note that the model of the table and the model of the structure mounted on the table 

are in close loop.  

OpenSees is an open source FEA software used for modeling structural 

systems and simulating their earthquake responses (McKenna et al., 2000). OpenSees’ 

interface is based on a command-driven scripting language Tool Command Language 

(TCL) which allows OpenSees users to create more-versatile model and input files 

(Welch, 2000).  Due to the flexibility provided by TCL, OpenSees does not need to be 

further programmed to act as server, therefore it remains intact. Instead a set of TCL 
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functions are used to achieve the communication between the server and the client 

through a simple TCL network communication channel (or socket) based on TCP 

network protocol. The client includes few short TCL commands.  

The integration using CS technique is schematically described in Figure 10.1. 

At the server side, OpenSees creates the model in the memory. Then it stops and waits 

for commands to arrive from the client (Simulink) which will drive further actions. 

Once OpenSees receives commands and/or inputs (e.g., platen accelerations) for 

specific actions from the client, it performs the requested analysis and sends the 

required structural responses back to the client.  For shake table application, these 

responses are base shear and overturning moment (e.g., base reaction forces). At the 

client side, at every time step an algorithm in Simulink will ask OpenSees to run an 

analysis with current platen accelerations as inputs. Then it will receive structural 

responses (e.g., resisting forces) from OpenSees and incorporates these responses to 

advance the simulation. To perform receiving action from an outside software (in this 

case OpenSees), a user-defined function in Simulink written in C++ is linked and 

compiled with a client written also in C++. User-defined functions in Simulink are 

called the S-functions. The client is a C++ object which persists in the memory 

therefore holding the connection with the server continuously and handling the 

communication with it. 

Server Side. On the server side, the following TCL scripts are used to create 

the server 

source model.tcl 
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socket -server accept 7200 

vwait forever 

where model.tcl is the finite element (FE) model of the specimen on the table, TCL 

command source will run the model.tcl  to set up the model and to perform initial 

analysis if necessary (e.g., gravity loads). The second command socket creates the 

server socket with the port number 7200 (it can be any port number) and a callback 

procedure accept  to execute commands whenever the client connects to this server 

socket. The third command vwait sets the server waiting for requests from the client. 

The callback procedure accept will accept commands from the client to perform time 

history analyses, get the responses from FE analysis, and send these responses back to 

the client through the same socket. Since the model is persistent in the memory, the 

procedure accept can visit any variable in the FE model directly from the memory and 

can perform certain actions on them and send them back to the client. More 

information on the TCL commands can be found in the literature (Welch, 2000). 

Client Side. The client is a persistent C++ object called OpenSeesHandler 

which is linked to the user-defined S-function OpenSimConn in Simulink. To take 

advantage of TCL’s library (e.g., TCP socket), OpenSimConn is also linked with it. 

For OpenSees to perform certain actions, within OpenSeesHandler necessary TCL 

commands are created and then are sent to the server. Detailed discussion about 

writing C++ S-functions in Simulink can be found in the literature (Dabney and 

Harman, 2004). 
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At the very beginning of the entire analysis, OpenSeesHandler is created inside 

the S-function. It will run the following TCL commands in its constructor function in 

order to set up and hold the connection with the server: 

set s [socket localhost 7200]  

fconfigure $s -buffering none  

At every time step, Simulink will operate OpenSeesHandler client by calling the S-

function, and it will form and run the following commands 

puts $s "tryOpenSeesOneStep  $currentTime  $accel_i" 

gets $s 

where puts $s will pass the command to the server side. The command 

“tryOpenSeesOneStep” is a user defined macro written in TCL on the server side to 

run OpenSees at the time currentTime which is controlled by the client Simulink. 

Parameters $accel_i are the platen accelerations with respect to a generalized 

coordinates. In this version of the software longitudinal, vertical, and rocking 

accelerations are passed from Simulink to OpenSees. The TCL command “gets $s” 

gets the response from the server and saves them into variable “s” which will then be 

incorporated into simulation by Simulink to advance (continue) the simulation in time. 

Advantages of the CS technique in general are as follows: (i) It is efficient 

and flexible. The users are allowed to update the FE model or loading parameters at 

any time step. The FE model and its state variables in the server side persist in the 

memory, therefore the server allows all state variables to be visited and updated by the 

client at any time step. Furthermore with commands like tryOneStep, 
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revertToLastStep, and commitOneStep, FE analysis software is able to work together 

with implicit (i.e., iterative type) as well as explicit (e.g., Runge-Kutta) solvers 

developed for solving initial value problems. Data transfer between the client and 

server can be implemented using TCP/IP or other protocols. The size of the data is 

usually very small and the speed and quality of this transfer are excellent; (ii) it is 

robust. The connection between the client and server is set up only once at the very 

beginning of the analysis and will be held at all time. This saves tremendous amount 

of time (20 times faster than exporting-importing method). Once connection is set up, 

a reliable communication method between the client and the server is established due 

to robustness of the Internet protocol; (iii) it is easy to program and maintain. In the 

client side a cheap component can be easily programmed and integrated into any 

higher-level software platforms (in this case Simulink). The client C++ object 

OpenSeesHandler is integrated into Simulink with very little programming work; 

therefore it is easy to change and maintain the integration software. 

10.4. Simulink® Block Diagram Semantics  

A Simulink block diagram model is a graphical representation of a 

mathematical model of a dynamic system. A mathematical model of a dynamic system 

is described by a set of equations. A classical block diagram model of a dynamic 

system graphically consists of blocks and lines (signals). A block within a block 

diagram defines a dynamic system itself. The relationships between each elementary 

dynamic system in a block diagram are illustrated by the use of signals connecting the 

blocks. Collectively the blocks and lines in a block diagram describe an overall 
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dynamic system and are called the “time-based block diagram”. Simulink block 

diagrams define time-based relationships between signals and state variables. The 

solution of a block diagram is obtained by evaluating these relationships over time. 

Each evaluation of these relationships is referred to as a time step.  

As mentioned above, the relationships between signals and state variables are 

defined by a set of equations represented by blocks. Each block consists of a set of 

equations (block methods). These equations define a relationship between the input 

signals, output signals, and the state variables. Simulink® generates internal “systems” 

that are collections of block methods (equations) that are evaluated together. The 

semantics of time-based block diagrams does not require creation of these systems. 

Simulink creates these internal systems as a means to manage the execution of the 

model (Mathworks, 2008). 

Each block within a Simulink block diagram represents multiple equations. 

These equations are represented as block methods within Simulink. These block 

methods are evaluated (executed) during the execution of a block diagram. The 

evaluation of these block methods is performed within a simulation loop, where each 

cycle through the simulation loop represents evaluation of the block diagram at a 

given point in time. Block method types relevant to this discussion are “Outputs” and 

“Derivative” methods. Outputs method computes the outputs of a block given its input 

at the current time step and its states at the previous time step. Derivatives method 

computes the derivatives of the block’s continuous states at the current time step, 

given the block’s inputs and the values of the states at the previous time step. 



 417

Typically the current values of some system outputs are functions of the 

previous values of temporal variables. Such variables are called states. Computing a 

model’s outputs from a block diagram hence entails saving the value of states at the 

current time step for use in computing the outputs at a subsequent time step. There are 

two types of states in Simulink: discrete and continuous. A continuous state changes 

continuously. A discrete state is an approximation of a continuous state where the state 

is updated (recomputed) using finite intervals. The virtual model of the shake table is 

entirely modeled using continuous blocks. Therefore more on computing continuous 

states in Simulink will be given below. 

Computing a continuous state entails knowing its rate of change or derivative. 

Since the rate of change of a continuous state typically itself changes continuously, 

computing the value of a continuous state at the current time step requires integration 

of its derivative from the start of a simulation. Thus modeling a continuous state 

entails representing the operation of integration and the process of computing the 

state’s derivative at each point in time. Simulink block diagrams use Integrator blocks 

to indicate integration and a chain of blocks connected to an integrator block’s input to 

represent the method for computing the state’s derivative. In general, analytical 

methods do not exist for integrating the states of real-world dynamic systems 

represented by ordinary differential equations (ODEs).  Therefore, integrating 

continuous states requires the use of numerical methods called ODE solvers 

(Mathworks, 2008). 
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Simulink simulates a dynamic system by computing its states at successive 

time steps using information provided by the model. The process of computing the 

successive states of a system from its model is known as solving the model. The 

continuous solvers use numerical integration to compute a model’s continuous states 

at the current time step from the states at previous time steps and the state derivatives. 

Some continuous solvers (e.g., Runge-Kutta, Dormand-Prince etc.) subdivide the 

simulation time span into major and minor time steps where a minor time step 

represents a subdivision of the major time step. The solver uses results at the minor 

time steps to improve the accuracy of the result at the major time step. While solving a 

model, the Simulink engine invokes the continuous solver specified by the model. 

Depending on the solver, the solver either in turn calls the Derivative method of the 

model once or enters a sub-cycle of minor time steps where the solver repeatedly calls 

the model’s Outputs methods and Derivatives methods (in this order) to compute the 

model’s outputs and derivatives at successive intervals within the major time step. 

10.4.1. 4th Order Runge-Kutta 

The 4th order Runge-Kutta (RK) is used to advance in time the model of the 

shake table in Simulink. Runge-Kutta methods are often called as single-step or 

explicit methods due to requiring only the solution at the previous time step to 

advance the simulation in time. Here, a brief introduction on the 4th order Runge-

Kutta (RK4) will be given; more on the subject can be found in the literature (Bewley, 

2008; Lee, 2004; Moler, 2004). 

Consider a first order, possibly nonlinear ordinary differential equation 
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 0 0( , ),    ( )y f t y y t y= =  (10.1) 

where ( )y t  is the response (state) to be determined for some 0t > , ( , )f t y  is a 

function of time t  and the solution itself y , and 0y  is the initial conditions. The 

fundamental Theorem of Calculus gives an important connection between differential 

equations and integrals 

 ( ) ( ) ( ( ), )
t t

t

y t t y t f y s s ds
+∆

+ ∆ = + ∫  (10.2) 

Numerical quadrature can not be used directly to compute (10.2) since ( )y s  is 

unknown so the integrand can not be evaluated. Nevertheless, the basic idea is to 

choose a sequence of values of t∆  so that (10.2) can be used to generate numerical 

solution (approximation) ( ),  n=0,1,n ny y t≅ … . 

The 4th order Runge-Kutta method computes (or approximates) the integral 

given in (10.2) using four function evaluations per time step 
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There are four stages in RK4. Each stage computes a slope, ik , by evaluating ( , )f t y  

for a particular value of t  and a value of y  obtained by taking linear combinations of 

the previous slopes (e.g. 12n
ty k∆

+  etc). 1 2 3 4,  ,  ,  and k k k k  are the slopes (or 
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derivatives) at time steps ,  ,
2n n
tt t ∆

+  ,  and 
2n n
tt t t∆

+ + ∆ , respectively. Notice that 

y ’s (outputs or states) calculated at minor time steps (i.e., 
2n
tt ∆

+ , 

,  and 
2n n
tt t t∆

+ + ∆ ) are necessary to evaluate the slopes. Geometrical interpretation 

of RK4 is shown in Figure 10.2. 

Using (10.3), numerical solution of (10.1) at time 1n +  can be found 

 1 1 1 2 3 4( ) ( 2 2 )
6n n n
ty t y y k k k k+ +

∆
≅ = + + + +  (10.4) 

where ny  is the last committed state (updated state) stored in the memory at time n . 

By invoking RK4 solver, Simulink computes the value of a continuous state 

(e.g., 1ny +  output of a Simulink Integral block) at the current time step by calling first 

the model Outputs methods to calculate the outputs of each block in the order 

specified by the Outputs method execution list; these are the outputs calculated at each 

minor time steps. Next by calling the Derivatives methods of each integral block or 

other blocks containing continuous states (e.g., Transfer Function block), it calculates 

the derivatives (slopes) given in (10.3); for each slopes given in (10.3) the solver 

repeatedly calls the Outputs and Derivatives methods. Once all the derivatives are 

calculated, Simulink finds the final results of the blocks’ states using (10.4) at the 

major time step. Notice that the major time step for one step is the last minor time step 

for the previous step. Values found by (10.4) are used to update (commit) the states of 

each integral block which will in turn be stored in the memory in order to advance the 

simulation for the next time step. 
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10.4.2. OpenSees and Simulink® RK4 Solver 

Simulink uses RK4 to solve (simulate) the shake table model. OpenSees is 

integrated into this model therefore it must take the same steps that the ODE solver 

takes to advance the simulation. In other words, OpenSees needs to act as a “built-in” 

Simulink block (e.g., Gain, Constant, Math Function blocks etc.) acting flawlessly 

with the Simulink software. More specifically, since OpenSees is a part of the whole 

simulation model, it has to provide the necessary inputs (e.g., reaction forces at the 

base of the structure) to Simulink while the RK4 solver calls the Outputs and 

Derivatives methods at successive intervals within the major time step in order to 

calculate the models’ continuous states (e.g., platen acceleration, velocity, 

displacement etc.). While providing these intermediate results to Simulink in minor 

time steps, the states of the structural model in OpenSees must not be updated 

(committed) since the final approximation of the platen acceleration at the current time 

has not been computed yet. OpenSees has to wait until the final values of the models’ 

states are computed and only then has to update the states of the structural model after 

performing one final analysis using final approximation of the platen acceleration. 

Reaction forces computed during the final analysis are returned to Simulink to be used 

for updating the models’ states. While the state updating stage, OpenSees waits for 

commands to arrive from Simulink which would advance the simulation to the next 

time step. 

It is clear that Simulink needs to control OpenSees when to update and when 

not to update the states of the structural model. To do this, minor and major time steps 
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have to be tracked. This is done by using Simulink macros called 

ssIsMinorTimeStep(S) and ssIsMajorTimeStep(S). These macros are used inside the S-

Function OpenSimConn which works in conjunction with OpenSeesHandler. Once the 

simulation stages are known (i.e., minor and major time steps) OpenSees can be 

controlled based on this information. To control the committing sequence of 

OpenSees, two special commands have been created and embedded in OpenSees 

software: tryOneStep and commitOneStep. With tryOneStep, OpenSees performs 

intermediate analyses needed for RK4 method (Eq. (10.3)) and returns Simulink the 

base reaction forces by using the intermediate platen accelerations but does not update 

the states of the structural model. With commitOneStep, OpenSees performs one last 

analysis using the true platen accelerations and this time updates the states of the 

structural model. Note that the simulation time of OpenSees is also controlled by 

Simulink using the Simulink macro ssGetT(S). 

Simulink-OpenSees integration framework outlined above is checked by 

comparing the analytical transfer function between the reference input and actuator 

force of a linear shake table model with single-degree-of-freedom and multi-degree-

of-freedom linear shear-type structures on its platen with the numerically estimated 

counterpart of the same shake table model where the same linear specimens are 

modeled with OpenSees. The match between the analytically and numerically 

obtained transfer functions is excellent. This check targets specifically the client-

server framework set between OpenSees and Simulink, and OpenSees’s ability to 

work with the continuous solver used in Simulink. 
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10.5. Incorporating Specimen Effects into the Mechanics-based Virtual Model 

of the Entire Shake Table Model 

Models for the other constitutive parts of the mechanics-based shaking table 

model for the bare table conditions (i.e., table without specimen) have been presented 

in Chapter 10. Therefore, here only the model related to the specimen will be given. 

Figure 10.3 shows the two-dimensional mechanical subsystem of LHPOST 

including a generic two-dimensional N-story one-bay specimen mounted on its platen. 

Specimen will be modeled using the finite element software OpenSees and it can be a 

linear or nonlinear model. OpenSees model of the specimen will be linked to the rest 

of the shake table model in Simulink using the framework presented above. The vector 

iu  is the relative displacement vector of the ith degree of freedom with respect to the 

platen and has the form: 

 ( )T
i x z y i

u u uθ=u  (10.5) 

In Figure 10.3, speh  and spea  are the story height and half the bay width of the 

specimen, respectively. Notice that the specimen is centered around O. Total 

displacement vector of the specimen tu  can be written as follows 

 t O= +u u αu  (10.6) 

whereα  is the ( )3 3N ×  influence matrix composed of only geometric quantities,  u  is 

the ( )3 1N ×  relative displacement vector of the specimen, and Ou  is the ( )3 1×  

displacement vector of the platen at point O. The influence matrix α  has the following 

form 
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 [ ]1
T

N=α α α…  (10.7) 

where iα  is the ( )3 3×  transformation matrix which transforms the platen motion at 

point O to the rigid-body motion at the specimen degree-of-freedom i.  

Effective forces acting on the specimen degrees-of-freedom due to the platen 

acceleration vector Ou  can be calculated as follows 

 0( )eff spet = −F M αu  (10.8) 

where speM  is the mass matrix of the specimen, and 0u  is the platen acceleration 

vector. Once the specimen responses are computed, the total reaction force acting on 

the platen at point O due to the specimen can be calculated using the absolute 

specimen accelerations 

 0( ) T T
spe spe spet = +F α M αu α M u  (10.9) 

The first term in (10.9) is the reaction forces at the base due to the rigid-body-motion 

of the specimen, and the second term is the reaction forces at the base due to flexibility 

of the specimen. 

Equation of motion of the mechanical subsystem with respect to point O 

including the specimen effects can be written as follows 

 { }1( ) ( ) ( ) ( ) ( ) ( )O O act spr damp coul spet t t t t t−= − − − −u Μ F F F F F  (10.10) 

where OΜ  is the mass matrix of the platen. 

Simulink implementation of (10.10) is shown in Figure 10.4 where the 

connection between Simulink and OpenSees is represented by the double-ended 

dashed arrow. Equations (10.8) and (10.9) are computed at every time step by 
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getTotalResistingForce command which is a user defined macro in the server side 

written in TCL. 

The complete virtual model of the NEES-UCSD shake table is shown in Figure 

10.5 in which the 2D mechanical subsystem model including the specimen is modeled 

in OpenSees and linked to the rest of the virtual model using the client-server 

technique. Simulation work presented in the next section uses this final model of the 

table where the simulation parameters are the same as those used for the bare table 

model (Chapter 10). 

10.6. Application Example: Nonlinear Shear-frames 

In order to investigate the table-nonlinear specimen interaction problem, three 

different shear-frames are considered. Structures are chosen simple enough to allow 

comparisons with the analytical results for the linear shake table / linear specimen 

interaction problem yet realistic enough to gain insight into real test situations. 

Shear-frames with three, five, and seven stories used for application examples 

are shown in Figure 10.6. Beams in all three frames are considered rigid to enforce a 

typical shear-building behavior; therefore only one horizontal degree-of-freedom is 

assigned to each floor. Columns are made of steel with a Young’s modulus of 

52.1 10× MPa. Story heights of all three frames are 2.75speh =  m. Floor masses are 

assumed to be lumped at floor levels and their values are taken from a full-scale 

specimen tested on the shake table in order to be representative of specimens that can 

be tested on the real table. The parameters 3
i
stryk , 5

i
stryk , and 7

i
stryk  are the initial story 
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stiffnesses of 3-story, 5-story, and 7-story frames, respectively. Physical 

characteristics of the shear-frames are summarized in Table 10.1. Natural frequencies, 

natural periods, effective modal mass ratios for the undamped structures are given in 

Table 10.2. Viscous damping in the form of Rayleigh damping is assumed with 

damping ratio 0.03ξ =  for the first and second modes of vibration. 

The story shear force – interstory drift relation for the columns are modeled 

using Menegotto-Pinto (M-P) material constitutive model (Filippou et al., 1983). M-P 

model is used to describe the inelastic behavior of structural steel, and can be used for 

macroscopic modeling of hysteretic behavior of structures or substructures with an 

appropriate choice of modeling parameters (Barbato and Conte, 2006). The M-P 

material model available in OpenSees material library requires seven model 

parameters to be defined. These model parameters are initial yield strength 0yf ; 

parameters 0R , 1a , 2a  for controlling the transition from elastic to plastic branches of 

hysteresis loops where  1a  and 2a  are experimentally determined; 3a  and 4a  are 

experimentally determined isotropic hardening parameters; and the post-yield stiffness 

to initial yield stiffness ratio b .  Typical values used for the common structural steel 

are 0 20.0R = , 1 18.5a = , 2 0.15a = , 3 4 0.0a a= = , and  0.10b = . Initial yield strength 

for each column element is determined from elastic design forces obtained from the 

design spectrum constructed for the Downtown Los Angeles area with 0.05ξ =  

(Panagiotou et al., 2008). Peak modal story shear forces are found using square-root-

of-sum-of-squares (SRSS) modal combination rule considering the first two modes. 

Elastic story shear forces obtained this way are reduced by force reduction factors of 
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2 2.0R = and 4 4.0R =  and assigned to each column element. Elastic story shear 

forces and reduced story yield strengths for the three shear-frames are given in Table 

10.3 

10.6.1. Simulations Results 

In order investigate the table-nonlinear specimen interaction problem, 

simulation work is carried out using the virtual shake table model using two 

earthquake records: (i) 360 degree component of the 1994 Northridge earthquake 

record at Sylmar station modified with OLI; and (ii) the north-south component of 

1940 Imperial Valley earthquake record at El Centro station scaled to 300%. The 

simulation model uses the same controller setting as the on the real system and its 

response is matched as close as possible to the real system (Chapter 10) for both 

earthquake records. Simulations are carried out using the bare table model as well as 

the table with specimens which have dynamic characteristics specified in the previous 

section. During simulations, bare table settings are kept fixed and only the specimens 

mounted on the table are changed in order to focus solely on the effects of specimens’ 

responses on the table response. 

Figure 10.7(a), (b), and (c) shows the 1st floor inter-story drift vs. 1st floor 

shear force relationships for the 3, 5, and 7-story shear-frames, respectively, under the 

Sylmar ground acceleration record (original record). It shows that all three specimens 

go into nonlinear regimes with R2 as well as R4 yield strengths. 

Figure 10.8 through Figure 10.10 show the time history plots of: (a) feedback 

platen accelerations; (b) actuator driving forces; and (c) (actuator driving force)-(total 
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specimen shear force) = net platen forces simulated using the Sylmar record when the 

table has no specimen (Bare), and when there are specimens of 3, 5, and 7 stories on it 

with different yield strengths (i.e., R1 (linear), R2, and R4). It is apparent from the 

acceleration time history plots that the response of the table with specimens is 

different from the response of the table without specimen. Actuator driving force plots 

show that forces that the actuators exert on the platen are considerably different when 

there are specimens on the table and when there is no specimen on it. This shows 

clearly the interaction between the table and the specimen. As the yield strengths of 

the specimens get smaller (R4<R2<R1), interaction level between the specimen and 

the table reduces. The more the specimen exerts force on the table, the harder the 

actuator has to work in order to overcome the forces that the specimen exerts on it. For 

instance, in the case of table with the linear 3 story shear-frame (R1), actuator force is 

very different compare to the bare table case (Figure 10.8(b)). Also notice that, for the 

nonlinear specimen case with yield strength of R4, the actuator force is close to the 

actuator force under the bare table case since the resisting forces that the specimen can 

exert on the table is reduced (capped) due to the nonlinear behavior of the specimen. 

Net force (i.e., actuator force – specimen resisting shear force) that the actuator exerts 

on the platen (Figure 10.8(c), Figure 10.9(c), and Figure 10.10(c)) differs from the 

actuator force when there is no specimen on the platen (i.e., bare table). Based on the 

time history plots, it can be said that the interaction problem of table with specimen is 

complicated and it is a function of dynamic characteristics and nonlinearity level of 
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the specimen, as well as the characteristics of the acceleration record reproduced on 

the table. 

In order to gain additional insight on the interaction problem, transfer functions 

for a fully linear system (i.e., linear table-linear specimens) will be considered. For 

more details on the linear table – linear specimen model refer to Chapter 7. Figure 

10.11(a) and (b) shows the magnitude responses of the analytical table transfer 

function between the reference acceleration as input and the actuator force as output 

( ( )fuddG s ), and of the analytical transfer function between the reference acceleration as 

input and feedback acceleration as output ( ( )auddG s ) with linear specimens with 3, 5, 

and 7 stories. TVC gain settings used are 1.5Pk =  V/V, 0.382VFk =  V/V, 0.35AFk =  

V/V, 0.00469AFk =  V/V, and 0.145DPk = −  V/V. The rest of the gains in TVC are set 

to zero including the notch filter settings. Notch gains are set to zero in order to see the 

interaction effects clearly around the oil-column frequency. The general pattern seen 

in both of the transfer functions is that there are peaks which are followed by troughs. 

These notch-trough pairs occur at the vicinity of the natural frequencies of the linear 

structures (Table 10.2). Peaks (poles) seen in the magnitude response of ( )fuddG s  

coincide with the peaks seen in the magnitude response of ( )auddG s  whereas the 

troughs (zeros) in both of the transfer functions occur at different frequencies. A closer 

look at the troughs seen in ( )fuddG s  reveals that frequencies where these troughs occur 

are very close to the frequencies of the combined system of specimen and platen 

which can be estimated using the following expression 
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where ,T if  = frequency of the combined system for the ith mode, ,S if = frequency of 

the ith mode of the specimen, 
,S i

effm = effective mass of the ith mode of the specimen, 

and plm  = mass of the platen. Table overshoots the frequencies below the vicinity of 

the natural frequencies of specimens and undershoots the frequencies above them. 

Also notice that the interaction at the oil column frequency of the system at around 

(~12.0 Hz) for the 5 and 7-story specimens. Based on the observations from the linear 

analysis, it can be said that shake tables exciting lightly damped structures have a 

limited ability to apply forces at the natural frequencies of the combined mechanical 

system. Similar observations have been done by various researchers for actuators 

which are directly attached to the specimens (Dyke et al., 1995; Dimig et al., 1999; 

Zhao et al., 2005). 

Figure 10.12 through Figure 10.14 show estimations of the magnitude and 

phase response of ( )auddG s , and the magnitude response of ( )fuddG s  when the virtual 

model of the table is commanded a band-limited, [0.25 20] Hz, white noise (WN) 

acceleration input with 25%g RMS amplitude and 120 seconds long. The table is 

loaded with 3, 5, and 7-story linear (R1) and 3, 5, and 7-story nonlinear specimens 

with corresponding R4 yield strengths. RMS amplitude of the WN acceleration is 

chosen relatively high in order for specimens with R4 yield strengths to go into 

nonlinear regimes. Figure 10.12(a) and (b) are the magnitude and phase responses of 
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( )auddG s , and  (c) is the magnitude response of ( )fuddG s  when the table is loaded with 

the 3-story specimen; Figure 10.13(a) and (b) are the magnitude and phase responses 

of ( )auddG s , and  (c) is the magnitude response of ( )fuddG s  when the table is loaded 

with the 5-story specimen; and finally Figure 10.14(a) and (b) are the magnitude and 

phase responses of ( )auddG s , and  (c) is the magnitude response of ( )fuddG s  when the 

table is loaded with the 7-story specimen. It is clear from the magnitude response plots 

of ( )auddG s  and ( )fuddG s  that as the specimen becomes nonlinear the peak and notch 

pairs observed in the linear specimen cases (R1) get smoothened out, implying that the 

interaction between the table and the specimen becomes less severe. It should be noted 

that these simulations are carried out using the same controller settings as the ones 

used for the earthquake simulations (i.e., Sylmar and El Centro records) in Chapter 10. 

Notch filter parameters used for these simulations are 0 11.0f = Hz, 22.0bw = Hz, and 

0.95depth = − . 

Figure 10.15 through Figure 10.17 show the power spectrum density (PSD) 

estimations of the reproduced acceleration time histories of Sylmar record with 3, 5, 

and 7-story linear (R1) and nonlinear (R2 and R4) shear-frames along with the PSDs 

of the corresponding actuator driving forces. Figure 10.15(a) shows the PSD of the 

reproduced acceleration when there is the 3-story specimen on the table. The table 

overshoots (peak at ~2.0 Hz) the frequencies below the vicinity of the 1st natural 

frequency (2.51 Hz) of the specimen in the linear case (R1), whereas it undershoots 

the frequencies above the vicinity of the 1st natural frequency of the linear specimen 
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(trough at ~2.56 Hz). As the specimen gets nonlinear, the table in general undershoots 

the bare table response. Figure 10.15(b) shows the PSD of the actuator driving force; it 

is clear from the figure that although the actuator applies large forces at the vicinity of 

the natural 1st natural frequency of the specimen, it is not able to move the table as 

desired around this frequency. Again as the specimen gets nonlinear, actuator exerts 

smaller forces around the 1st natural frequency of the specimen (i.e., actuator force for 

R2 specimen > actuator force for R4 specimen).  

Figure 10.16(a) shows the PSD of the reproduced acceleration when 5-story 

specimen is mounted on the table. The table slightly overshoots the frequencies below 

the vicinity of the 1st natural frequency (2.15 Hz) of the specimen in the linear case 

(R1), whereas it undershoots the frequencies above the vicinity of the 1st natural 

frequency of the linear specimen (trough at ~2.2 Hz). As the specimen gets nonlinear, 

the table undershoots the bare table response in general. Figure 10.16(b) shows the 

PSD estimation of the actuator driving force; similar observation holds for this case as 

seen in the 3-story specimen case. 

Figure 10.17(a) shows the PSD of the reproduced acceleration when there is 

the 7-story specimen mounted on the table. The table overshoots the frequencies 

below the vicinity of the 1st natural frequency (1.59 Hz) of the specimen in the linear 

case (R1), and it undershoots the frequencies above the vicinity of the 1st natural 

frequency of the linear specimen (trough at ~1.65 Hz). As the specimen gets nonlinear, 

the table undershoots the bare table response in general. Figure 10.17 (b) shows the 

PSD estimation of the actuator driving force; similar observation holds for this case as 
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for the 3 and 5-story specimen cases. Note that for this case, the acceleration record 

has little energy in the vicinity of the 1st natural frequency of the specimen; therefore 

in the overall sense the reproduction of this particular acceleration record with 7-story 

specimen was less challenging than with 3 and 5-story specimens. Figure 10.18 makes 

this observation clearer. It shows the PSD estimations of the error between the bare 

table acceleration response and the table acceleration responses with 3, 5, and 7-story 

specimens with strengths of R1 (linear), R2, and R4. As it is expected, the error in 

acceleration reproduction is clustered around the natural frequencies of the linear 

specimens with decreasing errors as the specimen gets more nonlinear. For this 

particular acceleration record, the largest error occurs with the 5-story specimen, and 

the smallest error occurs with the 7-story specimen. 

Figure 10.19 through Figure 10.21 show the power spectrum density (PSD) 

estimations of the reproduced acceleration time histories of El Centro record with 3, 5, 

and 7-story linear (R1) and nonlinear (R2 and R4) shear-frames along with the PSDs 

of the corresponding actuator driving forces. Similar trends can be seen for the El 

Centro case as for the Sylmar case. Figure 10.22 shows the PSD estimations of the 

error between the bare table acceleration response and the table acceleration responses 

with 3, 5, and 7-story specimens with strengths of R1 (linear), R2, and R4 under the El 

Centro record. In this case, the largest error occurs with the 7-story specimen on the 

table, and the smallest error occurs with the 3-story specimen on the table. 
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10.7. Conclusions 

A mechanics-based virtual model of the NEES-UCSD Shake Table including 

models for: (i) the controller; (ii) four servovalves; (iii) two single-ended actuators; 

(iv) two accumulators; and (v) two-dimensional mechanical subsystem is extended for 

loaded-table conditions. A tool based on a client-server technique is developed in 

order to link Simulink® with the generic finite element analysis software OpenSees. 

With this tool, it is possible to investigate the effects of nonlinear specimens on the 

response of shake tables. 

Shear-frames whit 3, 5, and 7-storeys are used to investigate the table-

nonlinear specimen interaction problem when the columns of the specimens ere 

modeled using the M-P nonlinear material model. Simulation work carried out using 

the shear-frames revealed that: (i) interaction between the specimen and the table is 

more pronounced when the specimen on the table remains linear. As the specimen 

becomes nonlinear the interaction effects are reduced; (ii) actuator driving force time 

history plots show that actuator forces increase significantly when the table is loaded 

with a linear specimen. When a nonlinear specimen is on the table, the actuator forces 

are smaller than in this case of a linear specimen; this is due to reduced specimen 

resisting forces acting on the platen due to specimen’s nonlinear behavior; (iii) table-

specimen interaction takes place at the vicinity of the natural frequency of the 

specimens and shows itself on the magnitude response plots of transfer functions 

between the reference acceleration (input) and actuator force (output), and the 

reference acceleration (input) and feedback acceleration (output) as peak-and-trough 
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pairs. Again, as the specimen becomes nonlinear peak-and-trough pairs get 

smoothened out and becomes less significant; (iv) PSDs of the reproduced 

acceleration time histories show that for the linear specimen case, the table overshoots 

the bare table response at frequencies below the vicinity of the 1st natural frequency 

and undershoots it above that frequency. For the nonlinear specimen cases, the table 

undershoots the table response in general; (v) PSDs of the error between the bare table 

acceleration response and the table acceleration responses with 3, 5, and 7-story 

specimens show that the error is clustered around the natural frequencies of the linear 

specimens with decreasing errors as the specimen gets more nonlinear; (vi) error in 

acceleration reproduction is a function of specimen’s dynamic characteristics as well 

as the input acceleration record. 
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Table 10.1: Characteristics of the shear-frames. 

3-Story shear-frame 

 
Mass  

[kg] 

3
i
stryk  

[MN/m] 

Story height 

[m] 

1st Story 65,000 76.3636 2.75 

2nd Story 59,760 61.0909 2.75 

3rd Story 49,540 61.0909 2.75 

Total 174,300 N/A 8.25 

5-Story shear-frame 

 
Mass  

[kg] 

5
i
stryk  

[MN/m] 

Story height 

[m] 

1st Story  65,000 133.6364 2.75 

2nd Story 59,760 133.6364 2.75 

3rd Story 59,660 114.5455 2.75 

4th Story 59,600 114.5455 2.75 

5th Story 49,540 114.5455 2.75 

Total 293,560 N/A 13.75 
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Table 10.1 (Contd.): Characteristics of the one-bay shear-frames. 

7-Story shear-frame 

 
Mass 

[kg] 

7
i
stryk  

[MN/m] 

Story height 

[m] 

1st Story 65,000 152.7273 2.75 

2nd Story 59,760 152.7273 2.75 

3rd Story 59,660 114.5455 2.75 

4th Story 59,600 114.5455 2.75 

5th Story 59,600 114.5455 2.75 

6th Story 61,060 114.5455 2.75 

7th Story 49,540 114.5455 2.75 

Total 414,220 N/A 19.25 
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Table 10.2: Modal analysis results for the linear elastic undamped one-bay shear-

frames. 

3-Story shear-frame 

Mode # Natural frequency 

[Hz] 

Natural period 

[sec] 

Effective modal mass ratio 

[%] 

1 2.51 0.40 89.00 

2 6.67 0.15 9.57 

3 9.26 0.11 1.43 

5-Story shear-frame 

Mode # Natural frequency 

[Hz] 

Natural period 

[sec] 

Effective modal mass ratio 

[%] 

1 2.15 0.47 86.19 

2 6.05 0.17 10.31 

3 9.40 0.11 2.51 

4 12.12 0.08 0.71 

5 13.64 0.07 0.27 
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Table 10.2 (Contd.): Modal analysis results for the linear elastic undamped one-bay 

shear-frames. 

7-Story shear-frame 

Mode # 
Natural frequency 

[Hz] 

Natural period 

[sec] 

Effective modal mass ratio 

[%] 

1 1.59 0.63 82.76 

2 4.60 0.22 11.06 

3 7.26 0.14 3.89 

4 9.65 0.10 1.28 

5 11.69 0.09 0.46 

6 13.19 0.08 0.22 

7 14.07 0.07 0.34 
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Table 10.3: Elastic and reduced story shear forces for the three shear-frames. 

3-Story shear-frame 

Story # R1 (Linear) 

[kN] 

R2 

[kN] 

R4 

[kN] 

1 2040.2 1020.1 510.0 

2 1602.5 801.3 400.6 

3 844.3 422.2 211.1 

5-Story shear-frame 

Story # R1 (Linear) 

[kN] 

R2 

[kN] 

R4 

[kN] 

1 3332.4 1666.2 833.1 

2 3017.4 1508.7 754.3 

3 2508.2 1254.1 627.0 

4 1788.0 894.0 447.0 

5 869.7 434.8 217.4 
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Table 10.3 (Contd.): Elastic and reduced story shear forces for the three shear-frames. 

7-Story shear-frame 

Story # 
R1 (Linear) 

[kN] 

R2 

[kN] 

R4 

[kN] 

1 4522.9 2261.4 1130.7 

2 4309.7 2154.8 1077.4 

3 3949.8 1974.9 987.4 

4 3413.2 1706.6 853.3 

5 2725.1 1362.6 681.3 

6 1884.6 942.3 471.1 

7 880.3 440.1 220.1 
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Figure 10.1: Simulink and OpenSees integration via client-server technique using 

TCP/IP socket. 
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Figure 10.2: Geometric interpretation of the 4th order Runge-Kutta method. Average 

of four slopes is used to advance (march) ny  to 1ny + . 
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Figure 10.3: Two-dimensional mechanical subsystem model of LHPOST with a 

generic specimen mounted on its platen. 
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Figure 10.4: Simulink implementation of the equation of motion of the mechanical 

subsystem with specimen effects where the latter is modeled within OpenSees using 

the client-server framework. 
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Figure 10.6: Three, five, and seven story shear-frames mounted on the table platen. 
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Figure 10.7: 1st floor inter-story drift vs. 1st floor shear force relationships under 

reproduced Sylmar record: (a) 3-story shear frame; (b) 5-story shear frame; and (c) 7-

story shear frame. 
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Figure 10.8: Simulation results using Sylmar earthquake record reproduced under bare 

table condition and table with 3 story shear-frame modeled linearly (R1), and with M-

P models of yield strengths R2 and R4: (a) acceleration; (b) actuator force; and (c) 

actuator force minus the total specimen shear force. 
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Figure 10.9: Simulation results using Sylmar earthquake record reproduced under bare 

table condition and table with 5 story shear-frame modeled linearly (R1), with M-P 

models of yield strengths R2 and R4: (a) acceleration; (b) actuator force; and (c) 

actuator force minus the total specimen shear force. 
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Figure 10.10: Simulation results using Sylmar earthquake record reproduced under 

bare table condition and table with 7 story shear-frame modeled linearly (R1), with M-

P models of yield strengths R2 and R4: (a) acceleration; (b) actuator force; and (c) 

actuator force minus the total specimen shear force. 
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Figure 10.11: Magnitude responses of analytical transfer functions of the linear table-

linear shear frames with 3, 5, and 7 stories: (a) ( )fuddG s ; and (b) ( )auddG s . 
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Figure 10.12: Numerical transfer function estimations under white noise input with 3-

story linear (R1), and nonlinear shear-frame (R4) models: (a) ( )auddG s ; (b) 

( )auddG s< ; (c) ( )fuddG s . 
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Figure 10.13: Numerical transfer function estimations under white noise input with 5-

story linear (R1), and nonlinear shear-frame (R4) models: (a) ( )auddG s ; (b) 

( )auddG s< ; (c) ( )fuddG s . 
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Figure 10.14: Numerical transfer function estimations under white noise input with 7-

story linear (R1) and nonlinear shear-frame (R4) models: (a) ( )auddG s ; (b) ( )auddG s< ; 

(c) ( )fuddG s . 
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Figure 10.15: Power spectra of reproduced Sylmar acceleration record under bare and 

loaded table conditions with 3-story shear-frame modeled linearly (R1), and with M-P 

model of yield strengths R2 and R4: (a) acceleration; and (b) force feedbacks. 
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Figure 10.16: Power spectra of reproduced Sylmar acceleration record under bare and 

loaded table conditions with 5-story shear-frame modeled linearly (R1), and with M-P 

model of yield strengths R2 and R4: (a) acceleration; and (b) force feedbacks. 
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Figure 10.17: Power spectra of reproduced Sylmar acceleration record under bare and 

loaded table conditions with 7-story shear-frame modeled linearly (R1), and with M-P 

model of yield strengths R2 and R4: (a) acceleration; and (b) force feedbacks. 
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Figure 10.18: Power spectra of the error between reproduced Sylmar acceleration 

record under bare table and loaded table conditions with shear frames modeled 

linearly (R1), and with M-P models of yield strengths R2 and R4: (a) 3-story; (b) 5-

story; and (c) 7-story. 

(a) 

(b) 

(c) 



 464

 

0 1 2 3 4 5 6 7 8 9 10
0

1

2
P

S
D

 F
bk

 A
cc

.
[g

2 /H
z]

0 1 2 3 4 5 6 7 8 9 10
0

5

10
x 10

11

P
S

D
 A

ct
. F

or
ce

[N
2 /H

z]

Frequency Hz

Bare Table
3 Story - R1
3 Story - R2
3 Story - R4

 
Figure 10.19: Power spectra of reproduced El Centro acceleration record under bare 

and loaded table conditions with 3-story shear-frame modeled linearly (R1), and with 

M-P model of yield strengths R2 and R4: (a) acceleration; and (b) force feedbacks. 
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Figure 10.20: Power spectra of reproduced El Centro acceleration record under bare 

and loaded table conditions with 5-story shear-frame modeled linearly (R1), and with 

M-P model of yield strengths R2 and R4: (a) acceleration; and (b) force feedbacks. 
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Figure 10.21: Power spectra of reproduced El Centro acceleration record under bare 

and loaded table conditions with 7-story shear-frame modeled linearly (R1), and with 

M-P model of yield strengths R2 and R4: (a) acceleration; and (b) force feedbacks. 
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Figure 10.22: Power spectra of the error between reproduced El Centro acceleration 

record under bare and loaded table conditions with shear frames modeled linearly 

(R1), and with M-P models of yield strengths R2 and R4: (a) 3-story; (b) 5-story; and 

(c) 7-story. 
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CHAPTER 11 

CONCLUSIONS 

11.1. Summary of Contributions and Major Findings 

A comprehensive mechanics-based virtual model of the large NEES-UCSD 

shake table under bare and loaded table conditions is developed. The model includes 

the virtual replica of the actual controller, four servovalve models accounting for 

servovalve spool dynamics and two independent servovalve flow nonlinearities, two 

single-ended actuators with variable internal chamber volumes, two effective 

accumulators capturing the average fluctuation of the supply pressure at the 4th stage 

of the servovalves, a two-dimensional mechanical subsystem model accounting for the 

effective mass of the platen, the nitrogen-filled hold-down struts, and various viscous 

and Coulomb type dissipative mechanisms, and linear/nonlinear specimens modelled 

using the OpenSees finite element analysis framework. An efficient TCP/IP-based 

client-server technique is developed and implemented to integrate the simulation 

platform OpenSees used for the specimen and the Matlab-Simulink® simulation 

platform used for the rest of the system. 

Results of the forced vibration tests conducted on the foundation block show 

that the deformations of the foundation block and of the surrounding soil are very 
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small. Therefore, they are neglected in the virtual system model which assumes the 

foundation block and the surrounding soil to be rigid. 

A mathematical model for the mechanical components of the NEES-UCSD 

shake table is developed. It is shown that several nonlinear terms arising from the 

significant displacements and rotations of the hold-down struts remain small, and that 

a simplified model including an effective horizontal mass, an effective horizontal 

stiffness due to the pre-charge pressure in the hold-down struts, and dissipative force 

terms composed of classical Coulomb friction and nonlinear viscous damping 

elements is sufficient to simulate the response of the subsystem with reasonable 

accuracy. 

An extensive set of 74 shake table tests composed of harmonic and earthquake 

acceleration records were performed on the NEES-UCSD shake table to assess its 

signal reproduction fidelity after tuning the table with the tools available, namely the 

fixed-gain controller (Three-Variable-Controller) and an iterative time history 

matching technique (Online Iteration). These tests were designed to quantify the 

effects of the amplitude of the signal used for tuning the table on the signal 

reproduction fidelity. A number of comparisons and measures were used to evaluate 

the signal reproduction capability of the shake table. Based on these comparisons, it 

was found that the level of fidelity in signal reproduction achieved for a specific 

amplitude of the commanded signal under the corresponding optimum tuning of the 

table cannot be maintained when reproducing the same signal at different amplitudes. 

This is a clear indication that shake tables are highly nonlinear systems and the current 
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state-of-the-art controller and tuning techniques fall short of compensating accurately 

for these inherent system nonlinearities. Especially, difficulties encountered with 

tuning at low signal amplitudes and testing at much higher signal amplitudes indicate 

the need for an accurate virtual tuning of the table based on a detailed mechanics-

based model of the complete system. A set of Table Performance Curves were 

generated based on the results of these extensive shake table tests. These curves 

provide the shake table user with a quantitative guide to decide on the level of 

calibration PGA amplitude that should be used to obtain a desired level of signal 

fidelity for a given test PGA amplitude. 

Analytical work using a linear model of a servo-hydraulic shake table system 

with single- and multi-degree-of-freedom specimens mounted on its platen showed 

that shake tables exciting lightly damped structures (e.g., civil structures) have limited 

ability to apply forces at the vicinity of the natural frequencies of these structures 

modeled as linear. Furthermore, the open-loop transfer function between the 

servovalve command signal and the actuator force show that the numerator of this 

transfer function contains the 1st, 2nd, and 3th derivatives of the command signal. This 

observation is valuable in the sense that in order for the actuator to move the table at 

higher frequency range, any feedforward control signal added onto the valve 

command signal must be proportional with the velocity, acceleration, and the jerk (3rd 

derivative) of the displacement reference signal; this justifies the motivation of using 

feedforward control signals in TVC. A parametric study investigating the effects of the 

TVC control gains on the transfer function between the acceleration reference signal 
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and the actuator force indicates that: (i) the proportional (feedback) gain, Pk , can be 

used to change effectively the system gains (i.e, magnitude transfer function between 

reference acceleration and actuator force) in the low frequency range (i.e., DC up to 

~2.0 Hz); (ii) the velocity feedforward gain, VFk , is effective mostly in modifying the 

system gains in the low-to-medium frequency range (i.e., from ~2.0 Hz up to the oil 

column frequency of the system at ~11.0Hz); (iii) the acceleration feedforward gain, 

AFk , affects the system gain around the oil-column frequency (~11.0 Hz); (iv) the jerk 

feedforward term, JFk , affects the system gains effectively above the oil-column 

frequency (i.e., ~11.0 Hz and onward); and (v) the force feedback gain, DPk , damps 

out the oil-column resonance of the system as its value increases. 

Under narrow and broadband inputs, the virtual shake table model with bare 

table condition is able to reproduce accurately the actual (achieved) platen motion 

(e.g., displacement, velocity, and acceleration) using the same controller settings as on 

the actual system. Moreover, the 4th stage spool displacements of the four servovalves 

and the total actuator driving force from the actual tests are also reproduced accurately 

by the virtual shake table model. Supply pressure fluctuations measured during the 

actual tests at the 4th stage of the servovalves are captured in the average sense by the 

effective accumulator models used. It is observed that the two flow nonlinearities in 

the servovalves are the most significant sources of signal distortion in servo-hydraulic 

shake table systems. The virtual shake table model with the servovalves assumed 

linear (linearized) is not capable of replicating the observed signal distortions. Both 

the pressure drop - flow nonlinearity (square-root nonlinearity) and the flow gain 
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nonlinearity need to be incorporated in the servovalve model in order to match the 

actual platen motion with the simulated one. Based on the test-simulation correlation 

studies performed, it is observed that the simulation results are sensitive to the flow 

gain nonlinearity (i.e., flow vs. spool displacement nonlinearity). Therefore, 

experimental determination of these curves for each orifice on the four servovalves is 

deemed necessary in order to further improve the calibration, accuracy and reliability 

of the virtual shake table model developed and use it safely for simulation-based 

offline tuning purposes. 

In order to investigate the shake table - linear/nonlinear specimen interaction 

problem, an analytical study was performed using 3, 5, and 7-story shear frames in 

which the relation between the interstory drift and story shear force is modeled using 

the Menegotto-Pinto nonlinear constitutive model. The simulation results of this study, 

specific to shear-frames, revealed that: (i) The dynamic interaction between the 

specimen and the table gets more pronounced when the specimen on the table remains 

linear. The degree of interaction decreases with increasing level of nonlinearity in the 

specimen response. (ii) The actuator force time history plots show that the actuator 

force increases proportionally with the specimen reaction force. The actuator force 

decreases with increasing level of nonlinearity in the specimen response. This is due to 

the reduction of the specimen reaction force due to yielding of the material. (iii) The 

table-specimen dynamic interaction takes place at the vicinity of the natural 

frequencies of the specimen (linear specimen), and manifests itself in the form of 

peak-and-trough pairs in the magnitude response plots of the transfer functions 
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between (a) the reference acceleration and the actuator force, and (b) the reference 

acceleration and feedback (achieved) acceleration. These two transfer functions have 

the same poles (peaks) but different zeros (troughs). As the specimen becomes 

increasingly nonlinear, these peak-and-trough pairs are smoothened out and become 

less significant. (iv) Power spectral density (PSD) estimations of the simulated table 

acceleration response histories show that for the linear specimen case, the table 

overshoots the bare table response at frequencies below the vicinity of the 1st natural 

frequency and undershoots it above that frequency under fixed table control setting. 

For the nonlinear specimen case, the table undershoots the bare table response 

throughout the frequency range of operation and especially at frequencies in the 

vicinity of the zeros of the transfer function between the reference acceleration and 

actuator force. (v) PSDs of the error between the simulated bare table acceleration 

response and the simulated table acceleration responses with a 3, 5, or 7-story 

specimen mounted on the table show that the error is clustered around the natural 

frequencies of the linear specimens and decreases with increasing level of specimen 

nonlinearity. (vi) The error seen in the acceleration reproduction is a function of the 

specimen’s dynamic characteristics, level of nonlinearity, as well as the characteristics 

of the input acceleration record. 

11.2. Recommendations for Future Work 

Future work on the subject should focus on the following topics: (i) 

Conducting shake table tests with a dummy linear and/or nonlinear specimen on the 

table in order to generate Seismic Performance Curves for loaded table conditions. 
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Although these curves will be specific to the dummy specimens used, it will still give 

invaluable information about the effects of the specimen on the table seismic 

performance curves. (ii) Conducting targeted tests for identifying the nonlinear flow 

vs. spool displacement curves for the four orifices on each servovalve. These 

experimentally determined curves would replace the prototype curves currently used 

in the virtual model and would increase the reliability to the model. (iii) More 

complete and detailed mechanics-based model of the hydraulic system should be 

developed, including mathematical models for the pumps, accumulator bank, blow-

down valves and their controllers (blow-down controller), in-line and close-coupled 

accumulators and transient flow conditions in the hydraulic power lines. (iv) More 

realistic nonlinear specimens should be modeled using the finite element analysis 

framework OpenSees (this task is under progress). The realistic specimen model can 

be coupled easily to the rest of the nonlinear shake table model using the TCP/IP-

based client-server tool developed in this study. (v) Flexibility of the platen should be 

considered for heavy specimens on the platen as well as the moving vertical support 

conditions of the platen (as the platen slides over the pressure-balanced bearings). (vi) 

The detailed mechanics-based virtual shake table model developed in this study can be 

used to develop and test more advanced controllers (e.g., nonlinear, adaptive) which 

can then be implemented on both existing and future shake table systems. 




