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1 Overview

This online resource concerns the construction of a polynomial Galerkin basis {Ψn(x)}, each member
of which satisfies two key conditions: (i) any given set of M homogeneous linear boundary conditions
up to degree N − 1 and (ii) orthogonality to all other basis functions. The main bulk of the material
is contained within the accompanying webpage, at present, archived in .zip format. The ‘homepage’
that should be opened in a web-browser is Galerkin.html; the rest of the files contained within
the archive are supplementary images and other files which are required by the website. When the
webpage is opened, the left hand frame lists a range of boundary conditions for (a) orthogonality
in Cartesian coordinates, (b) orthogonality in polar geometries and (c) more general orthogonality
relations involving derivatives. Common and physically motivated boundary conditions are given
explicitly, followed by more general boundary conditions as far as the extent of computer algebra
allows. As will quickly become apparent, the formulae for the expressions are extremely lengthly,
particularly for the most general cases considered. The user simply needs to copy and paste the
expressions given in plain text into either a symbolic package such as Maple or Mathematica, or
equally into a high-level language such as Matlab, C or Fortran. Clearly if the boundary conditions
or α and β are generalised (i.e. unspecified), simply substitute your particular preference.

A brief overview of Galerkin methods is presented below, although this is largely the same as the
material contained in the introduction section of the website.

1.1 Galerkin methods

Adopting a spectral method, or equivalently expanding an unknown function in terms a given basis
{Ψn}

f(x) =
N∑

n=1

an Ψn(x)

can be very helpful in solving, amongst others, partial differential equations, eigenvalue and variational
problems. If each Ψn satisfies a prescribed set of linear and homogeneous boundary conditions, it
follows simply that these same conditions are satisfied by f(x). If the expansion converges at a spectral
or super-algebraic rate [1], then a severely truncated expansion may represent the function extremely
well. In addition, the method of solution involves only finding the coefficients an; of particular note
is that, for all intents and purposes, the boundary conditions may be ignored since they are already
hard-wired into the numerical scheme.

One method of constructing a polynomial Galerkin basis set is the recombination of standard
orthogonal polynomials [1]. However, such a basis set may be not only ill-conditioned, but in general
will not inherit any of the optimal properties of the polynomials from which it was constructed. For
instance,

Ψn(x) = Tn(x)− n2 T1(x),
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where Tn is a Chebyshev polynomial of the first kind, is a basis set suitable for representing all
functions f for which f ′(1) = 0. However, {Ψn(x)} is not orthogonal (by any useful definition) and
has no optimal fitting properties (such as minimising the L∞ norm of the error as the Chebyshev
polynomials themselves do). Furthermore, this basis set is very ill-conditioned as, when normalised,
Ψn(x) → −x as n →∞ and so, for large n, all basis functions look the same.

A more general approach, in order to enforce orthogonality, is to adopt a Gram-Schmidt process.
In the case of finding a set of polynomials that satisfy f ′(1) = 0, we can write

Ψn(x) =
n∑

i=0

di x
i, n ≥ 1.

Each coefficient di is determined by (i) the boundary condition Ψn
′(1) = 0, (ii) orthogonality (by some

definition) to each Ψj , j < n and (iii) a normalisation condition. However, this procedure has two
major shortcomings. Firstly, in general, it requires symbolic calculation to determine the di. Adopting
an integral measure of orthogonality, such as∫ 1

−1
Ψn(x) Ψm(x) w(x) dx = 0, n 6= m

leads to di that, in general, grow extremely rapidly with n. This is an immediate consequence of the
parsimonious representation of such a basis set in Jacobi polynomials whose monomial coefficients
grow rapidly with n (see the discussion below). The only practical (and accurate) way of computing
Ψn is by using computer algebra. Second, and most importantly, there is no way of knowing in advance
what properties the basis functions, derived via the “black-box” Gram-Schmidt procedure, will have.

If the boundary conditions are sufficiently simple, for instance, f (1) = 0, we can write down an
orthogonal basis set by exploiting properties of Jacobi polynomials. It may be written

Ψn(x) = (1− x) P
(α+2,β)
n−1 , n ≥ 1 (1)

since Ψn(1) clearly vanishes and applying the standard orthogonality relation of Jacobi polynomials
we see that∫

Ψn(x) Ψm(x) w(x) dx =
∫ 1

−1
P

(α+2,β)
n−1 P

(α+2,β)
m−1 (1− x)2+α (1 + x)β dx = hn δnm

for some constants hn. For more complex boundary conditions, such as f ′′ (1) = 0 this approach is
not possible.

1.2 An example of auto orthogonality

Perhaps the simplest case with which to illustrate the concept of auto-orthogonality is the above basis

Ψn(x) = (1− x) P
(α+2,β)
n−1 , n ≥ 1 (2)

that satisfies f (1) = 0. Using the standard index recurrence relations

(2n + α + β + 2)(1− x)P (α+1,β)
n = 2(n + α + 1)P (α,β)

n − 2(n + 1)P (α,β)
n+1 , (3)

(2n + α + β + 2)(1 + x)P (α,β+1)
n = 2(n + β + 1)P (α,β)

n + 2(n + 1)P (α,β)
n+1 (4)

(2n + α + β)P (α−1,β)
n = (n + α + β)P (α,β)

n − (n + β)P (α,β)
n−1 , (5)

(2n + α + β)P (α,β−1)
n = (n + α + β)P (α,β)

n + (n + α)P (α,β)
n−1 , (6)

we can write
Ψn(x) = c1(n)P (α+2,β)

n + c2(n)P (α+2,β)
n−1 + c3(n)P (α+2,β)

n−2 , n ≥ 2 (7)

for coefficients ci(n), which take the (unnormalized) form
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c1(n) = n (β + α + 2 n)(α + β + n + 2) ,

c2(n) = −(β + 1 + 2 n + α)(2n2 + 2 nβ + 2 n + 2 nα + β α + α2 + 3 α + 2 + β) ,

c3(n) = (α + n + 1)(β + n− 1)(β + α + 2 n + 2) ,

for n ≥ 2 and Ψ1(x) = 1− x. Suppose we now consider constructing a basis set of the form

Ψn(x) =
3∑

i=1

ci P
(α+2,β)
n+1−i (x)

where Ψ1(x) = 1− x and the ci are found using the three condition

• orthogonality to Ψ1(x), ∫ 1

−1
Ψn(x) Ψ1(x) w(x) dx = 0, n > 1

where w(x) = (1− x)α (1 + x)β.

• Ψn(1) = 0

• A normalisation condition.

It must be that this new basis is the same that we have already found, namely Ψn(x) = (1−x) P
(α+2,β)
n−1 .

It follows that the Ψn form an orthogonal set, even though we have only explicitly imposed that each
is orthogonal to Ψ1. This property we term auto-orthogonality [3].

Note also that the ci take on the ratio [1,−2, 1] as n →∞, a property that has great significance
since the same asymptotic behavior arises from writing P

(α,β)
n (x) in the form of (7) by applying (5)

twice. It follows that
Ψn(x) ∼ P (α,β)

n (x)

for large n.
This construction can be extended to the boundary condition f ′ (1) = 0. A basis set is

Ψn(x) =
3∑

i=1

ci P
(α+2,β
n+1−i (x), n ≥ 2

for any α > −1, β > −1 and where P
(α,β)
n (x) is a Jacobi polynomial. The function Ψ1(x) = 1

is the lowest degree polynomial that satisfies the boundary condition. The three coefficients ci are
determined by imposing

• orthogonality only to Ψ1(x),∫ 1

−1
Ψn(x) Ψ1(x) w(x) dx = 0, n ≥ 2

where w(x) = (1− x)α (1 + x)β.

• Ψ′
n(1) = 0

• A normalisation condition.

Remarkably, the {Ψn} are themselves orthogonal (auto-orthogonality)∫ 1

−1
Ψn(x) Ψm(x) w(x) dx = 0, n 6= m
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The coefficients ci are (taking β = α)

c1 = 8α2 + 8n3α3 − 12n2α− 9n3α + 5n4α2 + 12n3α2 − 14nα3 − 27n2α2 + 2nα2 − 4n2α3 + n5α

+ 10n4α + 2n5 + 4n2α4 − 8nα4 + 10α3 + 4α4 + 8nα + 2n− 4n3 + 2α

c2 = −(2α4 + 6nα3 + 9α3 + 6n2α2 + 20nα2 + 14α2 + 2n3α + 15n2α + 19nα + 5α + 4n3 + 6n2 + 2n)

× (−1 + n2 − 2α + 2nα)

c3 = −4n− α− 6n2 + 2n3 + 6n4 − α2 + α3 + 2n5 + α4 + 11nα3 + 2α5n + 8nα4 + 25n2α3 + 28n3α2

+ 13n4α + 9n3α3 + 5n4α2 + 26n2α2 − 11nα− 2nα2 + 22n3α + 7n2α4 + n5α

The details of how these are computed are given in [2].
Additional features of these auto-orthogonal sets are

• Exponential convergence to any function f that satisfies the boundary conditions.

• They behave asymptotically like a single Jacobi polynomial

Ψn(x) ∼ P (α,β)
n (x) as n →∞

For instance, if α = β = −1/2, the {Ψn} behave like Chebyshev polynomials for large n and
thus inherit their optimal characteristics.

1.3 Auto orthogonality: one-sided

We consider here a one-dimensional Cartesian domain (or one in which no further constraints are
imposed on the functions apart from boundary conditions and smoothness). We will impose a given
set of M homogeneous linear boundary conditions involving derivatives up to degree N − 1 at x = 1
only (hence the name “one-sided”). A basis set can be written

Ψn(x) =
N+1∑
i=1

ci P
(α+N,β)
n+M−i (x), n ≥ N −M + 1

where the ci are found using

• N −M orthogonality conditions

• M boundary conditions

• One normalisation condition.

and Ψn, n = 1, 2, . . . , N −M are computed using a Gram-Schmidt orthogonalisation procedure.
This basis set has the properties

1. ∫ 1

−1
Ψn Ψm(x) w(x) dx = 0 n 6= m

2. Ψn(x) ∼ P
(α,β)
n (x) as n →∞.

The imposition of boundary conditions at x = −1 (only) requires a basis set of the form

Ψn(x) =
N+1∑
i=1

ci P
(α,β+N)
n+M−i (x) , n ≥ N −M + 1

where the ci are found as before.
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1.4 Auto orthogonality: two-sided

In the Cartesian domain [−1, 1] we consider a basis set that satisfies any given set of M homogeneous
linear boundary conditions up to degree N − 1 imposed at x = −1 or x = 1 (or both). It may be
written

Ψn(x) =
2N+1∑
i=1

ci P
(α+N,β+N)
n+M−i (x), n ≥ 2N −M + 1

where the ci are found using

• 2N −M orthogonality conditions

• M boundary conditions

• One normalisation condition.

and Ψn, n = 1, 2, . . . , 2N −M are computed using a Gram-Schmidt orthogonalisation procedure.
The basis sets are found in various specific cases of the boundary conditions in section 3 of the

website.
As in the one-sided case,

Ψn(x) ∼ P (α,β)
n (x)

as n →∞.

1.5 Auto orthogonality: polar geometry

In polar geometries, due to the singularity of the coordinate system at the origin, expansions in radius
(r) often require a regularity condition. This restricts the class of scalar functions within which the
solution must lie to one of the form

f(r) = rl+1 p(r2)

for some integer l and a function p. We assume this to be the case in what follows. In such a situation,
we require a basis set that is of the above form and, in addition, satisfies M boundary conditions of
maximum degree N − 1 at r = 1. It follows from the one-sided Cartesian case that such a basis can
be written

Ψn(r) = rl+1
N+1∑
i=1

ci P
(α+N,l+1/2)
n+M−i (2r2 − 1), n ≥ N −M + 1.

As before, the first few Ψn are determined using a Gram-Schmidt procedure. These satisfy the auto-
orthogonality ∫ 1

0
Ψn(r) Ψm(r) (1− r2)α dr = 0 n 6= m

and
Ψn(r) ∼ P (α,l+1/2)

n (2r2 − 1)

as n →∞.
There are two things of note. Firstly, the argument of the Jacobi polynomials is 2r2 − 1, mapping

[0, 1] → [−1, 1] and rendering the Jacobi polynomial contribution an even function. Secondly, β is no
longer free, being set to l + 1/2. This ensures that the limiting behaviour of P

(α,l+1/2)
n (2r2 − 1) takes

on the equal-ripple or equal-area property of the Chebyshev polynomials of the first and second kinds
when α = −1/2 or α = 1/2 respectively. However, other choices of β are possible [4].

The basis sets are found in various specific cases of the boundary conditions in section 4 of the
website.
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1.6 Auto orthogonality with respect to derivatives

Making the functions orthogonal, as we have done, is transparently helpful for expansions of many
kinds. But this is not always the best way to approach solutions of a differential equation as the
resulting matrices may be full and poorly conditioned.

Given the developments so far, it is natural to ask if our algorithm can be extended, so that we
impose orthogonality between, say, (d/dx)k Ψn(x) and (d/dx)k Ψm(x), or (d/dx)k Ψn(x) and Ψm(x),
in place of that between Ψn and Ψm. For instance, if we were to solve the differential equation

y ′′ (x) = λ y(x)

for an eigenvalue λ, this could be represented by the matrix problem(
A− λ B

)
q = 0

where we have written y(x) =
∑

i qi Ψi(x) and

Aij =
∫ 1

−1
Ψi Ψj

′′w(x) dx, Bij =
∫ 1

−1
Ψi Ψj w(x) dx

and q is a vector of the unknown spectral coefficients. If, for some choice of Ψ and weight function w(x),
A and B could be made band-limited, then the numerical solution would be obtained expediently. In
section 5 of the website, we will give examples where A is diagonal. In general, the matrix B turns
out to have significant structure, for instance, becoming either penta-diagonal or tri-diagonal.
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