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a b s t r a c t

Thermally-activated 1=2h111i screw dislocation motion is the controlling plastic mecha-
nism at low temperatures in body-centered cubic (bcc) crystals. Dislocation motion pro-
ceeds by nucleation and propagation of atomic-sized kink pairs in close-packed planes.
The atomistic character of kink pairs can be studied using techniques such as molecular
dynamics (MD). However, MD’s natural inability to properly sample thermally-activated
processes as well as to capture f110g screw dislocation glide calls for the development
of other methods capable of overcoming these limitations. Here we develop a kinetic
Monte Carlo (kMC) approach to study single screw dislocation dynamics from room
temperature to 0:5Tm and at stresses 0 < r < 0:9rP , where Tm and rP are the melting point
and the Peierls stress. The method is entirely parameterized with atomistic simulations
using an embedded atom potential for tungsten. To increase the physical fidelity of our
simulations, we calculate the deviations from Schmid’s law prescribed by the interatomic
potential used and we study single dislocation kinetics using both projections. We
calculate dislocation velocities as a function of stress, temperature, and dislocation line
length. We find that considering non-Schmid effects has a strong influence on both the
magnitude of the velocities and the trajectories followed by the dislocation. We finish by
condensing all the calculated data into effective stress and temperature dependent mobil-
ities to be used in more homogenized numerical methods.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1=2h111i screw dislocations are the main carriers of plasticity in body-centered cubic (bcc) single crystals. Experimen-
tally, bcc slip is seen to occur on f110g; f112g, and f123g planes, or any combination thereof. To determine the slip plane
for a general stress state, Schmid’s law is used, which states that glide on a given slip system commences when the resolved
shear stress on that system, the Schmid stress, reaches a critical value (Schmid and Boas, 1935). This law is known to break
down in bcc metals, which has great implications on the overall plastic flow and deformation behavior in these systems.
Experimentally, non-Schmid behavior is well documented in the literature going back several decades (Sestak and
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Zarubova, 1965; Sherwood et al., 1967; Zwiesele and Diehle, 1979; Christian, 1983; Pichl, 2002),1 and its reasons have been
thoroughly investigated. First, as Vitek and co-workers have noted (Duesbery and Vitek, 1998; Ito and Vitek, 2001), slip planes
in bcc crystals do not display mirror symmetry (a common characteristic of planes belonging to the h111i zone), and so the sign
of the applied stress does matter to determine the critical stress. This is most often referred to as the twinning–antitwinning
asymmetry. Second, studies using accurate atomistic methods (semi empirical interatomic potentials and density functional the-
ory calculations) have shown that stress components that are not collinear with the Burgers vector b couple with the core struc-
ture of screw dislocations resulting also in anomalous slip (Bulatov et al., 1999; Woodward and Rao, 2001; Gröger and Vitek,
2005; Chaussidon et al., 2006).

Although effective corrections that reflect deviations from Schmid law have been implemented in crystal plasticity mod-
els, and their effects assessed at the level of grain deformation (Dao et al., 1996; Vitek et al., 2004; Gröger and Vitek, 2005;
Yalcinkaya et al., 2008; Wang and Beyerlein, 2011; Lim et al., 2013; Chen et al., 2013; Soare, 2014), there is no model estab-
lishing the fundamental impact of non-Schmid behavior on single screw dislocation motion. Molecular dynamics (MD) sim-
ulations naturally include non-Schmid effects as part of the simulated dynamics of screw dislocations (Gilbert et al., 2011;
Cereceda et al., 2013). However, it is exceedingly difficult to separate these effects from the bundle of processes (and arti-
facts) brought about by size and time limitations inherent to MD simulations. In addition, screw dislocation motion proceeds
by way of the nucleation and sideward relaxation of so-called kink pairs in a broad stress and temperature range. Kink pair
nucleation may be regarded as a rare event occurring on a periodic energy substrate known as the Peierls potential. MD’s
inability to sample these events accurately often leads to overdriven dynamics and unrealistically high dislocation velocities
(Cereceda et al., 2013).

Here, we develop a kinetic Monte Carlo (kMC) model to study thermally activated screw dislocation motion in tungsten
(W). Our approach – which builds on previous works on the same topic (Lin and Chrzan, 1999; Cai et al., 2001, 2002; Deo and
Srolovitz, 2002; Scarle et al., 2004; Ariza et al., 2012) – is based on the stochastic sampling of kink pair nucleation coupled
with kink motion. The entire model is parameterized using dedicated atomistic simulations using a state-of-the-art inter-
atomic potential for W (Marinica et al., 2013). Non-Schmid effects are incorporated via a dimensionless representation of
the resolved shear stress, which provides the deviation from standard behavior for all the different activated slip planes.
We explore the impact of these deviations on single dislocation glide and compare the results to direct MD simulations.
Another novel aspect of our simulations is the inclusion of stress-assisted kink drift and kink diffusion simultaneously in
our model. This quantitatively reflects the dynamic behavior observed atomistically for an isolated screw dislocation.

The paper is organized as follows. First we describe the kMC algorithm and the topological construct of screw dislocations
and kink segments. We then provide a detailed account of the parameterization effort undertaken, beginning with single
kink static and dynamic properties, and ending with the calculation of the non-Schmid law. In the Results section we report
calculations of Schmid and non-Schmid glide as a function of stress, temperature, dislocation length, and maximum resolved
shear stress (MRSS) plane. We finish with a discussion of the results and the conclusions.

2. Kinetic Monte Carlo model of thermally-activated screw dislocation motion

2.1. Physical basis

All that is required to initialize a kMC run are the total initial screw dislocation line length L, the temperature T, and the
applied stress tensor r. In the kMC calculations, we choose a working representation of the stress tensor in its non-dimen-
sional scalar form:

s ¼ rRSS

rP

where rRSS is the resolved shear stress (RSS) and rP is the Peierls stress. We consider two different contributions to rRSS: (i)
from external sources – defined by an applied stress tensor r – and (ii) from internal stresses originating from segment-seg-
ment elastic interactions. At a given dislocation segment i, the normalized resolved shear stress is:

si ¼
t " ðrþ rintÞ " n

rP
¼

t " rþ
P

jrijðrijÞ
! "

" n
rP

ð1Þ

Here, t and n are unit vectors representing the slip direction and the glide plane normal, and rij is the distance between dis-
location segments i and j. The calculation of rijðrijÞ is discussed in Section 2.2 but note that this definition of rint introduces a
certain locality in si, hence the subindex i.

The projection of the total stress tensor on the RSS plane as in Eq. (1) is what is known as Schmid’s law. For a straight dis-
location (no internal stresses) in the coordinate system depicted in Fig. 1, the RSS is:

rRSS ¼ rext ¼ t " r " n ¼ &rxz sin hþ ryz cos h ð2Þ

1 Although it was first recognized as early as in the 1920s and 1930s.
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where the angle h is measured from the positive x-axis to the glide plane defined by n. Here, the only active components of
the stress tensor that result in a resolved component of the Peach–Köhler force on the glide plane are rxz and ryz. In Section
3.4, we explain how to substitute Eq. (2) by a suitable projection law that reflects non-Schmid behavior. In what follows, for
brevity, we use the shorthand notation s to denote the stress at any given segment, s ' si, and s to refer to the resolved
applied shear stress, s ' rext .

In the same spirit as previous works on the topic, our approach is to generate kink-pair configurations by sampling the
following general function representing the kink-pair nucleation probability per unit time:

riðs; TÞ ¼ xf ðsÞ exp &DHðsÞ
kT

# $

f ðsÞ ¼
li&wðsÞ

b if li > wðsÞ
0 if li < wðsÞ

( ð3Þ

where x is the attempt frequency, DHðsÞ is the kink-pair activation enthalpy, wðsÞ is the kink-pair separation, k is Boltz-
mann’s constant, and T is the absolute temperature. The variable li represents the length of a rectilinear screw segment i,
with L ¼

P
ili. Typically, a non screw segment – e.g. a kink – separates each segment i from one another.

The expression above merits some discussion. The stress-dependent functions DHðsÞ and wðsÞ are of the following form:

DHðsÞ ¼ DH0 1& spð Þq ð4Þ
wðsÞ ¼ w0ðs&m þ cÞð1& sÞ&n ð5Þ

where p; q; w0; m; c, and n are all adjustable parameters. Eq. (4) represents the formation enthalpy of a kink pair at stress s
and follows the standard Kocks–Argon–Ashby expression that equals the energy of a pair of isolated kinks at zero stress and
vanishes at s ¼ 1 (s ¼ rP) (Kocks et al., 1975). For its part, Eq. (5) is a phenomenological expressions (no physical basis) that
diverges for both limits s ¼ 0 and s ¼ 1. This is because the equilibrium kink separation distance is undefined at zero stress,
while, at the Peierls stress, the notion of kink pair is itself ill-defined. A physical equation for wðsÞ could conceivably be
obtained by, e.g., generating kink pair configurations within a full elasticity model and measuring the force balance (elastic
attraction vs. stress-induced repulsion) as a function of applied stress. However, as discussed below, kinks display a strong
atomistic (inelastic) behavior at short distances and we prefer to obtain its atomistic dependence and fit to a function that
captures the divergence for s ¼ 0 and s ¼ 1.

The function f ðsÞ represents the number of possible nucleation sites for a kink pair of width w on a segment i of available
length li. It is through this function that the well-known dependence of the screw dislocation velocity with its length at low
stress is introduced.

Kink motion is defined by thermal diffusion at zero stress, characterized by a diffusion coefficient Dk, and a stress depen-
dent drift characterized by the following viscous law

vk ¼
rPb

B
s ð6Þ

Fig. 1. Schematic view of the glide planes of the [111] zone. A generic MRSS plane is labeled in red, while, by way of example, the ð!101Þ is the glide plane.
The suffixes ‘T’ and ‘AT’ refer to the twinning and antitwinning senses, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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where vk is the kink drift velocity and B is a friction coefficient. Although phonon scattering treatments predict that B
increases linearly with temperature, our MD calculations show B to be constant across all temperatures, in agreement with
previous studies on kink motion (Swinburne et al., 2013). The overall dynamic behavior of kinks must account for both con-
tributions to the mobility, which can be done by treating kink diffusion as a Wiener process within the kMC model in the
following fashion. Assuming that a time step dt has been selected within the kMC main loop, one can write the incremental
position of the kink as:

dx ¼ vkdt (
ffiffiffiffiffiffiffiffiffiffi
Dkdt

p

where the ( sign reflects the random character of diffusion. The maximum kink flight time in the code is obtained by invert-
ing the above expression and solving for the parameter dtmig with dx ¼ dxmax, which is an input parameter to the kMC algo-
rithm (cf. Section 2.2).

2.2. Implementation details

The dislocation is represented by a piecewise straight line extending a length L along the 1=2 111½ * Burgers vector direc-
tion, as depicted in Fig. 2. It consists of pure screw segments, which can be of any length, and pure edge segments (kinks),
which all have the same length h ¼

ffiffi
6
p

3 a0, the unit kink height. The direction of kink segments can be any one of six 1=3 112h i
directions, corresponding to glide of the dislocation on the three 110f gplanes of the 111½ * zone (cf. Fig. 1). Periodic boundary
conditions are used in the direction parallel to the screw direction.2

Even though kinks are represented by pure edge segments in our model, we implicitly assume that kink pairs have a trap-
ezoidal shape of a certain width a (this is discussed in Section 3.1.1). This is why the length of a screw segment, where new
kink pairs can nucleate, is effectively reduced by one kink width a. Kink segments move parallel to the 111½ * screw direction
and can recombine with other kinks of opposite sign. The local kink-pair nucleation rate (Eq. (3)) and the drift velocity of kink
segments (Eq. (6)) depend on the local stress, which is the superposition of a fixed, externally applied stress tensor and vary-
ing internal stresses (cf. Eq. (1)). The internal contributions, rij, originating from mutual interactions between the piecewise
straight dislocation segments, are computed using non-singular isotropic elasticity theory with a core width of 0:5b (Cai
et al., 2006). W is a perfectly isotropic elastic material and so using the theory by Cai et al. (2006) introduces no limitations
in this regard.

The local stress on a given segment i may not be spatially uniform. To resolve this spatial dependence, we sample the local
nucleation rate at multiple random positions along li. The simulation proceeds in discrete time steps of variable length
according to the following algorithm:

1. The current drift velocities of existing kinks are computed from the local stress at the center of each kink.
2. Assuming constant kink velocities, a migration time dtmig is computed, which is the lowest time taken by any kink in the

system to move a prescribed maximum distance dxmax ¼ 40b, or before any kink–kink collision occurs.3

Fig. 2. Schematic depiction of an arbitrarily kinked screw dislocation line showing kink-pairs on two different f110g planes. The arrows indicate the
direction of motion of kinks under an applied stress that creates a force on the dislocation in the ½!1!12* direction. The dashed line represents a cross-kink.

2 Although nothing precludes the use of fixed end points, akin to pinning points in real microstructures.
3 We have found that the calculations are quite insensitive to the value of dxmax. By way of example, a fourfold increase or decrease of the nominal value of

40b results in only changes of + 3% in the kink velocities.
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3. A nucleation time dtnuc is randomly generated from the exponential distribution defined by the total nucleation rate,
which is the sum of all kink-pair nucleation rates on all screw segments and for all kink directions.

4. If dtmig < dtnuc, then all kinks move at their current velocities for a time period dtmig and the simulation time is incre-
mented accordingly. Otherwise, the kinks move for a time period dtnuc, followed by a kink-pair nucleation on a screw seg-
ment. The nucleation site is chosen according to the local nucleation rates by a standard kMC algorithm, and the
simulation time is incremented by the reciprocal of the total nucleation rate (Voter, 2007).

5. Any kink–kink reactions occurring after the propagation of kinks are carried out and the topology of the line model is
updated. Return to step 1.

In the last step, kink–kink annihilation and debris dislocation loop formation is considered. As described by Cai et al.
(2001) and Marian et al. (2004), two pile-ups of cross kinks can spontaneously reconnect to form a self-intersection of
the dislocation line. At the self-intersection point, the connectivity of the line is broken into two independent parts: the infi-
nite screw dislocation, which continues moving through the material, and a closed prismatic loop, which remains behind.

Two kinks on the same screw segment, which have formed on different 110f g planes, may collide and form a so-called
cross kink if their relative velocity is negative. Because they are pushed toward one another by the local stress, the kinks are
thus constrained to move together with a compound velocity equal to the arithmetic mean of their respective original
velocities.

3. Fitting the kMC model to atomistic calculations

In a previous publication, we have conducted a detailed analysis of several W interatomic potentials for the purpose of
screw dislocation calculations (Cereceda et al., 2013). On the basis of that analysis, an embedded-atom method (EAM)
(Marinica et al., 2013) and a modified EAM (MEAM) potential (Park et al., 2012) were deemed as the most suitable for screw
dislocation property calculations. For reasons of computational efficiency, in this work we choose to perform all supporting
calculations for fitting the kMC model with the EAM potential. As a preliminary step, we calculate the Peierls potential on a
f110g and a f112g plane to ascertain whether direct glide on f112g-type planes is a feasible phenomenon. This is done using
nudged-elastic band (NEB) calculations of a single screw dislocation in suitably constructed computational cells described
below. The resulting functions represent the substrate potential UPðxÞ as a function of the reaction coordinate x in each case.
These are shown in Fig. 3, where it is shown that elementary glide on a f112g plane is a composite of two elementary steps
on alternate f110g planes. Judging by these results, we conclude that glide on any given plane is achieved by way of sequen-
tial f110g jumps. This is consistent with recent atomistic simulations (Gilbert et al., 2011; Hale et al., 2014) and forms the
basis to simulate dislocation glide in the foregoing Sections.

3.1. Single kink calculations

3.1.1. Kink energetics
Analytical solutions for the kink-pair energy Ukp using elasticity models have been proposed by, among others, Dorn and

Rajnak (1964) and Seeger (2002), and Suzuki and collaborators (Koizumi et al., 1993; Suzuki et al., 1995; Edagawa et al.,
1997) assuming full elastic and line tension representations of kink-pair configurations and several functional forms for
UðxÞ. However, there is clear evidence in the literature that isolated kink segments display an asymmetry not present in con-
tinuum models (Mrovec et al., 2011; Swinburne et al., 2013). This asymmetry emanates from crystallographic and energetic
considerations of atomistic nature, and thus calculating kink energies necessitates special methods that capture these
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particularities. Ventelon et al. (2009) have devised a procedure to compute the energies of so-called ‘left’ and ‘right’ kinks,
the values of which are given by Marinica et al. (2013) for the current potential:

Ulk ¼ 0:71 eV
Urk ¼ 0:92 eV

The energy of an infinitely separated kink pair is the sum of both energies above: Ukpð1Þ ¼ 1:63 eV.
Additional useful information that can be extracted from these calculations is the width of an isolated kink, that is, the

stretch along the ½111* direction over which the kink extends. Fig. 4 shows the kink shape and its width obtained via Volterra
analysis (Ventelon et al., 2013; Gilbert et al., 2013). The kink shape is fitted to a function of the form:

xðzÞ ¼ h
2

1þ tanh
z
!

! "! "

where h is again the distance between Peierls valleys and ! is a fitting parameter.4 The kink width a is measured as the dis-
tance over which xðzÞ varies from 0:05h to 0:95h, which is approximately 3!. Fitting xðzÞ to the data points shown in Fig. 4 yields
a value of ! ¼ 8:4b or a ¼ 3! + 25b. This is the value used in the kMC code to represent kinks as trapezoidal elastic segments.

3.1.2. Kink mobility
As noted above, kinks can display both mechanically-driven (stress-dependent) and diffusive (stress-independent)

motion. Both of these must be characterized to define kink motion in the context of the kMC code. In bcc metals, including
W, the energy barrier to kink motion on f110g planes is negligible. This calls for a diffusion model of the following type:

Dk ¼
kT
hck

ð7Þ

where ck is a temperature-independent friction coefficient. For its part, stress-driven drift motion is assumed to follow Eq.
(6), which for practical reasons is expressed as:

_z ¼ b"r
B

where vk ' _zj j. Atomistic simulations of suitable geometric setups can be performed to obtain ck by mapping Eq. (7) to the
temperature dependence of the diffusivity, obtained as Dk ¼ dhDz2i=dt with hDz2i the mean square displacement. In turn, B is
calculated by obtaining the velocity–stress curves at different temperatures and mapping to Eq. (6), with the two friction
coefficients connected through Einstein’s relation B ¼ hck. The detailed calculations are provided in Appendix A and are sum-
marized here as well as in Table 1. An effective diffusivity for left and right kinks is taken:

DkðTÞ ¼ 7:7, 10&10T

with the diffusivity in m2 s&1 and T in Kelvin. This corresponds to a friction coefficient of ck ¼ 7:0, 10&5 Pa s. For the drift
velocity we obtain a stress dependence of:

vk ¼ 3:8, 10&6s

where the velocity is in m s&1 when the stress is given in Pa. This results in a friction coefficient B ¼ 8:3, 10&5 Pa s.
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3.2. Kink pair enthalpy

As it was shown in the preceding section, kinks are short dislocation segments displaying a sign asymmetry that cannot
be captured by using elasticity theory. To compute DH, here we take a direct atomistic approach by treating kink pair con-
figurations as activated states of long straight dislocation lines moving along the Peierls trajectory. In the same manner as a
number of previous studies (Wen and Ngan, 2000; Rodney and Proville, 2009; Gordon et al., 2010; Narayanan et al., 2014),
we perform nudged-elastic band (NEB) calculations of screw dislocation lines 100b in length going from one Peierls valley to
the next as a function of stress. These calculations are periodic along the dislocation line but finite on f110g surfaces parallel
to the glide plane, where the external shear stress is applied. To break the translational symmetry along the ½111* direction,
we create intermediate replicas seeded with kink-pair configurations. We then calculate the maximum total energy along
the NEB path and measure the kink separation at the activated state. An artifact of these calculations results from using peri-
odic boundary conditions along the line direction for the zero stress case. In these conditions, a separation of exactly 50b is
attained, which results in a small but non-negligible elastic interaction energy. Thus, the following limiting values are
directly assumed:

DHðs ¼ 0Þ ¼ DH0 ¼ Ukp ¼ Urk þ Ulk ¼ 1:63 eV
wðs ¼ 0Þ!1

Fig. 5 shows the NEB calculations of the Peierls transition pathway as a function of stress for the screw dislocation lines of
length 100b. The unrelaxed NEB trajectory consists of straight dislocations as the initial and final states, separated by one
Peierls valley. The intermediate states are obtained by introducing a kink pair at some arbitrary location along the line, sep-
arated by a distance varying linearly from 50b for the second replica to 5b for the penultimate one. We then relax the entire
trajectory using the nudged elastic band procedure and measure the energy along the path. The final trajectory is obtained as
the lowest-energy superposition between the NEB energy path and the Peierls energy for the straight screw dislocation. The
activated state is chosen as the maximum energy point along the relaxed final path.

Fig. 6a and b shows the extracted activation enthalpies and separation distances as a function of stress. Fits to Eqs. (4) and
(5) result in the parameters given in Table 1, which are then used in Eq. (3) for the kMC simulations.

3.3. Attempt frequency

The attempt frequency x is chosen to be the fundamental mode of the Granato–Lücke vibrating string model (Lin and
Chrzan, 1999):

x ¼ pCt

k
ð8Þ

where Ct is the shear wave velocity and k is a characteristic wavelength. For the purpose of this paper, Ct can be obtained as:

Table 1
List of parameters and functional dependencies for fitting the kMC model. All of these parameters have been
obtained using dedicated atomistic calculations.

Parameter Value or function Units

a0 3.143 Å
h a0

ffiffiffi
6
p

=3 Å
l 161 GPa
m 0.28 –
x 9:1, 1011 s&1

rP 2.03 GPa
a 25 b
vk sb=B m s&1

B 8:3, 10&5 Pa s
Dk kT=hck m2 s&1

ck 7:0, 10&5 Pa s
DHðs; TÞ DH0 1& spð Þq eV
DH0 1.63 eV
p 0.86 –
q 1.69 –
wðsÞ w0ðs&m þ cÞð1& sÞ&n b
w0 2.31 b
c 2.02 –
m 0.50 –
n 0.15 –
rv

c
a1rP

cosvþa2 cos p=3þvð Þ
GPa

a1 1.26 –
a2 0.60 –
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Ct ¼
ffiffiffiffil
q

r

where l is the shear modulus and q is mass density of W. q can be trivially obtained from the inverse of the atomic volume
X ¼ a3

0=2. The parameter k is the wavelength of the vibrating undulation, which in this case can be taken as k ¼ wþ a. Using
the parameter values listed in Table 1 and, from Fig. 6b, an effective kink pair separation of w ¼ 11b, we obtain
x ¼ 9:1, 1011 s&1.

3.4. Non-Schmid law from atomistic calculations

Schmid’s law states that a slip system will become activated when shear stress, resolved on the slip plane and in the slip
direction, reaches a certain critical value called critical resolved shear stress (CRSS). This implies (i) that the CRSS does not
depend on the orientation of the load axis, and (ii) that the CRSS is independent of the sign of the loading direction (tension
or compression). Many authors have now demonstrated, first, that in bcc crystals the loading symmetry is broken, and, sec-
ond, that there is a coupling between CRSS and non-glide stress components, all resulting in a breakdown of Schmid’s law
(Duesbery and Vitek, 1998; Ito and Vitek, 2001; Woodward and Rao, 2001; Gröger and Vitek, 2005; Chen et al., 2013;
Barvinschi et al., 2014).

Here, our approach is to study deviations from Schmid behavior solely when pure shear stress is applied on different max-
imum resolved shear stress (MRSS) planes. We use the standard geometry of the ½111* zone as shown in Fig. 1 to compute the
CRSS using atomistic simulations. The CRSS is calculated as a function of the angle v between the primary glide plane and the
MRSS plane. For simplicity, in the atomistic calculations the primary glide plane is represented by h ¼ 0 (cf. Fig. 1) and, then,
by symmetry, only the angular interval & p

6 < v < þ p
6 need be explored.

The calculations are done by performing atomic relaxations of a single screw dislocations in crystals with periodic bound-
ary conditions subjected to various levels of applied stress. The size of the simulation box is 1, 21, 24 multiples of the bcc
lattice vectors ½111* , ½!12!1* , ½!101* containing nominally 3024 atoms. This setup is essentially identical to that used in other
atomistic studies. The dependence of the CRSS with v for the EAM potential employed here is given in Fig. 7. The figure also
shows a fit to the data according to the expression:
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rv
c ¼

a1rP

cosvþ a2 cos p=3þ vð Þ

which is customarily used to represent deviations from the Schmid law (Vitek et al., 2004; Chaussidon et al., 2006). A least-
squares fit to the data yields a1 ¼ 1:26 and a2 ¼ 0:60, which are added to Table 1. The details about the implementation of
this equation into the kMC code for simulations of non-Schmid glide are given in Appendix B.

4. Results

In this section, we calculate the dislocation velocity for a number of different conditions. The velocity is obtained as the
derivative of the average position of the dislocation projected on the MRSS plane with respect to time. We study loading on
both f110g and f112g MRSS planes at different temperatures and stresses. We also investigate three different initial dislo-
cation line lengths: 100b is near the maximum extent of what can be presently simulated in MD simulations; 1000b is near
the average dislocation segment length (L + q&1=2

d ) in well-annealed W single crystals (Lassner and Schubert, 1999), and
4000b is approximately one micron in length. We study stresses from zero to just below the Peierls stress
0 < rMRSS < 0:9rP and temperatures from room temperature to 1800 K in 300-K intervals. The stress interval ensures that
thermal activation is the operating dynamic mechanism, while the temperature limits are roughly those where severe
embrittlement and recrystallization are known to limit the usefulness of W as a structural material (Lassner and
Schubert, 1999; Rieth, 2013).

4.1. Numerical calculations

Fig. 8 shows an example of the position vs. time curves for a dislocation of length 1000b at different temperatures and an
applied stress of 1000 MPa on a f110g plane. Velocities are obtained from linear fits to the data. All simulations share the
same qualitative features as those shown in the figure. This linear behavior has been confirmed at room temperature and
low stresses in carefully-performed experiments in Fe (Caillard, 2010, 2013).

In Figs. 9–11 we provide detailed results as a function of s and T for each value of L. Each panel includes velocities con-
sidering Schmid and non-Schmid effects. In advance of discussing these results and their implications in detail in the follow-
ing section, we note the following features from the figures:
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1. When the MRSS is applied on f110g planes, using Schmid’s law results in velocities that are larger than when considering
non-Schmid effects. This difference is negligible at stresses below 600 MPa and gradually grows up to a factor of two in
some cases.

2. On f112g planes, by contrast, this tendency is reversed, with the difference being noticeable already at low stresses.
3. When including non-Schmid effects, dislocations move faster at lower temperatures than at higher ones at the highest

stresses (>1400 MPa). We will show below that this is a consequence of self-pinning, which is favored in that regime.
Using Schmid’s law, this tendency is observed in some selected cases, but not generally.

4. At high stresses, there are no appreciable differences between the velocity response for L ¼ 100b; L ¼ 1000b, and
L ¼ 4000b lines. A detailed investigation of the length dependence of the dislocation velocity will be conducted below.

4.2. Dislocation length dependence

It has been traditionally assumed that screw dislocation velocity depends linearly on its length, a dependence introduced
by construction in dislocation dynamics models (Tang et al., 1998; Naamane et al., 2010) but also confirmed experimentally
in some limited cases at room temperatures and low stresses (Caillard, 2010, 2013). Here we perform a systematic study of
dislocation velocity as a function of L at several temperatures and stresses, and for Schmid and non-Schmid conditions. First
we study nominally the same regime as in the experimental works by Caillard (2010), i.e. room temperature (300 K) and low
stress (200 MPa). We present results for the two slip systems of interest in Fig. 12, where the linear dependency is clearly

(121)AT

[111] (110)

(211)T

+χ
-χ

Stress 
[σ P]

0.0

0.5

1.0

1.5
EAM data

Schmid law
Non-Schmid fit

Fig. 7. Dependence of the critical resolved shear stress with the angle between the MRSS plane and the primary glide plane. The standard Schmid law is
shown as a vertical green-colored line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
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distinguished. This is a direct consequence of the form of Eq. (3), when nucleation is the rate-limiting step and the dynamics
is governed by the existence of one single kink-pair on the line at a given time, i.e. l1 þ l2 ¼ L. This is the expected behavior at
low strain rates or in quasistastic conditions.

However, as the stress and/or the temperature increase, this trend becomes gradually weakened until it is lost altogether.
Fig. 13 shows results for s ¼ 1000 MPa at different temperatures. In this situation, multiple kink-pairs may coexist at once,
giving rise to cross-kinks and other self-pinning features that remove the linear dependence on L. These are the conditions
that are representative of high-strain rate situations.

4.3. Trajectory

Next we analyze the impact of considering non-Schmid effects on the trajectory of a screw dislocation projected on the
[111] plane. Fig. 14a shows an example at 300 K and 200 MPa where the MRSS is on the ð!110Þ plane (for this analysis we use
the axes convention given in Fig. 1). As the figure shows, considering non-Schmid effects results only in a slight deviation
from the MRSS plane, characterized by sporadic slip episodes on the ð!101Þ plane forming þ60- with the MRSS plane. More
revealing is perhaps the case of glide when the MRSS is resolved on a f112g plane – ð!211ÞT to be precise. In this case, Schmid
behavior is generally recovered when Eq. (2) is used, as Fig. 14a illustrates. The trajectory in this case follows a zig-zag pat-
tern, characteristic of wavy slip observed in bcc systems at low temperature (e.g. Franciosi (1983)). However, non-Schmid
behavior results in effective glide on the ð!101Þ plane, forming þ30- with the MRSS plane. This behavior is not inconsistent
with recent Laue diffraction experiments of slip in W (Marichal et al., 2013) and with MD simulations performed with the
same potential employed here by Cereceda et al. (2013).

At higher stresses and temperatures (cf. Fig. 14b) the same general behavior can be observed, although the deviation from
the MRSS plane for non-Schmid f110g loading is more notable than under low stress/temperature conditions. In all cases,
deviations from the MRSS plane are reliably in a counterclockwise direction. This is a direct manifestation of the twin-
ning–antitwinning asymmetry that biases kink-pair nucleation toward planes that are consistent with the critical stresses
shown in Fig. 7.
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Fig. 9. Velocity–stress relations for L ¼ 100b for all temperatures, stresses, and including Schmid and non-Schmid loading.
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4.4. Dislocation self-pinning

The reason for the loss of linearity in the v–L dependence at high temperature or stress (Fig. 13a and b) is related to the
increased probability of forming kink pairs on multiple glide planes simultaneously. According to Eq. (3), this probability
increases with temperature, stress, and line length, consistent with the behavior discussed above. As alluded to in Section
2.2, in multislip conditions the interaction among kink pairs on different planes results in cross kinks. These defects essen-
tially halt the progress of the dislocation by acting as pinning points that must be overcome before motion can resume.
When this happens, debris loops are formed in the wake of the main dislocation. Fig. 15 shows the final configuration after
5000 kMC cycles for a screw dislocation of length L ¼ 1000b under f112g-Schmid loading at 1000 MPa and a temperature of
1800 K. The figure clearly shows trailing chains of debris loops. The reader is referred to the work by Marian et al. (2004) for
more details on the atomistic characteristics of this process. Here we quantify the formation of these loops and relate it to
dislocation self-pinning and slowing down.

From analysis of trajectories such as that shown in Fig. 15, the number of debris loops per unit time per unit length can be
tallied as a function of s; T; L, and MRSS plane. This debris loop generation rate – which we term _c – is shown in Fig. 16 for
f112g non-Schmid loading for a dislocation with L ¼ 4000b. As expected, _c increases with increasing temperature and stress.
However, for a given temperature and glide condition, the loop generation rate per unit length is independent of L. This is
illustrated in Fig. 17, where _c is shown as a function of stress for f112g non-Schmid conditions and at 900 K for L ¼ 100,
1000, and 4000b. In other words, the debris loop generation rate only depends on temperature, stress, and the glide condi-
tion. The example shown here is representative of other temperatures and MRSS plane orientations.

These results show that there may be a correlation between the degree of self-pinning in Figs. 9–11 and the value of _c for
each case. For the specific example shown in Fig. 17, Fig. 11b suggests that the dislocation velocity deviates from the nominal
exponential behavior at a stress of +1500 MPa. This corresponds to a value of _c ¼ 1:5, 108 s&1 b&1 (the approximate value of
the three curves in Fig. 17 at 1500 MPa). This apparent threshold is of course temperature dependent and varies with loading
orientation, although here we only consider the case showcased in Figs. 16 and 17.
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4.5. Computational efficiency

As discussed in the previous section, the compounded effect of stress, temperature, and initial screw dislocation length, as
well as stress orientation, is to enhance the probability to nucleate kink-pairs in multiple slip planes. This increases the number
of segments and may lead to a stalled kinetic evolution as a consequence of self-pinning. Both of these phenomena decrease the
computational efficiency of the kMC code, interpreted as the utilization of CPU time to result in net dislocation motion. The
number of segments increases the numerical workload of the OðN2Þ segment-segment stress calculation function,5 while
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5 Profiling tests reveal that > 92% of the CPU time in any given kMC cycle is spent in this function.
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self-pinning arrests the dislocation progress resulting in slower net motion. To assess these overhead costs quantitatively, we plot
in Fig. 18 the dependence of the computational efficiencyg as a function of applied RSS and L. The calculations were performed for a
fixed number of 2000 kMC cycles at 900 K. For clarity we display g in arbitrary units to showcase the effect of each parameter stud-
ied, with quantitative details about the numerical values in each case given in Appendix C. As shown in the figure, increasing the
stress, the dislocation line length, and/or loading on f112g planes, all contribute to efficiency losses. Stress and temperature are
generally equivalent in their effect on g, and so here only the impact of s is evaluated.

5. Discussion

Motivation for using kMC simulations – The motion of screw dislocations proceeds via the thermally-activated nucleation
of kink-pairs and kink propagation along the screw direction. Kinks are atomistic entities – as described in Fig. 4 – but also
elastic ones. This means that their properties must be characterized at the atomistic scale, but their effects can be potentially
long-ranged. Dynamically, by virtue of its rare-event nature, kink pair nucleation operates on time scales that are hardly
accessible by atomistic methods. This precludes, in most cases the use of direct MD or other atomistic methods. However,
dislocations containing kink pairs are subjected to long-range elastic self-forces, which have to be integrated along the dis-
location in order to be evaluated and resolved spatially. As this is typically very numerically-intensive, we resort to discret-
ization methods that treat dislocation lines as piece-wise entities in which all segments interact with all segments. This, for
its part, precludes the use of effective-medium methodologies such as the line-tension approximation or other techniques in
which these OðN2Þ interactions are not captured. KMC, in our mind, offers the ideal alternative to bridge these two limits. On
the one hand, the dislocation is treated as a piece-wise object attached to an underlying lattice. This allows us to represent
some of the most important atomistic features of the dislocation fairly accurately. At the same time, this piece-wise repre-
sentation enables the calculation of all the elastic forces in an efficient manner. The result is a method that can access time
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scales long enough to statistically capture dislocation motion, yet it retains sufficient detail to accurately provide a clear con-
nection to the underlying atomistic physical features.

Comparison with MD results – One of the main motivations behind the development of our kMC model was MD’s inability
to sample thermally activated motion within its space and time limitations. It is then useful to compare MD and kMC results
of screw dislocation glide subjected to nominally identical boundary conditions. However, as discussed above, the
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overdriven nature of MD simulations causes the occurrence of cross-kinks and associated debris for line lengths for which
the kMC simulations predict smooth glide. This is illustrated in Fig. 19, where a screw dislocation of length 100b is seen to
leave vacancy clusters behind at 300 K and 1100 MPa of stress applied on a f112g plane. For the current interatomic poten-
tial, the threshold length below which cross kinks are not seen to occur was estimated to be 25b (Cereceda et al., 2013). This
is below the length for which kMC simulations can support an elementary kink pair. Therefore, we are forced to make an
imperfect comparison between the MD results with L ¼ 25b and the kMC results for L ¼ 75b, which is near the minimum
length in kMC calculations to contain one kink-pair.

Results from both approaches are shown in Fig. 20. The figure shows that the MD velocities are systematically higher than
their kMC counterparts below 1500 MPa. Above this value, the kMC velocities at 300 and 600 K overtake the MD-calculated
values. It is interesting to note that the qualitative shape of the MD curves coincides with those of the kMC curves at the
highest temperatures of 1200 and 1800 K. This is symptomatic of the limitations of MD, which even at low stresses and tem-
peratures create simulation conditions that are representative of higher values. It must also be kept in mind that a sensitivity
study has not been conducted on the kMC parameters, and thus the present comparison is only valid inasmuch as the current
parameterization can be considered a sufficiently valid one for the method. In terms of computational overhead, MD simu-
lations are approximately three to seven orders of magnitude costlier than their kMC counterparts on the basis of the metric
employed in Table C.3. We refer the reader to Appendix C for more details.

Dislocation self-pinning – Self-pinning occurs as a consequence of the formation of cross-kinks, which act as strong sessile
junctions. Cross-kinks may be resolved topologically by complementary kink pairs, resulting in the closing of debris loops.
The energy expended in producing debris loops is taken out of the total mechanical work available to make the dislocation
glide, which results in an effective ‘reduced’ stress and, therefore, lower velocities. Physically, self-pinning is seen to become
important above a certain generation rate threshold, which correlates with a leveling-off of dislocation velocity curves as a
function of stress.

Fig. 19. MD simulation of a screw dislocation under the following conditions: L ¼ 100b; T ¼ 300 K, rRSS ¼ 1100 MPa, MRSS plane ' f112g. After a few time
steps, the dislocation starts producing debris in the form of vacancy and interstitial clusters. These are akin to small dislocation loops in he kMC simulations.
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This notion of threshold generation rate originates in the creation of kink-pairs on multiple slip planes, whose effect in the
kinetic behavior depends on the combined effects of cross-kink production and resolution. An enhanced probability of kink
pair production (brought about by increasing temperature, stress, and/or multislip conditions) may facilitate the production
of cross-kinks, leading to potentially higher self-pinning. At the same time, the probability for resolution of these is also
intensified by the same processes. Resolution of cross kinks results in debris loop production. Beyond the apparent debris
generation threshold, however, the production of cross-kinks overruns the likelihood of resolution, effectively arresting
the dislocation progress and stagnating the velocity increase with temperature and stress. When this happens, debris pro-
duction is simply a manifestation of self-pinning on the larger scale. This is one of the reasons leading to the length inde-
pendent behavior observed at mid-to-high temperatures and stresses (cf. Fig. 13), and which may be behind the
anomalous behavior of some dislocations observed experimentally (Hsiung, 2007).

Extraction of effective mobility laws – Ultimately, the data compiled in this work via extensive kMC calculations must be
used to fit mobility functions suitable for, e.g. dislocation dynamics, phase field, or crystal plasticity simulations (see for
example Tang and Marian (2014)). The deviations exposed by our calculations from the expected exponential behavior
due to self-pinning call for a possible fitting function of the following type:

vðs; TÞ ¼ A0sn0 f 0ðs; TÞ 1& B0f 0ðs; TÞ
& '

f 0ðs; TÞ ¼ exp &DH0

kT
1& sp0& 'q0

# $ ð9Þ

where A0; B0; n0; p0, and q0 are all adjustable parameters and s is defined as in Eq. (2) or (B.4). The above expression captures
the leveling-off displayed in the v–s relations at high stress and temperature. By way of example, here we fit the results for
L ¼ 4000b. Table 2 gives the parameters under each specific glide condition. Fig. 21 shows the fit for non-Schmid conditions
on a f112g plane. The agreement between the fitting functions and the data is similar for other glide conditions and/or values
of L.

Limitations of the method – We conclude this section discussing some of the limitations of our model. First, the sampling
function (3) contains several parameters with exponential dependence that have been obtained via atomistic calculations
using a recent interatomic potential. As such, they are subjected to errors associated with the atomistic technique used
(NEB), the type of potential and its parameterization (EAM), and the least-squares fitting procedure. In a way, all these errors
are unavoidable – in the sense that we have employed ‘state-of-the-art’ techniques and procedures – but their impact on the

Table 2
Adjustable parameters for the fitting function given in Eq. (9). The units of A0 are such that vðs; TÞ is in m s&1, i.e. m s&1 MPa&n. All other parameters are non-
dimensional.

Temperature range (K) A0 n0 B0 p0 q0

f110g Schmid loading
All temperatures 3693.4 2.47 0.97 0.16 1.00

f110g Non-Schmid loading
300 698.2 0.30 0.0 1.15 2.97
> 300 1444.2 1.78 0.72 0.26 1.40

f112g Schmid loading
All temperatures 755.6 0.38 0.50 0.22 1.01

f112g Non-Schmid loading
. 600 2084.2 1.39 0.68 0.81 2.45
> 600 3416 2.72 0.89 0.19 1.32
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overall kinetics, although unassessed at the moment, might conceivably be notable in some cases. Next, the very physical
foundation of the code – the Arrhenius expression for the thermally activated kink-pair nucleation rate – may be called into
question under some of the conditions explored here. Indeed, at high stresses (and temperatures) the kinetics is better rep-
resented by generalized Arrhenius forms, e.g. the Jackson formula (Swinburne, 2013), and this may affect the high stress/
temperature tails of the velocity–stress relations given in Figs. 9–11. The representation of dislocation segments may also
be a source of errors in our setting. Kinks and screw segments are joined by sharp corners that give rise to stress singularities
– these are avoided here by resorting to a screening distance within which the stress is not calculated – that are artifacts of
our piecewise rectilinear representation of dislocation lines. Another physical phenomenon not captured in these simula-
tions is the softening of the elastic constants and Peierls (critical) stress with temperature. In particular, today’s computa-
tional resources permit the direct calculation of the temperature dependence of the critical stress (Gilbert et al., 2013). It
is not clear at this point how significant this dependence is on the dislocation velocities calculated here. Finally, it is worth
mentioning that the impact on dislocation motion of non-glide stresses – another source of non-Schmid effects – is not pres-
ently considered in this work, although its implementation is straightforward if the data were available.

6. Summary

We have developed a kinetic Monte Carlo model of thermally-activated screw dislocation motion in bcc crystals, with a
current parameterization for W using a state-of-the-art interatomic potential. Our method includes all relevant physical pro-
cesses attendant to screw dislocation motion, including – for the first time – kink diffusion and non-Schmid effects.

With the versatility and efficiency afforded by our kMC algorithm, we have studied dislocation mobility as a function of
stress, temperature, initial dislocation line length, and MRSS plane orientation. An attractive feature of the present calcula-
tions is that they allow us to separate important mobility dependencies and assess their impact on the kinetics individually.

We find that non-Schmid effects have an important influence on the absolute value of the velocity as function of both
stress and temperature, suggesting that they cannot be neglected in plasticity simulations. We also find that at sufficiently
high stresses and temperatures, self-pinning processes control dislocation motion. Finally, some effective fitting functions
are proposed that capture the essential features of dislocation motion to be used in more homogenized models of crystal
deformation.
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Appendix A. Computing diffusion and drift coefficients of isolated single kinks

To generate isolated kinks in an MD supercell, we use especial boundary conditions that enforce a tilt equal to a lattice
vector k. Depending on the value of k kinks of opposite signs – ‘right’ and ‘left’, to employ the usual convention – are created
in cells containing a balanced dislocation dipole. These configurations are then equilibrated at finite temperature and the
simulation output is then time averaged and energy filtered in both zero and finite stress conditions to produce a series
of kink positions x from which a kink drift and diffusivity can be statistically determined. This procedure is described in
detail by Swinburne et al. (2013), and a typical simulation supercell (containing around 106 atoms) is depicted in Fig. A.22.

The results of these simulations are displayed in Fig. A.23. Kinks were observed to freely diffuse with a diffusivity
D ¼ kT=B under no applied stress with fully periodic boundary conditions, while, under stresses of 2–10 MPa applied to
the bounding ð10!1Þ planes, kinks were observed to drift with a viscous drag law _x ¼j r " b j =B. Although the two screw dis-
locations eventually annihilate under applied stress, for a sufficiently wide and long supercell, the kinks drift independently
for at least two supercell lengths (/600 Å) before any influence of their mutual attraction can be detected.

The drift and diffusion simulations are fitted to the Einstein relation:

D ¼ kT lim
jr"bj!0

_x
jr " bj

whereupon it is seen that the viscous drag B is independent of temperature and shows little variation between left and right
kinks. The final mobility laws were determined to be vk ¼ 3:8, 10&6s for k ¼ 1=2½1!11* (‘right’ or ‘interstitial’) kinks and
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vk ¼ 4:0, 10&6s for k ¼ ½010* (‘left’ or ‘vacancy’) kinks. These velocities are in m s&1 when the stress is in Pa. Phonon scat-
tering treatments (Hirth and Lothe, 1991) predict that B should increase linearly with temperature due to the increased pho-
non population, but the observed temperature independence of B agrees with previous studies of kink diffusion (Swinburne
et al., 2013) and other nanoscale defects (Dudarev, 2008).

Kinks are strongly coupled to thermal vibrations, so that over a time typically equal to the inverse of the Debye frequency
thermal vibrations dissipate any inertia possessed by a kink, causing kinks to exhibit linear viscous motion. This is what jus-
tifies the assumption of constant kink velocity in our simulations.

Appendix B. Implementing non-Schmid effects in the kinetic Monte Carlo calculations

In the reference system used in Fig. 1, the MRSS is unequivocally defined as:

rMRSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

xz þ r2
yz

q

with

hMRSS ¼ arctan &rxz

ryz

( )

and

v ¼ hMRSS & h

For the purpose of the implementation of non-Schmid effects, we express Eq. (2) in terms of the MRSS by noting that, from
Fig. 1, rRSS ¼ rMRSS cos v:

Fig. A.22. Illustration of kink drift simulations. Kinks on a 1=2h111if10!1g screw dislocation dipole, characterized by a lattice ‘kink’ vector k, are subject to
an applied stress on bounding ð10!1Þ planes. Under no applied stress with fully periodic boundary conditions the kinks diffuse freely. Inset: Cartoon of the
supercell along ½10!1*, illustrating the relation of the kink vector to a kinked dislocation line.

Fig. A.23. Results of kink drift simulations for k ¼ 1=2½1!11* (right) kinks on 1=2h111if10!1g screw dislocations. We see a temperature independent drift
velocity vk ¼j r " b j =B in very good agreement with B determined from zero stress kink diffusion simulations (green lines). Inset: Results from kink
diffusion simulations. We see the diffusivity D ¼ kT=B rises linearly with temperature, meaning that B is independent of temperature.
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sðvÞ ¼ rMRSS cosv
rP

ðB:1Þ

Schmid law states that the critical stress rcðvÞ depends on v as:

rcðvÞ ¼
rP

cosv ðB:2Þ

which results in rewriting Eq. (2) as:

sðvÞ ¼ rMRSS

rcðvÞ
ðB:3Þ

Proving that Eqs. (2) and (B.3) are equivalent is straightforward:

rRSS ¼ rMRSS cos v
¼ rMRSS cosðhMRSS & hÞ
¼ rMRSS sin hMRSS sin hþ cos hMRSS cos h½ *
¼ rMRSS sin hMRSS sin hþ rMRSS cos hMRSS cos h

¼ &rxz sin hþ ryz cos h

From this, non-Schmid effects are introduced by substituting the following expression:

rcðvÞ ¼
a1rP

cosvþ a2 cos p=3þ vð Þ

into Eq. (B.3):

sðvÞ ¼ rMRSS

rcðvÞ
¼ rMRSS cosvþ a2 cos p=3þ vð Þð Þ

a1rP
ðB:4Þ

whence it is readily seen that Schmid behavior is recovered for a1 ¼ 1 and a2 ¼ 0. Fig. B.24 showcases the difference between
sðvÞ for Schmid and non-Schmid behavior as a function of h.

Appendix C. Computational efficiency

The computational efficiency is assessed in the following manner. For the purposes of this paper, we assume that the pro-
ductivity of a kMC run is based on the distance traveled by a dislocation during a fixed number of cycles, as a longer distance
results in better converged velocity calculations and more precise data. Our performance metric of choice is then to normal-
ize the distance traveled in each case by the CPU time invested in achieving it. Table C.3 gives the numerical values for this
metric in Å per second of CPU time for various dislocation lengths and applied stresses. These data are the basis for what is
shown in Fig. 18.

As a point of comparison with ‘equivalent’6 MD simulations, we first resort to the data published by Cereceda et al. (2013),
where the nominal cost of one time step per atom is + 1:5, 10&5 CPU seconds for the interatomic potential employed here. For
750,000 atoms, that is 11.25 CPU s per time step. Typical MD simulations involve 105 steps of 1 fs each, which results in

Non−Schmid
Schmid

−90 −60 −30 0 30 60 90

θMRSS [°]
−90−60−300306090

θ [°]
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−1.0

−0.5
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1.5

s

Fig. B.24. Comparison between the normalized stress s under Schmid and non-Schmid conditions as a function of h and hMRSS. Recall that v ¼ hMRSS & h.

6 In the sense that they are designed to measure similar properties.
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1:12, 106 CPU seconds. Per the analysis by Cereceda et al. (2012), those simulations achieve displacements on the order of
850 Å, which results in 7:5, 10&4 Å per CPU second. This represents efficiencies of three to seven orders of magnitude lower
than our kMC simulations.
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