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ABSTRACT OF THE DISSERTATION

Metal Artifact Reduction in Computed Tomography

by

Seemeen Karimi

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2014

Pamela Cosman, Chair

In computed tomography (CT) imaging, if metal is present in the scan, it

gives rise to streaks and shadows called metal artifacts. We consider two appli-

cations of CT, radiology and luggage screening for aviation security. In radiol-

ogy, metal artifacts make it difficult to evaluate anatomical structures. In luggage

screening, computations on metal-artifact degraded images give rise to false alarms.

Therefore metal artifact reduction (MAR) is an active area of research.

For medical imaging, we improve upon a class of MAR algorithms that

are often called sinogram completion methods. The sinogram (Radon transform)

contains the log-attenuation measured by the scanner. In sinogram completion

methods, portions of the sinogram contaminated by metal are replaced with esti-

mates of the underlying data. Our improvement comes from segmenting artifacts
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from anatomy, based on their spatial and intensity distributions. Segmentation

yields an intermediate image which when forward-projected, guides the sinogram

completion. The corrected sinogram is reconstructed into the final image. We ap-

plied our algorithm to CT scans of the head and found that our results improved

upon the state-of-the-art.

In luggage screening, the variety of scanned articles is larger and the amount

of metal is greater, therefore assumptions cannot be made on spatial and intensity

distributions. Our strategy here is a hybrid one, combining numerical optimiza-

tion with sinogram completion. The numerical optimization de-emphasizes metal-

contaminated projections. We compared our method to previously published MAR

algorithms qualitatively and quantitatively. Our method reduces metal artifacts

and preserves more image details than the compared methods.

We also developed methods to evaluate the accuracy of segmentation al-

gorithms in CT. The first method is based on mutual information of machine

segments (MS) against ground truth (GT) segments. Mutual information is com-

puted from a confusion matrix that contains the quantity of a feature common to

MS and GT labels. The second method is based on feature recovery. We compute

optimal one-to-one correspondence between GT and MS labels, and extract total

and systematic errors. The errors give us insights that can be used for improv-

ing the algorithms. The evaluation of these methods themselves was based on

synthetic problems and human observer evaluation.
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Chapter 1

Introduction

Computed Tomography (CT) is an imaging modality used in radiology,

aviation security and other applications. A CT scanner measures the attenuation of

x-rays by materials, and CT images represent linear attenuation coefficients at each

point. In medical imaging, different biological tissues have different attenuation of

x-rays, which appear as different levels of brightness in a CT image. The CT images

are reviewed by a radiologist for structural or physiological findings. In aviation

security, passenger luggage is scanned in explosives detection systems (EDS), in

which a CT scanner generates images. The images are analyzed by automatic

target recognition (ATR) algorithms.

ATR includes segmentation of potential threats. Segmentation is a chal-

lenging task for intrinsic and extrinsic reasons. Chemically different materials have

overlapping CT density ranges, and there is a nearly unlimited variety of articles

in luggage. This task is intrinsically difficult even if CT images were perfect. In

addition, the ATR algorithms must contend with image degradation from metal

objects. When metal is present in CT scans, it generates streaks and shadows in

images, called metal artifacts, that obscure the surrounding data. For both rea-

sons, in luggage screening, ordinary non-threat objects may produce false alarms.

Resolving false alarms involves high labor cost because alarm bags must be un-

packed or sent for secondary screening [1]. This makes lowering the false alarm

rate an important goal in security scanning.

This thesis is focused on two research problems. The first problem is metal

1
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artifact reduction (MAR). The problem of metal artifacts exists in medical imaging,

which is the most common use of CT. The artifacts obscure information about

anatomical structures, making it difficult for radiologists to correctly interpret the

images or for computer programs to analyze them. Most of the MAR research

is in medical imaging. We started our investigation there. Highly effective MAR

can be achieved by making assumptions on the contents of the scan. Here the

greater emphasis is on image quality, and less on how general it is. However, in

luggage, no assumptions can be made about the contents of the scan. Here the

MAR methods must be robust. The different needs in these applications encourage

different approaches to MAR.

The second problem we focus on is the evaluation of segmentation algo-

rithms. As noted above, the segmentation of luggage images is a difficult task.

The accuracy of segmentation algorithms must be meaningfully quantified in or-

der to evaluate them. Insights into the behavior of the algorithms is desirable so

that they can be tuned or improved.

In this chapter, we present some of the fundamental concepts in CT scan-

ning, which are necessary for this research. Then we introduce the problem of

metal artifacts in detail, including causes, simulations, and a literature review.

Finally, we explain the challenges of segmentation evaluation.

1.1 CT data and image reconstruction

In this section, we give a brief explanation of how cross-sectional images

are reconstructed from CT scanner data, and the underlying assumptions of the

reconstruction methods that relate to our research. Several texts have an excellent

detailed treatment of CT image reconstruction [2–4].

At its heart, a CT scanner consists of one or more x-ray sources that gen-

erate a collimated polyenergetic x-ray beam, as depicted in Fig. 1.1. The figure

depicts a third generation CT scanner, which is the most commonly used. The x-

rays are attenuated by the scanned objects in their path, and then detected by an

array of x-ray detectors. The detectors are scintillator crystal or ceramic elements



3

of a few millimeters in area. The information about the attenuation paths lies in

the discrepancy between the emitted and detected x-rays. The x-ray source and

detector assemblies rotate around an axis, to capture data from various angular

positions. The axis is perpendicular to the plane of rotation, and the intersection

of this axis and the plane is called the isocenter, marked with a “+” in the pic-

ture. The patient bed (or bag conveyor) translates along the same axis, allowing

multiple 2D cross-sections to be imaged in a step-and-shoot mode or in a volume

scanning mode. The set of data collected in this manner is called a sinogram or

projection data. The projection data are reconstructed into a CT image.

Figure 1.1: A simplified diagram of a CT scanner.

1.1.1 Analytical reconstruction

Consider a function f(M) where M is a vector representing a point in some

coordinate system. Consider lines or planes L with normal vector −→n and distance

ρ from the origin. The Radon transform is an integral transform [3].

Rf(ρ,−→n ) =

∫
M∈L(ρ,−→n )

f(M)dM (1.1)
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Therefore, it is a linear transform. In two dimensions, we define

p(θ, t) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − t)dxdy (1.2)

CT scanner projection data are usually acquired in fan beams. The rays

in fan beam data converge at the source as shown in Fig. 1.1. The fan rays are

usually sorted into a set of parallel rays in a procedure called re-binning [2]. These

parallel projections are the 2D Radon transform, also known as a sinogram. The

parallel projections are reconstructed into a two-dmensional image. A CT image

along with its sinogram is shown in Fig. 1.2.

Figure 1.2: A CT image and projection data (Sinogram). In the sinogram, the
view direction is vertical and the detector samples in a view are along the x-axis.

Taking the Fourier transform (FT) of the parallel projections, Eq. 1.2 gives

∫ ∞
−∞

p(θ, t) exp−2πjωt dt =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − t)e−2πjωtdxdydt

(1.3)

Pθ(ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πjω(x cos θ+y sin θ)dxdy (1.4)

Pθ(ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πjω(ω cos θx+ω cos θy)dxdy

= F (ω cos θ, ω sin θ)

(1.5)
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This equation is known as the Fourier Slice Theorem, and is the basis for analytical

tomographic reconstruction. It says that the 2D FT along a radial line is equal to

the 1D FT of the projection data at the view angle equal to that of the radial line.

Therefore it provides the required relationship between projections and the image

through the FT.

Now considering

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πj(ux+vy)dudv (1.6)

We change to polar co-ordinates

f(x, y) =

∫ π

−π

∫ ∞
0

F̃ (ω, θ)e2πj(ω cos θx+ω sin θy)ωdωdθ (1.7)

Using the relationship F̃ (θ, ω) = F̃ (θ + π,−ω), we get

f(x, y) =

∫ π

0

∫ ∞
−∞
|ω|F̃ (ω, θ)e2πjω(cos θx+sin θy)dωdθ

=

∫ π

0

∫ ∞
−∞
|ω|Pθ(ω)e2πjω(x cos θ+y sin θ)dωdθ

(1.8)

This equation, known as filtered backprojection (FBP), is the most com-

monly used form of Radon transform inversion in CT. The inner integral consists

of filtering with the “Ram-Lak” kernel, and the outer integral is backprojection.

Since this is a transform inversion, it assumes ideal data. Since the data from

a CT scanner are not ideal, they are preprocessed in various ways to approxi-

mate ideal (and consistent) data. The preprocessing includes corrections for offset

(dark current), gain, faulty-detector elements, cross-talk, after-glow, beam hard-

ening, scatter and detector element-specific nonlinearities. Details of the complete

practical system are outside the scope of this thesis.

1.1.2 Statistical reconstruction

Statistical reconstruction algorithms model the non-ideal nature of data

acquisition. These algorithms can model geometric imperfections or irregular ac-

quisition geometry and, most importantly, include noise models. A large body

of literature has been developed. Well known reconstruction algorithms include
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maximum likelihood expectation maximization (MLEM) [5], maximum a posteri-

ori (MAP) reconstruction [6], and Algebraic Reconstruction Technique (ART) [7].

Since these algorithms include a noise model, they can obtain lower-noise recon-

structions than analytical reconstruction, which makes them useful for low-dose

scanning. These algorithms are slow, and not yet in commercial use.

An inverse problem can be expressed by the model Ax = b. In statistical

reconstruction, the system matrix A is the forward projector, b is the observed

data (projection data) and x are the model parameters we must estimate. MLEM

gives the maximum likelihood estimates for the parameters x. MAP reconstruc-

tion allows the use of a prior, which provides regularization. The prior is usually

a Gaussian or generalized Gaussian pdf. ART is a projection-onto-convex-sets

approach that is fast, but does not model noise or natively use regularization.

1.1.3 Image units and viewing

Reconstructed images are represented in Hounsfield units (HU). In the HU

scale, water is represented by 0 HU, and air by -1000 HU. Since material atten-

uation depends on x-ray energy, this scale is an artificial one. CT scanners must

be calibrated so that air and water take on those values. Sometimes, a modified

Hounsfield unit is used (MHU). The MHU scale is offset from the HU scale so that

air is zero and water is 1000 MHU. In industrial CT, units of inverse centimeters

are sometimes used.

The display tools for digital images usually show about 256 gray-scale levels.

A viewing window width (WW) maps a range of CT values onto the display range.

The center of the window, called the window level (WL), is at the center of the

display range.
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1.2 Metal artifacts: causes and previous research

1.2.1 Sources of metal artifacts

Metal artifacts are caused by beam hardening (the preferential attenuation

of low energy photons in a polyenergetic x-ray beam), photon scatter, partial

volume effects, photon starvation, and data sampling errors [2, 8]. Data sampling

errors can be caused by inexact detector or view positions, cone beam effects [8]

or patient motion. Streaks and shadows are created in the images, degrading their

quality for viewing or processing [2]. Beam hardening and scatter may cause large,

deep artifacts, that cannot be removed by filtering or destreaking methods. An

image with metal artifacts is shown in Fig. 1.3.

Figure 1.3: A CT image of a suitcase (left) and CT image of a head (right) have
metal inserts. The artifacts from the metal inserts are indicated by the arrows.

In a linear reconstruction method, the underlying assumption is that the

data are ideal and x-rays are monochromatic. Suppose I0 represents the number

of photons emitted from the x-ray tube per unit time, along a particular direction,

and I represents the number of photons at the detector. Then monoenergetic

attenuation is described by the Beer-Lambert Law [4]:

I(s, θ) = I0e
−

∫
s+lθ∈L µ(s+lθ,E0)dl (1.9)

The integration here is over the scanned space L between source and detector, s is a

vector representing the source position, and θ is a unit vector in the direction from

the source position to a detector element. The Radon space data, i.e., projections,
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are recovered by

p(s, θ) =

∫
s+lθ∈L

µ(s+ lθ, E0)dl = log

(
I0

I(s, θ)

)
(1.10)

In CT scanners, the x-ray beam is polyenergetic. Fig. 1.4 shows an example

of an x-ray spectrum.

Figure 1.4: A spectrum from an x-ray tube.

If the spectrum is denoted by S(E), then polyenergetic attenuation is de-

scribed by the following equation [4]:

I(s, θ) =

∫
S(E)e−

∫
s+lθ∈L µ(s+lθ,E)dldE (1.11)

This equation means that the attenuation measured with Eq. (1.10) always

underestimates the true attenuation, as shown below.

CT scanners are calibrated to scan tissue-like substances so that images

can be reconstructed with linear algorithms. This procedure is called “flattening”.

The calibration consists of scanning a water phantom and measuring the apparent

attenuation for different lengths of the phantom. A polynomial is fit to the mea-

sured attenuation and a compensating polynomial is calculated. This polynomial

correction is applied to all the measured data. Then, the corrected projections can

be reconstructed by FBP or other linear algorithms. Tissue like substances are

similar to water, and the polynomial correction gives an acceptable approximation

to the data.

When metals are present in the scans, the polynomial approximation does

not suffice to correct the data. The measured projections become inconsistent, and
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Figure 1.5: Theoretical and measured attenuation against object length. The
measured attenuation is always lower than the theoretical attenuation, due to
beam hardening.

the assumption of linearity in reconstruction breaks down, giving rise to artifacts.

As we will see through the use of simulations in the next section, simple calibrations

cannot be accurately performed for metals, as are done with water.

1.2.2 Simulation study

In order to understand how beam hardening from metals appears as ar-

tifacts, we simulated axial projections of ellipsoids in air of varying eccentricity,

using the spectrum of Fig. 1.4. The spectrum was obtained using the program

XSPECW2 [9]. The tube voltage is 150 kVp, the beam filtration is 4 mm of

Aluminum, and there is a 10 degree Tungsten anode target. The simulated ma-

terial is iron, whose energy-dependent attenuation cross-sections we obtain with

XCOM [10]. There are 1400 projections, the detector spacing is 0.5 mm at isocen-

ter, and the source-to-isocenter distance is 500 mm. The projections are recon-

structed with a Hanning filter with a cutoff of 10 lp/cm. Our image values are

clamped between -1024 and 15383 HU. A monoenergetic simulation was also done

for comparison, with a nominal CT value of 30,000 HU (µ corresponding to 80keV).

While simulations of metal artifacts have been undertaken before [8], the

shape-dependence of the artifacts was not investigated, nor was accuracy of re-

projections through metal. Our simulations, discussed in this section, explain the

appearance of metal artifacts and show how reprojection through the metal cannot
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quantify the metal.

Fig. 1.6 shows reconstructed images with and without beam hardening.

When the object cross-section is circular, artifact does not exist outside the object.

However, beam hardening is visible within the object in the form of cupping. As the

object’s eccentricity increases, the artifact amplitude outside the object increases.

The dark artifact is along the long axis of the ellipse, and the bright artifact is

along the short axis.

We have not simulated scatter but make a brief note about it. A scatter

event occurs when a primary photon interacts with a particle; a secondary photon

is emitted with a lower energy in a new direction and falls onto a different de-

tector element than the one intersecting the original ray. To integrating detectors

(without energy discrimination), this event cannot be distinguished from a primary

photon detection along the original ray. The apparent attenuation along that path

is decreased because of the false event. CT scanners usually have anti-scatter

plates, fins of tungsten, that focus to the x-ray source. The anti-scatter plates

reduce most of the scatter. Scatter works in the same direction as beam hard-

ening, i.e., the measured attenuation is lower than the ideal attenuation. Scatter

simulations are usually done with Monte-Carlo simulations.

Fig. 1.7 illustrates how the artifact arises from inconsistency in the projec-

tions. Ideal (monoenergetic) and hardened (polyenergetic) projection data filtered

with the Ram-Lak kernel are shown next to the CT image. With a greater ray

length through the hardening material, there is a bigger discrepancy between hard-

ened and ideal projections. In the ideal case, the undershoots of the filtered pro-

jection data in all angles perfectly compensate for the data backprojected across

the image. Consider the central ray in the hardened case. Its amplitude drops less

relative to the ideal in the shorter path (0 degrees) than in the longer path (90

degrees). The undershoots are even smaller along the longer paths relative to the

ideal case (due to more hardening) than the shorter paths. This leaves the shorter

paths with relatively less negative compensation, leading to the bright artifact,

and the longer paths with relatively too much compensation, leading to the dark

artifact.
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Figure 1.6: Illustration of how beam hardening artifacts change with object
shape. The top row shows an ideal (monoenergetic) simulation, and the bottom
two rows show simulated beam hardening. For round objects, beam hardening is
visible only within the object. This is the well-known cupping artifact. As the
metal object eccentricity increases, the artifacts increase as well and are visible
outside the object. The dark artifacts are along the long axis (maximum projec-
tions). Top two rows: Window Width (WW) / Window Level (WL) = 500 / 0,
bottom row: WW / WL= 6000 / 11000 HU.

Note that the attenuation by metal cannot be quantified by simply repro-

jecting the metal voxels in a reconstructed image. The hardening of the beam

causes overestimation of the reprojections in the direction of highest attenuation,

and underestimation in the direction of lowest attenuation. Fig. 1.8 shows that the

discrepancy between original hardened projections and reprojections increases with

eccentricity. This is because the metal object voxels are reconstructed using pro-

jections with different amounts of hardening in each view, but the voxels summed

in each reprojected view are the same voxels. Considering the central ray along

the long axis, the voxels along it were reconstructed using relatively less-hardened
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Figure 1.7: Formation of artifacts by beam hardening.

projections along with the more-hardened projections. When compared with the

most hardened projections, the reprojections will therefore be greater. A similar

reasoning exists for every other ray through the metal. Due to measurement error,

a simple beam hardening inversion cannot be performed as is done for water, or for

bone correction in head images in which the skull is roughly ring-shaped in each

axial slice [11].

It is sometimes thought that noise due to photon starvation is the dominant

cause of metal artifacts. However, images from modern CT scanners are not usually

limited by photon starvation. These scanners have more powerful X-ray tubes and

use a variety of modulation techniques to obtain enough power (photon counts)

to reduce noise while limiting dose. In addition, adaptive filtering is applied in
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Figure 1.8: Reprojections of the thresholded ellipsoids shown in Fig. 1.6(dotted
lines) along with the original hardened projections (solid lines). The top row shows
reprojections along the short axis of the ellipsoids, and the bottom along the long
axis. Reprojections are underestimated along the short axis and overestimated
along the long axis of the ellipsoid.

the scanners to reduce noise to acceptable levels [15]. In our images in Chapters 2

and 3, we do not encounter photon starvation.

1.2.3 Literature review

MAR algorithms often replace the inconsistent projection data, i.e., data

from rays passing through metals, with estimates of the true underlying projec-

tion data, but when these data estimates are inaccurate, secondary artifacts are

generated. The secondary artifacts may be as unacceptable as the original metal

artifacts; therefore, accurate data estimation is critical.

MAR algorithms have been developed in medical CT imaging since the

1980s [12]. Despite the advances, there is no widely accepted solution, and MAR
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continues to be a challenging research problem. There are three main approaches

to MAR algorithms - sinogram completion [12–21], multiple-energy decomposition

[22–28], and iterative reconstruction [23, 29–34]. All these methods operate in

Radon space, also called the sinogram, or called projections.

Sinogram completion has been the most widely explored because of its low

complexity [35, 36]. In sinogram completion methods, the data samples collecting

x-rays attenuated by metal are identified in the projection data. These samples

are called metal traces. In some methods [12, 13, 15, 16, 27, 37–39], metal objects

are located in the original image by thresholding or other segmentation, and the

traces are located by calculation. In other methods, [40], the metal traces are

located by segmenting projections. Metal trace data are replaced with an estimate

of underlying data. The corrected data is used to reconstruct the final image

by FBP. These methods are faster than the other approaches, but accurate data

estimation within the metal traces is a difficult problem.

Early work [12, 13] interpolated the projection data on either side of the

traces. This approach is often called LI-MAR in the literature, where LI is the

abbreviation for linear interpolation. We continue to use this name, and apply it

to all methods that merely interpolate the data, even when the interpolant may be

higher order, or a spline. LI-MAR deletes edges across high-contrast structures,

and thus brings about a new inconsistency in projections, leading to secondary

artifacts.

Fig. 1.9 illustrates the problem. In the diagram, a background region con-

tains a piece of metal and a high-contrast structure, such as bone. Projections at

two angles are shown. In one angle, the bone does not interfere with the metal

projection, and the projection can be interpolated without loss of edge informa-

tion. In the other angle, interpolation of the data would result in an edge being

blurred away. Edges missed in projections result in secondary artifacts in images,

which may be as severe as the metal artifacts.

It was proposed that edges be recorded from the original image [15]. The

edges could be reprojected and subtracted from the scanner projections to cre-

ate a smoother projection on which interpolation could be performed. However, a
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Figure 1.9: Interpolation across the metal traces results in edges being missed.

method for recording edge information in reprojections was not defined, but is crit-

ical in the performance of a MAR algorithm. In recent years, in medical imaging,

image segmentation has been used to identify high-contrast structures, in order to

develop an intermediate image that is often called a prior-image [16,19,21,41]. We

hyphenate the words to avoid confusion with true Bayesian priors or the notion of a

“previous” image. The prior-image is forward-projected (interchangeably referred

to as reprojection) and thus used to guide the data replacement in the scanner

sinogram. The segmentation of separate real data from artifacts is a challenging

task because the CT density ranges of artifacts and materials overlap, as do their

gradient ranges.

It was proposed that the approximate values of image voxels be estimated

using k-means clustering and thresholding [16]. Each voxel would be assigned the

mean value of its cluster. The reprojections of this prior-image would be used as

replacement data in the metal trace. This method was reported to fail when the

artifacts were as bright as bone or as dark as air. (This occurred in most of our test

images). Other methods built upon the notion of a prior-image that contains edge

information. They also differ in how they combine the reprojections of the prior-

image with the scanner data. One method uses the ratio of scanner projections to

prior reprojections [38], instead of the difference method of [15]. Other methods

require repeated reconstructions, each of which improves the prior-image [19, 37].

However, all these methods rely on intensity thresholding to produce the prior-

image, and intensity thresholding leads to voxel misclassification in the prior-image.
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Voxel misclassification leads to false edges or missed edges in reprojections and

therefore to secondary artifacts. Knowledge of the materials and accurate modeling

helps reduce some of this risk [20]. We call the thresholded-prior methods TP-

MAR, for example [16,19,37,38]. Some TP-MAR methods suggest doing LI-MAR,

and then operating on this corrected image to create a prior-image. However the

secondary artifacts from LI-MAR can be intense enough that thresholding still

leads to voxel misclassification. In a recent work [42], after the publication of our

research article), an LI-MAR image is blended with an uncorrected image to create

a prior-image, which is shown to give better images in early experimentation.

In segmentation, assumptions are made about the intensity or spatial dis-

tribution of human tissue and artifacts. However, no such assumptions can be

made about luggage, therefore the medical MAR methods do not work on luggage

scans. In the luggage screening application, as we will see, there are enough metal

traces that the LI-MAR image is not useful. Non-medical methods are described

in [36, 43], that do not construct prior-images, and create less severe secondary

artifacts than LI-MAR. Both methods would have better preservation of contrast

and artifact suppression with prior-images.

Multiple-energy decomposition methods are used to decompose materials

into basis materials. They can compensate for artifacts from beam hardening.

Two or more x-ray spectra are required for energy decomposition, and multienergy

imaging is not standard in clinical or luggage scanning protocols. Iterative recon-

struction of dual energy data has the potential to provide excellent images if dual

spectra and models are available [25]. In a different approach, a radiotherapy

treatment scan is used to generate a prior-image for use with MAR on a diagnostic

scan [44].

Statistical reconstruction algorithms based on scanner modeling have the

potential to reduce metal artifacts [23, 29–34]. These methods aim to remove all

image degradations through accurate modeling of the x-ray generation, attenuation

and detection processes, which is difficult to accomplish, and may even require

that the scanned objects be known in materials, shape or both [31,33,45,46]. The

assumptions are justified in medical imaging. Their main drawback is that they
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are slow.

A recent approach to MAR is to use numerical optimization for recon-

struction without detailed scanner modeling, even without noise modeling. This

approach applies linear approximations to a non-linear problem. It assumes that

the projection data are adequately preprocessed to compensate for other image

degradations, but are still degraded by metal. Numerical optimization has be-

come more reliable and efficient in recent years, but its application to MAR is

limited [20, 47, 48]. The approach in [47] is formulated along the lines of a pre-

vious algorithm to reconstruct images from incomplete projection data by using

algebraic reconstruction technique (ART) alternated with steepest descent of the

regularization, and by enforcing non-negativity at voxel updates [49]. All the metal

trace samples are discarded in [47] to create incomplete data. The images shown

in [47] are of circular phantoms with single pieces of metal, and the performance

with medical or luggage scans has not been demonstrated.

Like the model-based statistical algorithms, numerical solutions do not pre-

serve texture and desired resolution, depending on the objective function chosen.

To correct this problem, in [20] the approach is a hybrid algorithm combining opti-

mization and sinogram completion. They minimize an unconstrained least-squares

(LS) objective function regularized by the total variation norm. The minimization

is done with an interior-point algorithm [50, 51]. Here again, all metal trace sam-

ples are discarded. Since numerical optimization removes texture, the optimum

solution is reprojected, and metal traces from the original sinogram are replaced

with the reprojected traces. In luggage data, a third or even half of the projection

samples may be contaminated by metal. If all these data are discarded, the recon-

structions are poor, as we will demonstrate. A second method that estimates and

corrects for beam hardening from low atomic number metal is described in [20]

but it is cautioned that it is not suitable when partial volume is present. In lug-

gage scanning, we have partial volume in nearly every image, and combinations of

metals. A uniformity constraint around metal is imposed in [48], but has limited

applicability.
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1.3 Evaluation of segmentation algorithms

The U.S. Department of Homeland Security has identified increasing threat

categories and lowering false alarms [1] as requirements for future EDS. The seg-

mentation algorithms in the ATR are continuously evolving to meet lower false

alarm requirements, and new threat categories. These segmentation algorithms

must themselves be evaluated. Incorrect segmentation leads to the apparent merg-

ing of different objects, the apparent splitting of single objects, or both.

Quantitative evaluation of segmentation algorithms is a challenging task in

luggage screening because multiple splits and merges are possible. In addition to

an accuracy score, we would like to gain a deeper understanding of the algorithms’

behavior. First, we would like to know if an algorithm systematically oversegments

or undersegments images or if the error is random. A knowledge of systematic

errors allows us to tune the parameters of a segmentation algorithm, or supplement

the segmentation algorithm with additional steps such as region merging [52].

Second, the ability of a segmentation algorithm to capture object features must be

evaluated. This is because evaluation of features is critical in ATR. Third, since it

is often more important to correctly segment some objects than others, a method

to assign priorities to segments is desirable when evaluating the algorithm, for

example based on image intensity, homogeneity, particular texture or any other

image features that define objects of interest. Fourth, a segmentation algorithm

may have varying accuracy across the feature range, and this knowledge can be

used to establish confidence in a given segment. There can be no restriction on

the number or nature of objects. All these considerations are important in luggage

scanning but are not addressed by existing evaluation methods. A review of the

existing methods is in Chapter 5.

To encourage the development of new segmentation algorithms for CT se-

curity systems, a database of CT images of suitcases was generated by the ALERT

group at Northeastern University, and distributed to five research groups at univer-

sities and corporations [53]. The database contained no threats; the requirement

was to segment all objects present in each suitcase. Segmentation results for a

sample of this data were obtained for detailed quantitative evaluation. In this
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application, objects missed by the segmentation algorithm correspond to type II

error (false negative) in binary classification and spurious objects created by the

segmentation algorithm correspond to type I error (false positive). Our evaluation

methods were tested on these machine segmentations.



Chapter 2

MAR in medical imaging

As discussed in Section 1.2.3, most MAR methods are based on sinogram

completion. These methods estimate projection data within the metal traces, and

the accuracy of data estimates determines reconstructed image quality. The data

estimates should capture the projection of high contrast edges, otherwise secondary

artifacts result from inconsistencies with other data samples. Therefore, recent

methods construct an estimate of the image underlying the artifacts by thresh-

olding the original image or an LI-MAR image (i.e, no prior-image). The image

estimate should capture high contrast details of the original image. This image

estimate is called a prior-image, which is forward projected to obtain projection

data estimates. The data estimates in the trace are combined with scanner data in

the rest of the sinogram. These methods are vulnerable to the misrepresentation

of anatomical edges that reproject onto metal traces.

We have focused our work on the construction of a more accurate prior-

image than defined by previous literature. As we will show later, the prior-image

has a bigger impact on the final image than the data combination method, assum-

ing a reasonable combination method is used.

2.1 Methods

Our method to build a prior-image operates on the original image. The goal

is to discriminate artifacts from real structures in the original image so that we

20
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can replace artifact-contaminated regions of the original image with tissue values,

thus generating a prior-image. The separation of artifact from real tissue is not

a trivial task. The CT number (voxel intensity) ranges of metal artifacts and

anatomical structures overlap, as do their gradient ranges. We base our method

on three observations about metal artifacts in CT images, which are supported by

the simulations in Section 1.2.2:

1. The artifacts are adjacent to metal pieces.

2. The amplitude of the artifacts decreases as the distance from the metal in-

creases.

3. Local maxima through metal in projection space correspond to dark artifacts

in the image.

Based on observation 1, we extract local image extrema that are adjacent

to metal voxels and smaller than a given scale, and replace them with values from

surrounding voxels. We then use region growing to group all the replaced voxels

into labels. The region growing algorithm decides whether to include a voxel in

a label using a threshold that depends on the voxel’s distance from metal, which

makes use of observation 2. The distance-based threshold limits the inclusion

of anatomy into the artifact labels. Also based on observation 2, when a local

maximum label contains both artifact and bone voxels, we use a discriminant curve

to classify voxels within it as belonging either to artifact or to bone. We restore

the bone voxels to the image. Based on observation 3, we locate local maxima

through metal in projection space, and match them to local image minima. As

a result, we can interpret image minima as artifacts even when they are split off

from the metal. The dark artifacts can split off from the metal in the presence of

high density CT objects, or multiple pieces of metal. The approach, implemented

in MATLAB Version 7.10 (The MathWorks Inc., Natick, MA), has the following

steps. Fig. 2.1 shows outputs from each step.
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Figure 2.1: Illustration of the method to generate the prior-image of a CT head
scan. The contour is represented by the dotted line in (a), the image after CBR
and OBR is in (b), the difference image (ab) is in (c), labels from the positive
differences are in (d) the recovery of non-adjacent labels is shown in (e) and the
final prior image is in (f). WW/WL = 200 / 0 HU in (a), (b), (e) and (f). WW/WL
200/ -1000 HU in (c).

Step 1: Segmentation of metal

Metal voxels are segmented by region growing. Seeds for region growing

are voxels above 7000 Hounsfield units (HU). Neighboring voxels are successively

added to the region if they are above 3000 HU. Teeth, which have the highest CT

intensities for human tissue, are usually less than 3000 HU, so that anatomy is not

included in metal labels. Labels are generated for each connected metal region.

We then contour the anatomy to prevent dark artifacts, if present, from blending

into the surrounding air. Fig. 2.1(a) shows the contour by a dotted line. If dark

artifacts blended into the surrounding air (as shown in the rectangle), they would

not be interpreted as local minima. The contouring method we used is described
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in Appendix A.1.

Step 2: Removal of local maxima and minima

Metal artifacts create local maxima and minima around the metal. Lo-

cal maxima and minima are respectively removed using closing-by-reconstruction

(CBR) followed by opening-by-reconstruction (OBR) [54]. CBR is a morphologi-

cal operation that performs grayscale dilation with a structuring element followed

by iterative erosion that is constrained by the original image. Similarly, OBR

first performs grayscale erosion followed by iterations of dilation constrained by

the original image. CBR eliminates dark regions (local image minima), and OBR

eliminates bright regions (local image maxima) that are smaller than the scale de-

termined by the structuring element. Larger extrema, or regions without extrema,

are left alone. CBR and OBR respectively replace voxel values in the closed or

opened regions with values derived from voxels surrounding these regions. The

structuring element should be at least twice as large as any metal piece in the im-

age to use replacement values outside the artifacts. In order to prevent a too-large

structuring element from flooding a local minimum with diffuse bright artifact

values, we recommend clamping the image at a high soft tissue value (100 HU)

and restoring the image values after CBR. The OBR and CBR operations will also

remove anatomical structures that are smaller than the scale of the structuring ele-

ment. Fig. 2.1(b) shows the result of OBR and CBR, where anatomical structures

have been eliminated along with artifacts. We restore the anatomical structures

to the prior-image by using the following steps to discriminate between anatomy

and artifacts.

Step 3: Recovery of non-adjacent anatomical structures

The OBR and CBR processed image is subtracted from the original im-

age. In this difference image (shown in Fig. 2.1(c)), small intensity differences,

attributed to noise or artifact, are eliminated by thresholding. We used a thresh-

old of three times the image noise, which was about 20 HU for our head images.

Next, the positive and negative differences are considered separately. Region grow-
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ing is performed on the negative voxels of the difference image, using an inter-voxel

intensity threshold that depends on distance from the metal. We use a distance-

dependent threshold because from observation 2, we can expect that inter-voxel

variations in artifacts decrease as distance from the metal increases. The distance-

dependent threshold limits the grouping of artifacts with anatomy. We generate a

distance transform of the image, which is the smallest distance from each voxel to

any metal voxel. Our distance-dependent threshold is defined as a function of the

distance transform, as

Tδ(x) = max (Te−aD(x), Tmin), (2.1)

where D(x) is the value of the distance transform at location x, and T, Tmin and a

are constants. We choose T = 5000 HU to accommodate the large variations in or

near the metal, a = 0.05, and Tmin = 100. All values were determined empirically,

but are not critical as shown by experiments (varying a from 0 to 0.2) and Tmin

between 50 and 200 HU. Similarly, region-growing is performed on the positive

differences. We use the same equation and parameters for region growing of the

positive voxels. From region growing, we get labels of positive or negative polarity.

For example, positive polarity labels are shown in Fig. 2.1(d). If the labeled regions

are not in the neighborhood of a metal label, they are interpreted as anatomical

structures, and the voxel values of the original image are restored in those regions.

Fig. 2.1(e) shows the recovery of labeled regions that are not neighboring the

metals. The artifact labels may border metal pieces or be separated by interference

patterns. We define a neighborhood size of 10 mm.

Step 4: Recovery of adjacent anatomical structures

If a region of positive artifact grows into bone, voxels containing bone would

be included in the labeled region and incorrectly replaced with soft tissue values.

We exploit observation 2, i.e., that artifact amplitude drops as a function of dis-

tance from metal. In the positive-polarity labeled regions that remain after the re-

covery of non-adjacent labels, voxel values of the original image are plotted against

the distance transform values. Fig. 2.2(a) shows an example plot. The artifacts
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generate a cluster in the plot. To separate the artifact cluster from non-artifact

voxels, a set of exponential curves is generated with different parameters. The

equation for the family of curves is

Ic(D) = (Imax − Imin)e−cD + Imin, (2.2)

where c is the curve parameter, Imax is the maximum value in the region, and D

is distance (distance-transform value). Imin is the minimum of the region values

and an outlier bound of 200 HU. The outlier bound value was chosen because the

minimum CT number within the artifact cluster was always about 200 HU in our

test cases. In any case, lower artifact intensities are removed in a subsequent step.

We used no outlier bounds for the upper CT value.

For each curve, the number of voxels under that curve is normalized by

the area under the curve. The normalized number of voxels drops past the curve

that includes the cluster as shown in Fig. 2.2(b). We choose a curve that is past

the peak, to ensure we have captured the cluster, even at the expense of some

anatomy. Voxels above this curve are recovered because they are more influenced

by anatomy than artifact.

(a) (b)

Figure 2.2: Clustering to separate artifacts from anatomy. The relationship
between the image intensity and the distance transform for the image in Fig. 2.1
is shown in (a). The line shows the exponential curve with the best separation
of artifact from anatomy. The number of points under each exponential curve,
normalized by the area under the curve, is shown in (b).
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In order to determine whether artifact has indeed grown into anatomy, we

compute, from the intensity distance plot, the highest CT value at each distance.

We use distance bins of 1 mm. Then we compute the skewness of the resulting

distribution. If the skewness is less than 0.15, we assumed that these labels must

have grown into bone. The skewness threshold was selected because in our images,

the skewness values were about 0.3 in images where the artifact did not grow into

bone, and from -0.1 to 0.1 when it did.

Step 5: Deletion of dark artifacts

From observation 3, we can identify local maxima in the projection data

and match them with minima labels (i.e., local minima in images). We compute

centroids and eigenvectors of minima labels. For each of these labels, we reproject

its centroid in the direction of its largest eigenvector. If the centroid projects onto

a point that is in the neighborhood of the local maximum of the metal trace, then

the label is considered an artifact. We have used a neighborhood size of 10 degrees

and 5 mm. To determine the local maxima in projection space, we reproject only

the metal. Fig. 2.3 shows the metal traces. In each projection view, we find the

maxima in the sample direction. There are one or more maxima in each view.

For each trace and for each view, we extract the local maxima values. We fit a

sliding polynomial to the local maxima values extracted at each view. Then we

locate the maxima of the fitted curve. The sliding polynomial reduces spurious

maxima which may appear due to noise or sampling errors. We do not use a

one-to-one correspondence of each local-minimum label with a local maximum in

projections as a requirement for classifying that label as an artifact, because with

multiple projection maxima, negative artifact regions may be combined by region

growing. However, the step allows us to add the minima labels that have broken

off from the metal. We cannot apply this rule for the bright artifacts (image

local maxima), because they do not correspond to local maxima in projection

space, rather, they correspond to regions between the local maxima, and are more

diffuse in appearance than the dark artifacts. The processed image created thus

far is thresholded by the method in Appendix A.2. The segmented metal voxels
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are restored, because each metal piece is a real structure, not an artifact. This

completes the generation of the prior-image, shown in Fig. 2.1(f). This prior-

image is reprojected, and the reprojections are used in interpolation, as described

in Appendix A.3.

(a) (b)

Figure 2.3: Reprojections through metal voxels. The local maxima are shown by
red circles in (a). The image minima isolated by OBR and CBR are shown in (b).

2.2 Results

Our method was tested on axial head CT scans. Figs. 2.4 and 2.5 each

show four cases. In cases 1, 4, 5, 6 and 7, metal artifacts are produced by metal

coils in cerebral aneurysms. In case 2, metal artifacts are produced by a deep brain

stimulator, and in cases 3 and 8, by dental fillings. The original images are shown in

the top row, and images corrected by our MAR algorithm are shown in the second

row. For comparison, results are also shown for LI-MAR and an exemplified TP-

MAR. This LI-MAR is an improvement upon the original algorithm that uses linear

interpolation [13], because this LI-MAR has identical data-fitting and blending to

our MAR method. In LI-MAR, since metal traces are deleted, metal pieces are

removed in the images. Therefore we have added metal pieces back to the LI-MAR

images.

The prior-image for TP-MAR was created by thresholding the LI-MAR im-

age. Although TP-MAR algorithms vary, we used CT thresholds recommended
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in [16,38] for threshold values. Then we used the method for data replacement in

the metal traces described in Appendix A.3. Since the data replacement method

was the same for all the MAR algorithms, the prior-image determined the improve-

ment.

Artifacts are removed by our algorithm even for multiple metal pieces, and

from large metal pieces which produce dark artifacts below -1000 HU (arrow 1),

and bright artifacts with the CT intensity of bone or cartilage (arrow 2). There

were fewer secondary artifacts with our method than the others. There are residual

artifacts in the dental images, especially in Fig. 2.5 (arrow 3), resulting from the

imperfect separation of the artifact from teeth. LI-MAR produces secondary arti-

facts comparable to the original metal artifacts. The TP-MAR images are better

than LI-MAR but not as good as those with our prior-image.

2.3 Discussion

2.3.1 Analysis of results

Our algorithm preserves anatomical structures in the prior-image, which is

why secondary artifacts are reduced. LI-MAR loses edge information in the metal

traces, so estimated data are inconsistent with the rest of the sinogram and sec-

ondary artifacts are generated, as shown by arrow 4 in Fig. 2.4. TP-MAR also

loses edge information as described later, but to a smaller extent than LI-MAR.

Our method operates at a region level while TP-MAR methods operate at a voxel

level. A region is more informative than a voxel in distinguishing artifacts from

anatomy because the region can be examined against more criteria than just a

threshold criterion. We identify a region with constant polarity, and test if the

region or a part of it fits the criteria for artifacts. Considering the positive regions,

we use the Intensity/Distance relationship (observation 2) to separate bone from

bright artifacts. Negative regions can be matched with local maxima in the Radon

transform (observation 3) to identify them as artifacts. A TP-MAR prior-image is

generated by thresholding an image into air, soft tissue or bone. With misclassifi-

cation of artifact voxels as bone or air, large errors may be produced in the final
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Figure 2.4: Four sets of images are shown in columns. Each set contains the
original, the proposed method, LI-MAR and TP-MAR images. In all cases, the
proposed prior-image gives best results. WW/WL=200/40 HU for cases 1, 2 and
4, and =500/0 HU for case 3. Arrows point to examples discussed in the text.
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Figure 2.5: Another four sets of original and MAR images. WW/WL = 200 /
40 HU for cases 5-7 and =500 / 40 HU for case 8.
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corrected image, especially when the ratio interpolation (discussed below) is used.

Therefore, the TP-MAR methods recommend a first-pass LI-MAR to provide an

image with smaller amplitude artifacts, so that thresholding of this corrected im-

age is more likely to create a good prior-image. However, our experiments show

that the secondary artifacts with LI-MAR may be comparable to or worse than

the original metal artifacts. Using poor quality LI-MAR images yields poor prior-

images. In the deep-brain stimulator case with multiple metals (Fig. 2.4, case 2),

the LI-MAR secondary artifacts are worse than the metal artifacts in the original

image (arrow 4). This leads to a prior-image that is worse than the prior from

thresholding the original image. In the dental cases (Cases 3 and 8), the secondary

artifacts are misclassified as anatomical structures by thresholding, and preserved

or enhanced in the final TP-MAR corrected image. Fig. 2.6 shows the different

prior-images responsible for the image quality in Case 4. The original image was

corrected with LI-MAR. The LI-MAR image was then thresholded to produce a

TP-MAR prior-image. Note the partial loss of bone and air pocket structures in

the thresholded prior-image (arrow 5), and better preservation in the proposed

prior-image. The partial loss is why the image quality of the TP-MAR image is in

between that of LI-MAR and our method. The LI-MAR algorithm itself results in

the loss of some edge structure, especially if those structures are close to the metal

pieces.

In order to study the impact of the interpolation technique relative to the

accuracy of the prior-image, we also use the ratio interpolation [38] with our prior-

image and with the thresholded prior-image. This interpolation uses the ratio of

scanner projections and reprojections, so that the reprojections themselves need

not be substituted in the trace. This is a potential improvement on methods that

directly use the reprojections in the metal trace, e.g., [16], because reprojections

may themselves be inaccurate. The interpolation technique results are shown in

Fig. 2.7. Comparing with the difference interpolation (i.e., our data replacement)

shown in Fig. 2.4, we see that in the case of a single metal object, the image

quality of the difference and ratio interpolation methods is nearly the same when

our prior-image was used. The image quality of the ratio interpolation image is
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Figure 2.6: Prior-images corresponding to Case 4. The left image shows a TP-
MAR prior-image created by thresholding the LI-MAR image Fig. 2.4, row 3. The
loss of anatomical edges near the metal leads to a final TP-MAR image that is
not much better than LI-MAR in this example. This is because both LI-MAR and
TP-MAR have missed nearly the same structures. The right image is the proposed
prior-image, and preserves more of the anatomical structure.

nearly the same as the difference interpolation also when the thresholded prior-

image was used. These two results indicate that the prior has greater impact

than the particular interpolation method. Note that the ratio method, however,

only works well when the metal object is removed from the prior-image. The

reason is the same one that we discuss in Chapter 1, i.e., that beam hardening

coupled with thresholding creates over-estimated or under-estimated reprojections.

These reprojections are naturally consistent across view angles, but not once they

are multiplied by the ratio of projections, which are not a constant unless the

reprojections exactly equal the scanner projections. Therefore, ratio interpolation

works well for images with single metal objects, not those containing multiple ones.

For multiple metal objects, the metals should not be left out of the prior-image,

because while interpolating the trace of one metal piece, we must consider the

interfering edges created by the second metal trace. If we leave them out, we

miss edges and create secondary artifacts (arrow 6 in Fig. 2.7). Therefore, the

interpolation method itself has an impact when there are multiple pieces of metal.

Metal objects that are close together will have traces that overlap in more

views than objects that are far apart. For this reason, we recommend that the

metal thresholds be lowered, or the metal objects dilated, so that high frequency
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Figure 2.7: Images reconstructed with ratio interpolation [38] for cases 4 (left)
and 3 (right). The prior-images for the top row images were thresholded LI-MAR
images (Fig. 2.4, row 3), and the prior images for the bottom row images were
from our method. Along with Fig. 2.4, these images suggest that the prior-image
is more critical than the interpolation technique. However, for multiple pieces
of metal, the interpolation technique itself begins to play a role as seen by the
degraded image quality of the right column compared to Fig. 2.4.

secondary artifacts are reduced from one metal trace abruptly entering and leaving

another trace. However, for metal objects that are close together, we are likely

to get some secondary artifacts because we do not correctly quantify the metal

pieces themselves. We saw evidence of this error in Case 2 in Fig. 2.4. There

is also a blurry region around each piece of metal resulting from the smoothing

of data in the spline fit. All MAR algorithms in the literature exhibit similar

blurring. A non-linear correction for reduction of discontinuity may be helpful. In

Cases 3 and 8, the separation of bone from artifact using a one-parameter curve

was imperfect. This is because interference between the four metal pieces makes

the distance-intensity relationship deviate from the exponential form we see with
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smaller or fewer pieces. Also due to constructive interference, the artifacts were

as bright as the metal edges, and were not excluded by thresholding. For these

reasons, the image quality of Case 8 is not as good as the other cases. The image

quality from the other methods is poor too, because the metal pieces are large,

close together, and embedded in dense anatomical structures.

2.3.2 Limitations of this research and future work

One of the limitations of this research is that we have tested our algorithm

only on head images. Optimization and testing of our algorithm for head images

was considered to be of high impact due to the clinical importance of head CTs,

subtle differences in normal and abnormal findings, and the frequent occurrence

of metal artifacts. We have set the parameters at each stage based on CT values

of anatomical tissue, air and metal. We have also tested the algorithm steps

within ranges of parameter values to reduce the risks of over-fitting. However, the

parameters (or the criteria to choose them) may need examination or adjustment

for other anatomical regions, and further studies to assess the performance of our

algorithm on those regions are needed. Another concern is the robustness of the

algorithm in the presence of different implants or more pieces of metal. Our data

set was limited. The cases we tested had endovascular coils, deep-brain stimulators

and dental fillings. These comprise common metal implants in head CT images.

More pieces will lead to more complicated interference patterns. We have seen

that when multiple pieces of metal are close together (as in Case 8), the clusters in

the intensity-distance relationship are not as well extracted by a single-parameter

exponential as they are when there are fewer pieces. Multiple rounds of cluster

identification, or a superposition of discrimination curves may be required in such

cases. In future work, a higher dimensional hypersurface may be investigated,

involving the gradient and other predictors of artifacts, for better discrimination

of bright artifacts from bone. Consideration of gradient amplitude and phase might

help in removing the residual bright artifact in the prior for the dental image.

In future work, we can add to the prior knowledge to build a more accurate

prior image. An anatomical atlas may help distinguish between anatomy and
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artifact. An instance of where an atlas may have been useful is Case 8. The residual

bright artifact in the soft tissue between the teeth in the prior for the dental image

could be identified as unlikely to be anatomical. Machine learning techniques

could potentially be useful for classifying the labels as artifacts or anatomy. There

is much potential for exploration of computer vision and learning algorithms in

developing a prior-image.

2.4 Conclusion

Metal artifacts are predictable because phenomena such as beam hardening

that cause them are well understood. We have made some observations about the

appearance of metal artifacts and used these to segment the metal artifacts from

anatomical structures. We have used the results of the segmentation to build up

a prior knowledge image that guides the data replacement step for an effective

metal artifact reduction. We have tested this concept of using image segmentation

and artifact predictability to discriminate artifacts from anatomy on head images.

The priors resulting from our method produce better quality images than LI-MAR

or prior-images obtained from thresholding other images. We have found that an

accurate prior-image has more impact on final image quality than the choice of a

particular interpolation technique.

This chapter contains material from the paper “Segmentation of Artifacts

and Anatomy in CT Metal Artifact Reduction,” Medical Physics, Vol. 39, Issue 10,

2012. This paper was co-authored by Pamela Cosman, Harry Martz and Christoph

Wald.



Chapter 3

MAR in CT-based luggage

screening

3.1 Introduction

In luggage data, a third or even half of the projection sample rays may pass

through metal. These samples are inconsistent with the linear (log-attenuation)

assumption of Eq. 1.10. If linear reconstruction methods are applied, a model mis-

match is present, which causes metal artifacts to appear in reconstructed images.

The transform based reconstruction methods are analytical inversion formulas, so

intrinsically, they are rigid. In the medical methods, we used assumptions on image

contents to estimate the underlying data in the metal traces, combine the origi-

nal data outside the metal traces with estimated data, and then reconstruct this

combined data by FBP. If the inconsistent data are discarded to once again obtain

a linear model, we cannot use transform-based techniques to reconstruct images,

because the inversion implicitly inserts zeros in the missing data. Zeros are even

more inconsistent with the other projections than the original measurements, and

analytical reconstructions from such data would be meaningless.

We turn to numerical solutions for their greater flexibility. An image in

vectorized form is represented by x and the scanner sinogram by b. Let the forward-

projection model for log-attenuation projections be denoted A. Each cell of the

36
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matrix A, aij, contains the fraction of the voxel j that goes into the measured data

sample i. For noise-free data without residual beam hardening, uncompensated

scatter, sampling errors, patient motion, cone or helical motion, the following

equation holds:

Ax = b. (3.1)

We consider x to be the estimate of the model parameters.

With inconsistent data, there is a model mismatch. Other sources of ill-

posedness are from noise. In prior research, the inconsistent data were discarded to

obtain a linear model. This is outlier rejection. Discarding data, however, raises

the condition number of A, and creates a null space. Regularization is used to

reduce the secondary artifacts that result [20], and non-negativity constraints are

used in [47], as is usually done in statistical reconstruction literature [5,6,49,55,56].

However, in luggage, enough projection data is lost that regularization and non-

negativity cannot compensate. Regularization is imposed on the voxel neighbor-

hood, so it does not reduce large low frequency errors without reducing edges. We

will demonstrate that discarding all the outliers can lead to poor reconstruction.

Our method is also a hybrid method, because we create a prior-image fol-

lowed by forward projection and FBP. However, we retain the metal projection

data but reduce their weights relative to the non-metal data. Our target prior-

image is one that is free of metal artifacts, and has sparse gradients. Our work

can be viewed as an extension of the ideas in [20,47,49] and [15].

To build our prior-image, we exploit the following observations and facts:

1. When there is greater x-ray attenuation through the metal, there is a greater

difference between ideal and measured projection data.

2. Beam hardening and scatter result in lower data measurements than the ideal

(monoenergetic equivalent) measurements.

3. The artifacts from beam hardening and scatter have substantial low-frequency

content.

As will be explained in detail in Section 3.2, we use the first fact to penalize the

projection samples according to the amount of metal. The second point gives us a
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constraint. We exploit the third observation by formulating two optimization prob-

lems and taking their difference to yield an artifact-only image. This observation

allows us to reduce the scale of the problem.

We would like to trade-off some of the inconsistency for a loss of details. We

would like a solution that minimizes some objective function f(x), such that the

error between observed and estimated projection data is small outside the metal

traces, and is some function of the quantity of metal within the traces, as shown

in Eq. (3.2).

min
x
f(x) s.t.

||Ax− b||L < δ i ∈M
||Ax− b||L < εi i ∈M

(3.2)

where εi = e(
∑

j Aijx
m
j ) where xm denotes a vector containing metal voxels, and

is an estimate of the true metal voxel values. The abbreviation “s.t.” stands for

“subject to”.

If εi were cTi x
m, and L = 2, then Eq. 3.2 would be a set of second order

cone programs (SOCP), which is already difficult to solve for large problems. In

this form, we do not know if there is a feasible set. In addition, if εi is not a linear

function of x, the solution is unclear.

We try to investigate a simpler approach as in the medical imaging ap-

plication; our solution (parameter estimates) should trade off inconsistency for

details in the metal trace data. We can continue to use the observed data outside

the metal traces. When the data are combined, they are inconsistent in a different

sense because they capture different levels of detail. However, from all the previous

research we have cited, this combined data produces acceptable images.

We use the equivalence between the forms

min
x

f(x) s.t. ||Cx− d||2 < δ (3.3)

and

min
x
||Cx− d||2 + βf(x) (3.4)
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for some pair β, δ. So,

min
x

f(x) s.t. ||Ax− b||L < δ ≡ min
x
||Ax− b||L + β1f(x) i ∈M

min
x

f(x) s.t. ||Ax− b||L < εi ≡ min
x
||Ax− b||L + βif(x) i ∈M

(3.5)

If we sum over the measurements, we get a problem of a weighted least-

squares (WLS) form, which is a tractable, convex problem:

min
x

1

β1

∑
i∈M

||ATi x− bi||L +
∑
j∈M

1

βj
||ATj x− bj||L + f(x). (3.6)

We formulate a constrained optimization problem to obtain a prior-image.

As mentioned above, a numerical solution may have different spatial resolution

than a desired FBP solution. In Section 3.2.1 we first describe a convex optimiza-

tion problem to construct a prior-image, neglecting resolution considerations, to

explain the objective function and constraint. In Section 3.2.3 we describe the

practical implementation of our complete MAR algorithm.

3.2 Methods

3.2.1 Prior-image reconstruction as a solution of a convex

optimization problem

Eq. 3.6 is a regularized weighted least squares (WLS) problem. A WLS

approach is usually applied to de-emphasize samples based on noise, assuming the

noise is additive, e.g., [56]. In our case, however, we de-emphasize the samples, not

based on noise, but according to the attenuation through metal. The optimization

problem is expressed in the following equation:

min
x

(Ax− b)TWXOrig(Ax− b) + β||x||TV

s.t. IP (Ax− b) + σ � 0.
(3.7)

We first discuss the objective function. WXOrig is a matrix of weights that is

computed based on an initial (FBP) reconstruction, x = XOrig. WXOrig is diagonal,
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and given by the following expression,

WXOrig = diag(w(i)) = exp(−λ
V∑
j=1

aijI1(j)), (3.8)

where V is the number of voxels, and λ is an experimentally determined constant,

set to 0.2. We reconstructed a single image with a few values of λ and selected the

value that gave the best visual result. In Eq. 3.8, I1 is an indicator function:

I1(j) =

{
1 XOrig(j) > M1

0 otherwise.
(3.9)

The threshold M1 is set to 4000 Modified Hounsfield units (MHU). A voxel

above this threshold is interpreted to contain metal or be close to metal. The MHU

scale has an offset of 1000 relative to the conventional Hounsfield scale, so that

water is 1000 MHU and air is zero. We use MHU rather than HU in this chapter

so that “non-negativity” has the correct meaning.

The summation in Eq. 3.8 represents the path length through metal of the

ray that gives projection sample i. We choose an exponential weighting func-

tion because the attenuation of x-rays is exponential [4], and because exponential

weights are monotonic and smooth. Further, a one-parameter function is easy to

tune. Although WXOrig depends on the image, the first term in Eq. 3.7 is quadratic

because WXOrig is computed only once per image.

The regularization term ||x||TV is the total variation norm and β is its

strength. The total variation norm is popular in compressive sensing, and it has

been used for reconstruction from incomplete data [49, 57]. It rewards sparsity of

the gradient. Since this norm is the L1-norm of a linear operator, it keeps the

optimization problem convex. Regularization is needed for stability but it also

contributes to the reduction of artifacts. However, the artifact reduction is mainly

achieved by the weights and constraint.

Now we discuss the constraint in the second line of Eq. 3.7. The symbol

� denotes a vector inequality. This is a linear constraint that has not yet been

explored in the MAR literature. It is motivated by the knowledge that the metal

artifacts are largely due to beam hardening and scatter. These phenomena are
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not additive noise. Both work in the same direction: the measured attenuation is

lower than the ideal (monoenergetic equivalent) attenuation, neglecting noise.

Consider the attenuation equations Eqs. 1.9- 1.11. In Eq. 1.11, if we nor-

malize I0 to 1, then S(E) represents a probability mass function for the incident

energy. Consider a homogenous object. The expression

− log

∫
e−µ(E)ldE (3.10)

is a concave function in the path length l since it is of the -log-sum-exp form

[58]. This function includes zero, is non-decreasing and is positive. Therefore, the

measured value is always less than the ideal.

We discard the non-negativity constraint of previous MAR literature, be-

cause the source of the beam hardening and scatter artifacts is addressed by the

new constraint. IP is a diagonal matrix containing a second indicator function for

metal.

IP = diag(p(i)) =


1

V∑
j=1

aijI2(j) > T

0 otherwise

(3.11)

and

I2(j) =

{
1 XOrig(j) > M2

0 otherwise,
(3.12)

where M2 is set to 8000 MHU. Since we have noisy measurements, we make an

allowance for noise in the constraint. The term σp is a vector containing the

standard deviation (SD) of the noise estimated per sample. The estimate of the

noise in each sample is derived by established methods [2, 59, 60]. Note that we

have used two different metal thresholds. For weighting, we use M1 = 4000 MHU,

and for the constraint we use M2 = 8000 MHU. This is because we apply the

constraint only for high atomic number metals such as copper or iron, for which

signifcant beam hardening is expected. We have not applied the constraint for

aluminum, because the hardening from aluminum is smaller, so the constraint

may not be robust enough against partial volume and blurring from higher atomic

number metal objects which may result in lower CT values. The threshold T

represents reprojection through 20 voxel widths. Setting T > 0 reduces the chance
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of including voxels with high values due to blurring from adjacent voxels, while

still including voxels in the interior of high density metal structures whose values

are lowered by beam-hardening.

3.2.2 Practical difficulties and solution

The matrix A has 737, 280 rows and 262, 144 columns (details are in Sec-

tion 3.2.4), and it is about 1% filled. We would like to shrink the size of the

problem by solving for a miniature image. We reduce the image by a factor of

four in each dimension, therefore by a factor of 16 altogether. Building miniature

images allows us also to reduce the size of our sinogram. We low-pass filter the

projections in view and sample directions, and downsample by a factor of four in

the view direction and four in the sample direction. This miniaturization allowed

us to overcome computational limitations. The total reduction in size reduces

reconstruction time by a factor of 163. The prior-image should represent the at-

tenuation of objects that are dense enough to cause secondary artifacts, such as

water, rubber and plastics. The miniature solution can be upsampled to the same

size as the original image XOrig and directly used as the prior-image, but we do

not do so because although larger structures are preserved, small structures are

degraded. Instead, we try to isolate the artifacts and upsample them, because they

do not have the detailed structure we would like to preserve.

In order to isolate artifacts, we consider the equivalence between FBP and

least-squares (LS) solutions [3]. The Moore-Penrose (M-P) solution for the problem

Ax = b is

x+ = (xk + xa)
+ = A+b = (ATA)−1AT b. (3.13)

The term AT b is backprojection, and (ATA)−1 is equivalent to the Ram-Lak filter.

The M-P solution is also the LS solution.

Therefore, the difference between the LS solution and the constrained WLS

solution isolates the artifacts. We must solve for x+, and the WLS problem and

take the difference. Another way of thinking about this is if we consider an

“artifact-free” image xk, and an “artifact-only” image xa. Our solution should

be such that xk models a consistent data set, and xk + xa models the observed
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data b:
min
xk,xa

(Axk − b)TW (Axk − b) + β||xk||TV

s.t. ||A(xk + xa)− b||2 < δ

IP (Axk − b) + σ � 0.

(3.14)

Eq. 3.14 is equivalent to

min
xk,xa

(Axk − b)TW (Axk − b) + (A(xk + xa)− b)T (A(xk + xa)− b)

+ β||xk||TV + β2||xa||TV
s.t. IP (Axk − b) + σ � 0.

(3.15)

We must solve for xk and xa, and retain only xa. Since solving for twice the

number of variables will take longer, and since the constraints are only for one

set of variables, we implement the difference of LS and WLS solutions, because

the LS solution is unconstrained and can be solved with a faster solver than the

constrained problem.

3.2.3 Practical implementation

The description of the implementation is broken up into three subsections,

and illustrated in Fig. 3.1.

Identification of metal in the image and sinogram: An FBP re-

construction of the scanner sinogram gives the original image, XOrig. Matlab’s

standard functions were used for all FBP reconstructions. We use a simple segmen-

tation technique, region growing, to identify image regions containing metal [54]. If

a piece of metal has a mass (calculated as CT density times volume) above a min-

imum mass threshold, its trace in the sinogram is calculated and will be replaced.

Construction of the prior-image: We forward project the metal voxels

to calculate the attenuation from metal and calculate the weights from Eq. 3.8.

(Note that we can only approximate the attenuation from metal in this way because

beam hardening degrades the reconstruction of the metal itself.)

The quadratic program expressed in Eq. 3.7 is solved using the Mosek soft-

ware (Mosek ApS, Denmark) [61]. A was generated by forward projection soft-

ware [62]. We denote the optimal solution Xmini
C .
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Figure 3.1: Pictorial representation of the construction of the prior-image. The
flow starts with the scanner sinogram, shown in the center. The optimal solutions
to Eqs. 3.7 and 3.16 are shown in the smaller images (not to scale).

We reconstruct the LS solution, i.e., the M-P solution:

min
x

(Ax− b)T (Ax− b) + β2||x||TV . (3.16)

Let the optimal solution to the above equation be Xmini
LS . In Eq. 3.16, there are no

weights or constraints. The regularization strength here is β2 = 0.1β in Eq. 3.7.

We use a smaller strength here because we want less interference with the metal

artifact structure.

The difference between Xmini
C and Xmini

LS gives an image consisting mainly

of artifacts Xmini
A .

Xmini
A = Xmini

LS −Xmini
C (3.17)
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We upsample Xmini
A using bicubic interpolation to get a full-size artifact only image

XA. Artifacts are removed from XOrig by subtracting XA:

X
′

Prior(j) = XOrig(j)−XA(j) (3.18)

We used the NESTA solver [51] to solve Eq. 3.16 because it was faster than

Mosek. NESTA does not allow constraints. There are two more simple but helpful

steps. We copy the segmented metal voxels from the original image to the prior-

image. This gives us more accurate trace boundaries. More importantly, metal

contributes high contrast structures, which should be preserved in the prior-image.

Lastly, we clip the small CT values (i.e., below 500 MHU) to the value of air.

XPrior(j) =

{
X
′
Prior(j) X

′
Prior(j) ≥ 500

0 otherwise.
(3.19)

This removes smaller artifacts and any artificial textures created in low density

materials such as clothing. We think of this step as a post-processing operation.

There can be residual model mismatch as a result of our trade-off (not discarding

all data), and some new secondary artifacts from reducing the contribution of some

data. In addition, the discontinuous switching of the constraint could cause some

secondary artifacts.

Sinogram completion and final reconstruction: In this step (not shown

in Fig. 3.1), we forward project the prior-image, and use a previously published

method to replace metal trace data [15]. This method is similar to that in [16]

and [21]. In this sinogram completion method, we compute the difference between

the original sinogram and the reprojection. We interpolate over the metal trace

in these difference projections and get the error. The error is subtracted from

the original sinogram, giving us a corrected sinogram. The corrected sinogram is

reconstructed with FBP. We have improved upon [15] by fitting the data rather

than using linear interpolation, and by blending the corrected with the original

sinogram data using Parker weights.

Our original and final image size is 512× 512 voxels, and the sinogram size

is 1024× 720. Due to the downsampling of the sinogram and image, the A matrix

size is 46080× 16384.



46

3.2.4 Data and scanner description

Our data set is obtained from the ALERT group at Northeastern Univer-

sity [63] and consists of scanner data from eight bags. Bags were packed with

various levels of clutter and included an assortment of metallic objects. There

were also metallic bag parts. In each bag, there were some objects with uniform

attenuation, e.g., contained liquids. The bags were scanned on an electron beam

scanner (Imatron, San Francisco, California). The scan technique parameters were

130 kVp, 63 mAs, axial half-scan, 1.5 mm slice thickness, a 475 mm field of view,

864 fan views and 888 samples per view. The fan views were rebinned to 720

parallel views with 1024 samples/view. There was a 1.3-mm increment during the

slice acquisition, and a cone angle of 0.3 degrees. These cannot be compensated

with a single-slice half-scan. The scanner projection data were corrected for offset

(dark current), gain, and beam hardening by water (water calibration) [64]. The

correction was water-based because the Imatron is a medical scanner. Although

another calibration material for luggage screening may improve overall image qual-

ity, to our knowledge there is no industry standard for a substitute. No scatter

correction was applied.

3.2.5 Evaluation

The MAR algorithm was evaluated visually and by three quantitative mea-

sures that measure different aspects of quality. The first measure is based on

uniform objects. Existing MAR literature has used phantoms with uniform re-

gions to evaluate the effectiveness of MAR [16,65]. In our case, each bag contains

objects with uniform attenuation, such as contained liquids. In the original im-

ages, we manually segment those image regions that we know should be uniform.

For each such region, in both the original and MAR images, we characterize the

CT number distribution in MHU with minimum, maximum, mean and SD. We

also measure the Kolmogorov-Smirnoff (KS2) divergence between the original and

MAR images.

The second measure is a sinogram-based error [66]. The sinogram-based

error is the L2-norm of the difference of original and synthetic sinograms computed
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on metal-free samples, normalized by the L2-norm of the original sinogram. The

final measure is a reference-free image gradient-based score [66]. The gradient-

based score measures the sum of all image gradients. Lower scores correspond

to better image quality. We have normalized this score by the value computed

on the original images. In addition, we have applied the gradient-based score in

10 pixel-wide bands outside the uniform regions. These bands contain the object

boundaries. Since we do not want to lose edges, higher values of this score represent

better images.

We evaluate our performance against the iterative projection replacement

(IPR) method [20]. We chose this method as a benchmark because of its good

results on medical images, and because it makes no assumptions about image

content, which makes it more robust than methods specific to medical imaging.

We computed optimal solutions of the same size as with our method. This made

it possible to reconstruct the images on our 16-processor GPU with 96 GB RAM

using their preferred solver, NESTA [51], and optimization problem definition.

While the authors do not specify image sizes in [20], they state that resolution

matching is not required.

We make some improvements to the IPR prior. We copy the original metal

into the prior-image, and set any negative voxels to the value of air (0 MHU).

These are trivial changes with large improvements in image quality, and are done

in most sinogram completion methods. IPR substitutes the metal traces in the

scanner sinogram with reprojected prior-image traces. Substitution may result

in discontinuities at the edges of metal traces, hence it may not give good data

estimates [21]. Therefore, in addition to IPR results, we compute and present the

results of using [15] for sinogram completion, along with the clipping in Eq. 3.19

to further reduce blurring, and call this IPR+.

3.3 Results and discussion

We first show one image reconstructed in various ways, in order to qualita-

tively explain the image quality improvements from our method. Next, we present



48

(a) (b)

(c) (d)

Figure 3.2: Reconstructions of an image from Bag 1. (a) Original image with
arrows pointing to the metal artifacts, (b) our method, (c) unconstrained WLS
+ TV, and (d) LI-MAR. Window width (WW) = 2500, window-level (WL)=750
MHU. Numbered objects are shown in (a), these denote uniform objects which are
quantitatively evaluated in Table 3.1.

original and MAR images from more test cases for visual assessment. Third, we

show the quantitative results and compare our results with those of a previously

published method visually and quantitatively. Finally, we present additional ex-

periments that give a better understanding of the methods.

3.3.1 Qualitative explanation of image quality

Fig. 3.2 shows a 2D image through one bag. The original image with arti-

facts is in (a) and the MAR image is in (b). The metal artifacts are visually reduced

in the MAR image, and this is later confirmed by the quantitative evaluation. For

comparison, a regularized WLS image without constraints is shown in Fig. 3.2(c).
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(a) (b)

Figure 3.3: Images showing the effect of discarding all metal-contaminated pro-
jection samples. (a) The optimal solution of an unconstrained regularized LS
solution. (b) MAR image obtained by using the image in (a) as a prior-image
(after metal voxels are restored). WW=2500, WL=750.

This image removes most of the artifacts from the uniform objects. However, the

area around the metal continues to show some artifacts, highlighted by the oval.

An LI-MAR image is shown in Fig. 3.2(d). As noted in Chapters 1 and 2, this is

an improvement upon the original algorithm with linear interpolation [13] because

this LI-MAR has identical data fitting and blending to our methods. This image

is not much better than the original image.

As discussed earlier, previous numeric methods discard all metal data, treat-

ing these points as outliers. We demonstrate that discarding all metal traces leads

to a loss in image quality. Figs. 3.3 and 3.4(a) show the optimal solution image

when all metal-containing projection samples are discarded. Fig. 3.3(a) shows the

optimal solution of the unconstrained problem described in [20]. No metal is visible

here because metal traces are discarded. If we use this as the prior-image with our

own sinogram completion, we get the image shown in Fig. 3.3(b). Our metal trace

estimation is an improvement over data substitution defined in [20] as discussed in

more detail below, but we make this comparison because we wish to compare only

the effect of prior-images. In Fig. 3.3(b), the large circular liquid object is distorted

in shape, and dark shadows are present in each of the four uniform objects. The

same shadows can be identified in Fig. 3.3(a).

The effect of the non-negativity constraint along with the deletion of all
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(a) (b)

Figure 3.4: Numeric reconstructions (optimal solutions) with the non-negativity
constraint. (a) All metal projection data are discarded and the non-negativity
constraint is applied. (b) Our weighting function and the non-negativity constraint,
but not the constraint in Eq. 3.7. WW=2500, WL=750 MHU.

metal samples is shown by numeric reconstructions in Fig. 3.4. This experiment

demonstrates that there is a loss of image quality when all metal is deleted, and

that the non-negativity constraint allows some artifacts to persist, as long as the

voxel values do not drop below zero. In Fig. 3.4(a) all metal data is discarded.

Consequently, objects 1, 3, and 4 are fused, and there is dark shading in objects 1

and 3. Weighting instead of discarding metal trace data separates the fused objects

as shown in Fig. 3.4(b). However, the non-negativity constraint still allows dark

shading in object 2 in this image. While it is true that CT image values should

not be negative, noise, in addition to metal artifacts, can cause negative values in

air. The non-negativity constraint is indiscriminate in that it ignores the sources

of negative values, while our constraint anticipates where the difference between

the measured data and the forward model should be negative.

3.3.2 Visual evaluation

More test cases are shown in Figs. 3.5 and 3.6 which contain pairs of original

and MAR images. In each test case, the MAR image has less severe artifacts than

the original image.

• Bag 2 contains a long piece of metal. MAR removes the curved bright artifact
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under it and reduces the dark streaks.

• Bag 3 shows a dark streak that lowers amplitude by 200-300 MHU, which

could result in objects being split by ATR. The arrow points to a bright

artifact, which could result in the water phantom and the sheets below the

metal to be merged. The large dark streak, smaller streaks and bright artifact

are reduced by MAR.

• Bag 4 has an image with a large amount of metal inside and outside a boom-

box. The original image has a dark shading artifact in the uniform object,

but the MAR image has reduced shading.

• Bag 5 has some new fine streaks in the uniform object due to the many

interpolations needed for the cluster of metal objects at the top and from

errors between the scanner and synthetic projections of such small dense

objects.

• In Bag 6, the object with fine detail on the right hand side of the suitcase

appears to be split by the artifact in the original, but is restored after MAR.

In all cases, we see that large dark artifacts between metal pieces or along the long

axes of metal pieces are nearly eliminated along with the bright shadows perpen-

dicular to them. These large artifacts are nearly eliminated while the structure of

the contents is preserved, because the prior-image included most of the structures

but not the artifacts. The narrower streaks are nearly eliminated simply from

the interpolation across the traces of the small metal objects. The metal region

may not be well reconstructed because we build our prior-image by de-emphasizing

metal projections. Although we copy over the metal voxels, if fine spaces exist be-

tween metal voxels, they will not be recovered. MAR algorithms can be expected

to degrade metal voxels and their neighborhood when they delete or de-emphasize

metal projections.

Although there is an overall improvement with MAR in all images, our

algorithm has shortcomings as shown in Fig. 3.6. A pot (indicated by a white

arrow) in Bag 7 throws off beam hardening artifact (horizontal streak from the
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base of the pot). This is not corrected because the pot was not segmented as

metal (its CT density is not high enough, probably because it is thin, made of

aluminum, and blurred by the system transfer function). The small water bottle

(labeled 1) appears fused to the metal above it in the original image, due to bright,

smooth metal artifact. With MAR, this bottle is separated but not well restored.

Since it is adjacent to a large piece of metal, when the metal traces are given

lower weight, most of the projection samples corresponding to this bottle are also

de-emphasized, and in effect, we lose too much data. The larger bottle (labeled

2), however, does not share as much data with the metal object. High amplitude

streaks through object 2 are reduced, but it also appears joined to the metal.

Bag 8 contains a laptop and metallic bag parts, which create streaks through

the water. After MAR, residual artifact is visible in the water. There is also a

loss of resolution along the streaks. The loss of resolution, especially along the

streaks, is a phenomenon common to most MAR algorithms [36,38]. During data

replacement, interpolation across metal traces blurs edges along the rays unless the

edges are perfectly captured in the prior-image. However, some of the edges in this

image are due to soft materials and thin layers, and therefore are not preserved in

the prior-image.

3.3.3 Quantitative evaluation

Each bag contains some uniform objects that are shown numbered in the

original images in Figs 3.2, 3.5 and 3.6. The CT number distributions within

these objects were measured. The results are given in Table 3.1. The object

numbers in the table correspond to the numbering in the original images. The

table reveals that the maximum and minimum CT values are closer to the mean

value in the MAR images than in the original images. The SD is smaller in the

MAR images than the originals for all but one object (object 1 in Bag 7). The

KS2 test-statistic is shown in the table column labeled KS2. According to the

KS2 test, the CT number distributions are different at the 0.05 significance level

(p-values not shown). When we consider KS2 along with the SD scores, the KS2

scores tell us that the lower SD of MAR images is not caused simply by a few CT
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values in the tails of the two distributions. A few uniform objects were scanned

separately. Their means were measured and are given in Table 3.1. In the bags,

means shift due to metal artifacts and due to clutter. MAR brings the means

closer to the ideal values.

Table 3.2 shows a comparison of the SDs of uniform objects with our MAR

and the IPR methods. The mean SD weighted by object volume from IPR is

128, from IPR+ is 117 and from our method is 87 HU. An important finding not

represented by uniformity is the distortion of objects in IPR and IPR+ images as

shown in Fig. 3.7. Objects appear to be fused together as a result of their edges

being blurred in the prior-image (because all sinogram data containing metal are

discarded).

Evaluation with SD alone is insufficient because SD can be lowered just by

smoothing. For example, a reconstruction algorithm “x = 0” will result in SD being

trivially zero. Therefore, we use other measures also. Table 3.3 shows the sinogram-

based error [66]. This sinogram-based error is intuitive and measures an overall

error. In each bag, the error decreases with MAR. The small difference in Bag 1

is likely due to the fact that there are 27 pieces of metal, so much of the sinogram

is excluded. The IPR method must have the best scores by definition, because

IPR minimizes the same cost that is measured by this error, i.e., the squared error

between the original and synthetic sinograms in the metal-free samples.

Finally, we measure image gradients because the sinogram-based error can

suppress errors accumulated through reprojection, and does not fully capture how

well resolution is preserved. Table 3.4 shows the gradient-based scores. In each

bag, the score decreases with MAR, indicating that the MAR images have less

severe metal artifacts [66]. More importantly (since the total gradient has the same

limitation as SD), when measured only at the boundary of uniform objects, the

score is close to that of the original image, indicating that we do not substantially

sacrifice edge sharpness to obtain lower SD. The slightly smaller score may be

due to a loss of sharpness, or may reflect that the artifacts, which contribute to

the total gradient, are reduced. IPR shows the most loss of edge contrast, which

matches the visual assessment.
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3.3.4 Further analysis

In this section we discuss points that give some more insight into this MAR

method.

The LS solution without regularization is equivalent to FBP reconstruction

if adequate sampling is present [67]. Therefore, the artifact amplitude and loca-

tions are similar in FBP and LS solutions. The numeric solution is influenced by

the regularization term, and the FBP solution is influenced by the reconstruction

kernel, therefore the FBP and LS solutions are different in details. When we com-

pute the difference of the numeric solutions, we get an image of artifacts, which we

subtract from the original image. The prior-image therefore retains the resolution

of the original FBP image, and is less influenced by the regularization term than

if the optimal solution were used directly.

We chose exponential weights because attenuation is exponential, the weights

are smooth and monotonic, and a one-parameter family of weights was easy to

tune. The heuristic nature of our weighting motivates the construction of a con-

straint. The constraint helps to prevent errors from being pushed elsewhere in the

image. Fig. 3.8 shows two images with the weights but without the constraints of

Eq. 3.7. By comparing these images with those of Fig. 3.5, we see that it is helpful

to constrain the solutions. The regularization controls the sparsity of the image

gradient. It reduces secondary artifacts that could arise from abrupt changes in

weights. Fig. 3.9 demonstrates the effect of β in Eq. 3.7. The allowance for noise

provides some flexibility which is helpful when the constraints are too tight. With

the current constraint parameter tuning and noise on this dataset, allowance for

noise does not make much difference.

We are agnostic about the sinogram completion technique. However, the

technique should be robust enough against small errors in the prior. NMAR [38]

interpolates a ratio of the original and synthetic sinograms. When synthetic sino-

gram samples have small values, this ratio has large errors. Large errors in samples

near metal will lead to secondary artifacts. This problem occurs near metallic bag

parts of a bag that is not tightly packed, since there is little material to atten-

uate those rays. Our prior-image thresholding also lowers the amplitude of the
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synthetic samples. Fig. 3.10 shows the secondary artifacts. All of the images re-

constructed with NMAR have secondary artifacts at least as strong as the image

shown. Sinogram pre-processing may help NMAR work with our prior.

We draw a distinction between our method and those that perform sinogram

subtraction without a prior-image, exemplified by [68]. The authors find limited

improvement in their application and Fig. 3.11 shows this approach is ineffective in

our application. Reprojection of metal voxels cannot accurately quantify the metal

due to beam hardening itself, as demonstrated by simulations in [69]. Therefore,

subtraction of synthetic projections of metal cannot reverse the beam hardening.

Faster optimization is necessary for practical use. The Mosek solver takes

about 15-20 minutes to reconstruct the miniature using the low precision setting.

NESTA took under 2 minutes for a tolerance of 10−4. Both are general purpose

solvers. A special purpose solver will allow us to reconstruct larger optimal im-

ages to better preserve small structures. Or it could be used to obtain practical

reconstruction times. We discuss optimization strategies in Chapter 4.

3.4 Future work

There are many areas to explore for further reduction of residual artifacts

and preservation of small structures. 1) We can improve the constraints or add

to them, e.g., box constraints per image voxel. Another example is that instead

of thresholds, alternative criteria may give better results for determining which

projections to constrain. 2) We should explore the use of alternate objective func-

tions [70–72]. 3) Further research in weighting methods is likely to give better

results. We also can explore how to quantify the metal. We used indicator func-

tions on the metal rather than summing the value of the metal. The reconstructed

metal itself is degraded and forward projection cannot reliably quantify it. Poor

quantification of metal gives rise to unreliable weights. 4) More sophisticated sino-

gram completion may give better image quality e.g., with variational inpainting.

5) Scatter correction and alternate materials for calibration may improve overall

image quality.
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Although this method was developed for luggage because of the large amount

of metal and unpredictability of contents, we believe this method can be applied to

medical imaging. Refinements and parameter tuning may be necessary. The prior-

image based MAR methods in medical CT have shown that it is not necessary

to preserve soft-tissue detail in the prior-image, but it is necessary to adequately

reconstruct bone, air pockets and high contrast interfaces. The soft tissue details

are captured in the final reconstruction.

3.5 Conclusions

We have developed a new MAR method and tested it on images of luggage

with up to 27 pieces of metal. The results of our method show that metal artifacts

were significantly reduced based on visual assessment and quantitative evaluation.

Our contributions are in two areas. 1) A new formulation of an optimization

problem, including projection weighting and a constraint. Methods applicable for

luggage scanning, and many MAR methods in general, discard metal projections,

but we do not, so details and contrast are better preserved. We use a constraint

that accomodates beam hardening and scatter, and gives better results than the

non-negativity constraint of previous literature. 2) The difference of solutions

to two different optimization problems removes the effects of mismatched spatial

resolution from FBP and optimal solutions, and isolates the artifacts.

This chapter contains material from “Metal Artifact Reduction for CT

based Luggage Screening”, which was co-authored by Pamela Cosman and Harry

Martz and was presented at the IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2014.
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Original MAR

Figure 3.5: Images showing a variety of objects, metals and configurations. Each
row shows one test case. Original images are shown on the left, and MAR images
are on the right. The numbered objects in the original images are uniform objects
that are numerically evaluated in Table 3.1. The black arrow in Bag 3 indicates an
example of a bright metal artifact. WL/WW (HU) for Bags 1,2,4,6 = 750/2500,
for Bag 3 = 850/2300, and for Bag 5 = 750/2100.
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Original MAR

Figure 3.5: Images showing a variety of objects, metals and configurations. Each
row shows one test case. Original images are shown on the left, and MAR images
are on the right. The numbered objects in the original images are uniform objects
that are numerically evaluated in Table 3.1. The black arrow in Bag 3 indicates
an example of a bright metal artifact. WL/WW (HU) for Bag 1,2,4,6 = 750/2500,
for Bag 3 = 850/2300, and for Bag 5 = 750/2100. (continued)
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Original MAR

Figure 3.6: Original and MAR images showing some shortcomings of our method.
WL/WW (HU) Bag 7: 800/2400, Bag 8: 650/2300.
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Table 3.1: The measured CT number distribution in uniform objects. In the
original images, these objects (Obj) are numbered 1, 2 etc., and after MAR, they
are numbered M1, M2 etc. The SD is lower in the MAR image in all objects but
one (Bag 7, object 1). The average SDs weighted by object size are 162 and 87
MHU for original and MAR images respectively. The ideal value marked with *
was not available, but is distilled water in a different bottle.

Bag Obj Min Max Mean Ideal Std KS2

Bag 1

1 155 1296 843 159
0.34

M1 713 1080 886 48
2 380 1140 769 133

0.41
M2 623 1061 843 65
3 582 1457 988 162

0.15
M3 632 1309 1006 114
4 692 1327 1025 79

0.25
M4 474 1212 979 72

Bag 2
1 513 850 690 41

0.07
M1 552 850 687 36

Bag 3

1 306 1352 695 201
0.46

M1 569 1116 867 101
2 814 2315 1795

1920
164

0.31
M2 962 2135 1866 74
3 718 1868 1276 220

0.20
M3 959 1460 1260 114
4 358 2546 1092

1004
228

0.24
M4 591 2145 1049 121
5 -427 2644 1114 316

0.17
M5 60 1624 1131 136

Bag 4
1 456 1155 917 111

0.14
M1 700 1129 958 65

Bag 5
1 553 1108 991

1002
60

0.09
M1 737 1135 998 38

Bag 6

1 837 1513 1150 106
0.04

M1 909 1431 1147 94
2 288 1600 910

1002*
226

0.23
M2 371 1357 919 127
3 1187 1568 1337 72

0.24
M3 1186 1529 1356 54
4 618 1080 841 90

0.38
M4 671 1080 907 72

Bag 7

1 862 1954 1244 143
0.69

M1 387 1912 992 182
2 -205 1437 935 306

0.52
M2 938 1728 1230 113

Bag 8
1 269 1229 939

1001
145

0.17
M1 504 1138 958 94
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Table 3.2: The SD in uniform objects for IPR and IPR+ and our method, re-
spectively denoted Std-IPR, Std-IPR+ and Std-Ours. The objects in each image
are numbered as in the original images. The symbols KS2 and KS2+ denote KS2
values that compare our method against IPR and IPR+ respectively.

Bag Object Std-IPR Std-IPR+ Std-Ours KS2 KS2+

Bag 1

1 96 70 48 0.36 0.09
2 109 93 65 0.36 0.13
3 186 128 114 0.34 0.15
4 181 125 72 0.22 0.14

Bag 2 1 89 82 36 0.30 0.26

Bag 3

1 129 110 101 0.30 0.17
2 134 111 74 0.20 0.14
3 134 95 114 0.12 0.30
4 127 120 121 0.31 0.22
5 165 149 136 0.19 0.11

Bag 4 1 96 101 65 0.14 0.23
Bag 5 1 58 43 38 0.22 0.08

Bag 6

1 187 143 94 0.40 0.23
2 143 136 127 0.21 0.10
3 64 61 54 0.27 0.27
4 130 124 72 0.26 0.15

Bag 7
1 288 292 182 0.13 0.13
2 148 177 113 0.14 0.16

Bag 8 1 76 102 94 0.29 0.07
Mean 128 116 87

Table 3.3: The sinogram-based errors for each bag are smaller after MAR than
the original.

Bag Bag 1 Bag 2 Bag 3 Bag 4 Bag 5 Bag 6 Bag 7 Bag 8
Orig 3.18 4.52 4.26 4.10 4.37 3.74 4.75 5.95
MAR 3.02 3.38 3.16 3.32 4.01 2.83 3.78 3.43
IPR 2.72 2.09 2.75 2.62 3.39 2.84 3.12 3.13

IPR+ 2.99 4.46 3.26 3.30 3.81 2.88 3.71 3.53
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Table 3.4: Normalized sum of gradient magnitudes. The top three rows con-
tain values computed from the entire image. Lower scores represent better image
quality. The bottom three rows contain values computed in the boundary regions.
Higher scores represent better image quality.

Bag Bag 1 Bag 2 Bag 3 Bag 4 Bag 5 Bag 6 Bag 7 Bag 8
MAR 0.83 0.73 0.77 0.81 0.87 0.80 0.80 0.81
IPR 0.93 0.72 0.84 0.86 0.92 0.92 0.93 0.84

IPR+ 0.80 0.71 0.73 0.77 0.87 0.77 0.76 0.80
MAR 0.94 0.98 0.92 0.95 0.98 0.95 0.91 0.95
IPR 0.89 0.96 0.86 0.91 0.92 0.91 0.88 0.92

IPR+ 0.88 0.96 0.87 0.93 0.94 0.90 0.85 0.92



63

Bag 3 Bag 6
IP

R
IP

R
+

O
u
rs

Figure 3.7: Comparison of IPR, IPR+ and our method on Bags 3 and 6. IPR
shows a loss of edges e.g., inside the dashed oval, IPR+ shows a small improvement
over IPR, and our method shows the best restoration of edges. In the Bag 6 IPR
image, arrows point to the streak artifacts from the substitution of reprojected
prior-image samples for the original sinogram samples. WL/WW Bag 3: 850/2300
Bag 6: 750/2500.
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Figure 3.8: More images with the weights but not the constraints of Eq. 3.7.
WL/WW =750/2500. The abrupt cutting off of the water is caused by the clipping
step in the generation of the prior-image.

Figure 3.9: The effect of varying β in Eq. 3.7. The first four objects of Bag 1
are shown by lines with markers and the weighted mean of all objects in all bags
is shown by the black line.

Figure 3.10: Sinogram completion by NMAR. Secondary artifacts are indicated
by white arrows. WL/WW = 850/2300.
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Figure 3.11: Sinogram subtraction without a prior-image. WL/WW = 850/2300.



Chapter 4

Optimization strategies

The Mosek solver is a general purpose solver for linear, quadratic, and

SOCP problems, and is slow. Mosek takes about 15-20 minutes to find the solution

of our miniature convex problem Eq. (3.7), where the size of A is 46,080×16,384.

In this chapter, we present some optimization strategies for faster solutions. The

first strategy is based on the alternating direction method of multipliers (ADMM).

The second strategy is based on algebraic reconstruction technique (ART).

4.1 Alternating direction method of multipliers

solution

The principles of ADMM are explained in [73]. When an objective function

consists of separable terms, the terms can be minimized alternately, using the

augmented Lagrangian. Consider the objective function below.

min
u1,u2

f(u1) + g(u2)

s.t. Au1 +Bu2 = C
(4.1)

The augmented Lagragian is defined as

Lρ(u1, u2, y) = f(u1) + g(u2) + yT (Au1 +Bu2 − C) +
ρ

2
||Au1 +Bu2 − C||22 (4.2)

66
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The ADMM solution is

uk+1
1 := argminLρ(u1, u

k
2, y

k)

uk+1
2 := argminLρ(u

k+1
1 , u2, y

k)

yk+1 := yk + ρ(Auk+1
1 +Buk+1

2 − C)

(4.3)

Our objective function consists of the WLS term and the total variation

term. The WLS term is minimized by gradient descent, while the TV term is

minimized by shrinkage. The minimization is done in alternating steps. Due to

our constraint that depends on a weighted sum of the variable x, we add a variable

u1 for using a substitution of Ax. The shrinkage problem for the L1 norm of the

derivative is made easier when we use another subsitution variable u2 = Dx:

min
x,u1,u2

1
2
(u1 − b)TW (u1 − b) + β||u2||1

s.t. u1 = Ax

u2 = Dx

(4.4)

The augmented Lagrangian for the ADMM problem is written as

Lρ(x, u1, u2, y1, y2) = (u1 − b)TW (u1 − b) + yT1 (u1 − Ax) + ||u2||1 + yT2 (u2 −Dx)

+
ρ1
2
||u1 − Ax||2 +

ρ2
2
||u2 −Dx||2

(4.5)

The x-subproblem is

x = argmin
x

ρ1
2
||u1 − Ax||2 +

ρ2
2
||u2 −Dx||2 − yT1 (u1 − Ax)− y22(u2 −Dx) (4.6)

We choose gradient descent because we do not want to invert the matrix

A. A gradient descent update is defined as

xk+1 = xk − τ∇x(L) (4.7)

The derivative of the Lagrangian with respect to x is

∇x(L) = (ρ1A
TA+ ρ2D

TD)x− AT (ρ1u1 − y1)−DT (ρ2u2 − y2) (4.8)

Our gradient descent step is therefore defined as

xk+1 = xk − τ((ρ1A
TA+ ρ2D

TD)xk − AT (ρ1u1 − y1)−DT (ρ2u2 − y2)) (4.9)
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The u1 subproblem is

u1(i) = argmin
u1

1
2
(u1 − b)TW (u1 − b)− yT1 (u1 − Ax) + ρ1

2
||u1 − Ax||2

s.t. Ip(u1 − b) � 0
(4.10)

The u1 sub-problem can be minimized by taking the derivative because the matrix

inversion is easy. We do not have to use gradient descent. Therefore,

u1 = (W + ρ1)
−1(y1 + ρ1Ax+Wb) (4.11)

The constraint is handled by projecting u1 onto the set u1|Ip(u1 − b) � 0. More

specifically, let Ω = {i|[Ip]i,i = 1} be the index set. Then, for any i ∈ Ip, we let

[u1]i =

{
[u1]i [u1]i ≥ bi

bi otherwise
(4.12)

The u2 subproblem is

u2 = argmin
u2

β||u2||1 − yT2 (u2 −Dx) +
ρ2
2
||u2 −Dx||2 (4.13)

This can be solved by the shrinkage formula [74]:

u2 = max

{
|Dx+

y2
ρ2
| − β

ρ2
, 0

}
· sign(Dx+

y2
ρ2

) (4.14)

The updates to y1, y2 are the usual updates for ADMM problems:

yk+1
1 = yk1 − ρ1(u1 − Ax)

yk+1
2 = yk2 − ρ2(u2 −Dx)

(4.15)

The parameter values, given in Table 4.1, were selected by trial and error.

Table 4.1: Parameter values for the ADMM-based solver.

Parameter Value
ρ1 0.02
ρ2 0.04
τ 5× 10−4

β 20

The image XC
mini was reconstructed using this method, and it took about

four minutes to run about 5000 iterations in C code, on an Intel i7 computer with
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3GB memory. A reconstructed image is shown in Fig. 4.1. The SDs of uniform

objects in this image are given in Table 4.2. The SD values are higher than

the Mosek-based images. However, this may be due to our parameter selection.

Better parameter selection could lead to better image quality, convergence in fewer

iterations, or both. The area around the metal itself has been reconstructed at

least as well as the Mosek-based solution.

Figure 4.1: MAR image using an ADMM-based prior-image.

Table 4.2: Table showing the measurement statistics for the image reconstructed
with the ADMM solution for XC

mini.

Object Min. Max. Mean SD KS2
M1 686 1122 884 61 0.29
M2 593 1094 836 85 0.32
M3 455 1360 1011 121 0.15
M4 520 1262 982 80 0.21

4.2 Algebraic reconstruction technique (ART)

The method of Kaczmarz, which is a projection onto convex sets (POCS)

method, is known as ART in CT reconstruction. It is defined by:

xk+1 = xk + βk
(ATi x− bi)
||Ai||22

ATi , (4.16)

where Ai is the row of the matrix for sample i, and k represents the current update.

The samples are chosen according to i = k mod M where M is the number of
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samples, i.e., rows in A. In this equation βk is a relaxation parameter, which can

be decreased according to some schedule.

ART was one of the earliest reconstruction methods used in CT. As a sta-

tistical method, it could incorporate various characteristics of the scanning system

by modeling the A matrix. It was replaced by FBP from preprocessed projection

data. FBP is much faster but expects ideal data.

Using preprocessed data in ART, like that used in FBP, reduces the burden

on modeling A, and improves the convergence. In recent years, ART has been

used in reconstruction from limited data [49]. In this adaptation, called adaptive-

steepest-descent-POCS (ASD-POCS), the objective function is the total varia-

tion norm. This objective function must be minimized such that the constraints

||Ax − b||2 < δ are satisfied. Non-negativity is imposed after every iteration of

ART in [49]. The minimization of the objective function is achieved by steepest

descent calculation of the total variation norm. As mentioned in Section 1.2.3,

this reconstruction algorithm has been used to reconstruct from sinograms after

discarding metal trace data.

The POCS approach does not use weighting. If the A, b were modified in

Eq. 4.16, it would have no effect on the solution x. We have modified ART by

adding a step-size wi. The step size decreases with the amount of metal in the

projection. We set wi to the diagonal elements of WXOrig .

xk+1 = xk + wiβ
kA

T
i x− bi
||Ai||22

ATi , [Ip]i,i(A
T
i x− bi) ≥ 0

= 0, otherwise

(4.17)

A MAR image with XC
mini reconstructed using Eq. 4.17 is shown in Fig. 4.2.

It was reconstructed in approximately four seconds. The SD measurements are in

Table 4.3.

4.2.1 Fast projector-backprojector pair

The optimization problem described thus far builds miniature images. For

larger problems, the system matrix becomes impractical to store in memory. We

replace the matrix-vector multiplications with operators so that we do not have
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Figure 4.2: MAR image using an ART-based reconstruction for XC
mini.

Table 4.3: Table showing the measurement statistics for the MAR image using
the ART-based solution for XC

mini

Object Min. Max. Mean Std. KS2
M1 710 1064 902 50 0.36
M2 619 1055 838 71 0.38
M3 661 1320 1015 120 0.16
M4 493 1314 996 77 0.17

to store a large matrix. However, an operator-based algorithm is slower than

multiplying stored values. The operator for Ax is forward projection and for AT b

is backprojection.

We have developed a fast projector-backprojector pair. Considering the

ART equations, the innermost operation begins with forward projection for some

ray i. In our method, we locate the image voxels that the ray intersects. We store

each voxel position, and weights that represent how much each voxel contributes

to that ray. We sample the ray at discrete points, and obtain real number spatial

coordinates in image voxel units. At a given sampling point along the ray, we find

the four voxels nearest the co-ordinates, and calculate weights equal to bilinear

interpolation coefficients. At the next intersection point, we get another four voxels

and their weights.

Our sample spacing is equal to the voxel spacing, so consecutive sampling

points intersect one, two or four common voxels. We would like to store the voxels

without repetition, so that fewer multiplications are required during backprojec-
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tion, and less storage is needed for each ray. We solve this problem by using a

linked list with a voxel storage order that depends on the angle of the projection

ray. An illustration of the storage order is in Fig. 4.3 for one angle. The diagram

shows image voxels as gray nodes on a grid. Two parallel projection rays, that

intersect different voxels, are shown in the diagram. The colored arrows show the

order in which the image voxels are stored for a given ray.

Ray 1 is sampled at the equi-spaced points marked P1 - P3. The four

voxels around P1 are stored in the order upper left, lower left, upper right, and

lower right. These voxels are labeled 1-4 in the diagram. P1 is followed by P2 such

that the set of voxels for P2 is one column away from the set for P1. Two of the

voxels are common, and we continue the order of the voxels, by adding only the

upper right (5) and the lower right (6) to the stored set. The next sample, P3, is

such that its voxel set is located in the next column and the next row. Again, the

same storage order can be followed, adding the lower left (7), followed by upper

right (8), and then lower right (9). This order is applicable when a new sample

point has the same voxel set, a set one column away, or one column and one row

away from the previous sample point.

Ray 2 shows a different sequence. Again, the samples are called P1-P3, and

the order for the voxel set for P1 is 1-4. P2 was represented as before: upper left,

lower left, upper right, lower right because its voxel set was to the right of the set

of P1. When P3 is sampled, the storage order is changed. The voxel set of P3

is one row below that of P2. The lower left voxel for P2 no longer points to the

upper right (green arrow). Instead it now points to the lower left voxel for P3,

which in turn will now point to the upper right for P2, as shown by the long red

arrow. These are now voxels 5 and 6. The link between upper right and lower

right neighbors for P2 was never disrupted when P3 was added. The lower right

neighbor for P2 is the upper right neighbor for P3, which points to the lower right

for P3, as usual, i.e, points 7 and 8. Therefore, only one link was replaced.

The zig-zag order we have described is different for projection rays depend-

ing on their angle. We define separate orders for rays in the intervals [0 - π
4
),

[π
4
− π

2
), [ π

2
− 3π

4
), [ π

4
− π ), that are mirror images of the illustrated order.
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Figure 4.3: Diagram of fast projector/backprojector pair.

We reconstruct a quarter-sized image, i.e., 256×256 voxels. This represents

a reduction by a factor of two in each dimension, rather than by four, as with all our

previous experiments. The sinogram is also downsampled by two instead of four.

We use the reconstructed image directly as the prior-image, instead of obtaining

the prior-image by the difference method, as with all our previous work. We do not

use the difference method, because when the quarter-size image is upsampled by

two, it still retains edge information adequately, as shown in Fig. 4.4. The quarter-

sized problem also has less model mismatch from sampling errors. This image takes

about 10 minutes to reconstruct. The SD measurements are in Table 4.4.

The SDs of the image reconstructed with a quarter-sized prior-image are



74

Figure 4.4: MAR image using a prior-image that is a quarter-size of the original
image, reconstructed with operator-driven ART.

Table 4.4: Table showing the measurement statistics of the MAR image, using a
quarter-sized prior-image, reconstructed by the operator-based ART method.

Object Min. Max. Mean Std. KS2
M1 711 1067 894 45 0.36
M2 404 1074 841 70 0.41
M3 746 1265 1017 99 0.20
M4 716 1165 989 64 0.22

lower than other images. This may be due to the fact that we used cubic interpola-

tion for upsampling the artifact image XA, which introduces high-frequency errors

into the prior-image. Using bilinear interpolation may have been more appropriate

to upsample XA. The ADMM-solution has the best reconstruction of the region

around the large piece of metal. This region is as good as that of the Mosek-based

image. The ART-based methods do not do as well in this region.



Chapter 5

Evaluation methods for CT

segmentation algorithms

5.1 Introduction

The main difficulties for segmentation in luggage screening are the variety

and heterogeneity of non-threat and threat objects found in bags, as well as image

artifacts. These difficulties cause segmentation algorithms to split an object into

multiple pieces, or to merge different objects into a single one.

Quantitative evaluation of segmentation algorithms is a challenging task in

luggage screening because multiple splits and merges are possible. In addition to

an accuracy score, we would like to gain a deeper understanding of the algorithms’

behavior. First, we would like to know if an algorithm systematically oversegments

or undersegments images or if the error is random. A knowledge of systematic

errors allows us to tune the parameters of a segmentation algorithm, or supplement

the segmentation algorithm with additional steps such as region merging [52].

Second, the ability of a segmentation algorithm to capture object features must

be evaluated, because evaluation of features is critical in ATR. Third, since it is

often more important to correctly segment some objects than others, a method to

assign priorities to segments is desirable when evaluating the algorithm. Priorities

may be based on image intensity, homogeneity, particular texture or any other

75
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image features that define objects of interest. Fourth, a segmentation algorithm

may have varying accuracy across the feature range, and this knowledge can be

used to establish confidence in a given segment. There can be no restriction on

the number or nature of objects. All these considerations are important in luggage

scanning but are not adequately addressed by existing evaluation literature.

Various goodness measures have been proposed to evaluate a segmenta-

tion without a ground truth (GT) [75–77]. The goodness measures are based on

entropy, intra-region similarity and inter-region discrepancy, surface smoothness

and other properties of regions. However, objects found in luggage are inherently

heterogeneous, i.e., made up of different materials that have different textures

and attenuation properties. Their sizes and shapes are varied and unpredictable.

Therefore, goodness measures are not well-suited to our problem.

There are many methods that evaluate segmentation against GT by com-

puting a distance between the sets of edge pixels [75,78,79] or surface voxels [80].

However, edge or surface distances do not measure feature retrieval. Mass or vol-

ume may be well retrieved, but have large edge distances due to artifacts or other

segmentation errors. Therefore, using discrepancy between sets of edges does not

appear to be a good solution for luggage screening.

An error measure was defined to measure the discrepancy among manual

segmentations performed by multiple humans. This measure was designed to be

unaffected by refinements [81]. For the purpose of human perception from pho-

tographs, refinements were considered alternative and equally good GTs. For

example, a container and its lid may be segmented together or separated by a con-

tour. In the luggage application, we have object splitting and merging instead of

refinements. These splits or merges cannot be considered alternate ground truths,

but rather errors that must be measured. Therefore, we tested another error mea-

sure created with the objective of quantifying the splitting and merging, called

the object consistency error (OCE) [82]. OCE is sensitive to refinement. We

found that OCE does not perform well with splits and merges that are not simple

refinements. This issue is illustrated in Section 5.4 using synthetic examples.

Another method breaks down the evaluation problem into the measurement
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of correct detection, oversegmentation, undersegmentation, missing objects, and

spurious detection [83]. However, the method depends on the existence of planar

surfaces in the image. The measures discussed in [84] interpret the different labeled

regions as clusters, and measure distance between clusterings. The wide range of

the number of labels from the different machine segmentation (MS) algorithms

makes it unsuitable to apply pair-wise clustering interpretations to the labels (such

as the Rand index [85]) because some of the labels have small cardinality.

The segmentations may be viewed as different partitionings. A metric was

defined as the minimum number of elements that must be moved from one par-

titioning in order to get to the other partitioning [86]. In these methods, no

calculation of systematic errors, no feature-based evaluation and no assignment of

priorities among partitions was described, which is needed for our application and

may be important in others. Other single-valued measures include [87–89].

The evaluation methods cited above are based on volume or surface overlap.

However, there are other features of objects that are more relevant for ATR than

volumes or surfaces. A measure called ultimate measurement accuracy (UMA)

computes a distance between the measurements of a feature made in the GT and

MS images [90]. This measure works on single foreground objects. A multidimen-

sional evaluation is in [91] but systematic errors are not quantified. The treatment

of segmented images as probability mass functions was suggested for a 2-class

problem [92]. The divergence measure is similar to the Kullback-Leibler (KL) di-

vergence. The idea was improved upon, to measure features of collections of similar

objects by creating histograms of feature values for populations of similar objects,

and comparing them using standard histogram comparison measures [93]. Simi-

larly, image-distance measures were suggested in [94] based on feature distribution

similarity.

We propose two new methods of evaluation to meet the application needs

described above, and address many limitations of existing methods. In the first

method, we calculate a weighted mutual information (WMI) of features from their

joint distribution. In the second method, which we call feature descriptor recovery

(FDR), we measure systematic and overall errors in feature recovery, and extract



78

additional information about behavior over feature ranges. The two methods pro-

vide different evaluation perspectives. They are flexible in that they can operate on

features, they impose no restrictions on the type or number of segmented objects,

and can prioritize segments by feature values or user preference.

In luggage screening, air, which occupies a large portion of the images, is

not segmented. In this project, we treat air differently from other labels so that

missing objects are penalized, but spurious objects are not. The spurious objects

are bag parts and image quality verification phantoms present in the scans that

were labeled by some of the research groups, but were not labeled in the GT.

We do not want to penalize (or reward) these spurious objects. Our methods

allow us to discard the spurious objects. This is different from the ATR problem,

where the spurious objects are analogous to a false alarm. Although we do not

specifically discuss false alarms due to the classified nature of threats and ATRs,

it is certainly desirable for EDS vendors and testing agencies to assign penalties

using appropriate weights within our framework. As we will see later, we cannot

treat air as simply another label, because that would allow purely nominal scoring

methods to reward missed objects.

We applied our evaluation methods to images from the ALERT dataset.

Our evaluation methods were validated (1) by applying them to simple synthetic

problems, and (2) by comparing the methods’ results on suitcases with an evalua-

tion done by a human observer. In information theory, the F1 score is an accepted

measure of performance for binary classification problems [95]. We have also com-

pared our results against a multi-class generalization of the F1 score.

5.2 CT images and ground truth

Suitcases were scanned on a volumetric medical CT scanner. The suitcases

contain objects such as clothing, shoes, electronics, food, books, toys and vari-

ous contained liquids. These suitcases do not contain threats or simulants. The

CT image dimensions were 512× 512 pixels per image slice with about 800 slices

in each (3D) image. Segmentation algorithms were developed by five different re-
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search groups for this project: Siemens Corporate Research, Marquette University,

University of East Anglia, Stratovan Corp, and Tele-Security Systems. Each algo-

rithm was run on five test images and generated a label image (except one image

by one research group), so we have a total of 24 MS label images. Further details

are in [53]. Descriptions of some of the segmentation algorithms are available for

the interested reader in [43,96,97].

We developed a computer-assisted method to generate GT label images

from volumetric CT images. This method was used by researchers at Northeast-

ern university to generate ground truths from the suitcase images. Objects found

in luggage are so varied in size and shape, and heterogenous in material composi-

tion, that human interaction is required to define the GT. However, segmentation

performed solely by a human is limited in accuracy by the observer’s ability to

manually contour objects. The objects are not only three-dimensional, but some-

times hollow or thin and with large surface areas. Further, the objects are blurred

by the transfer function of the CT scanner. For all these resasons, it is imprac-

tical to segment these objects by an exclusively manual method. In our method,

manual contouring is complemented with manually-seeded region-growing, allow-

ing the observer to segment complicated shapes. Manual segmentation by multiple

observers has been addressed by [98, 99]. However, our challenge comes not from

subjective perception, but rather from the difficulty of the manual task, which ne-

cessitates some automation. Another 3D GT generation method [100] uses mesh

models. Our approach is simpler and does not require modeling.

A unique label is assigned to each object that is individually packed into

the suitcase. For example, a liquid is assigned the same label as its container.

While the validity of this rule may be argued, it overcomes the issue of subjective

perception. There is no soft (probabilistic) label assignment for image voxels. A

label value of zero indicates air, which is background. Objects with an average CT

value of less than -500 Hounsfield units (HU), such as clothes, were assigned the

label of air. In the HU scale, air is -1000 and water is zero.

Each bag image file contains hundreds of image slices. However, the ob-

server does not have to contour objects in every slice. Interpolation is performed
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between contours across slices, allowing the GT segmentation to be completed in

roughly two hours per bag. The interpolated contours are filled in and labeled as

one object. Objects in a bag are segmented one at a time, given unique labels and

accumulated into a GT label image. Fig. 5.1 shows a flowchart of the computer-

assisted GT extraction process. There are two parallel paths. The right half of

the flowchart illustrates the manual contouring, contour interpolation and contour

filling processes. The output of this path is an image of a filled three-dimensional

contour, labeled A in the flowchart. The left half illustrates the seeded region-

growing path. The user selects seeds and region growing parameters for the current

object. The output of this path is a region-grown mask in image B. The common

voxels in images A and B are assigned a user-selected label value Λ. The label

image for this object is accumulated with previously segmented labels in image C.

We use the maximum operation instead of a binary “or” operation to set a rule

for overlapping labels. This rule is useful when there are touching objects. If the

first object is labeled as Λ1, as the user segments the second object, the two labels

may overlap. The user resolves the problem by selecting Λ2 < Λ1 for the second

object’s label if he decides that the common voxels should belong to the first label

or Λ2 > Λ1 if they should belong to the second one.

The flowchart in Fig. 5.1 was implemented in MeVisLab [101], a graphical

programming language that provides image processing and visualization modules

that can be connected together. In our program, DICOM images are read in

and multi-planar reformatted (MPR) slices are generated and displayed. The user

selects an MPR axis and contours an object in any slices along the chosen axis. We

used a drawing tool that incorporates active contours. The active component helps

the contour to be attracted to gradients or curvature as determined by user-defined

penalties. A contour can be copied and pasted to other slices. The contours are

linearly interpolated to all slices between the first and last contour. The observer

subjectively decides whether the contour interpolation provides acceptable results.

If the results are not acceptable, more contours can be added and interpolation

repeated. The interpolated contours are filled in with a user-selected label value.

Binary dilation is performed to include edge voxels.
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Figure 5.1: Flowchart showing the operations performed to determine GT labels
from the volumetric CT image. Manual operations are shown in darker boxes. A
and B are segments generated by the two different paths, C is the accumulated set
of labels, and Λ is a numeric value assigned to a label.

In the second parallel path, the user selects seed voxels from the object,

and sets upper and lower thresholds for region growing. The user can overlay the

region grown mask on the CT image to decide whether the mask is acceptable,

and modify seeds or thresholds if deemed necessary to repeat the region growing

process.

5.3 Segmentation evaluation methods

We first describe the weighted mutual information score for volume-based

evaluation, and then describe our extension to mass-based evaluation. Next, we

show the weighting functions that allow us to prioritize objects. Then we describe

the FDR method which gives systematic errors and total error. Feature descriptors

may also be weighted to prioritize objects. Finally, we describe the multi-class

extension of F1 scores, which we use for comparisons.

Let G and S denote the number of labels in the GT and the MS images,

respectively, not including the air segment (label 0). Let XG(i) be the set of voxels

in GT segment i, and XS(i) be the set of voxels in MS label i. We use the terms
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segment and label interchangeably.

5.3.1 Weighted mutual information (WMI)

Mutual information (MI) can be used when the label images are expressed

as joint and marginal probability densities [102]. We generate a confusion matrix

from the GT and MS images. We first compute the MI and entropies without air

so that MI, which is ordinal, does not reward the air label. Then we include the

type II errors with a multiplicative factor. We neglect type I errors for the reasons

explained in Section 5.1. Let NG,S(i, j) denote the number of voxels that belong

to GT label i and MS label j.

Let vG,S(i, j) denote the joint probability mass function (pmf) based on

volume:

vG,S(i, j) =
NG,S(i, j)∑G

k=1

∑S
l=1NG,S(k, l)

, 1 ≤ i ≤ G, 1 ≤ j ≤ S . (5.1)

We define the marginal probability mass functions for the GT and MS labels

from the joint pmf.

vG(i) =
S∑
j=1

vG,S(i, j), 1 ≤ i ≤ G (5.2)

and

vS(j) =
G∑
i=1

vG,S(i, j), 1 ≤ j ≤ S (5.3)

A normalized MI score is generated in the following manner, as first de-

scribed in [103]:

H =
1

Z

G∑
i=1

S∑
j=1

vG,S(i, j)log
vG,S(i, j)

vG (i) vS(j)
, (5.4)

where the normalization factor Z is the square root of the product of entropies, or

the GT entropy if the MS entropy is zero:
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Z =



√√√√ G∑
i=1

vG(i) log

(
1

vG(i)

) S∑
j=1

vS(j) log

(
1

vS(j)

)
, if S > 1

G∑
i=1

vG(i) log

(
1

vG(i)

)
, otherwise.

(5.5)

We now incorporate type II errors. Referring to Fig. 5.2, we take the ratio

of the total voxels in the inner matrix (dark shaded) to the total voxels in the

outer matrix (all shaded).
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Figure 5.2: Confusion matrix showing inner matrix used in the calculation of
entropies, and showing the outer matrix used in r (Eq. 5.6).

r =

∑G
i=1

∑S
j=1NG,S(i, j)∑G

k=1

∑S
l=0NG,S(k, l)

(5.6)

This ratio is analogous to recall in a binary classification problem, if all objects

were considered to belong to one class and air was considered the second class.

Recall is also called sensitivity or true positive rate. The unshaded row contains

type I error. We multiply this ratio, called r, with H. To make this factor more

general, an additional weight can be used so that missed data receive larger or

smaller penalty. Our WMI score is given as

I = r ×H. (5.7)

We chose mass as a basis for evaluation because it gives us information

that is different from volume in most luggage articles, but just as relevant to the
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application. For example, in shoes, the upper is responsible for most of the volume,

while the sole is responsible for most of the mass. The upper is less relevant in the

ATR field because of its low density. We now use WMI to measure mass-based

score, and then prioritize objects by weighting the confusion matrix. For the mass

score, a confusion matrix cell contains not the number of voxels common to a

pair of GT and MS labels, but rather, the common mass, which is calculated by

summing values from the CT image. Let the CT image be denoted C. Then the

mass in cell (i, j) is given by

MG,S(i, j) =
∑

x∈XG(i)∩XS(j)

C(x). (5.8)

The joint and marginal pmfs for the mass-feature are computed from the

confusion matrix in a manner similar to that shown for volume. The mass WMI

score can be considered a weighted volume score, with weights equal to the CT

number being assigned to each voxel.

Note that these calculated values of volume and mass should be multiplied

by voxel size and CT scaling factors to obtain true volume and mass, but these

multiplicative factors are constants and can be neglected. Aside from the constant

scaling factors, the mass is not the true physical mass of the object, but an approxi-

mation. The CT image intensity is proportional to the material linear attenuation

coefficient, which itself is proportional to the physical density of the material if

we neglect the atomic number of the material and the energy-dependence of the

attenuation coefficient.

Next we describe using a weighted confusion matrix (Section 5.3.2) to weight

objects and errors. Specifically, we demonstrate weighted mass WMI, and unifor-

mity (a regional feature).

5.3.2 Weighted confusion matrix (WCM)

We assign priorities to segments by weighting the cells of the confusion

matrix before computing WMI scores. We define weights that assign greater im-

portance to homogenous (also called uniform) objects. Uniformity is not a feature

of interest in ATR, but as we will show later, it demonstrates interesting behavior
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of the segmentation algorithms. The mass confusion matrix rows were weighted

by a measure of uniformity. This measure of uniformity can be considered a tex-

ture feature, weighted by mass to prioritize heavier objects. Alternately, it can be

considered a mass feature, weighted to prioritize homogenous objects.

wσG,S(i, j) =
1

σG(i)
, (5.9)

where σG(i) is the standard deviation of the CT numbers in GT label i and is

given by

σG(i) =

√
1

NG(i)

∑
x∈XG(i)

(
C(x)− CG(i)

)2
, (5.10)

where NG(i) denotes the number of voxels in GT segment i. In the above equation

the mean CT number is given by

CG(i) =
MG(i)

NG(i)
, (5.11)

where MG(i) is the mass within the GT label i given by

MG(i) =
∑

x∈XG(i)

C(x). (5.12)

A natural extension of this idea is cell-wise weighting. We also defined cell-

wise weights with the goal of assigning non-uniform costs to different classification

errors as shown below. The weights of the cells are lower if they are from dissimilar

objects:

wcellG,S(i, j) =
min(CG(i), CS(j))

max(CG(i), CS(j))
(5.13)

The cellwise weights were applied to the volume confusion matrix vG,S(i, j).

5.3.3 Feature descriptor recovery (FDR)

The FDR method measures how well the features of each object are recov-

ered. Feature descriptors have more flexibility than the WMI framework because

label-wise features can be used. For example, one can use label-averages or inter-

label separation divided by intra-label uniformity. Weighting can be incorporated,

similar to the WMI method.
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The numbering of labels in the GT and MS images is arbitrary. We establish

the optimal one-to-one correspondence between the GT and MS labels. We used

the Hungarian method [104] to maximize the total volume overlap between GT

labels and MS labels. Instead of the volume intersection, another cost function

could have been minimized, such as the mass intersection.

A feature descriptor PG is generated by calculating some feature within

each label in the GT. PG is a vector, such that for each label 1 ≤ l ≤ G, PG(l) is

the value of the feature computed with respect to the original CT image, within

that label. Another feature descriptor PS is generated for the MS. The feature

descriptors PG and PS are generated independently of each other.

Features

Analogous to WMI scores, the features we have used are volume, mass, and

uniformity, because of their relevance to ATR. As before, the volume of the label

is the total number of voxels within the label and the mass of the label is the

summed CT value within the label. Similar to the uniformity for WMI, (Eq. 5.9),

we define uniformity as the inverse of standard deviation multiplied by the mass,

calculated per label. The uniformity feature is shown below for GT labels. It is

also calculated for MS labels.

W σ
G(l) =

MG(l)

σG(l)
, 1 ≤ l ≤ G (5.14)

This feature is similar but not identical to the uniformity-weighted mass

of the WCM which had a row-wise weighting (Eq. 5.9). In the WCM, it was not

meaningful to consider the standard deviation of the voxels in a cell because a cell

can have a small number of voxels. In the FDR method, there is no weighting

corresponding to cell-wise weighting wcell of the WMI.

Feature recovery scatter plots

For each object in the MS image and GT image, we generate features as

explained in the previous section. For a feature, we generate a scatter plot of the

matched labels of PS against PG, and call this a feature recovery scatter (FRS)
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plot. In any bag, the number of GT and MS labels may not be the same, so the

minimum is plotted. The data from all the bags were combined. As explained in

Section 5.4, the slope of the line fitted to the data tells us if there are systematic

errors. We used a robust fit to reduce the impact of outliers [105].

Residual errors

In order to compute the residual errors from feature recovery, we applied

commonly used error statistics, including Cramer-von-Mises (CVM) [106], Kullback-

Leibler divergence (KL) [107] and L1 error normalized by the sum of GT feature

values. The L1-based score is:

RL1 = 0.5
|PG − PS|1
|PG|1

(5.15)

Although the FRS plots contain the minimum of the number of labels in the MS

and GT, the residual error is computed on the maximum of the number of labels.

Where a label does not exist, its feature value is zero. The slope of the fitted line

and the residual error together provide the performance result.

Behavior over feature range

In addition to over and undersegmentation, the pairing of segments allows

us to investigate how accuracy changes over a feature range, and to identify outliers.

We take the sliding average (geometric mean) of the feature ratio of the label pairs.

The ratio is that of the larger to the smaller feature value. We plot this mean as

a function of the sliding geometric mean of the GT labels. This plot indicates the

average feature retrieval error against average feature value.

R(i) =

 n−1
2∏

j=−n−1
2

max(PG(i+ j), PS(i+ j))

min(PG(i+ j), PS(i+ j))

1/n

,
n− 1

2
< i ≤ min(G,S)− n− 1

2
.

(5.16)

Ratios are more meaningful than differences in this computation because

of the large dynamic range of the feature. In log-scales, this ratio would be the
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absolute value of the difference and the geometric mean would be the arithmetic

mean, corresponding to taking a sliding L1 error. This prevents opposite polarity

errors from canceling.

From the FRS plots, we can obtain outliers. For each pair of GT and MS

points, we compute the following distance.

d(i) = log

(
PS(i)

PG(i)

)
, 1 ≤ i ≤ min(G,S). (5.17)

We fit a normal distribution to the distances and obtain its standard deviation, σ.

Points i : ‖d(i)‖ > 3σ are considered outliers.

5.3.4 Multiclass F-score (Fm
1 )

In information theory, the F-score is an accepted measure of performance

for binary classification problems [95]. We generated a multi-class extension of the

F1 score to help validate and offer some perspective on our results. The definition

of F1 score is

F1 =
2pr

p+ r
, (5.18)

where r is recall and p is precision (also called positive predictive value). Standard

definitions of recall and precision are

r =
c

c+ c′
and p =

c

c+ d
, (5.19)

where c is true positive, c′ is the type II error, and d is the type I error. The

luggage screening application has a multi-class segmentation problem. Therefore,

the standard definition of the precision and recall, given in Eq. 5.19, cannot be

used. Our multi-class adaptation defines recall and precision as

r =

∑G
i=1NG,S(i, j′(i))∑G

k=1

∑S
l=0NG,S(k, l)

p =

∑G
i=1NG,S(i, j′(i))∑G

k=1

∑G
m=1NG,S(m, j′(k))

.

In the above equation j′(i) is the MS label that best matches GT label

i as per the Hungarian algorithm matching. Using the equation for precision
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given above, we penalize missing portions of segments, missing segments, and split

segments equally. The denominator may not include all the MS labels S, because

that would penalize splitting more than missed detection (which is unreasonable).

5.4 Synthetic problems

To evaluate our measures against intuitive reasoning, we generated simple

problems with different kinds of errors. We consider splitting, merging, partial

splitting and merging, and missed objects (type II errors). We do not consider

spurious objects (type I errors) because we do not penalize them, as described

earlier. The different cases illustrate the behavior of the evaluation measures,

including singularities, discontinuities and non-linearities. There are eight cases in

which the GT has two object labels, each with 500 voxels. The cases are shown as

confusion matrices in Fig. 5.3. In an ideal segmentation, the only populated cells

would be along the matrix diagonal. Cases 1-5 consist of errors in which one or

more voxels from the first label are misclassified as belonging to the second label

as shown below. Considering Case 1, there are two MS labels, but one voxel from

segment 1 is mis-classified as belonging to segment 2. This error splits GT segment

1 and merges with GT segment 2. The results of applying the various evaluation

measures to this case are in the column labeled Case 1 of Table 5.1. Similarly other

columns contain the results for the other cases. In Case 9, one GT label (plus air)

is split in two by the MS.

S1 S2

G1 x y
G2 0 500

S1 S2

G1 499 1
G2 1 499

S0 S1 S2

G1 500 0 0
G2 0 0 500

S1 S2

G1 0 500
G2 0 500

S1 S2

G1 500 500

(a) (b) (c) (d) (e)

Figure 5.3: Confusion matrices for the synthetic problems. Cases 1-5 are shown
in (a). Case 1: x = 499, y = 1, Case 2: x = 475, y = 25, Case 3: x = 450, y =
50, Case 4: x = 400, y = 100, Case 5: x = 250, y = 250. Case 6: one pixel from
each GT label is misclassified by MS as belonging to the other label (b), Case 7:
One GT label is not detected (c), Case 8: Both GT labels are merged by MS (d),
Case 9: Single GT label is split by MS (e).
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We compare our measures against OCE and F1. There are discontinuities

in the OCE, but not in the other measures. The OCE jumps from zero at perfect

segmentation to 0.25 in our two-label problem when a single pixel is misclassified

(Case 1). This is because OCE treats it as a new segment of equal importance

as the segment that is a near-perfect match for the GT label. If more voxels are

moved over (Cases 2-5), the OCE monotonically increases. However, if instead,

one pixel is moved from the second label to the first, as shown by Case 6, there

is another jump from 0.25 to 0.5. The discontinuities are an undesirable property

of OCE. We contrast Case 6 with Case 2. Intuitively, the error is smaller in Case

6 than 2, and less significant in the luggage screening application, but OCE says

the opposite and gives a poorer score to Case 6. In Case 7, there is no penalty for

missing an entire object, demonstrating another undesirable property of OCE.

Fm
1 monotonically decreases as error increases. It penalizes merging more

than missing or split segments, as shown by Cases 7-9, according to the argument

that we have not only missed one object but expanded another. This is a combined

type I and type II error, which does not occur for two-class problems. However,

we could argue that there is only one underlying error, and that we want the

merged segments to be penalized no worse than the other types of error. But that

is a limitation of the F1-score definition. Note that the confusion matrix can be

weighted, e.g., to assign greater penalty to type II error, although we have not

done so here.

The WMI scores are intuitive. While there is a degeneracy to zero for single

segments in the GT or MS as shown in Cases 7 -9, we have not encountered this

case in our luggage data.

Now we consider the FDR method comprising residuals and slope. The

residuals (CVM, RL1 , KL) report the total error. They do not distinguish between

Cases 7-9. They give a perfect score of zero for perfect recovery of the feature (vol-

ume in these cases), even if the segmentation boundaries are wrong, as illustrated

by Case 6. From the point of view of feature recovery it is acceptable to report an

error of zero. The slope, shown by K in the table, tells us the kind of error, i.e.,

splitting or merging in Cases 8 and 9. Case 8 shows undersegmentation; the MS
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labels have larger magnitudes than the GT, which occurs if the algorithm merges

objects more than it splits them. Conversely, Case 9 has oversegmentation; the MS

labels have smaller magnitudes than their corresponding GT labels, which occurs

due to splitting. A slope of one tells us that the errors are random (for non-zero

residuals). In these examples, no weighting was applied, but can be, for example,

to increase the residual penalty for type II errors.

The FDR method is a framework within which we can measure label-wise

features. Therefore, we must use residuals that allow different numbers of labels

in each image. RL1 gives us a result that is linear with the error, which makes it

easy to understand. The CVM errors are monotonic, but nonlinear because CVM

accumulates squared errors. The KL divergence is infinite in Cases 7 and 8. The

absence of any one label, due to missed objects or merging, results in a division

by zero and causes the divergence to be infinite. Therefore we can not use the KL

divergence on our luggage data. We have not used another common divergence, the

Kolmogorov-Smirnoff divergence (KS2) because it gives undue weight to just one

object, which is not desirable in our application, where there are multiple errors

and where the range of error magnitude is unpredictable.

In summary, we find that WMI and FDR methods provide acceptable and

complementary results for the synthetic problems. We use RL1 because it is linear

and permits different numbers of labels in the GT and MS. WMI and FDR are

flexible because we can use them on features rather than voxels, and can use

weighting as will be demonstrated with bag data.

Table 5.1: Performance values for synthetic test cases considering two GT object
labels (and air). The slope of the line fitted to the FRS data is denoted K. CVM,
RL1 and KL are the different residual errors. Performance values for perfect MS
(no error) are given in the second column as a reference.

Ideal Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
OCE 0 0.25 0.29 0.33 0.39 0.51 0.5 0 0.5 0.5
Fm
1 1 0.999 0.975 0.95 0.9 0.75 0.998 0.67 0.5 0.67

WMI 1 0.99 0.86 0.76 0.62 0.35 0.98 0 0 0
CVM 0 5x10−4 0.0125 0.025 0.05 0.125 0 0.25 0.25 0.5
RL1

0 10−3 0.025 0.05 0.1 0.25 0 0.5 0.5 0.5
KL 0 ≈ 0 0.0013 0.005 0.02 0.144 0 ∞ ∞ 0.693
K 1 1 1 1 1 1 1 1 2 0.5
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5.5 Bag data

In this section we present the results of applying our methods to the ALERT

luggage images and their segmentations. We first discuss WMI results, then FDR

results, and then the human expert validation. In the tables and figures below, we

name the segmentation algorithms A1-A5 to anonymize the research groups. The

bags are named B1-B5.

5.5.1 WMI results

WMI scores for volume and mass are shown in Tables 5.2 and 5.3 respec-

tively. The tables show that the best performer for volume and mass recovery is

algorithm A2. Comparing the mass and volume WMI tables, we see that mass

and volume give numerically different results. This happens when the GT or MS

labels have a mixture of CT densities. For example, the segmentation algorithms

recovered the soles of shoes, not the uppers. In general, the mass scores are higher

than the volume scores.

Table 5.2: WMI scores for volume. The best performance in most bags is from
A2.

A1 A2 A3 A4 A5
B1 0.22 0.63 0.54 0.48 0.50
B2 0.45 0.62 0.58 0.48 0.41
B3 0.59 0.69 0.65 0.56 0.38
B4 0.33 0.59 0.65 0.53 0.50
B5 0.60 0.78 0.74 0.68

Table 5.3: WMI scores for mass. The best performance in most bags is from A2.

A1 A2 A3 A4 A5
B1 0.27 0.76 0.65 0.58 0.64
B2 0.57 0.74 0.71 0.56 0.58
B3 0.66 0.74 0.69 0.50 0.49
B4 0.40 0.69 0.74 0.63 0.64
B5 0.66 0.84 0.77 0.63

For comparison, the Fm1 scores for volume and mass are given in Tables 5.4

and 5.5 respectively. The Fm1 scores for volume do not yield a clear winner, but
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the scores for mass are similar to the WMI scores in that the mass scores show the

best performer to be A2, and the mass scores are generally higher than the volume

scores.

Table 5.4: Fm1 scores by volume. It is not clear which is the best performing
algorithm.

A1 A2 A3 A4 A5
B1 0.32 0.67 0.56 0.60 0.55
B2 0.53 0.60 0.57 0.61 0.44
B3 0.49 0.62 0.59 0.57 0.47
B4 0.42 0.52 0.65 0.65 0.59
B5 0.67 0.78 0.76 0.79

Table 5.5: Fm1 scores by mass. The best performance in most bags is by A2.

A1 A2 A3 A4 A5
B1 0.37 0.73 0.61 0.68 0.60
B2 0.60 0.68 0.62 0.66 0.56
B3 0.54 0.65 0.61 0.54 0.57
B4 0.46 0.61 0.70 0.70 0.70
B5 0.73 0.83 0.73 0.73

The WMI scores for uniformity are in Table 5.6. The best performer for the

uniformity feature is unclear. Although WMI gave the highest scores to algorithm

A2 by volume and mass, A2 is not the best algorithm to recover the uniformity

feature.

Table 5.6: WMI score for uniformity. It is not clear which algorithm performs
best for this feature.

A1 A2 A3 A4 A5
B1 0.28 0.77 0.69 0.68 0.66
B2 0.66 0.76 0.75 0.68 0.54
B3 0.68 0.67 0.70 0.67 0.50
B4 0.43 0.71 0.78 0.73 0.64
B5 0.78 0.83 0.87 0.90

Finally we show the cell-wise WMI weights in Table 5.7. Some WMI scores

increase and some decrease compared to unweighted scores, but are not much differ-

ent from unweighted scores. The results are discussed in more detail in Section 5.6.

This weighting does not have a counterpart in the FDR method.
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Table 5.7: WMI for cell-wise weighting of volume.

A1 A2 A3 A4 A5
B1 0.20 0.61 0.51 0.46 0.47
B2 0.43 0.59 0.57 0.46 0.37
B3 0.60 0.69 0.65 0.55 0.36
B4 0.29 0.57 0.64 0.51 0.48
B5 0.59 0.78 0.75 0.67

5.5.2 FDR results

An example FRS plot is shown in Fig. 5.4 for one algorithm. The FRS

slopes for volume, mass and uniformity features, for all algorithms are given in

Table 5.8, and the RL1-residuals are given in Table 5.9 for the combined set of

bags. The residual errors per bag for the different features are given in Tables 5.10

through 5.12.

Mass and volume features increase monotonically with the number of voxels

in a segment, so a slope K > 1 indicates systematic undersegmentation and K < 1

indicates systematic oversegmentation, including missing parts of segments. For

a non-monotonic feature such as uniformity, FRS slope values do not indicate

splitting or merging of the object, but rather a systematic over- or under-estimation

of the feature. Over or under-segmentation should not be simplistically defined by

counting the number of segments. For example, if multiple machine segments exist

for a single GT label, there is oversegmentation. However, if most of the feature

is recovered in one machine segment, there is less oversegmentation than if the

feature is distributed equally among the multiple machine segments.

Table 5.8: Slopes (K) for FRS fit lines for volume, mass and uniformity features.

A1 A2 A3 A4 A5
Volume 0.59 0.85 0.56 0.73 0.61
Mass 0.70 1.0 0.58 0.67 0.89
Uniformity 1.26 0.51 0.91 1.06 1.5

Among the algorithms, A2 exhibits best mass and volume recovery. Its FRS

slopes are closest to one (Table 5.8), and the residuals are smallest (Table 5.9).

For all algorithms, the mass slopes are closer to one than the volume slopes. The

mass residuals are also smaller than the volume residuals. As in the WMI scores,
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Figure 5.4: The mass scatter plot from algorithm A1. There were 81 GT labels.
The fitted line is forced to pass through zero.

Table 5.9: RL1 residuals for all bags combined. A2 has the smallest residuals.

A1 A2 A3 A4 A5
Volume 0.49 0.37 0.48 0.44 0.54
Mass 0.41 0.28 0.45 0.44 0.41
Uniformity 0.60 0.33 0.54 0.51 0.62

the FRS plots show that it is easier for a segmentation algorithm to recover mass

than volume because of the heterogeneity of the material composition of objects

and clutter.

Although A2 has the best volume and mass retrieval, it does not show best

recovery of uniformity. As shown in Table 5.8, the uniformity slope for A2 is small

(0.51) compared to other algorithms. There is also no clear best performer. The

FDR results are in line with the WMI scores.

An instance of poor uniformity recovery was a water bottle touching another

liquid-filled container. The MS label for the water bottle included the other liquid,

and lost some of the bottle itself, either labeling it as air or as the other liquid as

shown in Fig 5.5. Also included into the bottle label were voxels of metal from

a nearby touching object (not shown). The volume and mass were well-recovered

because of the exchange of material between the two labels, but the CT number

differences of the mixed materials created a high variance in the machine segment.

Feature recovery over the feature range is shown in Fig 5.6 for mass. The

sliding average scatter plots show that feature recovery improves as object mass
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Table 5.10: RL1 residual error by volume. A2 has the smallest residual in most
bags.

A1 A2 A3 A4 A5
B1 0.76 0.46 0.61 0.56 0.51
B2 0.45 0.51 0.58 0.51 0.59
B3 0.37 0.27 0.43 0.48 0.60
B4 0.66 0.44 0.50 0.49 0.45
B5 0.37 0.22 0.36 0.30

Table 5.11: RL1 residual error by mass. A2 has the smallest residual in most
bags.

A1 A2 A3 A4 A5
B1 0.71 0.35 0.55 0.48 0.41
B2 0.38 0.41 0.53 0.46 0.44
B3 0.32 0.23 0.39 0.53 0.48
B4 0.63 0.35 0.43 0.43 0.31
B5 0.31 0.15 0.40 0.38

increases for A2. Although A2 has the best mass scores, it is less reliable for

low-mass objects than some of the other algorithms. At higher masses, it is more

reliable than the other algorithms. In another example, A5 shows no apparent

preference for any range of mass. An example plot of outliers is shown in Fig. 5.7

for the mass feature, for the A1 algorithm.

5.5.3 Validation by human expert observer

In order to validate the methods beyond the synthetic problems, a human

expert visually evaluated two MS algorithms, A1 and A2, against GT. The diffi-

culty of the task for the observer arises from the multiple splits and merges and the

large number of slices. The comparison was simplified by sampling every fifteenth

slice. The observer was presented with corresponding slices of A1, A2, GT and

CT images. The MS slices were randomly ordered for blind review. For each pair

of slices, the observer selects the MS that he considers a closer match to the GT

slice. The results are in Table 5.13. In each bag, the observer prefers A2 over A1,

which is in agreement with WMI and FDR results. The expert explained some of

his decisions. He observed that slices from A1 had more type II error than those



97

Table 5.12: RL1 residual error by uniformity. A2 has the smallest residuals despite
the small slope shown in Table 5.8.

A1 A2 A3 A4 A5
B1 1.18 0.39 0.71 0.55 0.40
B2 1.00 0.35 1.01 0.97 0.90
B3 0.92 0.24 0.64 0.51 0.42
B4 0.41 0.33 1.03 0.78 0.62
B5 0.42 0.35 0.30 0.35

Table 5.13: The human observer evaluation of two MS algorithms. The second
column shows percentage of slices in which A2 was preferred. The third column
shows the number of slices that were ranked better in A1, in A2 and equal in both.
The fourth column shows the percentage of slices with a higher WMI score when
WMI was applied slicewise.

Bag % A2 by Expert A1 / A2/ Equal % A2 by MI
B1 96 0 / 27 / 1 100
B2 82 5 / 32 / 2 85
B3 73 6 / 22 / 2 91
B4 76 6 / 25 / 2 86
B5 72 8 / 26 / 2 92

from A2. This observation relates to the lower WMI scores (Table 5.2 and 5.3)

and smaller slope of A1 (Table 5.8) compared with A2. The expert selected A1 in

some slices where A2 labels appeared jagged. The jagged labels belonged to large

liquid-filled containers. These selections agree with the uniformity scores.

There is also a correspondence between the expert’s preferred percentage

and the WMI and RL1 results per bag. We do not expect to see perfect correspon-

dence because the expert performed a simplifed evaluation. The slice sampling

method favors larger less dense objects over smaller denser ones, the human is

imprecise and is influenced by visual appeal, there was no weighting per slice to

increase the impact of fuller slices over emptier ones, and no quantification of

preference given a pair of slices.

In addition, we applied WMI slicewise on the same slices evaluated by the

human. For all slices, the higher-scoring algorithm was compared with the human

preference using McNemar [108] and KS2 tests. The McNemar test yielded a p-

value of 0.08 which does not reject the null hypothesis that the human and WMI

prefer the same algorithm. The KS2 test-statistic was 0.04, which also does not
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reject the null hypothesis at a confidence level of 0.05.

5.5.4 Summary

The FDR and WMI both measure feature recovery, unlike existing evalua-

tion methods that compute edge distances or voxel misclassification. Both meth-

ods are sensitive to spatial correspondence of labels, unlike histogram comparison

methods that measure features. Further, both methods are useful for multiple

label segmentation problems. And both allow us to assign priorities to segments

by pointwise or regional weighting. They also gave consistent results in selecting

the same best algorithm. However, FDR and WMI have different perspectives.

WMI is more sensitive to spatial correspondence than FDR. FDR is more flexible

in that data from multiple images can be pooled and trends can be extracted, and

a wider variety of features can be used. A human expert validated our methods

by visual assessment.

5.6 Discussion

As discussed in Section 5.1, many GT-based methods in the evaluation

literature use region-based errors when multiple regions of interest are present in

the image. This can be thought of as using an indicator function on each voxel for

each label. But each voxel and its neighborhood contain additional information we

can use instead of just the indicator. In our case, we have used mass and uniformity

in addition to volume. In the mass scores, voxels with higher CT number are more

important than those with lower CT number. The use of uniformity prioritizes

more homogenous objects over less homogenous ones. Mass and uniformity are

examples of features that may be useful for a specific application. An EDS may

utilize these or other features depending on the ATR algorithm.

The WMI, Fm1 score and FDR results for mass are more consistent with

each other (same best performer) than the corresponding volume scores. These

discrepancies between volume and mass illustrate the challenges of segmentation of

CT images of luggage. The results show that mass is easier to recover than volume,
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i.e., a meaningful feature within a region is easier to extract than the region itself.

The FDR method is more general and informative than histogram-based

methods. A previously published evaluation method for populations of similar

objects used histograms [12]. However, in general, the objects in a segmentation

problem are not similar, and there are no object-type populations. We generate

a bipartite matching and can evaluate any objects. Due the bipartite matching,

we can extract information about systematic errors, expected performance as a

function of feature value, and outliers. Matching allows object prioritization and

non-uniform costs. The residuals include pairwise errors, missed and spurious

segments (although we do not penalize the latter here).

The FRS and WMI showed that A2 traded-off region uniformity for better

overall segmentation. Note that if the CT number distribution of adjoining objects

is the same, the mass or volume FRS plots may not indicate errors (provided

the same volumes are displaced from one object to another). If the textures are

similar as well, the FRS plot for uniformity will not indicate errors either. This

is acceptable from the feature recovery point of view. Another inference we can

draw from the uniformity results is that the improvement of the other algorithms

relative to A2 shows that they find it easier to segment uniform objects, while A2

is less dependent on object uniformity.

Our sliding-average plots show trends in performance as a function of fea-

ture value for some algorithms. We show the mass feature, because that has the

best WMI and FDR scores. The accuracy of segmentation of an object depends

not only on its own features, but those of the surrounding objects. As a result,

algorithms may not all show trends with feature value, but if trends are present,

they help in the interpretation of segmentation results.

In the cell-wise weighted confusion matrix, we have weighted each cell by

a factor representing the similarity of a regional feature. Our factor is the ratio

of the smaller mean to the greater mean. For a cell representing some GT and

MS labels, if the labels are dissimilar in the regional feature, we assign a smaller

weight to the cell, which is to say that this cell does not help us get information

about one distribution from the other distribution. This decreases the total WMI.
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Consider a cell on the diagonal of the confusion matrix. The diagonal represents

the matched objects. If the matched objects are dissimilar, then the ratio is small,

and the cell loses importance. Here it is easy to see the interpretation that the

object represented by the cell in the MS image does not tell us much about the

GT image. Considering an off-diagonal cell, it similarly loses importance when the

means are dissimilar. At first glance, it seems counter-intuitive that a cell that

represents two unmatched objects, should have decreased weight when the objects

are dissimilar. But WMI does not measure the ordering of the information. This

cell contains the quantity of an intersection that really does exist. So if we decrease

(increase) the weighting of that intersection, we decrease (increase) the amount of

information one label set tells us about the other label set. In addition, we increase

or decrease the entropies of the GT and MS images when we weight cells, depending

on what the original image contained. The cell-wise weighting therefore is difficult

to control and does not give monotonic results.

5.7 Evaluation of metal artifact reduction

We have used our segmentation evaluation algorithms to evaluate the ef-

fectiveness of our metal artifact reduction (MAR) algorithm. Although we have

a more rigorous and application-independent numerical evaluation of the MAR

algorithms in Chapter 3, evaluation of the MAR by segmentation results allows us

to directly measure the impact of MAR on the application. For this evaluation, we

choose region growing to segment the original and MAR images. This is because

we are evaluating the reconstruction of homogenous objects, which is what region

growing is good at segmenting. We show the results from four images in our set.

These images have multiple objects of interest, so that we do not have a degenerate

case for WMI.

The GT for these images was manually generated for the numerical eval-

uation of Chapter 3. Since we were measuring uniformity, we placed the manual

contours within the object, excluding the high-contrast edges. For this evaluation

by segmentation, we dilated each GT label by two pixels so that the label would
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Table 5.14: Volume WMI for the four images that contain multiple uniform
objects

Bag 1 Bag 3 Bag6 Bag 7
Original 0.87 0.70 0.69 0.71
MAR 0.94 0.80 0.87 0.95

extend to the edge of the object, and be close to an ideal segmentation. The CT

images and the MS labels for original and MAR images are shown in Fig. 5.8.

The WMI results for volume are given in Table 5.14. The table shows that

the WMI scores improve after MAR. Fig. 5.9 shows the FRS plots for the original

and MAR images. The FRS slopes show that oversegmentation has decreased.

Dark streaks split the uniform objects in the original images, creating smaller

fragments, but after MAR, more of the objects are segmented correctly. The

RL1 residual error for the original image set is 0.22 while the error for the MAR

set is 0.13. From each of these results, we see that MAR improves the image

segmentation.

5.7.1 Conclusion

We have developed two flexible parameter-independent methods to evalu-

ate segmentation algorithms. The methods were applied on a test set of luggage

images. Our contributions are as follows. 1. We have used a well-accepted mea-

sure from information theory to measure feature overlap. 2. We have developed a

new method based on feature recovery that has good agreement with mutual infor-

mation, but that also identifies systematic errors and allows pointwise or regional

features to be used. 3. We have used weighting functions to prioritize objects

based on desired features. 4. We developed a semi-automatic method to extract

GT from three-dimensional CT images. We used human evaluation of segmen-

tation accuracy and synthetic problems to validate our methods. Our evaluation

methods indicated one algorithm, A2, as the best one, and found characteristics

of the algorithm: accuracy increased with object mass, and A2 was less reliant on

object uniformity than some of the other algorithms. Given the challenges and

requirements for segmentation in luggage scanning, we found our methods to be



102

more suitable to evaluate segmentation algorithms than methods from existing

literature.

In addition, we were able to use this to help evaluate our metal artifact

reduction. Both evaluation methods indicated that each MAR image was superior

to the corresponding original image with artifacts, which is in line with our visual

and quantitative evaluation in Chapter 3.

This chapter contains material from “Flexible Methods for Segmentation

Evaluation: Results from CT Luggage Screening,” Journal of X-Ray Science and

Technology, Vol. 22, Issue 2, 2014. The paper was co-authored by Xiaoqian Jiang,

Pamela Cosman and Harry Martz.
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Figure 5.5: Poor uniformity recovery by A2 of a large uniform object. Two objects
circled in the right column are liquid-filled containers. There is misclassification
between those two object labels, shown by arrows, as well as one of the objects
and air.
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Figure 5.6: The sliding average (Eq. 5.16) for the mass feature shown for two
algorithms have different characteristics. A2 improves with mass, but A5 does not.

Figure 5.7: Example FRS plot for mass showing outliers (Eq. 5.17) circled in red.
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Original MAR

Figure 5.8: CT images and their segmentations.
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Original MAR

Figure 5.8: CT images and their segmentations (continued).



107

Figure 5.9: FRS plots for the original and MAR image sets. The slope K of the
original set indicates splitting by metal artifacts. The slope of the MAR image set
is closer to the ideal value of 1.



Appendix A

Ancillary operations for

segmentation-based MAR

algorithm

A.1 Contouring the outer boundary

We create a closed contour along the outer boundary of the anatomy in the

original image, shown by the broken line in Fig. 2.1(a). The contour is assigned a

low value of soft tissue such as It = −100 HU. The contour must be at least two

voxels thick to prevent the later steps from removing it. There are many contour

tracking algorithms which would work for this simple contour generation problem;

we have used an algorithm that thresholds the image, and then connects outer

boundary pixels with 8-connectivity. We use a threshold of −600 HU, which is

well below soft-tissue intensities, to account for tissue corrupted by artifacts. If

there are multiple disconnected objects in the image, and hence multiple contours,

we keep only the largest one.

108
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A.2 Correcting errors from morphology approx-

imations

OBR and CBR replace regions of voxels with single values. If left this way,

the prior-image would be patchy, and the final image would have the appearance

of patchy texture. To avoid this, voxel values between the limits of It and Imin

are replaced with the mode value of the original image. This range includes most

soft tissue, but the exact limits are not critical, and the range can be made larger.

Soft tissue variations will be removed from the prior. The soft tissue variations

do not contribute to secondary artifacts, and it is better to replace them, to avoid

patchiness from CBR and OBR. The data replacement method, described below,

does not substitute the scanner projections with the reprojections of the prior, so

the soft tissue details are not lost.

A.3 Replacement of sinogram data

The prior-image is reprojected, and the metal trace is found in the repro-

jections by calculation of the rays passing through the metal image. We have used

the method described in [15] for data replacement. In this method, the reprojec-

tions are subtracted from the scanner projections. The difference projections are

smoother than the scanner projections. The interpolation of metal traces is done

on the difference projections and the interpolated result is added to the reprojec-

tions to create the final corrected projections that are then reconstructed to create

the final image. We modify this interpolation method in that we fit a second order

spline to five samples on both sides of the metal trace instead of using linear inter-

polation. Linear interpolation of two samples should not be relied upon because

sampling errors and noise will result in poor estimates of data.
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