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Abstract

Quantitative trait locus (QTL) analysis is a powerful tool for mapping genes for complex traits in mice, but its utility is limited
by poor resolution. A promising mapping approach is association analysis in outbred stocks or different inbred strains. As a
proof of concept for the association approach, we applied whole-genome association analysis to hepatic gene expression
traits in an outbred mouse population, the MF1 stock, and replicated expression QTL (eQTL) identified in previous studies of
F2 intercross mice. We found that the mapping resolution of these eQTL was significantly greater in the outbred population.
Through an example, we also showed how this precise mapping can be used to resolve previously identified loci (in
intercross studies), which affect many different transcript levels (known as eQTL ‘‘hotspots’’), into distinct regions. Our
results also highlight the importance of correcting for population structure in whole-genome association studies in the
outbred stock.
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Introduction

Quantitative trait locus (QTL) analysis has been the primary

tool for geneticists to study complex genetic traits in experimental

organisms. However, while such QTL mapping has great power to

identify loci controlling the traits, resolution of mapping is usually

quite low and as a result few candidate genes have been

successfully identified using this approach. The use of molecular

phenotypes, in particular gene expression levels, as quantitative

traits for mapping, coupled with the ability to measure thousands

of such traits simultaneously, has added a tremendous spark to the

field of complex trait genetics. The integration of expression QTL

(eQTL) with complex clinical traits using statistical modeling has

allowed the identification of genes and pathways involved in a

variety of complex traits. Some of the recent successes of this

integrative approach have been identification of causal genes

underlying the QTL for clinically relevant trait [1–3], the

identification of genomic loci regulating the expression of

biological pathway genes[4], the identification of genomic hotspots

harboring master regulators [5–7], and prioritization of candidate

genes underlying physiological trait QTLs [8]. Moreover,

mathematical models have been developed to construct gene

expression networks [9,10], deduce the causal relationship

between different components of the network [11], and under-

stand the transcriptional regulation of the genes [12].

Despite these successes, such integrative genomic approaches

using F2 populations suffer from the same limitation that has

hindered the success of the traditional physiological trait QTL

mapping, namely lack of resolution in mapping [13]. To overcome

the lack of resolution problem, Flint and colleagues recently

investigated the use of outbred stocks of mice to simultaneously

detect and fine map physiological trait QTLs [14–16]. In the first of

the two recent studies, they used 790 outbred mice (MF1) to study

the genetics of behavioral traits and successfully mapped three

QTLs within a 1cM region [14]. In the second study, the authors

extended this approach to multiple traits and mapped 97 metabolic

and human disease related phenotypes to intervals of 2.8 Mb

(average 95% confidence interval) by using over 2000 heteroge-

neous stock mice [15]. The success of these studies prompted us to

investigate the potential use of outbred mice for eQTL studies,

where many validated quantitative trait genes for expression traits

have been identified. In this report, we present the results of a whole

genome association study for the liver gene expression profiling of

110 MF1 mice and compare the results obtained in this population

with previously published linkage studies in F2 mice [17].

Results

A total of 110 outbred MF1 mice were studied for whole

genome transcript levels in liver and subjected to genotyping using

PLoS Genetics | www.plosgenetics.org 1 August 2008 | Volume 4 | Issue 8 | e1000149



the Affymetrix 5K Mouse Chip. From the 5024 SNPs on this

array, 1813 SNPs (about one third of total SNPs) had a minor

allele frequency of 5% or greater, and were used for the analyses

described below. The average and median distance between

neighboring SNPs for these 1813 markers were 1.38 Mb and 0.57

Mb respectively. To determine the percent coverage of the

genome by these 1813 SNPs, we used the average distance of the

adjacent markers which had an r squared value of 0.9 or higher.

This analysis showed that on average adjacent markers will have

such a high LD when within 1.03Mb. Based on this, approxi-

mately 3000 informative evenly spaced markers are needed to

allow coverage of the entire genome. This calculation is based on

the assumption that the haplotype blocks in this population are all

about the same size. However, as we show below, this is not true

for some regions of the genome, and thus the estimate is very

approximate. Given the non-uniform distribution of the 1813

markers across the genome the genetic coverage for these set of

markers is 72% of the genome. This means that in the whole

genome association analysis described in this report we would

expect to miss 28% of the signals.

Gene expression measurements were performed on RNA

isolated from liver using Illumina’s mouse whole genome

expression BeadChip (MouseRef-8-v1 Expression BeadChip) (see

Materials and Methods). We applied two filtering criteria to the

24048 probes on the microarray. The first filtering criteria was

based on the detection p-value calculated for each probe (see

Materials and Methods). This filtering step eliminated any probe

with low signal which could be due to nonspecific hybridization.

The second filtering criterion was based on the recent report by

Walter et al [18] which they showed that for the Affymetrix

platform the presence of SNP within the 25mer probe sequence

may affect the hybridization of transcripts and lead to artifactual

detection of local (cis) eQTL. To investigate if this applies to the

50mer probe sequences of the Illumina microarrays used in the

current study, we examined the degree of enrichment of SNPs in

probes with local eQTL vs probes with no local eQTL. We found

that from the 10765 probes with reliable signal and unique

genomic location 602 probes had a local eQTL and from these

105 contained at least one SNP (as determined from the Perlegen

SNP database) within their probe sequences (17%). In contrast,

from the 10163 probes with no evidence for local eQTL 647 (6%)

contained one or more annotated SNPs. This means that the

proportion of probes with SNPs in the sequence is significantly

higher for probes determined to have local eQTL vs probes with

no local eQTL (chi squared statistics p-value for such enrichment

was ,10216). These results suggest that, as with Affymetrix arrays

[18], the presence of SNP within the probe sequence on the

Illumina microarray might result in artifactual local eQTL

detection. Therefore, to overcome such a bias we excluded any

probe with one or more SNPs in its sequence. The two filtering

criteria combined yielded 10013 probes (from the original 24048)

which we used as a starting set for the whole genome association

analyses described below.

We first computed the degree of linkage disequilibrium in the

population of 110 MF1 mice. Pair-wise r2 were calculated among

all the SNPs, and the average r2 measures for different ranges were

used to look at the LD structure in the population. Visual

inspection of the LD between markers within the same

chromosome revealed a complex LD structure in the population

(Figure 1A and Figure S1). In particular, it was evident that the

extent of LD varied in different regions of the genome. Moreover,

although for most regions highest LD was between adjacent

markers, in some cases non-adjacent markers showed a higher LD

than adjacent ones. To quantify the extent of LD between the

markers in this population, we created 100 kb bins of various

distances between marker pairs and calculated the average r2 for

each bin. As shown in Figure 1B, the average r2 dropped with

increasing distance between markers. The average r2 for markers

within 2 Mb of each other was 0.58, for markers between 2 to 5

Mb was 0.30, and for markers 5Mb or more apart was 0.04,

suggesting that the extensive LD exists over several Mb. For

markers located on different chromosomes, the LD was low (the

mean r2 was 0.015 and the median was 0.008). Despite this low r2,

inspection of the distribution of the chi-squared statistics p-values

for expected r2 in absence of LD indicated significant LD between

certain pairs. These observations were consistent with our visual

inspection of LD maps suggesting the existence of a complex

relationship pattern among different loci, presumably due to

population substructure within the MF1 stock.

To further investigate this we performed hierarchical clustering

of mice based on the kinship matrix which we derived from the

overall correlation of genotypes between pairs of mice. The results

revealed clear evidence of familial clustering (Figure 1C) indicating

differences in relatedness. In addition, several multi-leveled larger

clusters were observed with weaker levels of similarity, suggesting a

complex genetic relatedness between the samples. The potential

confounding effect from population structure was further support-

ed by the fact that a very large number of expression levels are

significantly explained by genetic relatedness between individuals.

Using variance component test and at the 5% FDR level, 30.2%

(3027) of transcripts were significantly associated with genetic

background while only 1.5% (151) are expected by chance at the

same threshold. In addition, for 19.8% (1985) of transcripts, more

than 50% of variance was explained solely by the genetic

background effect. This indicated that correcting for population

structure is essential to avoid larger numbers of false positives.

In order to correct for population structure we used Efficient

Mixed Model Association (EMMA). The underlying statistical

algorithm for performing such correction has recently been

published [18] and is briefly explained in the Materials and

Methods section. In summary, EMMA controls for population

structure and familial relatedness by modeling the gene expression

on two terms (plus the random error term): one is the SNP

genotype and the other is a term which takes into account the

population structure. This term, which is estimated based on the

genetic similarity of mice in the population, essentially captures the

variance attributable to population structure and provides a better

estimate of SNP effect and its significance on gene expression.

Without partitioning this term, the variance due to the genetic

structure will be falsely attributed to the SNP and might result in a

Author Summary

In rodents, as in humans, traits such as obesity or diabetes
are under the influence of many genes spread throughout
the genome. Using linkage analysis, the locations of the
major contributing genes can be mapped only to very
large regions of chromosomes, usually encompassing
hundreds of genes. This has made it difficult to identify
the underlying genes and mutations. Another approach,
analogous to genome-wide association in human popula-
tions, is to use association analyses among outbred stocks
of mice. In this proof-of-principle article, we make use of
common variations that locally perturb gene expression to
demonstrate the greatly improved mapping resolution of
association in mice. Our results indicate that association
analyses in mice are a powerful approach to the dissection
of complex traits and their underlying molecular networks.

Expression QTL Mapping in Outbred Mice
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false positive association signal. To examine the effects of

correcting for familial structure on the genome wide association,

we compared the results of the association before and after

correcting for population structure using a linear additive model

and a linear mixed model. Table 1 shows the results for various

FDR thresholds and for both local (primarily cis) and distant (trans)

eQTL. Before correction, regression analysis of gene expression on

markers revealed a total of 812 significant associations (at FDR of

1%, corresponding to the p-val of 2.29e-06). From these, 444

(55%) were local and 368 (45%) were distant eQTL. After

correcting for population structure, there were about two thirds as

many significant associations as found originally (478 significant

associations at the FDR of 1% corresponding to the p-value of

1.05e-06). This result suggested that about one third of the

associations found in the absence of correction were false positives

due to the relatedness of the mice. The reduction in significant

associations among local and distant eQTL, however, was not the

same. For local eQTL, there were 18% fewer associations after

correction (366 vs 444), but for the distant eQTL there was a 70%

reduction in the number of associations found (112 vs 368). We

also examined the results at 5% and 10% FDR thresholds (Table 1)

and as with the 1% FDR, we observed a similar pattern where the

total number of associations was less after correction and distant

eQTL were more affected by this correction than local eQTL.

This inflation of p-values resulting from the population structure

was also evident from the pattern and number of significant p-

values for each transcript (Figure S2).

One of the limitations of using outbred stock for mapping

complex traits has been the statistical power issue and the need to

include large number of mice in the study [13]. In addition, the

presence of population structure between the animals can also

have a negative impact on the statistical power. To assess the

power of the current study, we performed power calculations

under various genetic background (population structure) effects

(Figure 2A and Figure S3). As shown in Figure 2A, for minor allele

frequency of 0.3, the average minor allele frequency in our

population, and the genetic background effect of 0.3 at the 10%

FDR level (p-value = e-05), this study has over 60% power to

detect QTL typical of what is expected from local eQTL (30%

variance explained) as estimated from intercross data (unpublished

data). For distant eQTL, however, where the effects are smaller

(typically less than 10% of variance explained) at the same FDR

level the use of 110 related mice will have relatively small power

(,20%). These results imply that for eQTL described below the

local eQTL detected reflect the majority of true local eQTL

present in the population and for distant eQTL there may be a

significant number associated with type I and/or type II errors.

We next examined the eQTL structure in the MF1 mice. As

shown in Table 1 (and Table S1), 1196 eQTL had significant

association at the 10% FDR (p-value of 2.43e-05) after correcting

for population structure, which greatly exceeded the 119 expected

by chance. Among the 1196 eQTL, 24 were due to different

probes of the same gene mapping to the same location. This

reduced the number of unique eQTL for each gene to 1172. From

Figure 1. LD and population structure in the MF1 population.
Panel (A) shows the LD structure on chromosome 1. The order of
markers in the heat map follows the physical location of the marker
along the chromosome with the most proximal starting at the bottom
and on the right and the most distal marker on the top and on the left.
The correspondence between color and r2 is shown in the insert. Panel
(B) shows the distribution of r2 values between markers located at

various distance from each other. Each bar depicts a 100 kb bin for the
distance between marker pairs. The average r2 for marker pairs within
2Mb of each other is 0.58, for markers between 2 to 5 Mb is 0.3, and for
markers 5Mb or more away from each other is 0.05. Panel (C) shows the
heatmap visualization of genetic similarity between individual mice. The
dendograms on the top and on the side of the heat map are based on
the hierarchical clustering of genome wide genotype similarity of the
110 MF1 mice.
doi:10.1371/journal.pgen.1000149.g001

Expression QTL Mapping in Outbred Mice
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these, 471 were classified as local or cis eQTL (defined as the

association peak marker for transcript of a gene mapping to within

10Mb of the physical location of the gene itself) and 701 were

classified as distant or trans eQTL (The significant results for the

whole genome association analysis at various FDRs can be found

in Table S1 and the top 10 most significant distant eQTL at 10%

FDR are shown in Table 2). From the 1172 eQTL, which

belonged to 1093 genes, there were a total of 1019 single gene

associations, 69 genes had two associations, and 5 genes had more

than two associations. From the 69 genes with two associations, 27

genes had one local and one distant eQTL and 42 genes had two

distant eQTL. In general, the p-values for local eQTL (mean–log

of p-value = 11.5) were more significant than the p-values for

distant eQTL (mean–log of p-value = 5.4). Local eQTL are very

likely to be due to a variation either within the gene or in the

regulatory region in close proximity to the gene. To investigate the

resolution achieved in the MF1 data we calculated the distance of

the association peak marker to the physical location of the gene for

each local eQTL. This analysis revealed that the median distance

of the peak markers from the physical location of the gene was

0.67 Mb and for 25% of the genes the peak marker was located

less than 300 Kb away from the gene itself (Figure 2B).

We also searched for the presence of co-localizing distant eQTL

(eQTL ‘‘hotspots’’). To do this, the entire genome was divided into

2 Mb bins (1287 total bins) and the number of significant distant

eQTL were counted in each bin. Plotting of the eQTL frequencies

at various genomic regions indicated a non-random distribution of

the mapping locations (Figure 2C). Several ‘hotspots’ were

identified, with the most highly enriched loci on Chromosome 1

(17 eQTL), Chromosome 4 (55 eQTL), Chromosome 7 (25

eQTL), and Chromosome 16 (15 eQTL). To assess the validity of

these hotspots, we randomly grouped mice into two subsets and

reanalyzed each subset for the presence of co-localizing distant

eQTL. We repeated this procedure four times to test for the

preservation of these four highly enriched hotspots in each of the

subsets (Figure S4). From these four hotspots, the Chromosome 4

hotspot was present in 7 of the 8 subsets created. Chromosomes 1

was replicated 4 times, Chromosomes 7 replicated three times, and

Chromosome 16 replicated twice in the subsets analyzed. For

Chromosomes 1, 7, and 16, the inconsistency in replication could

either be due to an artifact of population structure not accounted

for by our correction method [20] or to lack of power resulting

from doing the analysis on half as many animals as in the original

analysis. The presence of hotspots is consistent with the notion that

the causal genetic variant is located within a master regulator of

gene expression for group of genes. To identify candidate master

regulator genes for each of these hotspots, we searched for local

eQTL within each region. On Chromosome 1 we found no local

eQTL; on Chromosome 16 we found one local eQTL

homogentisate 1, 2-dioxygenase (Hgd); on Chromosome 7 we

found 6 local eQTL including the enhancer binding protein

CCAAT/enhancer binding protein alpha (Cebpa), lipolysis stimu-

lated lipoprotein receptor (Lisch7), peptidase D (Pep4), coiled-coil

domain containing 123 (Ccdc123 or 2610507L03Rik), androgen

regulated gene RP2 (Nudt19 or D7Rp2e), a Rho GTPase binding

protein rhophilin 2 (Rhpn2); and in the most enriched hotspot on

Chromosome 4 we only found one local eQTL methylthioadeno-

sine phosphorylase (Mtap).

Since MF1s offer a higher mapping resolution, this resource

may be used to fine map eQTL previously identified in other

crosses. The limitation is that not all the eQTL found previously

will be present in the MF1 population. Here we sought to compare

the mapping results in the MF1 population by empirically

estimating the fraction of eQTL detected in this study compared

to what was found in a previously published cross from our

laboratory. For this comparison we used the previously reported

eQTL study of the liver tissue for the F2 intercross population

generated between C57BL/6J.ApoE2/2 and C3H/HeJ.ApoE2/2

parental strains (herein referred to as the BxH cross) [17]. In order

to make a direct comparison we used the Entrez-Gene accession

IDs to map the probes across the Illumina and the Agilent

microarrays. From the 10013 probes used in the MF1 genome

wide association analysis 8437 had unique Entrez-Gene IDs, 8036

of which were also represented by one or more probes on the

Agilent microarrays used in the BxH cross. Using the genome-

wide suggestive LOD score of 3.5, a total of 8111 eQTL were

present in the BxH study. From these, 1905 eQTL mapped to

within 10Mb of the physical location of the gene and were

classified as local eQTL and the remainder (6206) as distant.

Intersection of the local eQTL for the common set of genes in the

two studies (1905 eQTL in BxH vs 471 eQTL in the MF1)

identified 163 genes. This amounts to ,35% of the total local

eQTL found in the MF1 study (163/471). Intersection of distant

eQTL, however, gave a much smaller overlap. From the 760

distant eQTL in the MF1 there were only 9 present in the BxH

data (7 expected by chance, P = 0.22) which is about ,1% of the

distant eQTL found in the MF1 study (Table 3). As discussed

previously, the MF1 data has a low statistical power to detect

distant eQTL especially at higher p-value cutoffs such as the one

we used to compare the two datasets (P = e-05). Therefore, the lack

of overlap between the distant eQTL in the MF1 data and the

BxH data can be attributed to both the lack of power associated

with detecting distant eQTL in the MF1 study and the

conservative p-value cutoff chosen to detect these eQTL.

Lowering the cutoff value for significance to 1.14e-04 (25%

FDR) identified 26 overlaps with the BxH data (24 expected by

chance, P = 0.3) and lowering this cutoff further to a nominal p-

value of 0.001 resulted in 163 distant eQTL overlap between the

two studies (140 expected by chance, P = 0.008).

Previous studies suggest that outbred stocks offer a high

resolution mapping resource, but these studies did not have prior

knowledge of the location of the causal variant for the trait [16].

The presence of common local eQTL, where one can assume,

with high confidence, that the causal genetic variant lies within or

Table 1. Comparison of local and distant eQTL before and after correction for population structure.

%FDR Local eQTL Distant eQTL

Uncorrected Corrected % change Uncorrected Corrected % change

1 444 366 18 368 112 70

5 569 446 22 1867 334 82

10 668 492 26 4616 704 85

doi:10.1371/journal.pgen.1000149.t001

Expression QTL Mapping in Outbred Mice
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Figure 2. Power analysis and the genetic architecture of local and distant eQTL. Panel (A) shows the power calculation performed for
genetic background effect of 0.3. Various curve colors represent the power associated with various p-value cutoffs. (grey = 0.05, green = 0.01,
orange = 0.001, blue = 0.0001, red = 1e-05, purple = 1e-06, black = 2.76e-05 which is equivalent to the Bonferroni correction). For each calculation, the
minor allele frequency is assumed 0.3. Panel (B) shows the distance of the association peak marker from the physical location of the gene for local
eQTL identified in the MF1 population. Panel (C) shows the distant eQTL hotspots across the genome before (bottom) and after (top) population
correction. The genome is represented as 1287 equally sized bins of 2 Mb. The gray line depicts the 0.05 genome wide significance for eQTL
enrichment after Bonferroni correction (p-value of 3.9e-05).
doi:10.1371/journal.pgen.1000149.g002

Expression QTL Mapping in Outbred Mice
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near by the physical location of the gene, between the BxH and

the MF1 data sets provides a unique setting to directly

demonstrate the higher mapping resolution attainable in the

association study using MF1 outbred stock compared to the

linkage study in the F2 population. Figure 3 illustrates the results of

such a comparison for 4 shared local eQTL (Ttf2, Insig2, Frzb, and

Pparg) between BxH and MF1 populations. As shown, the MF1

data (grey curve) provided much narrower candidate region than

the BxH data (black curve). As expected for any local eQTL, the

candidate regions in both studies encompassed the genomic region

for the gene itself and peaked directly over the physical location of

the gene. However, the QTLs in the BxH cross encompassed a

much broader region than the association results in MF1 data.

These results indicate that the MF1 population yields a much

better resolution for eQTL mapping than a traditional cross.

We next turned to the distant (trans-acting) eQTL. Several

eQTL studies with intercross or RI strain mice have observed that

many distant eQTL map to the same location on a chromosome,

giving rise to what is known as distant eQTL hotspots. Here we

illustrate how the MF1 whole genome association analysis can be

used to resolve such co-localization of distant eQTL. We had

previously detected a distant eQTL hotspot in the middle region of

chromosome 6. A total of 96 unique genes (99 probes) had a

distant eQTL at this locus. Based on the assumption that the

variation in the expression of the causal gene underlying this

hotspot mediates its effects, we identified 8 local eQTL (Bcl2l13,

Ogg1, Cidec, Atp2b2, Pparg, Clstn3, LOC380687, C1r) as

primary candidate genes for this hotspot. Thus, judging by the

F2 data alone, any one of these 8 local eQTL could be regulating

any of the 96 distant eQTL. We turned to the MF1 data and

asked, first, if we could resolve the co-localization of the local

eQTL on the chromosome 6 locus and, second, if we could resolve

the co-localization of the distant eQTL in this region. From the 8

local eQTL in the BxH F2 cross, 3 of them (Bcl2l13, Pparg, and

Cidec) were also observed in the MF1 population. Figure 4 shows

the mapping of these three local eQTL in the BxH and the MF1

populations. While the mapping results appeared indistinguishable

in the BxH study (Figure 4A), association analysis in the MF1

successfully resolved these local eQTL and mapped them near the

physical location of each gene (Figure 4B). Out of the three local

eQTL, the local eQTL for Cidec mapped to two markers,

rs13478971 and rs13478971, at 112.1 and 111.2 Mb, respectively,

which are ,1 and ,2 Mb away from where the physical location

of the Cidec gene (113.3 Mb). These were the closest markers to the

physical location of Cidec. These results suggested the presence of

either a distal regulatory element for this gene or the presence of a

closely linked regulatory gene for Cidec on Chromosome 6.

Genotyping with denser markers closer to Cidec location might

correctly position the highest peak above the gene itself.

Interestingly, the Bcl2l13 transcript levels, in addition to mapping

to the nearest marker to the physical location of the gene at 121.6

Mb, also showed significant association with markers located at

114.2, 114.3, and 114.7 Mb, suggesting the possible presence of an

additional distal regulatory locus near the local eQTL for this

gene. After resolving the three local eQTL, we examined the

distant eQTL which mapped to this locus in the BxH cross and

asked which of these distant eQTL mapped to any of these three

local eQTL on Chromosome 6. From the 96 distant eQTL

colocalizing to the chromosome 6 locus in the BxH study, 14 were

replicated in the MF1 population (using the nominal p-value cutoff

of 0.01). Judging by the location of the association peak markers,

despite the co-localization in the BxH, these 14 eQTL mapped to

varying loci within the chromosome 6 region. In particular, 3 of

these genes (S3-12, Calr3, Hmgcl) mapped over the Pparg locus,

another 2 genes (Gpi1, Ctps) mapped over the Cidec locus, and 9

genes had the most significant associations with markers at other

than the three local eQTL loci (Figure S4). For the 5 genes

Table 2. Top 10 most significant associations for distant eQTL.

Gene Symbol
Chromosomal Gene
Location Mapping SNP SNP Chromosome

SNP Position
(Mb) Association p-value

Lrp11 10 rs13478347 5 80.5 1.61E-29

Mat2b 11 rs13477797 4 78.6 4.35E-10

Cyp2c54 19 rs13479573 7 127.1 6.78E-10

9330164H19Rik 7 rs6164040 4 79.8 4.04E-09

2810027O19Rik 2 rs13475914 1 71.5 4.34E-09

Kif3a 11 rs13479070 6 137.9 1.09E-08

Vps33b 7 rs6351643 2 18.7 1.13E-08

Birc4 20 rs3724460 2 104 1.48E-08

Pcolce2 9 rs13478096 5 4.99 1.53E-08

Sgk 10 rs13475914 1 71.5 1.64E-08

doi:10.1371/journal.pgen.1000149.t002

Table 3. Common distant eQTL identified in both the BxH F2
linkage cross and the MF1 association study.

Gene
Symbol

BxH Mapping
Chromosome
(Location Mb) LOD Score

MF1 Mapping
Chromosome
(Location Mb) p-value

Alas2 4 (62.5) 3.71 4 (43.9) 4.62E-06

Cyp1b1 18 (52.6) 3.67 18 (40.1) 1.20E-05

Ptgds 7 (144.9) 3.85 7 (132.7) 1.23E-05

AI586015 15 (62.8) 3.75 15 (69.5) 9.12E-06

S3-12 6 (115.9) 25.01 6 (115.3) 9.55E-07

Centd2 7 (64.4) 8.65 7 (50.2) 1.12E-05

Slc36a4 5 (78.1) 5.38 5 (59.5) 9.23E-06

Foxred1 4 (86.9) 6.02 4 (79.8) 5.10E-06

Lrp11 5 (84.1) 5.23 5 (80.5) 8.13E-29

doi:10.1371/journal.pgen.1000149.t003
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mapping to either the Pparg or the Cidec loci we computed the 50

and 90 percent confidence (c.i.) intervals using bootstrapping (1000

sample sets). The S3-12 and Calr3 50% c.i. span a 1.3Mb region

over the Pparg locus from 114.6Mb to 115.9Mb and the 50% c.i.

for Hmgcl span a 1.9Mb region over the Pparg locus from

112.4Mb to 115.3Mb (the 90% c.i. for S3-12 was from 112.4Mb

to 117Mb, for Calr3 was from 112.4Mb to 116.2Mb, and for

Hmgcl was from 112.1Mb to 115.9Mb). For the two genes with

the peak marker at the Cidec locus (Gpi1 and Ctps) the 50% c.i.

were 3Mb (from 111.2Mb to 114.2Mb) and 1.2Mb (from 111.2Mb

to 112.4Mb), respectively, overlapping with the Cidec locus. The

90% c.i. for these two genes were from 110Mb to 114.3Mb and

from 111.2Mb to 114.6 Mb, respectively. It is noteworthy that S3-

12 is a known Pparg target gene [19]. These results show that the

co-localization of eQTL in the BxH study can be successfully

resolved with high resolution in the MF1 data.

The amount of resolution achieved in our mapping study was

limited to the density of the markers used (average marker density

1.37 Mb). Next, we asked whether typing more SNPs in a region

would enhance the mapping resolution. For this, we focused on

the distal locus of chromosome 5 where the results of the whole

genome association had identified 3 distant eQTL (Pbx2,

2610020N02Rik, and D4Ertd432e) at the genome wide significance

level of 2.43e-05 p-value (10% FDR). The candidate region for

this association spanned a 3.6 Mb region (from rs13478570 at

142.8 Mb to rs13478583 at 146.4 Mb) with the peak marker at

144 Mb (rs13478573). To fine map this region each of the 110

animals were genotyped for an additional 5 markers by the PCR-

ARMS technique [20]. The primers were designed such that they

would be less than 500 kb away from the peak marker or each

other (Materials and Methods). The fine mapping results are

shown in Figure 5. For D4Ertd432e (bottom panel) and

2610020N02Rik (top panel) the fine mapping effort reduced the

candidate locus to 1.1 Mb (located between rs29635622 at 143.4

Mb and rs32348286 at 144.5 Mb) containing 22 candidate genes.

For Pbx2, the candidate region was reduced to 0.7 Mb interval

between rs33492148 (at 143.8 Mb) and rs32348286 (at 144.5 Mb)

containing 14 candidate genes. The 90% c.i. for these three genes

(as determined by 1000 bootstrapping data sets) spanned a 500 kb

region in the interval between 143.81Mb and 144.52Mb. These

Figure 3. Comparison of four conserved local eQTL mapping results between the MF1 and BxH studies. In each plot, the black curve
depicts the LOD curve in the BxH data, and the gray curve is the association result in the MF1 data. The physical location of the gene is shown by the
black box. In each panel, the tick marks on x-axis depicts the physical location of the markers used in the BxH study. A) Ttf2, B) Frzb, C) Insig2, D) Pparg.
doi:10.1371/journal.pgen.1000149.g003
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results suggest that MF1 population, with a relatively small sample

size of 110, gives a sub-megabase resolution for mapping eQTL.

Discussion

This report provides a ‘‘proof of concept’’ demonstration of the

utility of genome wide association for the identification of genes

contributing to complex traits in mice. A number of previous

association studies with outbred stocks or different inbred strains

have been reported, but these have in most cases not been

validated since the underlying genes were not known [14,15,21–

23]. We have taken advantage of many local eQTL that have been

identified in a recent linkage study in mice to validate the

association approach. We also have provided an overall view of

LD structure in the MF1 population and have shown the

importance of correcting for population structure in association

analyses.

In this study we used both the local eQTL and the distant

eQTL to investigate the attainable high resolution mapping of

expression traits in the MF1 population. We used the local eQTL

as a proof of concept because with high confidence we can predict

where the genetic variant is located (i,e. near or within the physical

location of the gene) [24]. Therefore, this allowed us to study the

level of resolution one can achieve in the MF1 population. The

comparative analysis of the four common local eQTL between the

BxH F2 and the MF1 mice suggested that one can achieve a

mapping resolution below 1 Mb. This is also evident from the fact

that in all the local eQTL identified in the MF1 data about half the

peak markers for the association mapped within 600 kb from the

physical location of the gene. The sub-megabase resolution

achieved for the eQTL is also supported by the fine mapping

results for the distant eQTL for the chromosome 5 locus as well.

These results are also comparable to the previous mapping studies

for the behavioral traits in MF1 mice where the reported

confidence intervals for 3 closely linked QTLs were between 250

to 750 kb [14]. Clearly, with larger numbers of mice and denser

genotyping, we expect the mapping resolution in this population to

increase and the confidence intervals to decrease.

Figure 4. Comparison of the three conserved local eQTL on chromosome 6 between the BxH and MF1 studies. Panel (A) shows the BxH
mapping results for Pparg (dashed curve), Cidec (solid curve), and Bcl2l13 (dotted curve). The physical location of Pparg (circle), Cidec (square), and
Bcl2l13 (triangle) is shown at the bottom. Panel (B) shows the MF1 results for Pparg (solid triangles with dotted red curve), Cidec (open circles with
gray dotted curve), and Bcl2l13 (solid circles with dotted black curve). The physical location of the genes are depicted at the bottom with gray box for
Cidec, red box for Pparg, and black box for Bcl2l13. Tick marks on x-axis depict the physical location of the markers in the BxH dataset.
doi:10.1371/journal.pgen.1000149.g004
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The number of significant associations observed at various false

discovery thresholds in this study (Table 1) were lower than the

numbers reported in other genetical genomics studies [5,6,25,26].

This was especially true for distant eQTL which, for most part,

have relatively small effects. One of the reasons for this

shortcoming is the lack of power associated with the small number

of animals used in this study (110 mice). The presence of

population structure, in turn, also negatively impacts the effective

size of the animals used in the study. In fact, one of the limitations

of using outbred stock for mapping complex traits has been the

statistical power issue and the need to include large number of

mice in the study [13]. Another important point related to the

statistical power issue is the very stringent genome wide significant

cut off chosen in the whole genome association analysis due to the

multiple testing issue. Without doubt, the use of genome wide cut

off value is the appropriate measure for screening significant

associations across all the markers and all the gene expression

traits in the genome (over 22 million total tests performed).

However, in settings where the replication of previously found

QTL is under investigation, the hypothesis to be tested is reduced

to one trait and several markers along the previously mapped

region. Therefore, there should be no need for selecting such a

high cutoff value for significance. This was evident in our data

when we attempted to resolve the S3-12 and 13 other previously

identified chromosome 6 locus distant eQTL. At the genome wide

cutoff value, only 2 of these genes were significantly associated

with markers on chromosome 6 locus, but with the nominal p-

value of 0.01, 12 additional genes also showed evidence of

significant association to this locus. The use of less stringent criteria

for local QTL studies has also been implemented in other reports

and shown to correctly rediscover and validate previously

identified QTLs [27,28].

Previous genetical genomics studies reported the presence of

genomic hotspots where large groups of eQTL collectively map to

single loci in the genome [4,5,29]. In the current study, we were also

able to identify such hotspots in the MF1 population, but the

number of co-localizing eQTL within each hotspot identified in our

study is considerably less than what has been reported before in

other crosses [5,29]. This is partly due to the lack of power to detect

distant eQTL (as mentioned above) and partly due to the high

Figure 5. Fine mapping of the distal chromosome 5 locus. The three distant eQTL 2610020N02Rik (top), Pbx2 (middle), and D4Ertd432e
(bottom) were fine mapped by typing additional markers in the region (open circles). Closed circles represent the original markers used in the whole
genome association. The horizontal line corresponds to the nominal p-value of 0.05.
doi:10.1371/journal.pgen.1000149.g005
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resolution mapping achieved in the MF1 population. In general, the

presence of eQTL hotspots indicates either the presence of a master

regulator gene which regulates the expression of group of genes

together or the presence of several tightly linked genes within the

hotspot, each of which regulates the expression of subset of the genes

which map to this locus [30]. In the case of an F2 population, since

the mice carry relatively few recombinations, these two alternatives

appear alike and indistinguishable from the mapping data. In the

MF1 data, however, since the genome is finely grained, one can

resolve a hotspot due to multiple linked genetic variants into its

individual components. We used the chromosome 6 locus as an

example and were able to resolve the 14 distant eQTL into several

groups based on which marker they associated with most strongly.

Among these, the group that showed significant association with the

Pparg locus comprised three genes one of which (S3-12) has been

associated with Pparg gene previously [19,31] and another gene

(Hmgcl) has been shown to be coregulated with Pparg at the

transcript level by thyroid hormone [31].

It has been widely acknowledged that standard statistical tests

that do not account for population structure or familial relatedness

are prone to identify spurious associations [32–34]. Different levels

of molecular variance between different pairs of individuals are

likely to induce different levels of polygenic background effects,

invalidating the independence assumption of standard statistical

tests such as t-test or ANOVA. Recent studies illustrate that the

linear mixed model effectively captures confounding effects due to

heterogeneous genetic relatedness [35,36] more effectively than

previous approaches such as Structured Association [37], Principal

Component Analysis [38] or Genomic Control [39]. In this report

we provide additional evidence for how failure to correct for such

population structure can result in many more false positive

associations. We also show that distant eQTL are more prone to

such artifactual associations due to their relatively small effect sizes

and higher likelihood of being false positives.

Genetical genomics is becoming increasingly popular due to its

promise to bridge the gap between the physiological traits and the

genetic variations in the population. To fully take advantage of

such an approach it is imperative to understand the nature of the

association between the transcript level of the gene and the causal

genetic variation. Molecular networks underlying the physiological

traits cannot be properly constructed without the proper

knowledge of the interaction among genes. We believe that the

genetical genomics approach coupled with the high precision

mapping offered by the MF1 outbred stock will significantly

advance the potential for identifying regulatory genes for distant

eQTL and provide the necessary components to build such

biological networks.

Materials and Methods

Animals
Female MF1 mice, approximately 4–6 weeks of age, were

purchased from Harlan (Indianapolis, Indiana, USA). These

animals were fed Purina Chow (Ralston-Purina Co., St. Louise,

MO) containing 4% fat until 19 weeks of age, and then fed a

Western diet (Teklad 88137, Harlan Teklad, Madison WI)

containing 42% fat and 0.15% cholesterol for ,14 weeks until

they were sacrificed at 33 weeks of age. All mice were maintained

on a 12h light/dark cycle. Mice were fasted for 5 hours before

being euthanized.

Genotyping
For the initial genotyping, the Affymetrix GeneChip Mouse

Mapping 5K SNP platform was utilized. The DNA used for the

genotyping was isolated from the tail clips of each mouse using the

Qiagen’s DNeasy tissue kit (cat# 69506). Overall, a total of 5024

SNPs were genotyped. The genomic location of all the analyzed

SNPs were based on the snpdb126 (http://www.ncbi.nlm.nih.

gov/SNP/index.html).

Fine mapping on the distal region of Chromosome 5 was

performed using the PCR-ARMS technique [20]. A total of 6 SNP

markers were selected for fine mapping: rs29635622 at 143400193 bp

position, rs33318740 at 143817829 bp position, rs33492148 at

143854676 bp position, rs32348286 at 144521447 bp position,

rs29524465 at 144918013 bp position, and rs33719947 at

145196793 bp position. These primers were chosen so that the

distance between adjacent markers did not exceed 500kb. To carry

the PCR-ARMS a set of tetra-primers were designed using the

http://cedar.genetics.soton.ac.uk/public_html/primer1.html web-

site [20] for each marker. The tetra-primer sequences of each marker

and the expected band size for each are as follows: 1) rs29635622

forward inner primer (C allele specific) GCTTATTTGCA-

TACTTTGCGATGTAGAC, reverse inner primer (T allele specific)

AACTATCCAAATGCACACTGAAGCCA, forward outer primer

GTGCTATCTCTTCAGCCCAGAGTGATAT, reverse out prim-

er GAGGAGCGAACCATTCTCTAAAAGTTGT, C-allele si-

ze = 133bp, T-allele size = 163 bp, outer-products = 242 bp; 2)

rs33318740 forward inner primer (A allele specific) AAGA-

TGCCGGCCCCAGATTGCCCTGTGA, reverse inner primer

(G allele specific) GGGAGAAAGCTCCCTGCTTTGTCCAA-

ACTC, forward outer primer GGAAGGTGAGGAGACAGGC-

TTCCGGCAG, reverse out primer CTTATGGCAAACCAC-

CCTGCCCAGCAGA, A-allele size = 193 bp, G-allele size = 162

bp, outer-products = 297 bp; 3) rs33492148 forward inner primer (T

allele specific) TTCTGTCTTAATTGAGCCCATATGAAAAT,

reverse inner primer (G allele specific) GCACATTCTTCCA-

GACTCTGCATATC, forward outer primer ACTCTTGACAAA-

GAAGAATGCTTGCTTT, reverse out primer ATGTTTTGGC-

TAAGCACAATCCTACTCT, T-allele size = 194 bp, G-allele

size = 172 bp, outer-products = 311 bp; 4) rs32348286 forward inner

primer (A allele specific) AGGACTGCCACAGGCCAGCATCT-

CACA, reverse inner primer (G allele specific) AGTGTATCTAT-

CAGGTGAATTCCAGTAGTC, forward outer primer AAGCC-

AAGCTGTCTCCAAGTCCTAGAAA, reverse out primer AC-

CACTTGAAGCCTGATTAAAATGTGCC, A-allele size = 213

bp, G-allele size = 175 bp, outer-products = 331 bp; 5) rs29524465

forward inner primer (A allele specific) CCTCTAATCTCCTGAG-

GATTGGAACA, reverse inner primer (G allele specific)

TCATTTGGACACTAGAGCTTCTTCATTATC, forward outer

primer TCGGAGAGACAGTTGTCTGTTAGGTTTA, reverse

out primer GACAATGACGAAAAGACAAGTCACTTCT,

T-allele size = 116 bp, G-allele size = 127 bp, outer-products = 187

bp; 6) rs33719947 forward inner primer (C allele specific)

GTACATGTTCTTTTAAAATTATTAATCGAC, reverse inner

primer (T allele specific) AGAAAAAGACACTCCTTGGAG-

CATGA, forward outer primer CTGTGATTTAAAGGCGTGC-

TAGTACTAC, reverse out primer GTGAGAGAGA-

GAGTCTGGGAATATTTCT, C-allele size = 177 bp, T-allele

size = 157 bp, outer-products = 278 bp. Each of the 110 MF1 mice

were genotyped for these markers by PCR and the products were

separated by 4% agarose gel and visualized by ethidium bromide

staining.

Gene Expression Analysis
RNA extraction was performed on the liver tissue obtained from

each animal at the time of sacrifice, using Qiagen’s RNeasy kit

(cat# 74104). For the gene expression measurements, Illumina’s

Mouse whole genome expression BeadChips (MouseRef-8-v1
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Expression BeadChip) were used. All amplifications and hybrid-

izations were performed according to Illumina’s protocol by the

Southern California Genome Consortium microarray core

laboratory at UCLA. In brief, 100 ng of total RNA was first

reverse transcribed to cDNA using Ambion cDNA synthesis kit

AMIL1791 and then converted to cRNA and labeled with biotin.

800ng of biotinylated cRNA product is hybridized to prepared

whole genome arrays and allowed to incubate overnight ( 16–

20 hrs) at 55 degrees C. Arrays were washed then stained with

Cy3 labeled streptavadin. Excess stain wass removed by washing

and the arrays were dried and scanned on an Illumina BeadScan

con-focal laser scanner.

Data normalization was performed using the rank invariant

method by the Bead Studio software. After normalization, all gene

expression data were log2 transformed.

To filter genes, we selected probes which met two criteria; 1) the

probes exhibited a reliable signal and 2) the probes contained no

annotated SNP within their sequence. The former was determined

according to the Illumina Bead Studio output. The detection value

is equal to 1-probability that a signal level is due to nonspecific

hybridization. This value can be interpreted as the probability of

seeing a certain signal level without specific probe-target

hybridization. For filtering we excluded any probe which had a

detection value of lower than 0.95 in greater than eleven (10%) or

more animals. To select against the bias in hybridization due to

probe design, as described by Walter et al [40], we excluded any

probe which in blast search had 100% sequence identity to more

than one location of the genome or had at least one SNP within it.

To determine this we aligned the genomic location of all the

probes against the genomic location of ,8 million SNPs available

on the Perlegen database (http://mouse.perlegen.com/mouse/

index.html). Any probe which contained a SNP which was

polymorphic between the proposed ancestors of the MF1 mice (I,e.

C57BL/6J, DBA/2J, C3H/HeJ, AKR/J, I/LnJ, BALB/cJ, RIII/

J, and A/J) was excluded. This filtering step resulted in the

exclusion of 2160 probes. The remaining 10013 probes were used

as the starting set for the whole genome association analysis. The

gene expression data are deposited to the Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) at NCBI. These

data are deposited under the accession number GSE10280.

Linkage Disequilibrium (LD) and False Discovery Rate
(FDR) Calculation

LD and FDR were calculated using R software algorithms. To

compute the pair-wise LD between markers, we used the LD

function in the Genetics package, which includes output of the chi

square p-values for marker independence which we used to test for

LD between markers on different chromosomes. For the FDR

calculation we used the q-value package in R [41]. Due to the

computational complexity associated with evaluating q-values for

.20 million p-values, we computed the FDRs by taking the

average FDR for 100 samples each containing 5 million randomly

selected p-values from the original 22,069,649 calculated p-values.

Whole Genome Association and Population Substructure
Correction

We first computed the genetic similarity matrix between the

individual mice as the fraction of shared alleles (identity-by-state)

for each pairs, and visualized it with heatmap R package. A

complex multi-leveled population structure and genetic relatedness

is observed in the genetic similarity matrix.

We applied the following variance component test to estimate

the variance explained by genetic background and assess the

statistical significance.

H0 : y~mze

H1 : y~mzuze

where y is the vector of expression values of a gene, and m is mean,

and e is random errors following an identical and independent

normal distribution with Var(e) =se
2I. u is a vector of random

variables accounting for the effect from genetic background. u

follows a multivariate normal distribution with Var(u) =sg
2K,

where K is the genetic similarity matrix described above. The

fraction of variance explained by genetic background is computed

as previously suggested with tr(SKS)/(n-1+tr(SKS)), where S = I-J/

n, and J is a square matrix consisting of ones from the REML

estimate of H1. The likelihood ratio test is performed by

comparing the maximum likelihood of two hypotheses. The

likelihood difference 2*(l1-l0) asymptotically follows a 1:1 mixture

of the chi-squared distribution with zero and one degree-of-

freedom [42]. The false discovery rate is estimated conservatively

by setting p0 = 1 [41].

To account for population structure and genetic relatedness in

association mapping, we applied the following standard linear

mixed model as previously suggested [18,35,36].

y~mzxbzuze

where y, m, u, and e are same as described above, and x is the

genotype vector of a marker represented in additive model, and b
is a marker effect. A standard F test was performed to test H1:b?0

against H0:b= 0 after estimating restricted maximum likelihood

(REML) variance components as described [18,35,36]. We

applied EMMA (Efficient Mixed Model Association) as a R

implementation of linear mixed model. Since EMMA is orders of

magnitude faster than other implementations commonly used, we

were able to perform statistical analyses for all pairs of transcripts

and genome wide markers in a few hours using a cluster of 50

processors.

Supporting Information

Figure S1 LD structure on Chromosome 2-20. The order of

markers in each heat map follows the physical location of the

marker along the chromosome with the most proximal at the

bottom and the most distal marker on the top. The correspon-

dence between color and r2 is shown in the insert.

Found at: doi:10.1371/journal.pgen.1000149.s001 (0.23 MB

DOC)

Figure S2 Effect of familial structure on gene expression

association. Panel (A) shows the inflation of false positives at a

transcript represented by as the average log p values across all the

markers (x-axis) and the correlation between a transcript and

genetic relatedness (y-axis). Panel (B) shows this correspondence

after correcting for genetic relatedness using a linear mixed model.

Found at: doi:10.1371/journal.pgen.1000149.s002 (4.23 MB

DOC)

Figure S3 Power Analysis. Figures A–E show the power

expected for various various genetic backgrounds. A is for no

genetic background effect, B is for genetic background effect of

0.1, C is for genetic background effect of 0.2, D is for genetic

background effect of 0.4, and E is for genetic background effect of
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0.5. In each panel, the power is calculated for various p-value

cutoffs (grey = 0.05, green = 0.01, orange = 0.001, blue = 0.0001,

red = 1e-05, purple = 1e-06, black = 2.76e-05 which is equivalent

to the Bonferroni correction). For each calculation, the minor

allele frequency is assumed 0.3.

Found at: doi:10.1371/journal.pgen.1000149.s003 (0.08 MB

DOC)

Figure S4 Validation of distant eQTL hotspots. In each of the

figures A through D, the 110 mice were randomly split two groups

(55 MF1 mice in each) and for each subset the number of distant

eQTL counts were determined across the genome. The genome is

represented as 1287 equally sized bins of 2 Mb. The gray line

depicts the 0.05 genome wide significance for eQTL enrichment

after Bonferroni correction (p-value of 3.9e-05).

Found at: doi:10.1371/journal.pgen.1000149.s004 (0.08 MB

DOC)

Figure S5 Association results in MF1 data for 14 distal eQTLs

co-localized in the BxH F2 intercross. The location of local eQTLs

Pparg (grey), Cidec (red), and Bcl2l13 (black) is shown at the

bottom of each figure.

Found at: doi:10.1371/journal.pgen.1000149.s005 (0.13 MB

DOC)

Table S1 Cis and trans eQTL at 1%, 5%, 10%, and 25% FDR.

Found at: doi:10.1371/journal.pgen.1000149.s006 (1.17 MB

XLS)
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