UC Berkeley

UC Berkeley Previously Published Works

Title

Measurements of the sum of HO2NO2 and CH3O2NO2 in the remote troposphere

Permalink

https://escholarship.org/uc/item/9w65p146

Authors

Murphy, J G Thornton, J A Wooldridge, P J et al.

Publication Date

2004-02-01

Peer reviewed

Atmos. Chem. Phys., 4, 377–384, 2004 www.atmos-chem-phys.org/acp/4/377/ SRef-ID: 1680-7324/acp/2004-4-377

Measurements of the sum of HO_2NO_2 and $CH_3O_2NO_2$ in the remote troposphere

J. G. $Murphy^1$, J. A. Thornton^{1*}, P. J. Wooldridge¹, D. A. Day^1 , R. S. Rosen¹, C. Cantrell², R. E. Shetter², B. Lefer², and R. C. Cohen^{1,3,4}

Received: 16 September 2003 – Published in Atmos. Chem. Phys. Discuss.: 12 November 2003

Revised: 2 February 2004 – Accepted: 24 February 2004 – Published: 27 February 2004

Abstract. The chemistry of peroxynitric acid (HO₂NO₂) and methyl peroxynitrate (CH₃O₂NO₂) is predicted to be particularly important in the upper troposphere where temperatures are frequently low enough that these compounds do not rapidly decompose. At temperatures below 240 K, we calculate that about 20% of NO_v in the mid- and high-latitude upper troposphere is HO₂NO₂. Under these conditions, the reaction of OH with HO2NO2 is estimated to account for as much as one third of the permanent loss of hydrogen radicals. During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign, we used thermal dissociation laser-induced fluorescence (TD-LIF) to measure the sum of peroxynitrates $(\Sigma PNs \equiv HO_2NO_2 + CH_3O_2NO_2 + PAN + PPN + ...)$ aboard the NCAR C-130 research aircraft. We infer the sum of HO_2NO_2 and $CH_3O_2NO_2$ as the difference between ΣPN measurements and gas chromatographic measurements of the two major peroxy acyl nitrates, peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate (PPN). Comparison with NO_v and other nitrogen oxide measurements confirms the importance of HO₂NO₂ and CH₃O₂NO₂ to the reactive nitrogen budget and shows that current thinking about the chemistry of these species is approximately correct. During the spring high latitude conditions sampled during the TOPSE experiment, the model predictions of the contribution of (HO₂NO₂+CH₃O₂NO₂) to NO_v are highly temperature dependent: on average 30% of NO_v at 230 K, 15% of NO_v at 240 K, and <5% of NO_v above 250 K. The temperature dependence of the inferred concentrations corroborates the contribution of overtone photolysis to the photochemistry of peroxynitric acid. A model that includes IR photolysis ($J=1\times10^{-5}$ s⁻¹) agreed with the observed sum

Correspondence to: R. C. Cohen (cohen@cchem.berkeley.edu)

of HO₂NO₂+CH₃O₂NO₂ to better than 35% below 240 K where the concentration of these species is largest.

1 Introduction

Reactions of hydrogen radicals ($HO_x \equiv OH + HO_2$, and RO_2) and nitrogen radicals ($NO_x \equiv NO + NO_2$) affect atmospheric composition and climate by regulating global tropospheric ozone and the Earth's oxidative capacity. Peroxynitrates (RO_2NO_2) link these chemical families, thereby influencing tropospheric ozone production and the abundance of OH in both the troposphere and stratosphere. Non-acyl peroxynitrates such as HO_2NO_2 and $CH_3O_2NO_2$ are increasingly important at temperatures below 240 K, because the molecules are very weakly bound ($\sim 95 \, \text{kJ/mol}$) and rapidly dissociate at higher temperature. Consequently these molecules are most important in the stratosphere and upper troposphere.

Knowledge of the chemistry of alkyl RO2NO2 species is limited because they are difficult to isolate in the laboratory or to observe directly in the atmosphere. Remote sensing measurements of peroxynitric acid concentrations in the stratosphere show that HO₂NO₂ mixing ratios peak at approximately 200 ppt near 27 km altitude (Rinsland et al., 1986; Rinsland et al., 1996; Sen et al., 1998). The only other measurements are from the Antarctic surface where Slusher et al. (2001) used chemical ionization mass spectrometry to observe HO₂NO₂mixing ratios on the order of 20 ppt, showing they were nearly equal to nitric acid mixing ratios. Recent OH and HO₂ measurements made in the lower stratosphere at high solar zenith angles (SZA) indicate that there is a source of HO_x that dissociates following absorption of low energy photons (Salawitch et al., 1994; Wennberg et al., 1999). Overtone photodissociation of HO₂NO₂, as

¹University of California at Berkeley, Department of Chemistry, Berkeley, CA, USA

²National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO, USA

³University of California at Berkeley, Department of Earth and Planetary Science, Berkeley, CA, USA

⁴Lawrence Berkeley National Laboratory, Division of Energy and Environment Technologies, Berkeley, CA, USA

^{*}now at: University of Toronto, Department of Chemistry, Toronto, ON, Canada

suggested by Donaldson et al. (1997), can explain part of the HO_x source required to account for these observations and some of the temporal variability seen in remote sensing of HO_2NO_2 (Salawitch et al., 2002). These observations and calculations of HO_2NO_2 abundances and their effect on stratospheric HO_x have been the impetus for revisiting the long-wavelength photolysis and kinetics of peroxynitrates in the laboratory (Knight et al., 2002; Roehl et al., 2002; Zhang et al., 2000).

Here we describe the first in situ measurements of these peroxynitrates in the free troposphere. The measurements were made during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) experiment (Atlas et al., 2003). TOPSE flights focused on tropospheric sampling over midto high-latitude continental North America during the winter and spring of 2000. Data used in this paper are limited to latitudes north of 50° N and altitudes above 500 m to avoid the effects of recent surface emissions or losses. The data were collected during the daytime at temperatures between 220 and 290 K. Analysis along chemical coordinates (Cohen et al., 2000), in this case temperature and NO₂, and consideration of the NO_y budget are used to evaluate current understanding of photolytic and thermal decomposition rates of HO_2NO_2 and $CH_3O_2NO_2$.

2 Instrumentation

NO_v and its components were measured from the NCAR C-130 aircraft during the TOPSE experiment. Ridley et al. (2000) measured NO, NO2 and NOy by conversion to NO followed by O₃+NO chemiluminescence. The NO₂ measurements were precise to \pm 4 ppt and accurate to 5%. C_{1} - C_4 alkyl nitrates (ΣANs) were quantified by GC analysis of whole air samples (Blake et al., 2003). In our analysis, the sum of C₁-C₄ alkyl nitrate observations was linearly interpolated to a 1 min time base. Nitric acid was measured using a mist chamber followed by ion chromatography (Talbot et al., 1990). PAN and PPN were measured in situ by the NCAR Gas Chromatography with Electron Capture Detection (GC-ECD) instrument. The PAN and PPN measurements represent 1-3 s samples with a precision of ± 5 ppt at 20 ppt, ± 3 ppt at 100 ppt, ± 5 –7 ppt at 500 ppt. The accuracy of the PAN and PPN measurements is 10%. Because the PAN and PPN measurements were made with the same instrument, we assume their uncertainties are correlated, that is, if necessary, both could be brought to the "true" value by multiplying by a single constant. During a five minute interval, two PAN measurements and one of PPN are obtained.

A two-channel thermal dissociation laser-induced fluorescence (TD-LIF) instrument was used for observations of total peroxynitrates ($\Sigma PNs \equiv PAN+PPN+HO_2NO_2+CH_3O_2NO_2+...$) and of NO_2 . TD-LIF is described in detail in Day et al. (2002). The specific instrument configuration used during TOPSE is described in detail by

Thornton (2002). Briefly, TD-LIF relies on a heated inlet (50 ms residence time at 180°C) to dissociate RO₂NO₂ to yield NO₂ and RO₂. The resultant NO₂ is quantified along with ambient NO2 using laser-induced fluorescence (LIF). By operating the heated inlet in parallel with an inlet maintained at ambient temperature, ΣPN mixing ratios can be derived from the difference between the NO₂ signals of the two channels. In addition to acyl and non-acyl peroxynitrates, N₂O₅ will also dissociate in the heated inlet, though we expect it was removed through contact with the walls prior to the heated portion of the inlet, and made a negligible contribution to NO_v in the low NO_x conditions sampled during TOPSE. NO_v species such as alkyl nitrates and nitric acid have significantly higher O-NO₂ bond energies than peroxynitrates and would not have dissociated under the inlet conditions used.

The first third of the campaign was used to test and improve some aspects of instrument performance. High time resolution measurements of NO_2 (channel 1) and ΣPNs (channel 2–channel 1) were obtained simultaneously and continuously during the final nineteen flights of the TOPSE experiment. The precision of the measurements for a 1 min average in each channel under optimal conditions was ± 20 ppt which is dominated by uncertainty in the instrument zero. Under some conditions, usually after steep altitude changes, the apparent precision is ± 50 ppt. The precision of ΣPNs is given by:

$$\sigma(\Sigma PNs) = [(\sigma_{channel 1})^2 + (\sigma_{channel 2})^2]^{1/2}$$
 (1)

and for a typical scenario $\sigma(\Sigma PNs)$ is ± 28 ppt for 1 min averaging. The accuracy of channel 1 is estimated to be 10% and the accuracy of channel 2 to be 15%. The accuracy of the ΣPNs is estimated to be 15% since the accuracy of the two channels is largely correlated and most of the signal is in channel 2. While TD-LIF NO_2 measurements were used for calculating ΣPN , in the model calculations below we use the NCAR photolysis-chemiluminescence measurements of NO_2 because of their superior precision in the low concentration ranges encountered during TOPSE. TD-LIF measurements were, on average, 20 ppt higher than chemiluminescence measurements of NO_2 , but the ΣPN measurements are the difference between two channels, and observations with the inlet heater turned off confirm that both channels measure the same amount of NO_2 .

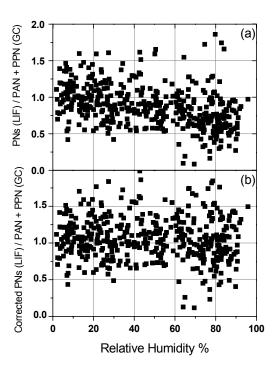
Measurements suggest that PAN is the dominant contribution to ΣPNs and that PPN is the only other major acyl peroxynitrate in the air sampled during TOPSE. In order to infer abundances of non-acyl peroxynitrates (hereafter referred to as ΔPNs) we subtract speciated measurements of PAN and PPN obtained by the NCAR GC-ECD instrument from the TD-LIF measurements of ΣPNs .

$$\Delta PNs = \Sigma PNs - PAN - PPN \tag{2}$$

We averaged 1 min of TD-LIF data about each PAN measurement and interpolated PPN to generate a dataset of all species coincident in time at 1 min resolution.

The uncertainty in ΔPNs has components associated with both the precision and accuracy of the TD-LIF and GC measurements. In what follows, we do not draw any conclusions based on individual measurements, rather our conclusions are based on averages over a large enough sample that uncertainty in mean quantities is entirely a function of the instruments' accuracies. The techniques are thought to be accurate to 10% (GC) and 15% (LIF) and for both techniques one single multiplicative correction (if it could be known) would bring the observed values to the "true" values (to within the precision uncertainty). The accuracy of these instruments depends on a chain of calibration that connects to NIST traceable reference standards of NO or NO2, on the accuracy of flow controllers used to dilute these standards and on titration reactions. None of these factors depend on environmental parameters. Thus the associated accuracy in the average value of a combined quantity like ΔPNs adds in quadrature, since the accuracy of the GC and LIF measurements are assumed to be uncorrelated, resulting in a combined accuracy of 18%. The random error associated with an individual ΔPNs measurement is obtained by standard propagation of error based on Eq. (2);

$$\sigma(\Delta PNs) = [(\sigma_{\Sigma PNs})^2 + (\sigma_{PAN})^2 + (\sigma_{PPN})^2]^{1/2}$$
 (3)


which results in an uncertainty of ± 29 ppt.

In contrast to the expectations outlined above, Fig. 1a shows that the two techniques differ by 35% at high relative humidity and agree at low humidity. In the top panel of Fig. 1, the ratio of Σ PNs/(PAN+PPN) is plotted versus humidity for data that calculations suggest have negligible amounts of Δ PNs (Δ PNs less than 10% of PAN). This figure includes more than half the observations in the dataset. The absolute difference is larger than expected and the accuracy is not observed to be independent of environmental parameters. One or both instruments are not accurate to within the 10 or 15% quoted.

Neither technique is known to have a humidity-dependent bias or interference of this magnitude. We examined a wide range of variables and considered many possible sources of instrument error in the effort to understand the calibration difference between the instruments. Humidity provided the clearest correction. Applying a constraint that

$$\Delta PNs \ge 0 \tag{4}$$

permits the derivation of a constant that implicitly couples the calibration constants for the two instruments and corrects for this difference as a function of humidity. A correction factor, C=(1+0.0025*%RH), was generated that brings the average (PAN+PPN)/ Σ PNs near one when Δ PNs are insignificant. Since we have no reason to apply the correction to one or the other instrument, the TD-LIF data was multiplied by the correction factor C, and the GC data was divided

Fig. 1. (a) Humidity trend in ratio of LIF to GC measurements where HO₂NO₂ is predicted be less than 10% of PAN (b) Ratio after the humidity-dependent correction has been applied.

by this factor. This removed the humidity bias (Fig. 1b). Throughout the remainder of this paper we use these adjusted datasets. Applying the factor C to the two data sets alters them by 12% on average (+12% Σ PNs and -12% PAN and PPN). The modelled Δ PNs show no trend with relative humidity and the conclusions of this paper would be unchanged if a larger correction had been applied to one or the other instrument. Using Eq. (2) with the corrected datasets provides 1433 1-min measurements of Δ PNs, which calculations suggest are predominantly HO₂NO₂ and CH₃O₂NO₂. We estimate the uncertainty in Δ PNs is 25%.

Measurements of NO_v and comparison to the sum of individual NO_v compounds (ΣNO_v) provide another means to evaluate the relative calibration of the GC-ECD, TD-LIF and NO_v techniques, as well as our ability to infer Δ PNs from the adjusted difference of the two sets of measurements. Figure 2 demonstrates the importance of HO₂NO₂ in the reactive nitrogen budget and the ability of TD-LIF Δ PN measurements to account for this compound. The ratio $\Sigma NO_{vi}/NO_v$ with the above correction applied to each peroxynitrate dataset, is plotted against fraction of NO_v that is predicted by a model to be HO₂NO₂. The ratio where $\Sigma NO_{vi} = NO_x + \Sigma ANs + HNO_3 + PAN + PPN$ (gray circle) decreases from a value above 1.1 where ΔPNs are insignificant to close to 0.8 where HO₂NO₂ contributes a substantial fraction of total NO_v. Conversely, the NO_v budget using TD-LIF measurements $\Sigma NO_{vi} = NO_x + \Sigma ANs + HNO_3 + \Sigma PNs$ (black square) is approximately a constant 1.2 This suggests that

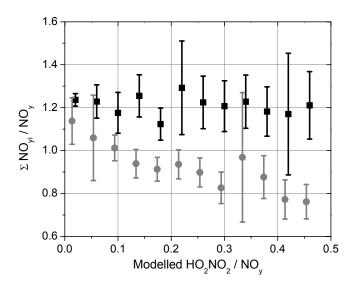


Fig. 2. $\Sigma NO_{yi}/NO_y$ vs calculated HO_2NO_2/NO_y , using $\Sigma NO_{yi}=NO_x + HNO_3 + \Sigma ANs + PAN + PPN$ (\bullet) and $\Sigma NO_{yi} = NO_x + HNO_3 + \Sigma ANs + \Sigma PNs$ (\blacksquare). The data were averaged within $\pm .04$ of HO_2NO_2/NO_y and the error bars represent twice the standard deviation of the mean.

our ΣPN measurements account for the predicted contribution of HO_2NO_2 to the reactive nitrogen budget. If the modelled ΔPNs are added to the PAN and PPN measurements, the average $\Sigma NO_{yi}/\text{total }NO_y$ ratio over the whole campaign is 1.2. If the humidity correction is not applied to the data, the $\Sigma NO_{yi}/NO_y$ ratio using the ΣPN measurements is a constant 1.1, and the ratio using PAN+PPN varies from above 1.2 where ΔPNs are insignificant to 0.8 where ΔPNs are calculated to be 45% of NO_y .

3 Model description and comparison to observations

Peroxynitrates are formed when an RO₂ radical (where R=H, alkyl, or acyl group) reacts with NO₂ (Reaction 5). In the remote atmosphere, HO₂ and CH₃O₂ make up a large fraction of RO₂. Sinks of HO₂NO₂ and CH₃O₂NO₂ include thermal decomposition (R6), photolysis (R7), and for HO₂NO₂, reaction with OH (R8). Note that the products given for reaction 8 have not been measured. Models all assume that water is a product of R8 and consequently that R8 is a sink for HO_x radicals.

$$RO_2 + NO_2 + M \rightarrow RO_2NO_2 + M \tag{5}$$

$$RO_2NO_2 + M \rightarrow RO_2 + NO_2 + M \tag{6}$$

$$RO_2NO_2 + h\nu \rightarrow RO_2 + NO_2 \tag{7a}$$

or
$$\rightarrow RO + NO_3$$
 (7b)

$$HO_2NO_2 + OH \rightarrow H_2O + NO_2 + O_2$$
 (8)

Uncertainties associated with this chemistry are large. For example, for the thermal decomposition of HO_2NO_2 the JPL panel recommends an uncertainty factor of 5 at 298 K and of 13 at 230 K (Sander et al., 2003). Recent laboratory measurements of the UV (Knight et al., 2002) and IR (Roehl et al., 2002) cross sections of peroxynitric acid greatly improve our understanding of its photolysis rate, (J \equiv R7), although the temperature and pressure dependencies of the quantum yield require further investigation. We know little about the photolysis of $CH_3O_2NO_2$.

We use an instantaneous steady state model representing R5–R8 to predict the abundances of HO_2NO_2 and $CH_3O_2NO_2$.

$$[HO_2NO_2]_{SS} = \frac{k_5[HO_2][NO_2][M]}{k_6[M] + J7 + k_8[OH]}$$
(9)

$$[CH_3O_2NO_2]_{SS} = \frac{k_{5'}[CH_3O_2][NO_2][M]}{k_{6'}[M] + J7'}$$
(10)

Measurements of NO₂, the spectrally resolved actinic flux, temperature, and pressure are used in the calculations. As a result of the low mixing ratios of NO2 (50% of the observations have NO₂ below 11 ppt) the precision of the model calculations are roughly proportional to the precision of the NO_2 measurements, for example $\pm 40\%$ at 10 ppt NO_2 . Although OH and HO₂ were measured during the TOPSE campaign, the observations were too infrequent to use in the model. Steady state concentrations of OH, HO₂, and CH₃O₂ were calculated using the photochemical model described by Cantrell et al. (2003), which included the steady state equations for HO₂NO₂ and CH₃O₂NO₂. Four individual calculations in which radicals and reservoirs were solved selfconsistently were used to investigate the main sources of uncertainty in the kinetics of HO₂NO₂. Rate constants used in the model are from the JPL-2000 recommendations except for the self-reaction of HO₂ (Christensen et al., 2002) and for the reaction HO₂+O₃ and OH+O₃ for which we use JPL-97 recommendations (see Lanzendorf et al., 2001). Photolysis rates were determined using measured actinic flux and made use of the recent molecular data for H2CO (Smith et al., 2002) and HO₂NO₂ (Knight et al., 2002; Roehl et al., 2002). The UV cross section of CH₃O₂NO₂ is assumed to be equal to that of HO₂NO₂. The thermal decomposition of CH₃O₂NO₂ dominates down to 220 K, so we need not consider any potential IR overtone photodissociation from the CH groups present in the molecule. In the first calculation (Model A), the IR photolysis rate of HO₂NO₂ is set at 1×10^{-5} s⁻¹, slightly higher than the recommendation of 8.3×10^{-6} s⁻¹ from Roehl et al. (2002), which was given for a system with no albedo. In a second calculation (Model B), the IR photolysis rate for HO₂NO₂ was set to zero. In two separate calculations, the rate of thermal decomposition of HO₂NO₂ was varied to the maximum (Model C) and minimum (Model D) limits given in JPL-2003. Model A, with standard thermal decomposition and including IR photolysis,

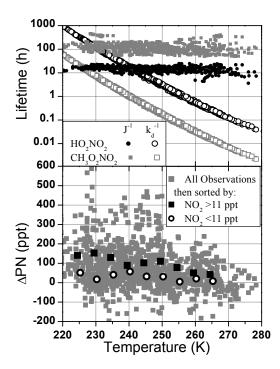


Fig. 3. (upper panel) lifetime of HO_2NO_2 with respect to thermal decomposition (○) and the sum of photolysis and reaction with OH (•) and of $CH_3O_2NO_2$ with respect to thermal decomposition (□) and photolysis (■). (lower panel) ΔPN measurements (■) as a function of temperature, averaged into separate temperature bins for $NO_2 < 11$ ppt (○) and for $NO_2 > 11$ ppt (■).

calculates peak HO_2NO_2 and $CH_3O_2NO_2$ mixing ratios during the last 19 flights of the TOPSE experiment that range as high as 300 ppt and 100 ppt respectively. It predicts HO_2NO_2 reaching as much as 50% of measured NO_y and $CH_3O_2NO_2$ as much as 15% of measured NO_y .

Figure 3 depicts the temperature dependence of the thermal and photochemical sinks of these two peroxynitrates. The photochemical sinks (R7 and R8) are nearly independent of temperature. HO_2NO_2 has a slower thermal decomposition rate and a faster photochemical loss than $CH_3O_2NO_2$ because of its large infrared photodissociation cross section and because its reaction with OH also contributes to photochemical loss. For HO_2NO_2 , thermal decomposition becomes faster than the photochemical sinks above 240 K, while the crossing point for $CH_3O_2NO_2$ is near 220 K. One consequence of this is that the lifetime of HO_2NO_2 (\sim 12 h in sunlit conditions) is independent of temperature for the colder conditions sampled during TOPSE.

The instantaneous steady state model is valid only when the lifetime of the HO₂NO₂ or CH₃O₂NO₂ is short compared to the rate of change of its sources and sinks. This is not always true for these peroxynitrates under the coldest conditions sampled during TOPSE. However, many of the data points were collected at high latitudes during the late spring, where the photochemistry has a fairly shallow diur-

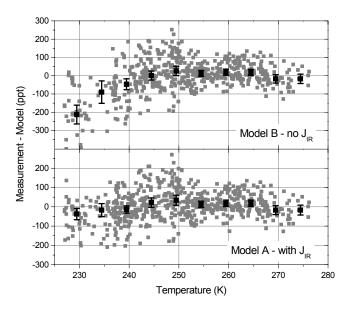


Fig. 4. Difference between measured and modelled ΔPNs for a model without IR photolysis (upper panel) and a model including IR photolysis for HO_2NO_2 (lower panel). The black squares represent the median of each 5~K bin and the error bars are twice the standard deviation of the mean.

nal profile, making the model steady state predictions reasonable estimates. To help avoid any bias due to being strongly out of steady state, model results in which the lifetime of either compound exceeded twelve hours were discarded, unless there were more than 20 hours of sunlight per day at that location.

In the lower panel of Fig. 3, the ΔPN concentrations inferred from our observations are displayed versus temperature. The mixing ratios below approximately 250 K are larger than at warmer temperatures. The wide range of concentrations at each temperature derives partly from variation in the abundance of HO₂, CH₃O₂ and NO₂ radicals in the airmass. As an example, the large symbols are the mean $\triangle PNs$ within a 5 K bin for NO₂ mixing ratios above (black squares) and below (open circles) 11 ppt, which was the median NO₂ during the last 19 flights of TOPSE. On average, higher values of ΔPNs were observed when NO₂ mixing ratios were higher than average and vice versa. In addition to being proportional to NO₂, below 250 K Δ PNs are calculated to depend strongly on the IR photolysis of HO₂NO₂, which has only recently been recognized as large enough to affect its atmospheric mixing ratio. Our data provides direct observational evidence for this term. In the upper panel of Fig. 4 we show the difference between the ΔPN observations and model B (no IR photolysis) and in the lower panel we show the difference between ΔPNs and model A. The relative significance of IR photolysis increases strongly as a function of decreasing temperature and dominates over thermal decomposition as a sink of HO₂NO₂ below 235 K. At 230 K, the model without IR

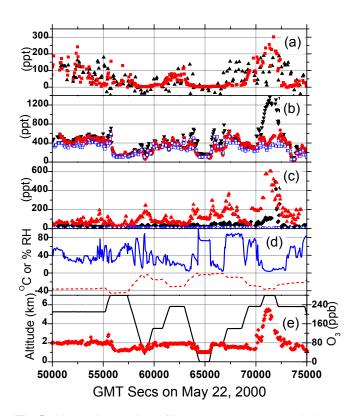
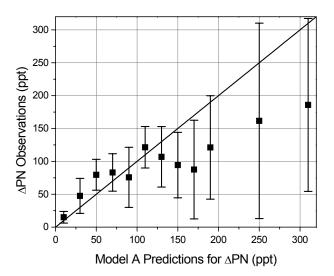



Fig. 5. Observations during a flight between Thule and Winnipeg on 22 May 2000 (a) \triangle PN measurements (\triangle) and predictions from Model A (\blacksquare) (b) NO_y (\blacktriangledown), PAN+PPN (\square), \sum PN (\bullet) (c) HNO₃ (\triangle), NO_x (\diamondsuit), \sum ANs (\bigcirc) (d) temperature (--), % relative humidity (-) (e) altitude (-), O₃ (\diamondsuit).

photolysis has, on average, 200 ppt more HO_2NO_2 than the observed ΔPNs . There are specific events where modeled ΔPNs exceed the measurements by 400 ppt without the infrared sink of HO_2NO_2 .

The model A peroxynitrate ($HO_2NO_2+CH_3O_2NO_2$) predictions are compared to ΔPN measurements in a time series during a TOPSE flight on May 22 (Fig. 5 upper panel). This flight between Thule and Winnipeg sampled a wide range of tropospheric conditions and encountered air of mixed stratospheric-tropospheric character ($O_3>100$ ppb) near the end of the flight. HNO_3 and NO_x make significant contributions to NO_y in this particular airmass, which nonetheless has quite high PAN mixing ratios. The ΔPN measurements are generally scattered around the model predictions and tend to be highest under the coldest conditions as expected based on the chemistry described above. During this flight, NO_x and ΔPNs are nearly equal.

The figures above show that ΔPNs vary as expected in response to two of the individual terms in the steady-state equations (J and NO_2) and vary along a flight track as the steady state calculation suggests they should.

Fig. 6. Comparison of average ΔPN observations and Model A predictions with the error bars representing twice the standard deviation on the mean and a 1:1 line shown.

Table 1 compiles the median contribution of each species or group to the NOy budget during TOPSE for temperatures above and below 240 K. Peroxynitrates were the most significant fraction of NO_y under all temperature regimes sampled during TOPSE. The Δ PN predictions of Model A and Model B are shown for reference to the observations inferred by Σ PNs-(PAN+PPN). The significance of Δ PNs to NO_y predicted by Model A and observed agree to within a factor of 2 above 240 K and to within 35% below 240 K. The ratio Σ NO_{yi}/NO_y is between 1.1 and 1.25 using either TD-LIF Σ PNs or GC-ECD PAN+PPN and modelled Δ PNs.

Figure 6 shows a direct comparison of calculations of Δ PNs and the observations for all flights in the analysis. Within the statistical variance, the observations and model agree. However model predictions exceed the observations at higher mixing ratios and the fact that nearly all calculated concentrations above 150 ppt are higher than observations suggests the effect is statistically reliable. If the steady state approximation is correct, then this could indicate an error in the photochemistry of HO₂NO₂ or the thermal decomposition of CH₃O₂NO₂. We investigated the factor of 5–15 uncertainty in the HO2NO2 thermal decomposition rate at temperatures in the 220–298 K range. Model calculations (C,D) that incorporated the most extreme values for rates of thermal decomposition predicted ΔPN concentrations that differed at most by 100 ppt, with the greatest effect occurring between 235 and 250 K. Both models were less consistent with the observations than Model A, but because HO₂NO₂ is largest where thermal decomposition is slow compared to photolysis we are unable to define substantially more precise limits on the rate of thermal decomposition than recommended by the JPL panel. We examined other possible effects but found no single explanation that would bring the model-measurement comparison into significantly better agreement.

T > 240 K $T < 240 \, K$ NO_{vi} %NO_v %NO_v $\sum PNs^a$ 90 86 PAN+PPN^b 73 76 Inferred ΔPNs 17 10 22 Model A ΔPNs 5 5 Model B ΔPNs 34 HNO_3 11 25 NO_{x}^{c} 5 8 4 4 Alkyl Nitrates \sum NO_{vi} \sum NO_{yi}/NO_y $\sum NO_{vi}/NO_{v}$ $(NO_x + \sum ANs + HNO_3 + \sum PNs)$ 1.10 1.23 $(NO_x + \overline{\sum} ANs + HNO_3 + \overline{PAN} + PPN + ModelA \triangle PNs)$ 1.15 1.18

Table 1. NO_v composition (500–8000 m) above and below 240 K during TOPSE flights between 6 April and 23 May 2000.

4 Discussion

In the upper troposphere, several studies (Folkins et al., 1997; Jaegle et al., 2000; Jaegle et al., 2001) have described calculations indicating that reaction of OH with HO2NO2 is a dominant sink for HO_x. Analysis of HO_x observations by Faloona et al. (2000) suggest that a model in which the HO₂NO₂ equilibrium constant is reduced by a factor of five, or with HO₂NO₂ formation suppressed entirely, provides a more accurate representation of upper tropospheric HO_x observations than the standard model. We estimate that inclusion of the IR photolysis of HO₂NO₂ should have nearly the same effect on HO₂NO₂ concentrations at the altitudes where most of the observations described by Faloona et al. (2000) were collected. The main consequence is a decrease in the modelled abundance of HO₂NO₂. However, the IR photolysis will have a distinctly different temperature dependence than the suggested change to the equilibrium constant. For the coldest conditions sampled during TOPSE, between 220 K and 240 K, Model A, which includes IR photolysis, predicts ~10% more HO_x than Model B, and also results in slightly different HO_x partitioning.

Another interesting aspect of HO_2NO_2 and $CH_3O_2NO_2$ chemistry is their behavior as a short-term reservoir for HO_x and NO_x radicals. Under sunlit conditions, the radicals and alkyl peroxynitrates should reach steady state, yet once the sun sets, formation diminishes and the only remaining sink is thermal decomposition. During twelve hours of darkness in the upper troposphere at 240 K, all the $CH_3O_2NO_2$ and over half of the HO_2NO_2 will have thermally dissociated, releasing on the order of tens to hundreds ppt of CH_3O_2 and HO_2 . The fate of these radicals during the night will depend strongly on the abundance of NO_x and O_3 . This fact underscores the importance of making measurements at night to challenge our understanding of radical sources and sinks.

5 Conclusions

We describe observations of ΔPNs and demonstrate that they are HO_2NO_2 and $CH_3O_2NO_2$. The observations show that during the spring high latitude conditions sampled during the TOPSE experiment, the contribution of ΔPNs to NO_y is highly temperature dependent, with ΔPNs on average 30% of NO_y at 230 K and 7% of NO_y at 250 K. The magnitude and observed temperature dependence of the mixing ratios is consistent with recent laboratory evidence that the J value for HO_2NO_2 has a large IR component. Prior analyses of the NO_y budget in the upper troposphere that did not take into account HO_2NO_2 or the new J value should be revisited.

Acknowledgements. We thank B. Ridley, F. Flocke, A. Weinheimer, D. Blake, and R. Talbot for use of their TOPSE data. J. G. Murphy acknowledges a NSERC PGS-B fellowship and J. A. Thornton acknowledges a NASA Earth Systems Science Fellowship. This material is based upon work supported by the National Science Foundation under Grant No. 0138669 and through its Office of Polar Programs under Grant No. 9907928.

Edited by: A. Hofzumahaus

References

Atlas, E. L., Ridley, B. A., and Cantrell, C. A.: The Tropospheric Ozone Production about the Spring Equinox (TOPSE) Experiment: Introduction, J. Geophys. Res.-Atmos., 108, 8353, doi:8310.1029/2002JD003172, 2003.

Blake, N. J., Blake, D. R., Sive, B. C., Katzenstein, A. S., Meinardi, S., Wingenter, O. W., Atlas, E. L., Flocke, F., Ridley, B. A., and Rowland, F. S.: The seasonal evolution of NMHCs and light alkyl nitrates at middle to high northern latitudes during TOPSE, J. Geophys. Res.-Atmos., 108, 8359, doi:8310.1029/2001JD001467, 2003.

Cantrell, C. A., Mauldin, L., Zondlo, M., et al.: Steady state free radical budgets and ozone photochemistry

^a TD-LIF measurements with humidity correction applied, ^b GC-ECD measurements with humidity correction applied,

^c Chemiluminescence measurements

- during TOPSE, J. Geophys. Res.-Atmos., 108, 8361, doi:8310.1029/2002JD002198, 2003.
- Christensen, L. E., Okumura, M., Sander, S. P., Salawitch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of HO₂+HO₂ to H₂O₂+O₂: Implications for Stratospheric H₂O₂, Geophys. Res. Lett., 29, 1299, doi:1210.1029/2001GL014525, 2002.
- Cohen, R. C., Perkins, K. K., Koch, L. C., Stimpfle, R. M., Wennberg, P. O., Hanisco, T. F., Lanzendorf, E. J., Bonne, G. P., Voss, P. B., Salawitch, R. J., Del Negro, L. A., Wilson, J. C., McElroy, C. T., and Bui, T. P.: Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates, J. Geophys. Res.-Atmos., 105, 24283–24304, 2000.
- Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃, J. Geophys. Res.-Atmos., 107, 4046, doi:4010.1029/2001JD000779, 2002.
- Donaldson, D. J., Frost, G. J., Rosenlof, K. H., Tuck, A. F., and Vaida, V.: Atmospheric radical production by excitation of vibrational overtones via absorption of visible light, Geophys. Res. Lett., 24, 2651–2654, 1997.
- Faloona, I., Tan, D., Brune, W. H., Jaegle, L., Jacob, D. J., Kondo, Y., Koike, M., Chatfield, R., Pueschel, R., Ferry, G., Sachse, G., Vay, S., Anderson, B., Hannon, J., and Fuelberg, H.: Observations of HO_x and its relationship with NO_x in the upper troposphere during SONEX, J. Geophys. Res.-Atmos., 105, 3771–3783, 2000.
- Folkins, I., Wennberg, P. O., Hanisco, T. F., Anderson, J. G., and Salawitch, R. J.: OH, HO₂, and NO in two biomass burning plumes: Sources of HO_x and implications for ozone production, Geophys. Res. Lett., 24, 3185–3188, 1997.
- Jaegle, L., Jacob, D. J., Brune, W. H., Faloona, I., Tan, D., Heikes, B. G., Kondo, Y., Sachse, G. W., Anderson, B., Gregory, G. L., Singh, H. B., Pueschel, R., Ferry, G., Blake, D. R., and Shetter, R. E.: Photochemistry of HO_x in the upper troposphere at northern midlatitudes, J. Geophys. Res.-Atmos., 105, 3877–3892, 2000.
- Jaegle, L., Jacob, D. J., Brune, W. H., and Wennberg, P. O.: Chemistry of HO_X radicals in the upper troposphere, Atmos. Environ., 35, 469–489, 2001.
- Knight, G., Ravishankara, A. R., and Burkholder, J. B.: UV absorption cross sections of HO₂NO₂ between 343 and 273 K, Phys. Chem. Chem. Phys., 4, 1432–1437, 2002.
- Lanzendorf, E. J., Hanisco, T. F., Wennberg, P. O., Cohen, R. C., Stimpfle, R. M., and Anderson, J. G.: Comparing atmospheric [HO₂]/[OH] to modeled [HO₂]/[OH]: Identifying discrepancies with reaction rates, Geophys. Res. Lett., 28, 967–970, 2001.
- Ridley, B., Walega, J., Montzka, D., Grahek, F., Atlas, E., Flocke, F., Stroud, V., Deary, J., Gallant, A., Boudries, H., Bottenheim, J., Anlauf, K., Worthy, D., Sumner, A. L., Splawn, B., and Shepson, P.: Is the Arctic surface layer a source and sink of NO_x in winter/spring?, J. Atmos. Chem., 36, 1–22, 2000.
- Rinsland, C. P., Gunson, M. R., Salawitch, R. J., Michelsen, H. A., Zander, R., Newchurch, M. J., Abbas, M. M., Abrams, M. C., Manney, G. L., Chang, A. Y., Irion, F. W., Goldman, A., and Mahieu, E.: Atmos/Atlas-3 Measurements of Stratospheric Chlorine and Reactive Nitrogen Partitioning Inside and Outside

- the November 1994 Antarctic Vortex, Geophys. Res. Lett., 23, 2365–2368, 1996.
- Rinsland, C. P., Zander, R., Farmer, C. B., Norton, R. H., Brown, L. R., Russell, J. M., and Park, J. H.: Evidence for the presence of 802.7 cm⁻¹ band Q branch of HO₂NO₂ in high-resolution solar absorption-spectra of the stratosphere, Geophys. Res. Lett., 13, 761–764, 1986.
- Roehl, C. M., Nizkorodov, S. A., Zhang, H., Blake, G. A., and Wennberg, P. O.: Photodissociation of peroxynitric acid in the near-IR, J. Phys. Chem. A., 106, 3766–3772, 2002.
- Salawitch, R. J., Wennberg, P. O., Toon, G. C., Sen, B., and Blavier, J. F.: Near IR photolysis of HO₂NO₂: Implications for HO_x, Geophys. Res. Lett., 29, 1762, 1710.1029/2002GL015006, 2002.
- Salawitch, R. J., Wofsy, S. C., Wennberg, P. O., Cohen, R. C., Anderson, J. G., Fahey, D. W., Gao, R. S., Keim, E. R., Woodbridge, E. L., Stimpfle, R. M., Koplow, J. P., Kohn, D. W., Webster, C. R., May, R. D., Pfister, L., Gottlieb, E. W., Michelsen, H. A., Yue, G. K., Prather, M. J., Wilson, J. C., Brock, C. A., Jonsson, H. H., Dye, J. E., Baumgardner, D., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Elkins, J. W., Dutton, G. S., Hintsa, E. J., Dessler, A. E., Weinstock, E. M., Kelly, K. K., Boering, K. A., Daube, B. C., Chan, K. R., and Bowen, S. W.: The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals Implications For the Heterogeneous Production of HNO₂, Geophys. Res. Lett., 21, 2551–2554, 1994.
- Sander, S. P., Kurylo, J. M., Orkin, V. L., Golden, D. M., Huie, R. E., Finlayson-Pitts, B. J., Kolb, C. E., Molina, M. J., Friedl, R. R., Ravishankara, A. R., and Moortgat, G. K.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 14, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2003.
- Sen, B., Toon, G. C., Osterman, G. B., Blavier, J. F., Margitan, J. J., Salawitch, R. J., and Yue, G. K.: Measurements of reactive nitrogen in the stratosphere, J. Geophys. Res.-Atmos., 103, 3571–3585, 1998.
- Slusher, D. L., Pitteri, S. J., Haman, B. J., Tanner, D. J., and Huey, L. G.: A chemical ionization technique for measurement of pernitric acid in the upper troposphere and the polar boundary layer, Geophys. Res. Lett., 28, 3875–3878, 2001.
- Smith, G. D., Molina, L. T., and Molina, M. J.: Measurement of radical quantum yields from formaldehyde photolysis between 269 and 339 nm, J. Phys. Chem. A., 106, 1233–1240, 2002.
- Talbot, R. W., Vijgen, A. S., and Harriss, R. C.: Measuring Tropospheric HNO₃ Problems and Prospects For Nylon Filter and Mist Chamber Techniques, J. Geophys. Res.-Atmos., 95, 7553–7561, 1990.
- Thornton, J. A.: Nitrogen Dioxide, Peroxynitrates, and the Chemistry of Tropospheric O₃ Production: New Insights from In Situ Measurements, Doctoral thesis, University of California, Berkeley, 2002.
- Wennberg, P. O., Salawitch, R. J., Donaldson, D. J., Hanisco, T. F., Lanzendorf, E. J., Perkins, K. K., Lloyd, S. A., Vaida, V., Gao, R. S., Hintsa, E. J., Cohen, R. C., Swartz, W. H., Kusterer, T. L., and Anderson, D. E.: Twilight observations suggest unknown sources of HO_x, Geophys. Res. Lett., 26, 1373–1376, 1999.
- Zhang, H., Roehl, C. M., Sander, S. P., and Wennberg, P. O.: Intensity of the second and third OH overtones of H₂O₂, HNO₃, and HO₂NO₂, J. Geophys. Res.-Atmos., 105, 14593–14598, 2000.