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Abstract 
Lidar -- Light Detection 
device similar to a rangefinder to determine a distance to a target. A laser pulse is shot 
at an object and the time it takes for the pulse to return in measured. The distance to the 
object is easily calculated using the speed property of light. For lidar, this laser is moved 
(primarily in a rotational movement usually accompanied by a translational movement) 
and records the distances to objects several thousands of times per second. From this, a 
3 dimensional structure can be procured in the form of a point cloud. A point cloud is a 
collection of 3 dimensional points with at least an 
attributes represent the position of a single point in 3 dimensional space. Other att
can be associated with the points that include properties such as the intensity of the 
return pulse, the color of the target or even the time the point was recorded. Another 
very useful, post processed attribute is point classification where a poin
with the type of object the point represents (
 

Figure 1: A Lidar Point Cloud

 
Lidar has gained popularity and advancements in the technology has made its collection 
easier and cheaper creating larger and denser datasets. The need to handle this data in 
a more efficiently manner has become a necessity; The processing, visualizing or 
simply loading lidar can be computationally intensive due to its very large size. Standard 
remote sensing and geographical information systems (GIS) software (ENVI, ArcGIS, 
etc.) was not originally built for optimized point cloud processing and its im
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is an afterthought and therefore inefficient. Newer, more optimized software for point 
cloud processing (QTModeler, TopoDOT, etc.) usually lack more advanced processing 
tools, requires higher end computers and are very costly. Existing open source lidar 
approaches the loading and processing of lidar in an iterative fashion that requires 
implementing batch coding and processing time that could take months for a standard 
lidar dataset. This project attempts to build a software with the best approach for 
creating, importing and exporting, manipulating and processing lidar, especially in the 
environmental field. Development of this software is described in 3 sections - (1) 
explanation of the search methods for efficiently extracting the “area of interest” (AOI) 
data from disk (file space), (2) using file space (for storage), budgeting memory space 
(for efficient processing) and moving between the two, and (3) method development for 
creating lidar products (usually raster based) used in environmental modeling and 
analysis (i.e.: hydrology feature extraction, geomorphological studies, ecology modeling, 
etc.). 
 

1. Introduction 

1.0 LASer Format (Lidar format) 
The standard format for saving lidar to storage (file space) is using a binary file type 
known as LAS1. Since this format is what most people are comfortable with (for 
receiving, storing and sharing), this software sets out to preserve the original lidar files 
and utilize them without creating a separate, redundant, copy and thus it is important to 
understand the LASer format. This format has a particular structure that a 
reader/scanner must adhere to read the data properly. An illustration of the LAS file 
structured is shown in figure 2. 
 

                                                
1 "LASer (LAS) File Format Exchange Activities - asprs." 2011. 3 Jun. 2015 
<http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html> 



Figure 1.1: Outline of the LAS File Structure 

Figure 2: Outline of the LAS File Structure

 
The first part of the file is called the header block and contains information about the 
points contained within. This includes the extent (minimum and maximum in the x, y and 
z directions), the number of points, the scale and offset and other related information 
about the lidar point cloud. Table 1 defines the information contained within the header.
 
Table 1: LASer Header 

Item 

File Signature (“LASF”) 

File Source ID 

Global Encoding 
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 char[4] 4 bytes

unsigned short 2 bytes

unsigned short 2 bytes
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Project ID - GUID data 1 unsigned long 4 bytes 

Project ID - GUID data 2 unsigned short 2 byte 

Project ID - GUID data 3 unsigned short 2 byte 

Project ID - GUID data 4 unsigned char[8] 8 bytes 

Version Major unsigned char 1 byte 

Version Minor unsigned char 1 byte 

System Identifier char[32] 32 bytes 

Generating Software char[32] 32 bytes 

File Creation Day of Year unsigned short 2 bytes 

File Creation Year unsigned short 2 bytes 

Header Size unsigned short 2 bytes 

Offset to point data unsigned long 4 bytes 

Number of Variable Length Records unsigned long 4 bytes 

Point Data Format ID (0-99 for spec) unsigned char 1 byte 

Point Data Record Length unsigned short 2 bytes 

Number of point records unsigned long 4 bytes 

Number of points by return unsigned long[7] 28 bytes 

X scale factor Double 8 bytes 

Y scale factor Double 8 bytes 

Z scale factor Double 8 bytes 

X offset Double 8 bytes 

Y offset Double 8 bytes 

Z offset Double 8 bytes 

Max X Double 8 bytes 

Min X Double 8 bytes 

Max Y Double 8 bytes 

Min Y Double 8 bytes 

Max Z Double 8 bytes 

Min Z Double 8 bytes 

Start of Waveform Data Packet Record Unsigned long 8 bytes 

 
Following the header block is the point data comprised of multiple points. The format of a 
single points is outlined in table 2 (Version 3). 
 

Table 2: LASer Point 
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Item Format Size 

X long 4 bytes 

Y long 4 bytes 

Z long 4 bytes 

Intensity unsigned short 2 bytes 

Return Number 3 bits (bits 0,1,2) 3 bits 

Number of Returns (given 
pulse) 3 bits (bits 3,4,5) 3 bits 

Scan Direction Flag 1 bit (bit 6) 1 bit 

Edge of Flight Line 1 bit (bit 7) 1 bit 

Classification unsigned char 1 byte 

Scan Angle Rank (-90 to 
+90) – Left side char 1 byte 

User Data unsigned char 1 byte 

Point Source ID unsigned short 2 bytes 

GPS Time double 8 bytes 

Red unsigned short 2 bytes 

Green unsigned short 2 bytes 

Blue unsigned short 2 bytes 

 
To read this data, the header must be analyzed to determine the appropriate scaling and 
translations applied to the points. The following structure and method is used to read an 
LAS file: 
 
struct LASreader( ) {  
     
    file lasfile;  
    Header h;     // Header structure that holds al l header  
                  //information  
     
    //Method  
    Point3 read( long i ){          // read at an i ndex  
        lasfile.seek( 243 + 41*i ); // change read position to  
                                    // beginning  
                                    // of the index ed point. Must  
                                    // skip header (243 bytes) and  
                                    // previous poi nts  
                                    // (41 bytes ea ch)  
        return populate_point( lasfile.read(41) ); // read 41 bytes  
                                                   // and return a  
                                                   // populated point 
of  
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                                                   // Point3 type  
         
};  
 
// initialize the reader  
LASreader LAS_read( file lasfile ){  
 
    LASreader r = new LASreader;   // allocate spac e for the reader  
    populate_header( r, lasfile ); // read all head er information and  
                                   // store into he ader structure  
    r.lasfile = lasfile;           // associate the  file with the 
reader  
}  
 
 

1.1 Software 
The “go to” GIS and remote sensing software like ArcGIS and ENVI have integrated lidar 
tools into its interface, and should probably be credited for introducing the lidar concept 
to a large number normal users. While these software are considered a standard and 
are very good for grid based analysis, their efficiently falls short when handling data that 
approaches sizes in the terabytes. Until version 10.1, ArcGIS was based on a 32-bit and 
a memory usage limitation of 2GB, even loading very large raster files can become 
difficult (lidar is even larger). ENVI allows users to create add-ons in IDL (interactive data 
language) making it easy to implement new tools, however, this is a high level language 
that suffers from the same performance issues as other high level languages. Both of 
these software are closed source, so lidar implementation is really dependent on the 
developers and it can be very difficult to integrate a new concepts into established 
software. Handling lidar is actually quite simple, just computationally intensive, so finding 
ways to make it more efficient would be ideal. 
 
When lidar was young, processing datasets wasn’t as much of an issue because point 
clouds were less dense (we have lidar datasets from 2010 that had a point density of 
about 10 points per m2). However, lidar equipment has become cheaper, collection has 
become easier and the demand for a finer datasets has increased causing datasets to 
be much larger in size (our new lidar sets can contain thousands of points per m2). The 
classic (and simplest) method for processing lidar is to move over the point cloud 
iteratively (point by point), but higher point densities found in newer lidar data has made 
processing in this fashion nearly impossible due to the computational demand. Inherent 
of the first law of geography, like things are likely to be closer together2, in most cases 
we process data with the spatial component as a priority when extracting a subset of 
points from a large point cloud. One solution is to implement a spatial database like 
postGIS that uses this concept, however, this is not a fully transparent solution; users 

                                                
2 Tobler, Waldo. "On the first law of geography: A reply." Annals of the Association of American 
Geographers 94.2 (2004): 304-310. 
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would essentially have to load their data (essentially creating a redundant copy) create 
tools to extract the data to a processing software and maintain the database. So 
development of extraction algorithm that utilizes an efficiency concept and is fully (or 
nearly) transparent while providing some necessary methods is ideal; the open source 
software outlined here attempts to do that. 
 

1.2 LAS Tiling 
Lidar files are usually very large and delivered as several smaller files called tiles. An 
interval extent is used to split the entire lidar dataset into the tiles. This smaller size 
makes it more convenient to load and search through individual files when trying to 
identify relevant data3. This process is simple enough, but can be time consuming as a 
through tiling involves reading every point (and every file if there are multiple files) to find 
points that fall within a particular tile extent. All points should be read at a low level 
(directly from disk) as the space requirements for loading into memory are usually too 
demanding. First, a common tile range should be established for every file (ex: 1000m x 
1000m). Then the extent of the entire dataset is determined and the tiling range is used 
to create the smaller extents for the tiled files. Finally, each LAS file is read and 
distributed into the proper tile. 
 

                                                
3 Chen, Qi. "Airborne lidar data processing and information extraction." Photogrammetric 
engineering and remote sensing 73.2 (2007): 109. 



Demonstrates the tiling of a larger lidar dataset.

Figure 3: LAS Tiles 

 

2. Search Methods 
and quadtrees 
One method for improving the spatial searching across a point cloud is to create an 
organized point cloud from
that resembles an organized 
image, but potentially has the effect of losing useful information if downscaling many 
points to a single gridded point
resolution for an organized point cloud, especially across differently scaled projects that 
may be using the same lidar dataset (
products vs a plot level terrain change analysis using finely scaled digital terrain 
models). In this case, several new organized datasets would have to exist which could 
be very time consuming to create and storage intensive. Instead, a hybrid method that 
combines the speed of image searching and the ability to utilize all points is ideal. Some 

                                        
4 Fabio, Remondino. "From point cloud to surface: the modeling and visualization problem." 
International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
34.5 (2003): W10. 
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Demonstrates the tiling of a larger lidar dataset. 

2. Search Methods - Organized point clouds, grid searching 
 

One method for improving the spatial searching across a point cloud is to create an 
cloud from the lidar in which the points are restructured into something 

that resembles an organized image. This would give you speeds similar to processing an 
image, but potentially has the effect of losing useful information if downscaling many 
points to a single gridded point4. It is also sometimes hard to determine an appropriate 

anized point cloud, especially across differently scaled projects that 
may be using the same lidar dataset (i.e.: a fire model using coarsely scaled lidar 
products vs a plot level terrain change analysis using finely scaled digital terrain 

case, several new organized datasets would have to exist which could 
be very time consuming to create and storage intensive. Instead, a hybrid method that 
combines the speed of image searching and the ability to utilize all points is ideal. Some 

                                                
Fabio, Remondino. "From point cloud to surface: the modeling and visualization problem." 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
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Fabio, Remondino. "From point cloud to surface: the modeling and visualization problem." 
International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 



indexing methods analyzed here are known as grid and quadtree indexing. These spatial 
index methods develop alternative ways of determining which points satisfy a spatial 
search and are likely faster. These index methods were chosen for this study because of 
their ease of use and implementation and their ability to refer to the original lidar file. 
Points are referenced using an index list that tracks their binary position in the original 
LAS file as illustrated by the figure 4.
 

Figure 4: Point Referencing from Index Files
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2.1 Grid-based Indexing 
Grid-based indexing uses a grid to index the original points. This method overlays the 
extent of the points within an LAS file with a grid at a particular resolution5. A list of 
references for each point that fall within each grid cell is created. Figure 5 illustrates how 
the points are distributed within the grid index. 
 

 
Figure 5: Grid Index Representation 

 
Given a search location, the nearest cell can be quickly identified by traversing the rows 
and columns. However, choosing a proper resolution can be difficult (a good resolution 
should be based on the point density to select the maximum allowable points within a 
single cell) and grid sizes can grow quite large at very fine resolutions. 
Programmatically, the grid-based index is structured as follows: 
 

// Demonstrated as a constructor  

                                                
5 Sajjanhar, Atul, and Guojun Lu. "A grid-based shape indexing and retrieval method." Australian 
Computer Journal 29.4 (1997): 131-140. 
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struct grid_index( float x, float y, float res, lon g nx, long ny ) {  
 
    float x = x;  // origin of grid  
    float y = y;  // origin of grid  
    float res = res;  
     
    vector< unsigned long > grid[xn][yn];  // multi dimensional  
                                           // array  of vectors  
}  

 
The grid variable within the grid index structure has 2 dimensions of type vector. These 
dimensions are x and y positions, respectively. The vector is of variable type unsigned 
long integer for storing the list of indexed points that fall within that particular cell. 
Vectors can be varied in length and are used because the number of points that fall 
within a grid cell are likely different from cell to cell. When creating the grid index, each 
point is analyzed to determine which cell it belongs to. The following function 
demonstrates the initialization of a grid index: 
 

grid_index create_grid_index( LASreader r, float x,  float y, float 
res, int nx, int ny) {  
 
    grid_index g = new grid_index( x, y, res, nx, n y ); // initialize  
                                                        // the index  
     
    for ( int i = 0; i < r.h.number_of_point_record s; i++ ){  
 
        Point3 p = r.read(i);      // load the curr ent point  
        int x = round(p.x);        // determine pos ition in grid the  
        int y = round(p.y);        // point should belong to  
        g.grid[x][y].push_back(i); // track the ind ex  
 
    }  
 
    return g;  
}  

 
Here, The Lidar reader structure is used to start reading points from the LAS file. After 
the grid index is initialized, every point is iterated through to determine which cell is 
should be associated with. 

2.2 Quadtrees 
Another method for spatial searching is known as quadtree indexing6. It works by 
recursively splitting the extent of a lidar file into 4 quadrants until a particular hierarchical 
level (depth) is reached or until a desired amount of points fall within each quadrant, 

                                                
6 Tayeb, Jamel, Özgür Ulusoy, and Ouri Wolfson. "A quadtree-based dynamic attribute indexing 
method." The Computer Journal 41.3 (1998): 185-200. 
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depending on the implementation. The quadtree implementation is illustrated in the 
figure 6. 
 

  

Quadtree representation for 20 points and the corresponding tree structure. 

Figure 6: Quadtree Quadrants and Tree Structure 

 

2.2.1 Bin and Depth Termination 
For the purposed of this study, there are two forms of termination for a point-based 
quadtree (the base case for the recursion). The first has a threshold on the depth (or 
number of levels) the quadtree can have referred to here as depth termination. This 
means that the deepest quadrants can contain multiple and differing amount of point 
references. For the second form, each terminal quadrant is considered a bin that can 
hold n number of elements (point references) and known here as bin termination. As 
opposed to depth termination, bin termination has an unrestricted depth. 
Programmatically, the quadtree structure can be the same for both types of termination, 
but are used differently. For the terminal quadrants, bin termination will be limited by how 
many point references are allowed inside a particular quadrant whereas depth 
termination will be limited by maximum depth. The structure is outlined below: 
 

// quadrant node structure  
struct quad( ) {  
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    //information about this quad  
    extent e;  
    int depth;  
     
    quad * q1;  
    quad * q2;  
    quad * q3;  
    quad * q4;  
     
    bool is_terminal = false; //if this quad is ano ther  
                              // extension (false) or root (true)  
    vector <long> * indices;  //for termination  
};  
 
// quadtree structure  
struct quadtree( ) {  
     
    extent e;  //the extent of the data being repre sented  
    quad q;    //head of quadtree  
     
    // methods  
    bool is_in_quad( extent e, quad q ); //determin e if extent 
overlaps  
 
};  

 
In the case of bin termination, when creating the quadtree, the number of point 
references stored in the vector indices (under the quadrant structure) is limited by a user 
defined bin size. If the number of point references exceed the bin size, the quadrant will 
be split into the four quadrant pointers. In the case of depth termination, when the 
defined maximum depth is reached, all remaining points will stored into that quadrant. 

Insertion Methods 
Initializing the quadtree requires the point cloud be recursively partitioned into 4 
quadrants until termination is satisfied. This is illustrated for the first two points in figure 
7. 
 



The first quadrant is recursively traversed until 
termination is determined

Figure 7: Insertion Procedure

 
During insertion a subset of points are taken from the point cloud using the extent of 
each quadrant node. If the number of points within that subset is equal to or less than 
the threshold set on the bin size, those points are referenced in that particular node. The 
following code snippet demonstrates this insertion method.
 

void insert( LASreader r, quad
 
    // Reference points that fall in extent e
    vector <long> * indices = new vector <long>;
 
    // fill the index vector
    for ( int i = 0; i < r.h.number_of_point_records; i ++ ){
 
        if ( is_in_extent( r.read( i ), q.e ) )
            indices.push_back (i);
 
    }  
 
    //check if extracted points will fit into the bin
    if ( indices.size() <= bin_size ) { // BASE CASE

14 
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node. If the number of points within that subset is equal to or less than 

the threshold set on the bin size, those points are referenced in that particular node. The 
following code snippet demonstrates this insertion method. 

void insert( LASreader r, quad  q, int bin_size ){  

// Reference points that fall in extent e  
vector <long> * indices = new vector <long>;  

// fill the index vector  
for ( int i = 0; i < r.h.number_of_point_records; i ++ ){

if ( is_in_extent( r.read( i ), q.e ) )  
indices.push_back (i);  

//check if extracted points will fit into the bin  
if ( indices.size() <= bin_size ) { // BASE CASE  

 

The resultant tree at the 
current traversal 

During insertion a subset of points are taken from the point cloud using the extent of 
node. If the number of points within that subset is equal to or less than 

the threshold set on the bin size, those points are referenced in that particular node. The 

for ( int i = 0; i < r.h.number_of_point_records; i ++ ){  
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        q.indices = indices;  
        q.is_terminal = true;  
 
    } else {  
 
        // split quadrant into 4 new quadrants  
        array < extent, 4 > e_arr = split_quad_exte nt ( e );  
     
        //q1  
        q.q1.extent = e_arr[0];  
        q.q1.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q2  
        q.q2.extent = e_arr[1];  
        q.q2.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q3  
        q.q3.extent = e_arr[2];  
        q.q3.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q4  
        q.q4.extent = e_arr[3];  
        q.q4.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
      
    }  
 
}  
 
quadtree create_bin_quadtree ( file lasfile, int bi n_size ) {  
 
    LASreader r = LAS_read( lasfile );       // ini tialize the reader  
    quadtree qt = new quadtree();            // ini tialize the 
quadtree  
 
    //Kick off the recursion  
    insert( r, qt.q, bin_size );              // st art insertion  
}  

 
Reiterating, the insert function will recursively call itself until the number of points within 
a quadrant is less than the threshold set on the bin as defined by bin_size. This is 
decided by the conditional statement for base case; the base case is satisfied if the 
indices.size() (these are the point references that fall within the current quadrant) is less 
than the bin_size, and if true, the indices will be stored at the quadrant and the function 
will return. If the base case is unsatisfied, the current quadrant extent is split into 4 equal 
quadrants and the insertion function is recursively called on all 4 new quadrants.  
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For depth termination, the insert function is similar aside from checking on the bin size. 
Programmatically, this looks like the following: 
 

void insert( LASreader r, quad q, int depth ){  
 
    // Reference points that fall in extent e  
    vector <long> * indices = new vector <long>;  
 
    for ( int i = 0; i < r.h.number_of_point_record s; i++ ){  
 
        if ( is_in_extent( r.read( i ), q.e ) )  
            indices.push_back (i);  
 
    }  
 
    //check if extracted points will fit into the b in  
    if ( q.depth == depth || indices.size() < 2 ) {  // base case  
         
        q.indices = indices;  
 
    } else {  
 
        // create new quadrant extents  
        array < extent, 4 > e_arr = split_quad_exte nt ( e );  
     
        //q1  
        q.q1.extent = e_arr[0];  
        q.q1.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q2  
        q.q2.extent = e_arr[1];  
        q.q2.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q3  
        q.q3.extent = e_arr[2];  
        q.q3.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q4  
        q.q4.extent = e_arr[3];  
        q.q4.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
      
    }  
 
}  
 
quadtree create_depth_quadtree ( file lasfile, int depth ) {  
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    LASreader r = LAS_read( lasfile );       // ini tialize the reader  
    quadtree qt = new quadtree();            // ini tialize the 
quadtree  
 
    // Kick off the recursion  
    insert( r, qt.q, depth );              // Start  insertion  
}  

 
This time, the insert function tests whether the depth of the current quadrant node is 
equal to the maximum allowed depth to determine base case; base case is satisfied 
when q.depth  (the current quadrant’s depth) is equal to depth (the threshold), all 
indices that fall within this quadrant’s extent will be saved to q.indices  and the 
function will return or if there is just one point within the quadrant (we don’t need to 
traverse any further if there is just one point). If the base case is unsatisfied, the current 
quadrant extent is split into 4 equal quadrants and the insertion function is recursively 
called on all 4 new quadrants. 
 
It must be noted that it does take time to create an index. However, in all cases here, the 
index only needs to be created once and performance of the index methods are 
analyzed after they have been created. 

2.3 Search Methods 
To compare the different methods, the speed of each can be analyzed using a common 
search that extracts a subset of points that fall within a search extent7. Figure 8 
illustrates a point cloud and a potential search extent. 
 

                                                
7 Piegl, Les A, and Wayne Tiller. "Algorithm for finding all k nearest neighbors." Computer-Aided 
Design 34.2 (2002): 167-172. 



Figure 8: Point Cloud with a Search Extent

 

2.3.1 Qualitative Comparison
The algorithmic efficiency of each method can only be estimated, because there are too 
many factors that account for the speed of each which include the physical components 
of the computer (CPU speed, disk speed, RAM size and speed, 
spread (clustering). Each method takes advantage of different aspects about the cloud 
and the machine processing it to increase speed or save space. Analytically, 
computation methods are often described using the 
notation8. For the indexing methods in this paper, this is outlined in table 3.
 

Table 3: Algorithmic Efficiency for 

Method Iterative (non
indexed)

Big-O speed O(n) 

 

                                        
8 Wing, Jeannette M. "Computational thinking." 
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: Point Cloud with a Search Extent 

2.3.1 Qualitative Comparison 
The algorithmic efficiency of each method can only be estimated, because there are too 
many factors that account for the speed of each which include the physical components 
of the computer (CPU speed, disk speed, RAM size and speed, etc.
spread (clustering). Each method takes advantage of different aspects about the cloud 
and the machine processing it to increase speed or save space. Analytically, 
computation methods are often described using the worst case scenario in Big

For the indexing methods in this paper, this is outlined in table 3.

: Algorithmic Efficiency for Search - Big-O 

Iterative (non-
indexed) 

Grid Indexing Quadtree 

Level Termination

 O(1) O(log n) 

                                                
Wing, Jeannette M. "Computational thinking." Communications of the ACM

 

The algorithmic efficiency of each method can only be estimated, because there are too 
many factors that account for the speed of each which include the physical components 

etc.) and the point cloud 
spread (clustering). Each method takes advantage of different aspects about the cloud 
and the machine processing it to increase speed or save space. Analytically, 

scenario in Big-O 
For the indexing methods in this paper, this is outlined in table 3. 

Level Termination Bin 
Termination 

O(log n) 

Communications of the ACM 49.3 (2006): 33-35. 
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Since the iterative approach requires a search to read each point every time the search 
is performed, it’s worst case is O(n) where n is the number of points with a dataset. This 
is observed in the case of searching the dataset for points that fall within search extent; 
all points within the dataset must be analyzed. For a grid index search, points can be 
identified using cells that overlap with a search extent. This is done very quickly by 
simply traversing to the rows and columns of the overlapping search extent. This means 
if always using the same size grid for different size points clouds, the search speed will 
always be the same yielding a Big-O speed of just O(1)9. Searching a quadtree requires 
starting from the top node and traversing down the entire tree to find an element. This 
yields a Big-O speed operating at O(log n)10 (in this case, since we’re making a decision 
between 4 choices at each node, this would be log base 4). Comparing these speeds, it 
looks as though the iterative approach would perform the worse (as expected) whereas 
the grid approach would perform the best.  
 

2.2.2 Quantitative Comparison 
The above was just a theoretical comparison. However, a real world comparison will 
involve implementing and timing each method. The implementation for each is defined 
as follows. 

Iterative search method 
To search using the iterative approach, each point must be analyzed to determine 
whether or not it is within a search extent. The following function will determine if a point 
falls within an extent: 
 

vector<long> iterative_search( LASreader r, extent e ) {  
     
    vector<long> indices = new vector<long>;  
 
    for ( int i = 0; i < r.h.number_of_point_record s; i++ ) {  
        if ( is_in_extent (r.read(i)), e )  
            indices.push_back(i)  
    }  
 
    return indices;  
}  

 
The for loop uses the LASreader to iterate each point in the file. The function 
is_in_extent determines if a single point falls within a given extent, if true that point 
reference is added to the list. 

                                                
9 Garlasu, Dan et al. "A big data implementation based on Grid computing." Roedunet 
International Conference (RoEduNet), 2013 11th 17 Jan. 2013: 1-4. 
10 Tayeb, Jamel, Özgür Ulusoy, and Ouri Wolfson. "A quadtree-based dynamic attribute indexing 
method." The Computer Journal 41.3 (1998): 185-200. 
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Grid search method 
The grid search method necessitates the identification of cells that overlap with the 
search extent then searching the list of references within each overlapping cell. This is 
done by converting the four points that make up the search extent into grid indices, then 
visiting those cells. 
 

vector<long> grid_search ( LASreader r, grid_index g, extent e ) {  
     
    vector<long> indices = new vector<long>;  
 
    // transform positions into grid cell indices  
    int x_min = round((e.x.min - grid_index.x) / gr id_index.res);  
    int x_max = round((e.x.max - grid_index.x) / gr id_index.res);  
    int y_min = round((e.y.min - grid_index.y) / gr id_index.res);  
    int y_max = round((e.y.max - grid_index.y) / gr id_index.res);  
 
    // iterate over overlapping grid cells  
    for (int i = x_min; i < x_max; i++) {  
        for (int j = y_min; j < y_max; j++) {  
 
            // iterate through elements in cell  
            for (iterator it = g.grid[i][j].begin() ;  
                          it != g.grid[i][j].end();  ++it ){  
                if ( is_in_extent (r.read( it ), e)  )  
                    indices.push_back(it);  
            }  
 
        }  
    }  
 
    return indices;  
}  

 
First, the points that make up the search extent are converted into grid cell positions. 
Using a nested for loop, each overlapping cell is iterated and the point preferences that 
fall with each cell are iterated again using the is_in_extent function to verify the point is 
in the extent. 

Quadtree search method 
The quadtree search method involves determining quadrants that fall within a search 
extent. Starting with the top node, the extents of the 4 quadrants are tested to determine 
if it overlaps with the search extent. Each overlapping extent is recursively traversed until 
the terminal nodes are reached. The index or list of indices at these nodes are then 
tested to determine if it falls within the search extent. (Note that the search is the same 
for both bin and depth termination) 
 

// quadtree search  
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vector<long> search ( LASreader r, quadtree q, exte nt e ) {  
     
    vector<long> indices = new vector<long>;  
 
    // base case  
    if (is_quad_terminal ( q )){  
     
        for (iterator it = q.indices.begin();  
            it != g.grid[i][j].end(); ++it ){  
                if ( is_in_extent (r.read( it )) )  
                    indices.push_back(it);  
        }  
    }  
    else { // recursion  
         vector<long> v; // temp vector to store re turns  
         // check for overlapping of each quadrant’ s extent  
         // q1  
         if( do_extents_overlap( e, q.q1.e ) ) {  
             v = search( r, q.q1, e );  
             for (iterator it = v.begin(); it != v. end(); +it)  
                 indices.push_back(it); // push ret urned indices  
         }  
         // q2  
         if( do_extents_overlap( e, q.q2.e ) ) {  
             v = search( r, q.q2, e );  
             for (iterator it = v.begin(); it != v. end(); +it)  
                 indices.push_back(it);  
         }  
         // q3  
         if( do_extents_overlap( e, q.q3.e ) ) {  
             v = search( r, q.q3, e );  
             for (iterator it = v.begin(); it != v. end(); +it)  
                 indices.push_back(it);  
         }  
         // q4  
         if( do_extents_overlap( e, q.q4.e ) ) {  
             v = search( r, q.q4, e );  
             for (iterator it = v.begin(); it != v. end(); +it)  
                 indices.push_back(it);  
         }  
    }  
 
    return indices;  
}  

 
The above function will first determine a base case by testing if the current node being 
tested is a terminal node by calling is_quad_terminal . Otherwise, each sub-quadrant 
contained within the current quadrant is tested whether its extent overlaps the search 
extent using do_extents_overlap . If true, the sub-quadrant is recursively searched 
then the point references that are returned are pushed into indices . The same search 
function applies to both bin and depth terminated quadtrees. 
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The Comparison 
Given a search extent, the execution time for each method was recorded. This was 
performed on 11 separate datasets all having a square extent of 1000 meters and 
containing different number of points defined in table 4. 
 

Table 4: Datasets 

Dataset Number of Points 

1 1000 

2 2000 

3 4000 

4 8000 

5 16000 

6 32000 

7 64000 

8 128000 

9 256000 

10 512000 

11 1024000 

 
 
A threshold of 1 was set on the bin terminated quadtree to resemble the most classic 
form of a quadtree. A threshold of ten depths were used for the depth terminated 
quadtree. For calibration, the extent size of the 10th depth was used for the resolution of 
the grid index. This resolution is determined by the following equation: 
 

���������		 = �
� ⋅ ����	�, smallest resolution for depth termination 

 
The n in the previous equation is the maximum depth allowed for depth termination and 
extent here is the extent of a particular direction. This equation comes from the fact that 
for every depth, the entire extent is recursively split in half in a given direction. Since ten 
levels are being used, this resolution would be: 
 
�
�� ⋅ 1000� = ��

���, smallest possible resolution with maximum 10 levels for depth 

termination 



 

So, 
��
��� was the resolution used for the grid indexing.

 

Speed 

The processor in the computer
A virtual machine (using Oracle VM
use 1 central processing unit (CPU) and 512 megabyte base memory (RAM). The virtual 
machine operates at a much slower s
illustrates the speed without having to record very small values or increasing the number 
of points to very large amounts.  The speed results and size of 
in table 5. 
 
Table 5: Speed Comparison

 

Iterative (non
indexed)

Dataset 1: 1000 

Dataset 2: 2000 

Dataset 3: 4000 

Dataset 4: 8000 

Dataset 5: 16000 

Dataset 6: 32000 

Dataset 7: 64000 

Dataset 8: 128000 

Dataset 9: 256000 

Dataset 10: 512000 

Dataset 11: 1024000 
 
 

                                        
11 "VM - Virtual Machine | Oracle." 2012. 5 Jun. 2015 
<http://www.oracle.com/us/technologies/virtualization/oraclevm/overview/
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was the resolution used for the grid indexing. 

The processor in the computer used was an AMD Phenom(tm) II X6 1100T at 3.31 GHz. 
A virtual machine (using Oracle VM11) was created running Ubuntu 12.04 64 bit set to 
use 1 central processing unit (CPU) and 512 megabyte base memory (RAM). The virtual 
machine operates at a much slower speed than the computer it resides and better 
illustrates the speed without having to record very small values or increasing the number 
of points to very large amounts.  The speed results and size of each method are outlined 

: Speed Comparison 

Iterative (non-
indexed) 

Grid Indexing Quadtree 

Depth Termination

2.810 0.089 

5.264 0.114 

10.327 0.164 

21.245 0.264 

45.543 0.464 

92.436 0.864 

179.945 1.664 

365.734 3.264 

750.976 6.464 

1534.987 12.864 

2956.159 25.664 

                                                
Virtual Machine | Oracle." 2012. 5 Jun. 2015 

http://www.oracle.com/us/technologies/virtualization/oraclevm/overview/

used was an AMD Phenom(tm) II X6 1100T at 3.31 GHz. 
created running Ubuntu 12.04 64 bit set to 

use 1 central processing unit (CPU) and 512 megabyte base memory (RAM). The virtual 
peed than the computer it resides and better 

illustrates the speed without having to record very small values or increasing the number 
each method are outlined 

Depth Termination Bin Termination 

0.134 0.259 

0.236 0.481 

0.305 1.017 

0.424 1.610 

0.644 2.258 

1.063 2.962 

1.882 3.721 

3.501 4.537 

6.721 5.022 

13.140 5.933 

25.959 6.795 

http://www.oracle.com/us/technologies/virtualization/oraclevm/overview/> 



Figure 9: Methods Speed Comparison

 
It is obvious the iterative approach is much slower than the 
following the trend backwards
could as fast. However, since lidar projects usually contain a large number of points, this 
becomes unimportant). Omitting the iterative results
yields the following graphs:
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Speed Comparison: Methods Speed Comparison 

It is obvious the iterative approach is much slower than the index methods (although, 
backwards, as the number of points approach 0, an iterative search 

could as fast. However, since lidar projects usually contain a large number of points, this 
becomes unimportant). Omitting the iterative results and comparing the index methods 
yields the following graphs: 

 

index methods (although, 
, as the number of points approach 0, an iterative search 

could as fast. However, since lidar projects usually contain a large number of points, this 
and comparing the index methods 



Figure 10: Index Speed Comparison (Iterative Method Omitted)

 

Figure 11: Index Speed Comparison 

 
Comparing just the index methods, initially the bin terminated quadtree is the slowest but 
quickly becomes the fastest as the number of points increase across the datasets. This 
is due to the limitation put on grid index resolution and the threshold of the
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Index Speed Comparison (Iterative Method Omitted) 

Index Speed Comparison - datasets under 150,000 point quantity 

Comparing just the index methods, initially the bin terminated quadtree is the slowest but 
quickly becomes the fastest as the number of points increase across the datasets. This 
is due to the limitation put on grid index resolution and the threshold of the

 

 

Comparing just the index methods, initially the bin terminated quadtree is the slowest but 
quickly becomes the fastest as the number of points increase across the datasets. This 
is due to the limitation put on grid index resolution and the threshold of the depth 



terminated quadtree; as the number of points increase, more point references are put 
into each cell or terminal quadrant and have to be iterated. This is why a linear pattern 
emerges similar to the iterative (non
by increasing grid resolution or the depth threshold (for grid and depth terminated 
quadtree, respectively) but has the effect of increasing the space required for the index. 
Figure 8 exhibits what happens right before bin termination becomes fa
other methods; it’s seen at lower values of points that both quadtrees have the similar 
curves until around 5000 points when the depth terminated quadtree seems to follows 
the same linear pattern as the grid index. It is likely that this is w
stored at the maximum depth of the quadtree and would have the same gridded 
structure as the grid (this was inevitable as the resolution of the grid was defined at an 
equal size to the extent covered by a quadrant at the tenth dept
less dependent on an iterative search at a terminal node (with no iterative searching 
being conducted at a bin size of 1), so the speeds are dependent solely on traversing 
the quadtree. 
 

Size 

Next, the size is analyzed for each m
bytes). 
 
Table 6: Size Comparison in Bytes (Index Size Only)

 

Iterative (non
indexed)

Dataset 1: 1000 

Dataset 2: 2000 

Dataset 3: 4000 

Dataset 4: 8000 

Dataset 5: 16000 

Dataset 6: 32000 

Dataset 7: 64000 

Dataset 8: 128000 

Dataset 9: 256000 

Dataset 10: 512000 

Dataset 11: 1024000 
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terminated quadtree; as the number of points increase, more point references are put 
into each cell or terminal quadrant and have to be iterated. This is why a linear pattern 
emerges similar to the iterative (non-indexed) method. This emergence can 
by increasing grid resolution or the depth threshold (for grid and depth terminated 
quadtree, respectively) but has the effect of increasing the space required for the index. 
Figure 8 exhibits what happens right before bin termination becomes fa
other methods; it’s seen at lower values of points that both quadtrees have the similar 
curves until around 5000 points when the depth terminated quadtree seems to follows 
the same linear pattern as the grid index. It is likely that this is when all points are being 
stored at the maximum depth of the quadtree and would have the same gridded 
structure as the grid (this was inevitable as the resolution of the grid was defined at an 
equal size to the extent covered by a quadrant at the tenth depth). Bin termination is far 
less dependent on an iterative search at a terminal node (with no iterative searching 
being conducted at a bin size of 1), so the speeds are dependent solely on traversing 

Next, the size is analyzed for each method. These are outlined in table

: Size Comparison in Bytes (Index Size Only) 

Iterative (non-
indexed) 

Grid Indexing Quadtree 

Depth Termination

41243 31936032 31768

82243 31936032 73543

164243 31936032 168045

328243 31936032 389095

656243 31936032 896435

1312243 31936032 2065152

2624243 31936032 4753990

5248243 31936032 10940834

10496243 31936032 25173504

20992243 31936032 33554432

41984243 31936032 33554432

terminated quadtree; as the number of points increase, more point references are put 
into each cell or terminal quadrant and have to be iterated. This is why a linear pattern 

indexed) method. This emergence can be delayed 
by increasing grid resolution or the depth threshold (for grid and depth terminated 
quadtree, respectively) but has the effect of increasing the space required for the index. 
Figure 8 exhibits what happens right before bin termination becomes faster than the 
other methods; it’s seen at lower values of points that both quadtrees have the similar 
curves until around 5000 points when the depth terminated quadtree seems to follows 

hen all points are being 
stored at the maximum depth of the quadtree and would have the same gridded 
structure as the grid (this was inevitable as the resolution of the grid was defined at an 

h). Bin termination is far 
less dependent on an iterative search at a terminal node (with no iterative searching 
being conducted at a bin size of 1), so the speeds are dependent solely on traversing 

table 6 (expressed in 

Depth Termination Bin Termination 

31768 32768 

73543 75281 

168045 172950 

389095 397336 

896435 912838 

2065152 2097152 

4753990 4817990 

10940834 11068834 

25173504 25429504 

33554432 58421659 

33554432 134217728 



Figure 12: Index Size Comparisons

 
Table 6 and Figure 12
quadtree, omitting the actual point references. As these references are necessary
this type of indexing, T
 

Table 7: Size Comparison in Bytes

 

Iterative (non
indexed)

Dataset 1: 1000 

Dataset 2: 2000 

Dataset 3: 4000 

Dataset 4: 8000 

Dataset 5: 16000 

Dataset 6: 32000 

Dataset 7: 64000 

Dataset 8: 128000 

Dataset 9: 256000 

Dataset 10: 512000 

Dataset 11: 1024000 
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Index Size Comparisons 

Table 6 and Figure 12 shows the size of just the index for grid and the depth terminated 
quadtree, omitting the actual point references. As these references are necessary
this type of indexing, Table 7 shows the size when taking them into account.

: Size Comparison in Bytes 

Iterative (non-
indexed) 

Grid Indexing Quadtree 

Depth 
Termination 

41243 31977275 32768

82243 32018275 75543

164243 32100275 172045

328243 32264275 397095

656243 32592275 912435

1312243 33248275 2097152

2624243 34560275 4817990

5248243 37184275 11068834

10496243 42432275 25429504

20992243 52928275 54546675

41984243 73920275 75538675

shows the size of just the index for grid and the depth terminated 
quadtree, omitting the actual point references. As these references are necessary for 

shows the size when taking them into account. 

 
Bin Termination 

32768 32768 

75543 75281 

172045 172950 

397095 397336 

912435 912838 

2097152 2097152 

4817990 4817990 

11068834 11068834 

25429504 25429504 

54546675 58421659 

75538675 134217728 



 

Table 8: Total Size Comparisons

 
For the iterative (non-indexed) method, the size it is just the size of the points (ex: the 
original LAS file) and will always be smaller than the indexing methods. 
grid index is dependent on the number of points referenced plus the allocated grid. The 
size of the quadtrees are the number of grid point references plus each node contained 
in a tree. Again, as discussed earlier, the depth terminated quad
resemble a grid index (at a concurring resolution)
 
In conclusion, a grid search could always perform the fastest if a resolution is selected 
that keeps cell density low enough. However, really fine resolutions mean allocating a 
large amount of space. This is where a quadtree is excels (namely, the bin terminated 
quadtree). To obtain the benefits of both approaches, a depth terminated quadtree 
should be used, and because of this, the rest of this paper will focus on this method. 

2.3 Additional Index Methods
More indexing methods exist that
tree12 that groups spatially similar objects together at different scales where each depth 
of the tree are the scales. Studies have shown R
and the parameters for 

                                        
12 Beckmann, Norbert et al. 
rectangles. ACM, 1990. 
13 Kothuri, Ravi Kanth V, Siva Ravada, and Daniel Abugov. "Quadtree and R
oracle spatial: a comparison using GIS data." 
international conference on Management of data
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Total Size Comparisons 

indexed) method, the size it is just the size of the points (ex: the 
original LAS file) and will always be smaller than the indexing methods. 
grid index is dependent on the number of points referenced plus the allocated grid. The 
size of the quadtrees are the number of grid point references plus each node contained 
in a tree. Again, as discussed earlier, the depth terminated quadtree will eventually 
resemble a grid index (at a concurring resolution)...  

In conclusion, a grid search could always perform the fastest if a resolution is selected 
that keeps cell density low enough. However, really fine resolutions mean allocating a 

rge amount of space. This is where a quadtree is excels (namely, the bin terminated 
quadtree). To obtain the benefits of both approaches, a depth terminated quadtree 
should be used, and because of this, the rest of this paper will focus on this method. 

3 Additional Index Methods 
More indexing methods exist that should be tested. One such method is called an R

that groups spatially similar objects together at different scales where each depth 
of the tree are the scales. Studies have shown R-trees to perform better than quadtrees, 
and the parameters for its creation are less complex13, however, it should be noted that 

                                                
Beckmann, Norbert et al. The R*-tree: an efficient and robust access method for points and 
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indexed) method, the size it is just the size of the points (ex: the 
original LAS file) and will always be smaller than the indexing methods. The size of the 
grid index is dependent on the number of points referenced plus the allocated grid. The 
size of the quadtrees are the number of grid point references plus each node contained 

tree will eventually 

In conclusion, a grid search could always perform the fastest if a resolution is selected 
that keeps cell density low enough. However, really fine resolutions mean allocating a 

rge amount of space. This is where a quadtree is excels (namely, the bin terminated 
quadtree). To obtain the benefits of both approaches, a depth terminated quadtree 
should be used, and because of this, the rest of this paper will focus on this method.  
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R-trees are usually larger in size and require a cluster analysis (and therefore more 
complex to implement) for determining groups.
 

2.4 A solution to the space issue for index methods
A concern when using an indexing method is the size. Every point is indexed so the 
resultant index file is roughly as large as the original lidar file plus the size of the actual 
index (see size comparison i
index would likely consume twice the storage. One solution is to store the actual point 
data into the index and the remove the original to save space, however, it is often 
desirable to keep the ori
and last reference points within a cell or terminal node and iterate all points in between 
from the original LAS file (this of course will not work on a bin terminated quadtree of 
size 1, however iteration of this method was never a real concern as it was with the 
others). This has the effect of likely having to iterate through points that fall within other 
cells or nodes. Figure 13 illustrates this.
 

When extracting points from the 
the right shows how the points are ordered, and highlights the points that have to be iterated.

Figure 13: Extracting Points in a Cell
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In the previous figure, the LAS file was sorted by ascending x values. From the figure, 
the first cell of the grid uses point 1 as the beginning reference and point 16 as the 
ending reference. So, when extracting points from this cell, all points between 1 and 16 
have to be extemporaneously iterated and determined to fall within the this cell.  
 
Since we are only referencing 2 points per cell/terminal quadrant, the size can drastically 
be reduced (ex: if there are 20 points contained within a terminal quadrant and this 
method is applied, then the index size is reduced to 10 percent).  
 
The above was an example of what would happen when using a grid index, but applying 
this to a quadtree would yield a similar outcome. Creating the quadtree uses the same 
insert structure as before, but slightly modified. This is seen in the following source code:  
 

void insert( LASreader r, quad q, int depth ){  
 
    // Reference points that fall in extent e  
    vector <long> * indices = new vector <long>;  
 
    for ( int i = 0; i < r.h.number_of_point_record s; i++ ){  
 
        if ( is_in_extent( r.read( i ), q.e ) )  
            indices.push_back (i);  
 
    }  
 
    //check if extracted points will fit into the b in  
    if ( q.depth == depth || indices.size() < 2 ) {  // base case  
         
        // Keep just first and last references  
        g.indices.push_back( indices.begin() );  
        q.indices.push_back( indices.end() );  
 
    } else {  
 
        // create new quadrant extents  
        array < extent, 4 > e_arr = split_quad_exte nt ( e );  
     
        //q1  
        q.q1.extent = e_arr[0];  
        q.q1.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q2  
        q.q2.extent = e_arr[1];  
        q.q2.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q3  
        q.q3.extent = e_arr[2];  
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        q.q3.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
 
        //q4  
        q.q4.extent = e_arr[3];  
        q.q4.depth = q.depth+1;  
        insert( r, q.q1, bin_size );  
      
    }  
 
}  
 
quadtree create_depth_quadtree ( file lasfile, int depth ) {  
 
    LASreader r = LAS_read( lasfile );       // ini tialize the reader  
    quadtree qt = new quadtree();            // ini tialize the 
quadtree  
 
    // Kick off the recursion  
    insert( r, qt.q, depth );              // Start  insertion  
}  

 
This time, if base case is true, only the first and last references are stored. 

2.4.1 Gaining speed through sorting 
To eliminate the need to search through other cells, the LAS file can be sorted in such a 
way that all the points that fall within a cell/terminated quadrant are organized so they 
are consecutively stored. This has the effect of gaining speeds equal to a normal 
indexing method, however it requires the original LAS file to be altered. 

2.5 Selecting Index Parameters for Index Creation 
The speed of each method depend on so many factors (mainly the computer they 
reside) that making decisions for the parameters for initializing them can be difficult. For 
a uniformly distributed point cloud, grid indexing is an obvious choice with a resolution 
that encompasses a cell density of one. However, it is unlikely that lidar would be 
distributed this way and space is always a concern, especially for larger datasets.  
 
Since space can be the real limitation (we never want to use parameters that directly 
and intentionally decrease the index speed), it is best to select parameters based on 
this. Generally (from experience), a value no larger than 10% of the original LAS file is 
typically acceptable. For the method that reduced the index size, it was mentioned that 
keeping just two points from 20 reduced the size of a cell/quadrant to 10%. By selecting 
a grid resolution that will yield a cell density of no more than 20 points, the size of the 
references in the index will never exceed 10% and the overall index will likely be smaller 
than 10% (in a worst case scenario, if there are 20 points distributed in each cell, the 
overall index would actually be the 10% plus the overhead of the index). This resolution 
is used to determine the maximum depth level for a depth terminated quadtree. 
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Test datasets using depth terminated quadtrees and the size reduction method have 
yielded an index file no larger than 10% (on average, they were only 1% of the original 
LAS file) and a speed that was about 10 times faster as compared to iteratively loading 
points. 

3. File Space and Memory Space 
For budgeting memory allocation, processing lidar is done in two forms - file space and 
memory space. File space is the use of a physical hard drive to permanently store the 
lidar data. The lidar is stored as LAS files and loaded into memory space for processing 
since it is done there more efficiently. Loading entire LAS projects into memory can be 
difficult (or even impossible) due to memory limitations, so a combination of the two 
forms must be used for effectively processing the data. An ideal situation is to create a 
fully transparent procedure for a common user that allows them to load a portion of the 
lidar to memory in an efficient manner. 

3.1 File Space 
To maintain standards, lidar should always be stored as an LAS file. As demonstrated by 
the indexing method comparison, simply iterating through these files is the most 
inefficient approach. Software should take preliminary steps to make searching and 
loading relevant areas from lidar both faster and easier. Firstly, as demonstrated earlier, 
every file should have a quadtree index file to accompany it that will make searching 
within a single file more efficient. Secondly, since lidar files are usually tiled into smaller 
files according to specific extents, they should also be indexed so it can be quickly 
identified as to which overlap with a loading extent. However, lidar files can become 
mixed and can have overlapping or erratic extents which normal indexing methods do 
not account for (most index methods use a pattern to speed up searches). Instead, 
because there are usually far less files representing a project area then the points 
contained inside a typical LAS file, a simplified indexing method can be utilized using 
shapefiles. 
 
A Shapefile is a standard Geographical Information System (GIS) format that stores 
shapes (or points) as vectors comprised of points and lines14. Multiple shapes can be 
stored into a single shapefile making it perfect to store individual LAS file extents. The 
open software called Geospatial Data Abstraction Library15 (GDAL) contains the 
OpenGIS Simple Features Reference Implementation (OGR) that can be used to create, 
load and search across shapefiles using an extent search. Additionally, this software can 
be built into other software using the Application Programming Interface (API) provided. 
 

                                                
14 "ESRI Shapefile Technical Description." 2014. 8 Jun. 2015 
<https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf> 
15 "GDAL: GDAL - Geospatial Data Abstraction Library." 2004. 3 Jun. 2015 
<http://www.gdal.org/> 
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Each tile labeled using the name of the LAS file. Additionally, each tile is labeled and 
colored by its average point density. 

Figure 14: Shape File Representation 

 
After the correct files are identified using a shape file search, the accompanying 
quadtree can be used to load the points that fall within the loading extent. The following 
figure outlines the process followed for loading corresponding points from a search 
extent, and at which step the files in a lidar directory are used. 
 



Figure 15: Loading data to Memory Space

 

3.2 Memory Space
When loading points into memory, a structure specific to lidar is used to hold point 
information. A single point structure should store the x,y,z location and additional 
attributes (as explained by the LAS point format) is used. For this, the Point Cloud 
Library with a tailored point type was created.

3.2.1 Point Cloud Library
The point cloud library (PCL) is a c++ package that attempts to standardize point 
structures and point clouds. It uses established structures and methods that are 
designed for optimizing memory op
updates to PCL are easily adopted into this software.
 
For efficiency, the individual point structure is static (attributes cannot be removed or 
added after a compilation) and for lidar (specifically, ve
structure looks like the following (a custom PCL format created for this software):
 
                                        
16 Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)." 
Automation (ICRA), 2011 IEEE International Conference on
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The point cloud library (PCL) is a c++ package that attempts to standardize point 
structures and point clouds. It uses established structures and methods that are 
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updates to PCL are easily adopted into this software. 

For efficiency, the individual point structure is static (attributes cannot be removed or 
added after a compilation) and for lidar (specifically, version 3 point format), this 
structure looks like the following (a custom PCL format created for this software):

                                                
Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)." 

Automation (ICRA), 2011 IEEE International Conference on 9 May. 2011: 1
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Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)." Robotics and 
9 May. 2011: 1-4. 
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struct Point3 {  
 
 //LAS Point format - version 3  
 unsigned short intensity;  
 unsigned char return_number;  
 unsigned char number_of_returns;  
 unsigned char scan_direction_flag;  
 unsigned char edge_of_flight_line;  
 unsigned char classification;  
 unsigned char scan_angle_rank;  
 unsigned char user_data;  
 unsigned short point_source_ID;  
 double GPS_time;  
 unsigned short red;  
 unsigned short green;  
 unsigned short blue;  
 
};  

 
For constructing the point cloud, a lidar structure is used to hold header information and 
the list of individual points. The header holds information about the points contained in a 
LAS file as well as unique information pertaining to it collection. This information should 
be maintained for other post processing tasks including writing a point cloud back to a 
file. The header structure is as follows: 
 

struct Header{  
 
 char file_signature[4];  
 unsigned short file_source_ID;  
 unsigned short global_encoding;  
 unsigned short project_ID_GUID_data1;  
 unsigned short project_ID_GUID_data2;  
 unsigned short project_ID_GUID_data3;  
 unsigned char project_ID_GUID_data4[8];  
 unsigned char version_major;  
 unsigned char version_minor;  
 char system_identifier[32];  
 char generating_software[32];  
 unsigned short file_creation_day_of_year;  
 unsigned short file_creation_year;  
 unsigned short header_size;  
 unsigned long offset_to_point_data;  
 unsigned long number_of_variable_length_records;  
 unsigned char point_data_format_ID;  
 unsigned short point_data_record_length;  
 unsigned long number_of_point_records;  
 unsigned long number_of_points_by_return[5];  
 double x_scale_factor;  
 double y_scale_factor;  
 double z_scale_factor;  
 double x_offset;  



 double y_offset;
 double z_offset;
 double max_x;
 double max_y;
 double max_z;
 double min_x;
 double min_y;
 double min_z;
 
};  

 
As for the Lidar structure, which ties everything together (and uniquely identifies the 
point cloud as lidar) holds the header, the 
modifying/accessing the points. This structure looks like the following:
 

struct Lidar {  
 
 Point3 *pc;  
 
 Header;  
 int update_header( );
 
 double getX(int index);
 double getY(int index);
 double getZ(int index);
 void setX(int index, double x);
 void setY(int index, double y);
 void setZ(int index, double z);
};  

 

3.2.2 LAS Importing
The simplest method for importing an LAS file is to read the entire file into memory by 
iterating through each point (this is seen in most
 

Figure 16: Loading an Entire LAS file

 
However, it is probably more useful to load a portion of the data defined by a 
search/loading extent. This is evident when processing a highly dense lidar dataset to a 
wall-to-wall grid product; the dataset maybe too large to store in memory, so it would b
beneficial to iterate over the cells of the grid and extract points from LAS files as 
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y_offset;  
double z_offset;  
double max_x;  
double max_y;  
double max_z;  
double min_x;  
double min_y;  
double min_z;  

As for the Lidar structure, which ties everything together (and uniquely identifies the 
point cloud as lidar) holds the header, the point cloud and relevant methods to 
modifying/accessing the points. This structure looks like the following:

 

int update_header( );  

double getX(int index);  
double getY(int index);  
double getZ(int index);  

setX(int index, double x);  
void setY(int index, double y);  
void setZ(int index, double z);  

3.2.2 LAS Importing 
The simplest method for importing an LAS file is to read the entire file into memory by 
iterating through each point (this is seen in most lidar software).  

Loading an Entire LAS file 
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point cloud and relevant methods to 
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The simplest method for importing an LAS file is to read the entire file into memory by 

 

However, it is probably more useful to load a portion of the data defined by a 
search/loading extent. This is evident when processing a highly dense lidar dataset to a 

wall grid product; the dataset maybe too large to store in memory, so it would be 
beneficial to iterate over the cells of the grid and extract points from LAS files as 



necessary. To do this, the LASreader function can be overloaded to include an option to 
load a given extent using the search methods outlined earlier.
 

Figure 17: Extracting LAS Points using a Loading Extent

 

3.2.3 Octrees 
Octrees are similar to quadtrees except they search in 3 dimensions (x, y and z). While 
not as useful for loading points from an LAS file (because a 2
is usually sufficient in file space and the size is 
resolution and range of the z direction), an octree can be useful for the points loaded into 
memory. This usefulness can be observed when analyzing neighboring points 
points for something like cluster analysis where octrees are used to efficiently identify 
these points. PCL has octree structures and corresponding methods as part of its API. 
Octrees are created when needed and their setup is demonstrated in t
below: 
 

//octree setup  
float resolution = 1.0f;  // smallest resolution of  octree
pcl::octree::OctreePointCloudSearch<Point3> octree (resolution);  // 
create  
octree.setInputCloud (pc);  // set point cloud from  Lidar structure
octree.addPointsFromInputCloud (); // Add points

 
PCL can create these octrees very efficiently, so speed in initializing one (for a smaller 
AOI dataset) is usually not a concern (it could be an issue if creating an octree for a very 
large point cloud, but this software avoids this situation).

37 
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Octrees are similar to quadtrees except they search in 3 dimensions (x, y and z). While 
dimensional spatial search 

times larger depending on the 
resolution and range of the z direction), an octree can be useful for the points loaded into 
memory. This usefulness can be observed when analyzing neighboring points to a single 
points for something like cluster analysis where octrees are used to efficiently identify 
these points. PCL has octree structures and corresponding methods as part of its API. 
Octrees are created when needed and their setup is demonstrated in the code snippet 

float resolution = 1.0f;  // smallest resolution of  octree  
pcl::octree::OctreePointCloudSearch<Point3> octree (resolution);  // 

octree.setInputCloud (pc);  // set point cloud from  Lidar structure  

PCL can create these octrees very efficiently, so speed in initializing one (for a smaller 
AOI dataset) is usually not a concern (it could be an issue if creating an octree for a very 



38 

4. Methods 
The methods for processing lidar are separated into 2 sections: Preliminary methods 
and processing methods. The former is used to prepare the lidar for actual processing 
(the latter). 

4.1 Thinning 
Thinning the lidar can serve a few purposes. The most obvious benefit is that it reduces 
the amount of space required to store the files (or the amount to load into memory). 
Lidar is usually collected at a higher density than what is needed for the final lidar 
products; many of the points are redundant at certain resolutions and can be thinned to 
expedite the processing. Another benefit that is often observed after thinning is the 
reduction of noise.  

4.1.1 Simple Thinning 
Given a step of n, every nth point is removed from the lidar list. This is done by iterating 
each point from the point cloud and removing every nth point (ex: a step size of 2 would 
remove every other point thus reducing to about half the size). 

4.1.2 Random Thinning 
Given a number of points to remove m, m indices are chosen at random and the 
corresponding point is removed. This can also be given as a percentage, where m is 
determined by total points multiplied by the percentage. 

4.1.3 Pixel Thinning 
Given a resolution r, an overlapping grid is created with cell size of resolution r is used to 
select one point within each grid cell. There are several methods for choosing a single 
point to represent a grid cell.  

● Bool - Determine if any points exist inside a grid cell. If true, the center of the 
pixel is used to determine the x,y location and all other attributes (including z) are 
averaged from all points in cell or by using the closest point to the center. 

● Average - all points that fall within a grid cell are averaged to a single point. 
● Random - A single point inside the grid cell is randomly selected to represent the 

grid cell. 

4.1.4 Voxel Thinning 
Voxels are similar to pixels and use the same methods for selecting a single points to 
represent the cell). However, this thinning method uses all 3 dimensions (x,y,z and is 
sometimes referred to as a 3D pixel). The result will be larger than the result from pixel 
thinning (at the same resolutions) but will preserve multiple z values at a corresponding 
2D pixel. Additionally, this thinning method can be used to eliminate very small noisy 
points because it is more likely a thinned point will represent an object more accurately 
by using the techniques described in pixel thinning. This is because (in most cases) 
there are a larger number of the points that represent an object in a voxel accurately 
then there are noisy points. 
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4.1.5 Noise reduction 
For highly dense but noisy lidar datasets, it can be assumed that most points are mostly 
correct and those points are likely to be closely grouped together. The noisy points are 
often identified as isolated points away from closely grouped points. Using a distance 
threshold that allows a point to exist if it has a given number of neighbors (neighbor 
threshold) within the distance threshold, the noisy points can be eliminated. 

4.2 Processing Methods 

4.2.1 Grid (Raster) Class 
The Geospatial Data Abstraction Library (GDAL, mentioned earlier) is used to store 
raster information (a raster is a grid, however, here it is used to refer to grids being used 
as a product from lidar). The GDAL API provides standardized methods for creating, 
storing and saving raster data. Additionally, it also provides methods for interpolating 
points to a raster. Dependent grid definitions using GDAL used in this software can be 
viewed in the appendix. Source code for creating a grid is outlined below (where each 
function is contained with a structure “Grid”): 
 

int Grid::create(double X, double Y, double cellsiz eX, double 
cellsizeY, int nX, int nY){  
 
 //meta  
 offsetX = X;  
 pixelResX = cellsizeX;  
 offsetY = Y;  
 pixelResY = cellsizeY;  
 nXSize = nX;  
 nYSize = nY;  
 
 //setup buffer  
 buffer = (float*) CPLMalloc(sizeof(float)*(nXSize* nYSize));  
 
 return 0;  
 
}  

 
Given the x,y orgin X, Y, the resolution, cellsizeX , cellsizeY  and the number of 
columns and rows, nX and nY a raster can be properly defined. For setting and retrieving 
values, the following methods were used: 
 

float Grid::get_value( float x, float y){  
 
 int xOffset = ((x-offsetX)/pixelResX); //Values wi ll get 
truncated  
 int yOffset = ((y-offsetY)/pixelResY); //Values wi ll get 
truncated  
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 return buffer[(nXSize*yOffset)+xOffset];  
 
}  
 
int Grid::set_value( float x, float y, float z ){  
 
 int xOffset = ((x-offsetX)/pixelResX); //Values wi ll get 
truncated  
 int yOffset = ((y-offsetY)/pixelResY); //Values wi ll get 
truncated  
 int pos = (nXSize*yOffset)+xOffset;  
 buffer[pos] = z;  
 
 return pos; //in case this is useful to the user  
 
}  

 
For retrieving values, only an x and y are passed in the function, and the nearest cell’s 
value will be returned (here as a float, but this can be any defined variable type). 
Similarly, an x and y are passed in but with an additional z parameter to set a cell’s 
value.  

4.2.2 Ground Point Classification 

MCC-Lidar 
The multiscale curvature classification algorithm (MCC) attempts to classify ground 
points with only a few model parameters and minimal processing17. The algorithm is 
optimized for a forest environment, however works in other types of terrains as well (ex: 
a meadow with downed logs or a post-file area with snags). MCC takes in 2 parameters: 
a scale parameter and a curvature tolerance. First, a raster is created using a resolution 
equal to the scale parameter and points are interpolated using the thin plate spline (TPS) 
method from GDAL. Next, the raster cells are iterated and a 3X3 average filter plus the 
curvature tolerance is used to create a new curvature raster. Finally, each point is 
iterated where each z value is compared to the curvature raster; if z is found to be 
greater than the corresponding value in the curvature raster, it is marked as a non-
ground point, otherwise it is marked as a ground point. 
 

void mcclidar( float s, float c, Lidar l) { //scale  (s) and curvature 
(c)  
 
    Grid = new Grid<float>(l.header.min_x, l.header .min_y, s,  
         s, (l.header.max_x-l.header.min_x) / s,  
         (l.header.max_y-l.header.min_y) / s );  

                                                
17 Evans, Jeffrey S, and Andrew T Hudak. "A multiscale curvature algorithm for classifying 
discrete return lidar in forested environments." Geoscience and Remote Sensing, IEEE 
Transactions on 45.4 (2007): 1029-1038. 



41 

 
    // setup TPS, requires grid and number of point s  
    VizGeorefSpline2D vs = new VizGeorefSpline2D( g rid,  
        l->pc.size() );  
    vs.set_toler(s,s);  
    // add points to TPS  
    for ( iterator it = l->pc.begin(); it == l->pc. end(); it++)  
        vs.add_points( PointXYZ( it ) ); // cast to  simple XYZ  
 
    vs.solve();  
 
    // apply 3x3 avg filter  
    Grid curv = new Grid<float>(l.header.min_x, l.h eader.min_y, s,  
         s, (l.header.max_x-l.header.min_x) / s,  
         (l.header.max_y-l.header.min_y) / s )  
 
    for ( i = 1; i < curv.nx - 1; i++ ){  
        for ( j = 1; j < curv.ny - 1; j++ ){  
 
            int tot = 0  
            for ( k = -1; k <= 1; k++ ){  
                for (l = -1; l <= 1; l++ ){  
                    tot = tot + grid[i+k][j+l];  
                }  
            }  
 
            curv[i][j] = (tot/9) + t; // add tensio n to avg value  
        }  
    }  
 
    // run classification on points  
    for ( iterator it = l->pc.begin(); it == l->pc. end(); it++){  
        if ( it.z > curv.get_value( it.x, it.y ))  
            it.classification = 0; // unknown class ification  
        else:  
            it.classification = 2; // ground classi fication  
    }  
}  

 
 

4.2.3 Digital Terrain Models 
A digital terrain model (DTM, sometimes referred to as digital elevation model or DEM) is 
a representation of the bare earth surface (just terrain, no objects). This requires 
extracting points from a lidar dataset with a classification attribute set as 2. This 
classification indicates that a point is a ground point. First, a raster has to be created 
(given an extent and resolution) that corresponds to the lidar dataset. Second, an 
interpolation method needs to be selected to determine the value of each cell for the 
raster. These rasterizing methods include (but are not limited to, however these are the 



only ones yet implemented in this software and have been selected because of their 
good speed) nearest neighbor, averaging and inverse distance weighting.
 
To compare the following rasterizing methods, a test d
18. 
 

Each points is colored according to its z value.

Figure 18: Test Dataset 

 

Averaging 
There are 2 ways to determine a cell value based on averaging: using the cell extent and 
using a distance extent. For the former, 
is used to load points from an LAS file. This time, the z values from all points are 
averaged and assigned to the cell. For distance extent, a distance threshold is given and 
a circular extent with a radiu
at the center of the cell is used to extract points from an LAS file. The points are then 
averaged as mentioned before.
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only ones yet implemented in this software and have been selected because of their 
good speed) nearest neighbor, averaging and inverse distance weighting.

To compare the following rasterizing methods, a test dataset was used pictured in 

Each points is colored according to its z value. 

There are 2 ways to determine a cell value based on averaging: using the cell extent and 
using a distance extent. For the former, much like nearest neighbor, the extent of the cell 
is used to load points from an LAS file. This time, the z values from all points are 
averaged and assigned to the cell. For distance extent, a distance threshold is given and 
a circular extent with a radius equal to the distance threshold and the center positioned 
at the center of the cell is used to extract points from an LAS file. The points are then 
averaged as mentioned before. 

only ones yet implemented in this software and have been selected because of their 
good speed) nearest neighbor, averaging and inverse distance weighting. 

ataset was used pictured in figure 

 

There are 2 ways to determine a cell value based on averaging: using the cell extent and 
much like nearest neighbor, the extent of the cell 

is used to load points from an LAS file. This time, the z values from all points are 
averaged and assigned to the cell. For distance extent, a distance threshold is given and 

s equal to the distance threshold and the center positioned 
at the center of the cell is used to extract points from an LAS file. The points are then 



The red points are used to determine an average and assigned to the cell

Figure 19: Average Cell Value Assignment

 
The results from applying this to the test dataset 
 

Rasterizing using averaging can contain holes if no points exist in a particular cell. 
Hillshade isn’t much to look at in this case. 

Figure 20: Averaging 
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The red points are used to determine an average and assigned to the cell

Average Cell Value Assignment 

pplying this to the test dataset can be seen in figure 20.

Rasterizing using averaging can contain holes if no points exist in a particular cell. 
Hillshade isn’t much to look at in this case.  

 

The red points are used to determine an average and assigned to the cell value. 

can be seen in figure 20. 

Rasterizing using averaging can contain holes if no points exist in a particular cell. 



Rasterizing using averaging does have the effect of missing cell values if 
points within a cell. However, it should be noted that this method does perform the very 
fast and is highly accurate. It there is at least one point per cell, this is the ideal method.

Nearest Neighbor 
Nearest neighbor simply finds the point t
assign to that cell. This involves using a circular search extent centered at the center of 
the pixel and choosing a distance threshold for the radius. Using this search extent 
points are loaded from an LAS fil
identified. 
 

The red point is the nearest to the center and will be used to represent the cell. This 
point could also fall outside the focused cell.

Figure 21: Nearest Neighbor Cell Value Assignment
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Rasterizing using averaging does have the effect of missing cell values if 
points within a cell. However, it should be noted that this method does perform the very 
fast and is highly accurate. It there is at least one point per cell, this is the ideal method.

Nearest neighbor simply finds the point that is nearest the center of a raster cell to 
assign to that cell. This involves using a circular search extent centered at the center of 
the pixel and choosing a distance threshold for the radius. Using this search extent 
points are loaded from an LAS file then the point nearest the center of the pixel is 

The red point is the nearest to the center and will be used to represent the cell. This 
point could also fall outside the focused cell. 

Neighbor Cell Value Assignment 

Rasterizing using averaging does have the effect of missing cell values if there are no 
points within a cell. However, it should be noted that this method does perform the very 
fast and is highly accurate. It there is at least one point per cell, this is the ideal method. 

hat is nearest the center of a raster cell to 
assign to that cell. This involves using a circular search extent centered at the center of 
the pixel and choosing a distance threshold for the radius. Using this search extent 

e then the point nearest the center of the pixel is 

 

The red point is the nearest to the center and will be used to represent the cell. This 



Yields results for every cell, however cell value selections become more inaccurate as 
seen in the hillshade (a scaling or layering is evident).

Figure 22: Nearest Neighbor

 
Rasterizing using nearest neighbors could yield results for every cell, however, cells will 
a nearest point that is far away will be assigned an inaccurate value. This method is fast 
and it should be noted that it is likely the accuracy will increase as the point density 
increases. 

Inverse distance weighting
Inverse distance weighting (IDW) is an interpolated rasterizing method that is fast, easy 
to compute and relatively straightforward. It works by weighting a point’s value 
depending on its distance
file using a circular extent with a center that corresponds to that of the pixel and a given 
distance threshold used as the radius. Each point is then iterated and the distance from 
the center of the pixel is calculat
power), an equation is applied to each distance to determine the point’s influence on the 
cell’s value. Mathematically, this is calculated 3 fold and expressed as follows:

                                        
18 Shepard, Donald. "A two
Proceedings of the 1968 23rd ACM national conference
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Yields results for every cell, however cell value selections become more inaccurate as 
seen in the hillshade (a scaling or layering is evident). 

: Nearest Neighbor 

nearest neighbors could yield results for every cell, however, cells will 
a nearest point that is far away will be assigned an inaccurate value. This method is fast 
and it should be noted that it is likely the accuracy will increase as the point density 

Inverse distance weighting 
Inverse distance weighting (IDW) is an interpolated rasterizing method that is fast, easy 
to compute and relatively straightforward. It works by weighting a point’s value 

distance18. To determine a cell value, point are extracted from the LAS 
file using a circular extent with a center that corresponds to that of the pixel and a given 
distance threshold used as the radius. Each point is then iterated and the distance from 
the center of the pixel is calculated. Given a power threshold (i.e.: 2 would mean the 2nd 
power), an equation is applied to each distance to determine the point’s influence on the 
cell’s value. Mathematically, this is calculated 3 fold and expressed as follows:
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Shepard, Donald. "A two-dimensional interpolation function for irregularly

Proceedings of the 1968 23rd ACM national conference 1 Jan. 1968: 517

Yields results for every cell, however cell value selections become more inaccurate as 

nearest neighbors could yield results for every cell, however, cells will 
a nearest point that is far away will be assigned an inaccurate value. This method is fast 
and it should be noted that it is likely the accuracy will increase as the point density 

Inverse distance weighting (IDW) is an interpolated rasterizing method that is fast, easy 
to compute and relatively straightforward. It works by weighting a point’s value 

alue, point are extracted from the LAS 
file using a circular extent with a center that corresponds to that of the pixel and a given 
distance threshold used as the radius. Each point is then iterated and the distance from 

: 2 would mean the 2nd 
power), an equation is applied to each distance to determine the point’s influence on the 
cell’s value. Mathematically, this is calculated 3 fold and expressed as follows: 

dimensional interpolation function for irregularly-spaced data." 
1 Jan. 1968: 517-524. 



where n is the number of points and 
its influence. Programmaticall
 

float IDW (float x, float y, float power, Point3 * pc ) {
 
     //initialize summations 
     float numerator, denominator = 0;
 
     for ( iterator it = pc.begin(); it != pc.end(); it+ + ){ 
         // calc distance, return z in rare case of distance  being 
finite  
         dist = distance(x,y,it.x,it.y); if(dist<0.00000001)  return 
it.z;  
         numerator = numerator + it.z / pow(dist,power);
         denominator = denominator + 1 / pow(dist,p
     }  
 
     if ( denominator == 0 ) return 
      
     return numerator / denominator;
}  

 
The figure 23 demonstrates

 

Yields similar results to nearest neighbor, however, as evident from the 
result is more accurate.

Figure 23: IDW 
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is the number of points and m is the power placed on the distance to determine 
its influence. Programmatically, the source code is as follows: 

float IDW (float x, float y, float power, Point3 * pc ) {

//initialize summations  
float numerator, denominator = 0;  

for ( iterator it = pc.begin(); it != pc.end(); it+ + ){ 
// calc distance, return z in rare case of distance  being 

dist = distance(x,y,it.x,it.y); if(dist<0.00000001)  return 

numerator = numerator + it.z / pow(dist,power);
denominator = denominator + 1 / pow(dist,p ower);

if ( denominator == 0 ) return -MAX_FLOAT 

return numerator / denominator;  

demonstrates the results after applying IDW. 

Yields similar results to nearest neighbor, however, as evident from the 
result is more accurate. 

is the power placed on the distance to determine 

float IDW (float x, float y, float power, Point3 * pc ) {  

for ( iterator it = pc.begin(); it != pc.end(); it+ + ){  
// calc distance, return z in rare case of distance  being 

dist = distance(x,y,it.x,it.y); if(dist<0.00000001)  return 

numerator = numerator + it.z / pow(dist,power);  
ower);  

Yields similar results to nearest neighbor, however, as evident from the hillshade, the 



From analyzing the hill shade from IDW, it is obvious the results are much more 
accurate while maintaining the ability to fill missing cells.
 

DTM Conclusion  
These 3 methods for rasterizing a continuous DTM surface are usually sufficient 
especially as the point density of lidar increases during collection.

4.2.4 Digital Surface Models
A digital surface model (DMS) represent the maximum height of objects at a given raster 
cell. This requires extracting the maximum point from points that fall within a raster cell; 
after points are loaded for a given cell, the points are iterated the large
determined. This z value is assigned to the cell. Using the same dataset used in the 
DTM section (using all the points, not just points classifies as 2), the result is 
demonstrated in figure 24.
 

Figure 24: DSM 

 
Since there is a high point return for the top of objects during collection, this method is 
usually sufficient enough to create a quality DSM.
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From analyzing the hill shade from IDW, it is obvious the results are much more 
accurate while maintaining the ability to fill missing cells. 

for rasterizing a continuous DTM surface are usually sufficient 
especially as the point density of lidar increases during collection. 

4.2.4 Digital Surface Models 
A digital surface model (DMS) represent the maximum height of objects at a given raster 
cell. This requires extracting the maximum point from points that fall within a raster cell; 
after points are loaded for a given cell, the points are iterated the large
determined. This z value is assigned to the cell. Using the same dataset used in the 
DTM section (using all the points, not just points classifies as 2), the result is 

figure 24. 

Since there is a high point return for the top of objects during collection, this method is 
usually sufficient enough to create a quality DSM. 

From analyzing the hill shade from IDW, it is obvious the results are much more 

for rasterizing a continuous DTM surface are usually sufficient 
 

A digital surface model (DMS) represent the maximum height of objects at a given raster 
cell. This requires extracting the maximum point from points that fall within a raster cell; 
after points are loaded for a given cell, the points are iterated the largest z value is 
determined. This z value is assigned to the cell. Using the same dataset used in the 
DTM section (using all the points, not just points classifies as 2), the result is 

 

Since there is a high point return for the top of objects during collection, this method is 
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4.2.5 Regression (a forced relationship) 
The most common method for regressing a lidar dataset (specifically aerial based lidar 
that was evenly collected) is to analyze point densities at different height profiles and 
relate them to ground-based measurements19. The resultant products can be used to 
drive models in files of ecology, hydrology or fire science. Here, grids are produced at 
different user define percentiles and only these grids are saved; the actual relationship 
between plot measurements and these profiles are left to the user. Also, it has 
sometimes been noticed that simply using these percentile grids is enough (and in some 
cases perform better).  
 
To create these grids, an extent and cell size are used initialize the grids. Then points 
are extracted at every cell and normalized using a DTM. Next, points sorted by z values 
and given a list of percentiles the z value is extracted at each corresponding percentile 
(ex: if 200 points, the 10th percentile would yield the z value of the 20th point) and 
assigned to the grid. Each percentile produces a grid. 

4.2.6 Point Cloud (Conifer) Segmentation 
Point cloud segmentation attempts to segment trees in a dense forest by identifying the 
tops of trees and iteratively identifying other points as belonging to a tree using a 
distance threshold20. First, the area of interest is loaded into memory from LAS files and 
a distance threshold is chosen. All points are then and normalized using a digital terrain 
model. Next, an octree is defined for the loaded points (for efficient searching). The 
points are then sorted into a list and by z value, highest to lowest, and the first point is 
marked as a new seed (the top of a tree). As the points are iterated, each is tested using 
the distance threshold; if it is found to be within that distance to a point that has already 
been marked as a tree, that point too gets marked as the same tree. Else, it is marked 
as a new tree. This method is illustrated in figure 25. 
 

                                                
19 Hudak, Andrew T et al. "Regression modeling and mapping of coniferous forest basal area and 
tree density from discrete-return lidar and multispectral satellite data." Canadian Journal of 
Remote Sensing 32.2 (2006): 126-138. 
20 Li, Wenkai et al. "A new method for segmenting individual trees from the lidar point cloud." 
Photogrammetric Engineering & Remote Sensing 78.1 (2012): 75-84. 



Figure 25: Segmentation Workflow

 

Figure 26: Results from tree segmentation method
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Segmentation Workflow 

Results from tree segmentation method 

 

 



This method can be also used to 
that a height threshold should be placed on the bottom of the loaded points to exclude 
the ground such that the trees can be identified using their trunks). However, this would 
likely yield many more seeds
structure of the trees (
a new seed) creating floating clusters. So, a hybrid method that combines the top
segmentation approach w
segmentation methods have been executed, the clusters from the bottom
are analyzed; if it cannot be traversed to the ground it needs to be associated with an 
existing cluster (that can
approach help in identifying when clusters sh
results from a top-down, a bott
 

Top-Down 

Figure 27: A Comparison of Top

 
From the figure above, using just the top
this is due to the top of a smaller tree being below or very close to a la
tree. Using the hybrid method yields more segmented trees and thus is considered more 
accurate upon a visual inspection.

                                        
21 Lu, Xingcheng et al. "A bottom
off lidar point cloud data." 
12. 
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This method can be also used to segment trees from the bottom21 
that a height threshold should be placed on the bottom of the loaded points to exclude 
the ground such that the trees can be identified using their trunks). However, this would 
likely yield many more seeds (the point that started the segmentation) due to the 
structure of the trees (i.e.: a long branch near the bottom of the tree could be considered 
a new seed) creating floating clusters. So, a hybrid method that combines the top
segmentation approach with the bottom-up segmentation approach is used. After both 
segmentation methods have been executed, the clusters from the bottom
are analyzed; if it cannot be traversed to the ground it needs to be associated with an 
existing cluster (that can be traversed to the ground). The results from the top
approach help in identifying when clusters should be grouped. Figure

down, a bottom-up and the hybrid of the two. 

  

Bottom-Up Hybrid of the 2

A Comparison of Top-down, Bottom-up and Hybrid Segmentation 

From the figure above, using just the top-down approach fails to segment some trees; 
this is due to the top of a smaller tree being below or very close to a la
tree. Using the hybrid method yields more segmented trees and thus is considered more 
accurate upon a visual inspection. 

                                                
Lu, Xingcheng et al. "A bottom-up approach to segment individual deciduous trees using leaf

off lidar point cloud data." ISPRS Journal of Photogrammetry and Remote Sen

 (it should be noted 
that a height threshold should be placed on the bottom of the loaded points to exclude 
the ground such that the trees can be identified using their trunks). However, this would 

(the point that started the segmentation) due to the 
: a long branch near the bottom of the tree could be considered 

a new seed) creating floating clusters. So, a hybrid method that combines the top-down 
up segmentation approach is used. After both 

segmentation methods have been executed, the clusters from the bottom-up approach 
are analyzed; if it cannot be traversed to the ground it needs to be associated with an 

be traversed to the ground). The results from the top-down 
igure 27 shows the 

 

Hybrid of the 2 

down approach fails to segment some trees; 
this is due to the top of a smaller tree being below or very close to a larger neighboring 
tree. Using the hybrid method yields more segmented trees and thus is considered more 

up approach to segment individual deciduous trees using leaf-
ISPRS Journal of Photogrammetry and Remote Sensing 94 (2014): 1-
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4.3 Exporting 
Exporting data to an LAS file involves creation of a binary file, dumping header 
information into the file using the proper header format and writing each point to the file 
using the proper point format. 

5. Conclusion  
Lidar has become increasingly popular with its uses being applied in many 
disciplinarians. For many, it can be difficult to even get started with lidar, let alone have 
the knowledge on how to apply it to their workflow (especially if they have to develop 
software to process raw lidar). To reduce efforts and save time this software 
encapsulates useful product creation from lidar. Most lidar software are lacking in feature 
and/or are expensive and many times purchased to use only a select number of the 
tools provided that are built on algorithms found in key research papers.  
 
The foundation and some key methods were outlined to create a completely open 
source software that is efficient and space conscious for the handling and processing of 
lidar datasets. This software sets out to be a fully transparent solution for loading data 
and executing common lidar products so users can concentrate on more essential 
issues pertaining to their disciplinary projects.  
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Appendix 

Key Terms 
AOI - Area of Interest 
CPU - Central Processing Unit 
RAM - Random Access Memory 
DTM - Digital Terrain Model 
DSM - Digital Surface Model 

Referenced structures and functions 
 
Extent Structure 
 

// range structure  
struct range( ) {  
    float min;  
    float max;  
};  
 
// extent structure  
struct extent( ) {  
    range x; // min and max x  
    range y; // min and max y  
};  

 
Determine if a point is within an extent: 
 

bool is_in_extent( point p, extent e ) {  
     
    if ( p.x > e.x.min && p.x < e.x.max )  
        if ( p.y > e.y.min && p.y < e.y.max )  
            return true;  
    return false;  
}  

 
Splits and extent into 4 equal quadrants. 
 

// Splits an extent into four quadrants  
array < extent, 4 > split_quad_extent( extent e ) {  
 
    array < extent, 4 > arr; // allocated array wit h 4 extents  
    float halfx = ((e.x.max-e.x.min)/2);  
    float halfy = ((e.y.max-e.y.min)/2);  
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    array[0] = new extent(e.x.min,  
                      e.y.min,  
                      e.x.max - halfx,  
                      e.y.max - halfy); // q1  
    array[1] = new extent(e.x.min + halfx,  
                      e.y.min,  
                      e.x.max,  
                      e.x.max - halfy); // q2  
    array[2] = new extent(e.x.min,  
                      e.y.min + halfy,  
                      e.x.max - halfx,  
                      e.y.max);         // q3  
    array[3] = new extent(e.x.min + halfx,  
                      e.y.min + halfy,  
                      e.x.max,  
                      e.y.max);        // q4  
}  

 
Grid methods built on GDAL: 
 

struct Grid{  
 
 GDALDataset* img;  
 float offsetX, offsetY, pixelResX, pixelResY;  
 int nXSize, nYSize;  
 float *buffer;  
 
 float get_value(float x, float y);  
 int set_value( float x, float y, float z );  
 std::vector<float> get_cell_extents(int x, int y);  
 std::vector<float> Grid::get_cell_extents( int pos  );  
 int create(double X, double Y, double cellsizeX,  
          double cellsizeY, int nX, int nY);  
 int write(std::string filename);  
};  

 
 
This function analyzes whether the x and y locations of a point are within the respective 
ranges of the search extent. It does this by checking if the value of a particular location 
direction (x or y) is greater than its corresponding minimum value of the search extent 
but less than the maximum value of that same search extent. If it is found to be within 
the extent, the function returns true, else it returns false. 

c++ Data Types 
Table 9: c++ Data Types, Sizes and Ranges 

Name Description Size Range 

char Character or small integer. 1byte 
signed: -128 to 127 
unsigned: 0 to 255 
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short int (short) Short Integer. 2bytes 
signed: -32768 to 32767  
unsigned: 0 to 65535 

int Integer. 4bytes 

signed: -2147483648 to 
2147483647  
unsigned: 0 to 4294967295 

long int (long) Long integer. 4bytes 

signed: -2147483648 to 
2147483647  
unsigned: 0 to 4294967295 

bool 

Boolean value. It can take 
one of two values: true or 
false. 1byte true or false 

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits) 

double 
Double precision floating 
point number. 8bytes +/- 1.7e +/- 308 (~15 digits) 

long double 
Long double precision 
floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits) 

wchar_t Wide character. 2 or 4 bytes 1 wide character 
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