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ABSTRACT OF THE DISSERTATION

A Block-Based Scalable Motion Model for Highly Scalable Video

Coding

by

Meng-Ping Kao

Doctor of Philosophy in Electrical and Computer Engineering

University of California San Diego, 2008

Professor Truong Nguyen, Chair

Scalable video coding has gained considerable attention during the past

decade, due to its attractive features that efficiently support flexible transmission

over heterogeneous networks and adaptive display on a wide range of devices. As

coding efficiency is predominantly the governing principle of most video coding al-

gorithms, scalable video coding thrives in incessantly improving efficiency through

incorporating newly emerged technologies while preserving the scalable features.

Motion scalability, being the main topic of this dissertation, is one of these con-

tributive technologies.

Motion scalability is based on the simple concept that different decoding

scenarios require different motion prediction qualities in the optimized rate distor-

tion sense. For example, lower decoding resolutions or bit rates usually demand

lower motion prediction qualities in order to maintain a better balance between

motion and texture coding. This concept, although simple, is not easily realiz-

able in a practical scalable video codec. The error drifting effect introduced from

quantized motion is the first problem to face, followed by the interactive issue with

other scalabilities, the embedded coding of scalable motion, and the rate distortion

optimized estimation algorithm for motion parameters.

In this dissertation, we deal with these challenges and propose a block-

based scalable motion model, which provides both motion structure and accuracy

xiv



scalabilities in order to adapt to various decoding scenarios. Through the proposed

model, rate distortion performance can be improved in the middle to low bit rate

range. This accomplishment is jointly achieved by applying the proposed rate

distortion optimized motion estimation algorithm at the encoder and the optimal

motion quality selection algorithm at the bitstream extractor.

Extensive simulations will be demonstrated based on a wavelet-based scal-

able video codec. These results verify the superiority of the proposed scalable

motion solution over non-scalable ones.

xv



1 Introduction

Video coding standards have steadily evolved during the past twenty years

due to the need for efficient transmission and storage of digital video media. While

the first standard, H.120 [1], set a crucial milestone for digital video coding in

1984, H.261 [6] introduced the hybrid video coding infrastructure, which became

the basis of all modern video coding standards. A simplified chronology of video

coding standards is shown in Fig. 1.1.

Figure 1.1: Chronology of international video coding standards.

Since H.261 was finalized in 1990, significant research has emerged to im-

prove the coding efficiency of hybrid video compression. By 2003 when the state-of-

the-art single layer video coding standard H.264/AVC [81] was completed, the per-

formance of hybrid video coding reached an unprecedented summit. This achieve-

ment can be attributed to a comprehensive elaboration of the components, among

which closed-loop motion prediction and rate-distortion optimized estimation play

an important role.

1
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On the other hand, due to the increasing need for video delivery through

heterogeneous channels and display on various end-user devices, multi-layer video

coding has gained lots of attention since the Moving Picture Experts Group (MPEG)

issued the “Call for Proposals on Scalable Video Coding Technology” in 2003 [35].

The term “multi-layer” or “scalability” refers interchangeably to the removal of

parts of a video bitstream in order to adapt it to various needs or preferences of

end users, as well as to varying terminal capabilities or network conditions. As far

as practical applications are concerned, Scalable Video Coding (SVC) finds its su-

periority mostly in video broadcasting, error protection, and surveillance systems.

Fig. 1.2 shows basic building blocks of an SVC system.

Figure 1.2: Scalable video coding.

In Nov. 2007, the Joint Video Team (JVT) standardized an SVC exten-

sion of the H.264/AVC standard [60]. The SVC extension not only positions itself

as another video coding standard but also opens a new research field where the

asynchronous motion prediction loop is extensively accepted, and the control of

error drift becomes the key for achieving global optimality among various decod-
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ing scenarios. Recall that in H.264/AVC, high coding efficiency comes from a

synchronized motion prediction loop and rate distortion optimization for a single

operating point. This is not necessarily true for SVC, since multiple operating

points have to be considered simultaneously and a tradeoff on the asynchronous

motion prediction loop might sometimes be helpful. In short, the synchronized

motion prediction loop is no longer a requirement in SVC as long as better overall

rate distortion performances can be achieved with an asynchronous solution.

Inspired by the above idea, researchers have searched for better solutions

using asynchronous motion prediction. Scalable motion, for example, has been

developed recently and proved to be beneficial to SVC in the range of middle to low

decoding bit rates. The term “scalable motion” refers to an embedded bitstream

containing motion information that can be truncated to provide different quality

of motion predictions.

Recall that in conventional hybrid video coding, the encoded bitstream

consists of two main categories of information, i.e. motion and texture. While

texture information can be scalable, motion information is in general non-scalable.

By introducing scalable motion, better distribution of budget bit rates between

motion and texture can be determined, as opposed to the fixed motion bit rate

scenario. The increased decoding options provide the potential to attain a better

rate distortion performance.

In this dissertation, we will devote most of our efforts to elaborate the ratio-

nale of scalable motion and to provide a practical solution that can be incorporated

into a generic SVC codec. With the proposed solution, a.k.a. the scalable motion

model, the coding efficiency of an SVC codec can be greatly improved in the middle

to low bit rate range, with little loss in high rate scenarios.

In order to have a better understanding of scalable motion and the platform

it will be operated on, we start the dissertation with an introduction to scalable

video coding in Chapter 2. The SVC extension of H.264/AVC is first discussed

with illustrations on those techniques that facilitate the joint temporal, spatial,

and quality scalabilities. The wavelet-based SVC, although not being chosen as

the basic framework in the standard, provides an alternative to conventional closed-
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loop solutions. We will study the state-of-the-art wavelet-based SVC, VidWav [9],

that utilizes open-loop motion prediction, yet still has a comparable performance to

the SVC standard. In the end, we propose our own wavelet-based SVC [41], which

is similar to VidWav, but with a closed-loop motion prediction structure. Our

proposed SVC will be the standard platform for all experimental setups throughout

this dissertation.

In Chapter 3, the motion redundancy in video sequences with different spa-

tial resolutions is first investigated. We show an example of motion manipulation

within the proposed SVC framework that reduces the encoding complexity and at

the same time improves the coding efficiency. This example illustrates how SVC

can benefit from scalable motion.

To build a better foundation for the following research on scalable motion,

the historical and theoretical backgrounds are introduced in Chapter 4. Scalable

motion is a newly emerged research topic, as part of the advanced algorithms in

the development of SVC. The earliest literature can be traced back to 2001 when

Bottreau [17] proposed an SVC scheme using scalable motion. Thereafter, several

methods have been proposed targeting the realization of scalable motion, which

can be split into two main approaches: 1) motion vector precision scalability, 2)

motion field structure scalability. In this chapter, the functionalities of scalable

motion that cope with the joint scalabilities in SVC will be enumerated and an-

alyzed. Moreover, the two main approaches for scalable motion will be evaluated

according to the required functionalities. This evaluation process will serve as the

core design criterion for our proposed scalable motion model detailed in Chapter

5. Finally, we conclude this chapter with a theoretical justification of the perfor-

mance improvement that scalable motion offers. This justification is important for

the design of rate distortion optimized motion estimation, as well as the optimal

bitstream extractor.

Chapter 5 is the main body of this dissertation where we focus exclusively on

the proposed scalable motion model. Our model is based on the aforementioned

two approaches with a novel integration that preserves the advantages of both

methods. Compatibility to the joint scalabilities of a generic SVC codec is also
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carefully considered. As opposed to most of the post-estimation embedded coding

methods in previous works, our model integrates flawlessly with the estimation

process to provide scalability in an optimal manner. The optimality is achieved

via the proposed rate distortion optimized estimation algorithm. In order to further

compress the estimated parameters in our model, a modified Set Partitioning in

Hierarchical Trees (SPIHT) [59] algorithm is used to encode the motion structure,

while a model-based method is applied to compress the motion precision. All these

advanced coding techniques help to reduce, as much as possible, the overhead

of providing scalability. Meanwhile, an optimal bitstream extractor is proposed

to help the decoder determine the best distribution of bits between motion and

texture. Finally, extensive experimental results will be presented to verify the

superiority of the proposed scalable motion model over non-scalable ones.

Finally, the conclusions will be summarized in Chapter 6.



2 Scalable Video Coding

In general, video coding can be evaluated by rate distortion performance

[68, 55]. A codec that generates the encoded bitstream with less distortion un-

der the same bit rate budget is considered better. Guided by this RD rule, video

coding research devoted great efforts over the past thirty years to improving the

RD curve. H.264/AVC [81] is so far the state-of-the-art international video coding

standard that gives excellent compression performance under reasonable complex-

ity. It belongs to the category of traditional (or non-scalable) video coding.

Scalable Video Coding (SVC), on the other hand, considers not only the RD

characteristic but also the ability to produce a highly scalable, easily adaptable,

and fully accessible bitstream. By the term “scalable” we mean the capability of

easily removing parts of the video bitstream in order to adapt it to the various

needs or preferences of end users, as well as to varying terminal capabilities or

network conditions. In SVC, multiple RD curves [60], corresponding to various

decoding scenarios, can be derived from a single encoded bitstream. These RD

curves should be jointly evaluated in the comparison of different SVC codecs. In

general, a balanced performance is preferable to a skewed one when no additional

information on the decoding situation is provided.

As far as applications are concerned, SVC is tailored for the transmission of

video contents through heterogeneous networks to end users with various display

devices. The source content has to be encoded only once with the highest required

resolution and bit rate. Requests for lower resolution and/or quality contents can

be easily fulfilled by discarding corresponding parts of the bitstream, which is done

by the so-called bitstream extractor. These requests may result from poor channel

6
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conditions or restricted display sizes. In this case, SVC helps the video server to

save tremendous storage space and computational power by avoiding lower quality

duplicates of the same content. It can also help to replace the costly transcoder

with a cheaper bitstream extractor if the same bitstream is broadcast.

Other desirable applications include unequal error protection for transmis-

sion over error prone channels and surveillance systems. The natural heritage of

a well segmented and packed bitstream is highly preferable for applying unequal

error protection mechanisms. Those packets which comprise the base layer decod-

ing essentials should be protected with stronger channel coding algorithms. In this

way, graceful degradation can be achieved under volatile channel conditions. As

for surveillance systems, clients from different places with various displays might

access the same real time recording. This is covered by the aforementioned video

transmission scenario. In addition, huge numbers of recordings need to be stored

and archived for possible future retrievals. SVC offers an easy solution to maintain

the storage by discarding enhancement layer data whose importance decreases as

time passes. The base layer contents can be preserved for long term archiving

purposes.

Considering these functional requirements of the above target applications,

the three fundamental scalabilities that a modern SVC has to offer include tempo-

ral, spatial, and quality scalabilities. Temporal scalability refers to the ability to

flexibly adjust the frame rate, either diadic or non-diadic. Similarly, spatial scal-

ability deals with the change of decoding picture sizes. Quality scalability, a.k.a.

SNR scalability, is a tool to trade off distortion with bit rate. In the following

sections of this chapter, we will introduce some SVC frameworks; each of them

will be discussed through the basic building blocks that realize the aforementioned

three scalabilities. In addition to these three popular ones, more rarely required

scalabilities include region-of-interest (ROI) and object-base scalabilities, in which

part of the original picture is enhanced through enhancement layers.

Before we get to the details of the various SVC designs, it is beneficial to

know the history of the SVC development. Over the past twenty years, SVC has

been an active research topic. Scalability features can be found in prior standards
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including H.262/MPEG-2 [2], H.263 [7], and MPEG-4 [4]. However, significant loss

in coding efficiency and increased decoding complexity have prevented them from

widespread adoption. In October 2003, MPEG issued a call for proposals for effi-

cient SVC technology with the intention to develop a new SVC standard. At that

time, a wavelet-based temporal decomposition approach was extensively studied

and widely believed to be a possible solution to SVC, due to its drift free property

inherited from the open loop structure. In fact, twelve out of fourteen submitted

proposals were based on a wavelet approach. Nevertheless, SVC based on an ex-

tension of H.264/AVC was chosen as the starting draft one year later because of

its superior coding efficiency over wavelet-based ones. No major changes on the

framework have occurred since then, and in November 2007, the Joint Video Team

(JVT) finalized the first version of the SVC standard as an extension of H.264/AVC

in Annex G. From now on, the term “SVC” will be used interchangeably for both

the acronym of scalable video coding and for the particular design in the extension

of the H.264/AVC standard, depending on the actual context.

Although the success of SVC requires further embrace from the industry,

it does surpass those scalable profiles in prior standards in the following aspects:

higher encoding efficiency, simple bitstream adaptation, lower decoding complexity,

and full support of joint temporal, spatial, and quality scalabilities.

As a consequence, it is worthwhile to illustrate the state-of-the-art SVC

frameworks, both H.264/AVC-based and wavelet-based, in the following sections

along with their constituents to achieve different scalabilities. In addition, we con-

clude this chapter by proposing a low-complexity wavelet-based SVC framework.

Our following work on scalable motion, which is the main part of this dissertation,

will be performed on this platform.

2.1 SVC Extension of H.264/AVC

The SVC extension of H.264/AVC was originally developed by the Hein-

rich Hertz Institute (HHI) in Berlin, Germany, with the design principle of fully

utilizing the mature core coding tools inherited from H.264/AVC [5]. New tools
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should only be added if necessary for efficiently supporting the imposed scalabil-

ities. An example encoder diagram supporting three levels of spatial scalability

is shown in Fig. 2.1. In this example, spatial scalability is demonstrated by a

Laplacian pyramid [18] which generates lower resolution sequences from the orig-

inal video. Motion prediction is then applied on these sequences independently

with a referencing scheme called hierarchical B-picture decomposition which is de-

signed for supporting temporal scalability. Both motion and texture information

are predictively coded from the base layer, using the so called inter-layer predic-

tion mechanism. Finally, transform and entropy coding are applied on the texture

information in a scalable manner.

Figure 2.1: SVC encoder with three levels of spatial scalability.

Temporal scalability of SVC is realized by dividing the whole sequence into

different temporal layers, starting from T = 0 for the base layer and increasing by 1

from one layer to the next. The decoded sequence with temporal layer k is obtained

by discarding those pictures with T > k. In order to cooperate with motion
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prediction, the referencing scheme must be designed in a way that pictures with

T = k can only be predicted from those reference pictures with T ≤ k. In this way,

reference pictures always exist no matter which temporal layer is requested. Note

that the existence of reference pictures does not guarantee coherence between the

encoder and the decoder, which is also known as the drift problem. An example of

dyadic decomposition using hierarchical B-pictures is shown in Fig. 2.2. According

to [60], the coding efficiency of dyadic hierarchical prediction structures in a high

delay setting, i.e. group of pictures (GOP) equals 32, can outperform H.264/AVC

(IBBP) by 1 dB in the medium bit rate range.

Figure 2.2: Hierarchical B-pictures with dyadic decomposition.

For supporting spatial scalability [63], SVC adopts the multi-layer coding

scheme with each layer corresponding to a supported spatial resolution. As men-

tioned above, a Laplacian pyramid is used to generate lower resolution sequences.

In order to improve the coding efficiency, inter-layer prediction mechanisms are

incorporated as shown in Fig. 2.3 with solid arrowheaded lines, in contrast to

simulcasting multiple layers. Note that spatial scalability is widely believed to be

the most difficult scalability to design in terms of the balance between efficiency

and complexity.

Inter-layer prediction can be divided into three categories, i.e. inter-layer

motion prediction, inter-layer residual prediction, and inter-layer intra prediction.

Inter-layer motion prediction is used to predict the motion information from lower

spatial layers, including partition information, reference indices, and motion vec-

tors. Inter-layer residual prediction utilizes the up-sampled version of lower spa-

tial layer residuals as a prediction for current layer residuals. Inter-layer intra
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Figure 2.3: Spatial scalable coding using a multi-layer structure with inter-layer
prediction (indicated by solid arrowheaded lines).

prediction is used when the co-located block in a lower spatial layer is coded us-

ing intra mode. Note that all three mechanisms exclude using predictions from

reconstructed pixels that are inter coded. The idea is to avoid multiple motion

compensation loops required for decoding a single spatial layer, a.k.a. single-loop

decoding criterion. As reported in [60], the coding efficiency using these inter-layer

prediction techniques, in comparison to H.264/AVC, is about 10% worse in the re-

quired bit rate under the same quality. This deficit is the price of scalability, and

further note that this 10% can only be achieved with advanced encoder control

algorithms.

Quality scalability in SVC can be supported via two modes, i.e. coarse-

grain quality scalability (CGS) and medium-grain quality scalability (MGS). CGS

can be viewed as a special case of spatial scalability where the picture sizes for

different layers remain the same. Inter-layer prediction mechanisms, as mentioned

above, can be employed. The limitations of CGS are relatively few supported

bit rates and decreasing efficiency as the rate difference between successive CGS

layers decreases. MGS, on the other hand, supports finer quality scalability than

CGS in a way that quality layers can be flexibly adjusted on a picture-based level.

Enhanced transform coefficients can be distributed among several slices to facilitate

packet-based quality scalability.

One common problem that arises when quality scalability meets motion
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compensated prediction is the tradeoff between efficiency and drift. Drift occurs

when motion-compensated prediction loops at the encoder and the decoder are

not synchronized, which might be caused by discarding enhancement packets in

the bitstream. This can be prevented by using base quality layers as reference

pictures. However, these lower quality predictions will in turn reduce the coding

efficiency. SVC deals with this dilemma by using a so-called key picture concept,

which is shown in Fig. 2.4. Key pictures are pictures labeled with the lowest

temporal layers in the hierarchical B-Picture decomposition. These pictures are

coded with the base layer prediction and thus guaranteed with no drift. Other

pictures are coded with the highest enhancement layer prediction to achieve the

best coding efficiency. In this way, a balanced performance can be expected under

variant decoding situations. Again, as reported in [60], with the optimized encoder

control it is possible to limit the bit rate increase, compared to single-layer coding

at the same fidelity, to about 10% over the entire supported bit rate range.

Figure 2.4: Referencing scheme using the key picture concept (key pictures are
marked by the hatched boxes).

In summary, the H.264/AVC extension for SVC provides various tools for

reducing the loss in coding efficiency relative to single layer coding. These new

features provide SVC with a competitive rate-distortion performance, as compared

to the scalable profiles in prior standards, while supporting joint temporal, spatial,

and quality scalabilities. For more details, the readers can refer to [60].
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2.2 Wavelet-Based SVC

Wavelet-based SVC (WSVC) [53] generally refers to the scalable coding

scheme using motion-compensated 3D spatio-temporal decomposition by wavelets.

Wavelets and their tailored bit plane coding techniques have been proven to provide

excellent compression performance with inherited spatial and quality scalabilities

in image coding. For example, the image compression standard, JPEG 2000 [3],

has successfully demonstrated the effectiveness of combining the discrete wavelet

transform and the bit plane coding algorithm, Embedded Block Coding with Opti-

mal Truncation (EBCOT) [71]. Over the years, researchers have tried to duplicate

the success of wavelets on image coding to video coding. Despite the discrepancy

in statistical characteristics between image and video, the performance of WSVC

has steadily improved, and more attention has focused on this prospective solution

to SVC. In Dec. 2001, MPEG issued the “Ad Hoc Group on Exploration of Inter-

frame Wavelet Technology in Video Coding”, with the intention to emphasize the

importance of WSVC in possible future international standards.

Although not selected in the SVC standard finalized in Nov. 2007, WSVC,

which demonstrates outstanding coding efficiency with innate scalabilities, is still

an alternative candidate for future standards. Therefore, it is still worthwhile to

illustrate those different tools that WSVC utilizes toward supporting full scalabil-

ities. Specifically, in the following paragraphs we will focus on the state-of-the-art

WSVC based on STP-tool [8], a.k.a. VidWav [36], which gives the best per-

formance among other wavelet-based variants so far. The system framework of

VidWav is shown in Fig. 2.5.

The first problem encountered while applying a 3D wavelet transform to

video sequences is the inefficiency of temporal filtering. Past experiences have

shown that huge temporal redundancies exist in a generic video sequence and

without motion compensated prediction, a video encoder can hardly achieve com-

parable performance to modern standards. As a consequence, directly applying the

temporal filtering operation without considering the motion often fails to meet the

efficiency requirement. The first work that combines motion compensated predic-
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Figure 2.5: VidWav framework showing two levels of spatial scalability.

tion with temporal filtering was proposed by Ohm [52] in 1994, which is also known

as the Motion Compensated Temporal Filtering (MCTF) framework. Since MCTF

was proposed, significant research has focused on improving the performance and

solving practical implementation issues. Up to now, the lifting structure [70, 24]

implementation of MCTF, as shown in Fig. 2.6, using 5/3 analysis filters is the

most widely adopted one [85, 22, 61, 57].

Figure 2.6: Prediction and update lifting steps using motion information.

The merit of the lifting structure is the property of guaranteed perfect
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reconstruction even when motion prediction fails, e.g. those areas with motion

occlusion and uncovering. The perfect reconstruction property also facilitates sub-

pixel motion, which requires interpolation. 5/3 filters make use of bidirectional

prediction which is popular in modern video codecs. Another variant of MCTF is

called Unconstrained MCTF (UMCTF) [77], where the update step is omitted in

order to eliminate the artifacts from failed motion prediction, or simply to reduce

the complexity. In UMCTF, temporal low pass frames are the original frames

without further processing. Finally, we note the difference between MCTF and

hierarchical B-picture decomposition in SVC. MCTF takes the original pictures as

the motion reference while hierarchical B-picture uses decoded pictures. This is

the reason why MCTF is referred to as an open-loop structure while the other one

is a closed-loop structure.

As for spatial scalability, WSVC offers an alternative to the redundant

Laplacian pyramid method used in SVC, i.e. the critically sampled discrete wavelet

transform (DWT). This concept is directly borrowed from image compression

where DWT works efficiently to provide both spatial and quality scalabilities.

However, DWT is not completely compatible with MCTF. In the first case where

DWT is performed first and followed by MCTF, a.k.a. 2D+t, the shift-variant

nature of DWT makes motion compensated prediction harder for high pass bands.

On the other hand, with the reverse order, i.e. t+2D, the smaller sized sequence

suffers from incoherent motion that is estimated based on the original sized se-

quence. Therefore, as we observe in the design of VidWav, another structure,

2D+t+2D, is adopted to overcome the problem. In the 2D+t+2D structure, a

Laplacian pyramid is applied to generate redundant representations of various

sized sequences, which is similar to the design in SVC. An Inter-Scale Prediction

(ISP) technique is applied in the DWT domain to minimize the redundancy, which

is named STP-tool. An example depicting three levels of spatial scalability in the

STP-tool framework is shown in Fig. 2.7. Predictions of the DWT coefficients can

be obtained from a lower resolution sequence in either an open-loop or closed-loop

form.

Quality scalability in WSVC can be achieved by a generalization of 2D



16

Figure 2.7: STP-tool framework in a signal representation perspective.

wavelet bit plane coding algorithms, including Embedded Zerotree Wavelet (EZW)

[64], Set Partitioning In Hierarchical Trees (SPIHT) [59], Embedded Zero-Block

Coding (EZBC) [32], and embedded block coding with optimal truncation (EBCOT)

[71]. In VidWav, a 3-D spatio-temporal extension of EBCOT [86], named 3-D

EBCOT, is adopted as the entropy coding algorithm. Each spatio-temporal sub-

band is divided into 3-D blocks which are coded independently. For each block,

fractional bit plane coding and spatio-temporal context-based arithmetic coding

are used.

As a final note on WSVC, VidWav demonstrates a small efficiency loss as

compared to SVC, according to [9]. The possible reasons include, but are not

limited to, the inefficient motion model for DWT. Currently, a block-based motion

model is addressed in VidWav, which is not fully suitable for the following frame-

based DWT. The lack of efficient intra mode coding for the areas where motion

prediction fails also results in some performance loss in VidWav. Unlike SVC, in

which plenty of mature coding tools are inherited from conventional hybrid coding

development, WSVC needs to build its own. Therefore, improvements can be

expected in the future of wavelet video compression.
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2.3 Proposed Wavelet-Based SVC

As mentioned earlier, since MPEG issued the call for proposals on scalable

video coding technology in 2003, several interesting proposals have been submitted

and carefully evaluated. The core building blocks targeting different scalabilities

in these proposals are quite varied. Some of them were adopted as part of the draft

standard, or evolved to be included in later amendments. The others were simply

excluded. In this section, a detailed description of the proposed wavelet-based

SVC will be illustrated. Some building blocks in our WSVC are borrowed from

these proposals. By combining and modifying these tools properly, we are able to

construct a low-complexity and fully scalable WSVC.

As before, the best way to understand an SVC system is to start with the

individual components that support spatial, temporal, and quality scalabilities.

2.3.1 Temporal Scalability – Successive Temporal Approx-

imation and Referencing

In the proposed WSVC, temporal scalability is supported in a similar man-

ner to the hierarchical B-picture structure. Each picture is assigned a temporal

level label, reflecting the actual frame rates at different levels. Scalability can be

achieved by discarding irrelevant pictures according to their labels. Theoretically,

this approach will introduce temporal aliasing due to the direct down-sampling

operation without proper filtering. However, the advantages of being simple, ef-

fective, and ghost effect free, especially where motion prediction fails, have made

it a success in the SVC standard. As a matter of fact, UMCTF is also based on

the same concept. Moreover, as will be clear later, the end-to-end delay can be

made very small in this case, enabling almost real time encoding/decoding of video

sequences.

The key to this temporal scalability implementation, which discards irrel-

evant pictures, is a good referencing scheme for motion prediction. The scheme

we utilize in our WSVC is called Successive Temporal Approximation and Ref-

erencing (STAR) proposed by Han [29]. The general framework of STAR allows
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several scalability levels with different frame rate reduction ratios between them.

The details are listed as follows.

1. The sequence with the highest frame rate has temporal level 1 and frame

rate f1 .

2. All the sequences with temporal level i = 1, 2, . . . , T are coded jointly in the

bitstream.

3. The sequence at temporal level i can be obtained by keeping an average n

out of m (m > n ≥ 1) of the frames of the sequence at temporal level i− 1,

and hence has fi = n
m

fi−1 = Ki
T fi−1 as the frame rate, for i = 2, 3, . . . , T .

4. All the frames C(j), where j is the (integer) temporal index of the frame, that

belong to the sequence at temporal level i but do not belong to the sequence

at temporal level i + 1 have temporal level Tj = i, for i = 1, 2, . . . , T − 1.

5. All the frames C(j) belonging to the sequence at temporal level T have tem-

poral level Tj = T .

To guarantee the existence of reference pictures at all temporal levels, the

set of frames that can be referenced when decoding the inter frame C(j) should be

a subset of

R(j) = {C(k)|(Tk > Tj) ∪ (Tk = Tj ∩ k < j)}. (2.1)

While the delay concern is completely eliminated within the same temporal level

by the constraint k < j, additional delays might be imposed from higher temporal

levels. To limit the delay, we can introduce a delay parameter D that limits the

set of possible references to

R
(j)
D = {C(k)|(Tk > Tj ∩ k − j ≤ D) ∪ (Tk = Tj ∩ k < j)}. (2.2)

An example of the reference scheme according to the STAR algorithm is shown in

Fig. 2.8. There are four temporal levels in this example and in each of them the

frame rate is halved, i.e. dyadic decomposition. All the arrows pointing to one

frame start in a frame which will be referenced during the decoding of the same
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frame. Note that many possibilities of referencing are possible with the STAR

algorithm. For a complete list of them, please refer to [29].
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Figure 2.8: Example of the STAR referencing scheme.

2.3.2 Spatial Scalability – Low Band Correction

Spatial scalability in the proposed WSVC is realized using a Laplacian pyra-

mid in the 2D+t+2D scheme with an ISP technique named Low Band Correction

(LBC), which was proposed by Han [29]. We will denote with Ri the space of all

frames at resolution level i, with the following assumptions:

1. R0 is the largest resolution encoded in the bitstream.

2. Any resolution Ri, i = 0, 1, . . . , R− 1 is embedded into the bitstream.

3. The ratio between any two adjacent resolutions is a constant rational number.

Denoting with C
(j)
i the representation of the j-th frame of the video se-

quence at the i-th resolution, we introduce the following operators:

1. I : Ri → Ri is the identity operator, i.e. I(C
(j)
i ) = C

(j)
i .

2. D : Ri → Ri+1 is the down-sampling operator, i.e. D(C
(j)
i ) = C

(j)
i+1.
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3. U : Ri → Ri−1 is the up-sampling operator and once combined with D, it

becomes the identity operator, i.e.

D ◦ U = I. (2.3)

Note that U ◦ D 6= I.

4. L : Ri → Ri is the low band operator defined by L = U ◦ D.

5. H : Ri → Ri is the high band operator defined by H = I − L.

While D can be any linear operator, it is very important that U satisfies (2.3),

since from that we can derive

D ◦ L = D, (2.4)

D ◦H = 0, (2.5)

L ◦ U = U , (2.6)

H ◦ U = 0. (2.7)

and show that both L and H are idempotent, i.e. they satisfy

L ◦ L = L, H ◦H = H. (2.8)

The idea of LBC is to merge all error frames from different resolutions, i.e.

E
(j)
i , i = 0, 1, . . . , R−1, into a single error frame, E(j), which has the same dimen-

sion as the largest error frame. In this way, no more overhead will be introduced

when implementing spatial scalability while coding the error frame. The examples

for the LBC encoder and decoder are shown in Fig. 2.9 and Fig. 2.10 respectively.

As observed in the merged error frame E(j), which we actually sent, the only infor-

mation associated with resolution i is the highpass band signal H(E
(j)
i ). However,

we can recover the original signal E
(j)
i as long as we know E

(j)
i+1. The procedure is

shown as follows,

E
(j)
i = H(E(j)

i ) + L(E(j)
i )

= H(E(j)
i ) + L(C(j)

i −R
(j)
i )

= H(E(j)
i )− L(R(j)

i ) + U(C(j)
i+1)

= H(E(j)
i )− L(R(j)

i ) + U(R(j)
i+1 + E

(j)
i+1)

= {H(E(j)
i )− L(R(j)

i ) + U(R(j)
i+1)}+ U(E(j)

i+1). (2.9)
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In general, we have

E(j) = UR−1(E
(j)
R−1) +

R−2∑
i=0

U i{H(E
(j)
i )}. (2.10)
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Figure 2.9: Two spatial-layer encoding of inter frames using LBC algorithm. The
dashed arrows represent down-sampling using the D operator and the diagonal
pattern represents the information to be sent.

In the common case where dyadic scalability is considered, the operators

D, U , L, and H can be implemented using a two-channel perfect reconstruction

filter bank [67], as shown in Fig. 2.11.

2.3.3 Quality Scalability – Resolution Scalable Wavelet Dif-

ference Reduction

An algorithm that permits coding the merged representation of error frames

E(j) in the subband domain and making different quality layers is Wavelet Differ-

ence Reduction (WDR) [78]. WDR is a subband bit plane coding algorithm, which

in general consists of a significance pass and a refinement pass during the encoding

of each bit plane [58]. In WDR, a specific scanning order for both passes is shown

in Fig. 2.12. The low-pass band is first scanned and followed by a sequence of
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Figure 2.10: Two spatial-layer decoding of inter frames using LBC algorithm. The
dashed arrows represent down-sampling using the D operator and the diagonal
pattern represents the received information.

high-pass bands. Within each high-pass band, the scanning order tries to exploit,

as much as possible, the correlation between the coefficients. Hence, the order is

vertical for the bands which contain the high-pass band content of the rows only

(since they represent vertical edges), and the order is horizontal for the bands

which contain the high-pass band content of the columns only (horizontal edges),

whereas for bands with the high-pass band content of both columns and rows,

the order is a zig-zag scanning (diagonal edges). The term “difference reduction”

refers to the way in which WDR encodes the locations of significant coefficients

efficiently in the significance pass. For more details, please refer to [58].

The nature of WDR, where inter band correlation can be easily decoupled,

makes it friendly to cooperate with spatial scalability. We can simply break the

inter band links between different resolutions and apply WDR separately, as shown

in Fig. 2.13. We call this Resolution Scalable WDR (RSWDR). In RSWDR, a

target bit rate (or many of them) can be chosen for the base resolution and a

different target bit rate can be chosen for higher resolutions. Note that while
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Figure 2.11: Two channel perfect reconstruction filter bank and its relation to D,
U , L, and H operators.

Figure 2.12: Scanning order of WDR using three levels of decomposition. Inter
subband order is shown in bold solid line and intra subband orders are shown in
dotted lines.

coding H(E
(j)
i ), it is possible to spend some bits back on refining E

(j)
i+1, since the

decoding accuracy of E
(j)
i+1 has a direct impact on the decoding accuracy of E

(j)
i ,

as can be observed from (2.9).

The system diagram of the proposed WSVC, integrating the aforementioned

techniques, is shown in Fig. 2.14.
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Figure 2.13: Resolution scalable WDR. (a) E
(j)
2 coding until the bit budget for the

smallest resolution sequence is reached. (b) H(E
(j)
1 ) coding until the bit budget for

the middle resolution sequence is reached. (c) H(E
(j)
0 ) coding until the bit budget

for the whole sequence is reached.
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Figure 2.14: System diagram of the proposed WSVC consisting of STAR, LBC,
and RSWDR.



3 Complexity Reduction via

Scalable Motion Manipulation

In general, the most computationally intensive part of a modern video codec

is Motion Estimation (ME) and the associated rate distortion optimization (RDO)

selection [80]. For example, H.264/AVC provides many inter and intra modes to

be chosen from. For each inter mode, reference indices and motion vectors are

further determined from an enormous candidate set. The complexity issue will

only get worse if RDO is turned on. As far as the SVC standard is concerned, this

complexity problem becomes more severe since not only ME has to be performed

on all spatial resolution layers, but also the number of possible modes is increased

due to newly introduced inter-layer predictions.

A straightforward remedy to the complexity problem is to utilize fast ME

[87] and RDO algorithms [38]. Experimental results have shown that advanced

fast ME and RDO algorithms can efficiently reduce the encoder complexity while

introducing only slight performance losses. However, when it comes to SVC, we

can expect more savings.

As observed in Fig. 2.1, the ME operation is embedded in the “temporal

decomposition” block using a hierarchical B-picture structure. Obviously, separate

ME needs to be applied on each spatial layer. Although further coding redundancy

could be explored by inter-layer motion prediction, it does not help to reduce the

complexity. This gives us a motivation for the proposed work in this chapter,

aiming at complexity reduction in SVC. The idea is to design a scalable motion

vector field (MVF) model and the associated MVF scaling algorithms, such that

26
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the entire MVF information required for encoding could be accurately predicted

from a single MVF at a certain spatial layer. In this way, the encoding complexity

will be reduced to a level comparable to a single layer video codec.

As far as coding efficiency is concerned, since the RDO in the SVC standard

is performed from one spatial layer to the next, only local optimization given

the previous encoded layer is guaranteed. On the other hand, RDO needs to be

performed only once on the specified ME layer based on the proposed scalable

MVF model. Therefore, we are able to obtain better total efficiency due to the

global optimization process. As far as applications are concerned, a good example

is video broadcasting, where total coding efficiency of the combined layers is an

important requirement, instead of that of a single layer.

In this chapter, previous works on complexity reduction in SVC will first

be reviewed. We then propose our scalable MVF model and the associated MVF

scaling operations. The complexity analysis will be provided for various coding

schemes. Note that simulation results in this chapter are based on the proposed

low complexity WSVC framework introduced in the previous chapter.

3.1 Reduced Resolution Update Mode

The Reduced Resolution Update (RRU) mode [73] was proposed by Tourapis

and Boyce to Video Coding Experts Group (VCEG) as a potential tool for achiev-

ing improved encoding performance within H.264/AVC and its future extensions.

The basic idea of RRU is to encode an image at a reduced resolution, while per-

forming motion prediction using a full resolution reference, which also allows the

final image to be reconstructed at full resolution. The size of a macroblock is dou-

bled to 32x32 in the RRU mode and the associated macro/sub block partitions are

also doubled. The prototype encoder and decoder of the RRU mode are shown in

Fig. 3.1 (a) and (b) respectively.

The concept of the RRU mode can be used to support spatial scalability in

SVC with reduced complexity that is similar to a single layer codec. Thomson’s

proposal to the MPEG meeting in April 2005 [37] clearly demonstrated the idea.
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Figure 3.1: Reduced resolution update mode. (a) Encoder. (b) Decoder.
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In their proposal, RRU is used for inter picture (P and B) coding and the tradi-

tional spatial scalability approach is retained for intra picture (I) coding. For inter

pictures, a single bitstream (including MVF and residuals) could be decoded into

both low and high resolutions. The RRU mode is directly applied for decoding

high resolution sequences as it was originally designed for. A down-sampled MVF,

along with the encoded residuals (already down-sampled in RRU), are used to de-

code the low resolution sequence. The decoder system diagrams for low and high

resolutions are shown in Fig. 3.2 (a) and (b) respectively.

We also summarize the operations of Thomson’s decoder in Table 3.1. In

short, the key concept introduced in Thomson’s proposal that enables RRU with

spatial scalability is the MVF down-sampling algorithm. It is also the key factor

to the reconstruction quality of low resolution sequences.

Table 3.1: Thomson’s decoder operations

decoder MVF residuals MC decoded buffer

low resolution down-sample - low resolution low resolution

full resolution - up-sample full resolution full resolution

The advantages and disadvantages of the RRU mode are summarized below.

Advantages

• Low complexity (both encoder and decoder).

• High resolution and low resolution sequences are decoded independently (for

inter frames).

• High coding efficiency for full resolution sequences.

• Traditional intra-picture coding prevents error drifting in low resolution se-

quences and provides better visual quality in high resolution sequences.
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Figure 3.2: System diagrams of Thomson’s decoder for reduced complexity SVC.
(a) Low resolution sequence. (b) High resolution sequence.
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Disadvantages

• Error drifting problem in low resolution sequences due to incoherent reference

pictures.

• Visual artifacts in high resolution sequences due to non-invertibility of the

down-sampling and up-sampling processes.

• Spatial scalability is constrained to only 2 levels, i.e. high and low resolutions.

• Inaccurate motion estimation in high resolution sequences due to doubled

block sizes.

The simulation results from [56] show that for full resolution sequences,

Thomson’s decoder performs better in low bit rate scenarios and worse in high bit

rate scenarios. As for decoding low resolution sequences, it is always worse than

JSVM [40]. However, as far as complexity is concerned, Thomson’s encoder acts

like a single layer encoder which is more efficient compared to the multiple ME

operations in JSVM.

3.2 Scalable MVF Model

The idea of a scalable MVF model is to generate all the MVFs for different

spatial layers from a single MVF that we have at hand. Since the given MVF

could be at any arbitrary layer, the model must provide the capabilities for both

up-sampling and down-sampling operations of the given MVF.

In order to maintain a low complexity SVC encoder, a single ME operation

(for a pre-specified spatial layer) throughout the entire encoding process is strictly

enforced. In other words, motion refinement using inter-layer motion prediction in

the SVC standard will not be included in our work. However, a few MC operations

are allowed when deciding the best mode, or when picking the best MV, as we will

illustrate later.
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3.2.1 Up-Sampling

Since the up-sampled MVFs need not be encoded or transmitted (they can

be reproduced identically at the decoder in the same manner as at the encoder),

we do not have to worry about the bit rate required for encoding them. Therefore,

it is straightforward to use smaller MB sizes, and thus more motion vectors, to

increase the prediction accuracy. In our case, we keep the same macroblock size

for higher resolution layers. Since the resolution increases by 4 times from layer

to layer, the MVF size also increases by 4 times, i.e. for each motion vector at the

current resolution, we should be able to generate 4 corresponding motion vectors

for the above resolution, as shown in Fig. 3.3. There are two candidate methods,

and the final up-sampled MVF will be the one which gives lower RD costs.

Figure 3.3: Motion vector interpolation from a lower resolution.

Repeat Mode

In the repeat mode, we have the same MVs for the 4 up-sampled mac-

roblocks.

v00 = v01 = v10 = v11 = 2bC . (3.1)

It is equivalent to having a larger macroblock in the higher resolution sequence

and the associated MV is duplicated, except for scaling by a factor of 2.
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Smooth Mode

In the smooth mode [23], we have a cost function which measures the

smoothness along various directions, i.e. vertical, horizontal, diagonal, and etc.

Ψ(v) = ΨN(v) + ΨS(v) + ΨE(v) + ΨW (v) + ΨUD(v) + ΨLD(v) + ΨC(v), (3.2)

where

ΨN(v) =
∑

i,j=0,1

(vi,j − vi−1,j)
2 (3.3)

is the vertical smoothness measurement from top to bottom. The other measure-

ments can be defined in a similar way (please refer to [23] for details). Eq. (3.3)

can be rewritten in a matrix form,

ΨN(v) = ||ANv − bN ||2

= vT (AT
NAN)v − (2bT

NAN)v + bT
NbN . (3.4)

Thus, the total cost function becomes

Ψ(v) =
∑

x

Ψx(v)

= vT (
∑

x

AT
x Ax)v − (2

∑
x

bT
x Ax)v +

∑
x

bT
x bx. (3.5)

Consequently, the smoothest solution is as follows:

v = arg min
v

Ψ(v) = (
∑

x

AT
x Ax)

−1
∑

x

AT
x bx. (3.6)

In summary, the smooth mode solution minimizes the difference between

neighboring MVs and produces a smoother MVF, which tends to resemble the true

motions in a natural video sequence.

3.2.2 Down-Sampling

In contrast to MVF up-sampling, MVF coding has to be taken into con-

sideration in the down-sampling process. Since the MVF in lower resolution se-

quences will be derived directly from that in the pre-specified ME layer, the same
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encoded MVF must be conveyed in order to decode lower resolution sequences.

This is, however, very inefficient since some redundant motion information from

higher resolution sequences is required while decoding any lower resolution ones.

A possible solution is to encode the MVF in an embedded manner such that the

down-sampled version can be easily extracted as a subset of the original bitstream.

Secker [62] proposed in 2004 a MVF down-sampling algorithm using DWT

such that an embedded coding technique can be applied afterwards. However, this

linear approach, also known as the averaging method, is shown to have poor per-

formance on the reconstructed sequence [66]. Instead, some non-linear approaches

such as Align to The Best (ATB), Align to The Worst (ATW), and Vector Median

(VM) filter seem to be better choices, even if a little overhead due to mode map

coding (in the VM case) is introduced [26].

Note that the methods mentioned above, either linear or nonlinear, are de-

signed to downsize the MVF and thus retain the same macroblock size in lower

resolution sequences. Although the motion info is further reduced through the

down-sampling process, the MC performance is also sacrificed. Therefore, another

method, which applies the given MVF to all lower resolution sequences without

down-sampling, is proposed to increase the MC accuracy. The improved MC qual-

ity may sometimes benefit the final coding performance, depending on the actual

RD characteristics. We will discuss the two MVF down-sampling modes below and

again the final decision will lean toward the one with lower RD cost.

Merged Mode

In the merged mode, MVF is halved between two successive spatial layers.

The four MVs (and the corresponding motion information) from the upper layer are

merged into a single MV. Therefore, the macroblock size remains unchanged from

layer to layer. This is the most compatible mode, since no undefined macroblock

size will be introduced. On the other hand, motion information is reduced by four

times, at the price of impaired MC quality.

There are many methods for merging neighboring MVs to obtain an ap-

proximation for lower resolution sequences. Most of them come from the video



35

transcoding literature [26, 20, 25]. In summary, the linearly averaging method,

e.g. Align-to-Average Weighting (AAW), generally does not give satisfactory re-

sult. On the other hand, choosing the most suitable MV from the four upper layer

candidates seems to be a better choice. In particular, the Align-to-Best Weighting

(ABW) method picks the MV that gives the smallest MC residual energy in the

upper layer. The Align-to-Worst Weighting (AWW) method takes the MV with

the largest MC residual energy instead.

The VM filter is yet another choice, if no residual information is available

besides the MVF itself [10].

N∑
i=1

||vV M − vi||p ≤
N∑

i=1

||vj − vi||p j = 1, 2, . . . , N. (3.7)

The VM method tends to produce a smoother MVF which resembles the true

motion characteristics. However, since less information is taken into consideration,

VM is usually not as good as ABW or AWW.

On the other hand, if more information is available, such as the MC residuals

or the Discrete Cosine Transform (DCT) coefficients, Adaptive Motion Vector

Resampling (AMVR) can assign proper weightings adaptively to VM, and achieve

better performance [66].

N∑
i=1

wi||vWV M − vi||p ≤
N∑

i=1

wi||vj − vi||p j = 1, 2, . . . , N. (3.8)

More advanced methods based on AMVR which are optimized to different MVF

characteristics are also available, e.g. AMVR-DIM [26].

As for applying MVF merging techniques in SVC, the situation is slightly

different from transcoding. During the encoding phase for a lower resolution se-

quence, the residual information, or DCT coefficients for higher resolution layers,

are not yet available. As a consequence, any method that relies on this unavailable

information is not applicable, unless it uses proper modifications or approxima-

tions. However, we do have the current frame and reference frame for the current

spatial layer, which allows us to evaluate all four possible MV candidates (in the

dyadic case) from the higher resolution layer, and choose the best MV. In this
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way, the resulting down-sampled MVF is guaranteed to outperform any VM-based

method in the sense of MC quality.

Since the size of MVF shrinks by 4 times from one layer to the next, the

number of bits for MVF coding can be reduced, which in turn benefits the residual

coding under the same target bit rate. Note that the proposed merged mode

requires an additional mode map that indicates where the current MV comes from

in the higher resolution MVF, similar to any other VM-based methods. This is

roughly half of the number of bits per block, before applying predictive or entropy

codings. On the other hand, ABW and AWW do not require these additional bits.

Direct Mode

In order to achieve better MC accuracy than the merged mode, we can

simply retain the original MVF, i.e. without any down-sampling process, and apply

it to the lower resolution layer with halved block size. In other words, for every

block, the co-located block size in the lower resolution sequence is down-sampled

such that the original MV could be applied properly without modifications (except

for down-scaling by 2 in the dyadic case). This is called the direct mode. As long

as the down-sized block is still standard compliant, e.g. bigger or equal to 4x4 in

H.264/AVC, the direct mode serves as a valid option for MVF down-sampling.

In order to provide a theoretical justification for the direct mode, we model

it in a simplified scenario where only a 1D signal and global translational motion

are considered. Assume that the current signal is C(n) and the reference signal is

R(n). The motion compensated error is

E(n; d) = C(n)−R(n− d), (3.9)

given d as the applied MV. The best MV under MMSE criterion is

d∗ = arg min
d
{
∑

n

E2(n; d)}. (3.10)

Suppose both C(n) and R(n) undergo the same down-sampling operation as shown

in Fig. 3.4.
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Figure 3.4: Relationships of down-sampling operation.

Es(n; ds) = D{E(n; 2ds)}. (3.11)

By applying Discrete Time Fourier Transform (DTFT) [54],

Es(e
jω; ds) =

1

2
{E(ej ω

2 ; 2ds)H(ej ω
2 ) + E(ej ω−2π

2 ; 2ds)H(ej ω−2π
2 )}. (3.12)

According to Parseval’s Theorem [54],

∑
n

|Es(n; ds)|2 =
1

2π

∫ π

−π

|Es(e
jω; ds)|2dω

=
1

4π

∫ π
2

−π
2

|E(ejω; 2ds)H(ejω) + E(ej(ω−π); 2ds)H(ej(ω−π))|2dω. (3.13)

In our case, H(ejω) is an anti-aliasing pre-filter with cutoff frequency π/2. There-

fore, it is reasonable to approximate it with an ideal lowpass filter with the same

cutoff frequency. Eq. (3.13) then becomes

∑
n

|Es(n; ds)|2 ≈ 1

4π

∫ π
2

−π
2

|E(ejω; 2ds)H(ejω)|2dω

≈ 1

4π

∫ π
2

−π
2

|E(ejω; 2ds)|2dω. (3.14)

If we further assume that the error signal E(n; d) is a lowpass signal, i.e. the Power

Spectral Density (PSD) of the error signal is lowpass, we have

∫ π
2

−π
2

|E(ejω; 2ds)|2dω ≈
∫ π

−π

|E(ejω; 2ds)|2dω. (3.15)

Note that the satisfaction of this assumption is highly dependent on the video

content, and not necessarily true for all video sequences. In order to verify this as-

sumption among various natural video sequences, the PSD of the first MC residual
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frame is shown in Fig. 3.5 for the FOREMAN, BUS, and FOOTBALL sequences.

As observed from Fig. 3.5, the major energy resides in the low pass band from

−π/2 to π/2 for all three sequences, despite the fact that small non-zero energy

appears in the high pass bands and the individual energy distribution varies from

sequence to sequence.

Eq. (3.14) then becomes

∑
n

|Es(n; ds)|2 ≈ 1

2

1

2π

∫ π

−π

|E(ejω; 2ds)|2dω =
1

2

∑
n

|E(n; 2ds)|2. (3.16)

The best MV for the down-sampled signal under the MMSE criterion is therefore

d∗s = arg min
d
{
∑

n

E2
s (n; d)} = arg min

d
{1

2

∑
n

E2(n; 2d)} =
d∗

2
. (3.17)

The above equation implies that the best MV for the lower resolution sequence is

exactly half of its corresponding optimal MV for the higher resolution sequence, if

the two assumptions are satisfied. This also justifies the proposed direct mode for

MVF down-sampling.

As a final remark, there is always a tradeoff between MC accuracy and MVF

coding bits. Therefore, the decision between the proposed MVF down-sampling

modes (direct and merged) should be based on the actual RD cost in order to

achieve the best performance.

3.3 Proposed Low Complexity WSVC

Fig. 3.6 shows an example system diagram of the proposed low-complexity

WSVC, where the middle spatial layer is chosen as the ME layer, and the MVF

scaling algorithms illustrated above are utilized to generate the motion information

for both the high and low spatial layers. The encoder complexity is reduced since

only one ME operation and the associated RDO are required.

The main difference between our method and Thomson’s proposal is that

we have relieved many of Thomson’s constraints. For example, by introducing the

merged mode in the down-sampling operation, we are able to keep the same mac-

roblock size for every layer. This feature makes it possible to have more than one
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(a)

(b)

(c)

Figure 3.5: Power spectral density of motion compensated residual signals. (a)
FOREMAN. (b) BUS. (c) FOOTBALL.
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Figure 3.6: System diagram of proposed low complexity WSVC.

spatially down-sampled layer without introducing non standard-compliant block

sizes. As for the residual sequence, we relieve the constraint that only lower res-

olution residuals are sent. The proposed WSVC codec is designed to encode all

error pictures together using LBC. These error pictures are considered as a whole

quantity during RDO to give the best total efficiency.

Since RDO is performed only once, we are able to achieve the global op-

timum that maximizes the total coding efficiency. We now elaborate the details.

First, instead of performing ME independently for each layer, we now do it only

once to a specified layer i. The choice of i depends on the preference between

complexity and total coding efficiency. For example, if we want the complexity to

be lower, we choose the lower spatial resolution layer (larger i).

After the ME layer is decided, we are now ready to perform ME for that

chosen layer. Note that the criterion for RDO can be designed such that the

global optimum is reached. As long as the MVF for the ME layer is ready, we can

automatically generate the MVFs for the higher and lower layers, based on the

proposed scalable MVF model.

We would like to point out an alternative approach for the merged mode.

If the RDO is turned on for the ME layer, it is required to explore every possible
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block size that gives the best coding efficiency. If we save the best MV for every

block size, it will be useful for predicting the merged MV of the down-sampled

block. For example, if the final mode of a certain 8x8 block is decided to be four

4x4 blocks, we choose the best MV for the 8x8 block (already saved after RDO)

as the MV for the 4x4 down-sampled block in the lower resolution. In this way,

we save the computation for checking the 4 original MVs. However, the tradeoff

is that more bits are required to code a new MV with this alternative.

3.4 Complexity Analysis

In this section, we compare the complexities among the aforementioned scal-

able video coding schemes through the usage of the most computationally intensive

building blocks. These operations, including motion estimation, spatial interpola-

tion for subpixel motion estimation, discrete wavelet transform and inverse discrete

wavelet transform, contribute more than 95% of the total computations in both

the encoder and the decoder, where ME is not considered at the decoder.

In order to compare with Thomson’s codec, we incorporate the RRU mode

into our proposed wavelet codec, in which the LBC is replaced by DWT. The

encoder block diagram is shown in Fig. 3.7. Note that the block denoted by

“LL Band” performs the extraction of the low-pass band signal from the first

level decomposition of wavelet transform, i.e. only one quarter of the transformed

coefficients are retained after this operation. The LL Band operation is essentially

the counterpart of down-sampling in the DCT-based codec, as previously shown in

Fig. 3.1. We note that the RRU mode is similar to a conventional (spatially non-

scalable) video codec. Spatial scalability is supported at the decoder by reusing

the same non-scalable bitstream to produce different resolution sequences.

The complexity comparison chart for Full Search (FS), Down (DN), UP,

and the RRU modes at the encoder, the QCIF decoder and the CIF decoder are

listed in Tables 3.2, 3.3 and 3.4, respectively. Here we assume there are N pictures

in a GOP, in which only the first picture is coded as intra frame. The motion

estimation operation is implemented in C and called by MATLAB through the
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Motion CompensationMotion Estimation Picture Reference Store
+

Input Video DWT LL BandIntraInter WDR BitstreamIWDRIDWT+Inter IntraMVs
Figure 3.7: RRU mode encoder in WSVC.

mex function to achieve further acceleration.

Note that although each module listed here can be itself optimized to dif-

ferent simulation platforms, this is not our main interest. Instead, we provide the

number of usages for each module from the system-level point of view, which can

better describe the behavior and complexity of different coding schemes. There-

fore, the figures in the “seconds per usage” column are listed for reference purpose

only, and they are obtained directly from the MATLAB profiler using BUS as the

testing sequence. These figures provide a practical measure of complexity savings

in terms of execution time, which we list in the last row of each table using a GOP

size of 8. Moreover, we also choose the most computationally intensive modules

to be analyzed based on these figures.

According to Table 3.2, the proposed DN mode and the RRU mode both

achieve similar savings to the conventional FS mode at the encoder. These savings

come from the QCIF size ME for all inter pictures. The RRU mode gains an

additional 5% savings from discarding the encoding and decoding processes of

the QCIF size sequence. Our proposed UP mode can save up to 2/3 of encoder

complexity by omitting the CIF size motion estimation. On the other hand, all

these four modes have the same complexity in the QCIF size decoding process,

although the coding efficiency is quite different as we will see in the next section.
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Table 3.2: Complexity chart: SVC encoder

module size sec/use FS DN RRU UP

ME CIF 2.28 N-1 N-1 N-1 0

QCIF 0.57 N-1 0 0 N-1

Interpolation CIF 0.4 N/2 N/2 N/2 N/2

QCIF 0.1 N/2 N/2 0 N/2

DWT CIF HP Bands 0.07 N N 1 N

LL Band 0.03 2N-1 2N-1 N 2N-1

QCIF 0.02 N N N N

IDWT CIF 0.07 N N N N

QCIF 0.015 2N 2N N 2N

Others 0.13 N N N N

Total General 3.48N 2.91N 2.745N 1.2N

-2.88 -2.31 -2.21 -0.6

N=8 24.96 20.97 19.75 9

Savings - 16% 21% 64%

For the CIF size decoding process, the RRU mode again benefits from not decoding

the QCIF size sequence and thus leads by 19% savings.

3.5 Simulation Results

The following settings are applied in our simulations.

• Input sequences: CIF 30 fps (BUS, FOOTBALL, FOREMAN, and MO-

BILE).

• 3-level temporal scalability (30, 15, and 7.5 fps).

• 2-level spatial scalability (CIF and QCIF).

• FGS quality scalability using RSWDR.

• GOP of 8 pictures.
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Table 3.3: Complexity chart: QCIF decoder

module size sec/use FS DN RRU UP

Interpolation QCIF 0.1 N/2 N/2 N/2 N/2

IDWT QCIF 0.015 N N N N

Others 0.05 N N N N

Total General 0.115N 0.115N 0.115N 0.115N

N=8 0.92 0.92 0.92 0.92

Savings - 0% 0% 0%

Table 3.4: Complexity chart: CIF decoder

module size sec/use FS DN RRU UP

Interpolation CIF 0.4 N/2 N/2 N/2 N/2

QCIF 0.1 N/2 N/2 0 N/2

DWT CIF 0.03 N-1 N-1 0 N-1

IDWT CIF 0.07 N N N N

QCIF 0.015 2N 2N N 2N

Others 0.1 N N N N

Total General 0.48N 0.48N 0.385N 0.48N

-0.03 -0.03 -0.03

N=8 3.81 3.81 3.08 3.81

Savings - 0% 19% 0%

• Uni-directional (UNI) and bi-directional (BI) ME/MC.

Experiment 1

In this experiment, we compare our proposed MVF down-sampling modes,

i.e. the merged mode (MG) and the direct mode (DR), with the VM filter, align-

to-best weighting (ABW), and align-to-worst weighting (AWW) methods. The full

search (FS) mode which applies full search on both the CIF and QCIF layers is

also tested for reference. The bit allocation is shown in Table 3.5.

The PSNR comparison charts of reconstructed and MC sequences are shown
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Table 3.5: Bit rate allocation in Experiments 1-4 (kbps)

Exp 1, 2 Exp 3 Exp 4

CIF QCIF CIF QCIF CIF QCIF

30 fps 1024 0 1024 - 1536 512 1024 256 - 512

15 fps 512 128 512 - 768 256 512 128 - 256

7.5 fps 0 64 0 128 0 64 - 128

in Table 3.6 and Table 3.7, respectively. From Fig. 3.8, it is clear that DR outper-

forms FS in almost every aspect except for the QCIF (low resolution) reconstructed

sequence, as expected. In other words, our proposed SVC codec does achieve bet-

ter total coding efficiency while maintaining a low encoding complexity, according

to Table 3.2. In addition, MG is shown to be better than all other VM-based

methods, among which we observe that AWW is better than ABW, which in turn

surpasses VM.

Table 3.6: Comparison of different down-sampling modes: BUS reconstructed se-
quence (dB)

FS DR MG VM ABW AWW

UNI CIF PSNR 27.44 27.61 27.21 26.61 26.88 26.99

4 - +0.16 -0.24 -0.84 -0.56 -0.45

QCIF PSNR 25.18 24.47 24.13 23.86 24.05 24.10

4 - -0.72 -1.06 -2.81 -1.97 -1.60

BI CIF PSNR 27.66 27.85 27.46 26.90 27.23 27.29

4 - +0.19 -0.20 -0.77 -0.43 -0.38

QCIF PSNR 25.22 24.47 24.11 22.78 23.50 23.77

4 - -0.75 -1.11 -2.45 -1.72 -1.45

As for the MC sequences, with DR, both the CIF and QCIF MC sequences

are better than FS. This implies that the MC accuracy of DR is very good. The

QCIF reconstructed sequence is worse because we spend too many bits on MVF

coding such that the bit budget is not sufficient for error coding.

On the other hand, MG is designed to reduce MVF coding bits in the

QCIF sequence. Compared to DR, MG generates a MVF that is approximately
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Table 3.7: Comparison of different down-sampling modes: BUS motion compen-
sated sequence (dB)

FS DR MG VM ABW AWW

UNI CIF PSNR 24.41 24.49 24.24 23.86 24.05 24.10

4 - +0.08 -0.16 -0.55 -0.36 -0.31

QCIF PSNR 22.39 23.17 19.80 16.29 18.09 18.24

4 - +0.77 -2.60 -6.11 -4.30 -4.16

BI CIF PSNR 25.30 25.39 25.22 24.98 25.13 25.12

4 - +0.08 -0.08 -0.32 -0.18 -0.19

QCIF PSNR 22.61 23.33 20.03 17.09 18.71 18.85

4 - +0.72 -2.58 -5.53 -3.91 -3.76

four times smaller in coding bits. However, we do observe a huge performance drop

in the MC QCIF sequence, indicating that the down-sampled MVF is no longer a

good prediction. Even if more bits are reserved for residual coding, the gap is not

easily compensated, as shown in the reconstructed QCIF sequence. Furthermore,

due to the error propagation characteristic of LBC, a poor reconstructed QCIF

sequence will result in a poor reconstructed CIF sequence. Therefore, MG is in

general worse than FS. In terms of total coding efficiency, we conclude that DR >

FS > MG.

Experiment 2

After exploring the various possible modes in MVF down-sampling, we will

adopt the best one, i.e. the DR mode, as our MVF down-sampling (DN) mode,

and compare it with the MVF up-sampling (UP) operation. Again, FS is listed

for the purpose of comparison.

The test sequences include BUS, FOOTBALL, FOREMAN, and MOBILE,

all of which are in CIF and 30 fps. The bit allocation is the same as in Experiment

1. Only uni-directional prediction is tested here.

The PSNR comparison charts of the decoded and MC sequences are shown

in Table 3.8 and Table 3.9, respectively. We observe that the reconstructed se-

quences using DN are better for CIF and worse for QCIF as expected (comparing
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Figure 3.8: PSNR comparison chart of different MVF down-sampling modes.

to FS). As expected, the UP mode is the worst since it requires only 1/3 the

computations according to Table 3.2. From this experiment, similar results are

observed in different test sequences, which demonstrates the effectiveness of our

proposed SVC codec. In particular, our codec works best for FOOTBALL and

worst for MOBILE, under the same encoder settings.

Experiment 3

We now test the BUS sequence with varying bit rates to obtain the RD

plots. The bit allocation is shown in Table 3.5, and the results are shown in Fig.

3.9.

From this experiment, the coding efficiency of the proposed DR mode is

consistently better than FS, with an additional 19% computational saving at the

encoder. On the other hand, the RRU mode achieves the best performance. How-

ever, as we have mentioned before, the RRU mode is essentially a non-scalable

codec, which sacrifices the spatial scalability for CIF coding efficiency. As we will

see in the next experiment, the performance of RRU in the QCIF decoding is so
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Table 3.8: Comparison of the FS, DN, and UP modes using different test sequences:
reconstructed sequences (dB)

FS DN 4 UP 4
BUS CIF 27.58 27.73 +0.15 26.53 -1.05

QCIF 25.38 24.75 -0.63 25.38 0

FOOTBALL CIF 30.84 31.13 +0.29 30.85 +0.01

QCIF 27.63 26.28 -1.35 27.63 0

FOREMAN CIF 33.89 34.03 +0.14 33.28 -0.61

QCIF 31.26 30.29 -0.97 31.26 0

MOBILE CIF 24.37 24.39 +0.02 23.29 -1.1

QCIF 22.77 22.47 -0.30 22.77 0

Table 3.9: Comparison of the FS, DN, and UP modes using different test sequences:
motion compensated sequences (dB)

FS DN 4 UP 4
BUS CIF 24.72 24.79 +0.07 21.37 -3.35

QCIF 22.77 23.40 +0.63 22.77 0

FOOTBALL CIF 25.09 25.23 +0.14 22.82 -2.27

QCIF 22.83 24.30 +1.47 22.83 0

FOREMAN CIF 30.70 30.79 +0.09 27.83 -2.87

QCIF 28.35 29.04 +0.69 28.35 0

MOBILE CIF 23.10 23.12 +0.02 20.72 -2.38

QCIF 21.65 21.69 +0.04 21.65 0

bad that it can hardly be qualified as a scalable codec.

When the bit rate increases, both PSNR gaps from FS are gradually re-

duced. The advantage from saving the motion bits for the QCIF sequence dimin-

ishes when the bit rate goes up.

Experiment 4

In this simulation, we try different bit rates on the BUS sequence. We fix

the bit rate for the CIF sequences and vary the ones for the QCIF sequences as

shown in Table 3.5. The results are shown in Fig. 3.10.
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Figure 3.9: RD plots in Experiment 3: BUS, CIF.

Although the proposed DR mode is slightly worse than FS as expected,

they both follow a similar rate distortion trend throughout a wide range of bit

rates. Unlike the DR mode, the RRU mode is far off the trend and get even worse

as the bit rate increases. Note that the total bit rate is fixed in this experiment.

Again, the QCIF MC sequence using DR is still the best.

3.6 Summary

In this chapter, MVF scaling algorithms are proposed based on the observed

relationships among different spatial resolution layers in an SVC system. These

algorithms help to improve the SVC system in two aspects: 1) lower encoder

complexity, and 2) increased total coding efficiency.

In the following chapters, a more advanced scalable motion model will be

proposed. In addition to spatial scalability, quality scalability is also incorporated.

The new scalable motion model is designed to improve the RD curves of a fully

scalable SVC system under all possible decoding scenarios.
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Figure 3.10: RD plots in Experiment 4: BUS, QCIF.
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4 Scalable Motion

As far as a hybrid video coding scheme is concerned, the total bit rate can

be divided into two main portions, motion and texture. Motion bits, together with

the underlying motion model, provide a prediction of the current picture. Texture

bits, on the other hand, compensate for the difference between the prediction and

the current picture. In a lossy coding scenario, the imposed rate constraint prevents

lossless description of the prediction difference, and thus distortion is introduced.

As mentioned earlier in the beginning of Chapter 2, a lossy video codec

is evaluated by its rate distortion performance. Under a certain rate constraint,

the smaller distortion a codec introduces, the better it is. For years, people have

been seeking the optimal distribution strategy of the bit budget between motion

and texture. The most widely accepted technique is the Lagrange multiplier based

motion estimation and mode decision algorithm [55, 68].

A typical RD curve of an encoded video bitstream can be theoretically ob-

tained by finding the convex hull of an infinite number of operating points resulting

from different encoder settings, as shown in Fig. 4.1. The Lagrange multiplier for

a certain bit rate can be chosen as the negative slope of the tangent line through

that particular operating point on the RD curve. The physical meaning of the

chosen Lagrange multiplier can be interpreted as a measurement for the efficiency

of distortion reduction per bit rate. Any additional bit rate that contributes less

than this measurement should be avoided in order to meet the rate constraint.

The chosen Lagrange multiplier is applied in the RDO ME process to determine

the optimal motion parameters for the target bit rate.

It is easily recognized from the above rationale that in order to achieve

51
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Figure 4.1: Rate distortion curve.

optimality in the RD sense, motion parameters should be optimized to a specific bit

rate. In other words, the same set of motion parameters can not be equally efficient

for various decoding bit rates. Therefore, in an SVC system where decoding quality

can be adjustable, a non-scalable motion bitstream will inevitably sacrifice the

coding efficiency for any decoding bit rates away from the presumed one. Moreover,

the more the offset is, the worse the performance will be.

Scalable motion, as the main topic of this chapter, is designed to improve

the coding efficiency for an SVC framework. By providing different motion qual-

ity layers, different versions of motion prediction, each optimized to a presumed

decoding bit rate, can be supported within the embedded motion bitstream. In

this way, efficiency over a wide range of bit rates can be sustained. As a matter of

fact, strong experimental evidence has shown that scalable motion can effectively

improve the coding efficiency in the low bit rate range and for low resolution se-

quences, regardless of the particular SVC system design. Meanwhile, a feasible

decoding bit rate can be extended toward its lower end with the help of scalable

motion.

Scalable motion is a relatively new concept that has arisen with the devel-

opment of SVC. In order to provide a solid and comprehensive background of this

newly emerged research field, the first section will be devoted to a literature review
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of scalable motion. Although the idea of scalable motion was initially inspired by

quality scalable coding, issues such as temporal and spatial scalability should also

be considered, when applied to an SVC system. We will discuss the required scal-

able functionalities of a scalable motion design in the second section. In the final

section, the assumptions and theories behind the concept of scalable motion will

be illustrated. One should often check back with these premises while designing a

scalable motion system.

4.1 History

As mentioned earlier, the study of scalable motion began with the devel-

opment of SVC. Researchers notice that the lossless coding of motion information

becomes inefficient when decoding the bitstream at lower resolutions. In particular,

a down-scaled motion vector for a low resolution sequence is, in general, obtained

by a divide-by-2 operation followed by a rounding operation. Redundant accuracy,

which is lost during the rounding phase, is useless for low resolution decoding. By

simply applying the progressive coding algorithm, the redundant information can

be removed from the bitstream before decoding the low resolution sequence. The

saved bits yield improved coding efficiency, with almost no additional overhead.

Based on this concept, Bottreau [17] proposed the first scalable motion

framework in 2001, which is the earliest literature in this field to this author’s

knowledge. In his work, scalable motion is embedded into a fully scalable 3D

subband SVC system for improved efficiency on temporally and spatially down-

sampled sequences. As will be explained later, temporal scalability for scalable

motion is trivial. On the other hand, spatial scalability for scalable motion is

supported by a combination of predictive and progressive codings. The lowest

spatial resolution motion vectors are obtained by down-scaling and rounding the

original MVs, and encoded with a DPCM technique followed by entropy coding

using VLC tables. Higher resolution motion vectors are progressively refined and

encoded using contextual arithmetic encoding. No specific technique is addressed

in his work to target the quality scalability for scalable motion.
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In 2003, several schemes for scalable motion coding were proposed. Taub-

man [72] applied the wavelet transform and bit plane coding techniques to the

motion vector field to provide scalability. His following work in 2004 [62], which

analyzed the quantization effect on motion vectors, became the theoretical foun-

dation of scalable motion, which we will illustrate later in this chapter.

Hang [31] proposed the first scalable motion framework based on the MC-

EZBC [33] codec. Elaborations on scalable motion in MC-EZBC can be found in

[34, 74, 82, 83]. Recently, Wu [83] demonstrated an integrated scalable motion vec-

tor coding method for MC-EZBC. The new method improves the coding efficiency

of both spatial and quality scalabilities.

During the same year 2003, Valentin [76] proposed a vector refinement

coding scheme for scalable motion. Turaga [75] demonstrated a special prediction

scheme for motion coding in SVC. Barbarien [13], on the other hand, proposed

another motion prediction and coding algorithm for in-band motion estimation.

His following works can be found in [14, 15], where rate distortion optimization for

scalable motion vector coding is explored.

In the following year, 2004, more than 20 publications addressed motion

scalability in the context of different requirements and different SVC architec-

tures. Maestroni [47], for example, used the quadtree structure bit plane coding

technique to encode the variable block size (VBS) [45, 42, 16, 69, 19] MVF. Xiong

[84] proposed an estimation algorithm along with a layered scalable motion struc-

ture. In this work, an optimal bitstream extractor for the decoder is also provided.

Similar work can also be found in the Microsoft MVC codec [85]. Mrak from the

University of London, Queen Mary has done extensive research on scalable mo-

tion, including both motion vector accuracy coding and layered motion modeling

algorithms. Her research can be found in [49, 50, 51].

In summary, early developments of scalable motion focused mainly on im-

proving the performance of low spatial resolution decoding within an SVC frame-

work. Various motion prediction and coding algorithms were proposed in this

stage. More advanced scalable motion approaches began to deal with improved

quality scalability in SVC, and layered coding on motion structure has gained
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more attention. Optimal bitstream extractor design [11] is also another research

topic in this stage. Modern scalable motion design should focus on combined func-

tionalities that support joint scalabilities in an SVC framework. Moreover, due

to the non-stationary characteristics of video sequences, rate distortion optimized

motion estimation together with scalable motion coding is expected to give better

performance to individual contents.

Inspired by prior developments, we realize how important scalable motion

is to SVC. Furthermore, the need for a systematic and complete solution to this

problem is urgent and requires more study. The contribution of our work is to

systematically formulate the scalable motion problem, and to provide a feasible

and efficient solution. The particular solution, which will be discussed in the next

chapter, not only passively implements the motion scalability, but also actively

works seamlessly with the encoder to achieve optimal coding efficiency for scalable

video. Compared to previous works, this is the first scalable motion solution that

offers joint optimization on both MV accuracy and variable block size scalabilities.

The optimization can be achieved via tailored coding techniques and RDO motion

estimation.

Before introducing our scalable motion solution, we will first formulate the

problem by illustrating those required functionalities.

4.2 Functionalities

Scalable motion is defined as a single and progressively encoded motion

bitstream such that applicable MVFs can be efficiently extracted and decoded for

any spatial, temporal and quality specification demanded from the SVC decoder.

In other words, the scalable motion bitstream should be able to provide all suitable

MVFs, which cover all the decoding possibilities that the decoder targets. For

example, any combination of sequence sizes ranging from 4CIF to QCIF, frame

rates ranging from 30 fps to 7.5 fps, and bit rates ranging from 2000 kbps to 50 kbps

should find its corresponding MVFs from the unique scalable motion bitstream,

and most important of all, in a RD-efficient manner. By RD-efficient we mean the
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extracted motion information should provide comparable RD performance as if it

were optimally estimated for that non-scalable decoding specification.

A scalable motion model (SMM) is the correct tool for achieving scalable

motion within a specific SVC codec. It comprises two major constituents: model

structure and RDO ME algorithm. Model structure defines how the encoded

motion parameters can be interpreted to the actual MVFs. Various motion quality

layers should be structurally supported and the corresponding progressive coding

algorithm should also be clearly defined. The RDO ME algorithm, on the other

hand, obtains the optimal motion parameters for the chosen model structure, which

optimizes the coding efficiency for a wider range of operating bit rates and various

decoding scenarios.

From the above definition, SMM is usually tailored for a specific SVC frame-

work, i.e. it is highly codec dependent. However, some common properties do exist

among various SVC designs. For example, the supporting mechanisms for temporal

and quality scalabilities are similar despite different SVC designs. As far as tem-

poral scalability is concerned, JSVM-9 uses the hierarchical B-picture structure,

which is similar to the STAR algorithm in our WSVC codec, while MC-EZBC uses

MCTF. In either case, MVFs associated with those irrelevant frames can be simply

discarded with no harm to the remaining low frame rate sequence. The saved bits

can lead to improved coding efficiency. As a consequence, temporal scalability of

scalable motion is in general very trivial and directly inherited from the reference

picture selection scheme utilized in the codec, e.g. hierarchical B-picture structure,

STAR, or MCTF.

Quality scalability of scalable motion, on the other hand, is another com-

mon problem for all architectures. Specifically, given a certain target bit rate for

motion, SMM should be able to provide the best MVF among all possible candi-

dates without exceeding that target bit rate. By best we mean under a predefined

distortion measurement, e.g. the sum of absolute motion compensated difference

(SAD). The operating target bit rates could be fine or coarse grain scalable (FGS

or CGS). FGS supports finer motion quality layers, while more scalability overhead

might be imposed.
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In general, there are two ways to achieve quality scalability. The first way

is MV accuracy scalability, which is independent of any underlying motion model.

By coding the MV accuracy progressively, e.g. integer MV with half and quarter

pixel refinements, the FGS can be roughly achieved.

The second way is motion structure scalability, which is motion model de-

pendent. For simplicity, we focus only on the block-based motion model in this

work. In a block-based motion model, the VBS tree structure [65] is a common

tool to efficiently describe motions in various scenes. By changing the block size,

motions of different objects can be better described. From the VBS point of view,

MVF can be decoded at a high bit rate with more refined block sizes, or at a low

bit rate with larger block sizes, and thus fulfills the quality scalability requirement.

A smart combination of both MV accuracy and motion structure scalability would

be ideal for a quality scalable SMM.

In contrast to temporal and quality scalability, spatial scalability for scal-

able motion depends on the SVC architecture employed. For example, in WSVC,

which uses the 2D+t approach, motion information obtained from in-band ME

[46, 12, 48] can be predictively coded across increasing resolution bands. As for

t+2D, progressive coding of the full resolution motion information can help to

easily remove the redundancy for low resolution decoding. In this case, techniques

from quality scalable SMM can be used. In our proposed WSVC, the 2D+t+2D

scheme resembles the t+2D scheme in that no in-band ME is performed. All

ME/MC are applied on low pass pictures, which produces similar MVFs across

resolutions and leaves much room for exploring the inter-scale motion redundancy.

Recall from Chapter 3, it has been shown that under the two following

assumptions, the optimal MV for one resolution will also be optimal for other

resolutions (after proper scaling) in the mean squared error sense. The first as-

sumption requires the resemblance between the down-sampling filter and an ideal

low pass filter with cutoff frequency π/2. This is generally satisfied for commonly

used filters such as Daubechies 9/7 filters. The second assumption is that the mo-

tion compensated residual signal has a low pass power spectrum density (PSD).

This is also supported by experimental results on several testing sequences. As a
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consequence, the optimal MV for one resolution should be shared by other reso-

lutions in order to maintain high efficiency, with minimum sacrifice on quality. In

other words, the spatial scalability of scalable motion can be easily carried out by

down-scaling the highest fidelity MVF to meet the desired resolution. For exam-

ple, the MVs for the QCIF sequence are the halved versions of those from the CIF

sequence.

Note that the down-scaling process could cause possible problems on MV

accuracy, as well as the block size for a block-based motion model. For example, a

quarter pixel MV will result in a one eighth pixel MV when halving, which might

be either not supported by the codec or redundant for the current resolution. On

the other hand, a 4x4 block will become a 2x2 block on smaller resolution pictures,

which might again either exceed the decoder’s capabilities or simply not be worth

coding in the RD sense. These two well-known problems on spatial scalability

of scalable motion were used to be solved by scalable MV coding and layered

modeling, respectively, after the non-scalable MVF is estimated [83].

In our proposed SMM, a complete scalable MV coding algorithm is pro-

vided. Given the coding algorithm, MVF is estimated and optimized in a scalable

manner via the proposed RDO ME algorithm. At the same time, the function

of layered modeling is also inheritably provided after MVF is estimated. This

approach provides an alternative to conventional post-estimation coding methods

[62], where motion scalability is enabled at the decoder from the non-scalable mo-

tion estimated at the encoder. Moreover, in order to guarantee that all down-scaled

MVFs are decodable, spatial scalability for scalable motion should be formulated

as a constraint problem in our SMM rather than a scalability problem. The details

will be explained in the next chapter.

4.3 Theoretical Justification

Motion parameters have traditionally been coded losslessly due to the drift

problem inherited from the closed-loop structure. Considering the scenario where

a low quality sequence is decoded, it is intuitively a lot easier to discard the extra
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texture bits than to quantize the motion parameters. One reason is that the

quantization effect of texture bits is easily predicted and quantified. In contrast,

quantization of motion bits might result in a non-predictable behavior that is highly

correlated to the individual video content. Another reason is that, even though

motion information can be quantized, the corresponding texture that reflects the

actual difference between the current picture and the new motion-predicted picture

can not be re-transmitted. Only the unique version of texture that corresponds

to the highest fidelity motion prediction is available for decoding. The mismatch

between the quantized motion parameters and the original texture information

prevents further investigation of the feasibility of scalable motion.

In this section, theoretical supports for the effectiveness of scalable motion

will be discussed. For simplicity, we first consider the case where block motion

prediction and texture coding is applied. In addition, uni-directional motion pre-

diction is adopted and thus the motion compensated block can be expressed as a

function of the underlying motion vector v, i.e. M(v). The texture block is then

T = c−M(v∗), (4.1)

where c is the current block and v∗ is the highest fidelity motion vector. The

reconstructed block can be expressed as

r = M(v) + Q(T ), (4.2)

where Q denotes the quantization function. Consider two scenarios where the sum

of motion and texture bits remains the same, i.e. R(v1) + R(Q1(T )) = R(v2) +

R(Q2(T )). In the first case we assume the motion is coded losslessly, i.e. v1 = v∗.

r1 = M(v1) + Q1(T ) = M(v∗) + Q1(T ) (4.3)

In the second case v2 is a quantized version of v∗.

r2 = M(v2) + Q2(T ) (4.4)

Comparing with the original block, c = M(v∗) + T , if

||c− r2||2 < ||c− r1||2, (4.5)
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the reconstruction quality in case 2 will outperform the losslessly coded motion in

case 1. By plugging in, we get

||(M(v∗)−M(v2)) + (T −Q2(T ))||2 < ||T −Q1(T )||2. (4.6)

By applying the additive distortion model [62], we have

||(M(v∗)−M(v2))||2 + ||(T −Q2(T ))||2 < ||T −Q1(T )||2 (4.7)

Note that the additive distortion model assumes that the motion distortion is

orthogonal to the texture distortion. By moving the motion distortion to one side

and the texture distortion to the other, we have

||(M(v∗)−M(v2))||2 < ||T −Q1(T )||2 − ||(T −Q2(T ))||2. (4.8)

In other words, if the distortion introduced by quantization of motion information

is less than the texture distortion difference resulting from using different quantiza-

tion parameters, rate-scalable motion can achieve better decoding quality. While

the distortion from texture quantization can be easily formulated [30, 21], the

complicated interaction between motion parameter quantization and the resulting

motion prediction quality is not trivial. In [62], Secker analyzed this relationship

via the power spectrum density characteristics of the reference picture. In order

to make this dissertation more self-contained, we will summarize his work in the

rest of this section.

Motion Vector Quantization

The relationship between motion vector mean-squared error (MSE) and the

resulting video distortion depends primarily on the power spectral properties of the

video data.

Consider the reference picture, x[n] ≡ x[n1, n2], and the motion warping

operation, W , which corresponds to a certain non-quantized motion. The mo-

tion compensated picture can be expressed as y[n] = W(x)[n]. Suppose now W
is affected by quantization of its motion parameters, resulting in the quantized

operator W ′, which produces y′[n] = W ′(x)[n].
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Assume that the quantization introduces a constant displacement error, δ,

and the ideal motion compensated interpolation for subpixel motion is supported.

The displacement in spatial domain, y′[n] = y[n−δ], results in a linear phase shift

in the frequency domain, y′(ω) = y(ω)e−jωtδ. By Parseval’s theorem, the total

squared error Dy is given by

Dy =
∑
n1

∑
n2

|y[n1, n2]− y′[n1, n2]|2

=
1

(2π)2

∫

ω1

∫

ω2

Sy(ω)|(1− e−jωtδ)|2dω1dω2,

(4.9)

where Sy(ω) = |y(ω)|2 is the energy spectral density of y[n]. Applying the Taylor

series expansion, we get

|(1− e−jωtδ)|2 = 2− 2 cos(ωtδ)

= 2

[
(ωtδ)2

2!
− (ωtδ)4

4!
+

(ωtδ)6

6!
− · · ·

]
.

(4.10)

For small δ, ωtδ is also small, which leaves the actual approximation with the

second order term only.

Dy ≈ 1

(2π)2

∫

ω1

∫

ω2

Sy(ω)(ωtδ)2dω1dω2 (4.11)

By further assuming Sy(ω) ≈ Sx(ω), we have

Dy ≈ 1

(2π)2

∫

ω1

∫

ω2

Sx(ω)(ωtδ)2dω1dω2. (4.12)

Note that this assumption is true as long as the motion warping operator W is

not excessively expansive or contractive ,and is implemented using sufficiently high

order interpolators. Eq. (4.12) can be expressed in another form as follows.

Dy ≈ Ψ1,xδ
2
1 + Ψ2,xδ

2
2 + Ψ3,xδ1δ2 (4.13)

where

Ψ1,x =
1

(2π)2

∫

ω1

∫

ω2

Sx(ω)ω2
1dω1dω2 (4.14)

Ψ2,x =
1

(2π)2

∫

ω1

∫

ω2

Sx(ω)ω2
2dω1dω2 (4.15)

Ψ3,x =
1

(2π)2

∫

ω1

∫

ω2

Sx(ω)ω1ω2dω1dω2 (4.16)
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represent three motion sensitivity factors. One property can be observed from

the formulation of Ψ. The squared terms of the frequency variables, ω, inside the

integrals reflect the strong dependency between motion sensitivity factors and high

frequency energy contents in the reference picture. Intuitively, spatial edges are

affected by motion errors much more than smooth spatial regions.

Quantization can also affect the power spectrum of the reference picture. In

hybrid video coding, the reference picture is chosen from the reconstructed picture

buffer. At low bit rates, high frequency components are highly quantized, which

results in a smaller Ψ. In other words, low bit rate sequences suffer less from the

motion error than the high bit rate sequences.

By expressing δ in polar form, we can rewrite Dy in (4.13) as a function of

||δ||2 and θδ.

Dy ≈
(
Ψ1,x cos2(θδ) + Ψ2,x sin2(θδ) + Ψ3,x cos(θδ) sin(θδ)

) ||δ||2

, Ψx(θδ)||δ||2
(4.17)

Since natural images often exhibit roughly isotropic power spectra, the average

motion sensitivity, Ψx, which is obtained by averaging Ψx(θδ) over all θδ, should

be adequate to approximate the original Ψx(θδ).

Ψx =
1

2π

∫ π

−π

Ψx(θδ)dθδ =
Ψ1,x + Ψ2,x

2
(4.18)

To summarize, under the assumption of small and constant motion error, δ, we

have a linear distortion model as follows.

Dy ≈ Ψx||δ||2, (4.19)

where Ψx is an isotropic motion sensitivity factor, which depends on the actual

energy spectral density of the reference picture. In order to improve the accuracy of

the linear model, the higher order terms in (4.10) can be taken into consideration.

For example, the quadratic distortion model derived by including two terms in

(4.10) is shown below.

Dy ≈ Ψx||δ||2 −
(

Φ1,x + Φ2,x

24

)
||δ||4, (4.20)
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where

Φ1,x =
1

(2π)2

∫

ω1

∫

ω2

Sx(ω)ω4
1dω1dω2 (4.21)

Φ2,x =
1

(2π)2

∫

ω1

∫

ω2

Sx(ω)ω4
2dω1dω2 (4.22)

The comparison of experimental results with both the linear and the quadratic

distortion models, using the first frame of the MOBILE sequence, is shown in Fig.

4.2. Two observations on the effect of increased quantization can be made. First,

the accuracy of the linear distortion model, as an approximation to the actual

experimental results, increases for heavier quantization. Second, the motion sen-

sitivity factor decreases as quantization increases. Both of these results are as

expected. In addition, the quadratic model fits the actual results better than the

linear model, although the improvement is fairly limited.

Figure 4.2: Distortion as a function of motion errors. Linear and quadratic models
are compared with experimental results.

With the help of the linear distortion model, it is easier to evaluate the left

hand side of (4.8). Specifically, the criterion for scalable motion to be beneficial
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can be simplified as follows.

Ψx||δ||2 < Dt,1 −Dt,2 (4.23)

where Dt,i , ||T −Qi(T )||2 denotes the texture distortion introduced by quantizer

i.

4.4 Acknowledgement

Portions of this chapter appear in “A Fully Scalable Motion Model for

Scalable Video Coding”, Meng-Ping Kao and Truong Nguyen, in the June 2008

issue of the IEEE Transactions on Image Processing ; and also in “A Fully Scalable

Motion Model for Scalable Video Coding”, Meng-Ping Kao and Truong Nguyen,

in Proceedings of the IEEE International Conference on Image Processing, Sep.

2007. The dissertation author was the primary author of these publications, and

the listed co-author directed and supervised the research that forms the basis for

this chapter.



5 Proposed Block-Based Scalable

Motion Model

Considering the required functionalities of scalable motion as illustrated in

Section 4.2, we propose a novel and fully scalable motion model in this chapter. The

proposed SMM is based on block motion and is best suitable for SVC frameworks

with Laplacian pyramid realization for spatial scalability, e.g. 2D+t+2D WSVC

or the SVC standard.

The basic cell of the proposed SMM is a macroblock. Fig. 5.1 shows the

structure of this basic cell. It is clear that we explicitly implement both refining

methods for motion scalability in our model, i.e. the MV accuracy dimension and

the VBS dimension along horizontal and vertical axes, respectively.

Figure 5.1: Proposed fully scalable motion model.

In the following sections, we begin with illustrating the algorithm that

adapts the motion parameters in our SMM to different decoding scenarios, i.e.

different combinations of temporal, spatial, and quality specifications. This is en-

abled by further exploring the properties of both the MV accuracy and the VBS

65
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dimensions.

The RDO ME algorithm will then be discussed in Section 5.2, which pro-

vides the tool for the encoder to select the most suitable motion parameters for

various target operating bit rates, as well as different resolutions.

Accompanied by the RDO ME algorithm is the coding method for the pa-

rameters used in our SMM. This is crucial for the complete RDO ME process since

without the coding algorithm, the rate cost for encoding the motion parameters

can not be determined. Moreover, the coding algorithm requires further elabo-

rations to minimize the overhead resulting from carrying additional scalabilities.

Detailed descriptions will be given on both VBS structural coding and MV accu-

racy refinement coding in Section 5.3.

Due to the coarse grain quality scalability of scalable motion, decoding

bit rates might reside between two predefined operating points adopted by the

encoder. In this case, optimal decoding involves determination of the motion

quality layer that gives the best decoding quality. This is the main task of the

bitstream extractor that is enabled with scalable motion. This topic will be covered

in Section 5.4.

In the end of this chapter, we demonstrate the rate distortion efficiency of

the proposed SMM with extensive experiments. Various testing sequences, as well

as miscellaneous decoding setups, will be taken into account.

5.1 Dimension of Scalable Motion

According to the design shown in Fig. 5.1, quality scalability can be easily

realized by choosing the decoding levels on each dimension. Lower decoding levels

correspond to lower quality MVFs.

Even though the proposed model provides two dimensions to fine tune the

motion quality, the best motion for a target bit rate remains unique. This is ideally

determined by trying all possible refinements (based on the previous motion quality

layer) on each dimension and finding the combination with the lowest residual

energy under the target bit rate constraint. This method is highly intractable due
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to the enormous number of combinations to be estimated.

On the other hand, by introducing the Lagrange multiplier, λ, associated

with the target bit rate, any refinement with a higher slope (distortion reduction

to rate ratio) than λ should be included in the current motion quality layer. Note

that this approach is only a suboptimal solution due to the greedy algorithm along

a specific search order. A different search order might lead to a different solution.

Also note that the rate measurement plays an important role in the estimation

process. Since the rate overhead occurs on both refined and non-refined information

(to be illustrated in Section 5.3), the freedom to choose refinements on both the

accuracy and the VBS dimensions might also hurt the total efficiency if a better

coding method dealing with those overheads is not available.

One possible way to further simplify the estimation problem is to associate

either the MV accuracy or the VBS dimension with the motion quality layers,

and let the rate distortion motion estimation determine the best parameters for

the other dimension. For example, if the accuracy dimension is chosen as the

motion quality layers, each accuracy level is assigned a λ according to its target

bit rate. No refinements at higher accuracy levels are allowed in the current motion

quality layer with λ. On the other hand, the refinements on the VBS dimension

are purely determined by the RD motion estimation. A refinement at the highest

VBS level might be included in the lowest motion quality layer if a better RD

curve is observed. This simplification reduces the estimation problem from 2D to

1D and saves some rate overhead on the reduced dimension.

The next question is which dimension, as a motion quality layer, is better

for the coding efficiency. To answer this question, an experiment is performed

to compare the motion compensation performances of these two candidates. Fig.

5.2 shows the PSNR of the motion compensated frame versus the bits required

to describe the motion parameters for various video sequences. A curve towards

the top-left corner indicates a better coding performance. As observed from the

figure, the accuracy dimension outperforms the VBS dimension throughout all

testing sequences. Moreover, with the aid of the proposed SMM structure coding

algorithm (to be described in Section 5.3), the motion bits can be further reduced
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for the same MC PSNR. Note that the dynamic range of the motion bits can be

adjusted by changing λ and the number of motion quality layers is set to three in

this experiment.

The idea behind choosing the accuracy dimension as quality layers as op-

posed to the VBS dimension is that the VBS structure is more content dependent

and it should be optimized to the underlying motion via RDO ME. It is, however,

not to say that the MV accuracy is not content dependent. The MV accuracy

suffers less from not being optimized to underlying motion than the VBS struc-

ture. If only one can be chosen so as to reduce estimation complexity and save

rate overhead, the MV accuracy would be the better choice.

As far as VBS scalability is concerned, all the internal nodes in the tree

structure should be determined and encoded for possible decoding purposes, as

well as the leaf nodes. An example for quadtree structure can be referred to in

[42]. To further increase the coding efficiency, an incomplete quadtree structure is

adopted in our SMM as shown in Fig. 5.3. A considerable amount of bits can be

saved when some of the leaf nodes have similar MVs to that of their parent node.

The decision process is rate distortion optimized as we will discuss in Section 5.2.

Some notations must be clarified before further description of our SMM can

proceed.

• A: Number of MV accuracy levels. A ≥ 1, A ∈ Z.

• a: Index of a MV accuracy level. 0 ≤ a < A, a ∈ Z. The MV accuracy base

level is denoted by a = 0.

• λa: Rate multipliers for accuracy level a. In general, λ0 ≥ λ1 ≥ · · · ≥ λA−1.

• V : Number of VBS levels. V ≥ 1, V ∈ Z.

• v: Index of a VBS level. 0 ≤ v < V, v ∈ Z. The VBS base level is denoted

by v = 0, which has the largest block size.

• R: Number of resolution levels. R ≥ 1, R ∈ Z.
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(a)

(b)

(c)

Figure 5.2: Motion rate distortion curve. (a) FOREMAN. (b) BUS. (c)
FOOTBALL.
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Figure 5.3: Incomplete quadtree structure.

• r: Index of a resolution level. 0 ≤ r < R, r ∈ Z. The largest picture is

denoted by r = 0.

• wr: Distortion multipliers for resolution level r.

• I: Actual MV accuracy offset. I ∈ Z. The actual MV accuracy (in pixels)

for resolution r and accuracy level a is denoted by 2−(I+a+r). For example,

I = 0 is equivalent to integer pixel accuracy and I = 1 is equivalent to half

pixel accuracy for a = r = 0. This parameter provides an absolute scale for

the MV accuracy. In general, I = 0, i.e. integer pixel accuracy for the MV

accuracy base level in the largest sized picture, is assumed in the sequel.

• (v, i, j): Coordinate of the quadtree node (subblock) at VBS level v and

indexed by (i, j), where 0 ≤ i, j < 2v, i, j ∈ Z denote the vertical and

horizontal indices respectively. Note that the root node is denoted by (0, 0, 0).

Each subblock has its own unique coordinate within a MB.

The proposed SMM shown in Fig. 5.1 is for resolution r = 0 only, i.e.

it contains ready-to-use motion information for the largest resolution sequence.

The descriptions in parenthesis are examples for practical applications. In this

example, the SMM supports up to quarter pixel accuracy MV and the block size

may range from 32x32 to 8x8. If MVFs for smaller size sequences are requested,

i.e. r > 0, a proper down-scaling process is required. For example, “Integer

Pel” means that it is the integer pixel accuracy level for r = 0, which should

be the half pixel accuracy layer for r = 1, and so on. Similarly, “32x32” means
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that the block size is 32x32 for r = 0, which should be 16x16 for r = 1 and,

so on. Therefore, when decoding smaller sized pictures, irrelevant/unsupported

information should be discarded for maintaining high coding efficiency. This is

accomplished by applying two constraints on the accuracy and the VBS dimensions

as follows. For resolution r, the highest accuracy level ar and the highest VBS level

vr are

ar = A− 1− r (5.1)

vr = V − 1− r (5.2)

respectively. By highest levels ar and vr we mean the codec does not support more

refined levels for the given resolution r. In other words, quality scalability of the

SMM can only operate within the range a = 0, · · · , ar and v = 0, · · · , vr, i.e. part

of the top-left corner in the SMM structure.

Knowing the constraints posed by spatial scalability, we are ready to move

on to quality scalability, which is the most important part of the SMM. In our

SMM, every accuracy level a is associated with a target motion bit rate and is

optimized to that bit rate through the RDO ME process to be discussed in the

next section. By increasing the total number of accuracy levels A, we can achieve

FGS gradually. For example, given resolution r, the decodable MVF quality can

be lowest by choosing a = 0, and can be progressively improved up to a = ar.

As mentioned earlier, the motion quality is determined by a, not v. The

VBS structure is optimized to a certain motion rate implied by a. Reducing the

motion rate by choosing a smaller v would result in a non-optimal MVF. Instead,

optimal MVFs can always be acquired to meet the motion rate requirement by

changing a. The only exception is when the decoder asks for a smaller bit rate

than the base accuracy level a = 0 can provide. Only in this case shall v < vr be

allowed.

However, this is not to say VBS scalability has no control on motion quality.

Instead, it comes in great effect in a more implicit way. An increasing bit budget

for the motion model could result in a more refined motion structure. This is the

reason why the incomplete quadtree structure keeps growing as a increases, which

can be observed from our example in Fig. 5.1.
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The final note on our proposed block-based SMM is that it can be easily

applied to multiple hypothesis motion models. The information indicating whether

the current MB is intra or inter coded (if inter coded, whether it is P or B MB) is

encoded in the MB header. For inter MB, the corresponding reference index should

be provided. In the case where B MB is present, two reference indices along with

two jointly estimated SMM’s are encoded. For decoding, predictions from each

SMM (with different reference pictures) with the assigned motion quality layer are

first derived. A weighted average of these two predictions is adopted as the final

prediction of the current B MB. An obvious limitation of the above scheme is that

all information in a MB-based SMM has to come from a single reference picture.

No multiple references are allowed within a P MB.

5.2 Rate Distortion Optimized Motion Estima-

tion

A motion model without the corresponding rate distortion optimization

algorithm can not achieve the best coding efficiency. It is the encoder that has full

access to the original video sequence and thus should be responsible for providing

the best motion information that suits the decoder’s requirements. Therefore,

given all possible decoding scenarios, a good RDO strategy at the encoder can

usually outperform a good standalone bitstream extractor at the decoder.

In our proposed SMM, the RDO is performed in the basis of subblocks and

the scanning order is shown in Fig. 5.4 for an example of a structure with three

VBS layers. As observed from Fig. 5.4, the scanning order is from the top layer,

v = 0, to the bottom layer, v = V −1, with a raster scan in group of four subblocks

within the same VBS layer.

For each subblock indexed by (v, i, j), our goal is to determine the best

scalable motion vector (SMV) in a RD sense. The SMV is predictively coded and

thus composed of two parts: motion vector prediction (MVP) and motion vector
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Figure 5.4: RDO ME scanning order.

difference (MVD).

SMV (v, i, j, r, a) = MV P (v, i, j, r) + MV D(v, i, j, r, a) (5.3)

Note that both SMV and MVD are functions of subblock position (v, i, j) as well

as spatial resolution r and accuracy level a, while MVP is independent of a. The

reason is that all MVPs are obtained only from the accuracy base level a = 0 to

ensure SMVs can be decoded under all situations.

The root node of each MB is predicted from its available neighboring MBs

to its left, top, and top-right. The prediction is obtained by taking the median

value independently on both x and y components.

MV P (0, 0, 0, r)

= median(SMVL(0, 0, 0, r, 0), SMVU(0, 0, 0, r, 0), SMVUR(0, 0, 0, r, 0))
(5.4)

In the case one or more of these three neighboring MBs is unavailable, the following

rule applies.

MV P (0, 0, 0, r)

=





0 if none is available,

SMVi(0, 0, 0, r, 0) if one is available,

(SMVi(0, 0, 0, r, 0) + SMVj(0, 0, 0, r, 0)) /2 if two are available.

(5.5)

For nodes other than the root node, i.e. v > 0, a prediction is obtained
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directly from their parent nodes.

MV P (v, i, j, r) = SMV (v − 1, i À 1, j À 1, r, 0)

= MV P (0, 0, 0, r) +
v−1∑

v′=0

MV D(v′, i À (v − v′), j À (v − v′), r, 0)
(5.6)

where À is the bitwise right shift operation.

For simplicity, the common parameter (v, i, j) will be omitted from now

on. Different MV D(r, a) are obtained from a unique and progressively encoded

scalable motion vector difference SMV D via the parameters r and a.

SMV D = (s, ref(0), ref(1), · · · , ref(A− 1)), (5.7)

where −1 ≤ s < A denotes the starting/minimal accuracy level for the current

SMV D to be decoded into MV D(r, a). For any a < s, MV D(r, a) = 0 where

0 , (0, 0). Moreover, s = −1 is reserved for the case where no SMV D is provided.

In this case, MV D(r, a) = 0 for all r, a.

ref(a), a = 0, · · · , A− 1 are the refinement vectors for level a. The possible

range of ref(a) is defined as follows.

ref(a) ∈



{(x, y)|x, y ∈ Z} if a = 0,

{(x, y)|x, y ∈ {−1, 0, 1}} if a > 0.
(5.8)

ref(0) is the first SMVD refinement, which in general has no boundary

limitation but is practically bounded by the ME search range. Considering the

distribution of a MVD, an Exp-Golomb encoder is usually used to encode ref(0).

ref(a), a > 0 is the following SMVD refinement for level a. It is limited

within the nearest eight neighbors, or simply no refinement, i.e. a total of nine

candidates as indicated in (5.8).

These refinement vectors all have integer entries such that an encoding

codebook can be easily designed to achieve further compression. They can be

mapped back to the actual 2D MVs through the following function.

T (ref(a)) = 2−(I+a)ref(a) (5.9)



75

As a final remark on T (·), any zero ref(a) will also result in a zero MV, i.e.

T (0) = 0. (5.10)

Knowing the actual 2D MVs, T (ref(a)), the MVD for resolution r up to

accuracy level a can be obtained in the following manner.

MV D(r, a) =





0 if ar < s or s = −1,

2−r
min(a,ar)∑

i=0

T (ref(i)) otherwise.
(5.11)

While (5.11) provides a clear formula for decoding an SMVD to a desired

MV D(r, a), a simple example might further help us to understand the practical

meaning on each entry of the SMVD. Suppose we have three spatial resolutions

(R=3), i.e. 4CIF, CIF, and QCIF, three MV accuracy levels (A=3), i.e. integer,

half, and quarter pixel, and an SMVD expressed explicitly as (1, (5, 3), (1, 0), (−1, 1)).

The full accuracy MVD for 4CIF resolution is MV D(0, 2) = (5, 3) + (0.5, 0) +

(−0.25, 0.25) = (5.25, 3.25). On the other hand, the full accuracy MVD for CIF

resolution is MV D(1, 2) = ((5, 3) + (0.5, 0))/2 = (2.75, 1.5). Note that when

a corresponding scaling operation for smaller resolution is applied, the last en-

try of SMVD, i.e. (-1,1), has virtually no effect on CIF resolution. In fact, we

have MV D(1, 2) = MV D(1, 1) in this particular situation. To further explore

the impact of the first entry s, we now decode the least accurate MVD for QCIF

resolution, i.e. MV D(2, 0) = (0, 0). Note that although the integer pixel entry is

supposed to be valid for QCIF resolution, which should have resulted in a MVD

of (5, 3)/4 = (1.25, 0.75), the first accuracy level entry s = 1 prevents this from

happening. As a matter of fact, any resolution smaller than CIF, i.e. {r|ar < 1},
gets virtually zero information from this particular SMVD with s = 1. The benefit

of a larger s is to force the SMVD to be invisible for smaller ar, in return for

the possibility to encode this SMVD in a lower penalty zone. The details will be

elaborated in Section 5.3.

In order to obtain the optimal SMVD, a new cost function will be intro-

duced to serve as the minimization criterion in the RDO ME process. This new

cost function consists of distortion and rate measures, which are similar to the
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conventional RDO ME process [68]. However, both measures are modified to ac-

commodate the scalable features of SVC, including various operating bit rates and

decoding resolutions. From the notation mentioned earlier, we have a set of rate

multipliers {λa|a = 0, · · · , A− 1} such that each accuracy level a will be weighted

by the penalty multiplier λa. In general, a smaller a corresponds to a lower decod-

ing bit rate, which in turn requires a larger penalty multiplier λa. Therefore, we

usually have the relationship λ0 ≥ λ1 ≥ · · · ≥ λA−1.

Note that the actual determination process for optimal {λa} has to go

through a similar training process as in [80]. The ideal outcome is expected to

be a regression function with a rate allocation table, e.g. Table 5.5, as the in-

put and {λa} as the output. However, the details are beyond the scope of this

paper. The capability of the proposed SMM so far is to provide a tool for SVC

encoder optimization. There are still some parameters, e.g. {λa}, to be fine tuned

to achieve true optimization. In our simulations, {λa} are experimentally and op-

timally determined for each testing sequence under a certain bit rate allocation

table.

The new rate function, assuming {λa} is given, is defined as,

RF (SMV D) = RF ((s, ref(0), ref(1), · · · , ref(A− 1)))

=





λ0R(s) + λsR(ref(0)) +
A−1∑
a=1

λmax(a,s)R(ref(a)) if s 6= −1,

λ0R(s) if s = −1.

(5.12)

where R(·) is the function that returns the actual coding bits of each component

in SMV D. R(·) is determined by the SMV D codebook designing method to be

discussed in the next section.

Moreover, since the single SMVD would provide MVs for all possible reso-

lutions, the total distortion function should also be a combination from all possible

resolutions. The individual distortion function from each resolution is weighted by

{wr|r = 0, · · · , R− 1}. Note that unlike λa, wr has no conventional restrictions on

its relative values. Instead, wr is determined according to the decoder’s preference.

If the decoder prefers better coding efficiency for a specific resolution r, wr should
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be chosen relatively larger than the others, and vice versa. Given the set {wr}, a

new distortion function is defined as

DF (SMV D) = DF ((s, ref(0), ref(1), · · · , ref(A− 1)))

=
R−1∑
r=0

wrDr(SMV (r, A− 1))
(5.13)

where Dr(·) is the function that returns the distortion measurement when SMV (r, a)

is used in the MC process for resolution r. The distortion can be chosen as either

the reconstruction error for optimality or the MC error for a better tradeoff be-

tween complexity and performance [68]. The possible measurements include sum

of absolute difference (SAD), sum of square difference (SSD), and reconstruction

square error (RSE) [51] for MCTF-based SVC. Note that in our following experi-

ments, the SAD metric of the MC error is adopted for reduced complexity.

Combining (5.12) and (5.13), the new cost function can be defined as fol-

lows:

CF (SMV D) =RF (SMV D) + DF (SMV D)

=λ0R (s) + λsR (Ref (0)) +
A−1∑
a=1

λmax(a,s)R (Ref (a))

+
R−1∑
r=0

wrDr (SMV (r, A− 1))

(5.14)

The RDO process for finding the best SMVD begins with determining the

optimal pair (s, ref(0)). s and ref(0) should be jointly optimized to minimize (5.14).

The detailed pseudo-code is listed in Algorithm 1.

If the best s turns out to be −1, all refinements {ref(a)} are automati-

cally set to 0 and this completes the RDO ME process. If not, since the optimal

pair (s, ref(0)) is already determined, the RDO ME process proceeds by tracing

through a = 1, · · · , A− 1 to find the remaining ref(a). ref(a), a = 1, · · · , A− 1 are

sequentially determined according to the following rule.

ref(a) = arg min
x

(CF (s, ref(0), · · · , ref(a− 1),x,0, · · · ,0)) (5.15)
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Algorithm 1 Finding (s, ref(0))

for s = 0 to A− 1 do

ref(0) = arg min
x

CF (s,x,0, · · · ,0)

if ref(0) 6= 0 then

break for loop

else if s = A− 1 then

(s, ref(0)) = (−1,0)

end if

end for

5.3 Coding of Scalable Motion Model

The objective of the proposed SMM is to progressively optimize the coding

efficiency along the rate distortion curve. So far, the RDO ME algorithm for

finding the best SMV D has been illustrated in the previous section. However, the

function R(·) which depends on the SMV D codebook design is still undetermined.

In this section, we will investigate the coding techniques for the proposed

SMM. To further illustrate the individual properties for improved coding efficiency,

three subtopics will be discussed: 1) SMM structure, 2) first SMVD refinement

ref(0), and 3) following SMVD refinements ref(a), a = 1, · · · , A − 1. For each

topic, the properties that contain compression potentials will be examined and

optimal/sub-optimal coding methods will be proposed accordingly.

5.3.1 Structure Coding

In our SMM, VBS scalability is realized via the incomplete quadtree struc-

ture as shown previously in Fig. 5.3. At the same time, the VBS structure may

also evolve as the bit rate increases. For example, a block that does not need a

motion vector in low bit rate regimes might be benefited from one at a higher bit

rate. One straightforward way to explicitly describe this relationship might be

a label associated with each SMVD that indicates from which accuracy level this

SMVD will be decodable. This is exactly the first component, s, in our SMVD rep-
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resentation shown in (5.7). For example, s = 0 indicates that the current SMVD

is decodable from the very first accuracy level, while s = 1 is only decodable from

the second level. There will be no refinement at all for a subblock with s = 1 if

the decoder decides to stop decoding after the first accuracy level. However, note

that s = 1 does not mean there will be no ref(0); ref(0) will be encoded at level

a = 1 together with ref(1). As far as compression is concerned, if all the s within

a MB are encoded without further processing, a considerable amount of bits will

be consumed. Assuming there are three accuracy levels, a two-bit codeword is

inevitable for each s (four possible values for −1 ≤ s < 3). This would cause a

huge burden especially for low bit rate scenarios.

To solve the problem, we introduce the zero-tree bit plane coding strategy

to encode the SMM structure. Specifically, our accuracy levels, a, can be viewed

as the bit planes in zero-tree coding. Starting from the first accuracy level a = 0,

we trace through all subblocks to find their significance. As usual, once an SMVD

is found significant, it will be put into the significant list and remain significant

for the remaining sorting passes.

A deviation from the original zero-tree bit plane coding happens immedi-

ately after an SMVD is found significant. Instead of coding the sign bit of the

current coefficient, {ref(i)|0 ≤ i ≤ a} will be coded. However, this operation,

named the outset process, will wait until the entire sorting pass for level a is com-

pleted. The idea behind delaying the outset process is to separate the SMVD

structure bits from the remaining SMM refinement bits. The isolation of the SMM

structure bits can lead to a more efficient design for coding the SMM structure

itself.

The specific sorting method we adopt here is borrowed from Set Partitioning

in Hierarchical Trees (SPIHT) proposed by Said and Pearlman [59]. This method

takes advantage of the sparsity of significance bits to be coded. By introducing the

zero-tree structure and the set partition rule, the significance of a tree structure

can be represented using as few as one bit. This property suits our need very

well since RDO motion estimation at low bit rates gives a sparse MVF, which

in turn requires very few bits to encode according to SPIHT. As the bit budget
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increases, the resulting MVF becomes less sparse, which reduces the efficiency of

SPIHT. However, the rate concern is not as important as distortion in the high

rate regime.

In the sorting pass, the list of insignificant vectors (LIV) is first traced

through, followed by the list of insignificant sets (LIS). Since the operating point

on the RD curve shifts slowly from one quality level to another, only a few elements

in the list become significant for each pass. Knowing this property, we apply an

additional run length coding (RLC) on the significance bits from LIV. This will

help further compress the zero dominant significance bitstream. We list the RLC

decoding details in Table 5.1. Note that since the length of LIS is known, the bits

required for coding the position of “1” are either floor(log2 N) or ceil(log2 N).

Table 5.1: RLC decoding rules for LIV

LIV length First Second Decoding operations

(N) bit bit

0, 1, 2 No RLC. Read following N bits.

3 0 Padding with all zeros.

1 Read following N-1 bits. If all zeros, append

one at the end. If not, read one more bit.

4 or more 0 Padding with all zeros.

1 Read up to ceil(log2 N) following bits

to determine the position of one.

1 1 Read following N-2 bits. If all zeros, append

two ones at the end. If not, read one more bit.

If total number of ones so far is one, append

one at the end. If not, read one more bit.

Before introducing the complete SMM structure coding algorithm, let us

first define the notation below.

• O(v, i, j): Set of coordinates of all offspring of node (v, i, j).

• D(v, i, j): Set of coordinates of all descendants of node (v, i, j).
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• L(v, i, j): D(v, i, j)−O(v, i, j).

• s(v, i, j): s component of SMV D(v, i, j).

• Sa(v, i, j): Significance of node (v, i, j) at level a.

• ref(v, i, j, a): ref(a) component of SMV D(v, i, j).

• LIV: List of insignificant vectors.

• LIS: List of insignificant sets.

• LSV: List of significant vectors.

• SigLIV: Bit string recording the significance bits from scanning through LIV.

• SigLIS: Bit string recording the significance bits from scanning through LIS.

Note that the significance is defined as,

Sa(v, i, j) =





1 if 0 ≤ s(v, i, j) ≤ a,

0 otherwise.
(5.16)

The pseudo-code for the SMM structure coding algorithm is listed in Algorithm 2.

In summary, the original SPIHT algorithm is modified to encode the SMM

structure in a progressive manner. The extraction of significance bits helps to

further improve the coding efficiency of the SMM structure.

5.3.2 Precision Coding

The first refinement ref(0), as mentioned earlier in (5.8), is encoded using

the Exp-Golomb code. The horizontal and vertical components will be encoded

separately by a signed Exp-Golomb encoder and the resulting codewords are con-

catenated to give a single output. Note that the same MVD encoder is also used

in H.264/AVC [81]. It is statistically optimal when the magnitude of MVD is ex-

ponentially distributed. Note also that every SMV D(v, i, j) with s(v, i, j) 6= −1

will have a non-zero ref(0), which is a necessary consequence from Algorithm 1.
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Algorithm 2 SMM Structure Bit Plane Coding

¨ Initialization

Set LIV, LIS, and LSV as empty lists. Set a = 0.

Add (0, 0, 0) to LSV. Add (0, 0, 0) to LIS as type A.

Output ref(0, 0, 0, 0).

¨ Sorting Pass

Clear SigLIV.

for all (v, i, j) in LIV do

Save Sa(v, i, j) to SigLIV.

if Sa(v, i, j) = 1 then

move (v, i, j) to LSV.

end if

end for

Output SigLIV using Table 5.1.

for all newly added (v, i, j) in LSV do

Output ref(v, i, j, a′), a′ = 0, · · · , a.

end for

Clear SigLIS.

for all (v, i, j) in LIS do

if type A then

Save Sa(D(v, i, j)) to SigLIS.

if Sa(D(v, i, j)) = 1 then

for all (l,m, n) ∈ O(v, i, j) do

Save Sa(l, m, n) to SigLIS.

if Sa(l,m, n)=1 then

Add (l,m, n) to LSV.

end if

if Sa(l,m, n)=0 then

Add (l,m, n) to LIV.

end if
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end for

if L(v, i, j) 6= ∅ then

move (v, i, j) to the end of LIS as type B.

else

remove (v, i, j) from LIS.

end if

end if

end if

if type B then

Save Sa(L(v, i, j)) to SigLIS.

if Sa(L(v, i, j))=1 then

Add all (l,m, n) ∈ O(v, i, j) to the end of LIS as type A.

Remove (v, i, j) from LIS.

end if

end if

end for

Output SigLIS.

for all newly added (v, i, j) in LSV do

Output ref(v, i, j, a′), a′ = 0, · · · , a.

end for

¨ Refinement Pass

for all (v, i, j) in LSV except for those newly added in the last sorting pass do

Output ref(v, i, j, a).

end for

¨ Accuracy Level Update

if a < A− 1 then

a = a + 1. Go to Sorting Pass.

end if
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The remaining refinements ref(a), a = 1, · · · , A − 1, usually the subpixel

refinements (I = 0), are the last part of SMVD. These refinements contain a

series of vectors representing the progressive improvements of SMVD accuracy, i.e.

a = 1, · · · , A − 1. Practically speaking, we have half-pixel, quarter-pixel, and so

on.

1D Case – Optimal Codebook Design Without RDO

Our main purpose here is to develop an optimal coding algorithm for these

refinements. For simplicity, we first consider the case where RDO is turned off

during ME, i.e. the best ref(a) is chosen to minimize the distortion function only.

Moreover, only one component of MV is considered here to further reduce the

dimension of this problem. In this regard, an example can be depicted in Fig. 5.5,

where the red star denotes the best MV one can ever achieve with infinite accuracy.

Figure 5.5: 1D SMV refinement constellation.

Assuming r = 0, the best motion vector with only the first accuracy refine-

ment is estimated as,

SMVx (0, 0) = arg min
2Id∈Z

{∑
n

E2 (n; d)

}
(5.17)

where E(n; d) is defined as (3.9). Similarly, the best MV with refinements up to

accuracy level a is

SMVx (0, a) = arg min
2(I+a)d∈Z

{∑
n

E2 (n; d)

}
(5.18)
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Therefore, the refinements to be encoded can be represented as

refx(a) = T−1 (SMVx (0, a)− SMVx (0, a− 1)) , 1 ≤ a < A− 1 (5.19)

refx(a) in (5.19) might seem too arbitrary to be compressed efficiently. Therefore,

an assumption is introduced to regulate the possible distribution of refx(a).

Assumption 1 (Linearity Between MV Quantization Error and MC Er-

ror). ∑
n

E2 (n; d) = k (d− d∗)2 (5.20)

where d∗ and d are the best and currently estimated MVs respectively. k is a positive

constant.

This assumption simply assumes that the MC error given d is linearly pro-

portional to the squared distance between d∗ and d. It is a common assumption

which is also implicitly used in state of the art H.264/AVC sub-pixel motion esti-

mation [39]. Basically, it justifies the optimality for hierarchical motion estimation

from integer to subpixels.

Note also that Assumption 1 resembles the 1D counterpart of the linear

distortion model shown in (4.19), except that the additive distortion introduced by

the motion error is replaced by the actual motion compensated distortion. Recall

that one assumption to the linear distortion model is that δ should be small. It

is also satisfied here, i.e. |d − d∗| is small, since only subpixel refinements are

considered. As a matter of fact, if we assume the perfect motion compensation,

Assumption 1 becomes the same as (4.19) in 1D case.

By applying Assumption 1, (5.18) becomes

SMVx (0, a) = {di| (di − d∗)2 ≤ (dj − d∗)2 , ∀j 6= i,

2
(I+a)

di ∈ Z, 2
(I+a)

dj ∈ Z}
(5.21)

Equivalently,

d∗ ∈ [
SMVx (0, a)− 2−I−a−1, SMVx (0, a) + 2−I−a−1

]
, range (a) (5.22)

For example, both (5.21) and (5.22) are satisfied after plugging in the pa-

rameters in Fig. 5.5, i.e. d∗ = 0.5625, SMVx(0, 0) = 1, and SMVx(0, 1) =
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SMVx(0, 2) = 0.5. Eq. (5.22) is important in limiting the number of SMVx(0, a) to

no more than three candidates, which makes efficient compression possible. Specif-

ically, the possible range of d∗ before estimating SMVx(0, a) is listed in (5.23). The

possible alphabets which refx(a) belongs to are listed in (5.24). Back to our exam-

ple in Fig. 5.5, we have refx(1) = −1 ∈ {−1, 0, 1} and refx(2) = 0 ∈ {0, 1}.

d∗ ∈ range(0) ∩ · · · ∩ range(a− 1)

, PRange(a)

=





[
SMVx(0, a− 1)− 2−I−a, SMVx(0, a− 1) + 2−I−a

]

if SMVx(0, 0) = · · · = SMVx(0, a− 1),
[
SMVx(0, a− 1)− 2−I−a, SMVx(0, a− 1)

]

if ∃k, 0 ≤ k < a− 1, SMVx(0, k) < SMVx(0, k + 1) = · · ·
= SMVx(0, a− 1),

[
SMVx(0, a− 1), SMVx(0, a− 1) + 2−I−a

]

if ∃k, 0 ≤ k < a− 1, SMVx(0, k) > SMVx(0, k + 1) = · · ·
= SMVx(0, a− 1).

(5.23)

refx(a) ∈





{−1, 0, 1} if a = 1 or refx(k) = 0,∀k, 1 ≤ k < a,

{−1, 0} if ∃k′, refx(k′) = 1, 1 ≤ k′ < a, refx(k) = 0, ∀k, k′ < k < a,

{0, 1} if ∃k′, refx(k′) = −1, 1 ≤ k′ < a, refx(k) = 0,∀k, k′ < k < a.

(5.24)

In summary, Assumption 1 leads to the compact formula in (5.24) for effi-

ciently describing refx(a), 1 ≤ a < A. For most of the cases, one bit is sufficient to

encode refx(a).

In order to design the optimal codebook for refx(a), estimation of its dis-

tribution is required. From (5.21), finding the best SMVx(0, a) is equivalent to an

optimal scalar quantizer problem which quantizes the best MV d∗ to the possible

SMVx(0, a) candidates. According to the theory of the Lloyd-Max quantizer [27],

regardless of the distribution of d∗, the optimal decision boundary is always the
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middle point of two adjacent reconstruction points. In our case, the two possible de-

cision boundaries will be SMVx(0, a−1)−2−I−a−1 and/or SMVx(0, a−1)+2−I−a−1.

Therefore, given the decision boundaries, the distribution of refx(a) can be easily

obtained as long as the distribution p(d∗|refx(k), k = 0, · · · , a− 1) is known.

PRange(a) is the only possible interval that d∗ might reside in, given

refx(k), k = 0, · · · , a − 1. Since the best MV d∗ might appear anywhere in

PRange(a) without any preference, it is reasonable to assume the underlying dis-

tribution is uniform.

Assumption 2 (Uniform Distribution for d∗ within PRange(a)).

p (d∗|refx (k) , k = 0, · · · , a− 1) = U (PRange (a)) (5.25)

Given Assumption 2, the distribution of refx(a) can be easily derived and

shown in (5.26). The expected coding bits for refx(a) are thus 1.5, 1 and 1 for the

three different situations, after Assumption 2 is applied.

P (refx(a)|refx(k), k = 0, · · · , a− 1), 1 ≤ a < A

=





(
1
4
, 1

2
, 1

4

)
if a = 1 or refx(k) = 0,∀k, 1 ≤ k < a,

(
1
2
, 1

2

)
if ∃k′, refx(k′) = 1, 1 ≤ k′ < a, refx(k) = 0, ∀k, k′ < k < a,

(
1
2
, 1

2

)
if ∃k′, refx(k′) = −1, 1 ≤ k′ < a, refx(k) = 0,∀k, k′ < k < a.

(5.26)

1D Case – Optimal Codebook Design with RDO

In a video codec, RDO is commonly used to achieve the best quality under

some rate constraint. Therefore, RDO ME chooses the best MV that minimizes

the cost instead of simply the distortion. In this regard, (5.18) becomes

SMVx (0, a) = arg min
2I+ad∈Z

{∑
n

E2 (n; d) + λaR (d)

}
(5.27)

where R(d) denotes the actual bits for encoding d, and λa is the Lagrange multi-

plier.
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Introducing RDO in the ME process will inevitably shift the optimal deci-

sion boundary towards the reconstruction level with smaller possibility when the

distribution of refx(a) is non-uniform. Therefore, only the first situation in (5.26),

where refx(a) has the distribution [1/4, 1/2, 1/4], will be affected. The problem

then becomes how to find the optimal decision boundary b∗a that minimizes the

cost given λa. Without loss of generality, assume SMVx(0, a − 1) = 0. This

problem can be visualized in Fig. 5.6.

Figure 5.6: 1D SMV decision boundary for accuracy level a.

Given Assumption 2, the distribution of refx(a) is determined by b∗a as

follows.

P (refx(a)|refx(0), refx(1) = · · · = refx(a− 1) = 0)

=
1

2−I−a+1
[2−I−a − ba, 2ba, 2

−I−a − ba], 1 ≤ a < A
(5.28)

The optimal rate allocation is thus

R (d) =





(1− I − a)− log2 (2ba) if d = 0,

(1− I − a)− log2

(
2−I−a − ba

)
if d = ±2−I−a.

(5.29)
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The expected cost for all d∗ is

EX (Cost) = EX

(
k (d− x)2 + λaR (d)

)

=
1

2−I−a+1

∫ −ba

−2−I−a

(
x + 2−I−a

)2
+ λa

[
(1− I − a)− log2

(
2−I−a − ba

)]
dx

+
1

2−I−a+1

∫ ba

−ba

(x− 0)2 + λa [(1− I − a)− log2 (2ba)] dx

+
1

2−I−a+1

∫ 2−I−a

ba

(
x− 2−I−a

)2
+ λa

[
(1− I − a)− log2

(
2−I−a − ba

)]
dx

=

(
b2
a − 2−I−aba +

1

3
2−2(I+a)

)

+ λa

[
1− I − a− 2I+aba − 2I+aba log2 (ba)−

(
1− 2I+aba

)
log2

(
2−I−a − ba

)]

(5.30)

By taking the derivative with respect to ba, we have

d

dba

EX (Cost) = 2ba + 2I+aλa log2

(
2−I−a

ba

− 1

)
− (

2−I−a + 2I+aλa

)
(5.31)

The optimal decision boundary b∗a satisfies the following equation

2b∗a + 2I+aλa log2

(
2−I−a

b∗a
− 1

)
− (

2−I−a + 2I+aλa

)
= 0 (5.32)

which has no closed-form solution. The expected value of cost as a function of

decision boundary ba is shown in Fig. 5.7, assuming I = 0. The optimal decision

boundary b∗a as a function of λa is shown in Fig. 5.8, again assuming I = 0. We

observe that b∗a is a monotonically increasing function of λa, as expected. The

optimal decision boundary and the associated expected coding bits of refx(a) for

the RDO ME case are

b∗a = {ba|2ba + 2I+aλa log2

(
2−I−a

ba

− 1

)
− (

2−I−a + 2I+aλa

)
= 0} (5.33)

and

E [bits for coding refx (a)]

=
b∗a

2−I−a
[(1− I − a)− log2 (2b∗a)] +

(
1− b∗a

2−I−a

) [
(1− I − a)− log2

(
2−I−a − b∗a

)]

(5.34)

respectively.
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Figure 5.7: Expected cost as a function of decision boundary. (a) a = 1. (b) a = 2.
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Figure 5.8: Optimal decision boundary as a function of λa. (a) a = 1. (b) a = 2.
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2D Case – Direct Generalization from 1D Counterpart

Now that we know the optimal codebook designing method for subpixel

refinements in the 1D case, the generalization to the 2D case is straightforward.

ref(a) = (refx(a), refy(a)) (5.35)

P (ref(a)|ref(k), k = 0, · · · , a− 1), 1 ≤ a < A

=P (refx(a)|refx(k), k = 0, · · · , a− 1)× P (refy(a)|refy(k), k = 0, · · · , a− 1)

=





(
1
4
, 1

2
, 1

4

)× (
1
4
, 1

2
, 1

4

)
if a = 1 or refi(k) = 0,∀k, 1 ≤ k < a, ∀i, i ∈ {x, y},

(
1
4
, 1

2
, 1

4

)× (
1
2
, 1

2

)
if ∃refi(k) 6= 0, refj(k) = 0, i, j ∈ {x, y}, i 6= j,

(
1
2
, 1

2

)× (
1
2
, 1

2

)
if ∀i,∃refi(k) 6= 0, i ∈ {x, y}.

(5.36)

The distribution of ref(a) is shown in (5.36) for three different situations.

The expected coding bits for these three situations are 3, 2.5 and 2. The visual-

ization of three examples (one in each case) is shown in Fig. 5.9. The areas with

textures are the possible regions that the best MV might locate in. The triangular

grid points covered by the textured areas are the candidates for ref(a), each of

which has its own partition of the whole textured area and can be differentiated

by various patterns. According to Assumption 2, P (ref(a)|ref(k), k = 0, · · · , a−1)

is proportional to the size of area that belongs to ref(a).

Figure 5.9: Examples of possible refinement candidates (covered by the textured
area) and their own territories (with different patterns) in 2D constellation.
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2D Case – Non-Separable Refinements for Very Low Bit Rate Scheme

In a very low bit rate scenario, each subpixel refinement consuming 2 to 3

bits is still very inefficient. By eliminating less relevant grid point candidates, we

should be able to reduce the average bits to 1 and 1.5. An example for two levels

refinements, i.e. half and quarter pixel refinements, is shown in Fig. 5.10. In this

example, ref(1) requires 1.5 bits while ref(2) requires only 1.

Figure 5.10: 2D SMV refinement constellation for low bit rate scenario.

In Fig. 5.10, only those possible candidate grid points are marked. As-

suming that the best MV d∗ = (0.375, 0.125), d∗ will be encoded as SMV (0, 2) =

(0.25, 0.25) or equivalently ref(0) = (0, 0), ref(1) = (1, 0), and ref(2) = (−1,−1)

where ref(1) ∈ {(−1, 0), (0, 0), (1, 0)} and ref(2) ∈ {(−1,−1), (−1, 1)}.



94

5.4 Extractor for Optimized Decoder

The main task of the bitstream extractor in SVC is to truncate the scalable

bitstream according to the scaling parameters demanded by the decoder. The

adapted bitstream remains scalable itself and can be fed back to the extractor

again for further truncations. The decoder should then be able to decode all

adapted bitstreams that are legitimately generated by the extractor.

The designing criterion for a generic SVC bitstream extractor can be rather

trivial. For example, in the case where all scaling parameters are explicitly speci-

fied, the extractor can simply select those packets with required labels and discard

others. This can be done by properly assigning high level syntax descriptions [89].

On the other hand, when only partial constraints are imposed on the scaling param-

eters, the extractor has more freedom in selecting its output packets. For example,

in some situations where the total bit rate is restricted by the applicable channel

conditions, only the decoding bit rate will be specified, as opposed to frame rate

or spatial resolution. In those cases, extractor can decide the optimal combination

of frame rate and spatial resolution under the total rate constraint, which may be

optimal in the sense of visual quality or decoding complexity [44, 43, 79].

Taking the scalable motion into account, the SVC bitstream extractor now

has extra work to do, i.e. optimal bit allocation among motion and texture [15,

11]. In this section, we consider the case where decoding frame rate and spatial

resolution are pre-specified and fixed. At a certain decoding bit rate, one of the

motion quality layers, combining with the corresponding texture information, will

provide the best reconstructed quality. As the bit rate varies, the optimal motion

quality layer also changes accordingly. The optimal motion quality layer as a

function of decoding bit rate, if not provided by the encoder, will be determined

by the extractor. Based on this function, the adapted bitstream is guaranteed with

the best decoding quality throughout all possible rates, for the specified frame rate

and spatial resolution.

We propose three approaches for optimal bit rate allocation among motion

and texture in this section, i.e. brute force, model-assisted, and model-based. The
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brute force method determines the best motion quality layer for a certain bit rate

by exhaustively searching among all layers. A finite set of possible decoding bit

rates can be tested in this approach.

The model-assisted method is based on properties resulting directly from

the exponential rate-distortion model from general source coding theory. These

properties include the monotonically non-decreasing property of the optimal mo-

tion quality layer as a function of rate, and the unimodal property of decoded

quality as a function of motion quality layer. By applying these properties, irrele-

vant testing scenarios can be omitted without sacrificing the extractor performance.

Moreover, the monotonically non-decreasing property can further simplify the de-

scription of optimal motion quality layers by recording only the critical rates at

which the change in optimal motion quality layer occurs. For example, only two

critical rates are required for a three-layer motion model. The determination of

these critical rates can be realized using the bisection method, which is computa-

tionally efficient.

Now that the output of the extractor can be simplified to a series of critical

rates, the question becomes whether there exists a more efficient testing algorithm

to approach the critical rates than the bisection method. By explicitly applying the

rate-distortion model, a.k.a. the model-based method, a more accurate estimation

of the critical rate can be predicted. This estimation is in general better than

the middle point of the possible rate range, which is blindly predicted from the

bisection method. Through parameter estimation, the resulting model can adapt

to the actual video contents. In general, if the adapted model fits well with the

encoded bitstream, a reduced number of trial and errors can be expected before

the actual critical rate is reached.

5.4.1 Brute Force Method

In the brute force method, the same video bitstream is decoded multiple

times, each time a different motion quality layer is applied. The same process

is repeated several times for all those decoding bit rates of interest, resulting in

a table as shown in Table 5.2 for example (note that the entry marked with “-”
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indicates non-decodable). Those entries marked with bold face numbers reflect the

best motion quality layer for each decoding rate. A simplified table with one entry

for each motion quality layer identifying its effective range of decoding bit rates

should be stored for each frame and resolution. An example that corresponds to

Table 5.2 is shown in Table 5.3. These tables are not large and could be efficiently

compressed.

Table 5.2: Extractor RD table for the brute force method (BUS @ CIF 30 fps)

Decoding bit rate (kbps)

Motion quality layer 256 384 512 640 768 896 1024

0 23.3 24.27 24.96 25.55 25.86 26.13 26.29

1 - 24.63 25.58 26.54 27.01 27.42 27.74

2 - - 25.2 26.48 27.2 27.63 28.21

Table 5.3: Extractor information for the brute force method (BUS @ CIF 30 fps)

Motion quality layer Effective rate range (kbps)

0 0 - 320

1 320 - 704

2 704 - 1024

5.4.2 Model-Assisted Method

Note that for the rest of the current section, the notation “R” is used purely

for the “rate” only. This should not be confused with the “resolution” notation

that we have seen in previous sections, since the problem domain of the extractor

is limited within a single resolution and frame rate scenario. The “a” and “A”,

which are used for describing motion quality layers, remain the same as before.

As observed from Table 5.2, the optimal motion quality layer is a monotoni-

cally non-decreasing function of the decoding bit rate. This is neither a coincidence

nor a surprising result. The underlying rate distortion model for texture coding,

along with the motion distortion model mentioned in Section 4.3, can explain this

property well.
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Although the true distortion-rate model is data dependent and complicated,

a simpler model has been derived and used for video texture coding [88, 28, 30].

Dt(Rt) = σ2
t exp

(
−Rt

at

)
, (5.37)

where σt and at are content dependent parameters. Note that this exponential

model is derived by applying the high-rate assumption, i.e. the quantization step

size is small enough such that the quantization noise is almost uniformly dis-

tributed. This model provides an explicit way to quantify the texture distortion

Dt,i in (4.23) using Rt instead of the individual quantizer i.

Similarly, by plugging (5.37) into (4.19), the motion distortion-rate model

can be expressed as follows.

Dm(Rm) = Ψσ2
m exp

(
−Rm

am

)
(5.38)

The additive distortion model [62], which first appeared in (4.7), can be

restated formally as follows.

D(R) = Dm(Rm) + Dt(Rt) (5.39)

where

R = Rm + Rt (5.40)

Note that the distortion-rate models discussed so far are limited to single frame

encoding, given fixed reference pictures. Generalizing to a group of pictures is not

straightforward. The quality of reference pictures will be affected by the encoding

bit rate as well. The extra dependency prevents a single model for a group of

pictures using the above derivations.

A typical distortion-rate plot, depicting contributions from both motion and

texture, is shown in Fig. 5.11. Note that the plot is obtained using the texture

associated with the highest motion quality layer. Clearly, the rate efficiency, i.e.

negative slope of the distortion-rate plot, is monotonically decreasing for both

motion and texture.

−D′
t(Rt) , λt =

σ2
t

at

exp

(
−Rt

at

)
(5.41)
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Figure 5.11: Ideal distortion-rate plot showing contributions from both motion and
texture.

−D′
m(Rm) , λm = Ψ

σ2
m

am

exp

(
−Rm

am

)
(5.42)

Monotonically Non-decreasing Property

Knowing the aforementioned distortion-rate models, we are now able to

prove the monotonically non-decreasing property. Suppose at a certain decoding

rate R0, the minimal distortion is achieved with motion quality layer i.

Ψσ2
m exp

(
−Ri

m

am

)
+ σ2

t exp

(
−R0 −Ri

m

at

)
≤

Ψσ2
m exp

(
−Rj

m

am

)
+ σ2

t exp

(
−R0 −Rj

m

at

)
,∀j 6= i

(5.43)

Ψσ2
m

(
exp

(
−Ri

m

am

)
− exp

(
−Rj

m

am

))
≤

− σ2
t exp

(
−R0

at

)(
exp

(
Ri

m

at

)
− exp

(
Rj

m

at

))
,∀j 6= i

(5.44)
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Given an extra bit rate 4R, the total distortion difference between motion quality

layer i and j becomes,

Di −Dj =Ψσ2
m

(
exp

(
−Ri

m

am

)
− exp

(
−Rj

m

am

))

+ σ2
t exp

(
−R0 +4R

at

)(
exp

(
Ri

m

at

)
− exp

(
Rj

m

at

))

≤σ2
t exp

(
−R0

at

)(
exp

(
Ri

m

at

)
− exp

(
Rj

m

at

))(
exp

(
−4R

at

)
− 1

)

(5.45)

Since σt, at,4R > 0, exp (−4R/at)−1 < 0. For those motion quality layers j < i,

the corresponding motion bit rates Rj
m are smaller than Ri

m. Therefore, we have

(exp (Ri
m/at)− exp (Rj

m/at)) > 0. Eq. (5.45) becomes,

Di < Dj, ∀j < i. (5.46)

Here we have proven that when bit rate increases, the best motion quality layer

never decreases, i.e. the monotonically non-decreasing property. By applying this

property, many testing scenarios can be omitted without sacrificing the perfor-

mance of the final extractor output. In Table 5.2, for example, the motion quality

layer a = 0 need not be tested for decoding bit rates which are greater than 384

kbps.

Moreover, the monotonically non-decreasing property also provides an even

simpler way to describe the extractor information than the one shown in Table 5.3.

A series of critical rates, {Ra,∗|Da(Ra,∗) = Da+1(Ra,∗)}, can be found and recorded.

An example is shown in Table 5.4. Note that the monotonically non-decreasing

property limits the number of critical rates to A− 1.

Table 5.4: Extractor information for the model-assisted method (BUS @ CIF 30
fps)

Motion quality layer Critical rate (kbps)

0 - 1 272

1 - 2 816

Recall from Section 5.2 that the prior knowledge on {λa} indicates the set of

best operating points on which the motion quality layers are obtained. Therefore,
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the corresponding set of decoding bit rates, {Ra}, can be derived from {λa}. Given

Ra and Ra+1, our goal is to determine the critical rate, Ra,∗, where Ra < Ra,∗ <

Ra+1. Based on the monotonically non-decreasing property, Ra,∗ can be approached

using the bisection method. For each iteration, only two motion quality layers, i.e.

a and a + 1, are tested. In practice, the iterative algorithm can be terminated

whenever |Da(R̂a,∗)−Da+1(R̂a,∗)| < ε, where ε is a stopping threshold and R̂a,∗ is

an approximation to Ra,∗. Finally, {R̂a,∗|0 ≤ a < A− 1} is stored and transmitted

as the optimal extractor output.

Unimodal Property

The unimodal property, on the other hand, states that given a fixed decod-

ing rate, the decoding quality as a function of the motion quality layer is unimodal,

i.e. the decoding quality is monotonically decreasing on both sides of the optimal

motion quality layer. This property is especially useful when finding the maximal

decoding quality (or minimal decoding distortion). Once a decrease in decoding

quality is identified, there is no need to test the following motion quality layers.

The unimodal property can be proved as follows. We focus only on the

monotonically increasing distortion along the side of increasing motion quality

layers. The other side can be proved in exactly the same manner. Again, suppose at

a certain decoding rate R0, the minimal distortion is achieved with motion quality

layer i. For layer j > i, we have the relationship as shown in (5.44). According to

the mean value theorem, there exist Rij
m, Ri

m < Rij
m < Rj

m and Rji
t , Rj

t < Rji
t < Ri

t

such that

Dm(Ri
m)−Dm(Rj

m) = (Ri
m −Rj

m)D′
m(Rij

m) = −4RijD′
m(Rij

m) (5.47)

Dt(R
j
t )−Dt(R

i
t) = (Rj

t −Ri
t)D

′
t(R

ji
t ) = −4RijD′

t(R
ji
t ) (5.48)

where 4Rij , Rj
m − Ri

m = Ri
t − Rj

t > 0. Since layer i produces the minimal

distortion, we have

Dm(Ri
m) + Dt(R

i
t) < Dm(Rj

m) + Dt(R
j
t ) (5.49)
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Equivalently,

D′
m(Rij

m) > D′
t(R

ji
t ) (5.50)

Similarly, for another layer k > j,

Dm(Rj
m)−Dm(Rk

m) = −4RjkD′
m(Rjk

m )

< −4RjkD′
m(Rij

m)

< −4RjkD′
t(R

ji
t )

< −4RjkD′
t(R

kj
t )

= Dt(R
k
t )−Dt(R

j
t )

(5.51)

Note that the first and last inequalities in (5.51) result from the monotonically

increasing slopes as shown in (5.41) and (5.42), together with the fact that Rij
m <

Rjk
m and Rkj

t < Rji
t . The following relationship can now be concluded.

Dj < Dk, ∀{j, k|i < j < k}. (5.52)

In other words, the decoding distortion is monotonically increasing (decreasing)

on the right (left) hand side of the optimal motion quality layer. This proves the

unimodal property.

5.4.3 Model-Based Method

Theoretically, the critical rate, Ra,∗ ∈ (Ra, Ra+1), is the decoding bit rate

at which both motion quality layers, a and a + 1, produce the same distortion.

Da(Ra,∗) = Da+1(Ra,∗) (5.53)

Linear Model

For simplicity, we begin with an approximate model of the total distortion

function where the contributions from motion (both motion distortion and motion

rate) in (5.39) are ignored.

D(R) ∼= Dt(R) = σ2
t exp

(
−R

at

)
(5.54)
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Since the distortion-rate plot is usually depicted in logarithmic scale using Peak

Signal-to-Noise Ratio (PSNR) notation, we then have

PSNR(R) = 10 log10

(
2552

D(R)

)
∼=

(
10

at ln 10

)
R + 10 log10

(
2552

σ2
t

)
, αR + β

(5.55)

(α, β) can be estimated to reflect the individual characteristic of the video sequence

from at least two actual operating points on the PSNR-rate curve. In order to ap-

proach the critical rate Ra,∗, the best operating points for estimating (α, β) should

be (Ra, PSNR(Ra)) and (Ra+1, PSNR(Ra+1)). The estimate for Ra,∗ is then the

rate at the intersection of the two lines, i.e. PSNRa(R) and PSNRa+1(R), where

the former is the PSNR-rate curve using motion quality layer a and the latter is

using layer a + 1.

Because the actual PSNR-rate curve is approximated using a line with slope

α and offset β, this approach is called the linear model method. In the linear model

method, each iteration for determining an estimate of Ra,∗ requires four operating

points, i.e. (Ra, PSNRa(Ra)), (Ra+1, PSNRa(Ra+1)), (Ra, PSNRa+1(Ra)), and

(Ra+1, PSNRa+1(Ra+1)). Two of these operating points should be updated with

(R̂a,∗, PSNRa(R̂a,∗)) and (R̂a,∗, PSNRa+1(R̂a,∗)) from iteration to iteration, where

R̂a,∗ is the estimated Ra,∗.

Additive Model

The additive model method, as a refined version to the linear model method,

is realized by directly applying (5.39) without ignoring the effect of motion. How-

ever, motion distortion, which is an exponential function of motion rate in (5.38),

is generalized to a function of total rate to compensate for the inter frame motion

dependency within a GOP structure.

D(R) = Dm(R) + Dt(R−Rm) (5.56)

where Rm is the motion rate. Note that Dm(R) can be estimated using the

PSNR approach, which is similar to (5.55). The required operating points in-

clude (Ra, PSNRa
m(Ra)), (Ra+1, PSNRa

m(Ra+1)), (Ra, PSNRa+1
m (Ra)), and
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(Ra+1, PSNRa+1
m (Ra+1)), where PSNRa

m denotes the motion compensated PSNR

using motion quality layer a.

PSNRa
m(R) =

(
PSNRa

m(Ra+1)− PSNRa
m(Ra)

Ra+1 −Ra

)
(R−Ra) + PSNRa

m(Ra)

(5.57)

Da
m(R) = 255210−PSNRa

m(R)/10 −D∗
m (5.58)

where D∗
m is the minimal distortion, which is achieved using the highest motion

quality layer. Note that in the additive distortion model, the motion distortion

that is derived from the motion compensated PSNR should always be offset by

D∗
m. D∗

m can also be viewed as the energy of the un-quantized texture signal.

In order to determine the parameters σt and at, in addition to the same

four operating points from the linear model method, the motion rates for encoding

the different motion quality layers, {Ra
m}, are also required.

Since D∗
m and {Ra

m} for 0 ≤ a < A are known after encoding, Ra,∗ can be

derived by solving (5.53). By plugging in (5.56), we have

σ2
t

(
exp

(
−Ra,∗ −Ra+1

m

at

)
− exp

(
−Ra,∗ −Ra

m

at

))
= Da

m(Ra,∗)−Da+1
m (Ra,∗)

(5.59)

exp

(
−Ra,∗

at

)
=

Da
m(Ra,∗)−Da+1

m (Ra,∗)
σ2

t (exp(Ra+1
m /at)− exp(Ra

m/at))
(5.60)

In order to have an accurate Ra,∗, at and σt must be correctly estimated.

A widely accepted concept for estimating model parameters for video coding is

adaptive model fitting. The parameters are updated from frame to frame in order

to track the non-stationary characteristics of the video contents.

5.5 Experimental Results

The evaluation of the proposed SMM will be performed on the low com-

plexity WSVC framework proposed in Section 2.3. Fig. 5.12 shows the system

diagram with the insertion of the scalable motion model.

The format of the input testing sequences is CIF at 30 fps and the SVC will

generate scalable bitstreams with maximum bit rates for various decoding scenarios
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Figure 5.12: SVC system diagram with proposed SMM embedded.

as listed in Table 5.5. Our SMM will be compared side-by-side with a non-scalable

motion model for both CIF and QCIF decoding formats with different frame rates.

Table 5.5: Maximum bit rate allocation for the SVC encoder (kbps)

30 fps 15 fps 7.5 fps

CIF 1536 768 -

QCIF 512 256 128

The rate distortion curve for the FOOTBALL sequence in CIF size at full

frame rate is shown in Fig. 5.13(a). Here we try two different settings of wr,

where w = (1, 4) puts equal weightings on both CIF and QCIF sizes while w =

(1, 12) puts more weight on the QCIF size sequence. It is clear that both settings

outperform the non-scalable motion model. Moreover, lower decodable bit rates

can be achieved with the proposed SMM. Among the two settings using SMM, w =

(1, 4) yields slightly better coding efficiency on the CIF sequence as expected. This

result verifies that our SMM has the ability to fine tune the coding performance
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toward a preferred resolution using the distortion multiplier wr. The details of

the PSNR difference to non-scalable motion are listed in Table 5.6, along with the

results from BUS and FOREMAN.

Fig. 5.13(b) and Fig. 5.13(c) demonstrate two additional decoding scenar-

ios, i.e. reduced frame rate and reduced spatial resolution, respectively. While

Fig. 5.13(b) shows a similar trend to that in Fig. 5.6, the performance of the pro-

posed SMM is virtually the same or slightly worse than the non-scalable motion

in QCIF. This result differs from that of a t+2D SVC, where better performance

is usually observed for reduced resolution using scalable motion. However, it also

reflects the fact that in a 2D+t+2D SVC, reduced resolution has its own motion

information, which eliminates the incoherence from motion compensation. Since

dedicated motion information is estimated for reduced resolutions, it is reasonable

that scalable motion does not provide better performance than non-scalable ones.

Again, slightly better coding efficiency on the QCIF sequence is observed with

w = (1, 12). The details for BUS and FOREMAN sequences can be found in Table

5.7 and Table 5.8.

Table 5.6: RD comparison: CIF 30 fps

Bit rate (kbps) 128 256 384 512 1024 1536

FOOTBALL Non-scalable - - 23.87 25.02 27.51 29.30

SMM, w=(1,4) - - 0.34 0.32 0.32 0.38

SMM, w=(1,12) - - 0.32 0.25 0.27 0.32

BUS Non-scalable - 23.58 24.80 25.70 28.36 30.21

SMM, w=(1,4) - 0.08 0.07 0.06 0.07 0.16

SMM, w=(1,12) - 0.08 0.05 0.03 0.03 0.13

FOREMAN Non-scalable 26.58 28.99 30.16 30.89 35.86 37.76

SMM, w=(1,4) 0.22 0.13 0.05 0.07 0.01 0.05

SMM, w=(1,12) 0.22 0.12 0.04 0.04 -0.03 0.00

On the other hand, in order to evaluate the coding techniques of our pro-

posed SMM structure, SMVF using SPIHT is compared with SMVF without

SPIHT in Table 5.9. Note that Ea denotes the accuracy level from which SPIHT
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Figure 5.13: Comparison of RD curves between non-scalable motion model (solid
line) and the proposed SMM (dashed line with w = (1, 4) and dotted line with
w = (1, 12)) using FOOTBALL as input sequence. (a) CIF 30 fps. (b) CIF 15 fps.
(c) QCIF 30 fps.
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Table 5.7: RD comparison: CIF 15 fps

Bit rate (kbps) 128 256 384 512 640 768

FOOTBALL Non-scalable 22.14 24.25 25.94 26.97 27.82 28.71

SMM, w=(1,4) 0.22 0.35 0.35 0.33 0.34 0.43

SMM, w=(1,12) 0.21 0.30 0.31 0.31 0.29 0.38

BUS Non-scalable 23.13 25.14 26.75 27.76 28.67 29.63

SMM, w=(1,4) 0.04 0.07 0.13 0.05 0.11 0.22

SMM, w=(1,12) 0.06 0.04 0.14 0.04 0.08 0.20

FOREMAN Non-scalable 28.31 30.41 33.85 35.10 36.07 37.15

SMM, w=(1,4) 0.25 0.07 0.17 -0.04 0.04 0.13

SMM, w=(1,12) 0.23 0.05 0.23 -0.07 0.01 0.08

starts the sorting pass. No level smaller than Ea is decodable. However, the coding

efficiency is increased for those levels equal to or larger than Ea. In other words,

some scalabilities can be traded for higher coding efficiency if they are irrelevant.

According to Table 5.9, 63% savings can be achieved in the low bit rate regime,

i.e. a = 0. In general, the savings margin decreases for larger a.

One cause of the reduction of the bit saving percentage in high rate regimes

is the inefficiency of significance bits coding. By introducing the additional run

length coding on the LIV significance bits, we are able to effectively relieve the

problem. From the RD curves shown in Fig. 5.14, the effectiveness of the proposed

RLC coding can be clearly verified.

Fig. 5.15 shows three RD curves using different SMVD refinement codebook

design methods. We observe that the optimal design outperforms the original one

for all bit rates, with or without RDO. The very low bit rate design, on the other

hand, has the worst motion compensated PSNR. However, it also requires the least

bits, which satisfies the requirement of its possible applications.

Finally, we test our SMM using all proposed coding and estimation algo-

rithms side-by-side with a non-scalable motion model. BUS is chosen as the input

sequence, which has moderate motion between FOREMAN and FOOTBALL. The

RD curve is shown in Fig. 5.16, with the solid line (circle marker) depicting non-
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Table 5.8: RD comparison: QCIF 30 fps

Bit rate (kbps) 256 320 384 448 512

FOOTBALL Non-scalable 25.00 25.93 26.88 27.84 28.80

SMM, w=(1,4) -0.14 0.04 -0.08 -0.10 -0.01

SMM, w=(1,12) -0.11 0.07 -0.02 -0.06 0.02

BUS Non-scalable 26.04 26.98 28.01 28.87 29.70

SMM, w=(1,4) -0.18 -0.10 -0.11 -0.05 0.04

SMM, w=(1,12) -0.15 -0.06 -0.08 -0.05 0.05

FOREMAN Non-scalable 32.74 34.04 35.25 36.50 37.66

SMM, w=(1,4) -0.17 0.01 -0.08 -0.09 0.063

SMM, w=(1,12) -0.13 0.04 -0.03 -0.03 0.11

Table 5.9: SMM structure coding comparison

Original SPIHT

Ea = 0 Saving Ea = 1 Saving Ea = 2 Saving

a = 0 3271 1209 63% 56 - 56 -

a = 1 3584 1790 63% 1522 57% 56 -

a = 2 4372 3022 31% 2754 37% 2486 43%

scalable motion and the dashed line (square marker) depicting the proposed SMM.

Note that the dashed line is the convex hull of three different dotted lines, each

of them depicting the RD curve using different motion qualities. As observed, our

SMM is comparable to non-scalable motion in the high-rate regime, despite the

tradeoff of efficiency for scalability. Performance crossing starts in the middle-rate

range, as our SMM starts taking more advantage of the flexible tradeoff between

motion and residuals. In the low-rate regime, the SMM not only dominates the

performance comparison but also extends the decodable range to a region of much

lower rate.

To evaluate the different bitstream extractor realizations, we test 5 decod-

ing scenarios, i.e. CIF 30 fps, CIF 15 fps, QCIF 30 fps, QCIF 15 fps, and QCIF

7.5 fps, for 4 MPEG reference sequences, i.e. BUS, FOREMAN, FOOTBALL, and

MOBILE. For each decoding scenario, two experiments will be performed to gen-
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Figure 5.14: RD curve comparison using LIV RLC.

erate the extractor output. In the first experiment, only a discrete set of decoding

rates will be tested. The possible range of decoding rate is uniformly divided into

2N segments, which are indexed from 1 to 2N . The goal is to find the segment

in which the optimal motion quality layer changes and record the corresponding

index. Brute force (BF) and model-assisted (MA) (including progressive (PR) and

bisection (BI) search) methods will be compared side-by-side in this experiment.

The results are shown in Table 5.10 for N = 3.

In Table 5.10, the columns labeled with “a1” denote the index (from 1 to

8) of the rate segment in which the optimal motion quality layer transitions from

a = 0 to a = 1. The same rules apply to the columns labeled with “a2”. Those

entries marked with “-” indicate that the transition never happens. The columns

labeled with “#” denote the number of decoding times required to complete the

extractor output. This is a measurement of the extractor complexity where lower

is better.

Observed from the table, the model-assisted method provides exactly the

same output as the brute force method, while saving a tremendous amount of com-
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Table 5.10: Extractor comparison with discrete decoding bit rates

BUS FOOTBALL FOREMAN MOBILE

a1 a2 # a1 a2 # a1 a2 # a1 a2 #

CIF BF 3 7 24 4 8 24 2 6 24 2 8 24

30 fps MA(PR) 3 7 14 4 8 15 2 6 12 2 8 16

MA(BI) 3 7 11 4 8 10 2 6 10 2 8 10

CIF BF 3 8 24 5 - 24 3 7 24 2 - 24

15 fps MA(PR) 3 8 16 5 - 14 3 7 14 2 - 16

MA(BI) 3 8 11 5 - 9 3 7 11 2 - 10

QCIF BF 5 - 16 8 - 16 4 - 16 4 - 16

30 fps MA(PR) 5 - 7 8 - 11 4 - 6 4 - 6

MA(BI) 5 - 6 8 - 5 4 - 5 4 - 5

QCIF BF 6 - 16 - - 16 6 - 16 5 - 16

15 fps MA(PR) 6 - 9 - - 10 6 - 10 5 - 8

MA(BI) 6 - 6 - - 4 6 - 6 5 - 6

QCIF BF - - 16 - - 16 - - 16 7 - 16

7.5 fps MA(PR) - - 11 - - 8 - - 13 7 - 11

MA(BI) - - 5 - - 3 - - 6 7 - 6

putational power and time. This verifies the effectiveness of the additive distortion

assumption along with the exponential function model, from which the monoton-

ically non-increasing property and the unimodal property are derived. Moreover,

the advantage of bisection search over progressive search on reducing the complex-

ity is also verified throughout various testing sequences and decoding scenarios.

In the second experiment, a search is conducted for the exact critical rates

at which the optimal motion quality layer switches, i.e. {Ra,∗|a = 0, · · · , A − 2}.
For practical reason, the searching process for Ra,∗ stops whenever |PSNRa(R̂a,∗)−
PSNRa+1(R̂a,∗)| ≤ 0.01 dB. The approximate critical rates {R̂a,∗} are recorded as

the extractor output. The model-assisted method with bisection search (MA(BI))

will be compared with the model-based method using the linear model (MB(LM)).

The results are shown in Table 5.11.
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Table 5.11: Extractor comparison with continuous critical rates

BUS FOOTBALL FOREMAN MOBILE

a1 a2 # a1 a2 # a1 a2 # a1 a2 #

CIF MA(BI) 272 816 23 420 976 26 203 704 26 181 896 24

30 fps MB(LM) 272 816 19 401 974 16 203 698 22 148 899 15

CIF MA(BI) 176 480 17 280 - 27 136 448 17 120 - 28

15 fps MB(LM) 178 481 21 277 - 23 134 448 13 118 - 23

QCIF MA(BI) 285 - 18 448 - 5 208 - 9 208 - 9

30 fps MB(LM) 259 - 8 448 - 5 210 - 11 209 - 7

QCIF MA(BI) 190 - 14 - - 14 160 - 6 140 - 12

15 fps MB(LM) 191 - 8 - - 14 174 - 12 141 - 6

QCIF MA(BI) - - 13 - - 7 - - 14 96 - 4

7.5 fps MB(LM) - - 13 - - 7 - - 14 96 - 4

Some observations can be drawn from Table 5.11. In general, the model-

based method using the linear model demonstrates better or equal performances

than the model-assisted method using bisection search in about 85% of the cases.

The linear model assumption is more accurate in the QCIF than in the CIF se-

quences. The reconstructed PSNR-rate plots for the BUS sequence are shown in

Fig. 5.17, which clearly illustrates the benefit of using the linear model in QCIF

size sequences.
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Figure 5.17: BUS reconstructed PSNR plots. (a) CIF 30 fps. (b) QCIF 30 fps. (c)
QCIF 15 fps.



6 Conclusions

This dissertation focuses mainly on scalable motion, a topic that has flour-

ished with the rapid development of scalable video coding.

We approach this topic in various ways and from different point of views.

First, the redundancy of motion information required for decoding lower resolution

sequences is identified in Chapter 3. This is also a common entry point to the field

of scalable motion, as illustrated in the history review in Chapter 4. The remainder

of Chapter 4 involves a full understanding of required functionalities of scalable

motion within an SVC framework. The importance of scalable motion on quality

scalability is realized, and the mathematical model for scalable motion is built.

Based on this model and the associated assumptions, the advantages of scalable

motion can be easily understood and an optimal bitstream extractor can also be

designed accordingly.

Integrating our knowledge from comprehensive studies on scalable motion,

we propose a novel and fully scalable motion model for SVC based on block mo-

tion. The proposed model helps to achieve coding optimality over a wide range

of bit rates, resolutions and frame rates. The tailored rate distortion optimization

algorithm provides the tool, via the newly introduced rate and distortion multipli-

ers, to further optimize the coding efficiency towards a preferred decoding scenario,

with minimal degradation to other scenarios. In order to provide better tools for

SMM coding, which in turn reduce the cost in the RDO process, several optimal

and suboptimal algorithms are proposed, including SMM structure coding and op-

timal codebook design for SMVD refinements. Exhaustive simulations have shown

positive results that verify the promised functionalities of our SMM.
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Finally, hybrid video coding, which efficiently explores the great temporal

redundancy of natural video sequences by motion prediction, has dominated the

digital video coding technologies for more than 30 years. Even with the emergence

of various scalability demands, e.g. SVC, its status as the key core in virtually

every codec design remains unchanged. However, the initial consensus of lossless

coding on non-scalable motion information no longer holds, especially for low res-

olution or low bit rate decoding scenarios in SVC. This phenomenon opens a new

research field, i.e. scalable motion. In this dissertation, we extensively discuss

this topic, with a possibly outdated premise that the coded texture is obtained

as the difference between the current block and the best motion predicted block.

However, with the introduction of scalable motion, other versions of coded tex-

ture are also available while adjusting the motion quality layers. This is another

research topic that requires more investigation. In addition, an accurate model

describing the relationship between {λa} and {Ra} is also important for practical

applications.
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