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Abstract

Peer grading systems work well only if users have incentives to grade truthfully. An example of non-
truthful grading, that we observed in classrooms, consists in students assigning the maximum grade to
all submissions. With a naive grading scheme, such as averaging the assigned grades, all students would
receive the maximum grade. In this paper, we develop three grading schemes that provide incentives
for truthful peer grading. In the first scheme, the instructor grades a fraction p of the submissions, and
penalizes students whose grade deviates from the instructor grade. We provide lower bounds on p to
ensure truthfulness, and conclude that these schemes work only for moderate class sizes, up to a few
hundred students. To overcome this limitation, we propose a hierarchical extension of this supervised
scheme, and we show that it can handle classes of any size with bounded (and little) instructor work, and
is therefore applicable to Massive Open Online Courses (MOOCs). Finally, we propose unsupervised
incentive schemes, in which the student incentive is based on statistical properties of the grade distribu-
tion, without any grading required by the instructor. We show that the proposed unsupervised schemes
provide incentives to truthful grading, at the price of being possibly unfair to individual students.

1 Introduction

A peer grading system works well only if students put effort in evaluating their peer’s work, and produce
reasonably accurate evaluations. This is hard work. To motivate students, a natural solution consists in
assigning to each student an overall assignment grade that combines both the grade received by their sub-
mitted solution, and their accuracy in grading other students’ work. The grading accuracy of a student can
be measured from the difference between the grades assigned by the student, and the consensus grade the
system computes for each submission.

Unfortunately, such a simple evaluation scheme can easily be gamed: students can collude to both avoid
work, and receive high grades. The simplest way for students to collude consists in assigning the maximum
grade to all submissions: in this way, each student spends zero time evaluating other people’s work, while
receiving both a top grade for her own submission, and a top grade for her review precision, the latter since
all grades for all submissions are in perfect agreement. We have seen this behavior arise in real classes.
Once a nucleus of students starts to assign top grades to all the submissions they review, other initially
honest students see what is happening, and join the colluders, both to save work in reviewing, and to avoid
being penalized in review precision as the only honest students who disagree with their colluding peers.
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A radical way to eliminate collusion on grades consists in eliminating grades altogether, asking instead
students to rank the submissions they review in quality order. A global ordering can then be constructed
using rank aggregation methods [1, 7], and grades can be assigned via curving mechanisms, for instance,
via the instructor assigning grades to some of the submissions, and deriving the remaining grades via inter-
polation. As we briefly discuss in Section 3 (see [6] for a more in-depth discussion), we have experimented
with rank-based mechanisms for classroom grading. While we indeed found that they could be precise,
the rank-based tool we built was not well received by students; the acceptance of the tool for classroom
use increased markedly when we moved from rank-based to grade-based mechanisms. We do not wish to
generalize our experience and claim that grade-based crowd-evaluations provide a universally better student
experience than mechanisms based on ranking. The difference might have lied in how the rank-based tool
was designed, or in how it was presented to students, or in some other factor of our experience. Nevertheless,
since grades are a common and time-tested method for evaluating homework, building incentive systems for
grade-based peer-grading that promote accurate evaluations is an interesting research question. While we
present our work in the context of classroom peer-grading tool, the incentive schemes we develop can be
applied to any kind of peer-grading setting.

In this paper, we examine the question of how to construct incentive systems for peer-grading systems
that promote accurate grading while preventing collusion. We propose two classes of incentive schemes:
supervised, and unsupervised.

In the supervised schemes, the instructor grades a small number of submissions, and the structure of
the incentive system will ensure that the small amount of work by the instructor nevertheless suffices to
discourage collusion. We propose two such supervised schemes. The first is flat: the instructor simply
grades some submissions, creating a non-zero probability for each student that one of the submissions they
reviewed is also reviewed by the instructor. This scheme works well for small classes (a few hundred
students at most), but cannot scale, as the amount of work by the instructor needs to be proportional to the
number of students. The second scheme we propose is hierarchical. The participants are organized in a tree,
with the instructor as root, the submissions as leaves, and the students filling the intermediate levels. For
each edge of the tree, the parent node shares with the child node a submission they both reviewed; the child’s
review precision is evaluated by comparing the child and parent grades on this shared submission. The tree
is built at random, and students at all levels of the tree perform the same task: they review submissions. In
particular, there is no meta-review involved. We show that in our proposed hierarchical scheme, a bounded
and small amount of work by the instructor suffices to discourage collusion and reward accuracy in arbitrarily
large classes, dedicating only a fixed and small percentage of the students to the role of lieutenants that will
help in evaluating the work of their underlings. The result holds provided that students act to maximize their
personal benefit, measured as their overall grade. We express the result in game-theoretic terms: we show
that being accurate is a Nash equilibrium for students, and that it provides better reward than any other Nash
equilibrium.

We also present an unsupervised incentive scheme, which does not require any grading by the instructor.
To develop the scheme, we assume that the expected true grade distribution for the submissions in the
assignment is known. This is often true in practice, since previous experience teaching the class, and testing
students with non-peer grading methods or the supervised schemes above, can yield information on the true
grade distribution. The knowledge of the expected true grade distribution can be used to create an incentive
scheme such that the most beneficial Nash equilibrium in the resulting game is achieved when students are
truthful. The drawback of such an unsupervised incentive scheme, however, is that it is not individually
fair: the reward of a student depends on the global lack of collusion in the whole class. Of course, the
hierarchical supervised scheme we propose is also not individually fair, as a student’s reward depends on the
behavior of the student’s supervisors at all levels. Nevertheless, the set of students on which an individual
student’s reward depends is inherently more limited in the hierarchical supervised approach, making it more
acceptable in practice.
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We have implemented the supervised incentive schemes in the peer-grading tool CrowdGrader [6]. Be-
fore the incentive scheme was implemented, students colluded and use the strategy of giving maximum
grade to every submission in many assignements, and in more than one class. Once the incentive scheme
was implemented, the percentage of students adopting this strategy dropped to less than half (and many, if
not all, of the remaining max grades are likely to be justified).

2 Related Work

Providing incentives to human agents to return thuthful responses is a central challenge of crowdsourcing
algorithms and applications [8].

Prediction markets are models with a goal of obtaining predictions about events of interest from experts.
After experts provide predictions, a system assigns a reward based on a scoring rule to every expert. Proper
scoring rules ensure that the highest reward is achieved by reporting the true probability distribution [21, 4,
9]. The limiting assumption of the scoring rules is that the future outcome must be observable. However, in
peer review and other crowdsourcing tasks the final outcome is frequently not available.

The model presented in [3] relaxes this assumption. The proposed scoring rule evaluates experts by
comparing them to each other. The model assigns a higher score for an expert if her predictions are in
agreement with predictions of other experts.

The peer-prediction method [16] uses proper scoring rules to reward experts depending on how good
their input for predicting other experts’ reports. Similarly, the model described in [13] evaluates experts
depending on how good their reports are in predicting the consensus of other workers.

Other studies based on the peer-prediction method [16, 13, 11] ensure that the truthful reporting is a Nash
equilibrium. However, such models elicit truthful answers by analyzing the consensus between experts in
one form or another. As a result these models are prone to gaming when every expert agrees to always output
the same answer. The study in [10] shows that for the scoring rules proposed in the peer-prediction method
[16], a strategy that always outputs “good” or “bad” answer is a Nash equilibrium with a higher payoff that
the truthful strategy.

The model proposed in [18] elicits truthful subjective answers on multiple choice questions. The author
shows that the truthful reporting is a Nash equilibrium with the highest payoff. The model is different from
other approaches in that besides the answers, workers need to provide predictions on the final distribution
of answers. A worker receives a high score if her answer is “surprisingly” common - the actual percentage
of her answers is larger than the predicted fraction. There are several reasons that limit the applicability of
this model in peer review grading. First, it is not clear in what form students should provide their prediction
about the final distribution over numerical grades. Moreover, even if we can solicit such predictions, there
are not enough reviews per submission to estimate their distribution. In peer grading, the amount of work
is linearly dependent on the number of reviewers. For example, in CrowdGrader each submission receives
about 5 reviews on average no matter how large the class is. Finally, another assumption in the model is that
there is no ground truth. This means that two workers with different answers can be both correct. In our
setting, every submission has a unique intrinsic quality.

The model described in [12] considers a scenario of rational buyers who report on the quality of prod-
ucts of different types. In the developed payment mechanism the strategy of honest reporting is the only
Nash equilibrium. However, the model requires that the prior distribution over product types and condi-
tion distributions of qualities is the common knowledge. Such assumptions do not hold in our peer review
setting.

The work in [2] studies the problem of incentives for truthfulness in a setting where persons vote other
persons for a position. The analysis derives a randomized approximation technique to obtain the higher
voted persons. The technique is strategyproof, that is, voters (which are also candidates) cannot game the
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system for their own benefit. The setting of this analysis is significantly different from ours, as the limiting
assumption is that the sets of voters are votees are identical, while in peer grading the sets of reviewers and
submissions are different (and in fact, a student files multiple submissions). The votes that people cast in [2]
are binary, that is, a person votes for other persons choosing from the entire set, while in the peer-grading
setting a reviewer assigns grades to a set of assigned submissions. Also, the study focuses on obtaining
the top-k voted items, while in peer-grading we are interested in assigning accurate grades to the totality of
students. Another k-selection method that provides truthful incentives is proposed in [15].

A relevant previous study on peer-grading is the work in [5]. The authors develop a mechanism for
soliciting answers for binary questions where agents have endogenous proficiencies. The strategies of agents
consist in choosing the amount of effort to put into a task and a decision on which answer to report. The
developed mechanism has the property that the truthful strategy with maximum effort is a Nash equilibrium.
Moreover, this equilibrium yields the maximum payoff to all agents. Similarly to our proposed unsupervised
method, the scoring rule in [5] consists of two components. The first component depends on agreement with
other reviewers. The higher the agreement, the higher the payoff. The second component of the score is a
negative static term that is designed in a way that only the truthful reporting compensates it. The applicability
of this method may be limited, as the grades are only binary (high quality and low quality), whereas a range
of grades is the standard practice in classrooms and what we consider in our study. Also, it is not always
practical to grant students the freedom to evaluate the assignments they feel confident about. Finally, the
validity of the assumption of endogenous proficiencies used throughout the analysis, that is, that one can
infer the fitness of evaluators for grading particular tasks based on the choice of the tasks they evaluated, is
not substantiated or supported with analytical arguments or real-world data.

The PeerRank method proposed in [20] obtains the final grades of students using a fixed point equation
similar to the PageRank method. However, while it encourages precision, it does not provide a strategyproof
method for the scenario that students collude to game the system without making the effort to grade truth-
fully.

3 Problem Setting

Reviewing is hard work. In order to motivate students to perform high quality reviews of other students’
work, some incentive is needed. A simple approach consists in making the review work part of the overall
assignment grade, giving each student a review grade that is related to the student’s grading accuracy. To
measure the grading accuracy of a student, the simplest solution is to look at the discrepancy between the
grades assigned by the student, and the consensus grades computed from all input on the assignment.

Unfortunately, such approach opens up an opportunity for students to game the system. A big enough
group of students can affect the consensus grades and thus affect how they and other reviewers are evaluated.
One obvious grading strategy for a reviewer is to assign the maximum grade to every assignment they grade.
In this way, students spend no time examining the submissions, and yet get perfect grades both for their
submission, and for their reviewing work.

We have observed this behavior in real classrooms. In a class whose grading data we analyzed, held at
a US university,1 the tool CrowdGrader2 was used to peer-grade homework. The initial homework assign-
ments were somewhat easy, so that a large share of submissions deserved the maximum grade on their own
merit. As more homework was assigned and graded, a substantial number of students switched to a strategy
where they assigned the maximum grade to every submission they were assigned to grade. Submissions that
had obvious flaws were getting high grades, and reviewers who did diligent work were getting low review
grades because their accurate evaluations did not match the top-grade consensus for the submissions they

1Privacy restrictions prevent us from disclosing more details on the class.
2www.crowdgrader.org
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reviewed. Figure 1 displays the fraction of students who assignmed maximum grades to assignments in the
class. A surprisingly high percentage of students were giving maximum grades; the percentage rose to 60%
in the 13th assignment. Between the 13th and 14th assignment there was a big drop in the fraction of such
students, as the instructor announced that there would be a new grading procedure introduced that would
penalize such behavior. However, the hastily-introduced procedure did not work, and the students returned
to give inflated evaluations spending little time reviewing.
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Figure 1: Frequency of assignments receiving maximum grades for a class with 27 homework assignments
and 83 students; each student graded 5 homework submissions. The dashed line plots the number of max-
imum grades, as a fraction of all grades assigned, for each homework. The solid line plots the fraction of
students who gave maximum grades to all the submissions they graded, for each homework.

We study in this paper incentive schemes that encourage students to carefully evalue submissions, and
enter accurate grades in classroom peer-grading systems.

3.1 Grading versus Ranking

A way to eliminate the collusion on grades that grade-based evaluation makes possible consists in asking
students to rank submissions in quality order, rather than assign a grade to each of them. The ranks provided
by each student can then be aggregated in a single overall ranking using rank aggregation techniques that
have been very widely studied (see [1], and for a survey and general framework, [7]). If desired, the ranking
can then be converted to grades via curving methods. While incentive systems are still needed to ensure
student take the time to provide truthful rather than random rankings, they are intrinsically resistant to many
types of collusion. These mechanisms have been studied in the literature as alternatives to students assigning
grades [19].

We built a tool, CrowdRanker, to experiment with peer grading based on ranking and rank aggregation.
While precise, CrowdRanker was intensely disliked by students in our university [6]. Students complained
that a ranking did not allow them to express the difference between the cases of submissions of nearly equal,
and vastly different, quality; no amount of references to the body of literature on rank aggregation seemed
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to lessen their intuitive distrust in the mechanism, and having to explain how accurate ranks can indeed be
obtained from many partial ranks became a burden for the instructor at the beginning of every class. Further,
students disliked the task of ranking the work of their peers.

At some point the evolution of CrowdRanker, we switched to grades, but we required that the floating
point grades assigned by each student to the submissions reviewed be all different. This allowed us to
reconstruct the underlying ranking. The inability of giving the same grade to two different submissions was
by a wide margin the most common complaint with CrowdRanker, notwithstanding that in principle, the
probability that two different submissions are exactly of the same quality is zero. Students liked to group
submissions they reviewed into mental “quality bins”, and were not eager to resolve the issue of what was
the precise quality order in each bin. Eventually, we removed the restriction on grades being different, we
renamed the tool CrowdGrader, and we based it on grades rather than rankings; the tool gained much wider
acceptance. As our goal was to develop a widely used and accepted tool, we have been using grades ever
since.

As we mentioned in the introduction, we do not wish to make a general claim on the basis of our
particular experience; the greater acceptance of grades compared to rankings might very well have lied in
the implementation or user interface of CrowdRanker, or in the type of classroom use to which we tried to
apply it. Nevertheless, grading mechanisms are very commonly used, making the question of how to devise
incentive schemes that make them precise a relevant one.

3.2 Admissible Grading Strategies

We denote the set of students and submissions by U and I respectively. Each submission i ∈ I has a true
quality qi ∈ [0,M ] where M is the maximum of the grading range. Students evaluate submissions by
assigning numerical grades: we denote by giu ∈ [0,M ] the grade assigned by user u ∈ U to submission
i ∈ I . Each reviewer grades only a subset of submissions. The grades can be represented as a labeled
bipartite graph G = (U × I, E), where (i, u, giu) ∈ E if u reviewed i, assigning grade giu to it.We denote
the set of submissions that are graded by user u is ∂u, and conversely, we denote by ∂i the set of users that
graded submission i.

We assume that the grading system anonymizes submissions, as it is commonly done to avoid students
grading their friends in a special way. Further, we assume that the grade that a student assigns to a submission
can depend on the individual submission only through the quality of the submission. In other words, students
can distinguish submissions only through their quality.

To make this assumption precise, we define the set of admissible grading strategies as follows, and
we restrict our attention to students following admissible strategies. In an admissible strategy, students
grade a submission i in two steps. First, they estimate the true quality of i, obtaining qi + ε, where ε
is a random measurement error whose distribution does not depend on i. The student then assigns grade
giu = f(qi + ε) + ξ, where f : [0,M ]→ [0,M ] is a grade modification function, and ξ is additional noise
added intentionally by the student; again, neither f nor the distribution of ξ can depend on i directly. The
function f models the conscious intention of the student to report a grade that does not correspond to the
truth, and the additional noise represents intentional randomization on the part of the user. An admissible
grading strategy π is defined by a tuple of π = (f, e, v) where f is as above, and e and v are expectation and
standard deviation of the voluntary noise ξ. We denote by A the set of all admissible strategies. Obviously,
if a student plays a strategy with constant function f , the student does not need to measure the quality of the
submission being graded.

An example of a non-admissible strategy is one in which, given a submission i, students compute a
hash function that maps the content of the submission to a grade in [0,M ]. Assuming that students follow
admissible grading strategies is a strong assumption from a mathematical point of view, and it rules out some
strategies, such as the above, where students collude to appear to be in perfect agreement on the quality of
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each submission. On the other hand, it is highly implausible that students would agree to a scheme that
arbitrarily gives higher grade to some of their submissions, and lower to others. Such scheme would require
communication and coordination ahead of time between the students. The students who would be arbitrarily
disadvantaged by the scheme, such as those in the example above whom the hash function assigns grade
0, would object to its adoption. If students were to pre-agree on a scheme that assigned different grades
to their submissions, it is implausible that they would agree on any scheme that depends on aspects of the
submission other than the quality. Indeed, such collusion has never been observed in CrowdGrader, nor
reported in any of the other peer grading systems. Thus, we believe that restricting our attention to the game
equilibria determined by admissible strategies is not restrictive from a pragmatic point of view.

3.3 Grading Strategies and Incentives

To provide an incentive towards accurate grading, we propose that students who participate in the peer-
grading system receive a grade that consists in two components:

• A submission grade, that captures the quality of the student’s own submission. This grade is computed
by combining the grades provided for the submission by the peer graders into a single consensus grade.

• A review grade, capturing the accuracy of the grades assigned by the student with respect to the
consensus grades.

We propose to make the review grade inversely and linearly proportional to a loss function that evaluates the
imprecision of a student.

In this paper, we study grading strategies in the framework of game theory, considering whether certain
strategies form Nash equilibria, whether certain strategies are best responses to adversary strategies, and so
on [17]. The notion of Nash equilibrium, and several other notions we rely upon, can be stated in terms of
strategies that are the best response to strategies played by the other participants in the game, which in our
case are the other students. At first sight, it would seem that we need to consider both the submission and
review components of a student’s grade in order to reason about best responses, but this is not the case. Since
students are never assigned their own submissions to grade, students cannot modify their review grades by
playing different review strategies. In order to reason about best responses, and Nash equilibria, we can thus
focus on the review grade only, and thus, on the loss functions used to compute it.

We denote by l(u,G) the loss of user u in the graph G of reviews. In the remainder of the paper, we
study the properties of various loss functions. A simple example of loss function consists in measuring the
average square difference between the student’s grade for a submission, and the average grade received by
the submission:

l2(u,G) =
1

|∂u|
∑
i∈∂u

(
giu −

1

|∂i|
∑
v∈∂i

giv

)2

. (1)

To evaluate a strategy π, we compute the expected loss of a student u who plays according to π. We
distinguish two types of strategy losses, one with respect to a specified set of submissions, and one that
averages over all submissions. The first type of loss is the expectation of l(u,G) at instances ∂u that has
been graded by the reviewer. We keep submissions and strategies fixed, but we take expectation over errors
(ε and ξ) of all reviewers involved in evaluating ∂u. We denote such loss as l(πu,π−u, {qi}) where π−u is
the vector of strategies by other reviewers, and {qi} is the set of true qualities of the submissions graded by
the reviewer.

The second type of strategy loss is the expectation of l2(u,G), with the expectation taken over all errors
(ε and ξ) and a distribution of submission qualities. We denote such loss as L(πu,π−u).
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Our goal will be to design loss functions that create an incentive for students to play the truthful strategy.
We call a strategy σ-truthful if it outputs a true grade with the average square error smaller than σ2.

Definition 1. A strategy π ∈ A is σ-truthful if for every q ∈ [0,M ]

E
[
(gπ(q)− q)2

]
≤ σ2 .

The square error of any strategy can be written as a sum of two components: a variance and a squared
bias. Indeed, denoting with g = gπ(q) for brevity, we have:

E
[
(g − q)2

]
= E

[
(g − E [g])2

]︸ ︷︷ ︸
variance

+ (E [g]− q)2︸ ︷︷ ︸
squared bias

(2)

Thus a strategy is a σ-truthful strategy if for every submission quality q ∈ [0,M ] the next condition holds:

b2 + v2 ≤ σ2 (3)

where b and v are the bias and standard deviation of the grade gπ(q) = f(q + ε) + ξ.
We say that a loss function creates an incentive for students to grade truthfully if the best Nash equilib-

rium is σ-truthful. Throughout the paper we will be able to prove stronger results from which it will follow
that the best Nash equilibrium is σ-truthful.

4 Supervised Grading

In the supervised approach, the instructor grades a subset of the submissions, and the information thus
obtained is used, along with the student-provided grades, to compute the review grade of every student. We
present two approaches to supervised grading. The first is a one-level approach, in which the review grade
of students is computed by comparing student grades preferentially with instructor grades, when those are
available. The one-level approach is simple to implement, and can scale to class size of a hundred or a
few hundred students, while requiring only moderate amount of instructor work. The second approach is
a hierarchical one, in which we organize the review assignment in a hierarchy that allows us to construct a
review incentive that scales to arbitrarily large classes, with bounded (in fact, constant) amount of instructor
work.

4.1 One Level Approach

In the one-level approach, the instructor randomly chooses a subset of submissions to grade. If a student
has one of the submissions, or more, graded by the instructor, the student’s loss is determined by comparing
the student grade(s) with the instructor’s, rather than with those provided by other students. Without loss
of generality, we can discuss the situation for a student doing a single review; the analysis for the case of
multiple reviews follows simply by taking expectations, so that the incentives are unchanged. Assuming
(as we do throughout this section) that the instructor is able to discern the true quality of a submission, if
the submission i ∈ ∂u is graded by the instructor, the loss of user u is (giu − qi)2. Otherwise, the loss is
measured using l2(u,G) loss (1). Let p be the probability of a submission being reviewed by the instructor.
The expected loss of a reviewer u is

lflat(u,G, p) = (1− p)α
(
giu −

1

|∂i| − 1

∑
v∈∂i\u

giv

)2
+ pα(giu − qi)2 .
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where α > 0 is a scaling coefficient. By choosing probability p the instructor varies the influence on
reviewers: the higher p is, the more likely that the review grade of a student depends on a comparison with
the instructor rather than on a comparison with other students.

The instructor can influence the review behavior of students because students are interested in receiving a
higher review grade. Thus, we are implicitly assuming that every student has a utility function that measures
the value of receiving a high review grade. For simplicity, we assume here that the utility r a student
receives from the review grade is simply the opposite of the reviewing loss l. On the other hand, reviewing
a submission to evaluate its quality takes time and effort, which corresponds to a cost C > 0. The user thus
has a choice:

• either review the submission, and receive utility −l − C, where l is computed according to (4),

• or play the “lazy” strategy, ignore the content of the submission, and assing the submission a constant
grade plus random amount, and receive utility −l′, where l′ is the loss for the grade assigned.

The first strategy is clearly the one we intend to encourage. We note that, if the student does not examine
the content of the paper, the only admissible strategy consists in playing a constant plus random noise (see
Section 3.2). When students have a positive review costC > 0, the value of the instructor review probability
p determines the balance between review loss, and review cost. Our goal is to provide a lower bound for
p that ensures that all Nash equilibria strategies are σ-truthful strategies. To prove the result on the lower
bound, we first state and prove two lemmas. The first lemma states that if two strategies have the same bias
on submission i, then the strategy that has the smaller variance also has the smaller loss (4).

Lemma 1. Let strategies π1 and π2 have the same expected grade of submission i ∈ I , or

E [gπ1(qi)] = E [gπ2(qi)] .

Strategy π1 has smaller expected loss (4) computed on submission i than strategy π2 if the variance of π1 is
smaller than the variance of π2

E
[
(gπ1(qi)− E [gπ1(qi)])

2
]
< E(gπ2(qi)− E [gπ2(qi)])

2 .

Proof. We apply Lemma 3 of Appendix to represent loss (4) as a sum of variance and bias terms. In the
context of the lemma, a = 1

|∂i|−1
∑

v∈∂i\u giv, b = qi. Expectations are taken with respect to strategies
errors. The expected loss of strategy π on submission i is

lflat(π,G) = (1− p)αE
[
(gπ(qi)− E [gπ(qi)])

2
]

(4)

+(1− p)α (E [gπ(qi)− qi])2 (5)

−2(1− p)α(E [gπ(qi)]− qi)

 1

|∂i| − 1

∑
v∈∂i\u

giv − qi

 (6)

+(1− p)α

 1

|∂i| − 1

∑
v∈∂i\u

giv − qi

2

(7)

+pαE
[
(gπ(qi)− E [gπ(qi)])

2
]

(8)

+pα(E [gπ(qi)]− qi)2 . (9)

Summands (4) and (8) add up to the variance of strategy π on submission i times α. Summands (5), (6), (9)
depend on the bias of π. Summand (7) does not depend on strategy π. If two strategies π1 and π2 have the
same bias E [gπ1(qi)]− qi = E [gπ2(qi)]− qi, then all summands but (4),(8) are the same for both strategies.
Thus, the strategy that has the smaller variance has the smaller loss.
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The next lemma focuses on strategies that assign grades with 0 variance. The lemma shows that strate-
gies that assign submissions a fixed grade too far from the true quality cannot be best-response strategies.

Lemma 2. Consider a submission i. Let every reviewer u ∈ ∂i play according to a strategy π that assigns
i a fixed grade Di ∈ [0,M ], with Di 6= qi. A reviewer u ∈ ∂i has an incentive to perform the review of i
(paying cost C) and deviate from π if:

p >

√
C

α(Di − qi)2
. (10)

Proof. From (4), the loss h1 of strategy π is

h1 = αp(Di − qi)2 .

If user u modifies the grade she assigns to i, the optimal grade can be found my minimizing (4), and is given
by:

gu(qi) = (1− p)Di + pqi . (11)

The loss h2 of this best response is the loss (4) at grade gu(qi):

h2 = αp(1− p)(Di − qi)2 .

The condition h2 + C < h1 yields

α(1− p)(Di − qi)2 + C < α(Di − qi)2

p2 >
C

α(Di − qi)2
,

yielding the desired result.

Note that if the true grades qi and guessed grades Di are close, that is, if most submissions have similar
quality and the reviewers can easily guess it, then the reviewers have little incentive to actually perform the
reviews. This is indeed what we observed in practice. Using these two lemmas, we can finally provide the
desired lower bound for the instructor review probability that ensures a desired level of review accuracy.

Theorem 1. If probability p satisfies inequality

p >

√
C

ασ2
(12)

then all Nash equilibrium strategies belong to the set of σ-truthful strategies.

Proof. According to Lemma 1 we can limit our attention to strategies that have 0 variance on each submis-
sion i ∈ I . Indeed, any strategy π that is not constant on submissions I is dominated by strategy π′ that
grades with gπ′(qi) = E [gπ(qi)] , i ∈ I , where the expectation is taken over errors of strategy π.

According to Lemma 2, if p satisfies inequality (10) then there is an incentive for a user u to deviate on
submission i from strategy that grades submission i with constant Di. In particular, if p satisfies inequality
(12) then the user has an incentive to deviate from any strategy π such that that |gπ(qi)− qi| ≥ σ. Thus, if a
strategy is not σ-truthful and p satisfies inequality (12) then the strategy cannot be a Nash equilibrium.

What follows is an immediate corollary of Theorem 1 by setting the cost of performing a review to 0.
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Corollary 1. If the instructor reviews each submission with strictly positive probability and the cost of
reviewing is not included in the utility function, then all the Nash equilibria strategies belong to the set of
σ-truthful strategies.

Example. We provide an application of bound (12) to a classroom setting that is typical of how Crowd-
Grader is used. Submissions are graded in the interval from 0 to 10, and the final grade is determined as
the weighed average of the submission grade, and of the review grade; the submission grade carries 75%
weight, and the review grade 25%. We assume that it takes 5 hours for a student to obtain a basic version
of the homework submission (i.e., before 5 hours, students do not have a solution they can realistically sub-
mit). After these 5 hours, the additional benefit of spending more time on the homework is 1 grade point per
additional hour. Each student is asked to review 5 submissions.

We assume that students must budget the total time they devote to each class. Any extra time x can
be spent either improving the homework, or doing the reviews. Thus, the cost C of working on a review
for an amount of time x can be measured as the loss of utility incurred by not using time x to work on the
homework instead. An amount x hours spent on the homework is valued 3/4 ·x (due to the 75% weight and
1 point/hour), so we let C = 3x/4. The scaling coefficient α for (eq-expected-squared-loss) is α = 1/4,
which reflects also the 25% weighing of the review grade (of course, the decision of α is independent, and
we could choose a larger α to penalize more strongly imprecise students, but too large a value of α leads to
unhappy students). In order for the instructor to encourage σ-truthful strategies with σ = 1, the lower bound
for p is:

p >

√
C

ασ2
=
√

3x . (13)

Figure 2 depicts the lower bound (13) as a function of time required to do a review. For x = 1/12 hours,
or 5 minutes, the probability p of being reviewer by the instructor should be at least 0.5.

Let us estimate the instructor’s workload that ensures that p is at least 0.5. Let N , m, k be the class size,
the number of submissions per reviewer and the number of submissions for the instructor respectively. To
compute p as a function of N,m, and k, we note that p = 1− q where q is the probability that the instructor
and a reviewer do not have submissions in common. The probability q is the fraction of the number of ways
of successful submission assignment and the total number of ways of assigning submissions

q =

(
N
m

)(
N−m
k

)(
N
m

)(
N
k

) =

(
N−m
k

)(
N
k

) .

If we fix p, we can estimate the instructor’s workload depending on the class size. When there are 100
students in a class and it takes 5 minutes to grade a submission, then p is 0.5 and the instructor needs to
grade at least 13 submissions.

The dependency of k on N is roughly linear, indicating that the instructor workload increases linearly
with class size.

In this example we assume that the instructor chooses which submissions to review uniformy at random.
The instructor could also pick submissions to review trying to maximize the number of reviewers with whom
there is a reviewed submission in common, but in general, this requires solving vertex cover, an NP-hard
optimization problem [14]. Furthermore, the size of the resulting cover would still scale linearly with class
size. In the next section, we present hierarchical review schemes that can scale to any classroom size while
requiring only a constant amount of work from the instructor.

4.1.1 Fairness and Incentives

The loss of a student participating in peer-grading with the proposed one-level supervised scheme is given in
(4). The loss consists in two components: one due to comparison with other students, one due to comparison

11
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Figure 2: The lower bound for probability p of being reviewed by the instructor as a function of cost in
minutes of doing a review.

with the instructor. The comparison with other students might engender unfairness, in the case in which a
truthful student is compared with students who grade carelessly. On the other hand, this portion is important
for two reasons. First, if this part were missing, and student received a loss only when compared with the
instructor grade, there would be an obvious (if random) source of unfairness due to the random choice of the
students whose review work is compared with the instructor’s. Second, this component of the loss makes
the overall system more effective, as it amplifies the incentive provided by the instructor beyond the students
that are directly reviewed.

4.1.2 Experimental Results

We have implemented the one-level incentive approach described here in the tool CrowdGrader [6]. Let
us nickname a max-grader a student who gave maximum grade to all submissions he or she reviewed. We
report here the statistics for the Winter and Spring quarter of 2015, that is, from the beginning of January, to
the Summer break, for classes with at least 50 students.

Before the one-level incentive approach was implemented, the percentage of max-graders was 24.3%,
as measured over 93 assignments and 8,190 total submissions. The class whose behavior was reported in
Figure 1 belonged to this set.

After we allowed instructors and TAs to also grade submissions, on 31 assignments where this option
was used, for a total of 3,781 submissions, the percentage of max-graders dropped to 11.3%. To see whether
this percentage reflected collusion, we evaluated the percentage of top grades that, upon instructor review,
turned out to be justified. Over these 28 assignments, 62.7% of top grades were confirmed by the instructor
within 5% (i.e., the instructor gave a grade within 5% of the top grade), and 73.3% of the top grades were
confirmed within 10%. Therefore, in classes where the incentive scheme described in this section was
introduced, collusion in giving unjustified top grades effectively ceased.
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4.1.3 Speed of Convergence

Theorem 1 provides a lower bound on p. However, values of p above the bound provide incentive of different
strength. If we imagine a sequence of best responses grades for a submission, then p specifies the speed of
convergence towards the true grade. Next proposition obtains the speed of convergence as a function of p.

Proposition 1. Consider a sequence of the best response grades on submission i ∈ I . On the first step
every u ∈ U grades submission i with grade D. On step t > 1 every user grades submission i with the best
response to strategy on step t − 1. Denote the evaluation error on step t s et. In such iterative process the
error decreases geometrically:

et = (1− p)2et−1 .

Proof. We will show that the best response grade on iteration t is

gt = qi + (1− p)(t−1)(D − qi) .

The proof is by induction on t. For t = 1 the grade of submission i is g1 = D by the assumption of the
theorem. Next, assume that

gt−1 = qi + (1− p)(t−2)(D − qi) , (14)

and let us show that

gt = qi + (1− p)(t−1)(D − qi) . (15)

Indeed, the best response grade for grades on iteration t−1 is the grade that minimizes loss (4), (1−p)(x−
gt)

2 + p(x− qi)2. The loss achieves its minimum at

gt = (1− p)gt−1 + pqi . (16)

Equations (14) and (16) yield (15). Therefore the error at step t is

et = (gt − qi)2 = (1− p)2(t−1)(D − qi)2 .

Thus et = (1− p)2et−1.

4.2 Hierarchical Approach

In this section we develop a hierarchical grading schema that requires a fixed amount of work from the
instructor to provide an incentive to grade truthfully.

The schema organizes reviewers into a review tree. The internal nodes of the review tree represent
reviewers; the leafs represent submissions. A parent-child relation between reviewers indicates that the
child review grade depends on the parent evaluation. A parent node and a child node share one submission
they both reviewed; this shared submission is used to evaluate the quality of the child node’s review work.
The root of the tree is the instructor.

Definition 2. A review tree of depth L is a tree with submission as leaves, student as internal nodes, and
the instructor as root. The nodes are grouped into levels l = 0, . . . , L − 1, according to their depth; the
leaves are the nodes at level L − 1 (and are thus all at the same depth). In the tree, every node at level
0 ≤ l < L− 1 reviews exactly one submission in common with each of its children.
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Figure 3: An example of a review tree with branching factor 2. The process starts bottom up. Each student
reviews 2 submissions. For each depth-2 student, a depth-1 student grades one of the two submissions that
the depth-2 student has graded (red edges at bottom level). The evaluation of the depth-2 student will depend
on the difference of these two grades according to the loss function. Similarly, the instructor evaluates a
depth-1 student by grading one of the two submissions that the depth-1 student has graded (black edges).

To construct a review tree of branching factor at most K, we proceed as follows. We place the submis-
sions as leaves. Once level l is built, we build level l − 1 by enforcing a branching factor of at most B. For
each node x at level l, let y1, . . . , yn be its children. For each y1, . . . , yn, we pick at random a submission
si reviewed by yi, and we assign to x to review the set {s1, . . . , sn} of submissions. At the root of the tree,
we place the instructor, following the same method for assigning submissions to review to the instructor.
Figure 3 illustrates a review tree with branching factor 2 and depth 3.

In a tree constructed thus, there are many submissions that have only one reviewer. This construction
suffices for the purposes of this section, but if desired, it is possible to construct a dag, rather than a tree, so
that each submission is reviewed by multiple reviewers at the tree level immediately above. While the tree
organizes their review activity hierarchically, the students participating all do the same task: they review
papers. In particular, the review scheme does not require any explicit meta-review activity.

The review loss of a reviewer y in the tree is computed by considering the parent x of y, and the grades
gx and gy assigned by x and y on the submission they both graded. The loss of reviewer y is given by
(gx − gy)2.

We assume that the instructor provides true grades, that are accurate and without bias. Under the as-
sumption of rational players, the next theorem proves that if reviewers are evaluated by the average squared
loss (1), then the set of σ-truthful strategies contains all Nash equilibria.

Theorem 2. If reviewers are rational, then the truthful strategy is the only Nash equilibrium of players
arranged in a review tree.

Proof. We will prove by induction on the depth l = 0, 1, . . . , L−1 of the tree that the only Nash equilibrium
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for players at depths up to l is the truthful strategy. At depth 0, the instructor provides true grades, and the
result holds trivially, as the instructor plays a fixed truthful strategy. Let us consider a reviewer v at depth
level k, and denote by Iv the set of submissions reviewed by v. Since v does know know which submission
in Iv has been reviewed also by its parent, and since the parent is by induction hypothesis truthful, the
expected loss of v can be written as

Ei∈IvE
[
(giv − qi)2

]
,

where the first expectation is taken over the submissions graded by v, and the second is taken on the grade
giv assigned by v to i. It is clear that this loss is minimized when giv = qi for all i ∈ Iv, that is, when v
plays the truthful strategy.

The grading scheme based on a random review tree ensures that users achieve the smallest loss when
grading with the truthful strategy. However, some students still might not chose the truthful strategy as it
requires effort to evaluates submissions. Our next result provides a general condition for users to prefer the
honest behavior in a random review tree.

Theorem 3. Let users U be organized into a review tree with branching factor K. Let H ∈ R and D ∈ R
be costs for a user to grade honestly and to defect respectively. If a user defects and is caught by its superior
then the punishment is P ∈ R. Then, users have incentive to stay honest if

P > K(H −D) . (17)

Proof. Similarly to Theorem (2), the proof is by induction of level l = 0, . . . , L− 1 of the tree. A reviewer
u from level l has incentives to stay truthful on a review if the gain H −D due to defecting is smaller than
the expected punishment 1

KP . Thus, if inequality (17) holds, reviewer u has incentive to play truthfully.

As an application of the above result, we consider a scenario when reviewers are organized into a random
review tree with branching factor K, and must choose between a truthful grading strategy, and grading
with the maximum grade M . The punishment of a reviewer for deviating is the loss in utility (lD − lH),
where lH , lD are expected losses of the truthful and the maximum grade strategies. We have lH = 0 and
lD = E [M − qi]2, where the expectation is taken over the distribution of true item qualities. Expression
E [M − qi]2 can be simplified to σ2q + (M − Eq)2, where σ2q and Eq are the variance and the mean of the
true quality distribution. The cost of being truthful is H = C; the cost of defecting is D = 0. Inequality
(17) yields

lC − lH > KC C <
σ2q + (M − Eq)2

K
.

If the true item qualities are mostly distributed close to the maximum M , then users have less incentives to
put effort in grading. We are interested in analyzing parameters of the true quality distribution and costs C
that satisfy inequality (18). For the class example in section 4.1, we considered cost C = 3x/4 where x is
the amount of time in hours it takes to review a submission.

In Figure 4, we plot the lower bound of the variance σ2q as a function of the average submission quality
Eq for reviewing costs 5, 10, 20 and 60 minutes. If the average item quality is 9.5 then the variance should
be at least 1 to ensure incentives for grading with reviewing time less than 20 minutes. Interesting enough,
for this case strategies that grade with the maximum strategy are 1-truthful.

5 Unsupervised Grading

In the previous section we considered supervised approaches that required the instructor to grade a subset
of submissions. In this section we explore a grading scheme that relies on a priory knowledge of the typical
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Figure 4: Lower bound on the variance of the submission quality distribution σ2q as a function of the average
submission quality Eq for reviewing costs 5, 10, 20 and 60 minutes.

grade distribution in assignments. The advantage of the scheme is that it does not require work on the
instructor’s part; this comes with the drawback, however, that the scheme might be unfair to individual
students. In many cases the instructor, based on experience and historical data, has expectations about the
overall grade distribution in the class. By tying grade distributions to student incentives, we can create
incentives for truthful grading. In particular, we will be able to show that the students will prefer the truthful
grading strategy to strategies that are truthful but have large noise, and to strategies that always provide a
fixed grade, plus optional noise. The drawback of the incentives we consider is the potential unfairness
towards individual students, as we will discuss in more detail later.

We assume that the variance σ2q of the true quality distribution is known, usually via an analysis of the
performance of students in past similar assignments. We propose a loss function (18) for a reviewer that
consists of two parts:

lvar(u,G, γ) = l′2(u,G)− γσ̂2 . (18)

The first part l′2(u,G), defined by (19), measures the agreement between grades by reviewer u and the
average grades by other reviewers. It is similar to the loss l2(u,G) defined by (1), except for the fact that
the average consensus grade excludes grades by the reviewer:

l′2(u,G) =
1

|∂u|
∑
i∈∂u

giu − 1

|∂i| − 1

∑
v∈∂i\u

giv

2

. (19)

We propose two versions for the second part: a local and a global version. In the local version, we define
σ̂2 as the sample variance (20) of the grades that the reviewer has given to assigned submissions:

σ̂2 =
1

|∂u| − 1

∑
i∈∂u

giu − 1

|∂u|
∑
j∈∂u

gju

2

. (20)
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In the global version, we define σ̂2 as the overall variance of the grades in graph G(U × I, E):

σ̂2 =
1

|E| − 1

∑
(i,u,giu)∈E

giu − 1

|E|
∑

(j,w,gjw)∈E

gjw

2

. (21)

Both versions penalize students who give grades that are too similar: the local version penalizes a student
based on the variance of the grades that this student has assigned, while the global version considers the
variance of all grades assigned by students across all submissions. The parameter γ > 0 controls the
influence of these variances.

Thus, the overall loss function (18) consists of two components: a positive one that accounts for dis-
agreement with other students; and a negative one that accounts for variance among grades, either global or
local.

We will study the preference of students with respect to two classes of strategies: the strategies that report
the true grade, plus possible additive noise, and the strategies that report a constant grade, plus possible
additive noise. These two strategies correspond to the two possible behaviors of a student: either review the
submission, and report its grade plus some noise, or skip the review, and report a constant grade plus some
noise. In the latter case, the student adds some random noise to overcome the lack of variance that will be
penalized by the loss function. Since the second component of the loss (18) encourages variance, students
will not prefer to play the maximum grade strategy. However, a natural way to overcome the penalization
of zero variance in their attempt to game the system is to add noise to a constant grade.

We compare strategies according to the expected loss L(u,G, γ) = E [lvar(u,G, γ)], where the expec-
tation is taken over the submission quality distribution and the evaluation errors of all reviewers involved in
grading submissions ∂u.

To express the result precisely, we introduce the following sets of grading strategies. Let A′ ⊂ A be the
set of grading strategies that report the true grade plus additive noise, i.e., π ∈ A′ iff there exists a random
variable ξπ such that for every submission i ∈ I , we have gπ(qi) = qi+ ξπ. Let Φ be the subset of strategies
A′ whose noise has an expected value of 0, that is, such that π ∈ Φ iff π ∈ A′ and Eξπ = 0. Note that
Φ ⊂ A′ ⊂ A. We denote by πt ∈ Φ the truthful strategy, for which ξπt is identically 0.

We also introduce a set of strategies that grade submissions with a constant grade plus additive noise.
For η > 0 and D ∈ [0,M ], let Dη ∈ A be the set of strategies π such that gπ(qi) = D + ε, where the
random variable ε has variance η2. Note that Dη ⊂ A.

The next theorem expresses the preference for the truthful strategy, compared to both strategies in Dη,
and strategies in Φ.

Theorem 4. Consider the loss function (18), with σ̂2 defined by either (20) or (21). For 0 < γ < 1, the
following statements hold:

• If every reviewer v ∈ U\u plays with a strategy Φ and reviewer u is limited to strategies π ∈ A′, then
reviewer u minimizes her loss by playing with the truthful strategy πt.

• For any η ≥ 0, reviewers have smaller loss when they play with the truthful strategy πt compared to
strategies Dη.

Proof. To prove the first part of the theorem, we analyze the expected loss (18) of user u ∈ U with strategy
π ∈ A′ when users U\u play with strategies Φ. According to Lemma 4, the expectation of the first compo-
nent of the loss (18) is E

[
l′u,G(u,G)

]
= σ2u+b2u+Θ, where σ2u and bu is the variance and the expectation of

error ξπ, and Θ does not depend on user u. The second component can be defined whether by (20) or (21).
First, let us consider loss (18) with σ̂2 defined by (20). Expression (20) is an unbiased variance estimator,
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therefore Eσ̂2 = σ2q + σ2u. Combining both parts together, E [lvar(u,G, γ)] = (1 − γ)σ2u + bu + Θ. If
γ < 1, then user u minimizes her loss when σ2u = bu = 0, i.e. with the truthful strategy. Next, let us
consider the loss (18) with σ̂2 defined by (21). According to Lemma 4, E

[
σ̂2
]

= n
Kσ

2
u + n(K−n)

K(K−1)b
2
u + Θ,

where K = |E| and n = |∂u|. Therefore, E [lvar(u,G, γ)] = (1−γ n
K )σ2u+ (1−γ n(K−n)K(K−1))bu+ Θ. Again,

the truthful strategy yields the smallest loss when coefficients (1− γ n
K ) and (1− γ n(K−n)K(K−1)) are positive. It

is straightforward to verify that for γ < 1 and K ≥ n both coefficients are positive.
To prove the second part of the theorem we compare user losses in the following two scenarios. In the

first scenario all users play with the truthful strategy. In the second scenario all user play with π′ such that
gπ(qi) = D + ε, where ε has 0 expectation and variance η2. The loss of the truthful strategy is −γσ2q . The

loss (18) of strategy π′ can be computed directly from equation (18). The first part of the loss is nη2

n−1 as the
variance of a difference between independent random variables εu − 1

n−1
∑

v∈∂i\u εv where εv is an error
by user v while playing strategy π′. For both (20) and (21), the second part of the loss is −γτ2. Therefore,
the loss of strategy π′ is nη2/(n− 1)− γη2.

The condition that the loss of strategy π′ is bigger than the loss of the truthful strategy is

n

n− 1
η2 − γη2 > −γσ2q . (22)

To show that the inequality holds for γ ∈ (0, 1), we consider three cases when η2 < σ2q , η2 = σ2q and
η2 > σ2. If η2 < σ2q inequality (22) yields

γ > − nη2

(n− 1)(σ2q − η2)
.

The right part of the inequality is always negative, therefore for γ > 0 reviewers have smaller loss when
they play with the truthful strategy than with strategy π′. If η2 = σ2q then inequality (22) is true for any
γ ∈ R. If η2 > σ2q then the condition on γ is

γ <
nη2

(n− 1)(η2 − σ2q )
.

The inequality holds for γ < 1 as the right hand side is always greater than 1 as n
n−1 > 1 and η2

η2−σ2
q
> 1.

Therefore, for γ ∈ (0, 1) inequality (22) holds and the truthful strategy has smaller loss than strategy π′.

Theorem 4 assumes that the cost of reviewing a submission is zero or not included in the reviewer’s
utility function. For non-zero costs, we can still obtain a range for γ such that the statements of Theorem 4
hold.

Theorem 5. Consider the loss function (18), with σ̂2 defined by either (20) or (21). Let C > 0 be reviewer
cost to evaluate a submission. For any η > 0, if C < σ2q then for γ that satisfies the inequalities

max

(
0,
C − n

n−1η
2

σ2q − η2

)
< γ < 1, for η2 < σ2q

0 < γ < 1, for η2 = σ2q

0 < γ < min

(
1,
C − n

n−1η
2

σ2q − η2

)
, for η2 > σ2q

the two statements of Theorem 4 hold.
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Proof. The proof of the theorem is tightly connected to the proof of Theorem 4. We showed that for γ < 1,
the loss (18) is minimized when user u plays with the truthful strategy πt, where the loss is defined by either
(20) or (21). Moreover, we limit our attention to γ > 0 as we want the second component of the loss (18)
to penalize small variance among grades by the reviewers. We will analyze the conditions on γ ∈ (0, 1) and
C > 0 so that the truthful strategy is more preferable that strategies Dη.

If costC 6= 0, then the loss of users who play with the truthful strategy is due to measurement costC and
the loss of the truthful strategy according to function (18). Therefore, the condition that users have smaller
loss when evaluating the true submission quality and playing with the truthful strategy than a strategy from
Dη is satisfied when both of the following conditions hold:

n

n− 1
η2 − γη2 > −γσ2q + C

γ(σ2q − η2) > C − n

n− 1
η2 . (23)

We consider 3 cases.
Case 1: η2 < σ2q . The inequality (23) becomes

γ >
C − n

n−1η
2

σ2q − η2
.

The set of possible values for γ is not empty if the right hand side of the inequality is less than 1. This
condition yields

C < σ2q +
1

n− 1
η2 . (24)

Therefore, when η2 < σ2q and C < σ2q , reviewers has smaller loss by spending cost C on evaluating the true
grades and playing with the truthful strategy if

max

(
0,
C − n

n−1η
2

σ2q − η2

)
< γ < 1

Case 2: η2 = σ2q . The inequality (23) always holds for C < σ2q = η2. Thus γ ∈ (0, 1).
Case 3: η2 > σ2q . The inequality (23) becomes

γ <
C − n

n−1η
2

σ2q − η2

The set of possible values for γ is not empty if the right hand side of the inequality is positive. This yields
the following condition on C:

C − n
n−1η

2

σ2q − η2
> 0 C − n

n− 1
η2 < 0 C <

n

n− 1
η2 .

We notice that if C < σ2q and σ2q < η2, then C < σ2q < η2 < n
n−1η

2. Therefore, when η2 > σ2q and C < σ2q
inequality (23) holds for

0 < γ < min

(
1,
C − n

n−1η
2

σ2q − η2

)
.
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We have shown that for any η > 0, C < σ2 and γ that satisfies the inequalities of the theorem, reviewers
receive smaller loss if they spend grading cost C and play with the truthful strategy compared to playing
with strategies Dη.

If C ≥ σ2q , and assuming that colluding students can lower the variance η2 accordingly, then there is no
range of γ for which the above properties hold.

The incentive scheme based on the loss (18) is not individually fair. If we adopt the local definition of
loss (20), then students who receive submissions that are close to each other in qualilty are at a disadvantage,
as their loss will be greater than that of students who were assigned to review submissions of more different
value. If we adopt the global definition of loss (21), then students who are honest might be individually
penalized, if everybody else adopts a “constant plus noise” strategy in Dη. As intructor grades are not
available as absolute reference point, the possibility of individual unfairness seems however unavoidable in
unsupervised grading incentive schemes.

6 Conclusions

We studied two supervised schemes and one unsupervised scheme which provide incentives for truthful
grading in peer review. In the flat supervised scheme, each student has a non-zero probability of being graded
by the instructor. We computed a lower bound on this probability so students have an incentive to grade
truthfully. The lower bound shows that the flat supervised approach is applicable for classes of moderate
size. The second scheme, which we considered, organizes students into a hierarchy. The instructor grades a
subset of submissions that were graded by the top ranked lieutenants. In turn, lieutenants grade submission
by lieutenants of lower rank. This hierarchical scheme provides an incentive for truthful grading under
the assumption of rational students. The instructor and every student need to grade only a fixed number of
submission no matter how big the class is. The third scheme does not require supervision from the instructor.
Reviewers are evaluated based on a criteria that penalizes the lack of agreement with peers and the lack of
variance in review grades. This scheme is not individually fair as a reviewer might be assigned submissions
with low true quality variance. However, we showed that in expectation the best strategy for a reviewer is to
grade truthfully.

APPENDIX

The next lemma provides an alternative expression for the expectation of the square of a random variable ξ
that we obtain through a linear transformation of another random variable ξ − a, with a ∈ R.

Lemma 3. For any random variable ξ and any a, b ∈ R:

E (ξ − a)2 = E (ξ − E ξ)2 + (E ξ − b)2

− 2(E ξ − b)(a− b) + (b− a)2 . (25)

Proof. We add and subtract Eξ to ξ − a, to obtain the following transformation:

E (ξ − a)2 = E (ξ − E ξ + E ξ − a)2

= E (ξ − E ξ)2 + (E ξ − a)2 . (26)

In the last equality we used the fact that

2E (ξ − E ξ)(E ξ − a) = 0 .
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We obtain equality 25 by combining equality (26) with the following transformation of (E ξ−a)2 by adding
and subtracting b to Eξ − a:

(E ξ − a)2 = (E ξ − b+ b− a)2

= (E ξ − b)2 − 2(E ξ − b)(a− b) + (b− a)2 .

We use the next two lemmas to prove Theorem 4.

Lemma 4. Consider function l′2(u,G) defined by (19), where A, A′ and Φ are as in the statement of
Theorem 4. Let reviewer u ∈ U play with a strategy π ∈ A′, and let every other reviewer v ∈ U\u play
with strategies in Φ. Let the error ξπ of user u have variance σ2u and expectation bu. The expectation of
expression (19) taken over the submission quality distribution and users errors has the form

E
[
l′u,G(u,G)

]
= σ2u + b2u + Θ (27)

where the term Θ does not depend on user u.

Proof. We use EξX to denote the expectation of an expression X over all errors ξv of users v that are in-
volved in X , and we use Eq to denote the expectation over the true submission quality distribution. Without
loss of generality, we let |∂u| = |∂i| = n.

To extract the components of E [l′2(u,G)] that depend on σ2u and bu, we add and subtract the termsEξgiu
and 1

n−1
∑

v∈∂i\uEξgiv inside the squared expression of (19). After we expand the square, three of the six
summands of the expanded expression are equal to 0.

E
[
l′2(u,G)

]
=

1

n

∑
i∈∂u

EqEξ

(
giu − Eξgiu︸ ︷︷ ︸

a

+Eξgiu −
1

n− 1

∑
v∈∂i\u

Eξgiv︸ ︷︷ ︸
b

− 1

n− 1

∑
v∈∂i\u

(giv − Eξgiv)︸ ︷︷ ︸
c

)2
=

1

n

∑
i∈∂u

EqEξ(a+ b− c)2 .

We apply the formula (a+ b− c)2 = a2 + b2 + c2 + 2ab− 2ac− 2bc to the expression, obtaining:

E
[
l′2(u,G)

]
=

1

n

∑
i∈∂u

EqEξ(giu − Eξgiu)2 + EqEξ

Eξgiu − 1

n− 1

∑
v∈∂i\u

Eξgiv

2

+EqEξ

 1

n− 1

∑
v∈∂i\u

(giv − Eξgiv)

2

+2EqEξ

(giu − Eξgiu)

Eξgiu − 1

n− 1

∑
v∈∂i\u

Eξgiv

 (28)

−2EqEξ

(giu − Eξgiu)

 1

n− 1

∑
v∈∂i\u

(giv − Eξgiv)

 (29)

− 2EqEξ

 1

n− 1

∑
v∈∂i\u

(giv − Eξgiv)

Eξgiu − 1

n− 1

∑
v∈∂i\u

Eξgiv

 . (30)
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Expression (28) is 0 because Eξ(giu − Eξgiu) = 0 and both factors under the expectation of (28) are
independent from the error ξu of user u. Similarly, expressions (29) and (30) are 0 too. Note that factors
in expression (29) are independent from the error of user u because the average grade 1

n−1
∑

v∈∂i\ giv is
computed without the grade by user u. Therefore, we have:

E
[
l′2(u,G)

]
=

1

n

∑
i∈∂u

{
EqEξ(giu − Eξgiu)2 (31)

+ EqEξ

Eξgiu − 1

n− 1

∑
v∈∂i\u

Eξgiv

2

(32)

+ EqEξ

 1

n− 1

∑
v∈∂i\u

giv − Eξgiv

2 }
. (33)

The double-expectation expression in (31) is the variance σ2u. By definition of set Φ, for every v ∈ U\u the
expectation Eξgiv equals qi. Therefore, expression (32) equals b2u. Expression (33) does not depend on user
u. Combining all parts together, we obtain equation (27).

Lemma 5. Consider the function σ̂2 defined by (21). Let reviewer u ∈ U play with strategy π ∈ A′, and
let every other reviewer v ∈ U\u play with strategies in Φ. Let the error ξπ of user u have variance σ2u and
expectation bu. The expectation of expression (21) taken over the submission quality distribution and users
errors can be written as:

E
[
σ̂2
]

=
n

K
σ2u +

n(K − n)

K(K − 1)
b2u + Θ , (34)

where n = |∂u|, K = |E| and expression Θ does not depend on user u.

Proof. To show the statement of the lemma we split σ̂ into the following two components A and B:

EqEξσ̂ =
1

K − 1

∑
i∈∂u

EqEξ

giu − 1

K

∑
(j,w)∈G

gjw

2

︸ ︷︷ ︸
A

+
1

K − 1

∑
(i,v)∈G,v 6=u

EqEξ

giv − 1

K

∑
(j,w)∈G

gjw

2

︸ ︷︷ ︸
B

.
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We simplify expressions A and B separately and introduce subcomponents C and D.

A =EqEξ

giu − 1

K

∑
j∈∂u

gju −
1

K

∑
(j,w)∈G,w 6=u

gjw

2

=EqEξ

K − 1

K
giu −

1

K

∑
j∈∂u,j 6=i

gju︸ ︷︷ ︸
C

− 1

K

∑
(j,w)∈G,w 6=u

gjw︸ ︷︷ ︸
D


2

=EqEξ

C − EξC︸ ︷︷ ︸
a

+EξC − EξD︸ ︷︷ ︸
b

− (D − EξD)︸ ︷︷ ︸
c

2

=EqEξ(a
2 + b2 + c2 + 2ab− 2ac− 2bc)

=EqEξa
2 + EqEξb

2 + EqEξc
2 .

In the last equality we used the fact that expressions a, b and c are independent of user errors ξ and Eξa =
Eξc = 0. To compute Eξa2 we notice that there is a variance of random noises involved in expression C.
Using the formula for the variance of a sum of independent random variables, we obtain:

Eξa
2 =

(K − 1)2

K2
σ2u +

n− 1

K2
σ2u =

(K − 1)2 + n− 1

K2
σ2u .

The expectation of expression b2 is:

Eq (EξC − EξD)2 = Eq

K − 1

K
Eξgiu −

1

K

∑
j∈∂u,j 6=i

Eξgju −
1

K

∑
(j,w)∈G,w 6=u

Eξgjw

2

. (35)

We modify expression (35) using the fact thatEξgiw = qi forw 6= u andEξgiu = qi+Eξξu. The expression
EqEξb

2 becomes:

Eq

K − 1

K
Eξξu −

1

K

∑
j∈∂u,j 6=i

Eξξju + qi −
1

K

∑
(j,w)∈G

qj

2

= Eq

K − n
K

Eξξu + qi −
1

K

∑
(j,w)∈G

qj

2

=Eq

(
K − n
K

Eξξu

)2

+ 2Eq

(K − n
K

Eξξu

)qi − 1

K

∑
(j,w)∈G

qj

+ Eq

qi − 1

K

∑
(j,w)∈G

qj

2

=

(
K − n
K

)2

Eξξ
2
u + Eq

qi − 1

K

∑
(j,w)∈G

qj

2

.

In the last equality, we used the fact thatEq
(
qi − 1

K

∑
(j,w)∈G qj

)
= 0, becauseEqqi = 1

K

∑
(j,w)∈GEqqj .

If use Θ to denote the part of EqEξb2 that does not depend on user u, then

EqEξb
2 =

(
K − n
K

)2

Eξξ
2
u + Θ .
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We note that Eξc2 does not depend on user u. Combining all parts together, the expression for component
A is

A =
(K − 1)2 + n− 1

K2
σ2u +

(K − n)2

K2
(Eξξu)2 + Θ ,

where we use Θ again to denote components that do not depend on user u. We now compute the expression
for component B:

B = EqEξ

giv − 1

K

∑
(j,w)∈G

gjw

2

= EqEξ

− 1

K

∑
j∈∂u

gju︸ ︷︷ ︸
F

+ giv −
1

K

∑
(j,w)∈G,w 6=u

gjw︸ ︷︷ ︸
H


2

= EqEξ

F − EξF︸ ︷︷ ︸
a

+EξF − EξH︸ ︷︷ ︸
b

+H − EξH︸ ︷︷ ︸
c

2

= EqEξ(a
2 + b2 + c2 + 2ab+ 2ac+ 2bc)

= EqEξa
2 + EqEξb

2 + EqEξc
2 .

Again, we use the fact that a, b and c are independent with respect to users noise ξv, v ∈ U and that
Eξa = Eξc = 0. Using the formula for the variance of a sum of independent random variables, we obtain
Eξa

2 = n
K2σ

2
u. We use assumptions Eξgiw = qi for w 6= u and Eξgiu = qi + Eξξu to simplify expectation

Eξb
2.

Eξb
2 = Eq

− 1

K

∑
j∈∂u

Eξgju + Eξgiv −
1

K

∑
(j,w)∈G,w 6=u

Eξgjw

2

= Eq

− 1

K

∑
j∈∂u

Eξξu + qi −
1

K

∑
(j,w)∈G

qj

2

=
n2

K2
(Eξξu)2 + 2

(
− 1

N
Eξξu

)
Eq

qi − 1

K

∑
(j,w)∈G

qj

+ Θ .

Expression Eq
(
qi − 1

K

∑
(j,w)∈G qj

)
is 0, as Eqqi = 1

K

∑
(j,w)∈GEqqj . Thus, the expression for terms of

Eξb
2 that depend on user u is:

Eξb
2 =

n2

K2
(Eξξu)2 + Θ .

To obtain terms in expression B that depend on user u, we notice that EqEξc2 does not depend on u.
Combining all parts together, we obtain:

B =
n

K2
σ2u +

n2

K2
(Eξξu)2 + Θ .

We have extracted terms that depend on user u in expressionsA andB. DenotingEξξu as bu and combining
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expressions A and B, we obtain

EqEξσ̂ =
1

K − 1

∑
i∈∂u

(
(K − 1)2 + n− 1

K2
σ2u +

(K − n)2

K2
b2u

)
+

1

K − 1

∑
(i,v)∈G,v 6=u

(
n

K2
σ2u +

n2

K2
b2u

)
+ Θ

=
n

K − 1

(
(K − 1)2 + n− 1

K2
σ2u +

(K − n)2

K2
b2u

)
+
K − n
K − 1

(
n

K2
σ2u +

n2

K2
b2u

)
+ Θ

=
n(K − 1)2 + n(n− 1) + n(K − n)

(K − 1)K2
σ2u +

n(K − n)2 + n2(K − n)

(K − 1)K2
b2u + Θ

=
n

K
σ2u +

n(K − n)

K(K − 1)
b2u + Θ .

Thus, we obtain equation (34). We note that for N = n equation (34) becomes equation (27).
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