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EPIGRAPH

... I have sought knowledge. I have wished to understand the hearts of men. I have

wished to know why the stars shine. And I have tried to apprehend the Pythagorean

power by which number holds sway above the flux.

A little of this, but not much, I have achieved.

— The Autobiography of Bertrand Russell
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ABSTRACT OF THE DISSERTATION

Bending, Buckling, Tumbling, Trapping: Viscous Dynamics

of Elastic Filaments

by

Harishankar Manikantan

Doctor of Philosophy in Engineering Sciences (Applied Mechanics)

University of California San Diego, 2015

Professor David Saintillan, Chair

Elastic filaments subjected to hydrodynamic forcing are a common class of

fluid-structure interaction problems. In biology, they are crucial to cytoskeletal mo-

tions of the cell, the locomotion of micro-organisms, and mucal transport. In en-

gineering, they are often the source of non-Newtonian rheological properties and a

variety of complex fluid behavior such as hydrodynamic instabilities and chaotic mix-

ing. At the heart of many of these dynamics is the competition between an elastic

backbone and viscous forces acting to deform it, tangled with the anisotropic shape

of such filaments as well as slowly decaying hydrodynamic interactions in a Stokesian

fluid. In this work, we use slender-body theory for low-Reynolds-number hydrody-

namics to address theoretically and computationally a few such problems of physical

and biological significance. We first describe the tumbling of polymers in shear flow

and the suppression of thermal fluctuations in extensional flow. A theory for the

stretch-coil transition of semiflexible polymers is also developed. We then turn to the

transport properties of semiflexible filaments in a flow setup that mimics some of the

xv



dynamics of biological polymers in motility assays. Thermal fluctuations frequently

trap polymers within vortical cells, and are shown to lead to subdiffusive transport

at long times. The mechanism behind this anomalous feature and the subtle role of

flexibility is emphasized. Then we focus on the sedimentation of flexible filaments.

In the weakly flexible regime, a multiple-scale asymptotic expansion is used to ob-

tain expressions for filament shapes and peculiar trajectories. In the highly flexible

regime, we show that a filament sedimenting along its long axis is susceptible to a

buckling instability. Our predictions are corroborated by detailed numerical simula-

tions. Finally, we look at suspensions of sedimenting elastic fibers, emphasizing the

role of filament shape, flexibility, and long-ranged hydrodynamic interactions. We de-

velop a mean-field theory for such a suspension, and its stability to perturbations of

fiber concentration is analytically explored. Detailed numerical simulations are also

performed to verify these predictions and elucidate the microstructural mechanisms

tied to the growth or suppression of this instability.
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Chapter 1

Introduction

Nature abounds with ingenious examples of rendering dynamical capabilities

at the cellular level. These abilities require structural or functional elements with

properties that enable them to perform, in a very efficient fashion, the basic tasks

of locomotion, reproduction and growth. The deformation and transport of elastic

filaments in viscous fluids play central roles in many of them. In cellular biology, stiff

biopolymers confer to cells their mechanical properties [6] and are essential for func-

tions as diverse as cell division, differentiation and morphogenesis [7, 8], cell motility

[9, 10], reproduction [11, 12], mucus transport [13], wound healing [14], and hearing

[15], among others. These are biological polymers that are highly inextensible and

with a rigidity that energetically suppresses bending [16]. Actin filaments comprise

the cytoskeleton of most eukaryotic cells. With their resistance to tensile and com-

pressive forces at the subcellular scale, they play highly versatile roles in motility,

cellular shape changes and mechanical support. Microtubules (rope-like polymers of

tubulin proteins) are stiffer and play critical roles in maintaining cell structure, intra-

cellular transport and cell reproduction. Flagella are tail-like protrusions from a cell

body that lash back and forth like a whip, and are responsible for locomotion of many

micro-organisms and cells like spermatozoa. Cilia are similar slender protuberances

that play roles in mobility and sensing. And of course, one of the most critical and well

known macromolecules in all known life forms is Deoxyribonucleic acid (DNA). These

single or double stranded polymers of simple units called nucleotides are contained in

the nucleus or the cytoplasm, and carry genetic instructions that are passed on across
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generations of cells. DNA has, over the years, gained the attention of scientists out-

side of biology too - its applications in forensics, bioinformatics, nanotechnology and

anthropology are widespread. The dynamics of DNA in a fluid have been studied in

detail [17, 18], and both experiments and numerical simulations have established that

the dynamics of such chains are governed by the competition of entropic forces that

favor coiled configurations versus viscous flow forces that can cause unraveling and

stretching [17, 19–21]. This competition is at the origin of the viscoelastic properties

of DNA solutions [17, 22], which can lead to hydrodynamic instabilities [23, 24] and

spatiotemporally chaotic flows [25].

The case of shorter and stiffer filaments with longer persistence lengths such

as actin and microtubules, however, has received much less attention. For such fila-

ments, the dynamics result mainly from the interplay between internal elastic forces

that resist bending and ensure inextensibility, and external viscous forces that can

cause deformations and hence non-trivial transport properties. When such filaments

are placed in a fluid flow or external field, the competition of external forces, viscous

stresses, and internal elastic forces can result in complex deformations and dynamics,

which in turn can have a significant impact on the macroscopic transport properties

of large-scale suspensions. There have been many studies, both experimental and

theoretical, of the dynamics of such filaments in various types of microscale flows, in-

cluding simple shear flow [26–31], extensional flows [2, 32, 33], pressure-driven channel

flows [34], vortex arrays [3, 35, 36], and other more complex microfluidic flows [37, 38].

Others have considered the case of a filament subject to either external or internal

forces, such as forcing of various types at the filament ends [39, 40], internal actu-

ation [41–43], two-body interactions [44], and self-attraction as a result of capillary

interactions [45], to name a few.

Dynamics of flexible fibers in a viscous fluid are also key to understanding

many interesting problems in engineering involving a wide range of polymers includ-

ing xantham gum, carbon nanotubes, and certain elastomers. The non-Newtonian

bulk behavior of suspensions can, in many cases, be attributed to the fibers that make

up their microstructure [27, 28]. Flexible filaments immersed in viscous fluids are also

relevant in understanding the rich and interesting field of soft materials. Synthetic

polymers are often encountered in technological applications, specifically in chemical
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engineering and materials sciences. With recent advances in nanofabrication tech-

niques and experimental capabilities using microfluidic devices [32, 46–48], there has

been a renewed interest in the dynamics of macromolecules. For instance, an elastic

filament under compression along its backbone can, much like a macroscopic beam,

undergo a buckling instability if compressive stresses overcome the elastic restoring

force that resists bending. Such buckling events were first noted by Becker and Shel-

ley [27] in simulations of non-Brownian flexible fibers in simple shear flow at high

enough strain rate, and the storage and subsequent release of elastic energy during

this process has been shown to lead to first normal stress differences [27, 28] as are

indeed known to arise in many polymer solutions [22]. Such non-Newtonian rheolog-

ical properties [49], which can lead to a variety of complex flow behaviors including

hydrodynamic instabilities [23, 50] and chaotic mixing [25, 51].

The goal of this work is to explore some problems of biological and physical

significance involving elastic filaments immersed in a viscous fluid. In particular, a

key objective is to highlight the mechanisms underlying these dynamics, which as we

shall discover are the common threads connecting these vastly different problems. We

seek to model these polymers in an efficient and robust manner that captures both

detailed internal dynamics and long-ranged hydrodynamic interactions. Our theoret-

ical arguments will be aided with numerical simulations, and therefore computational

economy is also a key factor. One common feature of the examples listed above is

the large aspect ratio of length to characteristic thickness, ranging from order ten to

many thousands in some biological settings. This fact has been historically exploited

in many ways to develop models describing such polymers. One such model is the

bead-spring model [52, 53]. Here, a polymer is modeled as a sequence of beads, each

offering hydrodynamic resistance to flow of the surrounding medium and connected

to each other with springs that provide for elastic and deformational properties of

the chain as a whole. This model is appropriate for very long chains, and detailed

internal dynamics are not captured. A related class is the bead-rod model [54, 55] that

uses rigid links with bending moments to connect beads. This latter model is preva-

lent in the study of short semiflexible biological polymers. However, hydrodynamic

interactions are not naturally included in bead-rod models, in which drag only occurs

at the beads, and the drag anisotropy of slender polymer segments is not captured
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by these models, with a few exceptions [55].

A very different approach is based on slender-body theory [56–58] for hydro-

dynamics, which exploits the aforementioned large aspect ratio of the fibers. This

model does capture drag anisotropy due to the slenderness, and can be easily ex-

tended to include hydrodynamic interactions within and between filaments. This

model, along with Euler-Bernoulli elasticity, has been used recently [28, 30, 35] to

model non-Brownian flexible filaments in flow. Versions of this model have been used

to study the forced dynamics of stiff polymers [40, 59]. The primary appeal of using

this model lies in the reduction of a filament-fluid interaction problem to a relatively

simple equation describing the filament centerline, along with constraints imposed by

the physics of the problem under consideration. Numerical methods based on this

approximation have been designed [28] that reduce computational cost as compared

to grid based methods that may be required if the problem was not simplified to a set

of coupled equations describing the filament centerline. Understanding slender-body

theory for creeping flow warrants a brief visit to the world of the extremely small,

extremely slow, or extremely gooey: that of microhydrodynamics.

1.1 The world of the vanishing Reynolds number

The dynamics of a particle suspended in a fluid, which is the subject of this

work in its essence, are governed by Newton’s laws of motion. These laws, when

written down for material particles inside a volume of the fluid, result in the famous

Navier-Stokes equations. However, at scales relevant to the examples we shall restrict

ourselves to here, both particle and fluid inertia are negligible compared to the effects

of viscous forces. The traditional way of thinking about this is in terms of a vanishing

Reynolds number:

Re =
ρUa

µ
→ 0. (1.1)

Here, U and a are characteristic values of velocity and length of the immersed par-

ticle. A quick calculation using the length scales associated with biopolymers (1 to

100µm), the properties of water (density of 1 kg/m3 and viscosity of about 10−3 Pa · s
at room temperature) and motion of such particles in the range of a few body lengths

per second tells us that the Reynolds number ranges from 10−6 to 10−4. Another
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example, again drawn from biology, is blood flow through a capillary. Blood cells

have a typical size range of 5 to 50µm and flow at speeds in the range of 0.1 to

10 mm/s in a fluid medium that has approximately the same density and viscosity

of water. The corresponding Reynolds number here is the the range of 10−4 to 0.1,

again substantiating the use of the so called Stokes equations which govern this realm

of microhydrodynamics [60].

The low-Reynolds-number regime encompasses a wide variety of physical phe-

nomena, and an equally broad spectrum of mathematical and computational tools

has been developed over the years to probe different aspects of biologically and in-

dustrially relevant fluid dynamics problems. Models that shed light on suspension

microstructure [61], the motility of single [10] and multiple [62] microorganisms, the

complicated deformations of blood cells [63], and the bulk rheology of suspensions

[64] have resulted from studies in this field, and these illustrate the richness and vari-

ety of applications of microhydrodynamics. We shall focus in this section on certain

fundamental aspects of the Stokes equations.

1.1.1 Stokes equations

As mentioned above, assuming zero Reynolds number reduces the Navier-

Stokes equations to the Stokes equations:

−∇p+ µ∇2u = 0, ∇ · u = 0, (1.2)

which are, respectively, simply mathematical statements of conservation of momen-

tum and mass in the fluid. Here, p(x) is the pressure field, µ the fluid viscosity, and

u(x) the velocity field. These equations, we may observe, are steady† and linear. The

former means that unsteadiness can result only from a time-dependent force (which

would enter the right-hand side of the momentum equation) or unsteady boundary

conditions. The latter observation, that of linearity, holds the key to a plethora of

solution techniques, and is a powerful tool in the arsenal of mathematical methods

used to tackle Equations (1.2).

†The implicit assumption is that the unsteady term in the Navier-Stokes equations is as insignif-
icant as the non-linear convective term, sometimes justified as the Stokes number limiting to zero.
See Guazzelli and Morris [65].
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A few more properties of the Stokes equations deserve a quick mention here.

Although not directly obvious, the Stokes equations are reversible – meaning a reversal

in the direction of forcing (by, say, the arm of a micro-swimmer) completely reverses

the direction of the velocity field. This, along with the instantaneity of the equations,

has a direct physical consequence that has famously come to be known as Purcell’s

theorem [66]: a simple two-armed swimmer cannot produce net thrust in Stokes flow.

This is at the center of microorganism motility, and the methods that nature has

used to circumvent this have been of interest to biologists, physicists, and, in recent

times, to engineers designing micro-robots as well. Finally, the solution to the Stokes

equations is unique.

When a particle is immersed in a fluid, the net force and torque acting on

the body should equal the hydrodynamic force and torque on it (by Newton’s third

law, again ignoring inertia). The hydrodynamic force and torque are simply surface

integrals of the stress σ exerted by the fluid on the particle, where the stress tensor

corresponding to viscous incompressible flow is σ(x) = −pI + µ[∇u(x) +∇u(x)T ].

The solution to the full problem then requires solving the Stokes equations in con-

junction with the force (and torque) balance on the particle. Such solution techniques

stem from a crucial integral identity which we now describe.

1.1.2 Fundamental solutions and integral representations

One approach to solving the Stokes equations is by deriving their fundamental

solution or Green’s function. This is the solution corresponding to a point force

F δ(x− x0) on the right hand side of the momentum equation. This solution can be

formally derived using Fourier transforms [60], with the solution to the velocity field

(commonly called the Stokeslet) being u(x) = G(x,x0) · F where G is the Oseen

tensor :

G(r) =
1

8πµ

(
I

r
+
rr

r3

)
. (1.3)

Here, I is the identity tensor, r = x − x0 is the separation vector, r = |r| its

magnitude, and rr is a dyadic product. The corresponding pressure field is p(x) =

Π(x,x0) · F , where

Π(r) =
1

4π

r

r3
. (1.4)
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Higher order singularities may be constructed by differentiating Equation (1.3), and

the solution to a more general problem can be expressed (thanks to linearity) as a sum

of appropriately chosen fundamental solutions that satisfies the boundary conditions.

However, when a particle is immersed in the fluid, the solution requires in-

formation from the surface of the particle where the fluid-structure interaction takes

place. Imposing the no-slip condition on its surface ∂S and the requirement that the

velocity far away equal a background velocity u∞(x) which is also a solution to the

Stokes equations gives

u = u∂S on ∂S, u→ u∞ for ||x|| → ∞. (1.5)

Further, let n denote the inward normal on the surface ∂S. Then, a generalized

version of the Lorentz reciprocal theorem [60, 67] lets us write down an integral

relation between the velocity at a point x in the fluid and convolution integrals over

the surface of the particle:

ui(x) = u∞i (x)−
∫

∂S

Gij(x−x0)fj(x0) dS−
∫

∂S

Jijk(x−x0)uj(x0)nk(x0) dS, (1.6)

where we have resorted to Einstein summation notation for clarity. Here, f = σ · n
is the traction evaluated at the surface, G is the Oseen tensor again, and J is the

associated stress tensor (such that σ = J · F for a point force). In index notation,

Gij(x) =
1

8πµ

(
δij
r

+
xixj
r3

)
, (1.7)

Jijk(x) = −Πkδij + µ(Gik,j + Gjk,i) = − 3

4π

xixjxk
r5

. (1.8)

This integral relation is the cornerstone of the family of computational techniques

called the boundary integral method, which is particularly efficient as it reduces a

three-dimensional problem to a two-dimensional manifold. The entire velocity field

can be determined if one knows the velocity u(x0) and the traction field f(x0) on

the surface ∂S. As mentioned earlier, this traction is directly related to the total

hydrodynamic force F h and torque T h:

F h = −F e =

∫

∂S

f(x0) dS, T h = −T e =

∫

∂S

x0 × f(x0) dS, (1.9)

where F e and T e are net external force and torque on the particle. With this, the

system is closed, and the fluid-structure interaction problem can in principle be solved.
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The boundary integral relation from Equation (1.6) requires knowledge of the

traction field on the entire surface of the particle immersed in the fluid. This problem

can be simplified further when one is interested in flow fields far from particles via

the so multipole expansion. The basic idea of this line of analysis is that the kernel

of the integral can be expanded in a Taylor series, resulting in a sum of sequential

products of derivatives of the Stokeslet and moments of the force distribution on the

surface (see Kim and Karrila [60], for example, for mathematical details). To a good

approximation, the first few terms (the force, torque and ‘stresslet’) can approximate

the flow field to good accuracy far away from the particle. We shall not delve into

the details of the multipole expansion, but will return to this idea of a truncated

expansion of force moments in Chapter 6.

For now, we focus the power of the boundary integral equation on cases where

the geometry of the immersed particle is especially conducive to further simplifica-

tions. This is the case of elongated bodies that approximate polymers. In this case,

the force distribution on the surface may be suitably replaced by an effective force

distribution along the centerline of the body. This leads to a theory that forms the

crux of all analysis in this work: the slender-body theory.

1.1.3 Slender-body theory

The notion behind the development of slender-body theory for hydrodynamics

is that the disturbance felt due to the presence of a body whose length is much larger

than its characteristic thickness is the same as that due to a line distribution of

Stokeslets. This formulation exploits the strong shape anisotropy of the elongated

filament. The idea of capitalizing on the slenderness of a body in viscous flow has

been around since Cox [68, 69] and was developed in great detail by Batchelor [56],

Keller and Rubinow [58], and Johnson [57]. Simply put, the flow very close to the

body is similar to that near a cylinder with the no-slip condition imposed (the ‘inner

flow’) which is then asymptotically matched to the flow far away as felt due to the

line distribution (the ‘outer flow’). That way, the force distribution on the surface

of the body in Equation (1.6) is replaced by a suitable force distribution along the

centerline of the filament.
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s = L

Figure 1.1: The geometry of the slender body.

We consider a filament of length L parametrized by arclength s ∈ [0, L]

with x(s, t) = (x(s, t), y(s, t), z(s, t)) representing the filament centerline (Figure 1.1)

placed in a fluid of viscosity µ and an imposed velocity field u0(x(s, t), t). It is im-

portant to note that s is a material parameter, and is thus independent of time. The

filament is assumed to be radially symmetric at every point with a thickness given

by a · r(s), where a is a characteristic radius and r(s) is dimensionless. A non-local

slender-body approximation [28, 57, 70] for the velocity of the centerline is then given

by

8πµ

(
∂x(s, t)

∂t
− u0(x(s, t), t)

)
= −Λ[f ]−K[f ], (1.10)

where f is the force per unit length acting on the filament and µ is the fluid viscosity.

This expression is accurate to O(ε2 ln(ε)) for the velocity ∂x/∂t, where ε = a/L� 1

is the body aspect ratio. Here, Λ[f ](s) is the local operator given by

Λ[f ](s) = [(c(s) + 1)I + (c(s)− 3)xs(s)xs(s)] · f(s), (1.11)

where c(s) = ln(4s(1− s)/ε2r(s)2) and xs(s)xs(s) is a dyadic product. We shall use

subscripts to succinctly represent differentiation, and xs is the unit tangent vector

along the filament backbone. The integral operator K[f ](s) is given by

K[f ](s) =

∫ L

0

(
I + r̂(s, s′)r̂(s, s′)

|r(s, s′)| · f(s′)− I + xs(s)xs(s)

|s− s′| · f(s)

)
ds′, (1.12)
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where r(s, s′) = x(s) − x(s′), and r̂ = r/|r|. The particular choice of the filament

shape r(s) affects Equation (1.10) through the coefficient c(s), which for a spheroidal

profile of r(s) = 2
√
s(1− s) reduces to c(s) = c = ln(1/ε2), a constant. For most of

this dissertation, we shall resort to this spheroidal geometry and use λ1 = c + 1 and

λ2 = c− 3 as constants in the local operator in Equation (1.11). The only exception

will be in Chapter 4 where the effects of the choice of a non-spheroidal shape will be

elucidated.

Clearly, the operators Λ and K depend on the shape of the filament at any

given time. The local operator Λ accounts for drag anisotropy due to the slenderness

of the filament. The leading order effect of this operator has the form (I + xsxs),

and inverting this gives the ‘resistance’ tensor (I − 1
2
xsxs). This suggests that for a

rigid needle (with xs constant), the drag on the body for translations perpendicular

to the long axis is twice as that for translations parallel to the axis – a well-known

hydrodynamic result [60] which we will call upon soon in Section 1.2.1. The integral

operator captures the disturbance field induced by forces acting at one point of the

filament on every other point. Hence, this term will be called the non-local or intra-

chain interactions operator from here on.

The fluid velocity u(x) at any point x outside the filament is approximated

by

8πµ (u(x)− u0(x)) = −
∫ L

0

(
I + r̂(s′)r̂(s′)

|r(s′)| +
ε2

2

I − 3r̂(s′)r̂(s′)

|r(s′)|3
)
·f(s′) ds′, (1.13)

where now r(s′) = x− x(s′). Note that Equation (1.13) follows directly form Equa-

tion (1.3), with the additional second term representing a doublet.

To study the dynamics of several filaments in, say, a suspension of fibers, one

can simply add up the contribution to the total velocity field from each individual

filament. This works due to the superposition principle for linear Stokes flow. In

particular, the centerline equation becomes

8πµ

(
∂xβ(s, t)

∂t
− u0(xβ(s, t), t)

)
= −Λβ[fβ](s)−Kβ[fβ](s)−

N∑

α=1,α 6=β
Υα(xβ(s)),

(1.14)

where the summation is over 1 ≤ α ≤ N filaments, with the contribution of the

filament β omitted, as it is accounted by the other terms as in Equation (1.10). Here
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Υα denote the terms on the right hand side of Equation (1.13) evaluated to obtain

the disturbance velocity due to filament α on the centerline of filament β.

1.2 A few preliminaries

1.2.1 Sedimentation

The sedimentation of multiple particles in a viscous fluid at low Reynolds num-

ber is marked by long-range hydrodynamic interactions resulting in strong velocity

fluctuations. This slowly decaying nature of multi-body interactions readily compli-

cates even the seemingly simple case of a random dilute dispersion of sedimenting

spheres [71]. The disturbance velocity at a distance r induced by a sphere decays as

1/r (cf. Equation (1.3)), and a naive pairwise summation of the contributions of all

spheres promptly leads to a divergent value of the settling velocity. This issue was

first addressed by Batchelor [64] who noted that, in a finite-sized container, the pres-

ence of a bottom wall in fact results in a vertical backflow that cancels the diverging

part of the settling velocity; this can alternatively be interpreted as the effect of a

modified pressure field, whose gradient balances the weight of the suspension. While

this observation resolved the problem with the mean settling speed, the variance of

the particle velocities was later shown, in what has become known as the Caflisch-

Luke paradox [71–73], to increase unboundedly with system size, notwithstanding

Batchelor’s renormalization. Such a divergence is not supported by experimental ob-

servations [74–76], and various mechanisms have been suggested over the years to

resolve this oddity, each with experiments and numerical simulations to support and

challenge the notion. These mechanisms have included the hydrodynamic screening

of long-range interactions as a result of local microstructural changes [77] or by verti-

cal no-slip walls [78], homogenization of the suspension due to recirculating currents

induced by horizontal boundaries [79, 80], and the damping of fluctuations by vertical

density gradients [81, 82].

As the first step, consider a single spherical particle of radius a sedimenting

due to its own weight Fg in a fluid of viscosity µ. If the acceleration due to gravity is

g, the gravitational force including buoyancy (or, in general, an external body force)
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acting on it is

Fg =

(
4

3
πa3

)
∆ρg, (1.15)

where ∆ρ is the relative density of the sphere with respect to the surrounding fluid.

As discussed in Section 1.1, this is balanced (in the absence of inertia) exactly by the

net hydrodynamic force acting in the opposite direction. In this simplified case, this

is the viscous drag, which is given by Stokes law as

Fd = 6πµaU, (1.16)

where U is the steady state sedimentation velocity of the sphere. Equating the two

gives us a relation for velocity:

U =
2a2

9µ
∆ρ g. (1.17)

Now, for the sake of illustration, we take the smallest step in describing hydro-

dynamic interactions among multiple sedimenting spheres: that of an infinite fluid

with two spheres. The distance between the two will be assumed to be large rel-

ative to their radii. Then, the leading order disturbance velocity field induced by

one sphere at x0 on the other at x can be determined directly using the Stokeslet:

u(x) = G(x− x0) ·Fg. The particular form of the Stokeslet then results in a distur-

bance field that is twice as strong at a point along the direction of the external force

as it is in a direction perpendicular to it but at the same distance from the force. In

other words, the net sedimentation velocity of a pair of spheres (notice the symmetry:

both spheres would settle at the same speed) separated by a distance r but along a

vertical line (U||) and a horizontal line (U⊥), with gravity being along the vertical,

are given by

U|| =
2a2

9µ
∆ρ g

(
1 +

3a

2r

)
, U⊥ =

2a2

9µ
∆ρ g

(
1 +

3a

4r

)
. (1.18)

The anisotropy in the disturbance velocity field is obvious, and the implications of

this feature will be the basis for arguments in Chapter 4.

Suspension microstructure becomes all the more important in the case of

anisotropic particles. Consider for the moment a collection of rigid spheroids with a

defined geometry, with the configuration of each particle now specified by its posi-

tion and orientation. While the contribution of particle geometry to hydrodynamic
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interactions is not obvious a priori, we can readily see that such a dispersion is fun-

damentally different from one containing only spherical particles in that spheroids

can orient in flow. This orientation, in turn, decides the direction of sedimentation,

which no longer has to be vertically downward even in the case of a single particle

in a quiescent fluid. This simple consequence of viscous drag anisotropy has been

well studied and knowledge of the hydrodynamic mobilities along and perpendicular

to the particle major axis lets one evaluate its settling velocity. Specifically, for a

rigid spheroid whose major axis is parallel to the unit orientation vector p (= xs, but

constant throughout its length), the local leading order relation between net force Fg

and velocity U (= xt, a constant again) can be determined by integrating Equation

(1.10) along its length, and one has

U =
ln(1/ε2)

8πµ
(I + pp) · Fg =

ln(1/ε2)

8πµ
[(I − pp) + 2pp] · Fg

= [µ⊥(I − pp) + µ||pp] · Fg. (1.19)

The mobility tensor is clearly anisotropic, with mobilities µ|| and µ⊥ in directions

along and perpendicular to the force (gravity in this case). These mobility coefficients

are closely tied to the geometry of the rod with µ‖ ≈ 2µ⊥ for the leading order in

ln(1/ε) considered here. But the main takeaway is that a shape anisotropy leads

to a direction of settling that is no longer along that of the force. This is further

complicated if the particle is composed of several rigid rods that are joined at the

ends and constrained to move together but with different orientations, which is a

very simple model for a polymer. Several non-trivial dynamics and effects can be

explained following such a line of thought, and we shall return to this in Chapter 4,

as well as to the combined effect of shape anisotropy and hydrodynamic interactions

discussed above in Chapter 5, where large scale concentration instabilities are known

to result.

1.2.2 Elastohydrodynamics

The very title of this dissertation reveals the coupling between overdamped

viscous hydrodynamics and elasticity theory. We saw that the slender-body equation

(1.10) connects the velocity at each point on the fiber to the force distribution along
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its centerline. If the fiber is elastic, this force distribution has to follow the laws of

elasticity, and this coupling will be introduced in this section.

One convenient way to describe elasticity theory is using the calculus of vari-

ations. For this, we seek an expression for the elastic energy of a bent filament.

Bending a fiber is energetically expensive, and therefore the energy E has to be a

function of the curvature xss of the fiber. Also, bending energy must not depend

on the sign of the curvature, and hence the leading order dependence can only be

quadratic. So we write the energy as

E =
κ

2

∫ L

0

x2
ss ds. (1.20)

Here, κ is the bending modulus, a property of the material and geometry of the fila-

ment, which can be alternatively expressed as the product of the Young’s modulus (E)

of the filament material and its area moment of inertia across a section (κ = πEa4/4:

recall that a is the characteristic radius of a section of the filament). The functional

derivative of this energy then provides a first approximation for the restorative elastic

force per unit length on the filament backbone. A direct path to the elastic force is

through the Euler-Lagrange equation for E :

∂E
∂x
− ∂

∂s

(
∂E
∂xs

)
+

∂2

∂s2

(
∂E
∂xss

)
= fe, (1.21)

which yields the elastic force per unit length fe = κxssss. A theme that we shall return

to several times in this work is buckling, and filaments buckle when a compressional

force exceeds a critical threshold set by its balance with fe. Energetic descriptions

such as the one above have been successfully used to describe, for example, buckling of

microtubules by gliding kinesin motor molecules [83] or by vesicles using micropipet

aspiration [84], as well as the morphoelastic buckling of plant tendrils or bacterial

filaments [85].

A useful starting point for connecting this elastic restoring force to the fluid

problem are the illustrative examples provided by Wiggins et al. [59]. Much like the

classic first and second Stokes problems of a plate abruptly moved or oscillated in a

viscous fluid, Wiggins et al. [59] propose elastohydrodynamic problems of an ealstic

filament anchored to a wall that is moved or oscillated in a viscous fluid. Analogous

to the Stokes problems where the Navier-Stokes equations reduce to a simple diffusion
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equation, the elastohydrodynamic problems are governed by a ‘hyperdiffusion’ prob-

lem. Considering just the transverse motion y(x) of a filament and a linear mobility

relation to the force, this relation is simply a balance between viscous and elastic

forces:
1

µ⊥
yt = κyxxxx, (1.22)

where µ⊥ is the transverse mobility that we first encountered in Section 1.2.1. Solving

this problem with appropriate boundary conditions and comparing with actin and

microtubule experiments, Wiggins et al. [59] demonstrate the power of such a model

in describing the elastohydrodynamics of biopolymers.

We follow in the same spirit with more involved and appropriate models for

both the fluid and elastic problem. For the fluid problem, we use the full slender-body

theory described in Section 1.1.3. For the latter, we use Euler-Bernoulli elasticity by

starting with a modified elastic energy functional:

E =
1

2

∫ L

0

[
κx2

ss + T (s)(xs · xs − 1)
]

ds−
∫ L

0

f(s) · x(s) ds. (1.23)

Here, the first term represents the same bending contribution as before and T (s, t)

is a Lagrangian multiplier that acts to keep the the filament locally inextensible

(xs ·xs = 1) at all times. Mathematically, T (s) is an energetic penalty paid to extend

(or contract) the filament beyond its base length. Physically, it corresponds to a line

tension along the filament centerline that acts to keep it at a constant length. The

second integral is introduced here to complete the energetic relation of the filament,

with f(s) being the fluid force per unit length on the filament. Modulations in

extension and twist relax much faster than those in bending (by a factor of 1/ε2,

see Powers [86]) and so we shall restrict ourselves to the dynamics of inextensible

filaments with no twist.

Minimizing this energy via the Euler-Lagrange equation then gives us

f(s) = −(T (s)xs)s + κxssss. (1.24)

This enters Equation (1.10) as the force distribution acting on the fiber. To close

the problem, appropriate boundary condition of force- and torque-free ends may be

imposed if the filament is freely suspended. In the case of sedimenting filaments that
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we shall encounter in Chapter 4, the boundary conditions are not as obvious, but they

emerge as solvability conditions by systematically taking the functional derivative of

the elastic energy.

1.2.3 Brownian motion

At length scales characteristic of the kind of problems we address, a particle im-

mersed in a fluid becomes susceptible to thermal fluctuations of individual molecules

of the fluid. The constant bombardment by Brownian molecules on the polymer can

distort it if the elastic backbone is sufficiently compliant, or move the particle leading

to a random walk. In long floppy chains such as DNA molecules, such thermal fluctu-

ations and the thermodynamic desire to maximize configurational entropy is the basis

for the ‘spring’ force that resists straightening the polymer. However, in the case of

stiffer polymers like actin and microtubules, this is not quite the case: bending costs

energy too and an intricate balance between entropy, elasticity and viscous drag, if

present, needs to be struck.

Tracking each fluid particle through Newton’s laws of motion is a significantly

expensive affair, and forms the basis for molecular dynamics simulations. Further-

more, the continuum hypothesis that permits using the Stokes equations requires

individual fluid molecules to be sufficiently smaller than the immersed particle. So

we seek a link between the random jiggling of countless tiny fluid particles that we

would like to treat as a continuum and the relatively ‘large’ immersed body on which

a net Brownian force results due to these fluctuations. This issue of scale separation

is addressed by a famous result from statistical thermodynamics: the fluctuation-

dissipation theorem. It broadly states that this random fluctuating force acting on

an immersed particle as a results of Brownian kicks is equal to the dissipative frictional

force that one must do work against to move it at all.

An illustrious embodiment of this idea is the connection between the diffu-

sion D of the immersed particle (due to the random walk as a result of thermal

fluctuations) and its mobility M, called the Einstein-Smoluchowski relation:

D = kBTM, (1.25)

where kB is Boltzmann’s constant and T is the temperature. The product of the two



17

represents the unit of thermal energy. A particularly relevant form is the diffusion

of a sphere due to Brownian motion in a fluid. Borrowing the ‘mobility’ (which is,

thanks to linearity, simply the velocity divided by the force that caused it to move)

from Equation (1.16), the diffusivity of a sphere in viscous flow is then

D =
kBT

6πµa
I. (1.26)

The diffusion is isotropic, and this relation is commonly referred to as the Stokes-

Einstein-Sutherland relation. Similar results can be drawn for rotational diffusion

and, more generally, for diffusion tensors of anisotropic shapes (using M = [µ⊥(I −
pp) + µ||pp] from Equation (1.19) for a rod, for instance). We shall see more of this

when we derive conservation laws for probability fluxes in the coming chapters, where

diffusion enters the governing equation.

As mentioned previously, Brownian fluctuations can alter the configuration

of the filament if it is sufficiently compliant. Having briefly reviewed elasticity and

Brownian motion, we are now in a position to ask a central question: exactly how

flexible is ‘semiflexible’? We have so far been rather informal about the definition of

semiflexibility, and shall now see precisely what the term means.

For this, we first introduce the concept of the persistence length, `p. This can

be thought of as a length scale at which thermal fluctuations and elastic forces in the

filament strike a balance. More rigorously, `p is the characteristic length associated

with the exponential decay of tangent vector autocorrelation [16, 87]. In other words,

tangent vectors lose memory of the direction of each other over this length:

〈xs(s) · xs(s′)〉 = exp

[−|s− s′|
`p

]
, (1.27)

where the angle brackets denote a statistical average. A more useful relation, directly

associated with the idea of a balance between elasticity and thermal fluctuations, is

[29, 88]

`p =
κ

kBT
. (1.28)

If the tangential correlations decay rapidly, as in the case of DNA and many

synthetic polymers, the persistence length is very small. Such flexible or floppy poly-

mers, for which `p � L, energetically favor coiled states. On the other end of the

spectrum are extremely rigid (with respect to Brownian fluctuations) fibers with
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`p � L which almost do not yield to shape fluctuations due to Brownian forces. The

semiflexible regime is in between where `p and L are of comparable magnitudes. As

examples, in the classic experiments of Gittes et al. [16], microtubules were found to

have a rigidity of κ ∼ 10−23 Nm2 corresponding to a persistence length of `p ∼ 5 mm,

whereas the corresponding values for actin were κ ∼ 10−26 Nm2 and `p ∼ 18µm. Both

these biopolymers occur naturally with lengths of the order of L ∼ 10µm.

When Brownian fluctuations become relevant, an additional term is required

in Equation (1.24) to model thermal fluctuations in the solvent. This additional term

is a stochastic force distribution fBr that must satisfy the fluctuation-dissipation

theorem. fBr can be shown to satisfy:

〈fBr(s, t)〉 = 0, (1.29a)

〈fBr(s, t)fBr(s′, t′)〉 = 2kBTM
−1δ(t− t′)δ(s− s′), (1.29b)

where 〈·〉 represents an ensemble average, and δ is the Dirac delta function. Equa-

tions (1.29a)–(b) are essentially a mathematical restatement of the equivalence be-

tween the random fluctuations felt by a particle and the dissipative frictional drag

(which is the inverse of the mobilityM) it experiences. A Brownian force that satisfies

these statistics gets added to Equation (1.24) and this captures the effect of stochastic

thermal fluctuations. A computational analogue of Equations (1.29a)–(b) might not

seem very straightforward, but we shall see how this can be treated in Section 2.3.

1.3 Overview of current work

This work attempts to shed light on some dynamics resulting from the balance

of some or all of viscous, elastic, Brownian, and gravitational forces on the config-

urations, transport and bulk behavior of flexible elastic filaments. We have seen in

the preceding sections the basics of each of these forces and how they act on slender

elongated bodies. Their complex interplay and the resulting non-trivial dynamics in

problems of physical and biological significance will be the focus of this work.

Chapter 2 starts by describing a single filament model and the associated

computational algorithm to solve it, based on the slender-body theory described in

Section 1.1.3. This model is then applied to study the dynamics of semiflexible poly-
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mers in simple flows, particularly those that are prevalent in microfluidics. Some of

these phenomena have been previously studied theoretically and/or experimentally,

and this serves to validate our methods. Numerical simulations and associated theo-

retical arguments describe the tumbling of polymers in shear flow and the stretching

or buckling of filaments in extensional flow. This will also be the first encounter with

the competition of line tension and elastic rigidity, which is a common theme across

many problems discussed in this dissertation. Chapter 2 ends with the development,

for the first time, of a theory for the so called ‘stretch-coil transition’ of semiflexible

polymers in extensional flows.

In Chapter 3, the transport of semiflexible polymers across a lattice of counter-

rotating vortices is explored in detail. We will see how such a flow mimics bio-assays

with actin filaments, and our simulations reveal a subdiffusive transport of polymers.

A trapping mechanism which leads to a ‘stick-slip’-like process that results in this

anomalous transport is discussed, and the subtle role of flexibility in migration or

entrapment of polymers in a non-uniform flow is illustrated.

Having looked at free filaments thus far, we move on to fibers under a constant

external force in Chapter 4, where we talk about sedimentation. Sedimentation of

flexible particles is relatively unexplored, and a wide range of non-trivial dynamics

are discussed in this chapter. In terms of an elasto-gravitation number, two vastly

separate regimes are focused on. The first, that of weakly flexible fibers, is shown to

be amenable to a multiple-scale asymptotic analysis, which results in expressions for

the bent shape, the rate of reorientation, and the peculiar trajectory of a sedimenting

fiber. The second, that of highly flexible fibers, is where a buckling instability exists

that shares mechanistic features with buckling as seen in Chapter 2. In this regime,

a linear stability analysis gives the growth rates and wave speeds of perturbations.

Theoretical predictions from both regimes are corroborated with detailed numerical

simulations.

We use the main result from the theory on weakly flexible fibers and head

into the world of long-ranged hydrodynamic interactions at the level of a suspension

in Chapter 5. Even in suspensions of rigid rods, drag anisotropy and hydrodynamic

interactions have been found to cause large-scale concentration instabilities. We de-

velop a mean-field description of weakly flexible fibers, and using a stability analysis,
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illustrate the effects of flexibility on the instability. Fiber flexibility is shown to affect

suspension stability in two distinct and competing ways: the anisotropy of the base

state of orientations renders the suspension more unstable to perturbations, while

individual particle reorientation acts to stabilize the suspension. In the presence of

thermal noise, the dominant effect is shown to depend critically upon the relative

scales of flexible fiber self-rotation compared to rotational Brownian motion.

Chapter 6 describes accurate and efficient large-scale particle simulations that

serve to verify our mean-field model from Chapter 5 on the one hand, and explore

some avenues that were not so amenable to theoretical analysis on the other. The

mechanism for the competing effects of fiber flexibility is illustrated using velocity

and orientation statistics from our simulations, and the suspension-level behavior is

tied to microstructural dynamics. These simulations are also used to predict stability

of initially well-stirred suspensions which might serve for comparison with future

experiments.

Concluding remarks and directions for future work are given in Chapter 7.



Chapter 2

Dynamics of elastic filaments in

simple flows

2.1 Introduction

The nonlinear dynamics of elastic filaments driven by hydrodynamic forces

have received significant attention in recent times, sparked mainly by advances in

experiments ranging from microscopic [31, 32, 34] to macroscopic [36] lengthscales,

as well as by the development of efficient low-dimensional models to describe them

quantitatively [28, 35, 86, 89]. Of particular interest are semiflexible filaments, which

are between the extremes of entropy-dominated floppy polymers and rigid rods in

terms of elastic stiffness. Pertinent to the contents of this chapter is that these

particles allow for a competition between bending forces and flow-induced internal

stresses in the presence of thermal fluctuations.

Understanding the configurational transitions of semiflexible filaments is key

to deciphering a plethora of dynamics ranging from tumbling [31, 34] to buckling

[32, 33] to helical coiling [89], which in turn could result in atypical transport [3, 90, 91]

or non-Newtonian behavior [28, 92]. Beside offering rich mechanical properties that

enable such dynamics, semiflexible biopolymers are of paramount importance to living

cells: eukaryotic cells are structurally supported by a cytoskeletal system comprised

of filamentous actin. Configurational transitions in such systems have been suggested

to lie at the core of biological pattern formation via self-organizational phenomena

21
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such as cytoplasmic streaming [93].

As described in Chapter 1, the presence of the filament or fiber is exhibited

only by the disturbance velocity of the line distribution of Stokeslets. In other words,

the filament is assumed to have zero thickness. Hence, the equation of motion of

the centerline of the filament as given by the slender-body theory in Section 1.1.3 is

assumed to represent the dynamics of the entire filament. This approximation is valid

in the high-aspect-ratio limit which applies in the case of the biopolymers that we

consider, with the characteristic thickness being a few orders of magnitude less that

the characteristic length. Furthermore, unless expressly stated, we shall assume the

the material of the fiber is homogeneous with uniform bending rigidity throughout.

In this chapter, we consider a single filament far away from other filaments or

walls and placed in simple linear flows. This can be thought to represent physically

the setting in a microchannel experiment (a single DNA separation device, for in-

stance) with the channel width being significantly larger than the filament size. This

free-draining approximation allows us the use of slender-body theory as described

in Section 1.1.3 without significant modifications. Specifically, after describing the

model and computational methods, we shall apply it to study the dynamics of free

filaments placed in simple shear and extensional flows. Introducing the effect of con-

finement in this model is a topic of future interest, and a brief perspective will be

provided in Chapter 7. For now, we neglect wall interactions so as not to resort to

modified Green’s functions of the Stokes equations [55, 94] or using auxiliary solutions

to correct for the presence of boundaries [95].

2.2 Single filament model

We begin by rewriting the centerline equation from Equation (1.10) that ac-

counts for the motion of a filament of position x(s, t) in a fluid with imposed velocity

u0(x(s, t), t) as:

8πµ (xt(s, t)− u0(x(s, t), t)) = −Λ[f(s)]−K[f(s)]. (2.1)
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Here, f(s) is the force per unit length exerted by the fluid on the filament body,

which we know from the discussion in Sections 1.2.2 and 1.2.3 to be

f(s) = −(T (s)xs)s + κxssss + fBr(s). (2.2)

Here, T (s) is the non-uniform line tension, κ the (homogeneous) bending rigidity

of the filament, and fBr(s) is the stochastic Brownian force acting on the filament

as described by the fluctuation-dissipation theorem. We neglect twist and stretch

elasticity (the latter consistent with the inextensibility condition described below)

whose effects are known to relax significantly faster than those of bending [86, 96].

Also, we do not explicitly add any forces to maintain physical uniqueness of different

filament point locations – excluded volume is assumed.

Regarding boundary conditions, the filament ends are ‘free’, i.e., there are no

forces or moments acting at the ends of the filament. This is true for an untethered

filament suspended freely in a fluid [28, 29, 59]. This gives

xss|s=0,L = xsss|s=0,L = 0, T |s=0,L = 0. (2.3)

2.2.1 Non-dimensionalization

In the problems that we consider in this chapter, the imposed flow is assumed

to be of a constant flow strength γ̇. We scale time by the relaxation time of the elastic

backbone, 8πµL4/κ, while lengths are made dimensionless using the contour length L

and forces with κ/L2. Notice that the operators Λ and K are already dimensionless.

For Brownian forces, following Munk et al. [29], we use a different scaling:

fBr =

[√
L

`p

κ

L2

]
ξ, (2.4)

where ξ is the dimensionless Brownian force, and the ratio
√
L/`p is introduced

so that the dimensionless noise has the second moment, following our discussion in

Section 1.2.3, of the form

〈ξ(s, t)ξ(s′, t′)〉 = 2M−1δ(t− t′)δ(s− s′). (2.5)

Here, M is the effective mobility tensor corresponding to the problem. Note that we

have made use of Equation (1.28) to arrive at the above form. This, in addition to

the condition of zero mean (〈ξ(s, t)〉 = 0), defines the Brownian force.
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The dimensionless centerline equation thus becomes

xt(s, t) = µ̄u0(x(s, t), t)− Λ[f ](s)−K[f ](s), (2.6)

with the corresponding force being

f(s) = −(T (s)xs)s + xssss +

√
L

`p
ξ(s), (2.7)

where all variables are now dimensionless. The parameter µ̄ is a ratio of the charac-

teristic fluid drag to the filament elastic force (or alternatively, the ratio of the elastic

timescale to that of the imposed flow):

µ̄ =
8πµγ̇L2

κ/L2
. (2.8)

This ratio, sometimes called an effective viscosity [28, 35], along with the ratio L/`p,

controls the relative importance of viscous, elastic and Brownian forces in this formu-

lation. The only other parameter now is ε which appears in the mobility operator Λ

(through the constants λ1 and λ2) and this is taken to be a constant for our purposes.

2.2.2 The tension equation

We recollect from our discussion in Section 1.2.2 that the line tension in Equa-

tion (2.2) acts in a way so as to keep the filament inextensible. This tension is

configuration-dependent and has to be evaluated at every instant based on the shape

and viscous forces at that instant. What this means is that we need to construct, in

addition to Equation (2.6), a coupled equation that will evaluate the tension. This

tension can be then fed into the force distribution to evaluate the position of the

filament centerline.

For this, we consider the condition of inextensibility xs · xs = 1 where xs is

the unit tangent vector at s. We can write:

∂

∂t
(xs · xs) = 0 ⇒ xs · xts = 0, (2.9)

where we have used the fact that s is a material parameter to interchange the s and

t derivatives. This condition can be combined with Equation (2.6) to get

xs ·
∂

∂s
(µ̄u0(x(s, t), t)− Λ[f ](s)−K[f ](s)) = 0. (2.10)
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Further simplification requires a ladder of differential identities, derived from the

filament inextensibility condition:

xs · xs = 1, (2.11a)

xs · xss = 0, (2.11b)

xs · xsss = −xss · xss, (2.11c)

xs · xssss = −3xss · xsss, (2.11d)

xs · xsssss = −3xsss · xsss − 4xss · xssss. (2.11e)

The resulting form of the dimensionless line tension equation reads

−2(c− 1)Tss + (c+ 1)(xss · xss)T − xs ·
∂

∂s
K[(T (s)xs)s]

= µ̄xs ·
∂u0

∂s
+ (7c− 5)(xss · xssss) + 6(c− 1)(xsss · xsss)

−2(c− 1)

√
L

`p
(ξs · xs)− (c− 3)

√
L

`p
(ξ · xss)

−xs ·
∂

∂s
K[xssss]−

√
L

`p
xs ·

∂

∂s
K[ξ].

(2.12)

This is a second-order inhomogeneous integro-differential equation in T (s), and can

be solved if the position and Brownian forces are known. The tension acts as a La-

grangian multiplier, constraining the motion of the filament so as to ensure inextensi-

bility. In practice however, numerical errors will be introduced into our computations

from the finite difference approximations that will be made to the derivatives, and

additional correction might be required to ensure this constraint. This is accounted

[28] by replacing the inextensibility condition in Equation (2.9) by

1

2

∂

∂t
(xs · xs) = xs · xts = ζ(1− xs · xs). (2.13)

Clearly, this is equivalent to the original condition when xs · xs = 1 and acts to

counter the error if there is one. The penalization parameter ζ is chosen based on

the computational parameters. This modified constraint only changes the tension

equation (2.12) with an additional −ζ(1− xs · xs) term on the right-hand side.
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2.3 Computational methods

In this section, we discuss the numerical methods applied to the single fila-

ment model described in the preceding sections. We also describe in detail how the

stochastic terms are computed and conditioned for numerical stability.

2.3.1 Semi-implicit time marching

The spatial derivatives in Equations (2.6) and (2.12) are discretized using

second-order divided differences, and time marching is performed using a second-

order time-stepping scheme. The fourth derivatives of x with respect to arclength in

Equation (2.6) will yield a strict fourth-order stability limit on the time-step size. The

obvious way to get past this constraint is to use an implicit scheme. Instead of making

the entire equation implicit, thus increasing computing cost, we use a semi-implicit

scheme [28] wherein all occurrences of xssss are treated implicitly. Specifically, we

separate the terms in Equation (2.6) as

∂x

∂t
= M (x,xssss) +N (x). (2.14)

Here, the terms in M are to be treated implicitly, whereas N is completely explicit.

Time-marching is second order accurate using a backward differentiation for-

mula. The stiffest terms are treated implicitly while the remaining terms are extrap-

olated to the current time [28]. For timestep ∆t and subscripts denoting the time at

which the term is being evaluated, we have

1

2∆t
(3xn+1 − 4xn + xn−1) = M (2xn − xn−1,xn+1

ssss) + 2N (xn)−N (xn−1). (2.15)

To illustrate this, applying the above scheme to the centerline equation in (2.6) re-

quires us to first separate the terms that will be treated implicitly and explicitly:

∂x

∂t
+ Λ [xssss] +K [xssss] = N (x)

=µ̄u0 − Λ
[

(−Txs)s +

√
L

`p
ξ

]
−K

[
(−Txs)s +

√
L

`p
ξ

]
.

(2.16)

Here, the mobility operators Λ and K acting on the fourth derivative (moved to the

left-hand side) are evaluated implicitly and the terms grouped into the right-hand
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side are treated explicitly. For the sake of illustration, we shall consider the case

when the non-local term is not evaluated (a frequent approximation that we shall use

in many examples in this dissertation). In this case, at time n, following Equation

(2.15) and using the definition of Λ, the time-stepping scheme reads

1

2∆t
(3xn+1 − 4xn + xn−1) + (c+ 1)xn+1

ssss

+(c− 3)
[
(2xns − xn−1

s ) · xn+1
ssss

]
(2xns − xn−1

s ) = 2N (xn)−N (xn−1).
(2.17)

The only difference is the very first time time step, where we do not have a previous

time level available, and there we use a simple forward Euler step. This form is

particularly convenient as the discrete version is a banded matrix of the form −(1 +

c)D4+(3−c)(2xns−xn−1
s )(2xns−xn−1

s ), whereD4 is a fourth-derivative finite difference

stencil tensor, which can be solved efficiently using specialized inversion routines. For

the corresponding local tension equation (same as Equation (2.12) without the K

operator), the numerical analog is a tridiagonal matrix system which is inverted at

every time step.

In cases where shall indeed include the effect of intra-chain interactions, a

regularized version of the non-local operator from Equation (1.12) is used:

Kδ[f ](s) =

∫ 1

0

(
I + r̂(s, s′)r̂(s, s′)√
|r(s, s′)|2 + δ2

· f(s′)− I + ŝ(s)ŝ(s)√
|s− s′|2 + δ2

· f(s)

)
ds′. (2.18)

A constant regularization parameter is chosen, δ = 2ε, which introduces an error

of O(ε2 log(ε)) in the interior of the filament and O(ε) near its ends. This could be

further improved by using a non-uniform regularization parameter δ(s) as in the work

of Tornberg and Shelley [28].

As to spatial discretization, we consider N equally spaced points on the fila-

ment with spacing h such that h = ∆s = 1/(N−1). Hence, the discrete points become

sj = jh where j = 0, 1, .., N . All spatial derivative are approximated by second-order

divided differences, so the approximation is valid to an O(h2) error. Standard cen-

tered stencils are used wherever applicable, except at the boundaries where skewed

operators are applied. The boundary conditions of force- and moment-free ends from

Equation (2.3) enter the system through finite difference stencils applied at or near

the endpoints.
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2.3.2 Evaluating Brownian terms

Recollect from Section 1.2.3 that the Brownian forces are specified only by

their mean and second moment – properties that make them satisfy the fluctuation-

dissipation theorem. Numerically, this force distribution ξ is approximated as:

ξ(s, t) =

√
2

∆s∆t
B ·w, (2.19)

where w is a random vector from a Gaussian distribution of zero mean and unit

variance. ∆s is the spatial grid spacing, ∆t is the time step, and B is the tensor

square root of the resistance tensor [Λ + K]−1. This approximation can be seen to

satisfy Equation (2.5) directly.

The random vector w is generated from a uniform distribution at each evalu-

ation. Calculating the square root of the inverse of the mobility tensor can be costly,

especially since the tensor depends on the current position and this is updated at

every time-step. This is especially costly when the non-local operator is involved as

the interactions result in a dense matrix. However, for the local problem, the form of

B ≈
√
Λ−1 can be analytically determined using the following manipulation: we rep-

resent the mobility operator Λ in the form (c+1)(I−αxsxs), where α = (3−c)/(c+1).

Then assuming Λ−1 to be of the form (I + βxsxs)/(c+ 1), one can write:

ΛΛ−1 = (I − αxsxs)(I + βxsxs) = I. (2.20)

This allows us to solve for β and we get β = α/(1 − α) = −(c − 3)/2(c − 1) which

then yields the form of Λ−1:

Λ−1 =
1

c+ 1

[
I −

(
c− 3

2(c− 1)

)
xsxs

]
. (2.21)

Finding the tensor square root of Λ−1 is now a similar exercise: we assume that
√
Λ−1

is of the form (I + γxsxs)/
√

(c+ 1) and then

(I + γxsxs)(I + γxsxs) = I + βxsxs.

One can solve for γ = −1 ± √1 + β = −1 ±
√

(c+ 1)/2(c− 1) where either of the

roots may be used. This then gives the form of the inverse of the square root of the

mobility tensor

B =
√
Λ−1 =

√
1/(c+ 1)

[
I +

(
−1±

√
(c+ 1)/2(c− 1)

)
xsxs

]
, (2.22)
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which goes into Equation (2.19). Of course, this method is possible only due to the

form of Λ; if hydrodynamic interactions were to be included, the mobility operator

would include the integral in Equation (1.12) and a full square root algorithm or

asymptotics must be applied (see Chapter 6.

There are two important points to notice here. The first is that the tension

equation (2.12) contains spatial derivatives of the Brownian force ξ(s). Brownian

forces at adjacent grid points are uncorrelated and using Equation (2.19) directly

in Equation (2.12) can lead to numerical instabilities resulting from the very large

terms obtained by directly differentiating ξ(s). Noting that high wavenumber force

fluctuations do not result in high wavenumber shape fluctuation owing to the strongly

smoothing nature of the fourth derivative in Equation (2.6), one strategy to solve this

problem consists of applying a ‘low-pass-filter’ to the stochastic force distribution.

This is achieved by taking a Fourier transform of ξ(s). The largest few wavenumbers

(representing the sharpest gradients) are removed and the distribution is transformed

back. The magnitude of ξ(s) is then rescaled to conserve the total energy by matching

the variance to that of Equation (2.5). It is important here not to remove so many

wavenumbers that one loses the dynamics due to thermal fluctuations; we have filtered

out not more than the top 40% of wavenumbers and this is seen not to affect the

equilibrium properties (see below).

The other caveat is that the Brownian force in Equation (2.19) is proportional

to the square root of the timestep. This means that during integration, the effective

order of the time marching scheme is reduced from second to first order. This has been

noted previously [52] and will result in a stricter time constraint to ensure stability

and accuracy. The way to get past this would be to implement specialized stochastic

integration algorithms [97–99], like a mid-point scheme, tailored to increase the order

of accuracy. This gain in order of accuracy is at the price of more evaluations at

every time-step. Implementing a more accurate, while at the same time economical

scheme, is a challenging open problem.



30

2.4 Equilibrium properties

Before we proceed to examine the dynamics of Brownian polymers in external

flows, we take a quick look at polymers in the absence of flow, which will also serve

as a check for the numerical methods defined in Section 2.3. One straightforward

way to validate the Brownian dynamics algorithm is to compare its results against

predictions from statistical mechanics. The end-to-end distance and the radius of

gyration are two obvious candidates for this comparison, both having direct physical

significance in characterizing the dimensions of a microchannel or a pore that the

polymer can pass through. The end-to-end distance is the magnitude of the vector

connecting the two ends, while the radius of gyration is the root-mean-square distance

of the parts of the polymer from its center of mass. Their mean-square values take

the forms, respectively,

〈R2〉 =
1

L2

∫ L

0

∫ L

0

〈xs(s1) · xs(s2)〉ds1ds2, (2.23)

〈S2〉 =
1

L2

∫ L

0

∫ L

0

〈(x(s1)− x0) · (x(s2)− x0)〉ds1ds2. (2.24)

Here, x0 is the center of mass of the polymer. These can be simplified [87] using the

definition of the persistence length from Equation (1.27) to expressions in terms of

`p and obtain, for instance, equilibrium distributions of these lengthscales.Wilhelm

and Frey [100] derived a probability distribution function for semiflexible filaments

in Brownian solvents, and they observed a characteristic shift of the peak towards

R ∼ L as the filament got stiffer, a result consistent with our intuitions as `p � L,

and one that has been experimentally verified [101]. As an example, the probability

distribution as obtained from our simulations are shown in Figure 2.1, and this shift

in peak is clearly seen.

Validation with equilibrium values of polymers such as end-to-end distance

and radius of gyration does not tell us much about the performance of the model

before it reaches equilibrium. There is a characteristic time scale (usually referred

to as the longest relaxation time of the single filament) at which these equilibrium

values are realized. To account for the transient dynamics before this relaxation is

achieved, we need a property that is time-dependent and preferably one that shows a

clear transition to equilibrium. For this, we use the mean-square displacement (MSD)
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Figure 2.1: Probability distribution function G(R) of the end-to-end distance from
simulations.

of the end-to-end distance. The MSD is defined as [29]

∆R(t) =
〈
(R(t)−R(0))2

〉
. (2.25)

The MSD of polymers with free boundary conditions has been previously stud-

ied analytically [88] and verified experimentally [101]. It is known to grow subdiffu-

sively like t3/4, and for long times to approach an equilibrium value of

∆R(t & τ) =
2

45

(
L

`p

)2

, (2.26)

where τ is the longest relaxation time of the polymer. This is also the timescale

at which both the end-to-end distance and the radius of gyration saturate to their

equilibrium values. Results from our simulations reproduce this behavior closely.

The subdiffusive growth as t3/4 is clearly seen, until it reaches the correct equilibrium

asymptote. It must also be noted that the characteristic relaxation time is very close

to that reported in the experiments of Le Goff et al. [101]. The ensemble averages

from 50 runs for each value of flexibility (`p/L = 4, 9, 16 and 25) are shown in Figure

2.2.
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It is interesting to note here that for very short times, t/τ < 10−3, both

experiments [101] and theory [29] report a downturn in the slope to approximately

t7/8. Our numerical results seem to indicate a downturn too, that qualitatively agrees

with previous findings.

2.5 Shear flow

We now move on to the first application of our slender-body model – that of

deciphering the dynamics of polymers in an imposed flow. We focus particularly on

the kind of flows seen commonly in micro-channel devices used to trap, separate and

manipulate single macromolecules. Such applications arise in single polymer studies,

genetic engineering and related experiments that use hydrodynamic ‘trap’ devices

[47, 48]. We begin by applying the slender-body model to free filaments in simple

shear flow. Analytical results can be obtained for simplified cases (if one neglects

Brownian forces), and numerical solutions enable us to explore more complicated

cases. We then move on to studying the suppression of fluctuations and buckling
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Figure 2.3: A flexible filament in planar shear flow.

instability that are displayed in the neighbourhood of hyperbolic stagnation points.

In this section, we are concerned with the dynamics of a filament placed in

a laminar shear flow as depicted in Figure 2.3. In terms of the position vector x =

(x, y, z) of the filament, the velocity felt by the body is of the form u0 = (γ̇y, 0, 0).

Before we go on to the general case of a filament in shear with Brownian forces, it is

helpful to look at the dynamics in the absence of thermal fluctuations.

2.5.1 The non-Brownian case

The model we derived in Section 2.2 accounts for hydrodynamic as well as

Brownian forces. If, for the sake of illustration, one neglects Brownian fluctuations

as well as non-local interactions, we get the following set of equations governing the

centerline and the tension:

µ̄xt(s, t) = µ̄u0(x(s, t), t)− [(c+ 1)I + (c− 3)xsxs] · [−(T (s)xs)s + xssss] , (2.27a)

−2(c− 1)Tss(s) + (c+ 1)(xss · xss)T (s) = µ̄xs ·
∂u0

∂s
+ (7c− 5)(xss · xssss)

+6(c− 1)(xsss · xsss).
(2.27b)

Note that in this case, the only timescale is the one associated with the shear rate,

i.e. γ̇−1, and the centerline equations get modified to accommodate this change of

non-dimensionalization [28]. All other characteristic scales remain the same as before,

and µ̄ = 8πµγ̇L4/κ is the ratio between viscous and elastic forces as we have defined

before.

If the line tension induced in the filament backbone overcomes its flexural

rigidity, it can become unstable to buckling. We shall see examples of buckling due

to simple shear in the following pages. However, to start with, a particularly simple
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Figure 2.4: A straight filament in planar shear flow and its dynamical analogue of a
flow on the circle. (a) The filament makes at initial angle θ0 alone the mid-plane of a
simple shear flow u0. (b) Flow on the circle with semi-stable fixed points at θ = nπ.

case is that of a rigid rod. Such a rod would simply rotate about its center (which we

assume is in the central plane where the velocity is zero, as in Figure 2.4(a)). It turns

out that the Equations (2.27) can be solved analytically under these assumptions and

this can give us some insight into the dynamics of such rotational motion.

To obtain the analytical solution, we consider a perfectly straight filament with

position vector x = (x, y, z) in the dimensionless planar shear flow u0 = (y, 0, 0),

with the rod at an instantaneous angle θ(t) with the x-axis. This gives the local

tangent xs = (cos θ, sin θ, 0) which is constant throughout its length. Higher arclength

derivatives are zero, and Equations (2.27a)-(b) then have the exact solution:

x(s, t) =

(
1

2
− s
)
êθ, T =

µ̄ sin 2θ

8(c− 1)
s(1− s), (2.28)

where s ∈ [0, 1] is the arclength and êθ = (cos θ, sin θ, 0). θ then solves the non-linear

ordinary differential equation
∂θ

∂t
= − sin2 θ. (2.29)

Assuming an initial angle of θ(t = 0) = θ0, we then have the exact solution

θ(t) = cot−1(t+ cot θ0). (2.30)

This solution can be shown [28] to be identical up to O(ε2) to the Jeffery orbit

solution [102] for a long slender ellipsoid in a shear flow, consistent with our choice

of a spheroidal filament shape (cf. Section 1.1.3).
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orientations θ0 = 17π/18 and θ0 = 10π/18, and the lines follow Equation (2.30).

We can see from the solution in Equation (2.30) that the filament merely

rotates about its center to align with the shear plane. Figure 2.5 shows θ(t) in

the case of a filament starting at two different initial orientations, θ0 = 17π/18 and

θ0 = 10π/18. It is vital to note that the filament is assumed to have zero thickness the

way the slender-body theory is formulated, and once aligned with the plane of zero

shear, it stays aligned until externally perturbed. This is not the case for particles

of finite width which will continue to rotate in Jeffery orbits [102]. The rotation is

initially slow due to the low shear rate at small distances from the x-axis, and as θ

approaches π/2, the rotational speed is maximum. It slows down again as the shear

rate lessens and then aligns with the flow very slowly. In fact, Tornberg and Shelley

[28] note that for ε = 0.01 (the value we use in our simulations), the filament takes

only about 4% of the time period to cover 90% of the orbit, and most of the time

is spent aligning with the x-axis. It can also be seen by dimensionalizing Equation
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Figure 2.6: Buckling of a flexible filament for µ̄ = 4× 105.

(2.30) that the orbit is faster for a higher shear rate, which one would expect by

intuition.

Another point of view of looking at Equation (2.30) is to think of it as a flow on

the circle [103]. As shown in Figure 2.4(b), the system has fixed points at θ = nπ, all

of which are semi-stable. These equilibria can be attained approaching only from one

direction, and once there a filament will stay in equilibrium until externally perturbed.

If perturbed, the filament is either pushed back to equilibrium or it takes a full turn

to the next fixed point, based on the direction of perturbation. Such an approach is

particularly insightful when we include Brownian fluctuations, and we shall return to

it soon.

When the filament is flexible (note that ‘flexible’ in this context refers to flexi-

bility with respect to viscous forces), the equations are not so amenable to analytical

treatment and we solve them numerically. The feature most predominant in flexible

fibers is the buckling instability, caused by the non-uniform tension developed in the

filament due to hydrodynamic forces. A perfectly straight fiber remains straight for

the entire orbit, but the tiniest of perturbations (which is externally imposed in our

simulations) leads to interesting buckling patterns. These dynamics and their impact
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Figure 2.7: Tension induced in the filament as a result of buckling at µ̄ = 4 × 105

shown as a function of arclength s. The corresponding values for a rigid rod are
shown in dashed red lines.

on suspension rheology have been recently studied by Tornberg and Shelley [28]. As

a test of our numerical algorithm, and for illustration, Figure 2.6 shows pronounced

buckling for a filament placed initially at θ0 = 17π/18 and tracked through an entire

rotation µ̄ = 4 × 105. These results are in good agreement with those presented in

Tornberg and Shelley [28].

As was mentioned earlier, this buckling is a result of the non-uniform tension

induced in the filament due to the hydrodynamic forces that cause shape fluctuations.

In the case of rigid rods, the tension is known to have a parabolic profile which

we derived in Equation (2.28). This tension is negative in the second and fourth

quadrants, to resist compression; beyond that, in the first and third quadrants, the

tension becomes positive, actively resisting elongation as the flow tends to straighten

the filament. But, when the filament buckles, tension starts out negative and takes on

more complicated patterns (Figure 2.7) to enforce inextensibility through the complex

shapes taken by the filament.
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The tumbling motion can be broadly divided into a shear dominated advective phase and a 
fluctuation dominated diffusive phase, separated by an angle of peak probability:

• Diffusive phase:              . 

• Advective phase:                        . advective phase

diffusive 
phase

✓p

From the corresponding Fokker-Planck equation, it can be shown that                        .
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Figure 2.8: The tumbling cycle of a polymer in shear flow. (a) Descriptive cycle of
one tumble of a filament. (b) Di↵usive and advective phases of a tumbling event.

Brownian forces acting along the filament, there is a possibility that the filament (or a

part of it) may be pushed out of the stable axis once it aligns with the flow. One can

visualize the e↵ect, and intuitively predict that if the fluctuation causes the filament

to rotate counter-clockwise (with reference to Figure 2.4), the shear tends to push it

back to a position where the forces might be balanced. If, however, the fluctuation

is such that the filament rotates clockwise, it now faces the shearing action of the

background flow that drives it away from the shear plane and the filament takes a

tumble. Figure 2.8(a) shows this possible tumbling mechanism. The Brownian kicks

happen in a phase that is di↵usion-dominant (✓ < ✓p in Figure 2.8(b)) and outside

this range, the shear flow simply rotates the fiber in an advection-dominated (✓ > ✓p)

phase.

Following the analysis of non-Brownian rods, we attempt to understand the

dynamics by considering a simpler case, that of perfectly straight filaments. It can be

shown [29, 104] that the equation governing ✓ in this case, similar to Equation (2.29)

for non-Brownian rods, is (in dimensional form)

✓t = ��̇ sin2 ✓ + ⇠(t), (2.31)

where ⇠ is a stochastic term that is related to the rotational di↵usivity of a rod, dr [29],

with h⇠(t)i = 0, h⇠(t)⇠(t0)i = 4dr�(t � t0). An alternative way to interpret this term

Figure 2.8: The tumbling cycle of a polymer in shear flow. (a) Descriptive cycle of
one tumble of a filament. (b) Diffusive and advective phases of a tumbling event.

2.5.2 Tumbling in shear flow

A good place to start the discussion on the effect of Brownian motion on

filaments in shear flows is to go back to Figure 2.4. As mentioned earlier, a non-

Brownian filament aligns itself with the shear plane and stays aligned. There are no

perturbations that can cause it to move out of plane once θ = nπ. Now if we consider

Brownian forces acting along the filament, there is a possibility that the filament (or a

part of it) may be pushed out of the stable axis once it aligns with the flow. One can

visualize the effect, and intuitively predict that if the fluctuation causes the filament

to rotate counter-clockwise (with reference to Figure 2.4), the shear tends to push it

back to a position where the forces might be balanced. If, however, the fluctuation

is such that the filament rotates clockwise, it now faces the shearing action of the

background flow that drives it away from the shear plane and the filament takes a

tumble. Figure 2.8(a) shows this possible tumbling mechanism. The Brownian kicks

happen in a phase that is diffusion-dominant (θ < θp in Figure 2.8(b)) and outside

this range, the shear flow simply rotates the fiber in an advection-dominated (θ > θp)

phase.

Following the analysis of non-Brownian rods, we attempt to understand the

dynamics by considering a simpler case, that of perfectly straight filaments. It can be

shown [29, 104] that the equation governing θ in this case, similar to Equation (2.29)
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for non-Brownian rods, is (in dimensional form)

θt = −γ̇ sin2 θ + ξ(t), (2.31)

where ξ is a stochastic term that is related to the rotational diffusivity of a rod, dr [29],

with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 4drδ(t − t′). An alternative way to interpret this term

is as a control parameter in a saddle node bifurcation at ξ = 0 [103]. The unstable

branch in this bifurcation physically corresponds to the Brownian forces driving the

filament out of the horizontal axis, where shear effects kick in and a new rotation

cycle begins.

Our full simulations with flexible polymers also show this typical tumbling

behavior. Fibers are seen to maintain a more or less stretched state, especially for

large strain rates. In order to quantify a mean orientation of a flexible polymer, we

introduce the gyration tensor [105]:

S =
1

L2

∫ L

0

∫ s1

0

(x(s1)− x(s2))(x(s1)− x(s2)) ds2 ds1. (2.32)

Then, we define the eigenvector corresponding to the largest eigenvalue of S, eval-

uated at each time step, as the mean orientation of the filament. Statistics of the

orientation collected this way is shown in Figure 2.9, which clearly illustrates the

advective and diffusive regimes separated at an angle θp, which in turn depends on

the rate of strain (in the form of µ̄ here). We also see that polymers spend shorter

durations in the advective phase as µ̄ increases (consistent with faster flow), leading
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Figure 2.10: Scaling of tumbling frequency ν with dimensionless flow strength µ̄ for
a filament with `p/L = 4.

to a build up of probability in the range θ < θp in the second and fourth quadrants

where advection and diffusion balance out. The shear flow is from right to left in the

upper half in these simulations.

This tumbling phenomenon has long been observed in single DNA experiments

using fluorescence microscopy [105, 106]. However, DNA is a floppy polymer with

negligible bending resistance. Recently, careful shear flow experiments [31] on actin

filaments (which are semiflexible) revealed the same phenomenon. Harasim et al. [31]

recorded a quasi-periodic tumbling, whose characteristic frequency can be estimated

as follows.

The peak probability in Figure 2.9 can be determined by solving a Fokker-

Planck equation corresponding to the Langevin equation (2.31) for θ(t). Physically,

this corresponds to the balance of shear-driven advection and thermal diffusion in

the stationary probability flux, which is seen to be [31, 107] at θ = θp ∼ (dr/γ̇)1/3.

Knowing this, the time spent in the advective phase can be estimated by solving the
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non-Brownian part of Equation (2.31): θt ≈ −γ̇ sin2 θ between θp and π − θp:

tadv =

∫ π−θp

θp

dθ

γ̇ sin2 θ
=

2

γ̇ tan θp
∼ d−1/3

r γ̇−2/3. (2.33)

The time spent in the diffusive phase can be estimated similarly by considering

just the Brownian part of Equation (2.31): θt ≈ ξ(t). This is a random walk in

orientation and the timescale associated with it can be estimated directly from the

explored range and rotational diffusivity as

tdiff ∼
θ2
p

dr
∼ d−1/3

r γ̇−2/3. (2.34)

The characteristic timescale of the tumbling events, then, is the sum of the two which

yeilds the tumbling frequency:

ν =
1

tadv + tdiff

∼ γ̇2/3. (2.35)

Figure 2.10 shows the tumbling frequency extracted from our simulations against the

strain rate (µ̄ in dimensionless terms). Recall that the phenomenon is quasiperiodic

– the frequency spectrum corresponding to the orientation data reveals a spectrum

and not a single peak. The frequency we identify in Figure 2.10 corresponds to

the maximum of this spectrum, and the scaling is seen to match very well will the

predicted value of the 2/3rd power law.

2.6 Extensional flow

We now focus on a family of flows commonly observed in microfluidic devices,

particularly in four-roll mills and hydrodynamic trap devices. These flow fields are

hyperbolic and a filament placed at the stagnation point displays interesting non-

linear behavior. Tension induced in the filament can suppress fluctuations when

aligned with the extensional axis, or can cause a buckling instability analogous to

Euler buckling of beams [108] when aligned with the axis of compression. Recently,

there have been attempts to study this ‘stretch-coil’ transition in macroscopic flows

by electrodynamic forcing [36]. Young and Shelley [35] used slender-body theory

to describe the dynamics in the case of non-Brownian elastic filaments, extending
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the theory to predict transport of fibers in cellular flows like in the experiments of

Wandersman et al. [36]. At the microscopic scale, this phenomenon can be particu-

larly useful in designing devices meant to separate and trap single particle for long

timescales as in the microfluidic device developed by Tanyeri et al. [47, 48]. A no-

table attempt at investigating this effect with the inclusion of thermal fluctuations is

a recent work by Kantsler and Goldstein [32] where a variational method is used to

justify experimentally observed trends.

Free polymers in Brownian solvents have been well studied [16, 88], but the

effect of non-uniform tension has only begun to receive attention. Here, we consider

the two aforementioned phenomena this non-uniform tension can induce: suppression

of thermal fluctuations in extension and the buckling instability in compression.

2.6.1 Suppression of thermal fluctuations by stretching

Consider a filament placed in an extensional flow u0 = (u, v, w) = (γ̇x,−γ̇y,0).

This would correspond to a controlled microfluidic device [32, 47] that, by carefully

controlled pressures at the entrances and exits, traps the filament at the center. Figure

2.11 (a) illustrates this set-up.

For our purposes here, we consider a filament nearly aligned with the exten-

sional axis (the horizontal axis in Figure 2.11 (b)) such that its mean orientation is

near zero. For simplicity of analysis, we also assume a two-dimensional system with

small-amplitude fluctuations from a mean position represented by h(x) (Figure 2.11

(b)). Filament rotations away from the axis are assumed small [32] which allows us to

approximate the mean position to be along the axis, and the end-to-end distance R

of the filament is approximately the same as its contour length L. Then, the energy

of the filament (assumed to be placed with its center at the origin) follows a Monge

representation:

E =
1

2

∫ L/2

−L/2

[
κh2

xx + T (x)h2
x

]
dx. (2.36)

The tension T (s) can be approximated if we assume a 2-D background flow

u0 = (x,−y) (made dimensionless by standard scales that we have been using). Note

that thermal fluctuations will be introduced in Equation (2.36) as an external forcing

and so we consider the governing equation for the non-Brownian rod as in Equation
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Figure 2.11: Illustration of a polymer placed in extensional flow. (a) Polymer placed
at the hyperbolic stagnation point of a cross-flow device. (b) Polymer geometry as
used in the analysis of suppression of fluctuations in extensional flow, showing the
variable h and the mean orientation θ.

(2.27a). For a straight filament, noting that xss = 0 and that xt = 0 if placed

perfectly symmetrically, the steady centerline equation reduces to

µ̄u0 = [(c+ 1)I + (c− 3)xsxs] · (−Tsxs) = −2(c− 1)Tsxs. (2.37)

The filament is assumed to lie along the x-axis between x = −L/2 and L/2. In

dimensionless terms, this corresponds to a position vector x = (−1/2 + s, 0), unit

tangent vector xs = (1, 0) and a corresponding background velocity u0 = (−1/2+s, 0)

for s ∈ [0, 1]. Using this in Equation (2.37) along with the boundary conditions for

tension, T (s = 0) = T (s = 1) = 0, the tension can be found to be

T (s) =
µ̄

4(c− 1)
s(1− s). (2.38)

In dimensional terms, Equation (2.38) gives the familiar form of the non-uniform

tension in an almost straight thread aligned with the extensional axis [32, 56]:

T (x) =
2πµγ̇

ln(1/ε2e)

[
L2

4
− x2

]
, (2.39)

where we have used µ̄ = 8πµγ̇L4/κ and c = ln(1/ε2).
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Using this expression for tension in Equation (2.36) and the Euler-Lagrange

equation, we can derive a set of eigenfunctions W (n)(x) and corresponding eigenvalues

λn (see Appendix A for derivation and details) that satisfy the boundary conditions

W
(n)
xx (x = ±L/2) = W

(n)
xxx(x = ±L/2) = 0, which represent force-free and moment-

free ends. These eigenfunctions (shown here under the convenient rescaling ξ = πx/L

and Λn = λnL
4/π4κ) are governed by

W
(n)
ξξξξ − Σ̃

[(
π2

4
− ξ2

)
W

(n)
ξ

]

ξ

= ΛnW
(n). (2.40)

Here, Σ̃ = µ̄/4π4 ln(1/ε2e) is a dimensionless group that is a ratio of tensile force to

elastic force, which we use to compare directly with the experiments of Kantsler and

Goldstein [32], defined as

Σ̃ =
2µγ̇L4

π3κ ln(1/ε2e)
. (2.41)

Now, projecting the amplitude of fluctuations onto the basis {W (n)(x)} so that

h(x) =
∑

n anW
(n)(x), it can be shown using integration of parts and the boundary

conditions described above (see Appendix A) that the energy decomposes exactly

into contributions from each mode independently: E = L/2
∑

n λna
2
n. The principle

of equipartition then allows us to derive the variance of the amplitudes an to be

〈aman〉 =
δmnL

3

π4`pΛn
. (2.42)

Then, if the mean amplitude is assumed to be 〈an〉 = 0, the mean filament fluctuation

amplitude is h̄ = 0, which tells us that the local variance V (x) =
〈
[h(x)− h̄]2

〉
is

V (x; Σ̃) =
L3

`pπ4

∞∑

n=1

W (n)(x; Σ̃)2

Λn(Σ̃)
. (2.43)

For the case of Σ̃ = 0, Equation (2.40) is a one-dimensional biharmonic equa-

tion that can be solved analytically (see Appendix A), and Λn grows like (n+ 1/2)4.

For Σ̃ 6= 0, a numerical solution is straightforward and Figure 2.12 shows V (x, Σ̃)

from Equation (2.43) evaluated to the first 1000 terms for four different values of Σ̃;

the suppression of amplitude fluctuations with increasing strain rate is evident.

Following Kantsler and Goldstein [32], we note that the eigenfunctions for Σ̃ 6=
0 are strikingly similar to those for Σ̃ = 0 (see Appendix A) with the peaks flattened
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Figure 2.12: Local variance of shape fluctuations, V (x), for four different flow rates.
The symbols are from numerical simulations and corresponding theoretical predictions
following Equation (2.43) are shown in solid lines. The normalization factor Ve is the
variance of filament-end fluctuations: Ve = [V (−L/2) + V (L/2)]/2.

out, mirroring the suppression of amplitude fluctuations by the extensional flow.

Furthermore, the form of V (x, Σ̃) in Equation (2.43) is such that the first few terms

dominate, a fact reflected in the ‘W’ shape corresponding to the fundamental mode in

Figure 2.12. Simulations show that the variance closely follows the predicted pattern

with fluctuations being suppressed as Σ̃ increases. The slight mismatch between

the predictions and our numerical results may be attributed to the fact that while

the theory is entirely two-dimensional, the simulations allow for motion in all three

dimensions. In other words, energy from fluctuations can be dissipated in the third

dimension and this is not captured by the expansion in Equation (2.43).

A clearer picture of the suppression of amplitude fluctuations is the magnitude
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Figure 2.13: Variance of filament-end fluctuations, Ve, as a function of strain rate
showing the systematic suppression of fluctuations. Three-dimensional amplitude
fluctuations and the corresponding two-dimensional values for the projection on the
x-y plane, as obtained from simulations, are shown with symbols. The corresponding
theoretical prediction is the solid line.

of variance of the filament-end fluctuations, Ve = [V (−L/2)+V (L/2)]/2. Figure 2.13

shows that for small Σ̃, this value is almost the same as that for Σ̃ = 0. However,

for Σ̃ > 1 the variance is heavily suppressed. The factor `p/L
3 in Figure 2.13 follows

from Equation (2.43) and scales out the dependence on flexibility. Suppression of the

fluctuations directly indicates that the mean angle of the filament with respect to the

x-axis is also suppressed for Σ̃ & 1, a useful result that validates our assumption in

developing the equation for tension in the filament as in Equation (2.39).

2.6.2 The buckling transition of a semiflexible filament

Much like an elastic beam simply loaded at its ends, an elastic filament placed

in a viscous fluid can undergo a buckling transition if the hydrodynamic force acting

on it overcomes its elastic restoring force. This may be driven by internal forces

generated in response to an imposed flow [3, 28, 32, 33, 35, 89], or by an external
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force [4, 45]. Motivated by the recent experiments of Kantsler and Goldstein [32]

and by the rising ubiquity of microfluidic trap devices [48, 109] that employ such

flows, we focus here on the former scenario – specifically, the buckling transition of

a semiflexible filament placed at the stagnation point in a linear hyperbolic flow.

Adapting our approach to simple shear is straightforward. Inextensibility of such

filaments is ensured by an internal tensile force that acts to resist length changes. It

is the competition of this line tension with bending forces that results in non-trivial

shape instabilities, and the effect of thermal fluctuations on such instabilities is the

subject of this section.

Euler buckling, where an elastic beam is loaded constantly at its ends, is well

understood, and recent efforts [110, 111] have shown that the effect of stochastic forces

is to smoothen the otherwise sharp transition from a straightened to a buckled con-

figuration. Although we expect a rounded transition in the case of filaments placed

in a viscous fluid as well, extending these theories to the fluid-structure interaction

problem is not straightforward, primarily due to the non-uniform tensile force that

drives the buckling instability. In the non-Brownian limit, Young and Shelley [35]

were the first to quantify a dynamic instability leading to the so-called stretch-coil

transition when the driving flow strength exceeds a critical value. Following this,

Kantsler and Goldstein [32] comprehensively observed this transition in single actin

filaments using microfluidics, and showed that while fluctuations smooth the bifurca-

tion, it is broadly consistent with the athermal linear predictions. More recently, Deng

et al. [112] approached the same problem numerically and reported such a smoothed

transition. While their simulations captured the interactions of thermal fluctuations

and nonlinear filament dynamics, an analytical description of the smoothed transition

is still lacking. The exact nature of this stochastic bifurcation has yet to receive a

quantitative treatment, and here we present the first mathematical description of the

stretch-coil transition in the presence of thermal fluctuations.

We again resort to a local version of the slender-body theory following Equa-

tion (2.6) with the only modification that the arclength parameter is now in the

range s ∈ [−L/2, L/2], which is convenient to work with in extensional flows. Re-

call that the force distribution f(s, t) on the filament is f = −(Txs)s + xssss + fBr,

where the Brownian contribution follows from the fluctuation-dissipation theorem
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Figure 2.14: Snapshots from three separate numerical simulations showing typical
filament shapes as a result of the buckling instability. Higher modes are observed
as we increase the flow strength from (a) µ̄ = 16000 to (b) µ̄ = 32000 to (c) µ̄ =
64000. Streamlines of the hyperbolic flow are shown in dotted lines, and the flow is
compressional along the horizontal and extensional along the vertical. The persistence
length in each case is `p = 10L.

and, under the current non-dimensionalization, is such that 〈fBr(s, t)〉 = 0 and

〈fBr(s, t)fBr(s′, t′)〉 = 2(L/`p)Λ
−1δ(t− t′)δ(s− s′).

Simplifying the slender-body equation and using xs · xs = 1 (following inex-

tensibility) and hence xs · xss = 0, one finds

xt = µ̄u0 + λ1Txss + (λ1 + λ2)Tsxs − λ1xssss

− λ2(xs · xssss)xs + (λ1I + λ2xsxs) · fBr.
(2.44)

The simulations shown here follow the computational methods described in Section

2.3, with an aspect ratio ε = 0.01 and free-end boundary conditions: xss|s=±1/2 =

xsss|s=±1/2 = 0 and T |s=±1/2 = 0.

Figure 2.14 shows snapshots from our simulations, and they resemble the

shapes seen in the experiments of Kantsler and Goldstein [32] at corresponding flow
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Figure 2.15: Percentage of excited modes across a range of flow strengths. The
vertical dashed lines denote the deterministic thresholds for the first three modes
(shapes shown), and the shaded area represents the percentage of cases where no
buckling was recorded. All simulations are for `p/L = 10. Each vertical section is a
distribution across 200 simulations.

strengths (Σ̃ in their notation being equal to µ̄/4λ1π
4). When placed along the com-

pressional axis of a sufficiently strong flow, the filament experiences a negative tension

along its backbone whose balance with viscous, elastic, and thermal forces dictates

the observed shapes. As it buckles, it also reorients and eventually aligns with the

extensional axis where the now positive tension acts to stretch it. Solving for the

non-Brownian and linearized dynamics of an initially straight filament in such a flow,

Young and Shelley [35] deduced that an instability first occurs at µ̄cr ≈ 1478, and

that higher modes are destabilized at subsequent thresholds. Experiments as well

as our simulations show qualitatively similar modes as the deterministic predictions,

albeit with shape fluctuations owing to Brownian kicks. A key difference is that ther-

mal fluctuations excite multiple modes regardless of flow strength by equipartition

of energy [32], thus affecting the distribution of modes seen in the event of buckling.

To quantify this, we identify the predominant mode whose amplitude grows beyond

a noise floor of 0.05L in 200 different simulations each for various flow strengths.

The distribution of excited modes is shown vs. µ̄ in Figure 2.15, and the trends in
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dominant shapes, although strongly rounded by fluctuations, are consistent with the

deterministic predictions. This is reminiscent of the stochastic Euler buckling prob-

lem [110, 111], where thermal fluctuations have been shown to round the transition

near the deterministic critical force. This motivates the following analysis where we

quantify the transition near the first deterministic threshold, or critical flow strength

associated with the first buckling mode.

To analyze this transition, we first adopt a Monge representation and write

x(s, t) = (s, h) where h(s, t) is the deflection away from the axis of compression in the

hyperbolic flow u0 = (−x, y) = (−s, h). Further, we assume that the parabolic form

of tension corresponding to a straightened filament placed at the origin holds even

when it is deformed – an assumption that is justified for small deflections away from

the axis as arise near the onset of buckling. This tension profile can be determined

by manipulating Equation (2.44) and takes the form T (s) = µ̄(s2 − 1/4)/2(λ1 + λ2).

Also, since the variable h measures vertical deflections away from the y = 0 axis, we

consider only thermal fluctuations in this direction. Then, the scalar equation for h

reads:

∂h

∂t
= µ̄

[
h+

1

2

λ1

λ1 + λ2

(
s2 − 1

4

)
hss + shs

]

− λ1hssss − λ2h
2
shssss +

√
2λ1

L

`p
ξ(s, t),

(2.45)

where ξ(s, t) is a white noise with zero mean and correlation 〈ξ(s, t)ξ(s′, t′)〉 = δ(s−
s′)δ(t− t′).

Ignoring the non-linear and stochastic terms above and assuming a form

h(s, t) = φ(s)eςt leads directly to the linear stability results of Young and Shelley [35].

Defining the terms within the square brackets in Equation (2.45) as L[h], marginal

linear stability (Re[ς] = 0) in the non-Brownian case corresponds to the eigenvalue

problem

µ̄(n)
cr L[φ(n)(s)] = λ1φ

(n)
ssss(s), (2.46)

where φ(n) is the n-th buckling mode that is destabilized at a critical flow strength µ̄
(n)
cr .

Since our interest is in the effect of fluctuations near the first buckling transition, we

use n = 1 from here on and avoid the superscripts. Also, we introduce a parameter

m which is the distance from the deterministic threshold: µ̄ = µ̄cr + m. In order
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to reduce to a form amenable to treatment as a stochastic supercritical bifurcation

[113], we introduce the ansatz h(s, t) = a(t)φ(s) near µ̄cr. Using Equation (2.46), the

governing equation becomes:

φ
da

dt
=
mλ1

µ̄cr

aφssss − λ2a
3φ2

sφssss +

√
2λ1

L

`p
ξ. (2.47)

Recall that φ and its derivatives solve the eigenvalue problem (2.46), which admits

orthogonal eigenfunctions. Projecting Equation (2.47) on the first eigenfunction φ

then yields a Langevin equation governing the time dynamics of the amplitude a(t):

da

dt
= mγa− 2ωa3 +

√
σζ(t). (2.48)

This is, in fact, a time-dependent stochastic Ginzburg-Landau model for the ampli-

tude of the first buckled mode. Here, γ = λ1A1/µ̄cr, ω = λ2A2/2, and σ = 2λ1L/`p

are all positive parameters. A1 and A2 are constants that depend on the shape of

the eigenfunctions, given respectively by
∫ 1/2

−1/2
φφssss ds and

∫ 1/2

−1/2
φφ2

sφssss ds. ζ(t) =
∫ 1/2

−1/2
ξ(s, t)φ(s) ds is a normal variate with zero mean and correlation 〈ζ(t)ζ(t′)〉 =

δ(t− t′).
Equation (2.48) has as its deterministic (σ = 0) and linear (ω = 0) limit

the solution a(t) ∼ exp[mγt], which, consistent with the predictions of the linear

stability analysis, decays when m < 0 (µ̄ < µ̄cr) and grows otherwise. Analyzing the

deterministic yet non-linear problem (σ = 0 6= ω) reveals a supercritical pitchfork

bifurcation at m = 0 with a =
√
γm/2ω when m > 0. The stochastic bifurcation will

be shown to limit to this form correctly as σ → 0.

We now look to quantify the thermal rounding of this bifurcation for finite

`p (σ 6= 0). We first obtain the Fokker-Planck equation corresponding to Equa-

tion (2.48), which provides a deterministic equation for the probability density ψ(a, t)

of the amplitude a:

∂ψ

∂t
= − ∂

∂a

[
(mγa− 2ωa3)ψ

]
+
σ

2

∂2ψ

∂a2
. (2.49)

A steady solution for the stationary probability density ψS = ψ(t → ∞) can be

obtained as

ψS(a;m, γ, ω, σ) =
1

N
exp

[
1

σ
(mγa2 − ωa4)

]
, (2.50)
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Figure 2.16: Probability density of the amplitude a of the first buckled mode corre-
sponding to σ = 2.04 (`p/L = 10). The deterministic buckling threshold is m = 0, and
the distribution consistently shift towards higher amplitudes as m increases, following
Equation (2.50).

where N(m, γ, ω, σ) is a normalization constant such that
∫∞

0
ψS da = 1. The effect

of the sign of m is obvious in Equation (2.50), shown also in Figure 2.16: ψS(a;m ≤ 0)

always peaks at a = 0, whereas a positive value of m shifts the peak to a finite positive

value of a. The non-linearity is critical as well, as ω = 0 is a Gaussian that always

peaks at a = 0.

We can now solve for the expected value 〈a〉 =
∫∞

0
aψS da of the amplitude,

which reads:

〈a〉 =
1

G

√
2σ

γ|m|π exp

[
γ2m2

8ωσ

] [
1 + erf

(
γm

2
√
ωσ

)]
, (2.51)

where

G =





√
2

π
K1/4

[
γ2m2

8ωσ

]
: m < 0,

I−1/4

[
γ2m2

8ωσ

]
+ I1/4

[
γ2m2

8ωσ

]
: m ≥ 0,

(2.52)

and Iν(x) and Kν(x) are, respectively, the modified Bessel functions of the first and

second kind.

Figure 2.17 shows the predicted amplitude as the flow strength is varied across
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Figure 2.17: Expected value of the amplitude of the first buckled mode as a function
of flow strength. The dashed line is the deterministic pitchfork bifurcation; the solid
lines (red for `p/L = 100 and blue for `p/L = 10) follow Equation (2.51) and depart
from the sharp transition for increasingly noisy systems. The symbols (red circles for
`p/L = 100 and blue triangles for `p/L = 10) are extracted from simulations without
any fitting parameters.

the deterministic threshold. Akin to constantly loaded fibers, the effect of thermal

fluctuations is to round the sharp transition. Non-trivial modes are excited at arbi-

trary flow strengths as a consequence of equipartition of energy, and this manifests

as a finite amplitude of the first buckled mode well below µ̄cr. Evaluating the limit of

Equation (2.51) as m→ 0 indicates that the corresponding expected value is indeed

non-zero and varies as σ1/4 ∼ `
−1/4
p , i.e., the amplitude at the deterministic threshold

is larger for more flexible filaments. Beyond µ̄cr, 〈a〉 crosses over and approaches the

deterministic pitchfork bifurcation value of
√
γm/2ω. This approach is slower as `p

decreases, suggesting a larger mean projected length in the buckled state. Recall

from Equation (2.48) that the finite buckled amplitude in the deterministic case is

set by the component of the elastic force along the local tangent vector. The effect

of thermal fluctuations beyond the transition is to reduce this amplitude, which can

be viewed as an effectively stiffer spring against hydrodynamic compression. This

coupling between elasticity and Brownian motion is crucial – an increase in temper-

ature hardens the filament and acts to straighten it out, which is contrary to floppy
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polymers that are driven solely by configurational entropy and shrink in response to

increasing temperature. This again is reminiscent of constantly loaded beams under

the influence of thermal fluctuations, where an apparent stretching has been reported

past the critical force [110].

In order to test this prediction, we compare it against full numerical simula-

tions of Equation (2.44) (cf. Section 2.3). We place a filament in a hyperbolic flow

which is dynamically adjusted to remain compressional along the direction of the end-

to-end vector. This eliminates filament reorientation and provides long-time statistics,

which are necessary for comparison with the stationary probability distribution de-

rived above. After an initial transience, a stochastically steady state is reached. This

is ensemble-averaged and compared to φ(s) to obtain a numerical prediction for the

expected value of a. Higher modes may be excited by thermal fluctuations, and we

eliminate these in our averages. The result is shown in Figure 2.17 for two different

values of `p and matches excellently with our predictions without any fitting parame-

ters. The simulations also display the smoothed trend in the transition, as well as the

apparent pre-buckling softening and post-buckling hardening due to the particular

nature of the stochastic bifurcation.

2.7 Conclusion

In this chapter, we developed a model for single free-flowing semiflexible poly-

mers in an external flow and applied it study their dynamics in simple flows. We

particularly focused on flows that are commonly seen in microfluidic devices.

We started with the simple case of a non-Brownian straight rod for which

an analytical solution is straightforward: the filament tends to align itself with the

shearing axis which we saw is a stable fixed point (Section 2.5.1). In the numerical

simulations of fibers, it is seen that the trajectory is identical to the analytical case

when the filament is rigid. Furthermore, flexible fibers show interesting buckling

phenomena which are ascribed to the non-uniform tension that is generated in the

filament. Even in this case, however, the filament approaches the stable solution by

aligning with the axis.

When Brownian motion is introduced, the dynamics are different. It was shown
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that the Brownian term introduces a bifurcation leading to a stable and unstable

branch, with the unstable branch corresponding to a scenario where the shear flow

can now drive the filament over an entire half period to align with the axis. This led

us to studying polymer tumbling (Section 2.5.2) in shear flows, where the tumbling

frequency we obtained was found to be consistent with previous experimental findings.

Section 2.6 introduced the applications and recent literature on the dynamics of

semiflexible filaments near hyperbolic stagnation points. Using a variational method

and assuming small-amplitude fluctuations away from the axis, we were able to derive

the eigenfunctions for the shape of a filament when placed along the extensional axis

(Section 2.6.1 and Appendix A). The variance of fluctuations away from the axis

is predicted to be suppressed as the rate of strain increases, and our simulations

reproduced this well. This is attributed to the tensile force generated in the filament

that tries to extend it, thereby flattening out the fluctuations.

In the case when the filament is along with the compressional manifold (Sec-

tion 2.6.2) the tension is negative, causing the filament to be pulled inward along

its length. We develop, for the first time, an analytical expression that quantifies

this stretch-coil transition as a stochastic supercritical bifurcation, with the result-

ing expression specifying the exact nature of the finite-temperature rounding of the

transition. While this analysis solves a vital facet of fluid-filament interaction prob-

lems at the microscale, it also provides a powerful tool for experimentalists to extract

mechanical properties of single macromolecules by fitting shape deformations around

critical points. The theory presented here, while elaborated for extensional flows,

is also sufficiently general to be extended to other flows commonly encountered in

microfluidics. For instance, predicting the transition to the first deformed mode in

simple shear, often called ‘hairpins’ [31, 92], is straightforward once the appropriate

form of the tension is known [27]. Generalization of the analysis to include multiple

modes is an open problem that warrants attention, as is the coupled description of

deformation and rotation after buckling.

A part of Chapter 2 is based on the Master’s thesis by Harishankar Manikan-

tan, submitted in May 2012 at the University of Illinois at Urbana-Champaign [1].

Chapter 2 also contains material that has appeared in Physical Review E (2015),

authored by Harishankar Manikantan and David Saintillan [2].



Chapter 3

Subdiffusive transport of

semiflexible filaments in cellular

flows

3.1 Introduction

We ended Chapter 2 with a filament placed in a hyperbolic stagnation point,

aligned with the axis of compression of the flow, and being subjected to a compressive

tensile force. Using linearized Euler-Bernoulli elasticity and slender-body theory [56]

for Stokes flow, Young and Shelley [35] showed that this situation is amenable to a

linear stability analysis and found that beyond a critical strain rate a non-Brownian

elastic filament undergoes a compressive buckling instability analogous to Euler buck-

ling in beams, which we called the stretch-coil transition [35]. As the strain rate (and

hence the tension in the filament) increases, higher mode shapes can become unstable

and corresponding thresholds for each successive filament shape have been calculated

[35]. This buckling instability appears to be a generic feature of strain-dominated

flows when the polymer is aligned along a direction of compression, and the case

of an elastic filament tethered normal to a rigid wall at the stagnation point of a

compressive extensional flow was also recently discussed by Guglielmini et al. [33].

The results of the stability analysis of Young and Shelley [35], though strictly

valid in the absence of thermal fluctuations, were also recently tested experimentally

56
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by Kantsler and Goldstein [32] using actin filaments trapped at the stagnation point of

a microfluidic cross-slot device, where buckling was indeed observed. A succession of

mode shapes was also reported with increasing strain rate. The instability, however,

no longer occurred at a critical flow strength but was seen to gradually transition

from the straight (though susceptible to thermal fluctuations) state to the buckled

state in the vicinity of the theoretical athermal threshold. To quantify the extent of

buckling, Kantsler and Goldstein tracked the mean end-to-end distance as a function

of the imposed strain rate. As opposed to the sharp cusp expected at the instability

threshold in the non-Brownian limit, they found that thermal fluctuations strongly

round the transition, as is already known to be the case for classic Euler buckling

[110]. The theory developed in Section 2.6.2 corroborated this, revealing a smoothed

transition in the way of a stochastic supercritical bifurcation.

Such buckling events can be significant driving factors behind transport prop-

erties of elastic filaments. One example of this effect comes from actin motility assays

[90, 91, 114], in which actin filaments are transported over a two-dimensional carpet

of wall-tethered myosin molecular motors. These assays are typically characterized

by motility defects, in which a polymer gets pinned at its leading tip, causing it to

buckle in plane and curl up towards the tip [90, 91]. The pinned tip eventually breaks

free, allowing the filament to continue to move in a different direction. In cases of

high myosin density, the result of these dynamics is a meandering motion with every

instance of buckling randomly changing the direction the polymer is headed. The

prevalence of polymer buckling in complex flows of elastic filaments has also been

reported in other biophysical systems, such as two-dimensional suspensions of mi-

crotubule bundles and kinesin clusters [115], where stretching of the bundles as a

result of the relative sliding of individual microtubules under the action of the kinesin

motors can cause them to deform and buckle.

A simple illustration of the relation between buckling and spatial transport was

also provided by Young and Shelley [35], who proposed that a periodic lattice of steady

counter-rotating Taylor-Green vortices in a viscous incompressible fluid can capture

some of the dynamics observed in actin motility assays. The vortices create hyperbolic

junctions connected by straight streamlines, defining ‘cells’ that enclose an entire

family of closed curved streamlines as illustrated in Figure 3.1. An initially straight
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Figure 3.1: Snapshots from a simulation showing the buckling instability at the stag-
nation points at cell corners for µ̄ = 80000, `p/L = 1000, and w = 1.

filament placed along one of the edges is transported along the straight streamline

until it approaches a stagnation point. There, the flow is locally an extensional

flow, and the linear stability analysis of Young and Shelley [35] predicts a buckling

event if the local strain rate is sufficiently high. The ‘stretched’ filament is expected

to slow down and buckle or ‘coil’ (analogous to pinning and curling in actin motility

assays), and to subsequently relax to a stretched configuration in an arbitrarily chosen

perpendicular direction. Using non-Brownian simulations, Young and Shelley [35]

indeed showed that an elastic filament in such a flow moves across the lattice like a

random walker executing arbitrary π/2 turns at each hyperbolic junction. On long

time scales, such a random walk was found to be diffusive in the absence of thermal

fluctuations, at least over a certain range of flow strengths. Recent experiments by

Wandersman et al. [36] and by Quennouz [116] using macroscopic elastic fibers in an

electrodynamically generated cellular flow verified predictions from the simulations of

Young and Shelley [35], and clearly showed the relevance of the stretch-coil transition

on the dynamics. By tuning the flow strength and mechanical properties of the

fibers, they [36, 116] measured the onset and probability of buckling in terms of

an elastoviscous number Sp and observed good agreement with the predictions of the

stability analysis [35] within experimental limitations. They confirmed that flexibility

facilitates transport between and across cells as a result of buckling, and observed
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random trajectories akin to those obtained by Young and Shelley [35], albeit on

shorter scales owing to the limited size of the flow device used in the experiments.

A central question that has yet to be addressed and that is directly relevant

to the transport of biological polymers such as actin is the effect of thermal fluctua-

tions on the dynamics, and this chapter represents the first comprehensive attempt

at addressing this issue. Using numerical simulations based on a slender-body model

with a stochastic Brownian force distribution obeying the fluctuation-dissipation the-

orem, we systematically analyze the effect of Brownian fluctuations (measured by the

persistence length of the polymer) on the dynamics of isolated chains in a periodic

Taylor-Green vortex flow. Our main finding is that in the limit of infinite dilution,

fluctuations have a tendency to cause more frequent trapping of the filaments inside

cells, thereby hindering their ability to diffuse in the plane of the flow; in fact, we

even observe a transition to subdiffusive transport as the persistence length is de-

creased. The main findings are discussed in Section 3.2, where we analyze the effect

of fluctuations on transport properties, velocity distributions, and mass distributions

of the filaments, and also compare our results to the case of rigid Brownian fibers.

We consider the transport of a flexible Brownian filament in a prescribed flow

field consisting of a two-dimensional periodic array of counter-rotating Taylor-Green

vortices:

u0(x) = (sin(x/w) cos(y/w),− cos(x/w) sin(y/w), 0), (3.1)

where x and y are made dimensionless with L as usual, and w = W/πL is the

dimensionless cell size (see Figure 3.1). Note that this imposed flow field is two-

dimensional, while we will be allowing for three-dimensional motion of the polymer

arising solely from thermal fluctuations, unlike in the previous simulations of Young

and Shelley [35] and the experiments of Wandersman et al. [36], where the filaments

where confined on a two-dimensional interface.

As was described earlier, a polymer in the vicinity of one of the stagnation

points in such a flow experiences a locally hyperbolic extensional flow. Within this

approximation, the linear stability results for the buckling instability should hold,

for which, in the language of this work, the first (and from here on, the ‘critical’)

threshold [35] is µ̄cr ≈ 1478. It can be shown that increasingly higher buckling modes

become unstable above subsequent thresholds (µ̄cr ≈ 7000, 17000, ...). Furthermore,
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Figure 3.2: Effect of cell size and filament stiffness on its trajectories. Center-of-mass
trajectories of polymers: (a)-(d) correspond to four different cell sizes W at the same
µ̄ = 20000 and `p/L = 1000, each showing four different trajectories; (e) shows the
case of a single polymer with W = πL and µ̄ = 20000, but `p/L = 10.

as was seen in the experiments of Kantsler and Goldstein [32] and in our discussion

in Section 2.6.2, these thresholds remain broadly consistent even in the presence of

thermal fluctuations.

3.2 Results and discussion

3.2.1 Polymer transport: diffusion vs. subdiffusion

In the following, we focus entirely on flow strengths that exceed the criti-

cal threshold (µ̄ > µ̄cr). The objective is to systematically describe the change in

transport properties of a polymer in a cellular flow due to thermal fluctuations, in

a regime where buckling events at the hyperbolic points of the vortex array lead to

‘Brownian-like’ transport across the lattice [35].

The center-of-mass trajectories of a few representative cases are illustrated in

Figure 3.2. The key observation is that while a larger reduced persistence length

allows polymers to migrate farther away from their initial position (the origin, in the
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case of the examples in Figure 3.2), those with smaller reduced persistence lengths

exhibit much slower transport from their initial position. Figure 3.2(e) for the low

value of `p/L = 10 shows a characteristic trap-and-go motion wherein a polymer

appears to be trapped in a cell for significantly longer time periods before escaping

to another neighboring cell. This is qualitatively different from previous observations

in non-Brownian experiments [36] and simulations, [35] which are comparable to the

case of `p/L = 1000. In this context, Young and Shelley [35] calculated a ‘transport

region’ enveloping the unit cell boundary that recorded a trapping probability of less

than 50%. Their observation was that for a range of values of µ̄, filaments placed

in this region would migrate across the lattice like a random walker and undergo a

diffusive motion in space at long times as a result. Our simulations for `p/L = 1000

show a similar behavior [Figure 3.2(a)–(d)], with relatively rare trapping occasions.

This suggests that transport in this regime is akin to the non-Brownian case, with

thermal fluctuations only changing the outcome from transport to trapping in very

few cases. The dynamics are qualitatively different when `p/L = 10, where we find

that such a transport region cannot be defined. The effect of thermal fluctuations is

very strong in this case, and as seen in Figure 3.2(e) polymers often become trapped

and migrate deep into a cell, only to jump out and transition to a neighboring cell at

a later time and further proceed in this trap-and-release fashion. It should be noted

here that for all our simulations, the polymer is released at the cell boundaries: we

expect the probability of such trapping events to be significantly higher if the filament

were released near the center of a cell.

It is interesting to compare the dynamics seen in Figure 3.2 to that of a particle

moving randomly across a periodic lattice with specified distributions of length and

frequency of jumps. [117, 118] Jumps of unit cell length at a fixed rate give rise to the

traditional random walk, one that approaches the behavior predicted by a diffusion

equation. If the jumps follow a heavy-tailed length distribution but still occur at a

fixed rate, then they lead to so-called Lévy flights characterized by superdiffusion.

The complementary case is that of ‘fractal time’ [117], which applies particularly to

the behavior seen in Figure 3.2(e), where a walker always moves a unit cell length

but waits disparate amounts of times between jumps. For such random walks, the

mean-square displacement is slower than that of a diffusive process, and numerical
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Figure 3.3: Subdiffusive transport and the corresponding waiting time distribution.
(a) Mean-square displacement d2(t) of the filament center-of-mass as a function of
time at µ̄ = 20000 for three values of `p/L, where the long-time behavior follows an
approximate power law d2(t) ∝ tα. (b) Dependence of the exponent α on the reduced
persistence length `p/L. (c) Distribution of waiting times, defined as periods of time
spent by a filament inside a given cell, in simulations with µ̄ = 20000 and `p/L = 10.

studies [118] have reported that such waiting times lead to subdiffusion.

The diffusivity of polymers across the cellular lattice in the current problem

can be characterized by the mean-square displacement of the center of mass x0(t)

of a chain from its initial position: d2(t) = 〈|x0(t) − x0(0)|2〉 (Figure 3.3). Recall

that we only consider isolated polymers, corresponding to the limit of an infinitely

dilute suspension where the effects of the disturbance velocity due to other chains

on the transport properties are negligible. These results are ensemble averages of

50 simulations for each value of `p/L shown, and were all obtained for µ̄ = 20000.

The initial condition is the same, but thermal fluctuations soon change the long-

time dynamics in each simulation. For `p/L = 1000, we observe a roughly linear

increase in the mean-square displacement with time, consistent with the case of non-

Brownian filaments [35]. The initial climb in the beginning corresponds to the motion

of the polymer moving along a cell boundary until it encounters the first stagnation

point. For subsequent smaller values of `p/L = 100 and 10, the initial climb is

larger because the polymer no longer moves along the cell edges but rather is pushed
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further in towards the center of the cell by thermal fluctuations, thereby increasing

the average distance traversed before it encounters the first stagnation point. Beyond

this initial climb, however, the growth of the mean-square displacement exhibits a

clear subdiffusive behavior of the form d2(t) ∝ tα with α < 1. Within the timespan of

the simulations, we observe that the slope of d2(t) in a log-log plot in fact reduces to

almost zero in these cases. The filament tends to become trapped in almost every cell

it comes by, and the occasional jump from cell to cell is seen in the very small positive

slope in Figure 3.3(a). In many cases, the filament even remained trapped in a given

cell until the simulation had to be stopped. The precise dependence of the exponent α

on the persistence length is shown in Figure 3.3(b), where it is seen to transition from

nearly zero for low values of `p/L to approximately 1 for high persistence lengths.

This transition from diffusive to subdiffusive transport with decreasing `p/L

can be further characterized by considering the waiting-time distribution of the poly-

mer in a cell, shown for `p/L = 10 in Figure 3.3(c). The waiting time τW is defined

as the time a polymer spends within a given cell (quantified by its center-of-mass

position). While moving along the boundary between cells, the center-of-mass often

abruptly jumps back and forth between them. We discard these small values of τW

by introducing a cut-off on the recorded waiting times: only those values of τW that

are above the average time it takes a polymer to go on an entire loop around a cell

are considered. Also, we discard cases when the polymer gets trapped at the center of

the cell and stays there for the entire span of the simulation. This distribution for the

smaller values of the reduced persistence length displays approximately a power-law

behavior that goes as Φ(τW ) ∝ τ−1
W . Such distributions of waiting times that follow a

non-integrable form of Φ(τW ) ∝ τ
−(1+α)
W with α < 1 have been predicted theoretically

[119] and reported in various physical systems [120, 121] to result in subdiffusion with

a mean-square displacement growing as tα. According to this prediction, the exponent

α is expected to be nearly zero in the case of `p/L = 10, which is indeed very close to

what is observed for the slope of d2(t) in Figure 3.3(a). This qualitative change in the

waiting-time distribution clearly confirms that polymer trapping is indeed enhanced

by thermal fluctuations.
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Figure 3.4: Velocity distribution of polymers within a cell. (a) Frequency distribution
of the magnitude of the center-of-mass velocity |x0

t | for various values of `p/L at
µ̄ = 20000. (b) Contours of the fluid velocity magnitude inside a given cell, indicating
that the value of |x0

t | = 0.7 corresponds approximately to the largest ring of uniform
velocity within the cell.

3.2.2 Velocity distributions

In the actin motility experiments of Bourdieu et al. [90, 91], the frequency

distribution of the velocity of the polymer was found to be bimodal at select temper-

atures. This bimodality was attributed to the ‘slip-stick’ nature of polymer transport,

in which periods of regular motion at a roughly constant velocity alternate with states

when the polymer becomes pinned and the velocity is almost zero. In the present

model, similar dynamics are expected in the case of `p/L = 1000, when Brownian

motion plays a negligible role in disturbing this cycle of motion-and-stagnation. This

is indeed the case, as seen in Figure 3.4(a) where we show the normalized frequency

distribution of the center-of-mass velocity magnitude |x0
t |, which agrees qualitatively

with the experiments [91] and quantitatively with non-Brownian simulations [35].

One noticeable difference is the presence of a minor peak near 0.7, which represents

the rare occasions when the polymer does get trapped in a cell. The value of |x0
t | = 0.7

for the velocity in the trapped state is not very obvious, but one can see that it ap-

proximately corresponds to the largest ring of uniform velocity within a particular
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Figure 3.5: Probability distributions of mass of the polymer in a unit cell at µ̄ = 20000
for different values of `p/L. Probabilities are normalized to be unity for a uniform
distribution.

cell [Figure 3.4(b)].

Thermal fluctuations change this picture drastically, as seen for lower values of

the reduced persistence length. For `p/L = 100, our simulations show a sharp velocity

selection near 0.7. This corresponds to a predominance of trajectories in which the

polymer becomes trapped in a ring near the part of the cell where the external flow

is of this magnitude, and will be further elucidated in the mass distribution results

in Sec. 3.2.3. For `p/L = 10, this peak persists but the distribution is more spread-

out towards lower velocities, i.e., the polymer now preferentially becomes trapped

in positions ranging all the way from the center of the cell to the ring of maximum

uniform velocity.

3.2.3 Mass distribution of polymers

The preferred position of polymers inside the unit cell can be analyzed by

considering the probability distributions of the mass of the entire polymer (which is

assumed to be homogeneous along its backbone). Figure 3.5 shows such distributions

averaged over at least 50 simulations for three values of `p/L at µ̄ = 20000. The plots

are averaged across all cells that a polymer happens to be in, and are normalized to

be unity for a uniform distribution.

The distribution for `p/L = 1000 is unsurprising, as we recollect that this
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case is almost identical to the non-Brownian simulations [35] and the polymer is

found to spend almost all of its time along the cell boundaries. Here again, the

probability peaks near the corners, which reflects the slowing-down of the chain and

time spent during buckling events around stagnation points (see Figure 3.1). The

floppier case of `p/L = 100 looks qualitatively different and shows a characteristic

ring of probability at a distance from the cell boundary. Here, we recall from the

velocity distributions (Section 3.2.2) that the preferred center-of-mass velocity of a

trapped polymer in this case is about 0.7. The ring that the center of mass must

be on for this to happen is to the immediate outside of the concentration peak seen

in Figure 3.5(b). This shift inward is due to the cases when the polymer is aligned

radially, thereby increasing the probability of finding a part of the chain in a circle

of smaller radius. It is quite remarkable, however, that the polymer very rarely goes

deeper into the cell beyond this ring, as shown by the low probability near the center.

The floppiest case of `p/L = 10 is qualitatively different from both previous cases.

Here, the polymer selects velocities that place it closer to the center (Section 3.2.2)

and the mass distribution indeed peaks there. Polymer centers-of-mass still move in

rings around the center of the cell, but the effect of radial alignment causes the peak

to be at the center of the cell in this case. It should be noted when considering the

distributions of Figure 3.5 that they represent averages over a finite period of time

and that their shape might change slightly if the simulations were run longer; also,

they were obtained for polymers released along one of the cell edges and would likely

show a stronger probability near the cell center for filaments released at arbitrary

locations.

3.2.4 Cellular transport of rigid rods

We have thus far demonstrated that flexibility affects transport properties in

two distinct ways: on the one hand, it allows the filaments to buckle at the hyperbolic

points, which facilitates their transport across the lattice; on the other hand, it can

also increase the importance of thermal fluctuations (by decreasing the persistence

length), which has the opposite effect of driving polymers towards cell centers where

they can become trapped. To further elucidate the effect of polymer flexibility in this
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transport process, we also approach the complementary problem of rigid Brownian

rods from a continuum perspective. We do so by solving a conservation equation

for the probability distribution function Ψ(x0,p, t) of a single rod in a cellular flow,

where the configuration of the rod is now described by its center-of-mass position

x0 and a unit orientation vector p (= xs which is constant for the entire length of a

rigid rod). Neglecting hydrodynamic interactions and limiting ourselves to two spatial

dimensions (so that the rod orientation in the plane of the flow can be described by

a single angle θ), we write down a Fokker-Planck equation [122] for the configuration

of a particle as:

∂Ψ

∂t
+∇x · (ẋ0Ψ) +

∂(θ̇Ψ)

∂θ
−∇x · (D · ∇xΨ)− dr

∂2Ψ

∂θ2
= 0, (3.2)

where D and dr denote the translational and rotational diffusivities, respectively,

and dots are meant to represent time derivatives. This conservation equation merely

balances the time rate of change of the probability distribution Ψ with advection due

to the effect of the external flow, and diffusion due to thermal fluctuations.

For a slender Brownian rodlike particle of length L and characteristic cross-

sectional radius a, the rotational diffusivity [122] is dr = 3kBT ln(1/ε)/πµL3, where

we use the same definition of the aspect ratio ε = a/L as in Section 1.1.3. The

translational diffusivity tensor D is a sum of the contributions from the direction

along the orientation of the rod, and that perpendicular to it. Given the translational

diffusion coefficients [122] D‖ = kBT ln(1/ε)/2πµL and D⊥ = kBT ln(1/ε)/4πµL for

motions in directions parallel and perpendicular to the rod axis, respectively, we

express the diffusivity tensor as D = D‖pp+D⊥(I − pp), which simplifies to

D =
kBT ln(1/ε)

4πµL
(I + pp). (3.3)

Noting that this tensor only depends on the orientation of the rod and not on its

position, and by virtue of its symmetry, we may write: ∇x · (D ·∇xΨ) = D :∇x∇xΨ .

The Fokker-Planck equation (3.2) requires knowledge of the translational and

rotational fluxes, and these are evaluated based on slender-body theory in Appendix
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Figure 3.6: Steady-state solution of the Fokker-Planck equation at Pe = 10000 for
rigid rods of aspect ratio ε = 0.01.

B. The final form of the conservation equation is then

∂Ψ

∂t
+ Pe

[
∇x ·

{
Ψ

∫ 1/2

−1/2

u(x+ sp) ds

}

+
∂

∂θ

{
12Ψ êθ · (I − pp) ·

∫ 1/2

−1/2

su(x+ sp) ds

}]

+ ln ε2
[
∇2

xΨ + pp :∇x∇xΨ + 12
∂2Ψ

∂θ2

]
= 0,

(3.4)

where we have introduced a Péclet number capturing the relative importance of ad-

vection by the flow to thermal diffusion:

Pe =
8πµγ̇L3

kBT
= µ̄

`p
L
. (3.5)

We note that this Péclet number also formally corresponds to the product of the di-

mensionless viscosity µ̄ and reduced persistence length `p/L, though neither quantity

is defined on its own in the case of a rigid rod (µ̄→ 0 and `p/L→∞).

To determine the steady probability distribution function Ψ(x0,p), we inte-

grate the conservation equation (3.4) by time-marching using an Adams-Bashforth

scheme until it converges to a steady state. The imposed velocity u is of the same

form as in Equation (3.1), the aspect ratio is again set to ε = 0.01, and the problem is

solved on a four-cell unit (W = πL here) of {x, y} ∈ [−π, π]2 with periodic boundary

conditions.
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Figure 3.7: Characteristic distributions of filament configurations in a unit cell. (a)
µ̄ = 1000 and `p/L = 1000, and (b) µ̄ = 10000 and `p/L = 100.

From the discussion of the buckling instability, we expect that polymers with

rigid backbones (alternately interpreted as µ̄ < µ̄cr) should not migrate past the

cell they are initially placed in, a prediction indeed borne out by the experiments

of Wandersman et al. [36] The numerical solution to the Fokker-Planck equation

(3.4) corroborates this observation, as is seen in the steady probability contours of

Figure 3.6: for all values of Pe we considered, the probability peaks at the center of the

cell at steady state, with negligible presence near the cell boundaries. Unsurprisingly,

this migration is found to become stronger with increasing Péclet number.

This case of rigid rods, characterized by a systematic drift towards and trap-

ping near the center of the cells as seen in Figure 3.6, can be contrasted to the case

of elastic filaments to highlight the importance of filament flexibility in this transport

process. Indeed, recalling that the Péclet number as defined here can be formally writ-

ten as a product of the effective viscosity with the dimensionless persistence length, we

compare distributions of filament configurations in two distinct simulations of semi-

flexible polymers at a same value of Pe but with different appropriately chosen values

of µ̄ and `p/L (i.e., with different values of the bending resistance). We first set these

parameters to µ̄ = 1000 and `p/L = 1000 (corresponding to Pe = 106) and show a

superposition of representative filament configurations in Figure 3.7(a). At this value

of µ̄, the flow is not strong enough to induce buckling, and we observe that the fila-
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ment, which is hardly deformed by the flow, spends most of its time near the center

of the cell, which follows from the prediction of the rigid rod theory in Figure 3.6.

However, the distribution of filament configurations looks qualitatively different in

Figure 3.7(b), where we choose parameter values of µ̄ = 10000 and `p/L = 100 (the

product of which is the same as in the previous case) that do allow buckling. Here,

the dynamics are found to differ from the predictions of the rigid rod theory, and a

significant probability of finding the filament near the cell boundaries is clearly seen.

As expected, we observe larger filament deformations, and fully buckled configura-

tions are also seen near the corners of the cell. This increased probability of presence

near the cell boundaries leads to more probable jumps across cells, which in turn

results in more efficient transport across the cellular lattice as discussed previously.

3.3 Conclusion

We have used numerical simulations based on a slender-body model to study

the dynamics and transport properties of semiflexible polymers in a periodic two-

dimensional cellular flow in the presence of thermal fluctuations. This work extends

previous theoretical [35] and experimental [36, 116] studies that considered macro-

scopic non-Brownian filaments, and may also provide insight into some of the dynam-

ics previously reported in actin motility assays. [90, 91] As in the non-Brownian case,

the strong compressive flows that occur near the hyperbolic stagnation points at the

cell junctions can cause buckling of the filaments, which facilitates their transport be-

tween cells, resulting in an effective two-dimensional random walk. However, we find

that thermal fluctuations, quantified by the inverse of the dimensionless persistence

length, tend to cause the filaments to drift towards and become trapped inside vorti-

cal cells for long periods of time. These frequent trapping events significantly hinder

the spatial transport of the polymers, which shifts from diffusive to subdiffusive as

fluctuations become significant, and this change in behavior is also evinced by the

velocity and mass distributions of the chains. By comparing our simulation results

to a simple theory for rigid Brownian rods, we also highlighted the subtle effect of

flexibility on the transport properties. On the one hand, some level of flexibility is

critical for effective transport across cells as it enables buckling; on the other hand,
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very floppy filaments with short persistence lengths are strongly affected by thermal

fluctuations, which cause their frequent trapping and hinder their transport across

the lattice.

The model flow field considered in this chapter (periodic lattice of steady

Taylor-Green vortices), through its simplicity, allowed us to arrive at a simple qual-

itative description of the dynamics in terms of transport and buckling along strain-

dominated directions vs. drifting and trapping inside vortical regions. It remains to

be seen how this description would carry over to more complex flows, and in partic-

ular to unsteady chaotic flows with a spectrum of length scales such as a turbulent

flow. While we expect the basic features of the dynamics observed here to also arise

in that case, the net effect of flexibility and of thermal fluctuations on macroscopic

rheological and transport properties [123, 124] in complex flow fields remains difficult

to anticipate.

Chapter 3 is based largely on material that has appeared in Physics of Fluids

(2013), authored by Harishankar Manikantan and David Saintillan [3].



Chapter 4

The sedimentation of flexible

filaments

4.1 Introduction

Though seemingly simple, the sedimentation of elastic filaments in a constant

and uniform gravitational field has received limited attention and has yet to be fully

analyzed, even in the case of isolated filaments. The sedimentation of rigid fibers

has been the subject of many studies and is well understood. At zero Reynolds

number, as we saw in Section 1.2.1, a rigid fiber with unit director p sedimenting

under gravity in an unbounded fluid will maintain its orientation and travel at a

constant velocity U = [µ⊥(I − pp) + µ‖pp] · FG, where FG is the net gravitational

force on the particle. The mobility coefficients µ⊥ and µ‖ depend on the exact shape

of the particle (µ‖ ≈ 2µ⊥ for a slender body) [67]. Because of its drag anisotropy,

the particle does not generally translate in the direction of gravity, but rather at a

fixed angle θ that depends on its orientation (θ = 0 when the fiber is either parallel

or perpendicular to gravity). As first predicted by Koch and Shaqfeh [125], this

very simple picture is seriously complicated when multiple rigid fibers are allowed to

interact hydrodynamically. In that case, long-range interactions drive a concentration

instability as a result of the coupling between the orientation of the particles, which

determines their settling direction, and the disturbance flows they drive in the fluid,

which reorient them. This instability is indeed observed in both experiments [126] and

72
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simulations [127, 128] and takes the form of dense dynamic particle clusters which

settle at significantly higher speeds than isolated particles. Even two sedimenting

particles can undergo complex periodic sedimentation dynamics [129].

Any small amount of flexibility is expected to change the dynamics described

above qualitatively, even for an isolated filament. If the filament is allowed to bend as

it sediments, this loss of symmetry will result in a coupling between its translational

and rotational motions, leading to reorientation of the filament with respect to the

direction of gravity. Because the orientation of the filament directly determines the

direction of its velocity, we can also expect a non-trivial translational motion in both

vertical and horizontal directions. The effect of fiber asymmetry on the dynamics was

demonstrated experimentally by Tozzi et al. [130] using rigid curved fibers, where par-

ticle rotations and unsteady trajectories were reported. Complex spatial dynamics

of curved fibers have also been observed in other situations such as in simple shear

flow [131]. The situation is yet more complex in the presence of flexibility, as the

filament shape and grand mobility matrix evolve dynamically in time. Using a model

based on the slender-body theory of Cox [68], Xu and Nadim [132] argued that this

coupling should cause a weakly flexible filament to reorient in a direction perpendic-

ular to gravity regardless of its initial configuration and to assume a steady U-shape

that depends on the relative magnitude of gravitational and elastic forces. These

predictions were confirmed by Cosentino Lagomarsino et al. [133] and Schlagberger

and Netz [134] using numerical simulations based on a discrete model of a filament

as a string of rigidly connected beads with bending moments. However, a complete

theoretical description of the shape evolution and reorientation dynamics and their

influence on spatial trajectories has yet to be realized.

The case of a floppy filament with weak bending resistance is even more chal-

lenging, as large deformations may occur. For reasons that will be made clear in

Section 4.4, a filament oriented parallel to gravity is subject to a compressive tension

profile which, in some cases, may overcome bending resistance and lead to a buckling

instability, much like that for a macroscopic Euler beam [135]. Buckling of elastic

filaments in viscous fluid flows has already been reported in a number of situations,

and we have already seen this in the case of free filaments in Section 2.6.2. Becker

and Shelley [27] simulated the dynamics of isolated elastic filaments in simple shear
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flow and showed that buckling occurs when the filaments are aligned with the axis of

compression of the flow, resulting in normal stress differences; these dynamics were

also shown to persist at finite concentration [28]. A theoretical analysis of this buck-

ling was later provided by Young and Shelley [35] in a simpler setting, namely at the

hyperbolic stagnation point of a two-dimensional linear extensional flow when the fila-

ment is initially aligned with the axis of compression. They demonstrated that above

a critical flow strength compressive viscous forces indeed induce buckling, and showed

that a series of unstable modes characterized by increasingly higher wavenumbers can

become excited as the strain rate is increased. Instability was also observed in more

complex flows such as vortex arrays in both simulations [3, 35] and experiments [36],

where it was shown to have a strong impact on the spatial transport of the filaments

(cf. Chapter 3). As we discuss in Section 4.4, a similar buckling instability is also

predicted under sedimentation for nearly vertical floppy filaments, though more com-

plex asymmetric mode shapes are expected as the base tension profile can be shown

to be compressive only over the leading half of the filament.

This chapter is organized as follows. In Section 4.2 we describe the energetics

of a single flexible filament under the influence of gravity and derive the equations

for the filament position and tension. The dynamics of the filament are characterized

by a dimensionless quantity which we term the elasto-gravitation number. Filaments

of both non-uniform and uniform cross-sectional thickness are considered. In Section

4.3 we study weakly flexible filaments, where the elasto-gravitation number is large,

and show that the introduction of filament compliance can alter dramatically the

long-time sedimentation orientation and velocity. Equilibrium shapes are derived,

and the assumption of timescale separation allows for predictions of slowly varying

filament shapes and rotation rates. The buckling instability of a sedimenting filament

is studied in Section 4.4, where a linear stability analysis is used to predict the most

unstable waveforms, growth rates, and wave speeds; the results are shown to compare

favorably with numerical simulations.
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4.2 Mathematical formulation

To model the dynamics of a slender elastic filament in a viscous fluid, we first

describe the energetics of the system from which a local force balance may be derived.

We then proceed to discuss the model for the fluid-body interactions: we solve the

Stokes equations of viscous flow using the slender-body theory of Johnson [57].

4.2.1 Energy functional and local force balance

Consider a filament of length L with a centerline described by x(s, t), where s

is the arc length and t is time. The filament is assumed to be radially symmetric at

each cross-section with a thickness given by a · r(s) (with r(s) dimensionless). The

following functional describes the energetics of the system,

E =
1

2

∫ L

0

B(s)|xss|2 ds+
1

2

∫ L

0

T (s)(|xs|2 − 1) ds

−
∫ L

0

f(s) · x(s) ds−
∫ L

0

Fg(s) · x(s) ds,

(4.1)

where index s denotes differentiation with respect to arc length. The first term

corresponds to a Hookean bending energy, proportional to the curvature of the fil-

ament: B(s) = EI(s) is the bending stiffness, with E the elastic modulus and

I(s) = πa4r(s)4/4 the area moment of inertia. (We shall use the notation B(s)

in this chapter instead of κ used in the rest of the dissertation to stress that the

former is, in general, a function of s whereas the latter is always assumed a constant.)

The second term imposes filament inextensibility, with the tension T (s) acting as a

Lagrange multiplier. The third term is due to the fluid force per unit length f(s)

acting on the body at station s. Finally, the last term is a gravitational potential

energy, where Fg(s) = −πa2r(s)2∆ρg ŷ. Here ∆ρ is the density difference between

the filament and the fluid, and g > 0 is the gravitational acceleration.

By the principle of virtual work, the pointwise force on the filament is found

by taking a variational derivative of the energy (4.1). Perturbing x by εh(s) and
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taking ε→ 0, we find

δE
δx

=

∫ L

0

B(s)xss · hss ds+

∫ L

0

T (s)xs · hs ds−
∫ L

0

(f(s) + Fg(s)) · h ds

=

∫ L

0

[
− (T (s)xs)s + (B(s)xss)ss − f(s)− Fg(s)

]
· h ds

+
[
B(s)xss · hs + (T (s)xs − (B(s)xss)s) · h

]L
0
.

(4.2)

Setting the above to zero for all perturbations h(s), we see that the fluid force acting

on the filament is given by

f(s) = −Fg(s)− (T (s)xs)s + (B(s)xss)ss, (4.3)

and we also observe the boundary conditions for solvability,

(Bxss)(0) = 0, (Bxss)(L) = 0, (4.4)

(Txs)(0) = (Bxss)s(0), (Txs)(L) = (Bxss)s(L). (4.5)

As expected, the integrated fluid force along the filament is equivalent to the net

gravitational force,
∫ L

0

f ds =

∫ L

0

[
− Fg(s)− (T (s)xs)s + (Bxss)ss

]
ds = −

∫ L

0

Fg(s) ds = −FG.

(4.6)

Scaling lengths with L and forces with the total gravitational force, FG = |FG|, the

dimensionless fluid force per unit length on the filament is given by

f̄(s̄) = −F̄g(s̄)− (T̄ (s̄)x̄s̄)s̄ + β(B̄(s̄)x̄s̄s̄)s̄s̄, (4.7)

where x = Lx̄, s = Ls̄, T = FGT̄ , B = (π/4)Ea4B̄, and F̄g(s̄) integrates to −ŷ.

Here we have introduced an elasto-gravitation number, β = πEa4/(4FGL
2), which

compares the elastic forces acting on the filament to the gravitational force. With all

variables now understood to be dimensionless, we drop the bars in Equation (4.7) for

the duration of this chapter.

4.2.2 Fluid-body interaction and filament dynamics

As a filament settles in a fluid, the elasto-gravitation forces acting along the

body are coupled to the body’s orientation and shape dynamics. When the Reynolds



77

number is small (Re = ρUL/µ � 1, with U a characteristic speed and µ the fluid

viscosity), the fluid flow is well-described by the Stokes equations and we shall resort

to the the slender-body theory we introduced in Section 1.1.3. Scaling upon a sedi-

mentation timescale 8πµL2FG, the dimensionless velocity of a point s along the body

centerline is approximated as

xt = −Λ[f ](s)−K[f ](s), (4.8)

where f is the scaled fluid force acting on the body given by Equation (4.7). Using

the local inextensibility condition xs · xs = 1, the position equation can then be

manipulated to give an equation for the tension [28],

−2(c− 1)Tss + (c+ 1)|xss|2T − 2csTs − xs · ∂sK[(Txs)s]

= (7c− 5)βB(s)xss · xssss + 6(c− 1)βB(s)|xsss|2 + 6βcsB(s)xss · xsss

+ β(4csBs + (5c− 3)Bss)|xss|2 + 4(4c− 3)βBsxss · xsss − βxs · ∂sK[(Bxss)ss]

+ (c− 3)xss · Fg + 2(c− 1)xs · ∂sFg + 2csxs · Fg + xs · ∂sK[Fg(s)].

(4.9)

If the filament is cylindrical with constant cross-section (r(s) = 1), then

Fg(s) = −ŷ and B(s) = B are constants, while c(s) = ln(4s(1− s)/ε2) varies, though

the slender-body theory loses accuracy at the endpoints in this case [57]. Instead, if

the filament thickness is described by the spheroidal profile r(s) = 2
√
s(1− s), we

have c(s) = c = ln(1/ε2), a constant. For such a filament shape, assuming uniform

material distribution, the gravitational force is spatially varying, Fg(s) = −6s(1−s)ŷ,

as is the bending stiffness, B(s) = r(s)4 = 16s2(1 − s)2. In this case the boundary

condition (4.4) disappears. This limiting case is singular and is associated with an

elastic boundary layer at the endpoints. Throughout this chapter, we shall alter-

natingly discuss theoretical results for both geometries, and compare the case of a

spheroidal profile with corresponding numerical simulations.

Finally, for convenience, we define here two integral operators that will appear

in the asymptotic evaluation of the non-local integral operator (Equation (1.12)),

S[g](s) =

∫ 1

0

g(s′)− g(s)

|s′ − s| ds′, P [g](s) =

∫ 1

0

∆g(s, s′)− gs(s′)
|s′ − s| ds′, (4.10)
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where

∆g(s, s′) =
g(s)− g(s′)

s− s′ · (4.11)

The governing equations are solved numerically using a variation of the method

suggested by Tornberg and Shelley [28] as elaborated in Section 2.3. We have chosen

c(s) = c a constant and Fg(s) = −6s(1 − s)ŷ as previously described, but we have

assumed B(s) = 1, an approximation that we justify later. Boundary conditions from

Equations (4.4) and (4.5) are translated onto the discrete points via one-sided finite

differences. For all the results presented in this chapter, we use N = 256 and ζ = 400.

This value of N is chosen to ensure the minimum radius of curvature remains at least

an order of magnitude larger than the grid spacing ∆s = 1/(N − 1) without having

to use adaptive refinement, even in the case of severely buckled shapes in Section

4.4. The penalization parameter in Equation (2.13) is decided by numerical stability

(quantified in terms of contour length error), and the value chosen here is such that

numerical errors in the filament length do not exceed 0.1% in the weakly flexible case

in Section 4.3, and remain under 4% in the most buckled case described in Section

4.4. The dimensionless time step is ∆t = 10−5, except for the linear stability results

of Section 4.4 where it is further reduced to 10−6. The filament aspect ratio ε is fixed

at 0.01 throughout.

4.3 Weakly flexible filaments

It is a well known result that straight, rigid rods sediment in an infinite viscous

fluid without any body reorientation [60]. Curved filaments, however, have been

shown to rotate during sedimentation until an equilibrium orientation is achieved

[130]. The introduction of filament flexibility, then, can result in filament shape

changes but can also lead to complex body reorientation. To investigate the first

effects of elasticity, we focus on the dynamics of a weakly flexible filament, where the

elasto-gravitation number β is assumed to be large.

There are two different effects that can lead to shape changes of a weakly

flexible sedimenting filament. As we will show, the leading-order effect is due to

non-uniformity of the filament thickness along its length. Consider a filament of non-
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(a) (b)

g

Figure 4.1: Illustration of the source of bending in model “filaments.” (a) The
leading-order effect: larger bodies sediment faster than smaller bodies in a viscous
fluid, and filaments of non-uniform thickness will bend as a consequence. (b) The
secondary effect: the central bodies in a line of identical sedimenting spheres experi-
ence a stronger disturbance fluid flow, and will sediment faster than those near the
ends.

uniform thickness sedimenting in the direction of its minor axis, and for the sake

of intuition consider as a simple model the distribution of sedimenting spheres of

varying radii shown in Figure 4.1(a). In a highly viscous fluid, a sphere of radius

a settles with speed U = 2a2g ∆ρ/9µ (cf. Section 1.2.1). The spheres near the

center of the row will sediment faster than those near the ends, resulting in bending

of the assemblage as depicted. A filament of uniform thickness is also expected to

bend but as a consequence of a secondary effect, namely by non-local hydrodynamic

interactions. Modeling such a filament as a row of identical spheres, as illustrated

in Figure 4.1(b), note that the disturbance flow experienced by the central spheres,

due to the motion of the other spheres, will increase the sedimentation speed of

the former. Bending from non-local hydrodynamics will be shown to be a higher-

order effect. In this section we will study the behavior of spheroidal filaments, where

r(s) = 2
√
s(1− s), while similar calculations for the case r(s) = 1 are included in

Appendix C.

Returning to the full model described in Section 4.2, the complex interactions

between shape changes and body reorientation can be seen in the numerical results of

Figure 4.2. In Figure 4.2(a), an initially straight filament is released at the origin in a

nearly vertical orientation and is allowed to deform and sediment freely under gravity.

The initial angle between the tangent at the particle center and gravity is θ0 = π/64,

and we choose what we will find to be a relatively large value of β = 0.02. As a result
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Figure 4.2: The trajectory and shape of a sedimenting flexible filament obtained from
numerical simulations with r(s) = 2

√
s(1− s) and B(s) = 1. (a) Trajectory of a fila-

ment with initial orientation angle θ0 = π/64, with “large” elasto-gravitation number
β = 0.02, from numerical simulations. (b) Shape of the filament as it sediments in a
frame moving with its midpoint, also showing the reorientation process. Snapshots
correspond to indicated points on the trajectory in (a). (c) Steady-state shapes for
β in the range 0.00125− 0.02. The deflections are shown in a frame moving with the
filament midpoint.

of its flexibility, weak deformations arise which cause the slow reorientation of the

filament to a direction perpendicular to gravity, as shown in Figure 4.2(b). As the

filament rotates away from its initial orientation, its settling motion incurs a lateral

drift, which is strongest when the mean orientation forms an angle of approximately

π/4 with the direction of gravity. As the filament eventually aligns horizontally, the
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Figure 4.3: Terminal shape and maximum deflection along with corresponding theo-
retical predictions. (a) The final sedimenting shape, normalized by β, corresponding
to β = 8 (◦) and β = 0.02 (4) from simulations, along with the prediction from
Equation (4.37) (solid line) showing the validity of the theory down to relatively
small values of β. Here, h(s) is the scaled deflection perpendicular to the straight-
ened state at parametric position s. (b) Maximum deflection of the filament shape
d̃ = max[n̂ · d(s)] as a function of 1/β. Also shown by the solid line is the theoreti-
cal prediction following Equation (4.37). The dashed line shows a correction to the
theoretical prediction in which the filament shape was rescaled to preserve length.

drift slows and the trajectory asymptotes to a vertical line.

We observe in the weakly flexible regime that the only stable filament orien-

tation is when the tangent at the center is perpendicular to the direction of gravity.

In this configuration, the filament assumes a symmetric, nearly parabolic shape as

shown in Figure 4.2(b). The steady ‘terminal’ shapes of more flexible filaments are

plotted in Figure 4.2(c) for a decreasing sequence of values of the elasto-gravitation

number, where more flexible filaments are seen to adopt horseshoe shapes. Further-

more, these steady shapes obtained in simulations in the limit of weak flexibility are

found to collapse onto a single self-similar curve h(s), as shown in Figure 4.3(a) upon

normalization by β (as will be shown theoretically in the following section). The final

extent of bending can be characterized by the maximum deflection d̃ of the filament,

which is shown in Figure 4.3(b) against 1/β, exhibiting linear growth in the weakly

flexible regime that extends as far down as β ≈ 0.02. For elasto-gravitation numbers

β . 0.01, the curve plateaus with the appearance of the horseshoe shape towards
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the maximum possible symmetric deflection value of one half. The weakly flexible

regime may therefore be defined by “large” values of the elasto-gravitation number,

β & 0.01.

4.3.1 A separation of timescales

We now set out to describe the filament shapes and dynamics analytically in

the weakly flexible regime. The position of the filament centerline at time t can be

written without loss of generality as

x(s, t) = r(t) + (s− 1/2)t̂(θ(t)) + d(s, t), (4.12)

where r(t) = x(1/2, t) is the position of the filament center, t̂ = xs(1/2, t) is the unit

tangent vector there, and d(s, t) is the time-dependent deviation of the filament from

its straightened state (with d(1/2, t) = 0). The filament is illustrated in Figure 4.4.

The natural coordinate system that rotates in time with the body is then described

by

t̂(θ) = − cos θ ŷ + sin θ x̂, (4.13)

n̂(θ) = sin θ ŷ + cos θ x̂, (4.14)

where θ = θ(t) measures the angle between −ŷ and the unit tangent vector t̂, and n̂

is the vector normal to the filament at its midpoint. The translational velocity of the

midpoint is written as r′(t) = U(t) = U(t)t̂+ V (t)n̂.

As we have observed in the numerical simulations of Figure 4.2, when the

elasto-gravitation number is large, the filament rotates in a time much longer than

is required for the body to traverse many body lengths. Meanwhile, the filament is

relatively stiff, so for a given orientation angle the body rapidly reaches its equilibrium

shape. These observations suggest that there is a separation of timescales that will

aid in the analysis of the system; the filament shape can be determined separately

from the body rotation rate, and the rotation rate can be determined given a fixed

body shape.

More specifically, there are three distinct timescales of note in the simulations.

For large values of the elasto-gravitation number, β � 1, the first is a very short
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Figure 4.4: Illustration of the filament centerline. The unit tangent and unit normal
vectors at the single point r(t) = x(s = 1/2, t) are given by t̂ and n̂, respectively.
θ(t) measures the angle between t̂ and the direction of gravity, −ŷ.

elastic relaxation timescale of O(β−1). The second is the timescale of O(1) on which

the body sediments a distance comparable with its length. The third is a very long

timescale of O(β) on which the body may reorient on account of its nontrivial shape.

Our aim is to study the shape changes of the filament on the latter two timescales,

during which the body translates and rotates through the fluid. Defining the scaled

time τ = β−1t, we analyze the system by the method of multiple scales wherein

variables are assumed to have a separate explicit dependence upon both t and τ (see

Bender and Orszag [136]). A uniform solution to Equations (4.8) and (4.9) is then

sought by assuming regular expansions of the tension and filament shape in powers

of the small number β−1 of the form

T (s, t, τ ; β) = T (0)(s, t, τ) + β−1T (1)(s, t, τ) +O
(
β−2
)
. (4.15)

Upon inspection of equation (4.7), we observe that the sedimentation and elastic

effects are balanced when β(B(s)dss)ss = O(Fg), and we have that O(|Fg|) = O(1).

Therefore when these effects are balanced the deflection of the filament is such that

d = O(β−1). A general expression for d is then given by

d(s, t, τ ; β) = β−1u(s, t, τ)n̂(θ) + β−2u1(s, t, τ)n̂(θ) + β−2v1(s, t, τ)t̂(θ) +O
(
β−3
)
,

(4.16)

with the functions u, u1, and v1 to be determined. Note that xs = t̂+ds, and filament

inextensibility (xs ·xs = 1) requires that the only filament deflections at first order in
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β−1 are normal to t̂. The definition of d implies ds(1/2, t, τ ; β) = 0. The translational

velocity and orientation angle are similarly expressed,

U(t, τ ; β) = U (0)(t, τ) + β−1U (1)(t, τ) +O
(
β−2
)
, (4.17)

V (t, τ ; β) = V (0)(t, τ) + β−1V (1)(t, τ) +O
(
β−2
)
, (4.18)

θ(t, τ ; β) = θ(0)(t, τ) + β−1θ(1)(t, τ) +O
(
β−2
)
. (4.19)

Inserting the expressions above into Equation (4.8), and dotting separately with either

t̂(θ) and n̂(θ), we find the leading-order relations,

U (0) = 2(c− 1)
[
T (0)
s − Fg cos θ(0)

]
+ 2S

[
T (0)
s − Fg cos θ(0)

]
, (4.20)

V (0) + (s− 1/2)θ
(0)
t = −(c+ 1)

[
(Buss)ss − Fg sin θ(0)

]
− S

[
(Buss)ss − Fg sin θ(0)

]
,

(4.21)

where S[·] is the non-local hydrodynamic contribution for a straight filament defined

in Equation (4.10). Recall that B = B(s), Fg = Fg(s), and c = ln(1/ε2). Following

Götz [70], if we denote by Ln(s) the nth shifted Legendre polynomial (defined on s ∈
[0, 1]), we have S[Ln(s)] = λnLn(s), with λn = −2

∑n
i=1(1/i). Hence, the equations

above are made tractable by expressing variables in the Legendre polynomial basis.

Using the orthogonality of the Legendre polynomials, we recover the leading-order

sedimentation velocity,

U (0) = 2(c− 1) cos θ(0) t̂(θ(0))− (c+ 1) sin θ(0) n̂(θ(0)), (4.22)

and in addition we find

T (0)
s − Fg cos θ(0) = cos θ(0), (4.23)

(Buss)ss − (Fg + 1) sin θ(0) =
s− 1/2

1− c θ
(0)
t . (4.24)

The case of uniform filament thickness, with Fg(s) = −1, is considered in Appendix C.

The leading-order effect illustrated in Figure 4.1 is studied now by inserting Fg(s) =

−6s(1− s), which results in the leading-order tension,

T (0) = s(1− 2s)(1− s) cos θ(0). (4.25)

Meanwhile, multiplying Equation (4.24) by (s−1/2) and integrating, we find θ
(0)
t = 0.

The filament therefore does not rotate on the timescale t, but may still rotate on the
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longer timescale, θ(0)(t, τ) = θ(0)(τ). The leading-order deflection of the filament

from its straightened state can now be determined by integrating Equation (4.24)

(inserting θ
(0)
t = 0 and Fg = −6s(1 − s)) and imposing the boundary conditions in

Equation (4.4), giving

u(s, τ) = h(s) sin θ(0)(τ), (4.26)

with

B(s)hss =
1

2
s2(1− s)2, (4.27)

h(1/2) = hs(1/2) = 0. (4.28)

If the filament is composed of a uniform material, a corresponding bending stiffness

B(s) = r(s)4 = 16s2(1− s)2 then results in the filament deflection profile

h(s) =
1

64

(
s− 1

2

)2

. (4.29)

Surprisingly, the shape of the filament is symmetric about its midpoint at leading

order for any orientation, and the scaling of the deflection with the orientation angle

is given simply by sin θ(0)(τ). In order to determine the orientation angle θ(0)(τ), we

must look to higher order. At O(β−1), Equation (4.8) yields the expression

V (1)+(s− 1/2)
(
θ(0)
τ + θ

(1)
t

)
= (c+ 1)

[
(T (0)us)s − (Bu1,ss)ss + θ(1) cos θ(0)Fg

]

+ (c− 3)us cos θ(0) + S
[
(T (0)us)s − (Bu1,ss)ss + θ(1) cos θ(0)Fg

]

+ cos θ(0)S[us] + cos θ(0)P [u],

(4.30)

where the integral operator P [·] is defined in Equation (4.10). Multiplying Equa-

tion (4.30) by (s− 1/2) and integrating, we have

θ(0)
τ + θ

(1)
t =

A

2
sin(2θ(0)), (4.31)

A = 12((c− 1)I1 + (c− 5)I2 + I3), (4.32)
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where

I1 =

∫ 1

0

(1− 6s+ 6s2)h(s) ds, (4.33)

I2 =

∫ 1

0

(s− 1/2)hs(s) ds, (4.34)

I3 =

∫ 1

0

(s− 1/2)P [h](s) ds. (4.35)

The secular behavior in the expansion is removed by taking θ(1) = θ(1)(τ), and we are

left with an equation for the dynamics of θ(0),

θ(0)
τ =

A

2
sin(2θ(0)). (4.36)

Inserting the expression for h(s) obtained in Equation (4.29), we have I1 = 1/1920

and I2 = I3 = 1/384, so that A = 3(c − 7/2)/80 = 3(ln(1/ε2) − 7/2)/80. The

constant A is positive (and the result is physical) in the slender-body regime, or

specifically when: ε < exp(−7/4) ≈ 0.17. We therefore have that the orientation

angle θ = 0 is unstable, and that θ = ±π/2 are stable. From Equation (4.36) we see

that the filament will reorient on a timescale O(β/c) until its central tangent vector is

perpendicular to gravity. This matches our prediction of reorientation on a timescale

of O(β), but includes a coefficient that depends on the filament aspect ratio.

In the calculation above, if we were to take the bending stiffness to be constant

along the centerline (B(s) = 1), we instead find

h(s) =
1

64

[(
s− 1

2

)2

− 4

3

(
s− 1

2

)4

+
16

15

(
s− 1

2

)6
]
, (4.37)

which matches Equation (4.29) in the interior of the filament, but predictably leads

to a slightly smaller filament deflection from the horizontal plane. The corresponding

orientation dynamics are still given by Equation (4.36), but now we have I1 = 1/2520,

I2 = 1/560, and I3 = 101/50400, so that A = 11(c − 369/110)/420. We still find

A > 0 in a similar range of body aspect ratios, ε . 0.19. This calculation is not to be

confused with that for a filament of uniform thickness, as described in Appendix C.

However, the similarity between Equation (4.29) and Equation (4.37) suggests that

computing with the assumption B(s) = 1 even for a spheroidal body, which avoids the

computational issues related to an elastic boundary layer, is reasonable. We therefore
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choose B(s) = 1 for our computations for the remainder of the chapter (and in the

previous section).

The body shapes predicted by Equation (4.37) are shown in Figure 4.3(a) as

a solid line, from which we see excellent agreement with the results of the numerical

simulations (shown as symbols) all the way down to β ≈ 0.02. The maximum deflec-

tion of the filament shape is shown in Figure 4.3(b), with the results from the full

simulations shown as circles and from the prediction as a solid line, which provides

a quantitative measure of the accuracy and breakdown of the simple theory. At the

order of our consideration the filament is not inextensible, and as a consequence we

observe a systematic overestimation of the numerical results. A simple improvement

of the prediction is obtained by rescaling the shape to unit length, as shown by a

dashed line in Figure 4.3(b).

For β . 0.01, the shapes are no longer self-similar and depart significantly from

the expression in Equation (4.37). Viscous stresses associated with the gravitational

forcing are now strong enough to overwhelm the elastic stiffness, and a horseshoe-like

shape emerges as seen from numerical simulations in Figure 4.2(c). The two ends of

the filament approach one another for smaller β, and for β . 0.001 the filament can

overlap itself unless steric effects are taken into account.

4.3.2 Filament trajectories and particle clouds

We have shown that appreciable changes in the filament shape and orientation

are found on the scale over which the filament sediments many body lengths through

the fluid. Writing the dynamics from Equation (4.36) in terms of the single time t,

the filament rotation rate at leading order is given by

θt =
A

2β
sin(2θ), (4.38)

with A = 3(c − 7/2)/80 for B(s) = 16s2(1 − s)2. Integrating Equation (4.38) and

setting θ(0) = θ0, we find

tan(θ(t)) = tan(θ0) exp(At/β). (4.39)

The filament velocities in the horizontal and vertical directions were previously ap-

proximated to O(1/β); inserting Equation (4.38) into Equation (4.22), and writing
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Figure 4.5: Filament orientation and velocity at β = 2. The initial orientations are
π/4 (◦), π/16 (4) and π/64 (�). The symbols are from numerical simulations, and
solid lines are theoretical predictions for: (a) filament orientation θ(t), (b) horizontal
filament velocity Ux(t), and (c) downward filament velocity −Vy(t).

U(t) = Uxx̂+ Vyŷ, we find:

Ux(t) =
(c− 3) tan(θ0) exp(At/β)

1 + tan2(θ0) exp(2At/β)
, (4.40)

Vy(t) = −(c+ 1)− (c− 3)

(
1

1 + tan2(θ0) exp(2At/β)

)
. (4.41)

Integrating the velocities above leads to an approximation of the filament trajectory

accurate to O(1). Assuming that the filament is initially centered at the origin, the

material point s = 1/2 follows the path (X(t), Y (t)), where

tan

(
A

β(c− 3)
X(t) + θ0

)
= tan(θ0) exp(At/β), (4.42)

Y (t) = −(c+ 1)t− β(c− 3)

2A
ln

(
(1 + tan2(θ0)) exp(2At/β)

1 + tan2(θ0) exp(2At/β)

)
. (4.43)

The full trajectory is described implicitly by the equation

tanα(θ0) sin(θ0) exp

(
− A

β(c− 3)
Y (t)

)
=

tanα
(

A

β(c− 3)
X(t) + θ0

)
sin

(
A

β(c− 3)
X(t) + θ0

)
,

(4.44)

where α = (c + 1)/(c − 3) > 1. In contrast to the constant horizontal velocity of a

straight sedimenting rod, the filament drifts horizontally a finite distance (assuming

0 < θ0 ≤ π/2),

X(∞) =

∫ ∞

0

Ux(t) dt =
β(c− 3)

A

(π
2
− θ0

)
, (4.45)
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Figure 4.6: Analytical predictions and results from simulations showing the trajecto-
ries and cloud spreading of sedimenting flexible filaments. (a) Results from simula-
tions (symbols) and from analytical predictions (solid lines) showing the trajectory
of sedimentation of the midpoint of a filament for β = 2 released with three differ-
ent initial orientations. The dashed line represents the maximum width of spreading
as predicted by Equation (4.45). (b) Predicted trajectories for different values of β
when the filament is released at an angle of ±π/4. (c) A visualization of the pre-
dicted spreading of sedimenting flexible filaments. Here, β = 10 and the initial angle
of release varies in the range [−π/2, π/2]. Also shown is the maximum extent of cloud
spreading.

and X(∞) = 0 for θ0 = 0. The horizontal drift is monotonic in the initial orientation

angle on this domain. The maximum drift is given for θ0 → 0+, where X(∞) →
πβ(c − 3)/2A. The drift is also monotonic in the elasto-gravitation number in this

regime, with larger distances traversed by stiffer filaments, and X(∞)→∞ for rigid

fibers, β →∞.
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The horizontal and vertical velocities and the filament rotation rate following

Equations (4.39), (4.40) and (4.41), respectively, are shown in Figure 4.5 for β = 2

and three different initial orientations. Also shown are numerical results for these

parameters that show excellent agreement with the predictions. One can clearly see

from the figures that the filament initially drifts increasingly faster in a direction

perpendicular to gravity, attaining a maximum horizontal velocity at approximately

θ = π/4. Ux(t) then decreases to zero, which corresponds to the trajectory in Fig-

ure 4.2(a) tending asymptotically to a vertical line. The vertical velocity at this point

settles to a constant value of Vy(t→∞) = −(c + 1), which gives Vy ≈ −10.21 using

ε = 0.01 as in the simulations. This value corresponds to the minimum speed of

sedimentation in the entire process, corresponding to the drag being maximized in

this regime for bodies sedimenting perpendicular to the long filament axis.

The monotonic increase of the span of spreading X(∞) with both the ini-

tial orientation and the elasto-gravitation number suggests interesting trajectories for

filaments in this regime. Figure 4.6 shows the trajectories associated with these dy-

namics. Numerical results for three different initial orientations, all for β = 2, are

shown in Figure 4.6(a) to match excellently with the predicted trajectories. Note

again that the maximum width of spreading is attained for θ0 = 0±, and the vertical

asymptote of the trajectory approaches this value for small initial orientations. The

qualitative difference between weakly flexible filaments and rigid rods is illustrated

in Figure 4.6(b). With increasing values of the elasto-gravitation number, the tra-

jectories of filaments placed at the same initial orientation (θ0 = ±π/4 in this case)

approach the β →∞ limit of rigid rods, which sediment without rotating and at an

angle that depends only on their initial orientation.

Finally, in Figure 4.6(c), we show how in this regime the lateral spreading

of filament trajectories is confined to a cloud whose width is dictated by the elasto-

gravitation number. The different trajectories correspond to different initial orien-

tations with initially horizontal filaments sedimenting vertically downwards, and the

widest spreading attained, as mentioned above, for θ0 = 0±. Neglecting hydrodynamic

interactions between bodies, consider the release of many filaments at the origin, with
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Figure 4.7: Illustration of the source of tension and buckling in model “filaments,” as
in Figure 4.1. (a) The leading-order effect: larger bodies sediment faster than smaller
bodies in a viscous fluid. (b) The secondary effect: the central bodies in a line of
identical sedimenting spheres experience a stronger disturbance fluid flow, and will
sediment faster than those near the ends. (c) The effects in (a) or (b), along with
inextensibility, can lead to buckling of a sedimenting filament.

a probability density function of their orientations given by ρ(θ0) on θ0 ∈ [0, π/2].

Once the bodies have settled into their vertical trajectories, the radial distances from

the origin (in the plane perpendicular to gravity) are distributed as ρ(θ0)X(∞). As-

suming uniformly distributed filaments, ρ(θ0) = sin(θ0), then the radial distribution

of the filament cloud as seen in Figure 4.6 is given by [β(c − 3)/A]
(
π
2
− θ0

)
sin(θ0).

Integrating, the mean filament drift is given by (π−2)β(c−3)/(2A), and the variance

by (π − 3)β2(c− 3)2/A2.

4.4 Buckling of flexible filaments

Our attention now turns to the opposite extreme, the case of extremely flexi-

ble filaments for which the elasto-gravitation number is small, β≪ 1. Of particular

interest in this case is the possibility of a dramatic buckling event, which may be

exhibited by an elastic body when compressive forces overcome its structural rigid-

ity. Potential sources of a buckling instability in the context of sedimentation are

illustrated in Figure 4.7, and are identical to the sources of bending shown in Fig-
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Figure 4.8: Moderate buckling is observed in simulations for β = 10−4 and B(s) = 1.
The filament is initially placed with its trailing end at the origin.

ure 4.1. With spheres sedimenting according to their sizes, the array of spheres in

Figure 4.7(a) will separate in the top half of the train, and collapse in the bottom

half (in the direction of gravity). If the spheres are constrained so that their relative

positions are fixed, there will be a positive tension in the top half of the train, and

a negative (compressive) tension in the bottom half. This compression can cause a

sufficiently flexible filament to buckle, as we show below. It is similarly argued that

this source of instability will vanish if the filament density increases monotonically in

the direction of gravity.

If the filament is of uniform thickness, the secondary effect from non-local hy-

drodynamic interactions can also lead to buckling. As illustrated in Figure 4.7(b),

the spheres nearer to the center of the train sediment faster than those at the leading

and trailing ends. This effect can also lead to buckling of a sufficiently flexible fila-

ment. Once again, the leading-order effect is now considered by studying a spheroidal

filament shape, and comments on the case r(s) = 1 are included in Appendix C.

Choosing the spheroidal filament profile r(s) = 2
√
s(1− s), so that c(s) =

ln(1/ε2), and setting B(s) = 1 as before, considerable buckling is observed in the full

simulations for sufficiently small values of the elasto-gravitation number. Figures 4.8

and 4.9 show time sequences of filaments buckling with β = 10−4 and β = 6.25×10−5,
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Figure 4.9: Substantial buckling is observed in simulations for β = 6.25 × 10−5 and
B(s) = 1. The filament is initially placed with its trailing end at the origin.

respectively. In both cases, an initial transverse perturbation of 10−4 cos(4πs) is im-

posed along the entire filament length and is found to amplify and lead to the observed

dynamics. Two points are to be noted here, both of which we analyze in further de-

tail in the following sections. First, it can be seen that the buckling instability only

occurs in the leading half of the filament, whereas perturbations are observed to de-

cay in the trailing half. This is consistent with the aforementioned argument that

the negative (compressive) tension in the leading half drives this instability. Second,

perturbations are found to propagate upward in the form of traveling waves in the

body frame, eventually dying out once they reach the trailing half. Beyond the times

shown in the figures, the filament undergoes substantial bending where the curvature

becomes so large that the linearized Euler-Bernoulli formulation used in our model

may no longer accurately describe the filament elastodynamics. Additionally, ex-

cluded volume effects are expected to come into play as the filament nears itself in

the later stages of buckling, though we do not account for direct steric interactions

in our simulations.
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4.4.1 Linear stability analysis and buckling criterion

For sufficiently small values of the elasto-gravitation number, there is no

timescale separation between elastic relaxation and sedimentation. We recall the

fluid force per unit length,

f(s) = −(T (s)xs)s + β(B(s)xss)ss − Fg(s). (4.46)

As in the simulations just described, we choose the filament profile r(s) = 2
√
s(1− s)

and the distributed gravitational forcing Fg(s) = Fg(s)ŷ = −6s(1− s)ŷ. Once again

we will consider the corresponding bending stiffness profile, B(s) = r(s)4, but we also

study the case B(s) = 1 for the sake of comparison with the computations.

Consider a straightened filament sedimenting along the −ŷ direction, whose

centerline position is expressed as x(s, t) = −(s − 1/2 + Ut)ŷ, with U the constant

sedimentation speed. Then Equation (4.8), along with the boundary conditions (4.5),

may be written as

U = 2(c− 1)(Ts − Fg) + 2S[Ts − Fg], (4.47)

T (0) = T (1) = 0, (4.48)

where S[·] is the integral operator defined in Equation (4.10) which is diagonalized

under the Legendre polynomial basis as discussed in Section 4.3.1. Therefore, upon

multiplication of Equation (4.47) by Legendre polynomials and integrating on s ∈
[0, 1] we see that Ts(s) − Fg(s) = 1, and that the sedimentation speed is given by

U = 2(c− 1). In addition, noting Equation (4.48), we find that the tension along the

filament is given by

T (s) = T0(s) = s(1− s)(1− 2s). (4.49)

We will refer to the straightened filament conformation with sedimentation speed

U = 2(c−1) and tension T0(s) as the base state for the analysis to come. Importantly,

due to the spatial variation in the gravitational potential, we observe that the tension

in the base state is positive for s ∈ (0, 1/2), but negative for s ∈ (1/2, 1). Hence, while

the trailing half of the filament experiences a tension, the leading half of the filament

(in the direction of sedimentation) experiences a compression. Buckling, therefore, is

to be expected in a certain range of β, but in a non-uniform fashion along the filament

backbone (see Figures 4.8 and 4.9).
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Dynamics of filament perturbations

We now perform a classical linear stability analysis on the filament by per-

turbing the filament position in a plane perpendicular to gravity. Assume that the

filament position is given by

x(s, t) = −(s− 1/2 + Ut)ŷ + εu(s, t)x̂+O(ε2), (4.50)

with ε � 1. By a symmetry argument (taking ε → −ε), it is apparent that there

can be no variation in the vertical component of the filament velocity (either in

the sedimentation speed or varying spatially along the filament), so the speed U in

Equation (4.50) is that from the leading-order calculation, U = 2(c− 1). Performing

a regular expansion of the tension about the base state for small ε, we also write

T (s) = T0(s) + εT1(s) +O(ε2), (4.51)

where T1(0) = T1(1) = 0. Note that ε at the outset has no relationship to the

body aspect ratio ε. Inserting these expansions into the ŷ component of the position

Equation (4.8), we have

0 = 2(c− 1)T ′1(s) + 2S[T1](s), (4.52)

from which we see that the tension does not vary at first order in ε: T1(s) = 0.

However, upon inspection of the x̂ component of the filament position equation, we

find an equation for the dynamics of the perturbation,

ut = (c+ 1)[(T0us)s − β(B(s)uss)ss] + (c− 3)us

+ S [(T0us)s − β(B(s)uss)ss + us] + P [u],
(4.53)

with P [·] defined in Equation (4.10).

The analysis of Equation (4.53) is no longer as simple as an expansion in the

Legendre polynomial basis. Instead, we proceed to consider the action of the integral

operators on Fourier perturbations of a given high wavenumber k. Specifically, for

k � 1, and for points s sufficiently well removed from the filament endpoints, we

have

S[eiks] ≈ − ln
(
e2γk2s(1− s)

)
eiks, (4.54)

P [eiks] ≈ 2ikeiks, (4.55)
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as shown in Appendix D, where γ is Euler’s constant. Hence, for filament pertur-

bations of high wavenumber, the eigenfunctions of S[·] and P [·] are approximately

the Fourier basis functions eiks. Accordingly, for k � 1, we may replace P [u] in

Equation (4.53) by 2us.

As a first approximation justified in Appendix D, we analyze the dynamics of

the perturbation in the two halves s ∈ (0, 1/2) (where T0(s) > 0) and s ∈ (1/2, 1)

(where T0(s) < 0) as separate and decoupled. We begin by considering the trailing

half of the filament, s ∈ (0, 1/2). While it would be more exhaustive to consider a

continuously varying basis for the perturbations, much will be learned by the sim-

pler confinement to a countable Fourier basis. The Fourier transform and inverse

transform pair on this interval are given by

u(s, t) =
∞∑

k=−∞
ûk(t)e

4πiks, ûk(t) = 2

∫ 1/2

0

u(s, t)e−4πiks ds. (4.56)

We also express (T0us)s and (Buss)ss in the Fourier basis,

(T0us)s =
∞∑

k=−∞
ake

4πiks, (B(s)uss)ss =
∞∑

k=−∞
bke

4πiks. (4.57)

Using the base-state tension Equation (4.49), we find

ak = −(πk)2ûk +
∑

m6=k

3km(−i + (m− k)π)

π(m− k)3
ûm. (4.58)

Also, with B(s) = 1 we find

bk = (4πk)4ûk, (4.59)

or with B(s) = r(s)4 = 16s2(1− s)2 we find

bk = 8

(
1

15
(4πk)4 − 2πik

)
ûk −

∑

m6=k
C(k,m)ûm, (4.60)

where

C(k,m) = 128

[
m4

(
3 + 3i(m− k)π + i(m− k)3π3

(m− k)4

)

−3m2(m+ k)
1 + i(m− k)π

(m− k)3

]
.

(4.61)
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Inserting these expressions into Equation (4.53) returns an equation for the pertur-

bation dynamics in Fourier space,

û′k(t) = (c+ 1)(ak − βbk) + (c− 1)4πikûk − 2 ln(2πke−(1−γ))(ak − βbk + 4πikûk).

(4.62)

The spatially varying tension and bending stiffness lead to the transmission of

energy from each wavelength of u to nearby wavelengths through the coefficients ak

and bk. However, consider the case that the filament is seeded with a perturbation

with a single wavenumber k. For short times, during which the coupling between the

Fourier modes can be neglected, we have

ûk(t) ≈ ûk(0)eσ(k)t. (4.63)

Inserting this ansatz into Equation (4.62) and neglecting coupling terms, we find the

growth rate if B(s) = 1,

σ(k) =
(
c− ln(4(πk)2e2γ−3)

) (
−π2k2 − β(4πk)4

)
+ 4πik(c− ln(4π2k2e2γ−1))

≈ − ln

(
1

ε2k2

)(
π2k2 + β(4πk)4 − 4πik

)
,

(4.64)

or if B(s) = 16s2(1− s)2,

σ(k) =
(
c− ln(4π2k2e2γ−3)

)(
−π2k2 − 8(4πk)4

15
β + 16πikβ

)

+ 4πik
(
c− ln

(
4π2k2e2γ−1

))

≈− ln

(
1

ε2k2

)(
π2k2 +

8

15
β(4πk)4 − 4πik(1 + 4β)

)
,

(4.65)

where we have inserted c = ln(1/ε2) with ε the filament aspect ratio. The growth

rate σ(k) exhibits rapid damping due to bending rigidity (∝ −k4) as well as damping

due to filament tension (∝ −k2). The perturbation is thus expected to return rapidly

to its straightened state. The dispersion relation also shows that the perturbation

travels as a wave along the filament in the direction opposite gravity with approximate

speed ln(1/ε2k2). The approximation clearly breaks down if the filament aspect ratio

is on the order of the perturbation wavelength, εk = 1, so we assume εk � 1.

Meanwhile, in the leading half of the filament, s ∈ (1/2, 1), there is a slight

but critical adjustment to the approximations above, as a consequence of the negative
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Figure 4.10: Real part of the growth rate σ(k), for two different values of β in the (a)
trailing and (b) leading halves of the filament. The lines are theoretical predictions
and symbols follow from simulations. The solid lines and filled circles correspond to
β = 10−4 while the dashed line and open symbols correspond to β = 10−3.

tension there. By a similar calculation, we find the short-time growth rates for B(s) =

1,

σ(k) ≈ ln

(
1

ε2k2

)(
π2k2 − β(4πk)4 + 4πik

)
, (4.66)

and separately for B(s) = 16s2(1− s)2,

σ(k) ≈ ln

(
1

ε2k2

)(
π2k2 − 8

15
β(4πk)4 + 4πik(1− 4β)

)
. (4.67)

In the leading half, we observe a competition between the effect of tension, which

acts to amplify the perturbation exponentially fast, and the effect of bending rigidity,

which acts to dampen the system. In the case B(s) = 16s2(1−s)2, the filament is pre-

dicted to buckle for wavenumbers smaller than a critical value, k∗ =
√

15/(16π
√

8β),

and the most unstable wavenumber (corresponding to the largest positive growth

rate) is given by km =
√

15/β/(64π). While arbitrarily small wavenumbers can be

supported by a free filament, the critical value of β for which at least one wavelength

of buckling can be observed (k∗ = 1/2) is β∗ = 15/(8(8π)2) ≈ 0.0030 in this case.

Once again, the growing perturbation travels as a wave in the body frame in the

direction opposite gravity, as observed in the numerical simulations of figures 4.8

and 4.9.

To compare the analytical predictions with the full numerical results quanti-

tatively, we perform simulations in which an initially straight and vertically aligned
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filament is weakly perturbed at a given wavenumber k across its entire length at

t = 0: u(s, 0) = 10−4 cos(4πks), and we set B(s) = 1. The effective growth rates

of such perturbations in the linear regime are extracted numerically and are com-

pared to the predictions of the linear analysis in figure 4.10 for two different values

of β. In agreement with the theoretical predictions, the trailing half of the filament

is always found to be stable to single wavenumber perturbations, while the leading

half is unstable over a finite range of wavenumbers where the competition between

compressive tension and elasticity is favorable for buckling to occur. The numerical

results and theoretical growth rates follow similar trends, though damping is always

found to be smaller in the simulations. This systematic shift, which becomes more

apparent for larger values of k, may be due to the coupling between the two halves,

the coupling between modes, and the filament boundary conditions, which have all

been neglected for this first approximation. In particular, to achieve the above esti-

mation the assumption was made that the region of interest is well-separated from the

filament endpoints, whereas the instability observed in the simulations is dominant

near the leading tip of the filament. Perturbations in the trailing half do indeed decay

as predicted, in the form of upward traveling waves.

As discussed earlier and illustrated in Figure 4.7(b), the tension in the leading

half of a filament with uniform thickness is also negative in the straightened (base)

state, but due instead to non-local hydrodynamic interactions. An approximation of

the tension accurate to O((ln 1/ε)−2) for this case is derived in Appendix C.

4.4.2 Linear eigenmodes of the local theory

The growth rate derived above was based on the short-time behavior of a

Fourier perturbation of wavenumber k, where we neglected the couplings between

wavenumbers and assumed that the stability of the leading and trailing halves of the

filament could be analyzed independently. Fourier modes, however, are not exact

eigenfunctions of the linearized Equation (4.53), in particular near the filament end-

points, which may explain the quantitative discrepancies we observed between the

theoretical and numerical growth rates in Figure 4.10. A different approach which

is semi-analytical consists in solving for the exact eigenfunctions of the problem that
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Figure 4.11: Growth rates and wavenumber content from the local theory. (a) Real
parts of the largest few eigenvalues σn as a function of 1/β. Also shown with a
dashed line is the maximum growth rate as predicted by the local dispersion rela-
tion of Equation (4.66). (b) The wavenumber corresponding to the largest discrete
Fourier component of the most unstable eigenfunction (circles) compared against the
wavenumber with the largest growth rate in the local dispersion relation (solid line).

are valid along the entire length of the filament, as was previously done by Young and

Shelley [35] and Guglielmini et al. [33] for the buckling of elastic fibers in extensional

flows near hyperbolic stagnation points.

We determine numerically the linear eigenmodes of the problem in the case

where the non-local contribution is neglected. Keeping only the local contribution in

Equation (4.53) and setting B(s) = 1 for simplicity, the linearized equation for the

amplitude of the shape fluctuations becomes

ut(s, t) = (c+ 1)[(T0us)s − βussss] + (c− 3)us, (4.68)

with T0(s) the base-state tension from Equation (4.49). In the linear regime, we seek

exponentially growing solutions of the form u(s, t) = ϕn(s)eσnt, where the eigenfunc-

tions ϕn(s) satisfy

σnϕn = 2[c−1−3(c+1)s(1−s)](ϕn)s+(c+1)[s(1−s)(1−2s)(ϕn)ss−β(ϕn)ssss]. (4.69)

Given that B(s) = 1 and that the tension profile vanishes at the ends in the linear

regime, the boundary conditions (4.4)–(4.5) simply become

ϕ′′n(0) = ϕ′′n(1) = ϕ′′′n (0) = ϕ′′′n (1) = 0. (4.70)
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Equation (4.69) is an eigenvalue problem for the mode shapes ϕn(s), with correspond-

ing eigenvalues σn, whose real parts define the growth rates. We solve the equation

numerically using a second-order accurate finite-difference discretization, which yields

a countable set of eigenfunctions and eigenvalues. The eigenvalues are ordered by de-

creasing values of the growth rate, Re(σ1) ≥ Re(σ2) ≥ ... The largest growth rates,

which correspond to the most unstable modes, are plotted as functions of 1/β in Fig-

ure 4.11(a), where we observe that an increasing number of modes become unstable

with increasing filament flexibility (decreasing β). Nevertheless, we find that the first

mode with eigenvalue σ1 always remains the most unstable (though it merges with

the second mode when β . 2.5×10−4 as we discuss below), and the maximum growth

rate is found to compare favorably with the results of the Fourier analysis of Section

4.4.1.

The shapes of the eigenmodes are illustrated in Figure 4.12, which shows the

two most unstable eigenfunctions ϕ1(s) and ϕ2(s) for values of the elasto-gravitation

number β in the range 1 × 10−4 − 5 × 10−3. Note that in the limit of β → ∞ (stiff

filaments), the eigenfunctions are simply eigenfunctions of the biharmonic operator,

but these lose symmetry with decreasing β as the filament becomes more flexible and

hence susceptible to buckling in a nonuniform fashion as we have described. The

modal stability in Figure 4.11(a) shows real parts of eigenvalues merging as β de-

creases: this is seen here as the shapes of eigenfunctions ϕ1,2 become identical below

β ≈ 2.5× 10−4 when the two eigenvalues σ1,2 become complex conjugates. Addition-

ally, ϕ1,2 remains the most unstable buckling mode as β decreases further and more

complicated shapes involving higher wavenumbers arise. We see that the eigenval-

ues for the problem on the whole interval roughly agree with the predicted growth

rates from the previous section as a consequence of the most unstable eigenfunction

only taking significant values on the leading half of the filament, s ∈ (1/2, 1). We

note a striking similarity between the linearly unstable eigenmodes calculated here for

n = 1, 2 and the finite-amplitude buckled shapes observed in the nonlinear numerical

simulations of Figures 4.8 and 4.9.

The increasing wavenumber content of the unstable eigenfunctions with in-

creasing flexibility is consistent with the widening range of unstable wavenumbers

predicted by the Fourier analysis of Section 4.4.1. To compare both results more
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Figure 4.12: Eigenfunctions ϕ1 and ϕ2 for β in the range 1 × 10−4 − 5 × 10−3. In
the limit of β → ∞, the eigenfunctions are biharmonic functions, and the shapes
progressively become less symmetric for more flexible filaments. Note that ϕ1 and ϕ2

become identical below β ≈ 2.5× 10−4.

quantitatively, we project the leading half s ∈ (1/2, 1) of ϕ1(s) onto a discrete Fourier

cosine basis cos(4πks) and compare the wavenumber km with the dominant projection

to the most unstable wavenumber predicted by the dispersion relation of Section 4.4.1.

As shown in Figure 4.11(b), both values match closely, which further corroborates the

use of a countable Fourier basis for the stability analysis.

4.5 Conclusion

In this chapter, we investigated some of the fundamental dynamics of a single

flexible filament as it sediments in a viscous fluid. The competition between elastic

forces and viscous forces induced by gravity was characterized by a dimensionless

quantity that we termed the elasto-gravitation number, β. We first considered the

weakly flexible regime, where the filament is nearly rigid, and using a multiple-scale

analysis found a self-similar scaling of the filament shape with an amplitude depen-

dent upon the body orientation. Equilibrium shapes and trajectories were then ana-

lyzed in this regime, and we gave predictions for the dynamics of clouds of multiple

(non-interacting) filaments. By comparing against full numerical simulations, the an-

alytical predictions were found to be accurate for elasto-gravitation numbers down to

β ≈ 0.01 in the case of spheroidal filaments with thickness profile r(s) = 2
√
s(1− s).

A similar analysis was provided in Appendix C for the shapes, velocities, and rotation
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rates of filaments with uniform thickness.

We then turned our attention to the buckling of a very flexible filament sedi-

menting along its long axis, which can occur for sufficiently small elasto-gravitation

numbers. While arbitrarily small wavenumbers can be supported by a free-filament,

the critical value of β for which one wavelength of buckling can be observed was

found to be β∗ = 15/(8(8π)2) ≈ 0.0030 in the case of the spheroidal filament with

B(s) = 16s2(1 − s2). Two approaches were taken to study the most unstable wave-

length perturbations and their growth rates. In the first approach, we assumed highly

oscillatory perturbations so that the non-local integral operator could be handled an-

alytically and the filament endpoints did not play a role. In the second, we solved

numerically an eigenvalue problem for the most unstable eigenmodes on the full in-

terval. Both approaches yielded predictions that were in agreement, and matched

very closely with the results of full numerical simulations.

Future work might consider the sedimentation of many flexible bodies from

experimental, numerical, and analytical perspectives. A step in this direction follows

immediately, in Chapter 5. As a final observation, we note that the filament shapes,

trajectories, and instabilities studied in this chapter can be interpreted equivalently

as those of a positively buoyant flexible filament rising against gravity.

Chapter 4 is based largely on material that has appeared in Journal of Fluid

Mechanics (2013), authored by Lei Li, Harishankar Manikantan, David Saintillan,

and Saverio E. Spagnolie [4].



Chapter 5

Sedimenting suspensions of weakly

flexible fibers: Theory

5.1 Introduction

We briefly discussed the effects of shape anisotropy and long ranged hydrody-

namics interactions on sedimenting particles in Section 1.2.1. At a suspension level,

the dependence of particle velocities on their orientations seriously complicates the

dynamics as the disturbance velocity field in the suspension can now reorient particles

and hence dramatically affect their trajectories over large length scales. This prob-

lem was first studied by Koch and Shaqfeh [125], who modeled a dilute suspension of

rigid spheroids using a Smoluchowski equation for the continuous probability field of

particle positions and orientations. Perturbing around a spatially homogeneous and

orientationally isotropic base-state distribution, they predicted a linear concentration

instability in which perturbations with the longest wavelengths are the most unsta-

ble. In short, the mechanism is as follows: hydrodynamic interactions cause denser

particle clusters to sediment faster than their surroundings, inducing a disturbance

field that orients neighboring particles in such a way that they preferentially migrate

towards the already dense clusters, thereby amplifying the concentration fluctuations.

The instability predicted by Koch and Shaqfeh has been amply confirmed by

experiments on rigid fibers [126, 137, 138] and by numerical simulations with various

levels of sophistication [127, 128, 139–142]. More complex theoretical models have

104
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also been developed to address issues such as the effects of stratification in finite-sized

containers [143], particle alignment under electric fields [144], Brownian fluctuations

[145], and fluid inertia [146, 147]. In all cases, the key ingredient remains the lateral

migration due to the orientability of the anisotropic particles at the micromechanical

level, and a suspension of rigid spheres is indeed stable to concentration fluctuations

as elucidated by Koch and Shaqfeh [125] using the same linear stability analysis.

Suspensions of isotropic particles, however, can exhibit an instability if the particles

are allowed to deform and become anisotropic under flow [127], as in the sedimentation

of emulsions [148, 149]. More generally, suspensions of isotropic particles have also

been found to be unstable due to other types of nonlinear couplings between the

direction of sedimentation of the particles and the local disturbance flow field they

induce, for instance due to Marangoni stresses in suspensions of spherical bubbles

covered with surfactants [150], or to viscoelastic stresses in suspensions of rigid spheres

in non-Newtonian fluids [151].

We have seen in the preceding chapters that when a flexible filament is placed

in a flow, the competition between viscous and elastic forces can result in complex

deformations and dynamics at the particle level. These, in turn, can drive drastic bulk

behavioural changes at the macroscopic level [152]. Of particular relevance within the

scope of this chapter is the limit of weak flexibility where the filament departs only

slightly from its straightened state. This regime is realized in many physical systems

involving stiff polymers, carbon nanotubes, rod-like bacteria or microtubules. While it

is a useful and often illustrative simplification to neglect fiber compliance completely

in such suspensions [62, 153], even weak flexibility has been shown to change the

rheology [154] and phase behaviour [155] of flexible fiber suspensions.

Pertinent to the present context is the fact that a compliant filament breaks

the symmetry enjoyed by a rigid rod and is therefore susceptible to an additional

coupling between translational and rotational motions. Under sedimentation, this

leads to a new mechanism for fiber reorientation and, due to drag anisotropy, to a

change in the direction and magnitude of the settling velocity. There is no reason

to expect steady and trivial trajectories any more, as was previously illustrated by

Xu and Nadim [132] and Cosentino Lagomarsino et al. [133] who predicted that

flexible fibers should spontaneously align perpendicular to gravity. Such reorientation
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dynamics and structural deformations were also reported in suspensions of filaments

made of superparamagnetic colloids [156] and electrophoretically-driven microtubules

[157], the role of gravity in these cases being played by a magnetic and electric field,

respectively.

In Chapter 4, we applied slender-body theory and a multiple-scale asymp-

totic analysis [4] to theoretically describe, and verify using numerical simulations, the

reorientation dynamics and shape evolution of a single flexible fiber undergoing sedi-

mentation. In the regime of weak flexibility, we saw that to leading order, a filament

translates at the same velocity as a rigid rod:

us(p) = (λ1I + λ2pp) · FG
8πµL

+O(β−2), (5.1)

where p is a unit vector tangent to the filament at its center, and µ is the viscosity

of the suspending fluid. The filament also reorients as a result of flexibility at an

angular velocity given by

ṗs(p) =
FG

8πµL2

A

2β
sin(2θ) θ̂ +O(β−2), (5.2)

where θ = cos−1(p · ẑ) is the instantaneous angle made by the fiber with gravity and

θ̂ is the corresponding polar unit vector in spherical coordinates. The constants λ1,

λ2 and A are geometric factors given by c+ 1, c− 3, and 3(c− 7/2)/80, respectively,

where c = ln(1/ε2) with ε = a/L the particle aspect ratio. Clearly, the changing

orientation of the filament affects its speed and direction of sedimentation, leading

to non-trivial trajectories. As can be seen from Equation (5.2), the filament tends

to align perpendicular to gravity, after which a quasi-steady state is achieved with

steady vertical downward translation. The deflection of the filament was also seen

in Chapter 4 to reach a maximum value of L/256β attained at steady state. For

a slender filament of aspect ratio ε = 0.01, we find that the maximum deflection is

approximately 0.004L when β = 1. This suggests that, to an excellent approximation,

a stiff sedimenting filament behaves like a rigid rod with the added dynamics of

reorientation and, through it, a non-constant sedimentation velocity. When many

such filaments are allowed to interact hydrodynamically in a suspension, we expect

the tendency to align horizontally to compete with the rotation of the particles in the

disturbance flow they generate, with nontrivial consequences for the stability of the

suspension as we analyze in this work.
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The chapter is organized as follows. In Section 5.2, we describe a simple model

for the sedimentation of a collection of hydrodynamically interacting weakly flexible

fibers, and use it to derive a mean-field theory for the evolution of the distribution of

particle positions and orientations in a large-scale suspension. As we shall see, this

mean-field continuum model admits a steady uniform base state that is anisotropic

in orientation space and depends on fiber flexibility. The stability of the system to

spatial perturbations around this base state is then analyzed in Section 5.3, where we

find that flexibility affects the stability in two distinct ways. On the one hand, the

anisotropic base state is shown to render the suspension more unstable as compared

to a suspension of rigid rods; on the other hand, reorientation of the weakly-flexible

fibers under gravity can act to prevent clustering and stabilize the suspension by

competing against rotation in the disturbance flow driven by density fluctuations.

5.2 Theoretical formulation

In this section, we formulate a theoretical model for the dynamics in a suspen-

sion of weakly-flexible filaments sedimenting under gravity. We first present a simple

micromechanical model for a discrete collection of filaments in Section 5.2.1. This

simple model is then used in Section 5.2.2 as the basis for a mean-field continuum

theory that extends the model of Koch and Shaqfeh [125] to account for the leading

effects of weak flexibility.

5.2.1 Micromechanical model

As rationalized in the discussion of the previous section, we model a dilute

suspension of weakly flexible fibers using rigid rod dynamics, with flexibility entering

only through an additional component to the rotational velocity. The instantaneous

center-of-mass position and orientation of particle α in the suspension are given by

xα = (xα, yα, zα) and pα = (sin θα cosϕα, sin θα sinϕα, cos θα), where θα ∈ [0, π] and

ϕα ∈ [0, 2π) denote the polar and azimuthal angles on the unit sphere of orientations

Ω, respectively. We take gravity to be in the −ẑ direction. In a dilute system and in

the weakly flexible limit, the center-of-mass velocity of fiber α is modeled as the sum
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of its settling velocity obtained in Equation (5.1) and of the disturbance velocity ud

induced in the fluid by the motion of the other fibers:

ẋα = us(pα) + ud(xα). (5.3)

Similarly, its angular velocity also includes contributions from sedimentation and from

the disturbance flow:

ṗα = ṗs(pα) + ṗd(xα,pα), (5.4)

where ṗs(pα) is given by Equation (5.2) and accounts for the leading-order effect of

flexibility. Recall that each filament is a spheroid. Then, particle reorientation due

to the disturbance flow is modeled following Jeffery [102] as

ṗd(xα,pα) = (I − pαpα) · [γEd(xα) +Wd(xα)] · pα (5.5)

in terms of the disturbance rate-of-strain and rate-of-rotation tensors Ed = (∇xud +

∇xu
T
d )/2 and Wd = (∇xud −∇xu

T
d )/2, respectively, having chosen the convention

that (∇xu)ij = ∂ui/∂xj. In Equation (5.5), γ = (1 − 4ε2)/(1 + 4ε2) is a measure

of particle anisotropy, and we take γ ≈ 1 in this work, corresponding to the limit of

very slender fibers. It should be noted that Equations (5.3)–(5.5) technically describe

the motion of a fiber in a linear flow field. They are expected to hold in dilute

suspensions where spatial variations of the disturbance field occur on length scales

much greater than the particle dimensions, and could be corrected to account for

small-scale velocity fluctuations using more general Faxén relations for spheroidal

particles in arbitrary flows [60].

Integration of Equations (5.3)–(5.4) requires knowledge of the disturbance ve-

locity induced in the fluid by the other particles. This disturbance velocity arises

from the net gravitational force on each fiber, which is transmitted to the fluid. In

the dilute limit and to leading order, the velocity experienced by particle α therefore

solves the forced Stokes equations

− µ∇2
xud +∇xqd = FG

∑

β 6=α
δ(x− xβ), ∇x · ud = 0. (5.6)

Here, δ(x) is the three-dimensional Dirac delta function, qd(x) is the disturbance

pressure field set up by the flow, and we have assumed that the viscosity of the fluid
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is unaffected by the particles. Equation (5.6) also implicitly assumes that particles

are widely separated so that the effects of higher force moments on the particles are

negligible compared to the flow induced by the net gravitational force. In the limit

of rigid rods (β →∞ and ṗs → 0), the model posed here is identical to that used by

Mackaplow and Shaqfeh [158] in their discrete particle simulations.

5.2.2 Mean-field theory

Following Koch and Shaqfeh [125], we now introduce a continuum mean-field

theory based on the micromechanical model described above. Rather than tracking

the motions of individual fibers, we describe the configuration of the suspension in

terms of the probability distribution function Ψ(x,p, t) of finding a particle at position

x with orientation p at time t. The distribution function is normalized as

1

V

∫

V

∫

Ω

Ψ(x,p, t) dp dx = n, (5.7)

where V is the volume of the suspension and n the mean number density. Conserva-

tion of particles is expressed by the Smoluchowski equation [122]

∂Ψ

∂t
+∇x · (ẋΨ) +∇p · (ṗΨ)−∇x · (D · ∇xΨ)−∇p · (d∇pΨ) = 0, (5.8)

where differential operators with a subscript x act on spatial coordinates while those

with a subscript p act on the sphere of orientations:

∇p ≡ (I − pp) · ∂
∂p

= θ̂
∂

∂θ
+

ϕ̂

sin θ

∂

∂ϕ
. (5.9)

In Equation (5.8), ẋ and ṗ denote the translational and rotational flux velocities.

Based on the discussion of Section 5.2.1, these include contributions from sedimenta-

tion and from the disturbance flow field ud in the suspension:

ẋ = us(p) + ud(x), (5.10)

ṗ = ṗs(p) + ṗd(x,p), (5.11)

where us(p) and ṗs(p) were defined in Equations (5.1) and (5.2), respectively, and

where ṗd(x,p) is related to ud(x) through Jeffery’s equation (5.5). Equation (5.8)

also accounts for translational and rotational diffusion with constant diffusivities D
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and d. In this work, we assume that these diffusivities arise primarily from Brownian

motion and can be related via the Stokes-Einstein relation [122] to the translational

and rotational mobilities of the particles obtained from slender-body theory:

D =
kBT

8πµL
(λ1I + λ2pp), d =

kBTλ3

8πµL3
, (5.12)

where λ3 = 12(c−1), and kBT is the thermal energy unit. More sophisticated models

may be used for these diffusivities in the case of non-Brownian suspensions, where

their origin is hydrodynamic rather than thermal [159, 160].

The above system is closed with a description of the mean-field disturbance

velocity ud(x). In the continuum limit, the forced Stokes equations (5.6) become

− µ∇2
xud +∇xqd = FG c(x, t), ∇x · ud = 0, (5.13)

where c(x, t) denotes the local concentration of particles and is obtained from the

distribution function as

c(x, t) =

∫

Ω

Ψ(x,p, t) dp. (5.14)

The flow is driven by the forcing term on the right-hand side of the momentum equa-

tion, which can be interpreted as a body force acting on the fluid that is everywhere

proportional to the local weight of the suspension. In the limit of rigid rods (β →∞
and ṗs → 0) and in the absence of diffusion (D = 0 and d = 0), this continuum

model reduces to the original model of Koch and Shaqfeh [125] for a non-Brownian

suspension of sedimenting rigid rods.

5.2.3 Homogeneous base-state distribution

We first seek a steady and spatially homogeneous solution Ψ(x,p, t) = nΨ0(p)

of the mean-field model in an infinite domain, which will serve as the base-state

distribution for the linear stability analysis of Section 5.3. In this case, the body

force in the Stokes equations (5.13) reduces to nFG, with an obvious solution given

by

ud(x) = 0, qd(x) = −nFGz + q0
d. (5.15)

Therefore, in the absence of concentration fluctuations, the disturbance flow is zero

and a hydrostatic pressure gradient balances the buoyant weight of the suspension.
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In this case, the Smoluchowski equation (5.8) simplifies to

∇p · (ṗsΨ0) = d∇2
p Ψ0, (5.16)

expressing the balance of reorientation due to flexibility and rotational diffusion. We

expect the base state to only depend on the inclination θ of the particles from ẑ. This

allows us to solve for Ψ0 exactly as

Ψ0(θ) = m0 exp

[
− AF 2

GL
3

4kBTλ3κ
cos 2θ

]
, (5.17)

where m0 is a normalization constant, with m0 = (4π)−1 for an isotropic orientation

distribution. Let us introduce the gravitational Péclet number Pe, or ratio of the

gravitational potential to the thermal energy:

Pe =
FGL

kBT
. (5.18)

The base-state distribution (5.17) can then be rewritten as

Ψ0(θ) =
1

2π

e−2η cos2 θ

∫ 1

−1

e−2ηu2 du

, (5.19)

where we have defined η = APe/4λ3β.

As illustrated in Figure 5.1, any amount of flexibility causes the fibers to

preferentially align in the plane normal to the direction of gravity, and this tendency

strengthens in the limits of weak rotational diffusion (large Pe) and of increasing

flexibility (small β, although we recall that the micromechanical model is technically

valid for β & 1). Two limits of interest can be noted: if η � 1 the distribution is

isotropic (Ψ0(θ)→ (4π)−1), while if η � 1 all the filaments assume nearly horizontal

orientations (Ψ0(θ) → δ(θ − π/2)/2π). In the following, we shall explore the regime

where η & O(1), and frequently return to the case of small η for comparison with the

already established results for an isotropic suspension [125].

5.3 Linear stability

5.3.1 Eigenvalue problem

We now perturb the system about the base-state distribution as Ψ(x,p, t) =

n[Ψ0(θ) + εψ′(x,p, t)], with |ε| � 1 and |ψ′| ∼ O(1). This weak perturbation in
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Figure 5.1: The anisotropic base-state orientation distribution Ψ0(θ) for different val-
ues of η = APe/4λ3β. Flexibility causes particles to preferentially align in directions
perpendicular to gravity.

concentration leads to a weak disturbance velocity and an associated angular velocity:

ud = εu′d and ṗd = εṗ′d. Substituting these along with the base state (5.19) into the

conservation equation (5.8) and collecting terms of O(ε), we obtain:

∂ψ′

∂t
+∇xψ

′ · us +∇p Ψ0 · ṗ′d + Ψ0∇p · ṗ′d

+∇pψ
′ · ṗs + ψ′∇p · ṗs −∇x · (D · ∇xψ

′)− d∇2
pψ
′ = 0.

(5.20)

To proceed, we impose Fourier modes with wavevector k and complex frequency

ω = ωR+iωI on the perturbed quantities, e.g., ψ′(x,p, t) = ψ̃(k,p, ω) exp[i(k·x−ωt)].
In doing so, we have assumed that the fluid occupies all space. In real systems, this

could be the case if the container is large enough that walls have negligible effects

on the dynamics of the suspension. The disturbance velocity and angular velocity

then accomodate similar normal modes due to the linearity of the Stokes equations.
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Following Hasimoto [161], we know the velocity from (5.13) in Fourier space as:

ũ(k,p, ω) =
n

µk2
(I − k̂k̂) · FG c̃(k, ω), (5.21)

with k̂ = k/k and k = |k|. Here, correspondingly, c(x, t) = n[1 + εc′(x, t)] and

c′(x, t) = c̃(k, ω) exp[i(k ·x−ωt)], so that c̃ =
∫
Ω
ψ̃ dp. Then, using Jeffery’s equation

(5.5), we find the Fourier coefficients of the angular velocity and its orientational

divergence:

˜̇p(k,p, ω) = i
n

µk2
(p · k)(I − pp) · (I − k̂k̂) · FG c̃(k, ω), (5.22)

∇p · ˜̇p(k,p, ω) = −3 i
n

µk2
(p · k)p · (I − k̂k̂) · FG c̃(k, ω). (5.23)

Using FG = −FGẑ and the Fourier coefficients obtained in (5.21)–(5.23), the lin-

earized conservation equation (5.20) simplifies to

(−iω + ik · us +∇p · ṗs + k ·D · k)ψ̃ − d∇2
pψ̃ + ṗs · ∇pψ̃

+i
nFG
µk2

[3Ψ0(p · k)p · (I − k̂k̂) · ẑ − (p · k)∇pΨ0 · (I − pp) · (I − k̂k̂) · ẑ] c̃ = 0.

(5.24)

For simplicity, we assume that k̂ · ẑ = 0 as horizontal waves are known to be the most

unstable in the case of rigid rods [125]. Equations (5.1) and (5.2) can be inserted for us

and ṗs. After scaling lengths by the filament length L and time by the sedimentation

timescale 8πµL2/FG, we recast the above equation as

{
−iω − ik · (λ1I + λ2pp) · ẑ + Aβ−1(3 cos2 θ − 1) + Pe−1

[
λ1k

2 + λ2(p · k)2
]}
ψ̃

−λ3Pe
−1∇2

pψ̃ +
A

2
β−1 sin 2θ

∂ψ̃

∂θ
+ iF c̃ = 0.

(5.25)

Here, F is a scalar function defined as:

F =
N
k2

[3Ψ0(p · k)(p · ẑ)− (p · k)∇pΨ0 · (I − pp) · ẑ] (5.26)

= −N
k2
∇p · [Ψ0(p · k)(I − pp) · ẑ] , (5.27)

where N = 8πnL3 can be interpreted as an effective volume fraction. As previously

noted by Koch and Shaqfeh [125], the only intrinsic length scale of the problem at
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Figure 5.2: Spectral solution of the growth rate, σ, as a function of the horizontal
perturbation wavenumber k∗. Here, Pe = 106 and β = 1000(�), 100(4), and 10(◦).
The solid lines show the theoretical predictions of Equation (5.44) for the base-state-
driven instability for corresponding values of η, demonstrating that the leading effect
of flexibility on the stability occurs primarily through the anisotropy of the base-state
orientation distribution.

the suspension level is (nL)−1/2. For the mean-field description used here to be valid,

this length scale should be much greater than the particle size L, which implies that

nL3 � 1, consistent with the assumption of a dilute suspension. Another restriction

arises from the use of Equations (5.3) and (5.4) for the particle motions, which assume

that the disturbance velocity field varies smoothly on the scale of the fibers. This

condition limits the validity of the above model to Fourier perturbations such that

k−1 � L.

Equation (5.25) is an eigenvalue problem for the complex frequency ω, with

corresponding eigenfunctions given by ψ̃. In the limit of rigid rods and negligible

Brownian motion (β, Pe → ∞ with η → 0), it reduces to the eigenvalue problem

previously obtained and solved by Koch and Shaqfeh [125]. It is interesting to note
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that flexibility and Brownian motion alter the problem in several distinct ways. First,

they both have a direct influence through the terms involving β−1 and Pe−1 in Equa-

tion (5.25), which capture rotation away from the direction of gravity as a result

of flexibility and diffusive processes, respectively. In addition, they also both affect

the base-state orientation distribution Ψ0(θ) appearing in the function F through the

parameter η = APe/4λ3β setting the degree of anisotropy as previously explained in

Section 5.2.3. As we shall show below, the direct and indirect effects of β and Pe

are subtle and have nontrivial consequences for the stability. Before analyzing suc-

cessively the roles played by base-state anisotropy, flexibility and diffusion, we first

discuss the full numerical solution of the eigenvalue problem (5.25) using a spectral

method.

5.3.2 Spectral solution

Noting that Equation (5.25) is an eigenvalue problem of the form L[Ψ̃ ] = iωΨ̃ ,

where L is a linear integro-differential operator, we first seek a spectral solution for the

eigenvalues ω by projecting the eigenmodes ψ̃ on the basis of spherical harmonics as

detailed in Appendix E. The eigenvalue ω with the largest imaginary part ωI decides

the stability of the system. In Figure 5.2, we plot the normalized growth rate σ =

ωI/ωm against the normalized wavenumber k∗ = k/km for different values of Pe and β.

Here, the variables ωm and km are, respectively, the zero-wavenumber growth rate and

zero-growth-rate wavenumber for an isotropic suspension as in Saintillan et al. [143],

and we shall asymptotically rederive them in Section 5.3.3. As shown previously by

Hoffman and Shaqfeh [145] and confirmed by our numerical experiments, the leading

effect of Brownian motion is to stabilize the system. Therefore, we first focus on the

regime where Pe is large and hence the effects of diffusion are weak.

The impact of flexibility in this case is clearly shown in Figure 5.2. Here and

in all spectral calculations shown below, we use the value of N = 1 for the effective

volume fraction. In the limit of stiff rods, obtained by letting β → ∞ for finite Pe

(and therefore η → 0), the solution tends to the benchmark case previously analyzed

by Koch and Shaqfeh [125] and Saintillan et al. [143], with a maximum growth rate of

σ = 1 reached for k∗ = 0. As the filaments become more flexible (i.e., as β decreases),
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Figure 5.3: Zero-wavenumber (maximum) growth rate of the instability obtained
from the spectral solution. (a) Normalized growth rate at zero wavenumber for Pe =
108(�), 107(◦), 106(�), and 105(4). All cases asymptote to the isotropic rigid rod
limit as β → ∞. (b) Same data scaled according to the parameter η = APe/4λ3β,
with the predicted maximum growth rate (5.41) for the base-state-driven instability
shown in a solid line.

both the range of unstable wavenumbers and the highest growth rate are observed

to increase. In other words, we find that filament flexibility further destabilizes the

perturbed suspension. Recall however that β cannot be arbitrarily small as Equa-

tion (5.2) for the angular velocity is valid only in the weakly flexible regime of β & 1.

Interestingly, the destabilization with decreasing β is found to be primarily the conse-

quence of the indirect effect of flexibility on the anisotropy of the base state through

Equation (5.17), as the spectral solution to the full dispersion relation compares very

well with an approximation (shown by the full lines in Figure 5.2) that ignores the

independent effects of Brownian motion and flexibility and only accounts for their

contribution to the base state. This peculiar point and the physical mechanism for

this base-state-driven destabilization will be addressed more precisely in Section 5.3.3.

We look more closely at the dependence of the maximum growth rate σm on

β and Pe in Figure 5.3(a), still focusing on the regime where the independent effect

of Brownian motion is weak (Pe & 104). The case of an isotropic suspension of rigid
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rods is recovered by letting β → ∞ for all considered values of the Péclet number,

as illustrated by a unique asymptote in the limit of large β. While all four curves

for different values of Pe show similar shapes in this limit, we observe quite inter-

estingly that the asymptote is approached faster with respect to β when the Péclet

number is large. More precisely, an increase by a decade in Pe causes the range of β

where the asymptote is approached to decrease by a decade, suggesting a self-similar

dependence of the largest growth rate on Pe/β. This is confirmed in Figure 5.3(b)

showing the zero-wavenumber growth rates plotted vs η, where the values for all Pe

and β collapse onto a single curve in the low-η range. This dependence on η, rather

than on β and Pe independently, confirms that the dominant effect is that of the

base state, and indeed we find that the self-similar curve matches an analytical pre-

diction derived in Section 5.3.3 by neglecting the independent effects of flexibility and

diffusion. As η exceeds unity, self-similarity is no longer observed, and Figure 5.3(b)

shows an eventual stabilization with decreasing β (or increasing η for a fixed Pe),

presumably as a result of the independent effect of flexibility that competes against

particle alignment by the flow and therefore hinders the growth of fluctuations.

5.3.3 Effect of the base state

As demonstrated by the full spectral solution in Section 5.3.2, both flexibility

and Brownian motion primarily impact the stability by controlling the degree of

anisotropy of the base state, and it is this effect that we further analyze here. The

original instability mechanism proposed by Koch and Shaqfeh [125] for an isotropic

suspension of rigid rods is illustrated in Figure 5.4(a). The key point is that a plane

wave perturbation in the number density sets up a vertical shear flow that causes

neighboring particles to reorient so that they sediment preferentially towards the

regions of higher concentration, thereby bolstering the initial density fluctuation. This

is a direct consequence of the shape anisotropy of the particles and of their ability to

orient in the disturbance flow. This effect was further illustrated by Saintillan et al.

[143], who considered an anisotropic base state given by an Onsager distribution.

In contrast with the current work, they considered a distribution with a preferred

orientation parallel to the direction of gravity, and found that the weak horizontal
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Figure 5.4: The mechanism for growth of concentration fluctuations and the effect
of base-state anisotropy. (a) Instability mechanism proposed by Koch and Shaqfeh
[125]: the vertical shear flow set up by a horizontal density wave reorients particles
such that they migrate preferentially towards high-concentration regions. (b) Effect
of the vertical shear flow on an isotropic distribution: after a weak rotation, the
distribution remains nearly isotropic, with only a weak net lateral migration towards
the right. Empty shapes depict initial orientations in the base state, while filled ones
represent orientations after rotation in the disturbance flow for a short duration. (c)
Effect of the vertical shear flow on a strongly anisotropic orientation distribution:
the weak rotation by the flow causes a large fraction of fibers to migrate towards
the right, suggesting that base-state anisotropy can have a destabilizing effect on the
suspension.

drift of the nearly vertical fibers led to a decrease in the growth rate of the instability.

However, as illustrated in figures 5.4(b)–(c), the base state in the present study favors

the direction perpendicular to gravity when η > 0, and this configuration increases

the probability for a fiber to migrate toward the denser regions after a weak rotation

by the disturbance flow. Thus, we expect the anisotropy of the base state to enhance

the concentration instability in this case.

We restrict our attention here to the regime where both Brownian motion and

filament flexibility are weak, i.e., Pe−1 � 1 and β−1 � 1. Notice that in the limiting

case, we require for a well-defined base state that both Pe and β tend to infinity at

the same speed so that η remains finite but arbitrary. Then, the leading-order terms

in Equation (5.25) for the eigenfunctions ψ̃ = ψ̃0 + O(β−1, P e−1) and eigenvalues

ω = ω0 +O(β−1, P e−1) become

ψ̃0 =
F c̃0

ω0 + λ2(p · k)(p · ẑ)
, (5.28)
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where F is defined in Equations (5.26)–(5.27) and involves the base state Ψ0. Inte-

grating over all orientations and simplifying by c̃0 yields

∫

Ω

F
ω0 + λ2(p · k)(p · ẑ)

dp = 1, (5.29)

which is a dispersion relation for ω0(k). Note that both flexibility and Brownian

motion only enter this dispersion relation through the ratio of β and Pe appearing

in the base state. In neglecting Pe−1 and β−1 in the governing equation, we have

assumed that the correct order has been maintained with respect to the magnitude

of perturbation in the linearized equation (5.20).

The isotropic base state

Before delving into the general case of the anisotropic base state from Equa-

tion (5.17), we first revisit the limit of perfectly rigid rods (β−1 = 0) in the absence of

thermal diffusion (Pe−1 = 0). This isotropic limit, formally reached by letting η → 0

in Equation (5.29), was previously explored by Koch and Shaqfeh [125], Saintillan

et al. [143] and Hoffman and Shaqfeh [145] and will provide us with a reference point

to compare the effects of flexibility and Brownian motion with. In this case, the base

state is simply Ψ0 = (4π)−1, and the dispersion relation (5.29) simplifies to

3N
4πk2

∫

Ω

(p · k)(p · ẑ)

ω0 + λ2(p · k)(p · ẑ)
dp = 1. (5.30)

A numerical solution for ω0(k) was first obtained by Koch and Shaqfeh [125] and

showed that the growth rate is maximum at k = 0 and decays monotonically with in-

creasing wavenumber to reach zero at a critical wavenumber km, defining the marginal

stability limit and indicating the range of unstable wavenumbers. Clearly, setting

ω0 = 0 in Equation (5.30) gives km =
√

3N /λ2. An approximation to ω0(k) in the

limit of small wavenumber can also be obtained by expanding Equation (5.30) with

error O(k4),

3N
4πω0k2

∫

Ω

(p · k)(p · ẑ)

[
1− λ2

ω0

(p · k)(p · ẑ) +
λ2

2

ω2
0

(p · k)2(p · ẑ)2

−λ
3
2

ω3
0

(p · k)3(p · ẑ)3 +O(k4)

]
dp = 1.

(5.31)
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Now, recall that p = (sin θ cosϕ, sin θ sinϕ, cos θ) and that we have assumed a plane

wave perturbation in a direction perpendicular to gravity. In this case, the only

dependence on the azimuthal angle ϕ comes from p · k̂ = sin θ cosϕ. Noting that
∫ 2π

0

(p · k̂)2dϕ = π sin2 θ, (5.32a)

∫ 2π

0

(p · k̂)4dϕ =
3π

4
sin4 θ, (5.32b)

∫ 2π

0

(p · k̂)2m+1dϕ = 0, (5.32c)

for all m ∈ Z, it follows that all terms in odd powers of k are zero in Equation (5.31),

which becomes

ω2
0 = −3Nλ2

4

∫ 1

−1

u2(1− u2) du− 9Nλ3
2k

2

16ω2
0

∫ 1

−1

u4(1− u2)2 du+O(k4), (5.33)

and can be simplified to

ω2
0 = −Nλ2

5
+
Nλ2

2k
2

7
+O(k4). (5.34)

This readily provides the zero-wavenumber growth rate as ω0 = ±iωm = ±i
√
Nλ2/5.

Henceforth, we use k∗ = k/km and σ = ωI/ωm as the scaled wavenumber and scaled

imaginary part of the complex frequency (or growth rate), respectively. We also

restrict our attention to positive solutions for the growth rate as only these drive the

instability. The solution (5.34) for ω0 can be recast with this new scaling as:

σ = 1− 15

14
k∗2 +O(k∗4). (5.35)

The perfectly-aligned base state

Another interesting limiting case is realized when η � 1, corresponding to

a base state where the filaments are perfectly aligned in directions perpendicular to

gravity. We have seen than any amount of flexibility introduces a rotational velocity

that favors such an alignment, so this situation is relevant to the case of negligible

diffusion (Pe → ∞). The limiting base state is then readily shown to be Ψ0(θ) =

δ(θ−π/2)/2π, where δ is the one-dimensional Dirac delta function. Inserting Ψ0 into

Equation (5.26) for F and using the property of the Dirac delta function that

(I − pp) · ẑ · ∇pδ = (I − pp) · ẑ · θ̂ δ′ = − sin θ δ′ (5.36)
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where δ′ = dδ/dθ, we rewrite the dispersion relation (5.29) as

2πk2

N =

∫ 2π

ϕ=0

∫ π

θ=0

k sin3 θ cosϕ δ′(θ − π/2)

ω0 + λ2k sin θ cos θ cosϕ
dθdϕ. (5.37)

The integrals are easily performed after an integration by parts with respect to θ,

allowing us to evaluate the complex frequency as

ω0(k) = ±i

√
Nλ2

2
= ±i

√
5/2ωm, (5.38)

which, surprisingly, is independent of k. In other words, the growth rate in the

perfectly aligned case exceeds the maximum growth rate in the isotropic case by

a factor of
√

5/2 regardless of the value of the wavenumber k. This supports our

initial speculation schematically illustrated in Figure 5.4(b)–(c) that the preferred

base orientation of the fibers towards the horizontal plane due to flexibility reinforces

their tendency to drift horizontally in response to a density wave perturbation, thereby

feeding in to the growth of the instability.

The general anisotropic base state

We now analyze the dispersion relation (5.29) for the general anisotropic base

state found in Equation (5.17), written under the current non-dimensionalization

as Ψ0(θ) = m0 exp [−η cos(2θ)], where we recall that η = APe/4λ3β. The degree of

anisotropy is set by the value of η, and the two limits η → 0 (isotropic base state) and

η → ∞ (perfectly aligned base state) have already been examined. First, we insert

Equation (5.27) into Equation (5.29) and note the following divergence theorem for

a vector field w in orientational space Ω, as derived in Appendix F:
∫

Ω

∇p ·w dp = 2

∫

Ω

p ·w dp. (5.39)

The integrand can then be expanded for k → 0, and once again terms involving odd

powers of k contain odd functions of the azimuthal angle ϕ and do not contribute.

We find

ω2
0

Nλ2

= −
∫

Ω

Ψ0(p · k̂)2
[
1− (p · ẑ)2

] [
1 +

3λ2
2k

2

ω2
0

(p · k̂)2(p · ẑ)2

]
dp+O(k4). (5.40)

Using the change of variables u = p · ẑ = cos θ, the above integrals can be evaluated

analytically. After normalizing the imaginary part of the eigenvalue by ωm and the
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wavenumber by km, we obtain the following expansion for the growth rate in the

long-wave limit:

σ(η) =

√
5

2
J

1/2
1 − 27

√
10

8

J2

J
3/2
1

k∗2 +O(k∗4), (5.41)

where J1(η) and J2(η) denote the following functions:

J1(η) =

∫ 1

−1

e−2ηu2(1− u2)(1− 2u2) du

∫ 1

−1

e−2ηu2 du

=
2η − 3

2
√

2πη3

e−2η

erf(
√

2η)
+

8η2 − 6η + 3

8η2
,

(5.42)

and

J2(η) =

∫ 1

−1

e−2ηu2u2(1− u2)2(1− 2u2) du

∫ 1

−1

e−2ηu2 du

=
8η2 − 10η + 105

32
√

2πη7

e−2η

erf(
√

2η)
+

32η3 − 96η2 + 150η − 105

128η2
.

(5.43)

In the limit of η → 0, we expect to retrieve the results from our discussion

of the isotropic base state. Indeed, we find that J1(0) = 2/5 and J2(0) = 8/315,

which reduces Equation (5.41) to (5.35). On the other hand, the limit of η → ∞
corresponds to the perfectly aligned base state, and here we have J1(∞) = 1 and

J2(∞) = 0 recovering Equation (5.38). The monotonic behavior of J1(η) further

suggests that the maximum growth rate σm(η) = σ(η; k = 0) is bounded between 1

as η → 0 as we expect from the isotropic case and
√

5/2 as η →∞ as predicted earlier

for the perfectly aligned case. The O(k∗2) correction to σ in Equation (5.41) captures

the change in the growth rate as we depart from the long-wave limit. As η → 0,

this correction asymptotes to −15/14 as predicted by Equation (5.35). Further, it

approaches zero for large η, consistent with the prediction of Equation (5.38) that the

growth rate in the perfectly aligned case takes the constant value of
√

5/2 independent

of wavenumber.

The zero-wavenumber growth rate σm = σ(η; k = 0) following (5.41) is plot-

ted in figure 5.5(b) and is overlaid upon the full spectral solution data in figure
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5.3(b), where we see that for β � 1 the effects of Brownian motion and flexibil-

ity occur almost exclusively through their influence on the base state, rather than

through the terms of order Pe−1 and β−1 in (5.25) which were neglected when de-

riving Equation (5.41) above. Therefore, the instability is predominantly affected by

the anisotropy of the base state in this regime. The departure from the above predic-

tion as seen in figure 5.3(b) for large values of η is the result of these terms coming

into play, and this suppressive effect of diffusion and flexibility will be considered in

Section 5.3.4.

The dependence of the zero-growth-rate wavenumber on η may be calculated

by seeking the value of k for which ω0 = 0. For this, we use Equation (5.26) and note

that ∇pΨ0 = −4uηΨ0(I − pp) · ẑ to rewrite the dispersion relation (5.29) as

N
k2

∫

Ω

Ψ(p · k)(p · ẑ)[3 + 4η(1− (p · ẑ)2)]

ω0 + λ2(p · k)(p · ẑ)
dp = 1. (5.44)

Letting ω0 = 0, this simplifies to

k2λ2

N = 3 + 4η

∫ 1

−1

e−2ηu2(1− u2) du

∫ 1

−1

e−2ηu2 du

, (5.45)

where the case of η = 0 yields the value of km obtained previously in the isotropic

case. The integrals can be evaluated, and after scaling by km we express the zero-

growth-rate wavenumber as

k∗m(η) =

[
1 +

4

3

√
η

2π

e−2η

erf(
√

2η)
+

4η − 1

3

]1/2

. (5.46)

The range of unstable wavenumbers is shown in figure 5.5(c), and is found to grow

without bound as
√
η for large η (which, at a fixed value of the Péclet number, corre-

sponds to increasing elastic flexibility of the filament backbones). Of course, we recall

that values of η are limited by the underlying assumptions of the micromechanical

model in Section 5.2.1, which is only valid for relatively stiff filaments (β & 1). An-

other limitation also exists on the value of k−1, which must be much greater that the

particle length: under the present non-dimensionalization, this restricts the validity

of the solution to k∗ .
√
λ2/3N .
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Figure 5.5: Numerical solution of the dispersion relation for various values of η,
showing the effects of base-state anisotropy. The limiting case η = 0 corresponds
to the isotropic base state discussed, whereas η → ∞ corresponds to the perfectly-
aligned base state. Also shown are the zero-wavenumber (maximum) growth rate as
a function of η following Equation (5.41), and the range of unstable wavenumbers as
a function of η following Equation (5.46).

A full solution to the dispersion relation (5.29) for arbitrary k cannot be ob-

tained analytically. However, we solve it numerically using an end-corrected trape-

zoidal quadrature and a secant method to find the roots, and the solution ω0(k) is

shown for different values of η in Figure 5.5(a). In agreement with the previous

analyses, we recover the case of isotropically oriented rigid rods as η → 0, whereas

increasing η causes both the range of unstable wavenumbers and the value of the
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growth rate to increase. In the limit of η → ∞, the solution asymptotes to the

constant value of σ =
√

5/2 for a perfectly aligned suspension.

5.3.4 Direct effect of flexibility and Brownian motion

We now turn our attention to the direct effect of flexibility and Brownian

motion through the terms of order β−1 and Pe−1 in the eigenvalue problem (5.25),

which were previously neglected in the discussion of Section 5.3.3. Hoffman and

Shaqfeh [145] previously analyzed the effect of Brownian motion in the case of rigid

rods, and found that it stabilizes the suspension by randomizing orientations. On

the other hand, flexibility causes reorientation perpendicular to gravity. This reori-

entation competes against alignment by the disturbance flow and is now expected to

suppress the instability. This is indeed observed in the spectral solution presented in

figure 5.6: for a given value of η (i.e., for a given base-state distribution), we found

that increasing flexibility causes a decrease in the maximum growth rate below the

prediction of Equation (5.44) for the base-state effect, as a result of the independent

contribution of the O(β−1) terms in the linearized equation (5.25).

It is useful to remember that for a fixed value of η, specifying either Pe or β

implicitly defines the other. This suggests that the terms capturing the direct effects

of Brownian motion and flexibility in Equation (5.25) can be expressed in terms of

only one parameter when η is given. In the subsequent analysis, we choose to use

Pe−1 as the expansion parameter, though the exact same results could be obtained

with the alternate choice of β−1. Substituting β−1 = (4λ3η/A)Pe−1 into (5.25) lets

us recast the eigenvalue problem as

−i [ω + λ2(p · k)(p · ẑ)] ψ̃ + iF c̃+ Pe−1
[
λ1k

2 + λ2(p · k)2
]
ψ̃

−λ3Pe
−1∇p ·

[
∇pψ̃ − 2ηψ̃ sin 2θ θ̂

]
= 0,

(5.47)

where η is fixed and finite and Pe−1 is assumed to be small. It is worth reiterating

here that we are considering the regime where the effects of Brownian motion and

flexibility are weak and of comparable magnitude, i.e., both Pe and β are large. The
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Figure 5.6: Suppression of the instability due to fiber flexibility for fixed η. The
symbols denote the spectral solutions for: (a) β = 0.1, P e = 103(�); β = 1, P e =
104(4), and β = 10, P e = 105(◦). (b) β = 0.1, P e = 104(�); β = 1, P e = 105(4), and
β = 10, P e = 106(◦). The solid line in each case is the prediction for the effect of the
base state alone, following Equation (5.44). The suppression of the growth rate as β
decreases (i.e., the filaments are made more flexible) is clear.

eigenfunction and eigenvalue can be then expanded as:

ψ̃ = ψ̃0 + Pe−1ψ̃1 +O(Pe−2), (5.48)

ω = ω0 + Pe−1ω1 +O(Pe−2), (5.49)

and substituted into (5.47). The leading-order terms follow Equation (5.28), where

Pe and β only affect the base state through their ratio appearing in Ψ0. The next

order in Pe−1 then gives us

ω0ψ̃1 + ω1ψ̃0 + λ2(p · k)(p · ẑ)ψ̃1 −F c̃1 + i (G −H) = 0, (5.50)

where we have defined

G =
[
λ1k

2 + λ2(p · k)2
]
ψ̃0, (5.51)

H = λ3∇p ·
[
∇pψ̃0 − 2ηψ̃0 sin 2θ θ̂

]
. (5.52)
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This can be rearranged to read

ω0 + λ2(p · k)(p · ẑ)

F ψ̃1 +
ψ̃0

F ω1 − c̃1 + i
G −H
F = 0. (5.53)

A simple expression for the first-order correction ω1 of the complex frequency due

to Brownian motion is then easily obtained after multiplication of (5.53) by ψ̃0 and

integration over the sphere of orientations Ω:

ω1 = −i

∫

Ω

(G −H)ψ̃0

F dp

∫

Ω

ψ̃2
0

F dp

, (5.54)

where we have used Equation (5.28) to cancel the first and third terms in (5.53).

We now proceed to evaluate each term in (5.54) in the long-wave limit. Using

the leading-order Equation (5.47) to substitute for ψ̃0 and taking c̃0 = 1 without loss

of generality, we find that the denominator is

∫

Ω

ψ̃2
0

F dp =

∫

Ω

F
[ω0 + λ2(p · k)(p · ẑ)]2

dp. (5.55)

Following the same procedure as in Section 5.3.3, we expand the right-hand side to

O(k4) and integrate by parts using the divergence theorem (5.39) to obtain:

∫

Ω

ψ̃2
0

F dp = −Nλ2

ω3
0

[
J1(η) +

3

8

(
λ2

ω0

)2

J2(η) k2

]
+O(k4), (5.56)

where J1(η) and J2(η) were previously defined in (5.42)–(5.43). In a similar fashion,

we can evaluate the first part of the numerator as

∫

Ω

Gψ̃0

F dp =

∫

Ω

[λ1k
2 + λ2(p · k)2]F

[ω0 + λ2(p · k)(p · ẑ)]2
dp (5.57)

= −Nλ2

ω3
0

[
λ1K1(η) +

3λ2

4
K2(η)

]
k2 +O(k4), (5.58)

where the two functions K1(η) and K2(η) are given by

K1(η) =

∫ 1

−1

e−2ηu2u2(1− u2)(4η(1− u2) + 3) du

∫ 1

−1

e−2ηu2 du

, (5.59)
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and

K2(η) =

∫ 1

−1

e−2ηu2u2(1− u2)2(4η(1− u2) + 3) du

∫ 1

−1

e−2ηu2 du

. (5.60)

Finally, the second part of the numerator becomes after integration by parts
∫

Ω

Hψ̃0

F dp = −λ3

∫

Ω

[
∇pψ̃0 − 2ηψ̃0 sin 2θ θ̂

]
· ∇p

[
1

ω0 + λ2(p · k)(p · ẑ)

]
dp.

(5.61)

We substitute again for ψ̃0 from the leading-order equation, and integrate an expan-

sion in small k. All calculations done, this yields
∫

Ω

Hψ̃0

F dp =
Nλ2λ3

2ω3
0

[
L1(η) +

(
λ2

ω0

)2

L2(η) k2

]
+O(k4), (5.62)

where L1(η) and L2(η) are defined as

L1(η) =

∫ 1

−1

e−2ηu2
[
−(24η + 12)u2(1− u2) + (4η + 3)(1 + u2)

−4η(u2 + u4) + 32η(1− u2)u4
]

du

/∫ 1

−1

e−2ηu2 du,

(5.63)

and

L2(η) =

∫ 1

−1

e−2ηu2
{
−(156η + 90)u4(1− u2)2

+10(4η + 3)

[
u4(1− u2) +

3

4
u2(1− u2)2

]

−40η

[
(1− u2)u6 +

3

4
(1− u2)2u4

]

+192η(1− u2)2u6
}

du

/∫ 1

−1

e−2ηu2 du.

(5.64)

We now have all the ingredients to estimate the correction to the growth rate.

Substituting (5.56), (5.58) and (5.62) into Equation (5.54), we obtain an approxima-

tion for the correction to the eigenvalue in the limit of low wavenumbers:

ω1 = −i
λ3

2

L1

J1

− ik2

[
−λ2λ3

N
L2

J2
1

+
λ1K1

J1

+
3λ2

4

K2

J1

+
3λ2λ3

8N
L1J2

J3
1

]
+O(k4). (5.65)

The stabilizing effect of Brownian motion is best illustrated in the long-wavelength

limit. At k = 0, the growth rate is given by

σPem (Pe; η) = σm −
λ3

2ωm

L1

J1

Pe−1 +O(Pe−2), (5.66)
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Figure 5.7: Suppression of the growth rate due to Brownian motion. The solid
line shows the leading-order correction to the maximum growth rate as obtained in
(5.66). The symbols are spectral solutions of the full eigenvalue problem obtained
using spherical harmonics, all for β = 106.

where we have again normalized with respect to the isotropic rigid rod limit of ωm.

The subscript m indicates that this is the maximum growth rate reached in the

long-wave limit, and σm is the base-state effect following (5.41) evaluated at k = 0.

Equation (5.66) captures the leading correction to the growth rate due to thermal

diffusion, and is compared to the spherical harmonics solution to the full eigenvalue

problem in Figure 5.7. As expected, Brownian motion leads to the randomization

of individual particle orientations and hence stabilizes the suspension. A similar

conclusion was reached by Hoffman and Shaqfeh [145] who considered the effect of

Brownian motion on a suspension of polarizable rods placed in an electric field and

also derived an expression similar to (5.41) in the simpler case of an isotropic base

state.

As we explained earlier, Pe and β are interchangeable for a given value of η
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up to a constant factor depending on particle shape. Within the framework of the

asymptotic expansion above, it is therefore possible to rewrite (5.66) in terms of β as

σβm(β; η) = σm −
A

8ωmη

L1

J1

β−1 +O(β−2), (5.67)

providing the leading effect of flexibility on the growth rate. This expression is shown

to compare excellently with the numerical solution to the full eigenvalue problem in

Figure 5.8. Once again, it should be kept in mind that the asymptotic expansion is

valid for β & 1, and Equation (5.67) does an excellent job of predicting the behavior as

the direct effect of flexibility becomes significant. The dual effect of flexibility is now

obvious. On the one hand, we saw in Section 5.3.3 that it creates a base state that

is more prone to instability, and this effect is the dominant one for stiff filaments.

On the other hand, at the next order flexibility causes alignment of the filaments

perpendicular to gravity in a way that hinders their rotation in the disturbance flow

and therefore suppresses the growth rate. In the limit of large η, L1/J1 asymptotes

to 4η. This means that the correction due to flexibility in (5.67) above goes like

β−1 as flexibility becomes more important. The suppression of the growth rate as

seen in Figure 5.8 then becomes independent of η for sufficiently small values of β,

which explains the collapse of all the curves corresponding to different values of Pe

onto a single one. Finally, recall that the expansion is still first order in Pe−1, and

this means that the prediction becomes less accurate as rotational diffusion becomes

stronger as was observed in Figure 5.7. The same is the case again in Figure 5.8

where the spectral solution departs slightly from the prediction for the smallest value

of Péclet number shown.

5.3.5 Effect of flexibility in the perfectly-aligned state

Finally, we also analyze the effect of flexibility in the perfectly-aligned state

(absent Brownian motion), with the base orientation distribution given by Ψ0 =

δ(θ − π/2)/2π corresponding to fibers aligned perpendicular to gravity. As seen in

Equation (5.67) by letting η → ∞, the direct effect of flexibility at first order is to

reduce the zero-wavenumber growth rate by the value A/(2ωmβ). However, thanks

to the special form of the base-state distribution in this case, we show here that we

are in fact able to find the exact dispersion relation analytically for all permissible
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Figure 5.8: Suppression of the growth rate due to fiber flexibility. The solid line
shows the leading-order correction to the maximum growth rate as obtained in Equa-
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values of k and β. Two identities for the Dirac delta function δ(θ − π/2) are useful

in the derivation below:

h(θ)δ′ = −h′(π/2)δ + h(π/2)δ′, (5.68)

h(θ)δ′′ = h′′(π/2)δ − 2h′(π/2)δ′ + h(π/2)δ′′. (5.69)

Inserting the expression for Ψ0 into Equation (5.27) for F yields

F = −N
k2
∇p · [Ψ0(p · k)(I − pp) · ẑ] =

N
2πk

cosϕ δ′. (5.70)

Upon inspection of the dispersion relation (5.25) in the limit of Pe→∞,

{
−iω − ik · (λ1I + λ2pp) · ẑ + Aβ−1(3 cos2 θ − 1)

}
ψ̃ +

A

2β
sin 2θ

∂ψ̃

∂θ
+ iF c̃ = 0,

(5.71)



132

we are led to consider the ansatz ψ̃ = f1(ϕ)δ(θ − π/2) + f2(ϕ)δ′(θ − π/2), so that

(5.71) then reduces to

−(iω + Aβ−1)(f1δ + f2δ
′)− iλ2k cosϕf2δ +

A

2β
(2f1δ + 4f2δ

′) + i
N

2πk
cosϕ c̃ δ′ = 0.

(5.72)

Expressions for f1 and f2 are determined without difficulty, and the eigenvalue prob-

lem is thus solved exactly. With the normalization requirement
∫
Ω
ψ̃ dp = c̃, the

exact formulae for the dispersion relation and the growth rate σ = ωI/ωm are given

by

ω = − iA

2β
± i

√
A2

4β2
+
λ2N

2
, (5.73)

σ = − A

2ωmβ
±
√

A2

4ω2
mβ

2
+

5

2
· (5.74)

The O(β−1) correction to the zero-wavenumber growth rate is −A/(2ωmβ), which

agrees with the limit of η → ∞ in (5.67). From this more complete expression, we

see that the dispersion relation is independent of the wavelength of the horizontal

perturbation in the perfectly aligned state as previously found in Section 5.3.3 in the

analysis of the effect of the base state.

Using the same approach, we can also obtain the dispersion relation for a more

general initial perturbation with arbitrary wave direction k̂ = (sinα, 0, cosα) and find

that

ω = −λ1k cosα− iA

2β
± i

√
A2

4β2
+
λ2N sin4 α

2
. (5.75)

For a perturbation wave vector parallel to gravity (α = 0), Equation (5.75) shows

that ω is real, so the initial response of the suspension is a propagating density wave.

Physically, the perturbation takes the form of regions of higher and lower fiber density

layered in the direction of gravity, which travel vertically due to sedimentation. In-

stability only occurs when α 6= 0, and in agreement with Koch and Shaqfeh [125] we

find that the maximum growth rate is achieved for a horizontal wave (α = π/2).

Equation (5.75) also shows that the growth rate is wavelength-independent even

for non-horizontal perturbations, and perturbations of all wavelengths are therefore

equally unstable in this case. To understand this curious result, we first note that
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the shear flow velocity set up by the initial perturbation scales as ∇xud ∼ 1/k. For

small departures of fiber orientations from π/2, Jeffery’s equation (5.5) then gives

ṗ ∼ 1/k. Then, since the horizontal translational velocity of the fibers due to their

rotation in the flow scales approximately as u1 ∼ 1/(kω), the conservation of particles

∂tc1 ∼ ∂x(c0u1) results in ω ∼ 1/ω, indicating a growth rate independent of k. In

other words, the larger sedimentation speed of particles in the more concentrated re-

gions for higher-wavenumber perturbations balances the decreasing number of nearby

fibers that are migrating into these regions.

5.4 Conclusion

We have investigated the effects of flexibility on the stability of a suspension of

sedimenting fibers. Specifically, we considered the dynamics of weakly-flexible fibers,

characterised by large elasto-gravitation numbers, which are resistant to large defor-

mations during the sedimentation process. In particular, we exploited two facts that

are known about the sedimentation of isolated flexible filaments [4]: to leading order

in the inverse elasto-gravitation number, a fiber translates with the same velocity as

if it were a rigid rod and maintains a nearly straight shape as it sediments. We were

therefore able to treat the suspension as one composed of rigid rods with the added

ingredient of individual fiber reorientation during sedimentation.

We developed a mean-field model much akin to the one first described by

Koch and Shaqfeh [125], in which the probability density function describing the

filament positions and orientations evolves according to a Smoluchowski equation. We

first derived the statistical base state in the undisturbed and spatially homogeneous

situation and found that it is in general anisotropic in the fiber orientation. In

terms of a new variable η which is a scaled ratio of the Péclet number to the elasto-

gravitation number, the base state describes in one limit the isotropic distribution

of rigid rods (η = 0), and in the other the perfectly-aligned distribution that results

when the suspension is athermal (η →∞). Speculating based on the mechanism that

leads to an instability in the case of a suspension of rigid rods, we surmised that an

anisotropic suspension composed of fibers oriented perpendicular to gravity would be

more unstable to concentration fluctuations, owing to the fact that individual particles
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are more likely to be reoriented by the disturbance flow in a way that enhances

the instability. This speculation was confirmed when we perturbed the governing

equation about the base state and performed a linear stability analysis. The resulting

eigenvalue problem is defined on the sphere of orientations, and admits a spectral

solution on the basis of spherical harmonics. A numerical solution did indeed show

that the system not only has a larger growth rate with increasing fiber flexibility, but

also renders more wavenumbers unstable.

We then proceeded to examine separately the contributions of the anisotropic

base state and of the direct effect of flexibility (or Brownian motion, which may be

interpreted alternatively through the variable η). Expanding the eigenvalue problem

in an asymptotic series in β−1 and Pe−1, we first saw that the base state is almost

entirely responsible for the enhancement of the instability, unless flexibility-induced

reorientation is very strong. We showed that the growth rate increases monotonically

with the variable η, continuously interpolating between the previously known value

in the case of a suspension of isotropically distributed rigid rods to the limit of a

perfectly aligned suspension where the growth rate is a factor of
√

5/2 faster. The

range of unstable wavenumbers, too, was shown to grow with increasing values of η,

and the window of instability in fact expands indefinitely as the suspension becomes

more anisotropic.

Next, we derived the correction to the growth rate due to the terms of order

β−1 and Pe−1, thereby capturing the direct effect of flexibility and rotational diffu-

sion, which would be present even if not for the anisotropic base-state distribution.

Since β and Pe are related through the variable η, flexible reorientation and rotational

diffusion could both be studied simultaneously, and both effects were found to stabi-

lize the suspension. These results confirmed intuition, as reorientation towards the

direction perpendicular to gravity competes against rotation in the disturbance flow:

this has the effect of preventing particles from migrating into already dense clusters

and thereby suppresses the growth of the instability. Similarly, increased thermal

motion randomizes fiber orientations and disrupts the mechanism that would entrain

more particles into regions of higher concentration.

The results of this work are summarized in a phase diagram in Figure 5.9.

The phase boundaries are only to guide the eye, and the transitions are by no means
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Figure 5.9: A phase diagram summarizing the effects of flexibility and Brownian
motion on the stability of a suspension. The dotted lines denote the η co-ordinate,
and solid lines are contours of the maximum growth rate σm at the indicated values.
The dashed lines are meant to divide the phase space qualitatively into regions labeled
(A)–(E): (A) Negligible diffusion and fiber flexibility, and a near-isotropic orientation
distribution in the base state; the dynamics are indistinguishable from the case of
a rigid rod suspension. (B) Negligible direct effect of diffusion and fiber flexibility,
although the base state is rendered anisotropic and a self-similar enhancement of the
instability is seen. (C) Stabilization due to the direct effect of fiber-flexibility-induced
reorientation. (D) Stabilization due to the direct effect of rotational diffusion. (E)
Combined non-trivial effects of flexibility and Brownian motion.

sharp. The axes cover the range of β and Pe discussed here, as well as the pertinent

range of the variable η. Contour lines of the maximum (zero-wavenumber) growth

rate trace out regions where the growth rate is predicted to be negative, positive or

greater than unity (which, under our normalization, is the case of a suspension of

rigid rods). The entire phase-space can be qualitatively divided into regions where

one effect or the other becomes predominant. Here, (A) corresponds to the case of
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a base state that is nearly isotropic, and the independent effects of fiber flexibility

and thermal fluctuations are negligible. We dealt with this in Section 5.3.3 and saw

that σm = 1 in this regime, and in Figure 5.9 we concede a departure of ±0.01 from

unity to define this regime. Regime (B) is encountered as one departs from (A) along

the η-coordinate, and we saw in Section 5.3.3 that this corresponds to the self-similar

enhancement of the rigid rod instability, solely due to the anisotropy of the base-state

distribution. Particles preferentially align perpendicular to gravity, which increases

their chance of migrating into dense regions as a result of hydrodynamic interactions,

thereby enhancing the instability. Here again, the independent effects of flexibility

and Brownian motion are negligible. Increasing the fiber flexibility takes us to (C)

where the independent effect of flexibility was shown in Section 5.3.4 to be stabilizing.

The propensity of individual particles to reorient perpendicular to gravity during

sedimentation hinders their horizontal migration and thus stabilizes the suspension.

(D) depicts the regime where randomization due to thermal fluctuations suppresses

the growth rate, which we named the direct effect of Brownian motion and analyzed

quantitatively in Section 5.3.4. Finally, regime (E) is where the independent effects

of both fiber flexibility and diffusion are significant and the observed stabilization

cannot be individually attributed to either mechanism alone. Further, there are more

regimes that can be identified and that are not shown in Figure 5.9 for the sake of

simplicity. For instance, near the border between (B) and (D) lies a region where the

anisotropic base state enhances the instability but Brownian motion suppresses it.

We have assumed throughout that the base state has already been established,

and restricted our attention to the linear stability of perturbations with respect to such

an orientation distribution. In a well-stirred suspension, particles can be assumed to

be isotropically oriented and it remains to be seen how the time over which such a base

state is achieved compares with the growth rate of disturbances in an isotropically

oriented suspension. Quantitatively, this is decided by the solution to an advection-

diffusion equation in orientation space. Qualitatively, assuming weak diffusion, the

base state is established on a timescale |ṗs|−1 ∼ 2β/A. Balancing this with the

timescale ω−1
m associated with the instability in an isotropic suspension, we find the

condition N . A2/λ2β
2 on the effective volume fraction of particles. This essentially

states that the concentration has to be sufficiently low for hydrodynamic interactions
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not to hinder the establishment of the base state. The condition points to a very

dilute suspension, which may require a very large container for the instability to be

observed. Nevertheless, in a hypothetical infinite suspension, the instability does

exist regardless of dilution since the maximum growth rate is achieved in the limit

of k → 0. Furthermore, the suppression of the instability due to individual particle

reorientation (direct effect of flexibility) is independent of the base-state distribution,

and this effect can be relevant even in nearly isotropic suspensions.

In this work we have neglected the effect of the disturbance field on the shape

of each fiber: strong interactions could potentially deform individual fibers from the

assumed straight orientation, and change the settling dynamics. However, such de-

tailed internal dynamics are not straightforward to describe in a mean-field kinetic

model such as the one we have developed. Furthermore, it would seem to be a fair

assumption that the diluteness of the suspension prevents particles from imposing

strong disturbance fields upon one another. The same rationale applies to neglect-

ing excluded volume effects and steric interactions between fibers. Particle inertia,

which we have neglected here as well, has been shown to eliminate growth at zero

wavenumber [146] and could be relevant in rationalizing the formation of finite-sized

vertical structures seen in experiments [138]. Particle simulations could hold the key

to revealing microstructural changes and detailed internal dynamics in dilute as well

as concentrated suspensions, and test the validity of our predictions as other physical

effects become relevant. Chapter 6 which follows is the first step in that direction.

Further, while we have considered an infinite domain for analytical convenience, sim-

ulations could also lead the way in describing the effects of walls, which are known to

become vital in real systems [78, 80, 143]. As a closing statement, we note that the

stronger instability associated with the anisotropic base state described here is not

necessarily exclusive to flexible fibers, and the approach used here can in principle

apply to any suspension wherein a physical mechanism exists that causes orientable

particles to align perpendicular to the direction of forcing.

Chapter 5 is based largely on material that has appeared in Journal of Fluid

Mechanics (2014), authored by Harishankar Manikantan, Lei Li, Saverio E. Spagnolie,

and David Saintillan [5].



Chapter 6

Sedimenting suspensions of weakly

flexible fibers: Simulations

6.1 Introduction

In the last chapter, we applied our knowledge of single filament dynamics to

study the stability of a suspension of weakly flexible fibers using a continuum method

[5]. We followed the linear stability analysis first proposed by Koch and Shaqfeh

[125] with the added ingredient of flexibility-induced reorientation. In the case of a

suspension of perfectly rigid rods, the base-state distribution is uniform in space and

isotropic in orientation. The effect of a spatial fluctuation in number density is to

set up a vertical disturbance flow that is downward in areas of higher particle density

and upward outside. This vertical shear field causes particles to rotate in such a way

as to enable their orientation-dependent settling velocity to draw them into regions

of already higher density, thus enhancing concentration fluctuations. Adapting this

study to the case of weakly flexible fibers revealed two opposing effects of fiber flexi-

bility. First, in the absence of fluctuations, the balance between rotational diffusion

and reorientation due to flexibility gives rise to an anisotropic orientation distribution

in the base state. Introducing a gravitational Péclet number Pe = FGL/kBT , and

defining η = APe/48(c− 1)β, this base-state distribution was found to be

Ψ0(θ) = m0 exp[−2η cos2 θ], (6.1)

138
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where m0 is a normalization constant. We saw that η plays the role of an anisotropy

parameter. The limit of η → 0 renders the base state isotropic, while large values of

η correspond to increasingly anisotropic distributions with a preferential alignment

perpendicular to gravity – a direct consequence of flexibility-induced reorientation.

Perturbing about this configuration and following through the linear stability analysis

in the continuum approach, this base-state anisotropy was shown to be the prime

factor responsible for an enhanced instability as long β & 1. The mechanism suggested

was straightforward: a nearly horizontal alignment of fibers made it more likely for

each to be reoriented by the disturbance fields of the others in a way as to be drawn

towards regions of already higher number density. The second and opposite effect

of flexibility becomes stronger as the fibers become less rigid, specifically as β . 1,

when the effect of the reorientation of individual particles due to flexibility becomes

comparable to that due to the disturbance field. Recall that, in dimensional form,

the rate of reorientation is:

∂θ

∂t
=

FG
8πµL2

A

2β
sin(2θ), (6.2)

where θ is the instantaneous angle the fiber makes with the direction of gravity. Note

that all orientations but those parallel or perpendicular to gravity feel this rotational

velocity, causing an isolated fiber to rotate towards a terminal horizontal configura-

tion. The fluid has viscosity µ, and A = 3(c− 7/2)/80. Strong horizontal alignment

then tends to hinder horizontal drift and therefore the very mechanism of growth

of fluctuations. On approaching the problem asymptotically, we indeed showed that

the growth rate has a O(β−1) negative correction due to this ‘independent’ effect of

flexibility, contrasting it with the effect of the base state that hinges on the relative

magnitude of flexibility and rotational diffusion through the parameter η.

These theoretical results were derived from a continuum approach where the

fibers were abstracted as point forces with a director that determined their transla-

tional and rotational velocities. While this simplified model was analytically tractable

and extremely insightful into the short-time growth of fluctuations, we draw in the

present chapter a more detailed picture using discrete particle simulations. Not only

do we show the validity of the continuum theory, but we also go on to elucidate the

microstructural changes that the particle simulation affords us, which will in turn
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reveal the mechanisms involved in the enhancement or suppression of the instability.

Here, again, we exploit the approximations that weak flexibility grants us – namely

that each fiber can be approximated to leading-order as a rigid rod, with the effect

of flexibility entering solely through the rotational velocity in Equation (6.2). This

allows us to use efficient and fast methods that have been previously developed for

simulating suspensions of rigid rods [139, 141].

The chapter is organized as follows. In Section 6.2, we describe the slender-

body model used to describe the dynamics of each fiber and its hydrodynamic in-

teraction with every other fiber in the suspension. The numerical method used to

integrate the configuration of the fibers in time in the presence of Brownian motion

is also described there. Results from simulations are presented in Section 6.3 where

we systematically analyze the changes in number density fluctuations and migration

of particles, which reveals the mechanism of the instability. We also make use of

our simulation method to consider the evolution of a well-stirred isotropic suspension

of weakly flexible particles, which was outside the purview of the linear continuum

theory.

6.2 Slender-body model and numerical method

As previously discussed, the deflection of a fiber from a nearly straightened

state is small when it is weakly flexible (β � 1), and we exploit this fact to model

each fiber as a rigid rod with the effect of flexibility entering only through flexibility-

induced reorientation. We consider a periodic collection of N fibers, where each fiber

indexed by α is described entirely by the position of its center xα and a director pα,

which is the tangent to the filament at its center. We shall assume zero Reynolds

number flow, without any particle inertia. In a dilute suspension of such particles, the

leading-order effect of each particle on every other is that due to a net force on the

fluid (Stokeslet) equal to its weight corrected for buoyancy and acting at the particle

center. Within these approximations, it is implicit that we do not take into account

the effect of the disturbance field of one fiber on the shape of another – the suspension

will be assumed to be sufficiently dilute to render such effects negligible.

We use slender-body theory for Stokes flow to model the dynamics of each fiber.
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To non-dimensionalize the equations, we choose as characteristic scales the length

of each filament L, the sedimentation timescale 8πµL2/FG, and the gravitational

force on a fiber FG. We shall be primarily concerned with cases where Brownian

motion is weak, hence the choice of fiber weight as the characteristic scale for force.

Parametrized along its length by sα ∈ [−1/2, 1/2], each fiber then follows the local

slender-body equation [56]:

ẋα + sṗα − u∞α (xα + sαpα)− sṗsα(pα) = (λ1I + λ2pαpα) · fα(xα + sαpα). (6.3)

Here, u∞α is the external velocity felt by fiber α, which in the present case is the

disturbance field generated by the forces exerted on the fluid by all other fibers in

the suspension as well as their periodic images, and ṗsα is the flexibility-induced

reorientation velocity that depends on the instantaneous orientation of fiber α as

described by Equation (6.2). This can be interpreted as an external rotational velocity

imposed on each rod that captures the leading order effect of elastohydrodynamic

interactions. Written this way, Equation (6.3) is accurate to O(β−2). fα is the force

distribution along the length of the fiber, and λ1 = c + 1 and λ2 = c − 3 are the

anisotropic mobility coefficients for a slender rod.

The force distribution fα(sα) on each fiber has contributions coming from

both gravity and Brownian fluctuations in the solvent. Following previous works

[139, 141, 162], this distribution is approximated by a truncated Legendre polynomial

expansion:

fα(xα + sαpα) = F (0)
α + 12sαF

(1)
α +O(s2

α), (6.4)

where F
(n)
α is the n-th moment of the force distribution over the length of the fiber and

where only the first two moments are retained. The zeroth moment has contributions

from both gravity and Brownian forces: F
(0)
α = −ẑ + F

(0)
α,B. For the purpose of the

simulation algorithm that we describe below, it is convenient to write the first moment

as a sum of parts along and orthogonal to the director:

F (1)
α = Sαpα + (I − pαpα) · F (1)

α . (6.5)

This, respectively, captures the effects of a scalar stresslet Sα = pα · F (1)
α acting

to ‘stretch’ the fiber along its director, and of a torque that reorients the fiber. It

is worth noting here that a net torque can only result from Brownian fluctuations;
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neither gravity nor its interaction with flexibility contributes to a torque over the

entire body. Inverting the single-fiber equation (6.3) above enables us to express the

scalar stresslet as

Sα = − 1

λ1 + λ2

∫ 1/2

−1/2

sαpα · u∞α dsα. (6.6)

The motion of each fiber and its periodic images affects every other fiber due

to long-ranged hydrodynamic interactions. This enters the dynamics of fiber α via

the disturbance field u∞α , which is given by

u∞α (xα + sαpα) =
N∑

γ=1

∫ 1/2

−1/2

G̃(xα + sαpα,xγ + sγpγ) · fγ(xγ + sγpγ) dsγ. (6.7)

Here, G̃αγ ≡ G̃(xα + sαpα,xγ + sγpγ) is the periodic Green’s function for Stokes flow,

with the direct Stokeslet contribution removed when α = γ.

We now have all the ingredients needed to derive evolution equations for the

position and orientation of each fiber. Calculating the zeroth and first moments of

Equation (6.3) yields after manipulations

ẋα = ẋsα +
N∑

γ=1

[
Q(0)
αγ · F (0)

γ + 12Q(1)
αγ · (I − pγpγ) · F (1)

γ + 12qαγSγ
]
, (6.8)

and

ṗα = ṗsα + 12(I − pαpα) ·
N∑

γ=1

[
R(0)
αγ · F (0)

γ + 12R(1)
αγ · (I − pγpγ) · F (1)

γ + 12rαγSγ
]
.

(6.9)

Here, ẋsα and ṗsα denote the linear and angular velocities of an isolated fiber under

the effect of gravity and of Brownian fluctuations:

u̇sα = (λ1I + λ2pαpα) · F (0)
α , (6.10)

ṗsα = 12λ1(I − pαpα) · F (1)
α +

A

2β
sin(2θα)θ̂α. (6.11)

Hydrodynamic interactions between fibers are captured by the sums on the right-

hand sides of Eqs. (6.8)–(6.9), where Q
(n)
αγ , R

(n)
αγ , qαγ and rαγ are double integrals over

pairs of fibers as described below, the former two being second-order tensors and the
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latter two vectors:

Q(n)
αγ =

∫∫
snγ G̃αγ dsα dsγ, (6.12a)

R(n)
αγ =

∫∫
sα s

n
γ G̃αγ dsα dsγ, (6.12b)

qαγ =

∫∫
sγ G̃αγ · pγ dsα dsγ, (6.12c)

rαγ =

∫∫
sαsγ G̃αγ · pγ dsα dsγ. (6.12d)

Lastly, we note that the stresslets on each fiber remain unknown. They are coupled

through Equation (6.6), which, when written out, yields the linear system:

(λ1 + λ2)Sα + 12 pα ·
N∑

γ=1

[rαγ Sγ] = −pα ·
N∑

γ=1

[
R(0)
αγ · F (0)

γ +R(1)
αγ · (I − pγpγ) · F (1)

γ

]
.

(6.13)

Advancing the configuration of the particles in the suspension involves inte-

grating Equations (6.8)–(6.9) in time. To this end, we need to evaluate the integral

operators in Equation (6.12) as well as determine the yet unknown stresslets act-

ing on each fiber. Solving Equation (6.13) for the stresslets, in turn, also requires

knowledge of the integral operators. Each of the integrals in Equation (6.12) involves

a three-dimensional summation of periodic Stokeslets that decay as ∼ 1/r, which

in general diverges if performed directly. Furthermore, these integrals are pairwise

operators over a system of N fibers and, if calculated naively, require O(N2) oper-

ations, which can be computationally prohibitive in large systems. Here, we choose

to use the Smooth Particle-Mesh Ewald (SPME) algorithm [141] to perform these

operations. The algorithm relies on an Ewald summation technique to resolve the

divergence of the periodic sum by decomposing it into convergent real and Fourier

parts, and then applies fast Fourier transforms to accelerate the evaluation of the

Fourier part. The reader is directed to Saintillan et al. [141] for more details, and

we shall only mention here that SPME reduces the cost of each such operation to

approximately O(N logN).

The stresslet equation Equation (6.13), which is an N × N linear system as

mentioned above, forbids the use of conventional inversion techniques such as LU

decomposition when SPME is used to evaluate the integrals. Indeed, the SPME algo-

rithm forgoes the direct calculation of the entries of the matrix, but rather provides
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an efficient and accurate ‘black box’ to perform matrix-vector products. This hints

at using an iterative method for the system inversion, and a convenient choice is the

Generalized Minimal Residual (GMRES) method [163]. At each iteration, GMRES

delegates the matrix-vector product to an external routine, which in our case can be

set to the SPME algorithm, and in this way the stresslets can be determined efficiently

with the same order of computational cost as SPME.

The last ingredient that is needed to complete the formulation is a description

of Brownian forces. The persistence length (`p = κ/kBT ) of the fibers, which measures

its elastic rigidity to thermal fluctuations, can be alternatively expressed as

`p
L

=
κ

kBTL
=

κ

FGL2
× FgL

kBT
= β × Pe. (6.14)

In other words, as long as the product of the elasto-gravitation number and Péclet

number is sufficiently large, which is the regime we shall work with here, we can

safely ignore filament distortions due to thermal fluctuations. Therefore, consistent

with the formulation above, we need only the first two moments of the Brownian

force distribution on each fiber, which in turn affect its translational and rotational

motion. These depend on the instantaneous configuration of the suspension through

the fluctuation-dissipation theorem, and thus require knowledge of the grand mobility

tensor. To describe the Brownian forces, we make use of a shorthand notation and

formally rewrite the evolution equations Equations (6.8)–(6.9) as:

(
U̇
Ṗ

)
=M ·

(
F (0)

F (1)

)
, (6.15)

where the left-hand side consists of a concatenation of the generalized 3N transla-

tional and rotational velocities U̇ and Ṗ . M is the 6N × 6N grand mobility tensor

corresponding to this problem, which incorporates all the dynamics, local and non-

local, occurring as a result of the forces acting on the fibers; and F (n) is a 3N vector

that is the concatenation of the n-th moment of forces on each of the fibers. Note

that the contribution from the stresslets Sα is implicit in M. This notation is espe-

cially convenient in specifying the moments of the Brownian forces FB following the
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fluctuation-dissipation theorem:

〈(
F (0)
B

F (1)
B

)
(t)

〉
= 0, (6.16)

〈(
F (0)
B

F (1)
B

)
(t)⊗

(
F (0)
B F

(1)
B

)
(t′)

〉
= 2δ(t− t′)M−1. (6.17)

For the purpose of numerical evaluation, we model the generalized Brownian force

vector acting during one time step ∆t as

(
F (0)
B

F (1)
B

)
≈
√

2

∆t
B ·w, (6.18)

where w is a 6N vector containing a Gaussian variate distribution with zero mean

and unit variance, and B is an approximation to the square root of the inverse of the

grand mobility tensor, B · BT =M−1.

Finding B is not a straightforward exercise, again because the coefficients of the

grand mobility matrix are not known explicitly. In previous works [61, 145, 164, 165],

this problem was overcome by using a spectral approximation to the matrix square

root, and by expressing B in terms of a polynomial expansion involving the grand mo-

bility matrix, the action of which on any vector can then be performed using SPME.

In the same spirit, we resort here to a simpler approximation that exploits the di-

luteness of the suspension: specifically, we decompose the grand mobility matrix into

a dominant contribution from the independent and local viscous drag on each fiber

and a weaker contribution due to far-field hydrodynamic interactions. To illustrate

this approximation, it is convenient to abstract the 6N × 6N matrix M as a N ×N
matrix M, each element Mij of which is a 6 × 6 sub-matrix describing the hydrody-

namic coupling between fibers i and j. Formally, we can then decompose the matrix

into a sum of local and non-local parts:

M = L+ εH, (6.19)

where ε � 1 because, in a dilute suspension, the contribution from hydrodynamic

interactions is small compared to the local effect due to viscous drag. Here, L has

only diagonal entries, each of which represents the known 6× 6 local mobility tensor



146

of individual fibers, while H contains the off-diagonal components accounting for

interactions. To proceed, we seek an approximation to the inverse of M of the form

M−1 = A + εK. Using the fact that M ·M−1 = I and retaining only terms up to

order ε, it is straightforward to see that A = L−1 and K = −L−1 ·H · L−1. Finding

the square root is then a similar exercise, where we seek a matrix B = N + εJ which

satisfies B ·BT = M−1. We easily find that N = L−1/2 and J = −1/2 L−1/2 ·H ·L−1.

Now, recall that each diagonal entry of L is not a scalar but a local 6 × 6

mobility matrix corresponding to a given fiber. This matrix is known explicitly using

Equations (6.10)–(6.11) and can be inverted analytically. The final form of the inverse

square root as used in the matrix-vector operation in Equation (6.18) above is then

B ·w ≈ L−1/2 ·w − 1

2
L−1/2 ·H · (L−1 ·w), (6.20)

where we have omitted the ε in the second term. Using Equation (6.20), the evaluation

of the generalized force vector FB now only requires local operations (of powers of

the matrix L) as well as a small number of calls to the SPME routine (to evaluate

the action of the matrix H). Finally, we use the second-order midpoint algorithm of

Fixman [166] and Grassia et al. [167] for time integration of Equations (6.8)–(6.9),

which accurately treats the drift term [145, 165] known to arise in Brownian dynamics

simulations of systems with configuration-dependent mobilities.

6.3 Results and discussion

Our main motivation for this study is the verification of the predictions of

the continuum model [5] we described in Chapter 5, and so we reiterate here the

main results of the linear stability analysis following that model. Flexibility-induced

reorientation has two conflicting effects on suspension stability. First, the base-state

distribution in a suspension of flexible fibers is anisotropic with a preferential align-

ment perpendicular to gravity following Equation (6.1). This base state renders the

suspension more unstable to number density fluctuations as compared to an isotropic

suspension. The central mechanism behind the growth of fluctuations requires parti-

cles to be reoriented by the disturbance flow in a way that causes them to be drawn

into regions of higher concentration. This mechanism, however, can also be hindered
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by the second effect wherein flexibility-induced reorientation, if sufficiently strong,

acts to keep particles aligned perpendicular to gravity. As previously mentioned, this

effect enters at O(β−1). The relative magnitude of this reorientation with respect to

rotational diffusion as well as hydrodynamic disturbances decides which effect domi-

nates.

In order to verify the predictions of the theory using particle simulations, we

set as the initial condition a homogeneous distribution in space, with an orientation

distribution Ψ(θ) that depends on the values of the Péclet and elasto-gravitation

numbers according to Equation (6.1). In this way, we have a discrete analogue of the

continuum problem and can perform direct comparisons. However, we shall also look

for completeness at the evolution of a well-stirred suspension, which is expected to

have an isotropic orientation distribution regardless of Pe and β – this initial condi-

tion, which is perhaps the most relevant to experiments and is addressed in Sec. 6.3.3,

is not a steady base state in the continuum model and is therefore not easily addressed

by a stability analysis. For the sake of illustration, we select four representative cases

to parametrically study the effects of flexibility and thermal fluctuations. These cases

are summarized in Figure 6.1, and we shall refer to them as cases A through D from

here on. They were chosen to compare and contrast the destabilizing effect of the

base state, the suppression due to flexibility-induced reorientation, and the random-

izing effect of Brownian motion. Of course, the linear stability results only describe

the evolution of the suspension at short times and for small perturbations away from

the base state; we shall accordingly only compare the short-time statistics to the

mean-field predictions.

β Pe Description
case A 106 106 Benchmark case: negligible effects of flexibility or Brow-

nian motion
case B 10 106 Anisotropic base state with weak flexibility-induced reori-

entation
case C 0.01 106 Anisotropic base state with strong flexibility-induced re-

orientation
case D 106 100 Strong thermal fluctuations

Figure 6.1: The four representative cases used in the simulations to compare and
contrast the different regimes of instability.
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Case A

Case B

Case C

t = 0.00 t = 0.50 t = 1.00

Figure 6.2: Snapshots from simulations of 500 fibers in a 3-D periodic box of size
20 × 5 × 10 particles lengths. Gravity acts in the direction indicated by the arrows.
A larger number density of nL3 = 0.5 is used here to better visualize the formation
of particle clusters. Case A is the benchmark case of an isotropic suspension of
rigid rods. Cases B and C depict the effect of flexibility, the former being when
the anisotropic base state dominates and enhances the instability, while the latter is
when the rate of reorientation dominates and impedes particle clustering. The initial
spatial distribution is homogeneous and identical at t = 0; the orientations, however,
follow the appropriate distribution of Equation (6.1).

All the simulations discussed here were performed in a periodic box of dimen-

sions Lx × Ly × Lz = 20 × 5 × 10, with gravity pointing downwards in the third

dimension. Unless otherwise specified, the data below are ensemble averaged over 16

simulations each of 200 fibers in a periodic box, corresponding to an effective volume

fraction of nL3 = 0.2. Snapshots from a set of simulations are shown in Figure 6.2,

where the growth of density fluctuations in the different cases described above can be

assessed.
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6.3.1 Number density fluctuations

The growth of number density fluctuations is a very clear feature of unstable

particle suspensions. It has been observed in previous experiments as well as simu-

lations that rigid rods tend to cluster into vertical ‘streamers’ that sediment much

faster than the average settling speed and are surrounded by clarified regions with

a preferential alignment in the direction of gravity. Recall that case A corresponds

exactly to this well-studied situation, and many of these features are indeed visible

in Figure 6.2.

In order to systematically quantify the spatial non-uniformity of the particles in

the system, we define a measure d(t) as the standard deviation of the number density

distribution across cubic inspection boxes of a given size and placed at arbitrary

locations throughout the simulation domain. This quantity is normalized by the

standard deviation of the corresponding Poisson distribution, so that d = 1 for a

randomly distributed suspension of particles. The size of the inspection box was

checked to have no qualitative impact on the results shown here, all of which used

cubical test sections of volume (2.5L)3 where L is the length of a fiber. Physically, d is

a qualitative index of the perturbations to the number density, playing the analogue

of the magnitude of concentration fluctuations in the mean-field model.

Figure 6.3(a) shows this quantity for the four representative cases over the

length of the entire simulation. Clearly, all cases are destabilized although at different

rates. Over a short timescale, these differences are significant. Over long times,

however, and especially after persistent clusters are formed, d is no longer found to

characterize the minor differences between the four cases. We are primarily interested

in the effects of flexibility on the initial growth of fluctuations, and so we look at the

short-time behavior of cases A–C in Figure 6.3(b). Recall that d(t) is a proxy for the

magnitude of concentration fluctuations, and we use it to extract a linear ‘growth rate’

by approximating it as d(t)/d(0) = exp ςt ≈ 1 + ςt for short times. We see that the

predictions of the continuum theory are qualitatively reproduced in these simulations.

As compared to the case of a suspension of initially isotropically oriented rods (case

A), an anisotropic suspension with weak flexibility-induced reorientation (case B) is

found to be more unstable to concentration fluctuations due to the effect of the base
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Figure 6.3: (a) Growth of number density fluctuations as visualized by the measure
d(t). Here, case A is in red (©), B in blue (�), C in green (4) and D in black (+).
d = 1 corresponds to a homogeneous spatial distribution of fibers at t = 0, and this is
seen to be immediately disturbed in all cases. (b) A close-up of the region indicated by
the dashed box in (a) shows the short-time effect of flexibility on suspension stability
(cases A–C). The linear fits used to determine the growth rate ς are also shown in
solid lines.

state. For yet smaller values of β (more flexible filaments), this base-state effect is

overtaken by the independent effect of flexibility in case C, where reorientation under

gravity is strong enough to hinder the instability.

A more quantitative comparison to the theory can be obtained by investigating

the variations of the measured growth rate in the Pe − β parameter space. The

theoretical phase diagram from Chapter 5 is overlaid in Figure 6.4 with data from

simulations, where the radii of the circles are proportional to ensemble averages of ς

across 16 distinct simulations at the corresponding values of β and Pe. In other words,

since ς is a qualitative analogue to the linear growth rate in the continuum model, a

larger circle in Figure 6.4 corresponds to a suspension that on average is destabilized

faster. The trends are obvious and excellently corroborate the theoretical predictions.

Moving down along the vertical Pe axis demonstrates that the suspension is always

stabilized by thermal randomization. On the other hand, the dependence upon β is

non-monotonic. As β is decreased from large values (limit of rigid rods), an increase

in the growth rate is first seen due to an increased value of the parameter η which

determines the anisotropy of the base state, until β . 1 below which the independent
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Figure 6.4: A phase diagram of suspension stability in the β – Pe parameter space.
The circles are proportional to the ς parameter which is a qualitative index of the
growth rate of number density fluctuations in particle simulations. The contours in
solid lines correspond to the our linear theory [5] from Chapter 5, with predicted
maximum growth rates σm indicated. According to the normalization used, σm = 1
is the theoretical growth rate when β →∞ and Pe→∞ (rigid non-Brownian rods).

effect of flexibility-induced reorientation kicks in and tends to suppress the instability

by resisting rotation of the fibers by the disturbance flow.

6.3.2 Horizontal particle migration

The mechanism of destabilization first described by Koch and Shaqfeh [125] is

based on the migration of particles in the direction of the most unstable wavevector,

which in the present case is the longest periodic direction perpendicular to gravity.

Orientability of the particles in the disturbance flow is key to this mechanism, and a

suspension of spherical particles is indeed known to be stable due to their isotropic

mobility that prevents this lateral drift. At the particle level, suppression of the

growth rate of fluctuations should therefore have a direct footprint on the horizontal
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Figure 6.5: Horizontal drift velocity and number density distribution as a function of
the most unstable direction. 〈vx〉 is shown in blue dashed lines with its axis on the
left, and p(Nx) is in red solid lines with its axis on right. The mean number density
is subtracted from the distribution for clarity, and the shaded areas are meant to
guide the eye towards regions where the measured drift is to the right (and to the
left otherwise). (a), (b), and (c) represent one simulation corresponding to cases A,
B, and C respectively, each at time t = 1.00.

migration of fibers, which in turn is intricately linked to the instantaneous orientation

distribution of the filaments.

We first check that the migration of fibers is indeed towards regions of higher

concentration. Figure 6.5 shows the ensemble-averaged mean velocity 〈vx〉 and the

number density distribution p(Nx) in the horizontal (most unstable) direction at a

specific time instant for the three representative cases. Both number density and

velocity fields are averaged over the height and width of the simulation box so as

to be a function of x only, and the velocity is normalized by the settling speed of

an isolated vertical fiber. For cases A and B, when the flexibility-induced rotation

is not overwhelmingly large, the drift of particles towards clusters is evident, as is

the suppression of this mechanism due to strong horizontal reorientation because

of flexibility in case C. The instantaneous orientation distribution determines, via

Equation (6.10), this drift velocity, and we look next to quantify this microstructural

link.

Figure 6.6 illustrates the key differences in lateral drift and orientation distri-

butions between cases A–C, leading to the differences in the growth of number density

fluctuations discussed above. We define 〈|vx|〉 as the ensemble-averaged mean of the
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absolute value of the velocity component in the x-direction perpendicular to gravity,

which is the most unstable direction. We choose the absolute value as a quantifiable

measure of the drift rather than the mean drift velocity 〈vx〉 used above because the

latter would be zero based on symmetry and periodicity. This is plotted versus time

in Figure 6.6(a). We also show in Figure 6.6(b)–(e) the evolution of the orientation

distribution ψ(θ) in each case, where θ denotes the polar angle between the fiber axis

and the direction of gravity.

The effect of the base state is very clear at very short times t ≈ 0, where the

orientation distribution is nearly isotropic for case A but increasingly anisotropic and

peaked around θ = π/2 in cases B and C. The lateral drift velocity depends directly

on the instantaneous orientation of a fiber. Due to the form of the settling velocity

of an individual fiber following Equation (6.3), particles migrate more slowly in the

x-direction when oriented nearly perpendicular to gravity. This is evident from the

values of 〈|vx|〉 at t ≈ 0, where cases B and C display much weaker drift than case

A. In case B, where the flexibility-induced reorientation is weak and the disturbance

field immediately dominates the dynamics, the effect of the base-state anisotropy on

suspension stability is seen in the rapid increase of 〈|vx|〉 due to the rapid reorientation

of the particles in a direction that facilitates migration. This is indeed the origin of the

enhanced growth rate due to base-state anisotropy first proposed in the last chapter.

Particles in case B have a higher chance of being rotated by the disturbance field into

configurations that allow them to migrate towards regions of larger concentration,

thereby bolstering the instability.

In case C, however, we observe that flexibility-induced reorientation is suffi-

ciently strong to maintain an anisotropic orientation distribution well past the initial

growth of the instability. Correspondingly, the horizontal drift velocity remains much

weaker than in cases A and B. This directly reflects the independent effect of flexi-

bility. Particles now feel the competition between the disturbance velocity field, that

tends to orient them away from a nearly horizontal configuration, and flexibility that

tries to keep them horizontally aligned. For the value of β chosen in case C, the latter

dominates at short times, which tends to slow the instability by hindering horizontal

particle migration.
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Figure 6.6: (a) The effect of flexibility on mean horizontal drift velocities. Case A is
the red solid line, case B is the blue dash-dot line, and case C is the dotted green line.
(b)–(e) show the corresponding orientation distributions averaged across all fibers in
all simulations at times indicated by the arrows in (a).

6.3.3 Stability of a well-stirred suspension

We have thus far used our simulations as a means to verify the predictions of

the linear stability analysis from Chapter 5. Recall that the linear theory considers

a Smoluchowski equation for the concentration field, and perturbs it around a par-

ticular base state that solves the conservation equation exactly when the suspension

is homogeneous in space. An arbitrary initial condition, however, is not amenable to

a stability analysis the way it was performed because it may not solve a steady base

state exactly. In the previous discussion, we initialized the particle configurations

in our simulations according to the exact theoretical base state, assuming that such

a state was somehow established prior to the onset of the instability. In a physical

experiment, the initial stirring of the suspension is expected to lead to a random

isotropic suspension, and the question remains whether the orientation distribution

in that case would evolve towards the theoretical base state sufficiently fast for the

predictions of the linear theory to hold, or whether the growth of the concentration

instability would occur more rapidly. Here, we shed light on some of these questions

using our simulations.

We have seen enough of the physics of the problem to postulate what might
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Figure 6.7: The stability of a well stirred (initially isotropic) suspension. We now
only see the independent effect of flexibility, as expected. Case A is in red (© or a
solid line), B is in blue (� or a dash-dot line), and C is in green (4 or dashed line).

happen. If the suspension were to be isotropic in orientation at t = 0, we expect the

effect of the base-state anisotropy to vanish. Flexibility-induced reorientation then

only has one effect, namely, to oppose the rotation of the fibers towards orientations

that cause them to be drawn into regions of higher concentration. This effect must

become more significant as β decreases, and always acts to suppress the instability.

In other words, we expect a well-stirred suspension of weakly flexible fibers to expe-

rience, on average, a weaker concentration instability than in the benchmark case of

a suspension of rigid rods.

Figure 6.7 summarizes the results of simulations corresponding to an initially

isotropic particle distribution and confirms our hypothesis. Flexibility is seen always

to suppress the instability, as demonstrated in Figure 6.7(a) by the effective growth

rate of the parameter d, which monotonically decreases with increasing flexibility

(decreasing β). Figure 6.7(b) also shows the horizontal drift velocity, which should

be contrasted with Figure 6.6(a). In all cases, 〈|vx|〉 now starts at the same value at

t = 0, but is immediately suppressed in case C as a result of the rapid establishment

of anisotropy in the orientation distribution leading to a weaker instability. In this

case, the time scale over which the suspension evolves from the well-stirred isotropic

distribution to the horizontally-aligned configuration is fast compared to the growth
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of the instability. This time scale has a relevant effect only when β is sufficiently

small, as we see no discernible difference for case B in the statistics of 〈|vx|〉 – the

leading-order effect of the base state predicted by the linear theory is absent here.

The stability analysis stemmed from a steady base-state solution, which is not

necessarily the case in a randomized suspension. One way to gain insight into such a

system would be a stability analysis based on a quasi-steady base state, if one exists.

However, our simulations reveal that the anisotropic orientation distribution is quickly

established for the case with β = 0.01. This is particularly evident in Figure 6.7(b)

where the absolute horizontal drift 〈|vx|〉 rapidly evolves to the values corresponding

to the steady-state orientation distribution used in the stability analysis (compare

with Figure 6.6(a)), suggesting that the analysis holds thereafter.

6.4 Conclusion

In this chapter, we have investigated the sedimentation of a suspension of

weakly flexible fibers using particle simulations, in an attempt to shed light on the

effect of fiber flexibility on the microstructural changes at the single particle level as

well as on the stability of the suspension as a whole. We used the result from our

previous work on individual elastic filaments to isolate the single additional effect of

weak flexibility on the settling dynamics of a fiber, i.e., flexibility-induced reorienta-

tion. The effect of this reorientation on a suspension of such particles has already

been studied using a linear stability on a mean-field model. The primary objective

of the current study was to validate the predictions of the continuum model using

simulations that captured the detailed dynamics of each fiber in the suspension.

We presented a numerical method for simulating large periodic systems of

weakly flexible filaments, which we adapted from previous work on rigid particles.

The entire set of evolution equations for the positions and orientations of N fibers

was reduced to a set of matrix-vector multiplications only requiring knowledge of the

current configuration of the particles in suspension. The calculation of these matrix-

vector multiplications was further accelerated using the efficient smooth particle-mesh

Ewald (SPME) summation algorithm of Saintillan et al. [141] together with an ap-

proximate form for the determination of Brownian displacements based on diluteness,
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leading to a total computational cost of O(N logN).

We then went on to study systematically the effect of flexibility on suspension

stability. Representative sets of parameters were chosen to illustrate most dramat-

ically the different regimes of instability and the phenomena that demarcate them.

Three cases were brought up repeatedly: one where the effect of flexibility was neg-

ligible, a second where flexibility-induced reorientation was known to establish an

anisotropic base state leading to an enhancement of the growth of fluctuations, and a

third where that same reorientation mechanism was strong enough to compete with

rotation by the disturbance flow so as to impede the instability.

We first examined the evolution of number density fluctuations by means of

a parameter d(t) capturing the magnitude of fluctuations with respect the random

Poisson distribution imposed at t = 0. The time evolution of d was shown to follow

the trends predicted by the linear continuum theory. The effect of the anisotropic

base state was seen to enhance the instability, while increasing flexibility further

eventually impedes the growth of fluctuations. Extracting a short-time growth rate

from the evolution of d(t) allowed us to populate a phase diagram in β − Pe space,

which showed excellent qualitative agreement with the theory.

A more detailed picture of the microstructural changes and their influence

on stability was obtained by calculating the horizontal drift of the particles in the

simulation. Recall that the mechanism of destabilization hinges on the ability of

particles to migrate perpendicular to gravity towards regions of higher concentration.

We saw that, on an average, the effect of the anisotropic base state alone is to enhance

this horizontal migration as soon as the suspension is allowed to sediment. This

verifies the hypothesized mechanism for an enhanced instability, i.e., a larger fraction

of particles now reorient in a way as to destabilize the suspension. The independent

effect of flexibility, as expected, was to suppress this horizontal migration and prevent

particle clustering by forcing particle orientations to remain close to horizontal.

Finally, we also used our simulations to analyze the case of a well-stirred

suspension in which the initial orientation distribution is isotropic regardless of the

values of β and Pe. This situation is outside the purview of the linear stability

analysis performed on the mean-field model, but is perhaps the most relevant to

describe experiments where the initial mixing of the suspension would lead to a ran-
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dom distribution. We speculated in this case that the destabilizing effect of the base

state would vanish, and that flexibility would therefore only have a stabilizing effect.

This was seen to be the case indeed: the number density fluctuations were shown to

systematically decrease with increasing flexibility.

The effects of physically relevant considerations like walls and fluid inertia on

flexible fiber suspensions are still open problems, theoretically as well as via simu-

lations. While we expect the twofold consequences of flexibility to arise regardless,

the relative strength of these effects may vary depending on the particular problem

at hand. Future work might consider this problem from an experimental perspec-

tive, to which end we note that our predictions are also valid for a suspension of

weakly flexible fibers raising against gravity due to buoyancy, or more generally to

any situation where a body force exists that causes particles to reorient perpendicular

to it. Finally, we emphasize that we have primarily focused on short-time statistics

in dilute systems with weak deformations; more detailed numerical methods would

be needed to capture near-field lubrication interactions, entanglements, and particle

shape deflections due to the disturbance field, all of which might become relevant

over long times when local concentrations are sufficiently large.

The material in Chapter 6 is being considered for publication in Physics of

Fluids (2015), authored by Harishankar Manikantan and David Saintillan.



Chapter 7

Conclusion and future directions

7.1 Conclusion

In this work, we have considered a myriad of problems where the interplay be-

tween viscous, elastic, Brownian, and gravitational forces result in interesting configu-

rational and dynamical behavior of flexible filaments. The strategy in most problems

that we explored was to probe analytically when possible, and to use detailed numer-

ical simulations to confirm predictions or explore more complex situations, with the

central effort being directed towards elucidating the physical mechanisms underlying

these dynamics.

In Chapter 2, we developed a model for semiflexible polymers immersed in a

viscous fluid, and applied it to cases relevant to microfluidic flow setups. We saw that

polymers tumble in shear flow, and stretch or buckle depending on orientation in ex-

tensional flow. Where possible, comparisons were drawn from experiments involving

typical examples of semiflexible biopolymers such as actin. A recurring theme in this

chapter was the competition between the line tension induced in the backbone of the

filament, which serves to keep it inextensible, and its elastic rigidity. We also devel-

oped in this chapter a theory that describes the stretch-coil transition of polymers

as a stochastic supercritical bifurcation, with the resulting expression specifying the

exact nature of the finite-temperature rounding of the transition. While this anal-

ysis solves a vital facet of fluid-filament interaction problems at the microscale, it

also provides a powerful tool for experimentalists to extract mechanical properties of

159
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single macromolecules by fitting shape deformations around critical points.

We then used the idea of buckling and subsequent reorientation of polymers

around a stagnation point to propose a problem that mimics certain bio-assays.

Specifically, in Chapter 3, we studied the dynamics and transport properties of semi-

flexible polymers in a periodic two-dimensional cellular flow. We found that thermal

fluctuations tend to cause the filaments to drift towards and become trapped inside

vortical cells for long periods of time. These frequent trapping events significantly

hinder the spatial transport of the polymers, which shifts from diffusive to subdif-

fusive as fluctuations become significant. We also highlighted the subtle effect of

flexibility on the transport properties, suggesting that while some level of flexibility

is critical for the effective transport across cells as it enables buckling, very floppy

filaments with short persistence lengths are strongly affected by thermal fluctuations,

which cause their frequent trapping and hinder their transport across the lattice.

In Chapter 4, we investigated the fundamental dynamics of a single flexible

filament as it sediments in a viscous fluid. The competition between elastic and

gravitational forces was characterized by a dimensionless quantity that we termed

the elasto-gravitation number. We first considered the weakly flexible regime, where

the filament is nearly rigid, and using a multiple-scale analysis found a self-similar

scaling of the filament shape with an amplitude dependent upon the body orientation.

A mechanistic illustration of the shape and reorientation of filaments was provided,

and we saw how translational velocity coupled with flexibility-induced reorientation

results in non-trivial trajectories of settling filaments. We also explored the regime of

highly flexible filaments sedimenting along its long axis, where a buckling instability

was hypothesized to occur in the leading half alone. This was then then described

using a linear stability analysis, and illustrated further with full numerical simulations.

In Chapter 5, we exploited the previously obtained results on the sedimentation

of isolated weakly flexible filaments to develop a mean-field model for a suspension

of such particles. The purpose was to explore the effect of anisotropic particles that

reorient due to weak flexibility in the presence of long-ranged hydrodynamic interac-

tions. Speculating based on the mechanism that leads to an instability in the case of

a suspension of rigid rods, we surmised that an anisotropic suspension composed of

fibers oriented perpendicular to gravity would be more unstable to concentration fluc-
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tuations, owing to the fact that individual particles are more likely to be reoriented

by the disturbance flow in a way that enhances the instability. A second and more

direct effect of particle reorientation was to suppress the instability by preventing

clustering. Possible mechanisms for these opposing effects were suggested based on

solutions of the eigenvalue problem that governs the stability of the suspension.

In Chapter 6, we took to detailed numerical simulations to verify these mech-

anisms, and to gain insight into cases more representative of experimental studies.

Particle simulations provided us with a more detailed picture of the microstructural

changes and their influence on stability. The mechanism behind our mean-field the-

oretical predictions were clarified with statistics of particle migration and clustering.

Finally, we also used our simulations to analyze the case of a well-stirred suspension

in which the initial orientation distribution is random. This situation is outside the

purview of the linear stability analysis performed on the mean-field model, but is

perhaps the most relevant to describe experiments where the initial mixing of the

suspension would lead to a random orientation distribution. We had speculated that

the destabilizing effect of the base state would vanish, and that flexibility would there-

fore only have a stabilizing effect. This was seen indeed to be the case: the number

density fluctuations were shown to systematically decrease with increasing flexibility.

7.2 Directions for future work

There are many avenues along which this work might be extended to study

more complex physical processes. Three broad categories are listed below:

• Confinement and wall effects: In all of our studies, we have assumed an infinite

fluid with no wall effects whatsoever. While this is a fair assumption in many

scenarios, many biological polymers naturally exist close to walls whose effects

might not always be negligible. This is also true of micro-channel experiments

involving semiflexible polymers, polymer translocation through pores, as well

as in tanks used to study sedimentation where confinement could play promi-

nent roles. In particular, hydrodynamic interactions with walls are crucial in

pressure-driven flows, as they can lead to cross-streamline migration [55, 168].
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Rods sedimenting near vertical walls, for instance, are known to show curious

trajectories involving ‘glancing’ and ‘sliding’ dynamics [169]. One approach to

study such problems numerically would be to use the appropriate Green’s func-

tions [170] that account for image singularities and the consequent corrections

to the flow field to ensure wall boundary conditions. Such techniques have been

applied successfully [55] to study migration of short-chain flexible polymers. An-

other computational approach, proposed by Hernández-Ortiz et al. [95], is based

on the particle-mesh framework and has been proven to be efficient and accurate

in treating hydrodynamic interactions with walls. Analytically, reduced-order

models based on the method of images have been recently shown [171] to pre-

dict very well the dynamics of a rigid spheroid sedimenting near a vertical wall.

The case of a sedimenting flexible particle will be more involved, but promises

to reveal a wide range of non-trivial dynamics.

• Electrokinetics and electrophoresis: Our model holds the capability to be ex-

tended to study electrokinetic transport of charged polymers in nanochannels

[46, 172]. This will require coupling the equations described in this work to a

Laplace solver for the electric potential inside the channels, and inclusion of an

additional electric force acting on the polymer chains. This extension of the al-

gorithm can be applied to study, for instance, the electrophoretic separation of

short-chain flexible polymers such as DNA fragments, which has been reported

in experiments but has yet to be fully explained theoretically. Also, while the

effect of electric fields on the stability of a suspension of rods has been well

studied in the past decade [145, 165], the corresponding physics in a suspension

of flexible fibers warrants attention.

• Entanglements and concentration effects: In all the cases considered here, we

steered clear of situations where a polymer could fold over itself. Such excluded

volume considerations could become important in the long-time dynamics of

highly flexible filaments, and a careful inclusion of steric forces within this

framework is an open problem. Such transient entanglements are crucial to the

viscoelastic properties of the cytoskeleton [173]. In the sedimentation of multiple

close-packed filaments, for example, issues such as entanglements may dominate



163

the dynamics. Even in the case of a suspension of weakly flexible fibers, we have

neglected the effect of disturbance field of one particle on the shape of the other

under the assumption of sufficient dilution. This approximation is obviously

void when particles come very close to each other, which is often the case in a

concentrated dispersion of flexible filaments. A more detailed continuum theory

that incorporates filament shapes is a challenging open problem, and so is the

development of efficient numerical algorithms to study such systems.



Appendix A

Linear eigenmodes of the

stretching problem

A.1 The eigenvalue problem

We first derive the eigenvalue problem widely used in the context of suppression

of fluctuations in Chapter 2, abbreviated here as DΣ̃W
(n) = ΛnW

(n). Consider a

filament aligned very close to the x-axis due the extensional flow u0 = (γ̇x,−γ̇y)

between −L/2 and L/2 with its center at the stagnation point at x = (0, 0). Following

Equation (2.36), we have the (potential) energy of the filament due to elasticity and

induced tension for small amplitude fluctuations h(x) away from the x-axis as

E =
1

2

∫ L/2

−L/2

[
κh2

xx + T (x)h2
x

]
dx, (A.1)

where the tension is (Equation (2.39))

T (x) =
2πµγ̇

ln(1/ε2e)

[
L2

4
− x2

]
. (A.2)

Now, the Euler-Lagrange equations that minimises E for h(x) is

∂E
∂x
− ∂

∂x

(
∂E
∂hx

)
+

∂2

∂x2

(
∂E
∂hxx

)
= f(x), (A.3)

where subscripts denote differentiation with respect to x, and f(x) is a force dis-

tribution per unit length that causes the filament to assume this shape. The Euler-

Lagrange equation gives us the governing equation for the energetically most favorable
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positions h(x):

κhxxxx − (T (x)hx)x = f(x), (A.4)

which, using Equation (A.2) for T (x), gives

κhxxxx −
2πµγ̇

ln(1/ε2e)

[(
L2

4
− x2

)
hx

]

x

= f(x). (A.5)

This is a linear fourth-order differential equation for h(x), and gives the eigenvalue

problem with eigenfunctions W (n)(x) and corresponding eigenvalues λn:

κW (n)
xxxx −

2πµγ̇

ln(1/ε2e)

[(
L2

4
− x2

)
W (n)
x

]

x

= λnW
(n), (A.6)

with the boundary condition W
(n)
xx (±L/2) = W

(n)
xxx(±L/2) = 0, representing force-

free and moment-free ends.

A convenient rescaling is ξ = πx/L, so that ξ ∈ [−π/2, π/2]. The system then

becomes

W
(n)
ξξξξ − Σ̃

[(
π2

4
− ξ2

)
W

(n)
ξ

]

ξ

= ΛnW
(n), (A.7)

or

DΣ̃W
(n) = ΛnW

(n),

where Σ̃ is a dimensionless strain rate defined in Equation (2.41), and Λn are the

rescaled eigenvalues Λn = L4λn/π
4κ. Equation (A.7), along with the boundary con-

ditions, defines the basis for positions of the filament.

A.2 Energy and variance

From Equation (A.1), we have by repeated integration by parts

E =
1

2

∫ L/2

−L/2

[
κh2

xx + T (x)h2
x

]
dx (A.8)

=
1

2

[
(κhxxhx)|L/2−L/2 − κ

∫ L/2

−L/2
hxxxhxdx+ (Thxh)|L/2−L/2 −

∫ L/2

−L/2
(Thx)x hdx

]

(A.9)

=
1

2

[
−κ
{

(hxxxh)|L/2−L/2 −
∫ L/2

−L/2
hxxxxhdx

}
−
∫ L/2

−L/2
(Thx)x hdx

]
(A.10)

=
1

2

∫ L/2

−L/2
[{κhxxxx − (Thx)x}h] dx, (A.11)



166

where all boundary terms (in Equations (A.9) and (A.10)) are zero due to the bound-

ary conditions and the fact that tension is zero at the ends by definition. Now, since

h(x) is projected onto the {W (n)(x)} basis, we may write

h(x) =
∞∑

n=1

anW
(n)(x). (A.12)

This then leads to

E =
1

2

∫ L/2

−L/2

{
κ
∞∑

n=1

anW
(n)
xxxx −

(
T
∞∑

n=1

anW
(n)
x

)

x

}( ∞∑

n=1

anW
(n)

)
dx (A.13)

=
1

2

∫ L/2

−L/2

( ∞∑

n=1

{
κW (n)

xxxx −
(
TW (n)

x

)
x

}
an

)( ∞∑

n=1

anW
(n)

)
dx (A.14)

=
1

2

∫ L/2

−L/2

( ∞∑

n=1

anλnW
(n)

)( ∞∑

n=1

anW
(n)

)
dx, (A.15)

where we have used the expression for tension and Equation (A.6). Now, the basis

{W (n)(x)} is orthogonal with

1

L

∫ L/2

−L/2
W (m)(x)W (n)(x)dx = δmn. (A.16)

Using this property, Equation (A.15) simplifies to

E =
L

2

∞∑

n=1

a2
nλn. (A.17)

This tells us that the energy decomposes into a sum of contributions from indepen-

dent modes. It then follows from the the equipartition principle that each of these

independent contributions 〈a2
nλnL/2〉must equal kBT/2. In other words, emphasising

the independence of contributions from different modes, we may write

〈aman〉 = δmn
kBT

λnL
. (A.18)

Using the rescaled eigenvalue Λn = λnL
4/π4κ and the definition of the persistence

length `p = κ/kBT , this simplifies to

〈aman〉 = δmn
L3

Λnπ4`p
. (A.19)
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We now define the variance of amplitude fluctuations as

V (x) =
〈
[h(x)− h̄]2

〉
, (A.20)

where h̄ is the mean filament amplitude. When aligned approximately with the x-

axis, we can set 〈an〉 = 0 and so h̄ = 0. This also follows from the variance of the

mean filament angle from the x-axis being very small. Then, using Equation (A.19),

V (x) =
〈
h(x)2

〉
(A.21)

=

〈[ ∞∑

n=1

anW
(n)(x)

]2〉
(A.22)

=
∞∑

n=1

L3

Λnπ4`p
W (n)(x)2 (A.23)

⇒ V (x; Σ̃) =
L3

`pπ4

∞∑

n=1

W (n)(x; Σ̃)2

Λn(Σ̃)
. (A.24)

Equation (A.24) appears in Chapter 2 as Equation (2.43).

A.3 Solving for the eigenfunctions

In the special case of Σ̃ = 0, the operator DΣ̃ reduces to a one-dimensional

biharmonic equation: Equation (A.7) reduces to

W
(n)
ξξξξ = k4

nW
(n). (A.25)

We solve the system for x ∈ [0, L] as the solution is relatively simpler when shifted

to this range. W (n)(x) admits solutions of the form:

W (n)(x) = A sin knx+B cos knx+ C sinh knx+D cosh knx. (A.26)

Clearly, the boundary conditions W
(n)
xx (0) = W

(n)
xxx(0) = 0 yields A = C and B = D.

The conditions W
(n)
xx (L) = W

(n)
xxx(L) = 0 then has

A

B
=

sin knL+ sinh knL

cos knL− cosh knL
. (A.27)
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Figure A.1: Normalized eigenfunctions W (n)(x) of the DΣ̃ operator. Eigenfunctions of
the biharmonic operator corresponding to D0 are in solid lines, and the corresponding
eigenfunctions of D100 are in dashed lines.

This is subject to a solvability condition on the wavevectors kn
† which, for free-end

boundary conditions, is

cos knL cosh knL = 1, (A.28)

with k0 = 0 (corresponding to the constant solution W (0) = 1) and knL ' (n+ 1/2)π

for n ≥ 1. Since k4
n = λn/A = Λnπ

4/L4, we can immediately see that Λn ' (n+1/2)4.

This fact was used in Section 2.6.1 to justify the resemblance of the variance profile to

the contribution from fundamental mode: V (x, Σ̃) in Equation (A.24) is dominated

by the first term.

The corresponding eigenfunctions are plotted in Figure A.1. Eigenfunctions

of DΣ̃ when Σ̃ 6= 0 cannot be determined analytically but a numerical solution is

relatively straightforward, and the shapes are seen to be similar to the Σ̃ = 0 case.

†The interested reader is directed to Problems 4 through 6 in section 25 of Landau and Lifshitz
[108] or Appendix B of Wiggins et al. [59] for a comprehensive treatment of the solvability conditions
and eigenfunctions for not just free-end boundaries, but also a wide range of possible scenarios
including clamped ends, hinged ends, and combinations thereof.



Appendix B

Flux velocities for the

Fokker-Planck equation

In the continuum approach used in Chapter 3, the conservation equation (3.2)

has as unknowns the flux velocities of the rod. For this, we turn to the leading

terms in the slender-body equation (1.10), now written in terms of the center-of-mass

position and orientation of the particle. For a rod of aspect ratio ε = a/L as before

and parametrized by s ∈ [−L/2, L/2], the position of a point along the rod is now

written x0 + sp, where x0 is its center (s = 0) and p the unit tangent vector at the

center. To leading order in ln ε, the slender-body equation (1.10) is then

ẋ0 + sṗ− u0(x0 + sp) =
ln ε

4πµ
(I + pp) · f(x0 + sp). (B.1)

Integrating Equation (B.1) across the length of the rod and requiring that the total

hydrodynamic force acting on the particle be zero gives the translational flux velocity:

ẋ0 =
1

L

∫ L/2

−L/2
u(x0 + sp) ds. (B.2)

In order to determine θ̇, we multiply Equation (B.1) by s and then integrate with

respect to s giving

ṗ
L3

12
−
∫ L/2

−L/2
su(x0 + sp) ds =

ln ε

4πµ
(I + pp) ·

∫ L/2

−L/2
sf(x0 + sp) ds. (B.3)
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Since the angular flux is purely in the orthoradial directions (as ṗ · p = 0), we may

pre-multiply Equation (B.3) with (I − pp), and it follows that

ṗ
L3

12
= (I − pp) ·

∫ L/2

−L/2
su(x0 + sp) ds− ln ε

4πµ
p×

∫ L/2

−L/2
p× sf(x0 + sp) ds. (B.4)

Noting that the last term in Equation (B.4) represents the net torque acting on the

particle, which is zero for a freely-suspended particle, we obtain the final form of ṗ:

ṗ =
12

L3
(I − pp) ·

∫ L/2

−L/2
su(x0 + sp) ds. (B.5)

The angular velocity required in Equation (3.2) is then θ̇ = ṗ · êθ, where êθ =

(− sin θ, cos θ).

The Fokker-Planck equation is now closed, with all terms known. We non-

dimensionalize Equation (3.2) using characteristic scales of L for length, 8πµL3/kBT

for time and Lγ̇ for background velocities, yielding

kBT

8πµL3

∂Ψ

∂t
+ γ̇∇x · (ẋΨ)+γ̇

∂(θ̇Ψ)

∂θ
− kBT ln(1/ε)

4πµL3
(I + pp) :∇x∇xΨ

− 3kBT ln(1/ε)

πµ3

∂2Ψ

∂θ2
= 0.

(B.6)

The coefficients are collected in the form of the Péclet number defined in Equa-

tion (3.5), and using Equations (B.2) and (B.5) for the flux velocities, we arrive at

the final form given in Equation (3.4).



Appendix C

Sedimentation of a filament of

uniform thickness

In both Sections 4.3 and 4.4, we considered the spheroidal filament profile

r(s) = 2
√
s(1− s) for mathematical convenience. The equilibrium shapes found in

Figure 4.3, for instance, were a consequence of variations in gravitational potential

and viscous drag along the filament length. However, filaments of uniform thickness,

r(s) = 1, are expected to result in qualitatively similar shapes but instead as a

consequence of a secondary effect, namely by non-local hydrodynamic interactions.

As illustrated in Figure 4.1, the central segments of the filament experience a stronger

disturbance flow and will sediment faster than segments nearer to the filament ends.

An accompanying reorientation is also to be expected. This case was considered by

Xu and Nadim [132]. Similarly, as illustrated in Figure 4.7, a sufficiently flexible

filament of uniform thickness is also expected to buckle when sedimenting along its

long axis. While the effects due to variations in the filament thickness are O(1), the

effects due to non-local hydrodynamic interactions will be shown to be considerably

smaller, O(ln(1/ε)−1).

In both regimes (weakly and highly flexible filaments), the leading-order hydro-

dynamic interaction appears in the equations of motion through the spatially varying

function c(s) in the local operator (Equation (1.11)), while a higher-order correction

is given by the integration of the non-local operator (Equation (1.12)), which is now

made considerably more challenging analytically. We will now proceed to derive the
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shapes and velocities of filaments with uniform thickness in the weakly flexible regime,

as well as the base-state tension for sedimentation along the filament’s long axis.

C.1 Reorientation of a weakly flexible filament

Choosing r(s) = 1, we have a uniform distribution of gravitational potential

and bending stiffness, Fg(s) = −1 and B(s) = 1. Equations (4.20) and (4.21) then

become:

U (0) = 2(c(s)− 1)
[
T (0)
s + cos θ(0)

]
+ 2S

[
T (0)
s

]
, (C.1)

V (0) + (s− 1/2)θ
(0)
t = −(c(s) + 1)

[
ussss + sin θ(0)

]
− S [ussss] , (C.2)

where now c(s) = c0 + ln(4s(1− s)), with c0 = ln(1/ε2)� 1. We pursue approximate

expressions at leading order in the small number 1/c0. It is straightforward to show

that U (0) = O(c0), V (0) = O(c0), T (0) = O(c−1
0 ), and u = O(c−1

0 ). Therefore we

assume the following series expansions,

V (0) =
+∞∑

n=0

Vnc
1−n
0 , θ(0) =

+∞∑

n=0

θnc
−n
0 , sin θ(0) =

+∞∑

n=0

anc
−n
0 , u(s) =

+∞∑

n=0

un(s)c−n−1
0 .

(C.3)

Upon insertion into Equation (C.2), we obtain:

V1 + (s− 1/2)∂tθ0 = −[1 + ln(4s(1− s))]a0 − u′′′′0 , (C.4)

Vn+1 + (s− 1/2)∂tθn = −[1 + ln(4s(1− s))](an + u′′′′n−1)− u′′′′n − S[u′′′′n−1]. (C.5)

Multiplying by (s−1/2) and integrating, and using the boundary conditions u′′′n (0) =

u′′′n (1) = 0, u′′n(0) = u′′n(1) = 0, we find that un(s) is symmetric about 1/2 for all n

and ∂tθn = 0 by induction. Therefore, there is no rotation at leading order in 1/β,

θ
(0)
t = 0.

For the sake of convenience we again let ζ = s−1/2. Then, defining the series

expansions

U (0) = c0U0 + U1 +O(c−1
0 ), V (0) = c0V0 + V1 +O(c−1

0 ),

T (0) = c−1
0 T0 +O(c−2

0 ), u = c−1
0 u0 +O(c−2

0 ),

θ(0) = θ0 + c−1
0 θ1 +O(c−2

0 ),
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we find

U0 = 2 cos θ0, V0 = − sin θ0, (C.6)

U1 + 2θ1 sin θ0 = 2[ln(1− 4ζ2)− 1] cos θ0 + 2T ′0, (C.7)

V1 + θ1 cos θ0 = −u′′′′0 − [ln(1− 4ζ2) + 1] sin θ0. (C.8)

Using the boundary conditions on T0(s) and u0(s), we find:

T ′0 + [ln(1− 4ζ2) + 2(1− ln 2)] cos θ0 = 0, (C.9)

u′′′′0 + [ln(1− 4ζ2) + 2(1− ln 2)] sin θ0 = 0, (C.10)

leading to the leading-order tension profile,

T0(ζ) =

[
2 ln(2)ζ −

(
ζ − 1

2

)
ln(1− 2ζ)−

(
ζ +

1

2

)
ln(1 + 2ζ)

]
cos θ0, (C.11)

and the leading-order filament deflection profile,

u0(ζ) =
1

24

[
− (ζ − 1/2)4 ln(1− 2ζ)− (ζ + 1/2)4 ln(1 + 2ζ)

+

(
13

6
+ 2 ln 2

)
ζ4 +

1

4
(12 ln 2 + 1) ζ2

]
sin θ0. (C.12)

This shape is the same as that derived by Xu and Nadim [132] when θ0 = π/2, though

with the correction of a small typo. Reinserting ζ = s− 1/2, we have that

T (0)(s) = c−1
0 ν(s) cos θ(0) +O(c−2

0 ), (C.13)

u(s) = c−1
0 h(s) sin θ(0) +O(c−2

0 ), (C.14)

with

ν(s) = (1− s) ln(1− s)− s ln s, (C.15)

and

h(s) = − 1

24

[
(s− 1)4 ln(2− 2s)− s4 ln(2s)

+

(
13

6
+ 2 ln 2

)
(s− 1/2)4 +

(
3 ln 2 +

1

4

)
(s− 1/2)2

]
. (C.16)
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The tension is therefore zero at leading order when the filament is sedimenting per-

pendicular to its long axis, but otherwise varies along the filament. A plot of ν(s) is

shown in figure C.1. Consequently, (4.30) may now be written as:

V (1)+(s− 1/2)
(
θ(0)
τ + θ

(1)
t

)
= (c(s) + 1)

[
(T (0)us)s − u′′′′1 − θ(1) cos θ(0)

]

+ (c(s)− 3)(T (0)
s + cos θ(0))us + S

[
(T (0)us)s − u′′′′1 − θ(1) cos θ(0)

]

+

∫ 1

0

∆u(T
(0)
s (s′) + cos θ(0))− us(s)(T (0)

s (s) + cos θ(0))

|s− s′| ds′.

(C.17)

Multiplying by (s− 1/2) and integrating, and imposing θ
(1)
t = 0 to remove the

secular term, we have:

θ(0)
τ = 6[J0 + c−1

0 (J1 + J2 + J3)] sin(2θ(0)) +O(c−2
0 ), (C.18)

where

J0 =

∫ 1

0

(s− 1/2)hs ds, (C.19)

J1 =

∫ 1

0

(s− 1/2)(νhs)s ds, (C.20)

J2 =

∫ 1

0

(s− 1/2)νshs ds, (C.21)

J3 =

∫ 1

0

(s− 1/2)[ln(4s(1− s))− 3]hs ds. (C.22)

Inserting ν(s) and h(s) from above, the resulting rotation rate in terms of the single

time t is given by

θt =
1

β

(
7

400
+ ln(1/ε2)−1 749− 150π2 + 315 ln(2)

9000

)
sin(2θ) +O(ln(1/ε2)−2, β−2)

=
1

β

(
0.003− 0.057 ln(1/ε2)−1

)
sin(2θ) +O(ln(1/ε2)−2, β−2). (C.23)

The result is physical for ε < 2 exp(107/45 − 10π2/21) ≈ 0.196. This expression

may be compared to that for the spheroidal filament shown in Equation (4.38).

The timescale for reorientation is now significantly longer than that found for the

spheroidal filament.
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Figure C.1: The tension profile along a straight filament of uniform thickness due to
non-local hydrodynamic interactions. Once again, buckling is possible in the leading
half of the filament, where s ∈ (1/2, 1) (see Figure 4.7).

C.2 Compression of a uniform flexible filament

As illustrated in Figure 4.7(b), the tension in the leading half of a filament

with uniform thickness, sedimenting along its long axis, is still expected to be negative

in the straightened state due to non-local hydrodynamic interactions. The base-state

tension and sedimentation speed was already derived for this case in the previous

section as the special case θ(0) = 0, from which we find

U = 2c0 + 2(2 ln(2)− 3) +O(c−1
0 ), (C.24)

T (s) = c−1
0 ν(s) +O(c−2

0 ), (C.25)

with c0 = ln(1/ε2), and ν(s) defined in Equation (C.15) and plotted in Figure C.1. We

observe that T (s) > 0 in the trailing half of the filament, s < 1/2, and that T (s) < 0

in the leading half of the filament, s > 1/2. Buckling is therefore still possible in the

leading half of the filament as a consequence of non-local hydrodynamic interactions

even if the filament has uniform thickness.



Appendix D

Reduction of integral operators for

large wavenumbers

When analyzing the instability of the two halves of the filament in Section

4.4, we use that the Fourier basis functions approximately diagonalize the integral

operators in Equation (4.10) for large wavenumbers, k � 1, and we also decouple the

integral operators into operations on the two halves of the filament separately. We

now justify both approximations.

Consider a point s ∈ [∆, 1−∆], with ∆ > 0. Then for λ ≥ 1, with k � 1 such

that k∆ is sufficiently large, the action of the integral operators in Equation (1.12)

on the Fourier basis functions yield

S[eiλks] ≈ (−2γ − 2 ln(λk)− ln(s(1− s)))eiλks, (D.1)

P [eiλks] ≈ 2i(λk)eiλks, (D.2)

where γ ≈ 0.577 is Euler’s constant. To show this, we simply consider a change of

variables, ξ = λks′ so that

S[eiλks](s) = Λ(k, s)eiλks, (D.3)

with

Λ(k, s) =

∫ λk(1−s)

−λks

eiξ − 1

|ξ| dξ

≈ 2

∫ 1

0

cos ξ − 1

ξ
dξ + 2

∫ +∞

1

cos(ξ)

ξ
dξ − 2 ln(λk)− ln(s(1− s)),

(D.4)
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which gives the desired result. The same change of variables gives

P [eiλks] = λkeiλks

∫ λk(1−s)

−λks

eiξ − 1− iξeiξ

ξ|ξ| dξ

≈ 2iλkeiλks

∫ +∞

0

sin ξ − ξ cos ξ

ξ2
dξ = 2iλkeiλks.

(D.5)

Moreover, the main contribution of S[eiλks](s) and P [eiλks](s) comes from the

neighborhood of s. Specifically, for an interval I ⊂ [0, 1] we define

SI [e
iλks] =

∫

I

eiλks′ − eiλks

|s′ − s| ds′, (D.6)

PI [e
iλks] =

∫

I

(eiλks′ − eiλks)/(s′ − s)− iλkeiλks′

|s′ − s| ds′, (D.7)

and we will show that

S[0,1/2][e
iλks] ≈ (−2γ − 2 ln(λk)− ln(s(1/2− s)))eiλks, (D.8)

P[0,1/2][e
iλks] ≈ 2iλkeiλks, (D.9)

when s ∈ (∆, 1/2−∆), and

S[1/2,1][e
iλks] ≈ (−2γ − 2 ln(λk)− ln((s− 1/2)(1− s)))eiλks, (D.10)

P[1/2,1][e
iλks] ≈ 2iλkeiλks, (D.11)

when s ∈ (1/2 +∆, 1−∆). To see this, let

S[0,1/2][e
iλks] = I1eiks, (D.12)

S[1/2,1][e
iλks] = I2eiks. (D.13)

and

P [eiλks] = P[0,1/2][e
iλks] + P[1/2,1][e

iλks] (D.14)

We have when s ∈ [∆, 1/2−∆], with k � 1,

I1 ≈ −2γ − 2 ln(λk)− ln(s(1/2− s)), (D.15)

I2 ≈ ln((1− s)/(1/2− s)). (D.16)
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and

P[0,1/2]/(λk) ≈ 2ieiλks, (D.17)

P[1/2,1]/(λk) ≈ 0. (D.18)

We observe on this interval that I1 dominates I2 and the first integral for P dominates

the second. Similar computation yields for s ∈ [∆, 1/2−∆]. A further approximation,

leading to (4.62), is obtained using

2

∫ 1/2

0

ln(s(1/2− s)) ds = 2

∫ 1

1/2

ln((s− 1/2)(1− s)) ds = −2− 2 ln 2. (D.19)

We now simply replace the term ln(s(1/2 − s)) in Equation (D.8) and the term

ln((s − 1/2)(1 − s)) in Equation (D.10) by −2 − 2 ln 2. In addition, we see that

P [u] ≈ 2us ≈ PI [u] for high wavenumber perturbations.



Appendix E

Spherical harmonics expansion

In Chapter 5, the full eigenvalue problem in Equation (5.25) is too compli-

cated to be solved analytically in the general case due to the additional terms arising

from flexibility and thermal diffusion and to the nontrivial form of the base-state

distribution (Equation (5.19)). Instead, noticing that Equation (5.25) is in the form

L[ψ̃] = iωψ̃ where L is a linear integro-differential operator, we seek numerical solu-

tions to the eigenvalues ω by projecting ψ̃ onto an appropriate basis. As ψ̃ is defined

continuously on the sphere of orientations, a natural choice is Laplace’s spherical

harmonics:

Y m
` (θ, ϕ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimϕ, (E.1)

where Pm
` are the associated Legendre polynomials. Projecting the unknown eigen-

functions onto this basis,

ψ̃(θ, ϕ) =
∞∑

`=0

∑̀

m=−`
a`mY

m
` (θ, ϕ), (E.2)

the linearity of the operator L then implies:

∞∑

`=0

∑̀

m=−`
a`mL[Y m

` ] = iω
∞∑

`=0

∑̀

m=−`
a`mY

m
` . (E.3)

The spherical harmonics are orthonormal over the orientational space:

〈Y m
` , Y

m′
`′ 〉 =

∫

Ω

Y m
` Ȳ

m′
`′ dp = δ``′δmm′ , (E.4)
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where the overbar denotes the complex conjugate. Using this property, we multiply

Equation (E.3) by Ȳ m′
`′ and integrate over all orientations to obtain

∞∑

`=0

∑̀

m=−`
a`m〈L[Y m

` ], Y m′
`′ 〉 = iωa`′m′ . (E.5)

Truncating the expansion at ` = M (where we choose M = 30 in the results presented

here), Equation (E.5) then yields an algebraic eigenvalue problem of the form L ·a =

iωa, where L is a (M + 1)2 × (M + 1)2 matrix with entries 〈L[Y m
` ], Y m′

`′ 〉 and the

vector a contains the coefficients a`m of the spectral expansion of the eigenfunction.

Solving this system provides a discrete set of (M + 1)2 eigenvalues ω. We verify a

posteriori that only one of these eigenvalues is unstable (ωI > 0), consistent with the

results of Koch and Shaqfeh [125].

The following properties of spherical harmonics are useful in evaluating the

matrix L:

∫

Ω

Y m
` dp = 2

√
π δl0δm0, (E.6)

∇2
pY

m
` = −`(`+ 1)Y m

` , (E.7)

∂Y m
`

∂θ
=

1

sin θ

(
` cos θ Y m

` −
√

(2`+ 1)(`2 −m2)

2`− 1
Y m
`−1

)
. (E.8)



Appendix F

The divergence theorem in

orientational space

Let w(p) be any smooth function defined on the surface Ω of a unit sphere

such that p = (sin θ cosϕ, sin θ sinϕ, cos θ). Also, let w(p) be any smooth function

defined on the surface Ω of a unit sphere. We also define v(r,p) = rnw where n ≥ 1

to ensure regularity. Now, Gauss’s divergence theorem reads

∫

V

∇ · v dV =

∫

Ω

p · v dp. (F.1)

Noticing that ∇ = p ∂
∂r

+ 1
r
∇p, the left-hand side becomes

∫

V

∇ · v dV =

∫

V

(
nrn−1p ·w + rn−1∇p ·w

)
dV (F.2)

=

∫

Ω

(
n

n+ 2
p ·w +

1

n+ 2
∇p ·w

)
dp, (F.3)

where we have used dV = r2 dr dp. The right-hand side of Equation (F.1) simplifies

readily as v = w on Ω. Rearranging the terms, we obtain the divergence theorem in

orientational space: ∫

Ω

∇p ·w dp = 2

∫

Ω

p ·w dp. (F.4)
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[117] M. F. Shlesinger, J. Klafter, and G. Zumofen, “Above, below and beyond Brow-
nian motion,” Amer. J. Phys. 67, 1253–1259 (1999).

[118] A. M. Lacasta, J. M. Sancho, A. H. Romero, I. M. Sokolov, and K. Lindenberg,
“From subdiffusion to superdiffusion of particles on solid surfaces,” Phys. Rev.
E 70, 051104 (2004).

[119] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media:
Statistical mechanisms, models and physical applications,” Phys. Rep. 195,
127 – 293 (1990).

[120] Q. Xu, L. Feng, R. Sha, N. C. Seeman, and P. M. Chaikin, “Subdiffusion of a
sticky particle on a surface,” Phys. Rev. Lett. 106, 228102 (2011).

[121] J. S. Park and D. Saintillan, “From diffusive motion to local aggregation: Effect
of surface contamination in dipolophoresis,” Soft Matter 7, 10720 (2011).

[122] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University
Press (1986).

[123] V. E. Terrapon, Y. Dubief, P. Moin, E. S. G. Shaqfeh, and S. K. Lele, “Simulated
polymer stretch in a turbulent flow using Brownian dynamics,” J. Fluid Mech.
504, 61–71 (2004).

[124] J. S. Paschkewitz, Y. Dubief, and E. S. G. Shaqfeh, “The dynamic mechanism
for turbulent drag reduction using rigid fibers based on Lagrangian conditional
statistics,” Phys. Fluids 17, 063102 (2005).

[125] D. L. Koch and E. S. G. Shaqfeh, “The instability of a dispersion of sedimenting
spheroids,” J. Fluid Mech. 209, 521–542 (1989).
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