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ABSTRACT OF THE DISSERTATION

Machine Learning for Context-Aware Reminders and Suggestions

by

Patricia Shanahan

Doctor of Philosophy in Computer Science

University of California, San Diego, 2009

Professor William Griswold, Chair

People rapidly learn the capabilities of a new location, without observing every

service and product. Instead they map a few observations to familiar clusters of capa-

bilities, and assume the availability of other capabilities in the cluster. This dissertation

proposes a similar approach to computer-based discovery of routine location capabili-

ties, applying singular value decomposition to predict unobserved capabilities based on

a combination of a small body of local observations and a larger body of data that is

not specific to the location. I propose using the time and place of deleting items from a

to-do list application to provide the local data. I also examined the effect of feedback on

false positive errors, combined with a weighted singular value decomposition.

For reminder purposes, an area within easy walking distance is a single location,

but may contain many different shops and services, collectively offering its own com-

bination of capabilities. A simple clustering algorithm would treat each combination as

an independent cluster. Truncated singular value decomposition maps the observations

to combinations of features, rather than to a single cluster.

Simulations, using distributions derived from real world data, demonstrate the

feasibility of this approach.
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The robustness of the technique was further tested by adding two difficulties,

convenience stores and false training data. The convenience-store workload included

some locations that provided only the thousand most frequently used capabilities, re-

gardless of other cluster data. False positive feedback and feature weighting both al-

lowed use of a larger truncation rank, improving convenience store results, and reduced

errors due to false training data.

The technique extends to estimate whether a capability is available at a given

time. Data for short time intervals was “folded-in” to the singular value decomposition

to obtain projections for those time intervals. The projections, interpreted as Poisson

distribution arrival rates, were used to compare posterior probabilities for various time

intervals given the observed data. The time extension was tested with workloads that

included 24 hour supermarkets and early opening for a subset of capabilities at one

location.
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1 Introduction

1.1 Why Location Capabilities?

Everyday life includes many tasks that cannot be performed at arbitrary times

and places. Some tasks require a specific place, such as the conference hotel for a

given conference. Others require places with a specific relationship to the user, such as

“my home” or “my office”. Some tasks depend only on the context having a specific

capability, such as offering a given service or selling a given product. Any location with

similar capabilities is a possible location for the task. Shopping is a typical example of

this kind of task.

The following scenario illustrates how a future reminder system might support

context-capability dependent tasks. Joe is a college professor and a user of a reminder

system, a few years in the future.

While doing his laundry, Joe notices there will not be enough detergent for next

week. He runs his phone’s barcode scanner over the detergent box’s product code. The

phone adds detergent to its shopping list. Postage stamps are already on the list. Joe

has also made a note that he needs access to a copy of the Oxford English Dictionary

(OED), to check the history of a word.

The next day, Joe happens to walk past his college’s reference library. His phone

reminds him of the word he wanted to look up in the OED.

A couple of days later, Joe’s wife, Alice, phones him to say that she is running

late at work, and asks him to buy some food items. Because of where he is, and the time

of day, he drives to a different supermarket than he normally shops at. Nevertheless, his

phone vibrates as he nears the supermarket. He looks at it, and sees text reminding him

to buy detergent and postage stamps.

1



2

Without the reminders, Joe could have easily forgotten some of these tasks. The

literature on prospective memory — on remembering to do things that cannot be done

here and now — assumes that people do sometimes forget such tasks. For example,

Farrimond et. al. mention the task of buying bread on the way home from work: “It is,

however, a common experience to arrive home without the bread.” [FKT06].

Most quantitative research on prospective memory uses artificial laboratory tas-

ks, but a few do attempt to model real-world tasks. Farramond et. al. use a laboratory

model of shopping tasks. Their younger control group fail to remember about 4% of the

time [FKT06]. However, comparison of similar tasks in a laboratory model and in the

real-world can get different results [RC00].

The library reminder is relatively easy. Joe has previously carried out similar

tasks at the same place. A smart reminder application that notes time and location of

to-do list deletions would know where he can do that task.

Joe faces a harder problem than remembering to buy the detergent and stamps

at times and places he had planned. To take advantage of the unplanned trip, he not

only has to know that his location offers the items, he has to remember that fact, and his

intention of buying them, while thinking about another errand.

Joe may never have bought either detergent or stamps at that location, so his

phone cannot depend only on the information it can collect. It has to function as part of

a larger system, as shown in Figure 1.1. A server can be dedicated to a single user or

small group of users, or be public and widely shared. Each client device is associated

with one user. Joe’s deletion of “detergent” from his shopping list itself supplies data;

confirmation that the location has detergent-supplying capability.

The scenario requires several phone features:

• Joe’s phone generally knows where it is, with sufficient accuracy for Joe to be

able and willing to take actions based on his phone’s estimate of its location.

• The phone can decide whether Joe should be interrupted now, given an opportu-

nity to complete a task. This decision may involve a combination of information

about the task, information about Joe’s activities, and explicit inputs.

• Joe’s phone can interpret bar codes with high accuracy.
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Detergent 
bought at 
loc1 

Detergent 
bought at 
loc2 

Where buy 
detergent? 

loc1, loc2, loc3 

Figure 1.1: A server receives reports of detergent having been bought at locations loc1
and loc2. loc3 is a third location that has been found to be similar to the other two.
When Joe’s phone asks where detergent can be bought the server responds with all three
locations.

• The phone has access to a server that maps from a required capability to a list of

nearby locations with the capability.

The last would allow Joe’s phone access to a wider body of information. Given

informed consent, that might include pooled to-do list deletions from many users. How-

ever, even a small shopping center may offer thousands of products and services. A

system that depended exclusively on to-do list data, even if pooled from multiple users,

would require an impractically long time to accumulate a useful body of data.

A capability-based reminder system would need many components to work to-

gether. This dissertation discusses just one of them, the characterization of locations

in terms of the capabilities they offer. As discussed in Chapter 2, none of the direct

methods covers all capabilities. In particular, detailed but basic capabilities, such as

availability of postage stamps or instant coffee, are not often reflected in accessible web

data. The next section discusses the specific problem, and its possible solutions, in more

detail.
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1.2 The Everyday Shopping Problem

Everyday shopping presents a location characterization problem whose routine

nature makes it both important and difficult. Many locations offer some, but not all, of

the capabilities needed for everyday shopping. Because of their routine nature, every-

day shopping tasks are eminently forgettable, increasing the value of reminders. They

can often be deferred for days, until the user happens to be at location that offers the

appropriate capabilities. On the other hand, the set of distinct capabilities involved in

everyday shopping is immense. A shopping center may stock thousands of items, any

one of which may be on a given user’s shopping list. It would take a long time to

accumulate enough user-supplied data to full characterize it, and by the time each ca-

pability had been reported at least once some of the older data would be out of date.

This dissertation uses everyday shopping as the example problem both because of its

usefulness and because any solution that works for it is likely to also handler cases in

which locations have fewer relevant capabilities.

Fortunately, businesses do not make completely arbitrary choices of which prod-

ucts to stock and services to offer. There are clusters of products that are commonly sold

together. People often use those patterns to predict which shop sells what without mem-

orizing a list for each shop, albeit imperfectly. If experience indicates that a location is

a source for dishwasher detergent and fabric softener, it is probably a valid location for

Joe’s laundry detergent purchase, even if there is no direct evidence.

This dissertation proposes applying machine learning methods to extract a math-

ematical representation of those patterns from a body of capability data. Ideally, if the

data includes even a relatively small amount of information about a specific location,

the method will use those patterns to infer its other capabilities.

The capability prediction problem is complicated by the fact that a single loca-

tion, such as a shopping center, may offer a wide range of products and services because

it contains multiple businesses. Even if location detection were accurate enough to dis-

tinguish them, a reminder should be issued if a required capability is available within

easy walking distance. Similarly, a shop like a supermarket combines the capabilities of

a butcher, a bakery, a pharmacy, etc.

Moreover, the capabilities of a location usually change with time, both cyclically
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Figure 1.2: Supermarket Shelves

A normal shop may have many rows of shelves, each containing dozens of different

items.
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with various periods and permanently. The most important periods are one day, seven

days, and one year. Most locations have some daily variation in their behavior. Even

24 hour stores often offer some capabilities only during limited hours. For example, a

24 hour supermarket may have a pharmacist on duty, and be able to fill prescriptions,

during daytime and evening shifts but not at night. Different behavior at weekends leads

to a seven day period. Seasonal changes, including special merchandise for holidays,

operate with a one year period. Old stores go out of business, or move to a different

location. New stores replace them. Managers make permanent changes in what they

stock.

A location-aware reminder system for everyday tasks would not be very effective

unless backed by a system for identifying suitable locations for the tasks. The research

described in this dissertation used simulation studies to select, develop, and evaluate a

system for inferring the capabilities of locations for everyday tasks.

There are numerous combinations of capabilities that can be combined in fairly

arbitrary ways. A simple clustering algorithm would treat a strip mall with shoe shop

as a different cluster from a strip mall that is similar except for lack of a shoe shop, and

need to learn about them separately.

The problem calls for an algorithm that can learn about sums of clusters of capa-

bilities. After experimenting with a number of approaches, I selected truncated singular

value decomposition (T-SVD). Some experiments also used a weighted variation on

truncated singular value decomposition. T-SVD also enables bootstrapping the training

by conveniently supporting the infusion of summary capability clustering data.

Different capabilities have different usage frequencies, and their distribution may

affect the accuracy of the algorithm. The experiments use data derived from actual shop-

ping basket data obtained from a major supermarket chain. The algorithm was effective

if either the locations had simple behavior or I supplied summary capability clustering

data to supplement data about the locations. In particular, for the basic workload, with

seed data and given 1000 observations of 135 simulated locations, equivalent to an aver-

age of 7.4 observations per location, the algorithm achieved 100% precision and almost

90% recall.
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1.3 Scope

This dissertation proposes an algorithm, based on singular value decomposition,

for predicting the capabilities of locations from seed data and a random sampled obser-

vations.

In order to develop and test algorithms, I wrote a simulation environment, de-

scribed in Chapter 4. All tests use artificial data based on real world distributions. These

tests, by their nature, cannot measure how well the simulated world matches the real

world, only how well the inference algorithm operates relative to the simulated.

Many issues add to the difficulty of generalization. The test cases include several

issues:

• Locations with cross-cutting behavior. The inference system is based on an as-

sumption that capabilities appear in clusters. Cross-cutting locations exhibit ca-

pabilities from several clusters without exhibiting the whole of each cluster.

• Incorrect training data. In the real world, some inputs will be erroneous. For

example, a user might record completion of a to-do list item late, at a different

location, giving a false impression that the new location has the associated capa-

bility.

• Variations in capabilities based on time of day. Shops and departments open and

close. The available capabilities at a location can change depending on the time

of day.

Simulation testing motivated several enhancements to the algorithm.

1.4 Outline

The next chapter discusses some related work on other approaches to location-

aware reminders. Chapter 3 gives background on the singular value decomposition al-

gorithm. Chapter 4 describes the simulation environment I built to test the algorithm.

Chapter 5 describes a test workload and discusses results of applying the basic algo-

rithm to it. Following chapters describing some enhancements to the algorithm in the
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context of more difficult workloads. Chapter 9 discusses how the algorithm would be

used in a reminder system. The final chapter presents some conclusions and ideas for

future work. The very large number of simulation experiment results would interfere

with the flow of the text if placed in-line, but are useful background for understanding

the discussion. An appendix contains the full results, with only the most relevant data

presented in-line.

1.5 Acknowledgment

Portions of this chapter are based on material that appeared in “Inferring the

Everyday Task Capabilities of Locations”, Patricia Shanahan and William G. Griswold,

LoCA 2007: 157-174, 2007. The dissertation author was the primary investigator and

author of this material.



2 Related Work

This chapter discusses related work on location based reminders. Although a

full survey of singular value decomposition is beyond the scope of this dissertation, the

next chapter contains some background and motivation for using it.

Several researchers have proposed location based reminders. There are two as-

pects to research in this area, only one of which is relevant to this dissertation, the

problem of deciding whether a known location is an appropriate reminder location. The

other aspect is determining the device’s actual location.

There are several data sources that can be used for selecting locations for capabil-

ity based reminders. Although each data source on its own has limitations for providing

reminders for everyday activities, they can be used to train a machine learning algorithm

for inferring location capabilities.

2.1 Direct Input of Individual Information

The simplest method of selecting a location for a reminder is to have the user

name a location or point to it on a map. In effect, this method requires the user to do the

mapping from capability requirements to locations having those capabilities.

Joe could have used a direct location-based reminder system, such as Place-Its,

to remind himself about the detergent next time he is at his usual supermarket [SLL+05].

However, Place-Its would only remind him at the planned location, not at other locations

with similar capabilities.

CybreMinder has a situation description language with power similar to a data-

base query language [DA00]. Locations can be referred to by symbolic names such as

“Bob’s front door”. This is likely to be most effective if each user has a limited number

9
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of known reminder locations or groups of locations.

Although CybreMinder’s situation language may be more complicated than is

appropriate for non-expert use, it would be useful to apply time restrictions to a re-

minder. For example, a user whose shopping list includes perishable foods would prob-

ably not wish to be reminded of it while driving past a supermarket on the way to work.

The reminder would be useful, at the same location, when the user is returning home.

The main limitation of direct input is the sheer number of places that have some

capabilities. A reminder system is not useful if the work of entering the data exceeds

the benefit of the reminders. Yet it may be the only solution for a user in a new area, if

the system does not have any local information.

2.2 Automated Entry of Individual Information

The use of a to-do list for tracking activity, as proposed in this dissertation, is

an example of automated entry of individual information. Every task completion is a

potentially observable event. With the user’s consent and suitable privacy protections,

the application on the phone could collect the time and location of a task check-off,

and supply the data to its server. The privacy protections could include lower bounds

on elapsed time and change in location between the event and its transmission to the

server, so that the server would never be told the user’s current or very recent location.

This data collection method presents minimal cost to the user, and is applicable to non-

commercial tasks.

Mankoff et. al. use cash register receipt scanning as a convenient way to help

people keep track of the nutritional characteristics of the mix of foods they buy, and

presumably eat [MHH+02]. Their technique could be adapted to capture the shopping

data from the receipt.

Such approaches have the major advantage of capturing the information that

most affects the individual user, with minimal user effort. The user’s favorite shops and

services will definitely be covered. However, as the sole data source, information accu-

mulates slowly, and cannot supply any data the user did not already know or discover

by other means.
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2.3 Localized Web Searches

Location-limited web searching has considerable promise for finding locations

by capability, but does not yet work well for many common tasks.

In practice, the user will often know the types of facilities, such as shops, that

are appropriate for completing a task. A “Find businesses” search on Google Maps

(maps.google.com) for “supermarket” near zip code 92126, on March 14th. 2007 got

the following top results:

• A sponsored link to the home page for a supermarket chain

• A link for “Seafood City”, which is a supermarket with an emphasis on seafood.

• A link to a supermarket chain pharmacy that does not exist at the indicated loca-

tion.

• A link for a specialized Vietnamese market

• A link for “Slimmer Body Mall”

The nearby stores of three major supermarket chains were not shown.

The problem is harder if the user does not already know the appropriate types

of facilities for completing a task, or if there are so many that entering them takes too

long. Querying “Find businesses” on Google Maps for “instant coffee” near zip code

92126 was converted to “Categories: Motels & Hotels, Health & Diet Food Products”,

and again failed to find the local supermarkets and convenience stores at which most

people would buy instant coffee.

Other web searches for common items have produced similar results. Exotic,

rare, and expensive items are well represented. Large facilities such as major chain

stores are well represented. Trivial items that everybody knows about such as instant

coffee are not. Small facilities, such as mini-marts may be represented, depending on

owner initiative and whether they are part of a chain.



12

2.4 Web-Accessible Database Searches

Many organizations provide web pages that in essence can query a database. For

example, the US Postal Service web site (www.usps.gov) supports a search for places

that sell postage stamps near a given address or zip code. The problem for a reminder

system is navigating the web pages to get to the stamp-buying search. A program can

be written to navigate any specific set of web pages to obtain specific data, but it would

have to be done for each web site, and could stop working at any time if the web site

were modified.

This is a practical solution for a person needing an unusual capability. The lack

of automation makes it impractical for identifying large numbers of common capabilities

for many locations.

This problem could be ameliorated by having standard interfaces for machine-

based search of location-based information. For example, the Impulse Location-based

Agent Assistance project currently uses location-limited URL searches and the Where-

hoo server (wherehoo.org), to identify nearby locations that might satisfy the user’s

“wants” [YMKM00, You01]. The main difficulty is the bootstrapping problem of ac-

cumulating enough initial data to attract enough users to motivate database providers to

supply data for low value tasks.

The most general step in this direction is the Semantic Web project [W3C]. If

successful, it will make the deep web, the parts of the web that are currently only acces-

sible to humans through reading and understanding web pages, accessible to computer

programs. The ultimate solution would be a web query asking e.g. for addresses of

shops in a neighborhood that stock anything on the user’s shopping list.

Web-accessible databases are already an attractive source for bootstrapping a

machine learning algorithm. As the experiments presented later show, even a small set

of accessible databases can provide useful clustering information.

2.5 Acknowledgment

Portions of this chapter are based on material that appeared in “Inferring the

Everyday Task Capabilities of Locations”, Patricia Shanahan and William G. Griswold,
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3 Location Capability Inference

Algorithm

This chapter gives some background on the most promising approach this re-

search project identified, truncated singular value decomposition.

3.1 Data Model

The data model initially assigns a weight, representing the number of observa-

tions, to each combination of location and capability. The weights form a matrix, with

one row for each capability and one column for each location. For example:

Here, each value represents a number of observations. For example, the data

contains 153 observations of dog food selling at Happy Paws.

The frequencies of use of different capabilities at a location are useful data for

predicting other capabilities. Generally, heavily used capabilities represent core charac-

teristics, and the location is likely to continue to have those capabilities, as well other

capabilities normally associated with them. On the other hand, a single observation of a

Table 3.1: Training Data
Pete’s Pets Happy Paws Hal’s Hardware Mike’s Stuff

Dog Food 40 153 0 0 4
Cat Food 26 95 0 0 0

Bolt 0 0 203 3 0
Nail 0 0 100 4 0

Screwdriver 0 0 23 2 0
Hammer 0 0 45 0 0

14
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Table 3.2: Extended Training Data
hardware Pete’s Happy Hal’s Mike’s Stuff

Pets Paws Hardware
pet store 0 3 3 0 0 3

Dog Food 0 40 153 0 0 4
Cat Food 0 26 95 0 0 0

Bolt 5 0 0 203 3 0
Nail 5 0 0 100 4 0

Screwdriver 5 0 0 23 2 0
Hammer 5 0 0 45 0 0

capability may be an anomaly or a data entry error.

The location and product names are for reader convenience. The locations will

typically only be known by GPS or similar coordinate. The product names may be prod-

uct codes. Of course, a real set of training data would be much larger, with possibly tens

of thousands of products and, even in small test cases, dozens to hundreds of locations.

Normally, there are many more products and services than locations.

The data in this example suggests that cat food and dog food are normally sold

at the same location, so it is reasonable to expect Stuff to sell cat food, despite the

lack of any direct observations. A system that only uses actual history, without any

generalization, would not trigger a reminder for cat food at Stuff.

This data structure can also represent seed data deduced from other data sources.

A row represents a relationship among locations. A column represents a relationship

among capabilities. Suppose a data source associated the label “pet store” with Pete’s

Pets, Happy Paws, and Stuff, that data source carried a weight of 3, given its general

reliability. An added row containing 3 for each of those locations, and 0 in all other

entries, represents the data. Similarly, an externally supplied list of hardware items with

weight 5 would be represented by an added column with 5 for those items, and 0 for the

remaining rows:
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3.2 Algorithm Concept

The obvious and simplest algorithm, the “Null” algorithm, is to project avail-

ability of a capability at a location if, and only if, the data includes an observation of

exactly that capability at that location.

The Null algorithm is not very effective. The input data may have a zero for an

available product because nobody has happened to report a purchase of that product at

that location. It may also include false positives, because someone deleted an item from

their to-do list for a reason other than completion of that task at the current location.

To outperform the Null algorithm, an algorithm must effectively change some

of the incorrect entries without changing too many of the correct ones. The assumption

underlying this work is that the real capability-location matrix is, in some sense, simpler

than the available data. It is based on a few big decisions such as “I’m going to start a

bakery in this mall.”, that drive clusters of product assortment decisions, such as “I’m

going to sell bread.”.

We need to construct a table that is simpler than the training data table, but

also a close approximation to it. The first step in the algorithm is to build a matrix

representing the data. Each location is represented by a column of the matrix containing

the observed capability weights. For instance, using our original example data without

the added “hardware” and “pet store” data, the column vector for “Pete’s Pets” is (40,

26, 0, 0, 0, 0). Similarly, each capability is represented by a row. The matrix for the

example data is:

X =



40 153 0 0 4

26 95 0 0 0

0 0 203 3 0

0 0 100 4 0

0 0 23 2 0

0 0 45 0 0


. (3.1)

Now our problem is to find a matrix that is as close as possible to X but simpler

than it. We need to replace the intuitive ideas “simpler” and “close as possible” with

mathematical concepts.
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Rank is the most relevant measure of matrix simplicity. The rank of a matrix is

the size of the largest set of rows such that no row is linearly dependent on the others,

no row can be constructed from a weighted sum of the other rows. The rank of a matrix

cannot be greater than the smaller of the number of rows and the number of columns,

but can be less. Despite having six rows and five columns, X only has rank four. Each

of the last four rows can be generated as a linear sum of any two of them. A “simpler”

matrix than X would have even lower rank.

If the basic hypothesis of product clustering is correct, X is a noisy, sampled

approximation to a rank two matrix, where each column is a linear sum of a column

representing an idealized pet food store and a column representing an idealized hardware

store.

The most obvious measure of distance between two matrices, A and B, is their

Euclidean distance
√

∑i, j (Ai, j−Bi, j)
2, the Frobenius norm of their difference.

Thus the intuitive idea of finding a simpler capability-location table, similar to

the one based on the observations, reduces to finding, given a matrix X and a positive

integer k, k less than the rank of X, a rank k matrix X̃, that minimizes the Frobenius

norm of the difference X̃−X. This is a job for truncated singular value decomposition

(T-SVD).

3.3 Singular Value Decomposition

Singular value decomposition is a matrix factorization, with a wide range of

uses. David Austin’s “We Recommend a Singular Value Decomposition” is a short

introduction [Aus09]. It is also described in section 6.3 of Gilbert Strang’s “Linear

Algebra and its Applications” [Str05].

Given a matrix X, it computes matrices U, S, and V such that X = USVT , where

X is diagonal, and U and V are unitary matrices. For real matrices, the relevant case, a

unitary matrix is orthogonal. That is, the transpose of the matrix is its inverse.

The singular values, the non-zero elements of the singular value matrix, S, ap-

pear on the main diagonal in descending order. Intuitively, each is the weight of some

abstract feature as an explanation of the values in the original matrix.
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The singular value matrix from the decomposition of the training data matrix in

Equation 3.1 is

S =



231.9131 0 0 0 0

0 186.3347 0 0 0

0 0 2.8800 0 0

0 0 0 2.3201 0

0 0 0 0 0

0 0 0 0 0


. (3.2)

The number of non-zero values in X equals the rank of the input matrix, four.

The singular values are in descending magnitude order. Intuitively, each represents the

importance of an abstract feature to explaining the values in the input matrix. Note that

there are two relatively large singular values and two smaller ones.

Truncated singular value decomposition (T-SVD) drops all except the largest k

singular values, for some positive integer k, treating the remaining ones as though they

were zero. All except the first k columns of each of U and V can be dropped, because

they would be multiplied by zeros in S. Similarly, S is only k by k.

In our current algorithm, k is supplied externally. This example uses k = 2. Note

that the first two singular values, 231.9131 and 186.3347, are relatively close, but the

third singular value, 2.88, is much smaller.

The truncation to k singular values results in a rank k approximation. The trun-

cation could be done by running the full decomposition and extracting the data relating

to the first two singular values, but for large matrices it is more efficient to only obtain

the required values, for example by running Matlab “[U S V] = svds(X,2)”. The ac-

tual results contain several values of absolute magnitude less than 10−14, due to floating

point rounding error. Those numbers have been replaced by zero for clarity:
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U =



0 −0.84895

0 −0.52848

0.87541 0

0.43145 0

0.099325 0

0.194 0


(3.3)

S =

(
231.91 0

0 186.33

)
(3.4)

V =



0 −0.25598

0 −0.96651

0.99981 0

0.019622 0

0 −0.018224


(3.5)

Next calculate Y, the rank 2 matrix approximation to X, by multiplying the fac-

tors:

Y = USVT =



40.493 152.89 0 0 2.8828

25.208 95.176 0 0 1.7946

0 0 202.98 3.9837 0

0 0 100.04 1.9634 0

0 0 23.03 0.452 0

0 0 44.983 0.88284 0


. (3.6)

Chu notes that, if each column of X represents an unpredictable sample of a

certain unknown distribution, the truncated singular value decomposition “not only is

the best approximation to X in the sense of norm, but also is the closest approximation

to X in the sense of statistics.” [Chu]. Y is the required simpler approximation to X.

Finally, map the results back to our original problem domain, and use them as

scores for estimating location capabilities:

All elements that were non-zero in Table 3.1 are non-zero in Table 3.3. Two

additional elements are non-zero, representing cat food at Stuff and hammers at Mike’s.

The decision to issue a reminder will be made by comparing a cutoff value to the value in
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Table 3.3: Scores
Pete’s Pets Happy Paws Hal’s Hardware Mike’s Stuff

Dog Food 40.493 152.89 0 0 2.8828
Cat Food 25.208 95.176 0 0 1.7946

Bolt 0 0 202.98 3.9837 0
Nail 0 0 100.04 1.9634 0

Screwdriver 0 0 23.03 0.452 0
Hammer 0 0 44.983 0.88284 0

Table 3.3 for the combination of location and capability. The cutoff has to be somewhat

greater than zero to avoid false positives due to rounding errors. For any cutoff below

0.452, the system would predict cat food at Stuff and hammers at Mike’s, despite the

lack of direct observations.

3.4 T-SVD Applications

The full range of uses of truncated singular value decomposition is beyond the

scope of this dissertation. This section contains a few examples.

T-SVD, as well as providing a low-rank approximation to its input matrix as de-

scribed above, also provides a very compact representation. Most uses of T-SVD derive

some benefit from compact representation. For image compression, compactness is the

primary motivation for its use. Singular value decomposition for image compression

was proposed in 1976 [AP76].

Deerwester et. al. applied T-SVD to latent semantic indexing [DDL+90]. It is

related to the location capability problem, with documents replacing locations and terms

replacing capabilities. It differs in starting from complete documents, not just samples.

Latent semantic indexing deals with very large problems. One of the test data sets used

in a study of rank selection contains 5 million documents and 1,809,597 unique terms

[Bra08].

The recommender system problem is even closer to the location capability prob-

lem. The location capability problem could be rephrased as “Locations that offer capa-

bilities similar to ones this location offers also offer . . . ”. Sawar et. al. proposed singular

value decomposition for recommender systems [SKKR00]. The main difference is in
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the nature of the values in the matrix. In a recommender system, the matrix value for

user i and item j measures how strongly user i likes or approves of item j. The value

in the location capability matrix is the number of reports of the location exhibiting the

capability.
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4 Evaluation Environment

This dissertation examines inference algorithms for a particularly demanding

sub-case of the location capability problem, shopping. It is an important sub-case, be-

cause simple shopping tasks are both easily forgotten, and can be flexible as to both time

and place, provided the location has the associated capability. A small shopping center

may stock thousands of products, any one of which may be required by a reminder user,

requiring fine granularity of capability inference. The key hypothesis is that machine in-

ference can leverage limited local information, aided by seed data, to project capabilities

that have not been reported for the location.

A simulation environment for testing this hypothesis presents both challenges

and simplifications compared to an actual reminder system. Its main function is to

compare results for different approaches, so it contains multiple implementations of

the inference engine, and accepts many parameters for controlling the workload, the

inference engine, and report generation. It runs many times, to compare, for example,

effects of different amounts of training data. On the other hand, it is a simple batch

program, reading one input file, and generally producing one output file.

Most of the program is in Java, with Matlab code for the singular value de-

composition. Although the Java Colt linear algebra library implements singular value

decomposition, it only does a full decomposition. The simulator needs truncated singu-

lar value decomposition. For all except the smallest problems, using Matlab’s svds was

faster than using Colt’s cern.colt.matrix.linalg.SingularValueDecomposition and subse-

quently truncating.

22
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Figure 4.1: Simulation Process Outline Diagram

4.1 Process Outline

Figure 4.1 shows an outline of the test process. An anonymous US supermarket

chain supplied the shopping basket data. Each test uses a location model of the world

derived from the frequencies for eight product categories. The training data is a set of

random samples from the training data. The final results are produced by comparing the

inference engine’s predictions, based on the training data, to the location model.

4.2 Modules

This section describes the highest level division of the simulator into modules.

The main modules are control, generator, and inference, and control. They are supple-

mented by utilities, freestanding, and database output modules. Figure 4.2 shows a high



24

level view of the most important packages and classes.

4.2.1 Generator

The generator module represents ground truth for purposes of the simulation.

It builds a model of simulated locations and their capabilities. It supplies randomly

sampled training data. During report generation, it supplies the “actual” results for

calculation of precision and recall.

4.2.2 Inference

The inference module contains multiple inference engine implementations. Each

inference implementation provides a class implementing the InferenceEngine interface.

An InferenceEngine can learn from a set of training data, and return an InferenceResult-

Set representing its inferences.

There are four basic InferenceEngine implementations, Relational, Cluster, Ei-

gen, and SVD. Relational implements a simple probabilistic relational model [GFKT01].

Cluster implements an equally simple clustering algorithm. Neither Relational nor Clus-

ter was a good fit for the problem. Both require randomly generated starting state: a prior

distribution for Relational and an initial cluster set-up for Cluster. In each case, that lead

to a need for multiple runs, and some of which were long due to slow convergence.

Eigen calculates the eigenvectors of the correlation matrix. The size of the matrix was

such that it used too much memory for all except the smallest problems.

SVD implements a truncated singular value decomposition. It produced good

results on the preliminary tests, and is the basis for the rest of the investigation. The im-

plementation has three variations. The first, a pure Java solution using Colt, is practical

only for small problems because it calculates the full singular value decomposition and

then truncates it. The more practical solution passes the data to Matlab and runs a script

using the svds function, which directly computes the truncated SVD of a sparse matrix,

without first computing the full SVD.

Some experiments also used a weighted SVD, implemented by an iterative algo-

rithm in a Matlab script. Because of the number of SVD iterations, it uses a faster imple-
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learn(data : TrainingData) : InferenceResultSet

<<interface>>
InferenceResultSet
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inference::cluster

ClusterEingine

<<realize>>

inference::svd

SVDEngine

<<realize>>

inference::relational

RelationalEngine

<<realize>>

Figure 4.2: UML Class Diagram of Main Simulator Packages and Classes
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mentation, based on the PROPACK library, http://soi.stanford.edu/~rmunk/PROPACK/.

4.2.3 Control

The control module contains the main program, parameter processing, and report

generation. It sequences and coordinates each run.

The control module parses and validates a parameter file. It uses the generator

to build a world model based on the parameters. It then obtains an InferenceEngine,

and passes it training data supplied by the world model. Finally, it prepares reports

combining estimated data from the InferenceResultSet with actual data from the world

model.

4.2.4 Freestanding

The freestanding package contains a set of applications designed to run outside

the simulation environment. They perform tasks such as post-processing of multiple

result files.

4.2.5 Utilities

The utilities are generally useful classes, such controlled substitutes for random

number sequences to aid in unit testing random number dependent functions such as

training data generation.

4.2.6 Database Output

Almost always, the reports give sufficient information for evaluating a test, but

there have been a few cases in which much more information was needed to understand

what happened. Within the simulator, the generator and inference modules are isolated

from each other to ensure the inference module uses only the training data. Coordinated

assertion checking across the modules inside the program would break that isolation.

When database output is enabled, the generator, inference, and control modules all sup-

ply information to the database output module, which places it in a relational database.
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Main

WorldModel.getInstance(...)

WorldModel

TrainingData

TrainingData.getInstance(model:WorldModel,…)

sample()

InferenceEngine

learn(data:TrainingData,…):InferenceResultSet

InferenceResultSet

test(location,capability):boolean

test(location,capability):boolean

getPurchase()

Figure 4.3: UML Sequence Diagram of Main Operations

Each relational table captures only local information from one part of the simulator.

Subsequent database selects and joins bring out details about the behavior of the whole

system, and verify system-wide assertions.

4.3 Inference Sequence

The sequence of operations is illustrated in Figure 4.3.

The control module reads three groups of parameters:

• World model parameters define a set of locations and their capabilities.

• Inference parameters select the algorithm to use and sets its controls.
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• Report parameters select the reports. The results can be reported with different

levels of detail.

The control module obtains a WorldModel from the generator, based on the

world model parameters. It creates a TrainingData object, containing random samples

of locations and capabilities from the WorldModel.

The inference parameters control the creation of an InferenceEngine. It is passed

the TrainingData, and uses it to calculate an InferenceResultSet.

The most important form of report is a Precision Recall Report. It contains

precision, recall, true positive, false positive, true negative, and false negative numbers.

For each combination of location and capability, the results reflect the comparison of the

result of asking the WorldModel whether the location has the capability to the result of

asking the InferenceResultSet the same question.



5 Basic Inference Algorithm Test

Workload

This chapter presents the basic algorithm, with two very simple examples, and

introduces the result presentation. Subsequent chapters present more difficult cases,

with related extensions and modifications to the algorithm.

5.1 Proposed Inference System

I propose applying the machine learning process of truncated singular value de-

composition (T-SVD) to raw location-based capability data, including some general

background data, to establish patterns of association between capabilities and at least

a little data about each location of interest.

This proposed process is analogous to one way that many people reason about

a location: Suppose Alice needs some laser printer paper. She sees a new store, with

a name she does not recognize, but with posters in the windows advertising special

offers on ball point pens, highlighters, ink jet printer cartridges, photocopying, and file

folders. Alice uses her general experience of places offering those products and services

to deduce the probable presence of an office supply store and expects to be able to buy

her paper there.

Now instead suppose Alice has laser printer paper on her digital to-do list. Betty,

another user of the system, previously visited the new store. While there, she checked

off ball point pens, a highlighter, an ink jet printer cartridge, a photocopying task, and

file folders. If Alice’s phone depends only on directly collected data from previous

shoppers like Betty, there is insufficient information for the phone to issue a reminder.

29
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How much data would be enough, if Alice’s phone had access to inferences from

both the local data and a larger body of data from many other locations? To answer that

question, I built a model of location capabilities and used it to test a number of inference

algorithms, eventually settling on truncated singular value decomposition.

5.2 Evaluation

I conducted simulation experiments to test the hypothesis that machine learning

could fill in gaps in the observations, as well as merge different types of data.

I considered two types of input data, small numbers of random observations,

such as might result from to-do list deletions, and seed data derived from bulk lists of

products that are commonly stocked together, such as might be extracted from on-line

databases. I tested two simulated environments, “Simple” and “Compound”. In the Sim-

ple environment, each location has the capabilities of a single cluster. The Compound

environment, some locations have multiple clusters of capabilities, including some that

exhibit all eight clusters. In each case, I compared results to a “Null” learner that reports

availability of a capability at a location if, and only if, the training data contained that

combination.

A US national supermarket chain (who asked to remain anonymous) supplied

shopping basket data. The data includes classification of products into major groups.

These groups provide a model of related products, and were used to model different

types of shops, with unique capabilities. For our experiment, I selected the eight groups

with the highest total purchase counts. I generated a table of group number and number

of purchases for each product in those groups. The table contains over 40,000,000

purchases. Each group represents a set of related products, so I used each group as

a model of a specialized shop type.

The training data for each location was sampled from the groups for its shop

types, with the probability of each product proportionate to its frequency in the real data.

I used the set of products in each group, with no frequencies, as seed data, because lists

of groups of related products and services are often publicly available, but frequencies

of sales are normally trade secrets.
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Table 5.1: Compound Location Types

Instances Shop Types

8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
10 1,2
8 1,2,3
15 1,2,4
10 4,5
10 4,5,6
6 1,2,3,4,5,6,7,8
12 1,8

The “Simple” environment used 8 locations per shop type, 64 locations total,

where each location corresponded to a single shop. The “Compound” experiment used

a mix of different types of locations. Each location has one or more shop types, as shown

in Table 5.1. There are a total of 135 locations, 64 similar to the “Simple” experiment,

the remainder modeling different types of locations, where each type has capabilities

from multiple clusters.

I ran each experiment in two training data modes:

• Randomly generated samples. Each random sample is produced picking a location

with equal probability, and then picking one of its capabilities with probability

proportionate to the frequency of that capability in the shopping basket data.

• Randomly generated samples, as above, plus seed data derived from bulk lists of

the products in each group.

For T-SVD’s two external parameters, I chose 8 for the rank and 10−6 for the

cutoff. The rank was based on the expectation that at least eight singular values would

be needed and an observed lack of improvement for using more. The cutoff was selected

to suppress rounding error on values that should be zero. Runs with seed data treated
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each combination of artificial location and associated capability as though it had 1000

purchases. These parameters changed later, in the light of more difficult workloads.

I also ran a “Null” learner to establish a baseline. The Null learner reports a ca-

pability at a location if, and only if, that combination of capability and location appeared

in the training data. It does no extrapolation. A learning method must do better than the

Null learner to be worth using.

There are two ways a result can be wrong, leading to two quality measures.

“Precision” is the proportion of reminder triggers that would be correct, issued at a

location that affords the required capability. “Recall” is the proportion of locations

affording the capability that would trigger the reminder. If T P is the number of true

positives, FP is the number of false positives, T N is the number of true negatives, and

FN is the number of false negatives then

Precision =
T P

T P+FN
. (5.1)

Recall =
T P

T P+FP
. (5.2)

The reports show precision and recall separately, rather than combining them in

a single figure of merit, because their values have different consequences for a reminder

system. High precision indicates that all, or almost all, alerts are for locations that really

have the required capability. High recall indicates that an alert is issued at all, or almost

all, locations that do have the capability.

A useful learner achieves good precision and recall. A learner that claims every

capability is available at every location has perfect recall but zero precision. A learner

that never asserts availability of a capability has perfect precision but zero recall.

Ideally, precision and recall should be measured relative to the rate at which

users will want to be reminded of each capability. That data is not available. We can

measure them two ways, by count and by probability. The “by count” measures count

all capabilities equally, regardless of their probabilities. An inference error for a very

rarely used capability has the same effect on these measures as an error in the most

frequently used capabilities. In practice, users can use other means to find locations

for really infrequent capabilities. The “by probability” measures weight precision and
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Figure 5.1: Precision by count for Simple Locations

recall according to the probability of each capability, reducing the weight given to low

frequency capabilities.

In each of the charts, the “SVD-N” line is the performance of our algorithm

without the use of seed data. The “SVD-Y” line is with seed data. “Null” represents the

Null learner.

Figures 5.1 and 5.1 show precision and recall by count for the “Simple” data,

measured as a function of the number of training data samples. The main benefit of the

seed data in the “Simple” experiment is allowing the system to make projections about

capabilities that have never been observed in the training data, based on knowledge that

the unseen capability is related to ones that have appeared. Figures 5.3 and 5.3 show

precision and recall by probability. Both Null and SVD-N have significantly worse

recall for low probability capabilities because most of them do not appear in the training

data.

Although the four charts together give a complete picture of the results for a

series of tests, they are not all needed in-line, and can be difficult to compare. A sum-

mary, such as Figure 5.2 gives an outline of the results in a more compact form. The full

charts are all in Appendix A. Individual charts are interleaved with the text as needed to

illustrate specific points.

The full discussion of the summary format is at Appendix A.1. “Max” is the

maximum and “Mean” the mean of the function formed by linear interpolation be-

tween the results. “N(0.9)” is the number of training samples needed to achieve 90%.
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Figure 5.2: Recall by count for Simple Locations
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Figure 5.3: Precision by probability for Simple Locations
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Figure 5.4: Recall by probability for Simple Locations
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Figure 5.5: Precision by count for Compound Locations

“N(0.9M)” is the number of training samples needed to achieve 90% of “Max”, a mea-

sure of consistency. In each case the results reflect the worse of the “by count” and “by

precision” results.

Table 5.2: Summary of Basic Tests

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Simple (Figure A.3)

Null 1.00 1.00 100 100 0.03 0.05 9,000
SVD-N 0.99 1.00 400 400 0.12 0.20 9,000
SVD-Y 1.00 1.00 100 100 1.00 1.00 200 200

Compound (Figure A.4)

Null 1.00 1.00 100 100 0.01 0.01 9,000
SVD-N 0.43 0.80 0.10 0.17 9,000
SVD-Y 1.00 1.00 100 100 0.96 1.00 2,000 2,000

“Null” and “SVD-N” both perform significantly worse for the compound loca-

tion case than the simple location case, as shown in Figures A.3 and A.4. In particular,

“SVD-N” has significantly worse precision. The relatively good precision for low train-

ing counts for “SVD-N” is explained by the low number of capabilities it predicts. The

low precision for higher training counts, without seed data, may be explained by an ef-

fect discussed in the description of the algorithm. A location with multiple shop types

may cause a low but positive score at any location with just one of its constituent shop
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types. The training data, sampled from a realistic distribution, contains some observed

capabilities have extremely low frequencies, leading to an overlap in the scores for ca-

pabilities that do not exist and for capabilities that do exist, but observed at very low

frequencies. The seed data cures this by raising the scores for existing but rarely ob-

served capabilities.

With seed data, “SVD-Y” achieves 100% precision throughout, and also at least

90% recall given at least 2,000 samples.

5.3 Implementation Issues

This section discusses some system issues that affect the algorithms. The use of

these algorithms in a reminder system is discussed in more detail in Chapter 9.

The configuration in Figure 1.1, with a single server, is sufficient for small- to

medium- scale operations. Part of the workload, responding to queries and collecting

data, is embarrassingly parallel. The volume of data required by each server could be

limited by splitting transactions geographically.

However, the T-SVD calculation should be done with as much data as possible,

so it should be centralized. Figure 5.6 illustrates this architecture.

Suppose there are c capabilities and l locations. There may be thousands of each.

The input matrix X is has cl elements, but is sparse, having non-zero entries only for

observed combinations of location and capability and for seed data. The output matrix

is the same size, and may be less sparse, but does not need to be stored.

If observations were not changing, elements could be calculated as needed from

the results of the decomposition:

USVT = (U
√

S)(
√

SVT ) = (U
√

S)(V
√

S)T . (5.3)

A row of U
√

S corresponds to a capability. A row of V
√

S corresponds to a

location. Their dot product is the score for the capability at the location. The required

storage for this calculation method is k(c+ l) where k is the truncation rank.

This method is efficient and compact for non-changing data. However, a location

capability inference system may need to handle very rapid change, with three causes:
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Figure 5.6: The front-end server that communicates with Joe’s phone also communi-
cates with a back end inference engine server. The inference engine collects data from
front-end servers and other sources. Periodically, it distributes updates to the front-end
servers. In his car, Joe’s phone passes reminder data to his navigation system.
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• Additional data about existing, unchanged, locations.

• Additional data about locations that are changing. New facilities open and old

ones close. It will be necessary to have some form of forgetting to reduce the

influence of old, possibly out-of-date observations, compared to new ones.

• New locations.

Folding-in is a technique for handling new documents and terms in latent se-

mantic indexing [DDL+90, TS07]. It adds rows to U and V, without rebuilding the

relationships. However, even folding-in may be too static for the capability inference

problem.

First observe that any column of Y can be reproduced by multiplying together

U, UT , and the corresponding column of X:

UUT
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0

0

0

0


=



40.4933

25.2076

0

0

0

0


. (5.4)

This operation can be applied to any vector of capability observations, giving a

corresponding vector of scores. Suppose the observations include one cat food purchase

and one hammer purchase at Totally Square, which could happen if Totally Square is

a shopping center containing both a pet store and a hardware store. The corresponding

vector of capability observations is (0, 1, 0, 0, 0, 1). Then:

UUT



0

1

0

0

0

1


=



0.4487

0.2793

0.1698

0.0837

0.0193

0.0376


. (5.5)
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The cost of this technique is that it requires the observation vector for each loca-

tion. That may be quite acceptable in a geographically distributed system with sparse,

but frequently changing, observation vectors.

Equation 5.5 predicts both hardware and pet food at Totally Square, but less

strongly than for the locations with more data.

If the Totally Square data had been in the original training set, the algorithm

would also have replaced some zero elements in the original result with slightly positive

scores, reflecting the possibility that each location has both hardware and pet food, or

that hammers are a form of pet food. This behavior creates some anomalies for the

example data — Pete’s Pets is unequivocally a pet food store and does not sell hammers.

These issues are explored further in Chapter 6

To use this, each front-end server needs a copy of the U matrix. It has ck entries,

where k is the truncation rank. For 25,000 capabilities and k = 40, the U matrix would

have one million entries and could be stored in 8 MB. A front-end server also needs the

observed capability vector for each location it serves. The number of observed capability

vectors could be limited by dividing work geographically, and the vectors are sparse.

Although runtime cost has not been a significant factor in our initial testing, the

cost of the T-SVD calculation will tend to increase with data volume. However, the

wide use of SVD has resulted in extensive work on efficient solution techniques. For

example, Lin has developed an out-of-core method. [Lin00]. Work in latent semantic

indexing uses particularly large matrices, representing large collections of documents.

For example, one of the test data sets used in a study of rank selection contains 5 million

documents and 1,809,597 unique terms [Bra08]. That is equivalent to having 5 million

locations and 1,809,597 capabilities that have each been observed at two different loca-

tions. Work in this area includes algorithms for updating a decomposition to reflect new

data [ZS99, TS08]

In a large version of the system, the inference engine server could be effectively

scaled by giving it additional memory and compute power.

The combination of geographic division of the front-end work, the gains in SVD

performance from compute and memory size gains, and the potential for more sophisti-

cated SVD methods if needed ensure that the system can scale.
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5.4 Parameter Selection

The algorithm has three key parameters, the truncation rank, the weight assigned

to each combination of pseudo-location and capability in the seed data, and the lower

bound on scores that indicate the location has the capability.

5.4.1 Truncation Rank

The truncation rank is an estimate of the number of distinct factors, such as

presence or absence of a facility such as a bakery, that are required to explain the data.

Too low a truncation rank destroys data about real differences between locations. Too

high a truncation rank preserves too much detail. The problem of rank selection far

from solved even in the field of latent semantic indexing, despite extensive research.

A 2008 paper on the topic concludes “The experimental results reported here provide

further evidence that the question of representational fidelity of LSI spaces as a function

of dimension is a complex issue.” [Bra08].

The current implementation requires the truncation rank as a parameter. Table

5.3 shows the first 15 singular values for the basic compound workload with seed data

and 2,000 training data samples. There is a significant drop in singular values between

rank 8 and rank 9, so 8 is the natural truncation rank for this workload.

5.4.2 Score Bound

The output from the learning process is a real number for each combination of

location and capability, the score for that combination. High scores indicate the location

is likely to have the capability. Scores close to zero do not.

The truncated singular value decomposition produces, in effect, a floating point

function f (l,c) where l is a location and c is a capability. A reminder program must

commit to a definite choice as to whether to treat the current location as having a given

capability or not. It needs a Boolean function b(l,c) that is true if the algorithm indicates

the location has the capability, false if it does not.

The original algorithm treats all results greater than 10−6 as true, all smaller

results as false. That is, b(l,c) = ( f (l,c) > 10−6). This threshold does exclude some
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Table 5.3: Singular Values for 2000 Training Samples

Rank Value

1 69527
2 64203
3 55507
4 45706
5 45431
6 44023
7 36878
8 24759
9 13

10 8
11 7
12 6
13 6
14 6
15 6

non-zero values that are due to floating point rounding, but it is very arbitrary and does

not adjust with volume of training data. The new approach defines the threshold as a

function of the lowest score assigned to any positively trained capability for the shop.

Subsequent testing showed that this fixed value was too inflexible. I reran the

basic tests with a new system for calculating the Boolean. For each location, there is a

set of capabilities it exhibited in the training data. Let x be the score at location l for

the capability in that set with the lowest score. Then the algorithm infers a capability is

available at l if, and only if, its score for l is greater than 0.99x.

It may be useful to adjust the bound according to a user selected trade-off be-

tween being notified of all possibilities, at the risk of false alarms, or being notified only

when there is near certainty of a required capability. The correct choice may depend, for

example, on how urgently the user wants to complete a particular task, and on the cost

of an alert, given the user’s context and activities.
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5.4.3 Seed Data Weight

The seed data contains a pseudo-location for each cluster of capabilities. The

pseudo-location appears in the training data with each of its capabilities at a fixed

weight, the seed data weight. The initial tests used 10,000, but this may be too big

relative to the amount of actual training data. The tests where rerun with a weight of

1,000.

5.4.4 Parameter Selection Results

Table 5.4 shows results for four combinations:

SVD-Y The SVD-Y algorithm with the original parameters.

DynamicBound SVD-Y with the score bound changed to 0.99x, where x is the lowest

score for any training data item for the current location.

Seed1000 The SVD-Y algorithm with the seed data weight changed from 10,000 to

1,000.

NewBase Seed1000 with the score bound changed to 0.99x, where x is the lowest score

for any training data item for the current location.

Table 5.4: Summary of Basic Compound Parameter Selection

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Parameter Selection (Figure A.5)

SVD-Y 1.00 1.00 100 100 0.96 1.00 2,000 2,000
DBound 1.00 1.00 100 100 0.96 1.00 2,000 2,000
Seed1000 1.00 1.00 100 100 0.96 1.00 2,000 2,000
NewBase 1.00 1.00 100 100 0.96 1.00 2,000 2,000

As suggested by the summary results, and confirmed by the charts in Figure

A.5, all four methods performed equally well. NewBase continued to perform well on

more complex workloads. Accordingly, NewBase was chosen as the base method for

the remaining experiments, and will be referred to as “Base”.
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5.5 Algorithm Extension for New and Changed Loca-

tions

A reminder system should be capable of making predictions about locations for

which it has some data, even if that data was not available the last time it ran the singular

value decomposition. For optimal learning, the decomposition should be done by a

central server with as much data as possible. Front end servers should use the results,

and recently collected local data, to answer questions from users’ phones.

The front end server would have the results of a previous singular value decom-

position and a vector representing a sampling of the capabilities at the new location. It

needs to produce a new vector representing the estimates of availability of capabilities

at the new location. Each of those vectors represents a point in a vector space with a

dimension for each capability. Each coordinate in the observation vector represents the

number of time the location has been observed to provide the capability. Each coordi-

nate in the result vector is an estimate of how strongly the location shows the capability.

Each matrix represents a linear transformation between two vector spaces, as

shown in Figurefig:simpSVDVectorSpaces. The capability space has one dimension for

each capability. Multiplication by the left singular vector matrix U maps a capability

space vector to the feature space, which has one dimension for each abstract feature

detected by the singular value decomposition. Multiplication by the singular values

matrix S rescales the dimension of the feature space. The final vector space, location

space, has a dimension for each location in the training data. Multiplication by the right

singular vector matrix V maps a location to the feature space.

In particular, multiplication by the left singular vector matrix, U, maps from the

capability vector space to a feature vector space with lower dimensions. Multiplication

by its transpose, UT , maps the feature vector back to a vector in the capability space.

Multiplication by UUT maps a vector of observed capability weights to a vector

of estimated capability scores. Front-end servers will be able to map capability observa-

tions from new locations, and updated observations from existing locations, to estimates

using only the matrix U. The algorithm for for time varying behavior, discussed in

Chapter 8, uses it to estimate capability scores for a time window at a location.
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Figure 5.7: SVD Result Matrices as Vector Space Transformations

This method has serious limitations. It cannot use, or make predictions about,

new capabilities. The SVD minimum error guarantees do not apply to this procedure -

the new data could be of such a nature that the SVD result would have been significantly

different if the new data had been used in the decomposition.

5.6 Conclusion

The basic workload results show that truncated singular value decomposition

can handle some very simple cases well. The “Base” algorithm for future experiments

uses the following values for the free parameters: seed weight 1000, and score bound

0.99x, where x is the lowest score for any trained capability at the current location. The

default truncation rank is 8.

The next three chapters describe tests with more difficult problems, and adjust-

ments to the algorithm to improve handling of those cases.
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6 Cross-cutting Locations

Two aspects of the basic workload aid the inference algorithm. Each location

stocks all or none of each cluster indicated by the seed data, and the relationships be-

tween capabilities can be fully represented by symmetrical correlation. In the real world,

some locations will have behavior that contradicts the seed data, and some capabilities

are related by asymmetrical implication. For example, a chain store may stock both its

own store brands and corresponding national brands. Presence of the store brand im-

plies the national brand, but there are may locations that stock the national brand without

also stocking that particular store brand. This chapter introduces a harder workload, the

“convenience store” workload with locations whose capabilities cut across the seed data

clusters.

The convenience store workload adds 8 locations that each roughly models a

convenience store by offering the 1000 most frequently used capabilities from the orig-

inal data. The objective is to stress the algorithm, not to accurately model convenience

stores. It does not reflect their actual biases, for example towards snack food.

There are three main objectives, in roughly descending order of priority.

• Handle the convenience stores without degrading results for other locations.

• Get reasonable overall results in the presence of convenience stores.

• Learn the convenience store behavior.

6.1 Initial Results

Table 6.1 shows results for all locations, for just the added convenience stores,

and for just the locations from the Basic Compound workload, because results were
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often very different for convenience stores from the others. The Base algorithm is un-

changed from the previous chapter. It achieved the same results as before for the other

locations. Its convenience store results show very poor precision, but good recall. De-

tailed examination of the results showed that it had treated the convenience stores as

similar to supermarkets, stocking almost everything.

Table 6.1: Summary of Convenience Store Initial Rank 8

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

All Locations (Figure A.6)

Base 0.85 0.92 0.95 1.00 2,000 2,000
Feedback-U 1.00 1.00 100 100 0.85 0.89 2,000
Feedback-W 0.87 1.00 0.94 1.00 2,000 2,000

Convenience Stores (Figure A.7)

Base 0.05 0.06 200 0.88 0.99 4,000 4,000
Feedback-U 0.98 1.00 700 700 0.00 0.03
Feedback-W 0.06 0.62 0.80 0.95 5,000 4,000

Other Locations (Figure A.8)

Base 1.00 1.00 100 100 0.95 1.00 2,000 2,000
Feedback-U 1.00 1.00 100 100 0.95 1.00 2,000 2,000
Feedback-W 1.00 1.00 100 100 0.95 1.00 2,000 2,000

In a reminder system, this behavior would cause false alerts near convenience

stores. The training data for a supermarket is dominated by the top 1000 items, making

it difficult to learn the difference between the two types of locations from the positive

data only. On the other hand, a reminder application could provide an option for the

user to respond to a false alert.

A false prositive error is definitely a problem, but it also presents an opportunity.

The user will be aware of the error when the user’s phone issues an alert at a location

that does not offer the required capability. The reminder application could accept feed-

back input from the user reporting the error. The next two algorithms, Feedback-U and

Feedback-W, both model learning from such false positive feedback data.
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6.2 Learning from False Positive Feedback

Each of the feedback algorithms, Feedback-U and Feedback-W, runs the decom-

position twice, the first time without any feedback data, the second time with feedback

data based on the results of the first decomposition. The number of feedback samples is

20% of the primary training data count.

The feedback data divides the zeros in the matrix representing the training data

into two classes, those that are zero because there is no training data for the combination

of location and capability, and those representing an assertion that the location lacks the

capability.

Feedback-U uses a standard singular value decomposition, and represents a neg-

ative feedback sample by subtracting 10 from the training data matrix.

Feedback-W uses a weighted singular value decomposition, with two different

weights. Seed data and feedback samples have weight 1.0. All other weights are a small

positive number, 0.01.

Trucated singular value decomposition, for rank k, computes, from an a matrix

M, the rank k matrix X that minimizes ∑(Mi, j−Xi, j)2. Weighted truncated singular

value decomposition instead attempts to minimize ∑Wi, j(Mi, j−Xi, j)2 where W is a ma-

trix of weights. Wi, j is large for a false positive feedback zero, low for a zero that

represents an absense of data.

The Feedback-W weighted SVD algorithm is based on the EM algorithm de-

scribed by Nathan Srebro and Tommi Jaakkola in “Weighted Low-Rank Approxima-

tions” [NJ03]. The starting data for the iteration is the result of an unweighted singu-

lar value decomposition for the same input. Although Srebro and Jaakkola recommend

starting with a full singular value decomposition and working down to the required rank,

Feedback-W converged reasonably fast starting from rank 30.

False positive feedback data also aids selection of the score bound for determin-

ing whether to treat a score as positive. The Base algorithm uses 0.99x, where x is the

lowest score for any of the original training data at the current location. The Feedback-U

and Feedback-W algorithms pick the bound to minimize the weighted count of mispre-

dicted training data at the location. The weighting normalizes for different quantity of

normal and feedback data. If there are n normal training data samples at the location, and
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f feedback samples, mispredicting a feedback sample has d/ f the cost of mispredicting

a normal sample. If there are a pair of samples such that putting the bound between their

scores would miminize the weighted cost, the bound is set at the mean of their scores.

If there is no such pair, the feedback algorithms fall back to the same bound as the Base

algorithm.

The results for Feedback-W in Table 6.1 show the same problem as the Base

algorithm - a tendency to overestimate the convenience store capabilities, leading to

low precision. Feedback-U severely underestimated the convenience store capabilities,

giving better precision but much worse recall.

All three algorithms gave good results for the other locations, but none gave

any indication of learning for the convenience stores. The obvious explanation is that

truncation rank 8 is too low for this environment. The next experiment tests increasing

the trunction rank to 9 with no other changes.

6.3 Truncation Rank Increase

Table 6.2 shows the effect of increasing the rank to 9, with no other changes in

workload or algorithms. All three algorithms had significantly lower recall for the other

locations, failing the first objective.

6.4 Feature Scaling

The previous results suggest that truncation rank 8 is too low, but 9 is too high,

permitting over-fitting.

As described in Section 5.5, given a column vector x representing the observa-

tions at a location, and the left singular vectors matrix U, UUT x estimates the scores for

that location. Suppose U is the left singular vectors for truncation rank 9, and R is a

diagonal matrix with main diagonal elements [1,1,1,1,1,1,1,1,0]. Then URUT x is the

corresponding scores for the rank 8 decomposition.

Replacing R with a diagonal matrix that has a lower, but positive, value for the

last main diagonal element than for the others would have the effect of reducing the
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Table 6.2: Summary of Convenience Store Initial Rank 9

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

All Locations (Figure A.9)

Base 0.81 0.95 0.45 0.50 10,000
Feedback-U 0.79 1.00 0.78 0.86 5,000
Feedback-W 0.90 1.00 8,000 8,000 0.40 0.50

Convenience Stores (Figure A.10)

Base 0.47 0.68 0.39 0.57 9,000
Feedback-U 0.04 0.18 0.51 0.64
Feedback-W 0.49 0.79 10,000 0.32 0.43

Other Locations (Figure A.11)

Base 0.80 1.00 0.45 0.50 10,000
Feedback-U 0.81 1.00 0.79 0.86 5,000
Feedback-W 0.90 1.00 0.40 0.50

influence of the factor corresponding to the ninth significant value, without eliminating

it. The next question is how to choose the diagonal matrix R. Directly picking numbers

for the main diagonal would be unlikely to generalize to other problems. Instead, the

main diagonal of R for truncation rank k is defined by

Ri,i =
kSi,i

α

k

∑
j=1

S j, j
α

(6.1)

.

The parameter α is a non-negative number that controls the relative weight to

assign to features corresponding to high or low singular values. Setting α = 0 makes R

the identity matrix, and is equivalent to the normal rank 9 singular value decomposition.

Setting α to higher values shortens dimensions with low singular values, especially the

last dimension, the one that would be removed completely in a rank 8 decomposition.

This technique is related to a “tapered SVD” method that has been used in signal

processing [KC94, KIC94].

Table 6.3 is a summary of the results for Feedback-W, rank 9, with α values

from 0.5 to 3.0. Values 1.5 through 3 give similar results.
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Table 6.3: Summary of Convenience Store SVD Feature Scaling

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

All Locations (Figure A.12)

0.00 0.90 1.00 8,000 8,000 0.40 0.50
3.00 0.93 1.00 6,000 6,000 0.92 0.97 2,000 2,000
2.00 0.93 1.00 6,000 6,000 0.91 0.97 2,000 2,000
1.50 0.94 1.00 6,000 6,000 0.91 0.97 2,000 2,000
1.00 0.94 1.00 6,000 6,000 0.91 0.96 2,000 2,000
0.50 0.96 1.00 6,000 6,000 0.89 0.94 3,000 2,000

Table 6.4 shows all three methods, with rank 9 and α = 2.0. All three methods

performed well for other locations, so the scaling did remove the harmful effects of

increasing the rank. The high precision maximum for Feedback-U was due ignoring

the convenience stores, giving them zero recall, for training data count 200. Otherwise,

Feedback-W had better convenience store precision than Feedback-U, though worse

recall. Feedback-W had the best combination of results for all locations, as shown in

Figure A.13.

Table 6.4: Summary of Convenience Store Rank 9, α = 2

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

All Locations (Figure A.13)

Base 0.85 0.92 0.95 1.00 2,000 2,000
Feedback-U 0.89 1.00 0.92 0.97 2,000 2,000
Feedback-W 0.93 1.00 6,000 6,000 0.91 0.97 2,000 2,000

Convenience Stores (Figure A.14)

Base 0.05 0.06 200 0.88 0.99 4,000 4,000
Feedback-U 0.06 1.00 0.58 0.89
Feedback-W 0.13 0.68 0.43 0.80

Other Locations (Figure A.15)

Base 1.00 1.00 100 100 0.95 1.00 2,000 2,000
Feedback-U 1.00 1.00 100 100 0.95 1.00 2,000 2,000
Feedback-W 1.00 1.00 100 100 0.95 1.00 2,000 2,000
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Figure 6.1: Convenience Store Rank 9, α = 2 Precision by Probability
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Figure 6.2: Convenience Store Rank 9, α = 2 Recall by Probability

Feedback-U and Feedback-W with rank 9 and α = 2.0 definitely met the first

two objectives, no degradation on other locations and good overall results. As shown in

Figure 6.1, Feedback-W has good precision by probability, about 90% or higher for all

training counts above 6000. Figure 6.2 shows it has about 40% or higher recall by prob-

ability for all training counts above 6000. Those results are better than can be achieve

by either ignoring the convenience stores or treating them as supermarkets. Success

at the third objective, learning about the convenience stores, is somewhat less clear, be-

cause of the difficulty of determining whether apparent correlation between ground truth

and inference merely reflects a tendency to project availability of high frequency items,

regardless of whether they have been observed at the convenience stores or not.
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6.5 Basic Compound Workload Revisited

Table 6.5 compares rank 8 or 9 and α 0 or 2 for the original Basic Compound

workload. With α=0, equivalent to the Base algorithm, the increasing the rank to 9

produces significantly worse results, especially for recall. With α=2, both rank 8 and

rank 9 work as well as the Base algorithm. Feature scaling makes the rank selection less

critical.

Table 6.5: Summary of Revisited Basic Compound Workload

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Basic Comparison (Figure A.16)

k=8, α=0 1.00 1.00 100 100 0.96 1.00 2,000 2,000
k=8, α=2 1.00 1.00 100 100 0.96 1.00 2,000 2,000
k=9, α=0 0.83 1.00 0.42 0.52
k=9, α=2 1.00 1.00 100 100 0.96 1.00 2,000 2,000



7 False Training Data

This chapter introduces another difficult workload, intended to challenge the

algorithm. Some of the data used by a real-world reminder application would be ef-

fectively random combinations of location and capability. Random combinations can

arise through actual errors, such as a miss-read when scanning a cash register receipt. A

random combination could also be produced by to-do list deletion. For example, a user

might decide an unpurchased item is no longer needed, and delete it from their shop-

ping list, at some location that does not stock the item. Even if the reminder application

provides distinct actions for “Task completed here” and “Task canceled”, the user will

not necessarily apply them as intended.

The false training data experiments test the robustness of the algorithms in the

presence of various quantities of completely random training data samples. The proba-

bility of picking a capability is its overall probability across all locations. The locations

have equal probability. Each of the random samples picks a location and capability

independently, regardless of whether the location actually has the capability.

7.1 Test Results

Table 7.1 shows results for all three algorithms from the previous section. As

the proportion of bad data increases, the Base algorithm shows reduced precision. The

Feedback-U and Feedback-W algorithms maintain their precision even with 10% of

additional random data. The feedback mechanisms that improved the convenience store

results also solve the problem of some random input data, increasing confidence that

these enhancements are of general usefulness, not just a fix fr one workload.
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Table 7.1: Summary of False Input

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

No Bad Data (Figure A.17)

Base 1.00 1.00 100 100 0.96 1.00 2,000 2,000
Feedback-U 1.00 1.00 100 100 0.96 1.00 2,000 2,000
Feedback-W 1.00 1.00 100 100 0.96 1.00 2,000 2,000

0.001 Bad Data (Figure A.18)

Base 0.99 1.00 100 100 0.96 1.00 2,000 2,000
Feedback-U 1.00 1.00 100 100 0.96 1.00 2,000 2,000
Feedback-W 1.00 1.00 100 100 0.96 1.00 2,000 2,000

0.01 Bad Data (Figure A.19)

Base 0.89 0.99 0.96 1.00 2,000 2,000
Feedback-U 1.00 1.00 100 100 0.96 1.00 2,000 2,000
Feedback-W 1.00 1.00 100 100 0.96 1.00 2,000 2,000

0.1 Bad Data (Figure A.20)

Base 0.55 0.91 0.96 1.00 2,000 2,000
Feedback-U 0.97 1.00 100 100 0.96 1.00 2,000 2,000
Feedback-W 0.95 0.99 100 100 0.95 1.00 2,000 2,000



8 Time Varying Behavior

The previous workloads modeled locations with fixed capabilities, regardless of

time. In practice, capabilities vary on several timescales. Most shops close for at least

part of each 24 hour period. Many have different opening hours on specific days of the

week. Some change their stock in trade on a seasonal basis. Opening hours may vary

around major holidays. Distinguishing annual changes from secular changes would

require multiple years of data. Ad hoc changes from year to year further complication

any attempt to learn annual behavior. Probably, the best that can be done for long-term

changes is to give greater weight to recent data, so that the model adjusts reasonably

fast. This chapter explores the simplest and most basic of the time inference problems,

learning daily changes in capabilities.

8.1 Algorithms

The tests compare five time inference algorithms for each combination of world

model and time window, NONE, SIMPLE, AUTO_1, AUTO_2, and AUTO_3.

NONE is the Base algorithm with no time inference additions. It ignores all time

information, effectively treating all locations as being open 24 hours a day.

The remaining methods need training data with the time of day attached. For

purposes of this test, all locations have the same capabilities every day, so a purchase of

milk at 3 p.m. one day implies availability of milk at that location at 3 p.m. on every

day.

SIMPLE is the most direct extension. It applies the method described in Section

5.5 to the training data samples for the time slice at the location, as though the time slice

were a new location.
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Different opening times for different capabilities can arise because of either dif-

ferent departments or different shops at the same location opening and closing at their

own times. This method reflects the idea that locations not only tend to have common

clusters of capabilities, they tend to open and close clusters as units. Suppose, for ex-

ample, a location is known to sell butter at both noon and midnight, and has also sold a

chain saw at noon. It would be reasonable to expect to be able buy milk at midnight, but

not an electric drill. SIMPLE projects availability of capabilities associated with those

that have been observed during the time interval.

Specifying a wider interval would produce more training data, and make SIM-

PLE more effective, unless the interval were so wide it included times at which the

location has different behavior from during the target interval. The test cases make this

a real risk, because two of the intervals end at an opening time.

8.1.1 Automatic Interval Widening

The three AUTO_* methods all automate interval widening, following the same

pattern, with different parameters. Each uses a step size s. The process depends on

comparing the posterior probability of the observations for a time interval t, under three

different assumptions:

• The location has the same capabilities throughout a time interval starting s before

the start of t and ending at the end of t.

• Time interval t stands alone.

• The location has the same capabilities throughout a time interval starting at the

start of t and ending s after the end of t.

The process starts with the target interval as t. If time interval t standing alone

gives the best results, the widening process is complete and that interval will be used. If

either of the other options gives a better posterior probability, the new interval replaces

t. The process stops when either the next widening step would make the interval longer

than 24 hours, or it fails to widen the interval.
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AUTO_1 uses a fixed step size s, 30 minutes. AUTO_2 and AUTO_3 both in-

crease the interval by 30% of the current length at each step.

The posterior probability comparison is based on Bayes’ Theorem:

P(A|B) =
P(B|A)P(A)

P(B)
. (8.1)

where B is the set of training data for interval t, and A is the vector of scores

derived from the comparison interval. The training data B is identical for the three

posteriors that need to be compared, so the P(B) term will be equal and can be ignored.

The calculation uses logarithms to avoid floating point underflow:

logP(A|B) ∝ logP(B|A)+ logP(A). (8.2)

Table 8.1 is a worked example of the algorithm in action, for the interval 9 a.m.

to 9:30 a.m. for a shop that opens at 9 a.m. and closes at 9 p.m. At each step, logP(B|A)

is the log of the probability of the observations for the candidate range, given the scores

for the current base range. Extending the interval by including the 8:30 a.m. to 9 a.m.

time slice would be undesirable, because the shop’s behavior changes at 9 a.m. At each

step, the total logP(B|A)+ logP(A) for that change is less than at least one of the total

for not changing or the total for making the end of the range later. Table 8.2 is a partial

worked example of the same algorithm applied to the 8:30 a.m. to 9 a.m. interval.

Some repetitive steps are omitted in the middle. In this case, the time interval has to be

extended earlier, but must end at 9 a.m. when the shop opens. The algorithm extends

the interval by make the start earlier, until it is stopped by reaching 21:00, 9 p.m., when

the shop closed the previous evening.

As described in Section 3.3, the scores are a smoothed approximation to the

training data. In reality, training data events do not happen independently. A user shop-

ping trip will result in groups of purchases, often of items that are related through their

intended uses. For purposes of interval widening, I treat the training data events as be-

ing independent samples from a Poisson distribution associated with the combination of

location, capability, and time of day. In this model, the score for a combination of loca-

tion, capability, and interval is an estimate of the 24 hour arrival rate of the associated

Poisson distribution.
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Table 8.1: Time example - 9 a.m. to 9:30 a.m.

Range logP(B|A) logP(A) Total

Base := [9:00,9:30)
[9:00,9:30) -6.90641 -3.00000 -9.90641
[8:30,9:30) -7.07417 -2.00000 -9.07417
[9:00,10:00) -6.98852 -2.00000 -8.98852

Base := [9:00,10:00)
[9:00,10:00) -17.8565 -2.00000 -19.8565
[8:30,10:00) -18.0444 -1.00000 -19.0444
[9:00,10:30) -17.8739 -1.00000 -18.8739

Base := [9:00,10:30)
[9:00,10:30) -22.8091 -1.00000 -23.8091
[8:30,10:30) -22.9401 -0.522879 -23.4629
[9:00,11:00) -22.8108 -0.522879 -23.3337

Base := [9:00,11:00)
[9:00,11:00) -30.1423 -0.522879 -30.6652
[8:30,11:00) -30.2528 -0.0969100 -30.3497
[9:00,11:30) -30.1609 -0.0969100 -30.2578

Base := [9:00,11:30)
[9:00,11:30) -38.9732 -0.0969100 -39.0701
[8:30,11:30) -39.0751 -0.0969100 -39.1720
[9:00,12:00) -39.0547 -0.0969100 -39.1516
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Table 8.2: Time example - 8:30 a.m. to 9 a.m.

Range logP(B|A) logP(A) Total

Base := [8:30,9:00)
[8:30,9:00) 0.00000 -3.00000 -3.00000
[8:00,9:00) 0.00000 -2.00000 -2.00000
[8:30,9:30) -0.434295 -2.00000 -2.43429

Base := [8:00,9:00)
[8:00,9:00) 0.00000 -2.00000 -2.00000
[7:30,9:00) 0.00000 -1.00000 -1.00000
[8:00,9:30) -0.579059 -1.00000 -1.57906

Base := [7:30,9:00)
[7:30,9:00) 0.00000 -1.00000 -1.00000
[7:00,9:00) 0.00000 -0.522879 -0.522879
[7:30,9:30) -0.651442 -0.522879 -1.17432

Base := [7:00,9:00)
[7:00,9:00) 0.00000 -0.522879 -0.522879
[6:30,9:00) 0.00000 -0.0969100 -0.0969100
[7:00,9:30) -0.694871 -0.0969100 -0.791781

. . .

Base := [21:30,9:00)
[21:30,9:00) 0.00000 0.00000 0.00000
[21:00,9:00) 0.00000 0.00000 0.00000
[21:30,9:30) -0.832398 0.00000 -0.832398

Base := [21:00,9:00)
[21:00,9:00) 0.00000 0.00000 0.00000
[20:30,9:00) -1.66769 0.00000 -1.66769
[21:00,9:30) -0.833845 0.00000 -0.833845
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logP(A|B) ∝ ∑
c∈C

log f (kc;λc)+ logP(A). (8.3)

Where C is the set of capabilities, kc is the number of observations of c at the

location during interval t, λc is the score for capability c in the results for the interval

being tested, normalized to the length of t, and f (k;λ ) is the probability of exactly k

arrivals for a Poisson distribution with expected number of arrivals λ .

The remaining term, P(A), is the prior probability that the interval over which

A was calculated is a freestanding, cohesive interval for purposes of the behavior of the

location. It is a reflection of cultural expectations. In a culture in which it is normal

for some shops to close for lunch, the probability that noon through 1 p.m. is a distinct

interval is higher than it would be in a culture where closing for lunch is abnormal. The

algorithms that were tested all use prior distributions that depend only on the length of

the interval. AUTO_1 and AUTO_2 only use an externally supplied distribution shown

in Table 8.3. Only the ratios between the weights affect the comparisons.

Table 8.3: Duration Prior Weights

Duration Prior Weight

length < 1 hour 0.001
1 hour ≤ length < 1.5 hours 0.01
1.5 hours ≤ length < 2 hours 0.1
2 hours ≤ length < 2.5 hours 0.3
2.5 hours ≤ length < 3 hours 0.8
3 hours < length 1.0

AUTO_3 uses a more complicated algorithm. It also considers, across all loca-

tions, the probability of the observations in interval t given the scores for the interval

under evaluation. In theory, this should enable learning the general rules about how

locations behave from a larger set of data.

8.2 Workloads

The workloads use four world models:
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Time 0 The Basic Compound location model, but with all locations closing at 9 p.m.

and opening at 9 a.m.

Time 1 Based on Basic Compound. Change the locations have all capabilities to also

open early, from 7 a.m. to 9 a.m., for clusters 1, 2, and 3 only.

Time 2 Based on Basic Compound. Add one location that has all capabilities and is

open 24 hours a day.

Time 3 Combines the two complications from Time 1 and Time 2.

The tests measure results for four different half hour windows:

Night 12:30 a.m to 1 a.m. All locations except except the 24 hour all-capabilities loca-

tions are closed.

Early Morning 6:30 a.m. to 7 a.m. The 24 hour location is open, but all other locations

are closed. The early opening locations are about to open.

Morning 8:30 a.m. to 9 a.m. The 24 hour location is open, the early opening locations

have their limited capabilities, all other locations are closed.

Day Noon to 12:30 p.m. All shops are fully open.

8.3 Results

8.3.1 Time 0

All locations are closed except during the day. The recall is always 1.0 when no

capabilities are available, because there is no opportunity to fail. NONE has zero preci-

sion when the locations are closed, because it reports availability of some capabilities,

and those reports are false. On the other hand, NONE has good results for the Day. The

other methods all lose some recall, AUTO_1 getting the best results.
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Table 8.4: Summary of Time 0 Tests

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Night (Figure A.21)

NONE 0.00 0.00 100 1.00 1.00 100 100
SIMPLE 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_1 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_2 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_3 1.00 1.00 100 100 1.00 1.00 100 100

Early Morning (Figure A.22)

NONE 0.00 0.00 100 1.00 1.00 100 100
SIMPLE 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_1 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_2 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_3 1.00 1.00 100 100 1.00 1.00 100 100

Morning (Figure A.23)

NONE 0.00 0.00 100 1.00 1.00 100 100
SIMPLE 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_1 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_2 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_3 1.00 1.00 100 100 1.00 1.00 100 100

Day (Figure A.24)

NONE 1.00 1.00 100 100 0.96 1.00 2,000 2,000
SIMPLE 1.00 1.00 100 100 0.49 0.69 7,000
AUTO_1 1.00 1.00 100 100 0.73 0.90 10,000 5,000
AUTO_2 1.00 1.00 100 100 0.51 0.69 7,000
AUTO_3 1.00 1.00 100 100 0.49 0.69 7,000
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8.3.2 Time 1

Time 1 has a location that opens early for some capabilities, differing from Time

0 only in its morning behavior. NONE predicted too many capabilities during that time.

The remaining methods all had high precision and moderate recall. AUTO_1 did best

for recall, but had a slight reduction in precision.

Table 8.5: Summary of Time 1 Tests

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Night (Figure A.25)

NONE 0.00 0.00 100 1.00 1.00 100 100
SIMPLE 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_1 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_2 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_3 1.00 1.00 100 100 1.00 1.00 100 100

Early Morning (Figure A.26)

NONE 0.00 0.00 100 1.00 1.00 100 100
SIMPLE 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_1 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_2 1.00 1.00 100 100 1.00 1.00 100 100
AUTO_3 1.00 1.00 100 100 1.00 1.00 100 100

Morning (Figure A.27)

NONE 0.07 0.07 2,000 0.93 1.00 2,000 2,000
SIMPLE 1.00 1.00 100 100 0.35 0.59 10,000
AUTO_1 0.94 1.00 10,000 10,000 0.55 0.77 8,000
AUTO_2 1.00 1.00 100 100 0.47 0.74 8,000
AUTO_3 1.00 1.00 100 100 0.36 0.59 10,000

Day (Figure A.28)

NONE 1.00 1.00 100 100 0.96 1.00 2,000 2,000
SIMPLE 1.00 1.00 100 100 0.48 0.69 8,000
AUTO_1 1.00 1.00 100 100 0.72 0.90 5,000
AUTO_2 1.00 1.00 100 100 0.50 0.69 8,000
AUTO_3 1.00 1.00 100 100 0.48 0.69 8,000
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8.3.3 Time 2

Time 2 has all six of the locations that have all capabilities open 24 hours. NONE

again has unacceptable precision when more locations are closed. SIMPLE had very

poor recall at night. None of the methods had high recall at night, but AUTO_3 was the

best.

Table 8.6: Summary of Time 2 Tests

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Night (Figure A.29)

NONE 0.02 0.02 3,000 0.86 1.00 3,000 3,000
SIMPLE 1.00 1.00 100 100 0.00 0.00 100
AUTO_1 1.00 1.00 100 100 0.34 0.61
AUTO_2 1.00 1.00 100 100 0.10 0.20 10,000
AUTO_3 1.00 1.00 100 100 0.00 0.03

Early Morning (Figure A.30)

NONE 0.02 0.02 3,000 0.86 1.00 3,000 3,000
SIMPLE 1.00 1.00 100 100 0.21 0.31 10,000
AUTO_1 1.00 1.00 100 100 0.38 0.51 5,000
AUTO_2 1.00 1.00 100 100 0.33 0.51 10,000
AUTO_3 1.00 1.00 100 100 0.21 0.31 10,000

Morning (Figure A.31)

NONE 0.02 0.02 3,000 0.86 1.00 3,000 3,000
SIMPLE 1.00 1.00 100 100 0.00 0.00 100
AUTO_1 1.00 1.00 100 100 0.33 0.59
AUTO_2 1.00 1.00 100 100 0.04 0.24
AUTO_3 1.00 1.00 100 100 0.16 0.24 4,000

Day (Figure A.32)

NONE 1.00 1.00 100 100 0.96 1.00 2,000 2,000
SIMPLE 1.00 1.00 100 100 0.47 0.71 8,000
AUTO_1 1.00 1.00 100 100 0.71 0.89 5,000
AUTO_2 1.00 1.00 100 100 0.50 0.71 8,000
AUTO_3 1.00 1.00 100 100 0.47 0.71 8,000
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8.3.4 Time 3

Time 3 has both the complications of Time 1 and Time 2, and had similar results

to those tests.

Table 8.7: Summary of Time 3 Tests

Precision Recall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Night (Figure A.33)

NONE 0.02 0.02 3,000 0.86 1.00 3,000 3,000
SIMPLE 1.00 1.00 100 100 0.00 0.00 100
AUTO_1 1.00 1.00 100 100 0.34 0.61
AUTO_2 1.00 1.00 100 100 0.10 0.20 10,000
AUTO_3 1.00 1.00 100 100 0.00 0.03

Early Morning (Figure A.34)

NONE 0.02 0.02 3,000 0.86 1.00 3,000 3,000
SIMPLE 1.00 1.00 100 100 0.21 0.31 10,000
AUTO_1 1.00 1.00 100 100 0.38 0.51 5,000
AUTO_2 1.00 1.00 100 100 0.32 0.51 10,000
AUTO_3 1.00 1.00 100 100 0.21 0.31 10,000

Morning (Figure A.35)

NONE 0.09 0.09 3,000 0.88 1.00 5,000 5,000
SIMPLE 1.00 1.00 100 100 0.27 0.57 9,000
AUTO_1 0.94 1.00 4,000 4,000 0.53 0.81 9,000
AUTO_2 1.00 1.00 100 100 0.42 0.65 9,000
AUTO_3 1.00 1.00 100 100 0.27 0.57 9,000

Day (Figure A.36)

NONE 1.00 1.00 100 100 0.96 1.00 2,000 2,000
SIMPLE 1.00 1.00 100 100 0.47 0.71 8,000
AUTO_1 1.00 1.00 100 100 0.70 0.89 5,000
AUTO_2 1.00 1.00 100 100 0.50 0.71 8,000
AUTO_3 1.00 1.00 100 100 0.47 0.71 8,000



67

8.3.5 Conclusion

Automatic interval widening produced better results when some locations were

closed than either NONE, which ignores time, or SIMPLE. NONE outperformed all

the other methods when all locations are open. Among the automatic interval widening

methods, AUTO_1 is the simplest and was not definitely outperformed by any of the

others.

The results might be improved by a more sophisticated prior distribution func-

tion that takes into account tendencies to open and close at specific times, rather than

just using the interval length.



9 Proposed Use in a Reminder System

The bulk of this dissertation discusses and evaluates a proposed inference algo-

rithm for projecting the capabilities of locations. This chapter describes how it could be

used in a location-aware reminder system. The reminder system is first described from

the point of view of a user, then from the point of view of an administrator, and finally

in terms of deployment of data and programs.

9.1 End-User View

The public face of the reminder system would be an application running on one

or more devices for each user. The primary interface would be through an application

running on a location-aware cell-phone with Internet access. That device should be

so closely associated with the user that its location is a good surrogate for the user’s

location. The main end user interactions are reminder creation and deletion, receiving a

reminder, and option selection. End users will also be concerned about privacy.

9.1.1 Reminder Creation and Deletion

The cell phone application could have a conventional GUI interface for entering

and deleting reminders. Deletion needs to distinguish completion of the action that

would be triggered by the reminder at the current time and location from a decision that

the action no longer needs doing, or has been done elsewhere. Completion at the current

time and location is input for the machine learning process.

Reminders can also be created on another computer and communicated to the

cell phone. For example, a user might find it convenient to have a computer with bar

68
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code scanner in or near the kitchen, to use the bar codes from empty, or nearly empty,

boxes to create shopping reminders. A computer with a full keyboard and screen could

support a more convenient GUI than would be possible on a phone, and also provide

more assistance in terms of suggesting previously purchased items and interpreting in-

puts.

9.1.2 Receiving a Reminder

The primary delivery method for a reminder may be similar to a calendar alert on

the cell phone. However, continuous location awareness has high power consumption

[SKK05]. In addition, a cell phone is not a good interface for delivering reminders to

the driver of a moving vehicle, yet passing near a shopping center may be an important

event.

Car navigation systems may become the targets of convergence for human-

computer interfacing in cars. Already, many navigation units act as Bluetooth hands

free remotes for cell phones, including copying and displaying the phone address book.

Similar collaboration between phone and navigation unit would enhance the reminder

application. The navigation unit must maintain continuous location-awareness for its

primary function. Access to the car electrical system gives it plenty of power. It has

both screen and audible communication with the driver.

The phone would remain responsible for maintaining the list of reminders in

terms of capabilities, and accessing servers to get the data to translate that list into a list

of locations near the phone. At the start of a car trip, the phone would copy the location

list to the navigation unit, which would take over detecting arrival at or near a location,

and issuing reminders. The phone would continue to check location at a low frequency,

in order to recalculate the locations if the car moves outside the area for which it had

previously obtained data.

Car travel is the primary mode that allows both rapid movement and the flexibil-

ity to change plans based on reminders. Slower travel, such as on foot, does not cause

as rapid change in location and so does not require very frequent location checking.

The user will have three possible responses to a reminder. The first is to accept it,

indicating that the associated task can be done at the current location, and the reminder
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is no longer needed. A false positive in the inference algorithm will cause a reminder

to be issued at a location which lacks the required capability. The user will be able to

indicate that, keeping the reminder active and supplying data to the inference system.

The third option is to ignore the reminder, leaving it active and supplying no new data.

9.1.3 Options

The most important end-user option is level of participation. The client program

can operate in either of two modes, “freeloader” and “contributor”.

In either mode, the device can make queries such as requesting the list of known

locations in a geographical area. The most frequent and important form of query trans-

mits a list of locations, a list of capabilities, and a time. The response contains one bit for

each location-capability combination, indicating whether the inference system expects

the capability to be available at the location at the indicated time. The response also

contains the time at which the inference will change, for example because a shop opens

or closes. The client device can request data covering future times, without waiting for

the end of the period of validity of its current data.

These queries are sufficient for the basic reminder system, but the user’s expe-

rience will not affect the inference engine. In particular, the system will continue to

be ignorant of any shop that no contributor has used, no matter how many purchases a

freeloader makes at it. The client device program may remember specific capabilities at

those locations, but there will be no generalization to related capabilities.

A contributor’s actions can be transmitted to servers, and affect the inference

system. Deleting a reminder marking it “done here” or accepting it when issued causes

the phone to report that the capability is available at the current location. Similarly, when

a contributor indicates that a reminder was a false positive, the lack of the capability will

be reported to a server. Depending on the contributor’s history, those reports may have

a significant effect on inference results.
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9.2 Privacy

The requests and reports that the client device sends to the servers necessarily

reveal information about the user’s location, plans, and actions.

Even the “freeloader” mode presents some privacy issues beyond those inherent

in web searching. The client device requests are an indication of the user’s planned

itinerary and activities for the near future. The “contributor” mode presents additional

issues of trust and privacy. Trust is important because of the risk of lies, either random

vandalism or directed sabotage. For example, an unscrupulous business owner might

falsely assert that a competitor had closed. In order to evaluate the trustworthiness of a

given user’s assertions, the system needs to maintain data that is tied to a user identity.

There is no need to track the user’s name or similar information. However, a history of

locations and purchases may be enough to allow identification by someone who knows

the user.

Solving these issues is beyond the scope of this dissertation, and should be based

on privacy best practices at the time of implementation.

9.3 Administrator Functions

The reminder system will required administrator decisions in two areas, seed

data and inference parameter setting.

9.3.1 Seed Data

The experiments show that adding seed data grouping related capabilities signif-

icantly improves recall, especially for infrequently used capabilities, and during start-up

when there will be limited observations. Seed data must be supplied by the administra-

tor. It can come from various ontologies, and from web site scraping.

9.3.2 Parameters

The most important parameter is the truncation rank. It is closely associated with

the exponent used in feature scaling. The two parameters together define a trade-off be-
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tween retaining detail and eliminating noise. There are several approaches to truncation

rank selection, but experiments may be simple and effective for this domain. The ad-

ministrator could track a number of index locations for which the actual capabilities are

known, and compare results obtained with different parameter settings.

The decomposition only needs to be done for the largest rank under considera-

tion. It can be truncated to any lower rank.

The time-based inference requires prior distributions that distinguish usual and

unusual behavior. The prior distributions depend on cultural conventions. For example,

the distributions will be different for cultures in which many shops close for lunch or

a siesta period from one in which most shops stay open throughout the day. The prior

distributions should be based on observations.

9.4 Deployment

The reminder application can be divided into a number of functions, many of

which can be grouped together or spread across several physical computers, as show in

Figure 5.6.

A singular value decomposition server collects data from web searches and from

the location servers. It represents the data as a sparse matrix, performs truncated singular

value decomposition, and supplies the results to location servers.

The singular value decomposition will generally produce more accurate results

given more training data, so training data from a wide area should be pooled. On the

other hand, the some of the conventions about which capabilities belong together are

cultural. The same food may be stocked at every supermarket in one country, but only

at specialist imported food shops in another. The singular value decomposition should

be done for a region that has uniform product assortment conventions.

Given this scope limit, the matrix size is unlikely to exceed those used in latent

semantic indexing, so the singular value decomposition will be feasible. Indeed, the

decomposition could use the same algorithms as latent semantic indexing servers.
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9.4.1 Location-Specific Services

Location-specific services can be distributed among several servers, each serving

some locations. It receives and stores a copy of the relevant subset of the decomposition,

the U columns for its locations, S, and the raw data for its locations. It passes a copy of

the current raw data values to the singular value decomposition server as needed.

9.4.2 Web Front End

Client devices use the Internet to send requests and reports, and receive re-

sponses. The web front end, not shown in the configuration diagram, forwards each re-

quest or report to the location-specific server for the specified location. If a request cov-

ers multiple locations that are served by two or more different location-specific servers

the front end will divide up the requests, forward to the appropriate servers, and combine

the responses.

9.4.3 Client Device

The client device will usually be a smartphone or similar portable, location-

aware device with Internet access. It will communicate with the location servers, either

directly or through web front end servers.
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10 Conclusion

10.1 Contributions

This dissertation examined the issue of identifying the capabilities of locations,

especially for the very difficult everyday shopping task. Capability identification is im-

portant for applications that issue reminders or suggestions based on availability of the

capabilities needed for a task, rather than specified times or locations.

We proposed the use of truncated singular value decomposition for capability

inference. We demonstrated its effectiveness in a test bed using artificial data derived

from real world distributions. The algorithm blended location observations and bulk

seed data about capability clusters to predict availability of capabilities that had not

been directly observed.

The next workload added “convenience stores”, locations whose capabilities cut

across all categories. The original algorithm failed to predict their capabilities, but the

results were improved by adding false-positive feedback data using weighted singular

value decomposition, and increasing the truncation rank with feature scaling to prevent

over-fitting. The same improvements also handled a workload including some false data.

We next examined location capabilities that depend on the time of day. Treating

each time interval at each location as though it were a separate location had good pre-

cision, but low recall due to the small amount of training data for any one interval. We

added automatic widening of the interval to obtain more training data, using a Poisson

distribution model. We interpreted the singular value decomposition score for a combi-

nation of location and capability as an estimate of the mean rate of reported use of the

capability at that location.
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10.2 Advantages and Limitations of Truncated Singular

Value Decomposition

Truncated singular value decomposition can effectively represent the idea of lo-

cations as exhibiting combinations of clusters of capabilities.

Its main limitation is that it deals with correlation, not one-way implications. For

example, a supermarket chain might sell both its own store brands and corresponding

national brands. Presence of the house brand implies presence of the national brand,

but not the other way round. The “convenience store” workload illustrated this problem

by having a class of locations that had only the highest frequency items from each seed

cluster.

As demonstrated in that workload, false positive feedback data can mitigate the

effect.

10.3 Future Work

10.3.1 Deployment

Deployment as part of a location-aware reminder system, as described in the

previous chapter, would be the best test of the practical effectiveness of the inference

algorithm.

10.3.2 Additional Simulation Studies

The next step within the simulation studies is to obtain and represent more real-

istic data. Seed data could be produced by web scraping. Some or all of the simulated

locations should be replaced by observations of real locations.

Overlapping Seed Data

In the simulation tests, the seed data comprises non-overlapping clusters. The

cross-cutting “convenience store” workload was tested with only the standard seed data.



76

Adding seed data for it would have resulted in overlaps between seed data clusters.

There are two basic approaches, both of which should be tested:

• Allow overlaps.

• Avoid overlaps. If two seed clusters A and B overlap, replace them with three seed

clusters, A−B, B−A, and A∩B.

Avoiding overlaps would separate out, for example, supermarket store brand

items from national brand items.

Observation-based Overrides

In the current simulation, inference results are reported even if they contract an

observation. There are two levels of overriding:

• Global: Because of the possibility of bad input data, alleged observations cannot

simply override the inference results. There must be some filtering based on user

trustworthiness, or consistent reports from multiple users.

• Individual: A user’s assertions about which capabilities are, or are not, available

at each location should control the behavior of that user’s phone, regardless of

support or contradiction from other users.

Overriding could also be applied to opening time data. A positive assertion from

a trusted source that a shop offering a set of capabilities is open at specified times is

better evidence about the shop’s location than inference from time stamped observations.

Moreover, it could also be used in setting the prior probabilities for similar locations.

10.3.3 Learning about the User

Location-based reminders involve three main types of real world entities, users,

locations, and capabilities. This dissertation applies machine learning to inference to

the relationship between users and capabilities. There may also be opportunities to infer

useful facts about the relationships between users and capabilities, and between users

and locations.
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For example, “cheese” on a shopping list could mean different things, and re-

quire different capabilities, depending on the user and situation. A convenience store

might meet the need for some users. A supermarket would meet most users’ cheese

requirements. A user planning an elaborate wine and cheese party might require a spe-

cialized gourmet cheese supplier, or at least a supermarket with a particularly extensive

cheese selection. Even entering the shopping list by scanning bar codes on empty, or

soon to be empty, packages does not entirely solve the problem. Joe only buys one store

brand of breakfast cereal, in one size. When he scans the barcode, he means that bar-

code, and it can only be bought at a supermarket in a particular chain. Mary has also just

finished a box of Joe’s favorite cereal, but she will replace it with any of a wide range of

similar cereals.

The same word or barcode on the shopping list maps to different capabilities

depending on the user. This problem could be solved in part by explicit user input. For

example, a barcode scanning input system could allow the user to specify a required

match precision in both size and type. A shopping list GUI could suggest clarifying

options. Learning normal cases for a given user could improve usability by requiring

clarification only when the user has a requirement that differs from whatever is nor-

mal for that user. Similarly, learning relationships between capabilities could support

making useful suggestions for alternatives.

Similarly, a user may like or dislike particular locations, in some cases for spe-

cific tasks. For example, a user who is willing to buy packaged goods at some location

may dislike the fresh produce at the same location.

Learning about the user requires tracking of user-specific data. That should be

done on the user’s phone, for privacy reasons. However, some users may be willing to

contribute the results, which would be useful prior distribution data for inferring other

users’ preferences. For example, a large proportion of users avoiding buying fresh pro-

duce at a given location that offers it may indicate high prices or poor quality, reducing

the probability that other users will want to buy produce there.



A Result Details

This appendix contains full results for all the tests discussed in the body of the

dissertation. Each figure corresponds to a group of lines in a summary table in the body

of the dissertation, and its caption contains a reference to the table.

A.1 Result presentation

Each experiment has a model of multiple locations, expressed in terms of the

groups of items. The model generates the training data and represents ground truth for

evaluation of precision and recall. The reports show the effects, for a range of training

data sizes, of applying several different inference methods to each set of training data.

Each experiment produces four charts, “Precision by Count”, “Precision by Probabil-

ity”, “Recall by Count” and “Recall by Probability”, with a data series on each chart for

each inference method. The “by Count” charts weight every combination of location

and capability equally. The “by Probability” charts weight each combination of location

and capability according to the overall probability of the capability in the model.

Summary tables have one line for each series. Each summary table line shows

four measures for each of precision and recall. Although a summary necessarily shows

much less complete information than the actual chart, representing four charts with a

few lines in a table enables convenient comparison across multiple sets of charts.

The Recall numbers in the example summary table A.1 illustrate the measures.

They summarize the Recall by Count chart in Figure A.1 and the Recall by Probability

chart in Figure A.2.

The first of the four measures is “Mean”. It is the area under the data series in

the chart, divided by the difference between the largest and smallest training data count.
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Table A.1: Summary of Basic Simple Tests - Example

Precision R ecall

Mean Max N1 N2 Mean Max N(0.9) N(0.9M)

Simple

Null 1.00 1.00 100 100 0.03 0.05 9,000
SVD-N 0.99 1.00 400 400 0.12 0.20 9,000
SVD-Y 1.00 1.00 100 100 1.00 1.00 200 200

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Re
ca

ll 
by

 C
ou

nt

Training Count

Null

SVD-N

SVD-Y

Figure A.1: Summary Example - Recall by Count
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Figure A.2: Summary Example - Recall by Probability
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The sum of the observed values divided by the number of observations would not be as

meaningful a representation, because doing so would over-represent low training data

results, separated by 100 samples, compared to large training data counts which are

separated by 1000 samples. The summary shows the smaller of the means calculated

from the “by count” and “by probability” charts.

Let T = {t1, t2, ..., tN} be the set of training counts. Let fc : T → [0,1] be one

of the series in either a “Precision by Count” chart or a “Recall by Count” chart. Let

fp : T → [0,1] be the series for the same method in the corresponding “by Probability”

chart.

Mean = min


n−1

∑
i=1

( fc (ti)+ fc (ti+1))

2(tn− ti)
,

n−1

∑
i=1

( fp (ti)+ fp (ti+1))

2(tn− ti)

 . (A.1)

Thus the recall mean shown for “Null” is 0.03, the “by count” mean, reflecting

the fact that the Null series in the Recall by Count chart never exceeds 0.05, and is lower

for many training data counts. The Null series in the Recall by Probability chart has a

significantly higher mean.

The mean is a reasonably good general measure of consistent effectiveness, but

very much affected by the arbitrary choice of the exact range of training data counts to

test. In general, removing some of the low counts and adding some larger counts would

tend to increase the mean.

The next measure is “Max”. It is the largest value x such that there is a training

count ti with both fc(ti) ≥ x and fp(ti) ≥ x. That is, it is the best result that can be

achieved with the same training data count for both “by count” and “by probability”.

Max = max(min( fc(ti), fp(ti))) . (A.2)

Again, the Recall Max value shown for the null learner is 0.05, the maximum

from the Null series in the Recall by Count chart. The maximum from the Recall by

Probability chart is almost 0.4.

Max may be misleading if a method did particularly well for a small set of train-

ing counts, and gives no indication of consistent effectiveness.
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The next two measures, N(0.9) and N(0.9M), are based on the same function,

N(x), and do indicate consistent effectiveness. The function N(x) the smallest training

data count such that its result, and all results for greater training data counts, are at least

x. A blank for one of the N columns in the summary table indicates that there was no

value training data count meeting that condition. In other words, the set whose minimum

would be displayed is empty.

N(x) = min{ti|ti ∈ T ∧
((

t j ∈ T ∧ t j ≥ ti
)
⇒
(

fc(t j)≥ x∧ fp(t j)≥ x
))
}. (A.3)

The N(0.9) column shows the values for x = 0.9. It represents the training data

count required to get both “by count” and “by probability” to at least 0.9. A low value

indicates very consistent effectiveness. In some cases, 0.9 is not achievable. It is also

useful to ask whether the actual maximum represents a single exceptionally good result

or sustained effectiveness, even if at a lower level than 0.9. The N(0.9) column is based

on 90% of the Max measure.

In the example summary, the N(0.9) recall column is blank for the Null learner,

because it never achieved recall 0.9. The “9,000” in the N(0.9M) column means that

both the “by count” and “by probability” recalls were at least 0.9×0.05 for training data

count 9,000 or 10,000. This shows less consistency than SVD-Y, which achieved recall

at least 90% of its maximum for all training counts from 200 through 10,000.

A.2 Result Charts

Each chart caption contains a reference to the corresponding summary table. The

summary tables are interleaved in the text discussing the results.
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Figure A.3: Basic Tests - Simple (Table 5.2)
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Figure A.4: Basic Tests - Compound (Table 5.2)
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Figure A.5: Basic Compound Parameter Selection - Parameter Selection (Table 5.4)



85

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Pr
ec

is
io

n 
by

 C
ou

nt

Training Count

Base

Feedback-U

Feedback-W

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Re
ca

ll 
by

 C
ou

nt

Training Count

Base

Feedback-U

Feedback-W

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Pr
ec

is
io

n 
by

 P
ro

ba
bi

lit
y

Training Count

Base

Feedback-U

Feedback-W

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Re
ca

ll 
by

 P
ro

ba
bi

lit
y

Training Count

Base

Feedback-U

Feedback-W

Figure A.6: Convenience Store Initial Rank 8 - All Locations (Table 6.1)
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Figure A.7: Convenience Store Initial Rank 8 - Convenience Stores (Table 6.1)
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Figure A.8: Convenience Store Initial Rank 8 - Other Locations (Table 6.1)
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Figure A.9: Convenience Store Initial Rank 9 - All Locations (Table 6.2)
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Figure A.10: Convenience Store Initial Rank 9 - Convenience Stores (Table 6.2)
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Figure A.11: Convenience Store Initial Rank 9 - Other Locations (Table 6.2)
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Figure A.12: Convenience Store SVD Feature Scaling - All Locations (Table 6.3)
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Figure A.13: Convenience Store Rank 9, α = 2 - All Locations (Table 6.4)
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Figure A.14: Convenience Store Rank 9, α = 2 - Convenience Stores (Table 6.4)
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Figure A.15: Convenience Store Rank 9, α = 2 - Other Locations (Table 6.4)
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Figure A.16: Revisited Basic Compound Workload - Basic Comparison (Table 6.5)
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Figure A.17: False Input - No Bad Data (Table 7.1)
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Figure A.18: False Input - 0.001 Bad Data (Table 7.1)
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Figure A.19: False Input - 0.01 Bad Data (Table 7.1)
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Figure A.20: False Input - 0.1 Bad Data (Table 7.1)
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Figure A.21: Time 0 Tests - Night (Table 8.4)
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Figure A.22: Time 0 Tests - Early Morning (Table 8.4)
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Figure A.23: Time 0 Tests - Morning (Table 8.4)
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Figure A.24: Time 0 Tests - Day (Table 8.4)
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Figure A.25: Time 1 Tests - Night (Table 8.5)
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Figure A.26: Time 1 Tests - Early Morning (Table 8.5)
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Figure A.27: Time 1 Tests - Morning (Table 8.5)
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Figure A.28: Time 1 Tests - Day (Table 8.5)
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Figure A.29: Time 2 Tests - Night (Table 8.6)
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Figure A.30: Time 2 Tests - Early Morning (Table 8.6)
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Figure A.31: Time 2 Tests - Morning (Table 8.6)
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Figure A.32: Time 2 Tests - Day (Table 8.6)
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Figure A.33: Time 3 Tests - Night (Table 8.7)
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Figure A.34: Time 3 Tests - Early Morning (Table 8.7)
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Figure A.35: Time 3 Tests - Morning (Table 8.7)
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Figure A.36: Time 3 Tests - Day (Table 8.7)
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