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ABSTRACT OF THE THESIS

Off-road Obstacle Classification and Traversability Analysis in the
Presence of Negative Obstacles

by

Jacoby Larson

Master of Science in Engineering Sciences (Electrical Engineering)

University of California, San Diego, 2011

Professor Mohan Trivedi, Chair

In order for an autonomous unmanned ground vehicle (UGV) to drive in

off-road terrain at high speeds, it must analyze and understand its surrounding

terrain in real-time; it must know where it intends to go, where are the obstacles,

and many details of the topography of the terrain. Much research has been done

in the way of obstacle avoidance, terrain classification, and path planning, Yet

few UGV systems can effectively traverse off-road environments at high speeds

autonomously. This paper presents algorithms that analyze off-road terrain using a

point cloud produced by a 3D laser rangefinder, determine potential obstacles both

above ground and those where the ground cover has a negative slope (negative

obstacles), then plan safe routes around those obstacles. To classify negative

obstacles, this research uses a combination of a geometry-based method called

xii



the Negative Obstacle DetectoR (NODR) and a support vector machine (SVM)

algorithm. The terrain is analyzed with respect to a large UGV with the sensor

mounted up high as well as a small UGV with the sensor mounted low to the

ground.
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Chapter 1

Introduction

This chapter provides a brief overview of the research performed for this

thesis and the contributions to the robotics community. An introduction to off-road

autonomous driving is included.

1.1 Research Goals, Motivation, and Scope

A report by SSC Pacific [Holste 09] concerning the mobility of UGVs for

dismounted marines provides a survey and analysis of current robotic technologies

and concludes that there are significant weaknesses in each system, especially in

the area of mobility in the face of hazardous terrain. This report also identifies that

NATO’s vital gaps are ”moving in all terrain with tactical behavior in nearly all

weather conditions” and ”autonomous road following”. A recent information paper

written by the United States Marine Corps on April 2011 [USMC 11] states that the

operational challenges articulated by deployed Marine Forces, with respect to UGVs,

are ”Robots are ill-suited to navigate the harsh terrain of off-road Afghanistan”

and ”that UGVs/robots might work in deliberate clearing operations in an urban

environment, but the technology is not ready for operational use with dismounted

patrols in rugged terrain.”

There is an urgent need to enhance the mobility of dismountd Marines to

increase speed, lethality, and survivability, all of which would require a large UGV.

Furthermore, explosive ordnance disposal (EOD) technicians are still carefully

maneuvering small UGVs by tele-operation using a ”soda-straw” view (Figure 1.1)

1
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Figure 1.1: ”Soda-straw” video feed from a small ground robot

from the video feed displayed on a bulky hardened laptop (Figure 1.2). This tech-

nology lag is in large part due to lack of real-time autonomous off-road traversability

analysis for unmanned ground vehicles (UGV), including negative obstacle (negative

slopes, drops, or cliffs) detection at sufficient distances. Military UGV applications

must accommodate off-road terrain based on the warfighting areas in which the

US military is currently involved. The technology must also be able to handle

the size of vehicles (large and small) that would address those needs. Accurately

representing off-road terrain and analyzing it in real-time is a challenge for most

UGV systems and the majority operate at slow speeds over relatively flat terrain.

There are significant improvements in autonomous obstacle detection and

avoidance that need to be made before higher mission-oriented tasks can be accom-

plished in those areas of the world in which the US military is currently fighting,

which is what this research addresses. This work can also be applicable to the

area of urban road driving, providing obstacle detection, road analysis, and path

following (Figure 1.3). However, the main thrust of this research is aimed at devel-

oping methods of safely traversing rough terrain at high speeds by: 1) detecting

all of the obstacles that could be a serious threat, dependent on the size of the

UGV, 2) producing traversability scores for each terrain location, and 3) planning

a traversable route that avoids those obstacles and attempts to maintain a course

towards a specified goal location.
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Figure 1.2: Navy reservists driving small UGV (in background)

Figure 1.3: Urban traffic intersection: image (left) and point cloud (right)
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1.2 Thesis Outline and Contributions

The Introduction of this thesis describes the reason this research has been

performed. Along the way, many papers have provided support and inspriation to

this work and their contributions are described in Chapter 2. The autonomous

system created from this research is made up of a combination of technology

previously described and some new work in the area of detecting negative obstacles.

The approach used to analyze the 3-dimensional terrain and detect obstacles is

detailed in Chapter 3. The new contributions of this thesis are a result of in-depth

analysis of detecting and classifying negative obstacles from two lidar sensors,

from the perspective of a large and small UGV. This paper details the hazards of

negative obstacles, the complexities of detection based on geometry, and a step-

by-step algorithm for detection called the Negative Obstacle DetectoR (NODR),

as well as a machine learning method using support vector machines (SVM). The

results of the NODR and SVM methods can be found in Chapter 4 for both a

simulated environment and a real off-road course. Most research in this area

has very few detection results, mainly because it is usually performed in a real

off-road environment, which is almost impossible to precisely quantify or obtain

ground truth. A simulated environment has been created to quantify the detection

approach. Chapter 5 summarizes this research and provides ideas for future work.



Chapter 2

Related Research

Obstacle detection and avoidance for UGVs is essential for robotic vehicle

mobility and as such, it has been researched and demonstrated with numerous

sensors on a multitude of platforms for various terrains.

2.1 Video-based vs Lidar-based

Two of the main sensors used for gathering 3D information for obstacle

detection for unmanned ground vehicles are stereo cameras and lidar. Both sensors

have their advantages and disadvantages, and usually a combination of the two

make up a successful solution. The advantages of stereo cameras are that they

have low cost, do not emit electromagnetic signatures, and can incorporate color

information easily. Color images facilitate classification of a few distinct classes

such as grass, vegetation, soil, rock, and bark [Manduchi 04]. On the other hand,

stereo cameras are computationally complex at higher resolutions, require careful

calibration [Belongie 04], bound to a rigid camera-to-camera configuration, are

sensitive to environmental conditions (especially outdoors) such as light saturation

and color constancy [Barnard 02], require a larger baseline for increased range, have

a non-linear range output, and have a limited view. Lidar systems can provide

up to 360 degrees of viewing angle without losing resolution, produce high quality

range data, and require little computational time and hardware to return a point

cloud. Some of the disadvantages of lidar include the lack of color in the point

cloud returns and the cost. Many of the unmanned systems that competed in the

5
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DARPA Grand Challenge and DARPA Urban Challenge used a combination of

lidar and cameras for obstacle detection and avoidance.

2.2 Military vs Consumer Systems

A large push has been made of recent years on the military side for unmanned

vehicles. In fact, in the 2001 Defense Authorization Act, congress set a goal to

have one third of the operational ground combat vehicles be unmanned by 2015

[Congress 01]. The main players for unmanned ground vehicles have been military

partnerships with universities and a few companies, such as the DEMO I, II, and III

projects [Shoemaker 98] and the DARPA Grand Challenge and Urban Challenge

to name a few. SPAWAR Systems Center (SSC) Pacific has also been a major

player in robotics since the early 1980’s developing air, ground, water surface, and

underwater unmanned vehicles, researching areas such as telepresence, multi-robot

collaboration, human-machine interaction, computer vision, obstacle detection

and avoidance, SLAM, human detection, stair climbing, and much more. A few

commercial car companies have started integrating autonomous technologies into

their vehicles, such as automatic parallel parking and collision warnings, for public

use. But only recently have private companies shown interest in creating their own

autonomous vehicles without the military’s involvement, as for example Google’s

announcement in 2010 [Thrun ].

2.3 Off-road vs On-road

There are major differences in obstacle detection and avoidance from un-

manned vehicles in off-road environments versus those operating in urban envi-

ronments. The obstacles in an urban setting are going to have flat surfaces like

buildings, and almost everything that sticks up out of the ground should be con-

sidered an obstacle. Off-road, obstacles rarely have flat surfaces, and vegetation

might or might not be a true impediment to the vehicle, depending on the vehicle’s

size. Another difference is the traversable paths. In the city, there are only a

certain number of routes that can be chosen, and almost all of them assume the
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vehicle will stay on the road. Even the 2005 DARPA Grand Challenge, an off-road

autonomous vehicle competition, which had sharp switchbacks in the Beer Bottle

Pass, was a course made up of roads. Standford’s Stanley, the vehicle that won

the 2005 competition, admits it was built ”...on a long history of research of road

finding” [Thrun 06]. Such urban systems usually don’t need to worry about the

traversability of the terrain, the slope, or negative obstacles that are found in

off-road scenarios.

2.4 Mapping

For off-road terrain, a simple 2D obstacle map most likely will not provide

enough information for traversability planning, yet storing accurate 3D models

takes up too much precious space in memory on typical embedded computers found

on robots. Moreover, a priori environment data can be very useful, but not complete

for a robot in off-road terrain where new vegetation growth, a freshly dug hole,

or a recently placed pipe could cause an accident and leave the robot in pieces.

To reliably detect navigation hazards (positive obstacles, negative obstacles, steep

slopes, and step edges), understanding the environment should be done, at least in

part, by on-board sensors. It is important to consider how to store that data in a

way that is accurate enough for navigation, yet fast enough to search and analyze

in real-time.

The point-cloud data retrieved from the sensor systems can be modeled using

a 2D, 2.5D [Fong 03], or 3D map. A 2D grid map, also known as an occupancy

grid, is usually used to report the probability of finding an obstacle in the grid cell.

These systems are of great use for path planning and navigation since a robot is

very interested in the location of obstacles and the representation is quick to search.

The 3D grid map is made up of voxels that can be very useful for path planning

in air and under-water applications [Carsten 06], but can take up a considerably

large amount of memory. Because of the complexity and time required to search

through a 3D-voxel grid map, a very common method of extraction is to model the

terrain in a 2D grid with elevation information, referred to as a 2.5D map. Once

information is obtained and stored in a map, there is a need to analyze that map
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and classify those areas that are the most hazardous.

2.5 Classification

Classification of the terrain allows the vehicle to determine the obstacles in

the environment and facilitates a path planner to find a safe path to a goal location.

Terrain classification can be done in image space as in [Rankin 09], or in map space.

It makes more sense to classify the terrain in map space for a 3D lidar point cloud,

after it has been organized into a 2.5D map. Those hazards that are of the most

concern for UGVs are negative and positive obstacles.

Negative obstacles are difficult to detect, especially at long ranges, but

methods used have included searching for negative slopes that are too steep, or

gaps in data that exceed a distance threshold followed by a drop in elevation or

a steep uphill slope [Seraji 03, Murarka 08]. Rankin et al. use both a column

detector for gaps that exceed a width and height threshold and then follows up

with a region size filter to eliminate negative obstacles that are too small as well as

a unidirectional elevation difference detector. Aerial images and lidar data have

been demonstrated [Silver 06] to do negative obstacle detection as well, which can

detect the bottom of the negative obstacle, which is not always the case from the

perspective of a ground robot. In [Hong 98, Heckman 07], ray tracing is perfomed

from the current position of the laser, and context-based labeling from occlusions

(from the ground or positive obstacles) are considered while detecting negative

obstacles. JPL also has presented a novel method for detecting negative obstacles

using thermal signature for night-time detection [Matthies 03].

However, not all objects that take up space in a 3D point cloud are obstacles

that would stop a vehicle, typical examples include weeds, tall grass, branches, and

other vegetation. Carnegie Mellon University has demonstrated a method using

3D lidar to classify natural terrain into saliency features such as scatter, linear, or

surface, which can be used for further traversability analysis [Lalonde 06]. JPL

also reported being able to detect large obstacles such as rocks behind tall grass

using a maximum-value range filter [Manduchi 04].

One of the methods that will be used in this work to classify those obstacles
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is a support vector machine, a binary non-probabilistic linear classifier that can be

used for a two-group classification problem, and in this case, to classify negative

obstacles. This is done by creating a separating hyperplane that maximizes the

minimum distance to the training data samples [Vapnik 95], and then provides a

prediction of the location of the next sample with respect to that hyperplane, based

on its input parameters.

2.6 Traversability

Each grid cell, once classified, can receive a cost value for traversability

[Rankin 09], which will help for path planning and navigation. This cost can be

a binary “go” or “no-go” value, but that doesn’t allow advanced path planning

methods to utilize the full potential of the vehicle model, such as when there is

a ditch in the road, which would be classified as “no-go”, but in actuality the

baseline of the separation between vehicle wheels is wide enough to straddle it. The

Morphin algorithm [Simmons 95] analyzes the terrain using three measures: slope,

roughness and step height. The slope can be calculated with a least squares plane

fitting, and the roughness is the residual error from the plane fit. The traversability

cost is determined by the worst of the three values.

The method of approach in this research paper combines many of these

previous works, and builds upon them in an attempt to create a more accurate

obstacle detector at further ranges to allow a vehicle to travel at higher speeds.

2.7 Robotic System Comparison

A comparison of multiple unmanned vehicle systems is shown in Table 2.1.
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Table 2.1: Robotic Vehicle Systems Comparison

Vehicle Obs
(-)

Obs
(+)

>32kph Off-
road

# Perception
Sensors

This research x x x x 1
Stanford Stanley x x 8
NREC Crusher x x x 29
JPL Mars Rovers x x 2
JPL Demo III x x x 6
CMU Sandstorm x x x 10
CMU Boss x x 18
TORC GUSS x x 3
TORC ByWire
XGV

x x 4

iRobot R-Gator x x x x 6
Google Car x x 1



Chapter 3

Approach

This section describes the method to achieve autonomy, Figure 3.1. This

method depicts the steps necessary to for the robot to perceive, analyze, and act,

they include:

• Data capture

• Pre-processing

• Classification (obstacle detector)

• Traversability analysis

• Path planning

• The robot drives

For this method to be useful for a fast moving vehicle, it must be completed

quickly (under 1s). For reference, a vehicle traveling 32kph will move 9m in 1s. To

understand how fast an autonomous off-road vehicle can really go, one must also

consider how long it takes for the vehicle to stop.

The stopping distance for a vehicle traveling at a certain velocity v can be

determined using Equation 3.1, referenced in [Matthies 94] and [Matthies 03].

R =
v2

2µg
+ vTr +B (3.1)

11
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Figure 3.1: Method for Autonomy

where µ is the coefficient of static friction between ground and wheels with a

common value of 0.65 for off-road driving, g is gravitational acceleration with a

value of 9.8m/s2, Tr is the total reaction time with a common value of 0.25s, and

B is a buffer distance used for safety with a value of 2m in these experiments. The

velocity value becomes the dominant term at v > 3.2m/s: for a velocity of 24kph

(15mph), the distance needed to stop is 7.2m; for a velocity of 48kph (30mph), the

distance needed to stop is 19.4m (see Figure 3.2).

3.1 Data Capture

The method for autonomy starts with data capture of the surrounding

environment by a perception sensor. For off-road terrain, is is important that this

sensor perceive the surrounding environment in all three dimensions, to provide

an understanding of the pitch and roll of the terrain. The requirements of this

research led to the selection between 3D lidar and stereo cameras. Table 3.1 lays

out the advantages and disadvantages of both classes of sensors.

For this research, a 3D lidar sensor was used for the data capture portion of
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Figure 3.2: Stopping Distance vs Speed

lidar stereo

Pros work at night inherent color
360◦ view cheap
less processing no electromagnetic signatures
linear resolution angular resolution

Cons expensive more processing
slow 3D rotation light sensitive
no color calibration
few libraries limited view

Table 3.1: 3D Perception sensor comparison
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the method for autonomy. It will allow easy data capture at night, view a wide

azimuth range, and provide a 3D point cloud without significant processing or

additional computers.

This research was conducted to fit both a large UGV that can travel at

high speeds, greater than 32kph, as well as a small UGV platform that travels

at 2.5m/s. The sensor used for the large platform required a greater detection

distance and the sensor for the smaller platform required a small form factor. The

intended large platform is a Max ATV (Figure 3.3), a six-wheel skid-steer all-terrain

vehicle with dimensions of length 2.6m, width 1.5m, and height 1.7m, including

a roll bar. It weighs 805lbs and can carry up to 1605lbs and tow 1000lbs. The

3D lidar used on this large UGV platform is a Velodyne HDL-64E (Figure 3.4).

This lidar system provides readings of range and intensity out to a distance of

120m with 80% reflectivity, providing 100,000 data points with 360◦ horizontal

and 26.8◦ vertical field of view at a rate of 10Hz. SSC Pacific has demonstrated

the accuracy of this sensor on the water surface by detecting a lobster trap out to

40m and a partially submerged black rock out 65m [Halterman 10]. The smaller

ground vehicle platform is an iRobot Packbot (Figure 3.5) with length 89cm, width

52cm, and height 18cm, mounted with a Hokuyo UTM-30LX lidar sensor, set in an

after-market mechanism that nods it vertically for a full 3D scan, referred to as the

Nodding Hokuyo (Figure 3.6). The Nodding Hokuyo scans 270◦ horizontally and

can rotate slow enough to have a 2.5◦ vertical angular resolution, with a pitch from

-90 degrees to +90 degrees.

3.2 Pre-processing (Representation of the Point

Cloud)

The data is pre-processed to facilitate and speed up the classification process

and has two different representations. The first representation is a set of vertically

aligned laser rays that are used for negative obstacle detection as seen in Figure 3.7.

This uses the radial structure of the two lidar sensors and stacks each horizontal

scan line on top of each other. The ray can be traced from the sensor or a point in

the first horizontal scan out toward a point in the last horizontal scan and makes
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Figure 3.3: Max ATV UGV test-bed platform

Figure 3.4: Velodyne HDL-64E lidar sensor

Figure 3.5: iRobot Packbot UGV test-bed platform with mounted Nodding
Hokuyo sensor and color camera
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Figure 3.6: Hokuyo UTM-30LX lidar sensor in vertically nodding mechanism
built at SSC Pacific (known as the Nodding Hokuyo)

Figure 3.7: 3D point cloud with radial ray in blue

it easier to calculate slope and find discontinuities. The second representation is

a 2.5D multi-level surface map in Figure 3.8. When the elevation coordinate is

ignored, the 3D laser points can be arranged into a 2D Cartesian grid of 40cm x

40cm cells for the large UGV, measuring 100m in the x and y directions, and 12cm

x 12cm cells for the small UGV, measuring out 30m in the x and y directions. For

reference, this paper uses a right-handed coordinate system where x is lateral, y

is longitudinal, and z is vertical through the ground plane. Each cell in the grid

contains additional information, such as elevation, terrain traversability measures,

and so on. Although a simple 2.5D grid can be very efficient for determining ground

cover, it is limited in its ability to detect overhead obstacles like overhanging trees

or pathways such as bridges. The multi-level surface handles these situations.
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Figure 3.8: 2.5D multi-level surface map grid representation (image from
[Triebel 06])

A multi-level surface map, as discussed in [Triebel 06], allows multiple surface

levels to be represented in one grid cell, which can aid in correctly classifying

overhanging obstacles and provide additional search paths if one of those surfaces

is a bridged road above the robot. Each surface retains statistical information of

the points that lie in it, such as elevation mean and variance, as well as the number

of points that fall within the cell, with the maximum and minimum elevation.

Those surface levels where the 3D points span some vertical area, large enough

to be classified as a positive obstacle, are called a vertical surface. Otherwise, the

surface is referred to as a horizontal surface. If a point is greater than a height

threshold (usually the height of the robot) above a surface level of a grid cell, then

it would be placed in its own surface level. Because of the mutliple surface levels,

the traversability component of the robot may plan routes through grid cells with

multiple layers. These surface levels are ordered from lowest to highest in the cell

for fast lookup when adding new data points. If points are added that lie between

two surface levels and now the difference in elevation between the two surfaces

is smaller than the height of the robot (meaning the robot will hit something),

then those levels are merged into one and variances, means, and depth values are

recalculated.

The elevation of the data points that fall into the surface level are represented

as a Gaussian distribution. For fast processing and to reduce the amount of memory

used, online calculations of mean and variance are used. This work used a method

for calculating an unbiased estimate of the population variance (Equation 3.2).
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(a) Positive
obstacle rep-
resentation

(b) Step edge obstacle repre-
sentation

(c) Slope representation

Figure 3.9: Representation of positive obstacle, step edge, and slope hazards

σ2 =

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2/n

n− 1
(3.2)

The variance can easily be computed and merged with other surface levels by

keeping track of the number of points that fall into this surface level, the cumulative

sum of elevations, and the cumulative sum of the squares of the elevations.

A positive obstacle is classified when the elevation variance of a surface level

(calculated when the 3D data points fall into the surface level of a cell as in Figure

3.9a) exceeds a variance threshold: this method ignores extreme outliers with a

large enough sample size. This variance threshold is based on the square of the

standard deviation, which is half the the maximum height the wheels can traverse

(also known as the step edge threshold).

Another hazard feature called a ”step edge” can be detected by calculating

the elevation differences between cells, such as in Figure 3.9b, which is UGV-size

dependent. If the UGV is small with small tires or treads, then even a small gap in

elevation could block or tip over the robot.

Additionally, a steep slope can be an obstacle to a robotic vehicle. The

slope of each cell is calculated by fitting the points of the surrounding cells to a

plane (Figure 3.9c) and finding the surface normal of that plane, which can be

found using principal component analysis (PCA). This analysis uses an orthogonal

transformation to represent the data in terms of the variance in each of the three

dimensions: x, y, and z. PCA can be computed either by eigenvalue decomposition

of the covariance matrix or the singular value decomposition (SVD) of a data

matrix. This data matrix is usually mean-centered, (x1 − x̄), to find the component
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of greatest variance and is shown in Equation 3.3. After SVD, the surface normal

of the plane should be the left singular vector that corresponds to the smallest

singular value. At this point in the analysis, all the of individual points in the

cloud point have been erased and only the statistical information for each surface

level of the cells remain. The data matrix can be calculated using the mean of

the elevation (the z component) and the x and y values of each of the grid cells.

Note that it is not required to calculate the slope of the cells already classified as

obstacles, since the vehicle will not be traveling over them. This method uses the

eight connected neighbors of each cell, and only calculates the slope if there are at

least four neighbors. The x̄, ȳ, and z̄ represent the mean values of the x, y, and z

values of the cell’s neighbors.

M =


(x1 − x̄) (y1 − ȳ) (z1 − z̄)

(x2 − x̄) (y2 − ȳ) (z2 − z̄)

... ... ...

(xn − x̄) (yn − ȳ) (zn − z̄)

 (3.3)

If the absolute value of the difference between the surface normal and the

gravity vector is too large, it is classified as a slope obstacle.

After the terrain analysis, each cell is represented as empty or unkown, a

horizontal cell (usually the ground plane), a positive obstacle, a step edge, a steep

slope, a potential negative obstacle, and/or a true negative obstacle. A cell may

have more than one classification, but those that are the most hazardous take

priority when calculating terrain traversability. The negative obstacle classification

step is performed before any of the other steps and is described more thoroughly in

Section 3.3.

3.3 Negative Obstacles

Negative obstacles are ditches, cliffs, drop-offs, holes, or terrain with a steep

negative slope that if traversed would cause damage to the vehicle. Negative

obstacles can be just as hazardous to unmanned vehicles as obstacles above ground

because they could cause roll-over, tip-over, or high-centering, but are usually much
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Figure 3.10: Lidar scan of a negative obstacle

harder to detect. In most cases they show up as an absence of data, as in the 3D

lidar scan seen in Figure 3.10. Usually ditches that are equal to or greater than

the width of the diameter of the wheel are enough to cause damage to a vehicle.

Negative obstacles of greater widths may sometimes be crossed by vehicles at high

enough speeds, but this paper will not attempt to provide velocity modification

techniques, simply methods of detection.

3.3.1 Detection Range

Some negative obstacles are difficult to detect when close up and nearly

impossible from far away. Equation 3.4, based upon the small angle approximation

and referenced from [Matthies 03], illustrates the difficulty of detecting negative

obstacles at a range R and is shown in Figure 3.11. The width of the obstacle is w,

H is the height of the sensor from the ground, h is the depth of the obstacle seen

by the sensor, and R is the range from the sensor to the obstacle. The equation to

solve for θ is

θ ≈ Hw

R(R + w)
(3.4)

The angle θ decreases significantly as the range increases (∼ 1
R2 ), which makes
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Figure 3.11: Geometry of negative obstacle (ditch) detection

negative obstacles so difficult to detect with increasing range. Yet detecting negative

obstacles at greater distances is essential, especially for fast moving UGVs. Two

different methods to detect negative obstacles were used. The first method uses a

support vector machine (SVM) that must be trained with ground-truth data. It

has been expected that there would be a limit in the range of correct classification

for the SVM because of the parameters passed into it. The second method is called

the Negative Obstacle DetectoR (NODR), which uses a number of filters and looks

for contextual cues, so it can have expanded range benefits.

3.3.2 NODR Classification Approach

Because of the difficulty in detecting negative obstacles, this classification

method errs on the side of generously detecting negative obstacles and then labeling

them as only potential negative obstacles. Only when the potential obstacle comes

within close range to the vehicle can enough data be gathered to truly classify it

as a real negative obstacle. This geometry-based method for detecting negative

obstacles is called Negative Obstacle DetectoR (NODR) and is shown in Figure

3.12. The range for true classification is described later on in Section 3.3.4.

The NODR classifies potential negative obstacles by detecting steps or gaps,

an absence of data, where there could exist a ditch, cliff, or negative slope. The

detection starts by tracing a ray of 3D points outward from the sensor, following the

returns from the vertical alignment of lasers starting with the lowest vertical angle

towards the highest angle. This algorithm is based on laser sensors that produce

structured results, such that can be vertically alligned. The Hokuyo UTM-30LX
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Figure 3.12: Negative Obstacle DetectoR (NODR) flowchart
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Figure 3.13: Small ground vehicle overlooking step

returns a maximum of 1080 lidar beams per horizontal scan and the vertically

nodding mechanism allows the Hokuyo to produce another horizontal scan above

or below the previous scan. This aligns well for following a radial ray of lidar

beams. The lidar beams from the Velodyne HDL-64E, on the other hand, need

to be modified slightly. This sensor has 64 vertically aligned lasers but reports

3 laser pulses in the top 32 lasers for every 1 pulse in the bottom 32 lasers. To

handle the ray tracing in this case, the 3 laser returns from the top 32 lasers have

been combined into one return by taking the average x, y, and z values of the top

32 lasers and combining them with the bottom 32 lasers, providing one complete

radial ray of 64 lasers (Figure 3.7).

The first step used in the NODR method is to search for a step, a drop

in elevation beyond a step threshold, that extends beyod the gap distance, as in

Figure 3.13. The gap threshold of the two UGVs are determined by the size of a

hole that would cause damage or stop the platform. For those vehicles with wheels,

it is usually the wheel diameter. For the Max ATV with three wheels on each side,

assuming the center of gravity is over the center wheel, it is the distance from the

front wheel to the center of the center wheel, which is 1.1 meters. For tracked

vehicles like the iRobot Packbot, it is the distance from the front of the treads to

the center of gravity, at which point the vehicle begins to fall forward. The Packbot

can stretch its reach by extending its front flippers, making the gap threshold to

be about 54 cm. Note: no center of gravity measurments were taken for either of

these two ground vehicles and these gap threshold values are only estimates to be

used in siimulated environments.

If the step search does not return a negative obstacle, then the NODR looks

for gaps in data between two points. While tracing these radial rays, if a gap is

found with a distance greater than a gap threshold then it looks at the gap angle.
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Figure 3.14: A potential negative obstacle will have a gap with a distance greater
than if the next laser point was found on a flat surface, and an increase in angle of
γ times the angle difference. Points A and B are true returns from a lidar traced
along a ray. The expected increase in vertical angle is ∆. If the surface was flat and
the vertical angle was γ ∗∆, the next laser return would have been C. If the distance
between A and B is greater than A and C, this could be a negative obstacle.

The gap angle filter uses the increase in vertical angular resolution between the two

scans. The threshold here is the distance that would be expected if the next point

had the same elevation as the previous point, and the vertical angle had increased

by γ ∗∆ where ∆ is the vertical angular resolution between horizontal scans (Figure

3.14). Tests provided the best results when γ had a value of 1.5. It is noted that

this might not be the most accurate method to calculate true negative obstacles,

but this algorithm is attempting to be conservative to avoid obstacles, and as was

emphasized from Equation 3.4, negative obstacles are extremely difficult to detect

at long ranges. Furthermore, if a gap is sufficiently wide to pass these gap filters,

the algorithm looks for contextual cues.

The cues to look for are either a significant drop in elevation, such as one that

would appear if the slope was steeper than the maximum declining slope threshold

(Figures 3.15a and 3.15b), or the data after the gap has a significant positive slope

(Figure 3.15c), as in the sloping up-side (the back) of a ditch. The slope of the

up-side of a ditch can be determined by first calculating the number of following

points should be part of the back slope, determining their slope, and threshold
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(a) Gap followed by a large drop in elevation: potential negative obstacle

(b) Slight uphill slope followed by a gap and drop in elevation: potential
negative obstacle

(c) Gap followed by a steep uphill slope: potential negative obstacle

Figure 3.15: Ray tracing examples with results determined during the potential
negative obstacle detection step

that value. The number of points is calculated by finding the viewing angle of

the negative obstacle, which for Figure 3.11 is θ. For ranges R that are not quite

so distant, where the small angle approximation doesn’t work and equation 3.4

doesn’t provide an accurate measurement of θ, this equation is

θ = tan−1(
H

R
) − tan−1(

H

R + w
) (3.5)

The number of slope points to be used is num points = θ
∆

, where ∆ is the vertical

angular resolution of the sensor. As long as num points is greater than 1, the the

back slope can be determined. When the gap is detected at ranges where a back

slope is impossible to calculate because the vertical angle resolution is less than θ,

it simply ignores this filter.

The other instances where it is important to detect negative obstacles are

when the gap is detected at the beginning of the ray or at the end of the ray. Those
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negative obstacles found at the beginning of the ray, meaning a large gap is found

even before the first measurment, are very difficult to analyze, since there really

is no data for that gap. It might be a negative obstacle or it might simply be a

downward slope that can be traversed by the vehicle but the sensor cannot tilt

enough to detect it. More about this is addressed in Section 3.3.4.

When there are multiple lidar scans in the end of the vertical ray trace that

are missing, it is possible that there is a large negative obstacle whose end state is

not detectable by this sensor (because the gap goes beyond the maximum range).

There can be a threshold for the number of scans missing and the distance from

the sensor of the last reading that will classify the rest of the ray as a negative

obstacle, all the way out to the maximum range of the sensor.

The number of classified negative obstacles could be reduced by not classifying

those gaps that follow a positive obstacle, but this is not always beneficial. This

research concluded that it does not add value to differentiate between the gaps

caused by a true negative obstacle or just occlusion from a positive obstacle. A

vehicle would not navigate through a positive obstacle anyway, and processing

the potential negative obstacles is trivial, whereas detecting positive obstacles and

removing potential negative obstacles found afterwards can take away many clock

cycles of precious processing time.

The result from the NODR is a vector ray between two laser points that

can be used to populate cells in the 2.5D grid map, marked as potential negative

obstacles and used to plan paths to avoid obstacles. The approach that has been

taken in this research is not to completely avoid these detected ”potential” obstacles.

They might only be steep slopes that are traversable, but these sensors do not have

complete information because of the remoteness of the vehicle and limitations of

the geometry-based methods. In most cases the vehicle must be much closer to

actually classify these as true negative obstacles. The proposed method is to slow

down when these potential negative obstacles are in the immediate path, and avoid

them once they have been truly classified.
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(a) (b)

Figure 3.16: 3D point cloud returns from sequential frames. The area in the
bottom middle of each image (indicated by a red box) has a steep negative slope.
Figure 3.16a shows no detected signals from the slope and would be classified as
a potential negative obstacle. In Figure 3.16b, more data exists and the area can
now be correctly identified with the value of its slope.

3.3.3 SVM Classification Approach

As with the NODR classification approach, the support vector machine

returns the vector rays in between laser points that are classified as potential

negative obstacles. Parameters passed into the SVM include the range to the first

point (of a pair of two radially aligned points) from the sensor, the distance between

the two points, the change in vertical angle of the two points (as if the second point

had the same elevation value as the first point) in reference to the vertical angular

resolution (Figure 3.14), and the elevation difference of the two points. The SVM

is trained by many samples of ground truth vector rays of negative obstacles as

well as non-negative obstacles, then tested on each pair of vertically aligned points

from the sample data.

3.3.4 Real Negative Obstacle Classification

As an example, Figure 3.16a depicts a large gap in data that would be tagged

as a potential negative obstacle. However, when that area is within range of real

negative obstacle classification (Figure 3.16b), the increased number of data points

reveal the area is a steep downhill slope that is within the threshold of slope

traversability.

Those potential negative obstacles that are within a narrow range of values are
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elevated to a true negative obstacle condition and given a prohibitive traversability

score. This range is calculated based on the maximum negative slope the vehicle can

traverse and the vertical angle measurements from the sensor, found in Equation

3.6 and in Figure 3.17. For instance, the maximum negative slope allowed in these

tests for both of the robotic vehicles, φ, is a 20◦ decline. Based on the maximum

negative vertical angle θmax of the sensor and the angle ∆ between each increasing

horizontal scan, the sensor would only be able to detect a steeper decline between

Distmin and Distmax. For the large sensor on the large UGV platform, this range

is between 4.76 meters and 5.91 meters. After Distmax, the angle of the lidar scan

with respect to the horizontal is less than φ and would not actually detect the

slope. Therefore, those potential negative obstacle rays that intersect with the

range Distmin and Distmax are considered real negative obstacles. This is a very

short distance to react to a real negative obstacle, but the path planning module

should have already slowed down as it was approaching the potential negative

obstacles (the speed should be slow enough to allow stopping distance before the

obstacle, using Equation 3.1). It should also be pointed out that because of the

lack of data between the vehicle and Distmin, it is very difficult to determine if

a gap found before the first measurement is because of a negative obstacle or a

traversable declining slope. Therefore, these gaps would not be classified as real

threats, and because of this limitation in close range negative obstacle detection,

it is important to either tilt the sensor on the x axis to detect negative obstacles

extremely close to the vehicle or keep a map history of previous obstacles and

current localization in that map.

Distmin =
H

tan(θmax)

Distmax =
H

tan(θmin)
(3.6)

θmax, θmin > φ
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Figure 3.17: Sensor angles used to determine the min and max distance from the
vehicle a steep negative decline can be discovered.

3.3.5 Translation to World Map

Those sections of the ray tracings that are classified as potential negative

obstacles (Figure 3.18a) are translated into their world-model grid-cell counterpart

and recorded as a hit of a potential negative obstacle (Figure 3.18b). If enough hits

are recorded in a cell, it is classified as a potential negative obstacle and displayed

on the map. Because negative obstacles are so difficult to detect at long ranges, this

algorithm flags anything that might possibly be identified as a negative obstacle.

Many false positives will thus be reported, and potential negative obstacles should

not be treated as untraversable. Instead the robot is allowed to approach these

areas, but should do so with caution and reduced speed, which can be incorporated

into the path planning cycle. This software will be integrated with SPAWAR

Systems Center Pacific’s Autonomous Capabilities Suite (ACS) architecture. ACS

will use its fuzzy-logic planner [Sights 07] to place potential negative obstacles as

obstacles in the range-abstraction regions in front of the vehicle with a fuzzy-set

value of Close or Not Close, which according to the fuzzy associate memory rules,

causes the robot to approach more slowly but not stop.
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(a) Potential negative obstacle rays (in blue) (b) Potential negative obstacle cells (in blue)
showing conversion from rays to grid cells

Figure 3.18: Potential negative obstacle displays. This analysis uses the vertical
lidar scan (ray tracing) to classify negative hazard areas.

3.4 Traversability Analysis

A cell receives a traversability score based on the existence of a positive

obstacle, a negative obstacle, a step edge obstacle, the steepness of the slope of its

surrounding neighbors, and the slope residual (roughness).

The residual of the plane-fit function is used to determine roughness of the

area, which is added into the traversability score of the cell. The traversability

score is an integer value ranging from 0 to 255. The highest value, 255, is given to

those cells that have a prohibitive classification (true negative obstacle, positive

obstacle, step edge, or slope that is too steep). The classification type is stored in

a single byte of data (8 bits), where each bit represents a different classification.

In this way it can represent multiple classifications. The classifications with the

highest values are the most prohibitive. A cell begins as a horizontal cell with

a classification value of 1 (if enough data points lie within its x,y coordinates to

correctly classify it). If it is classified as a steep slope, it adds a value of 32, or a

1 in the 6th bit place (the byte is now represented as binary 00100001 or as hex

0x21). If a grid cell has multiple classifications, the traversability score receives

the maximum value of them all. For the slope and step edge analysis, where it

might not exceed the obstacle threshold but comes close to it, the traversability

score receives a value that is in relation to the ratio to the threshold (e.g. a slope

of 15 degrees for a threshold of 30 degrees is scored at 0.5 of the maximum 255

prohibitive score value).

After the cell has been given its traversability score based on obstacles, step
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edge, slope, and slope residual (see Figure 3.19), the path planner searches for the

safest path that brings the vehicle closest to the goal location.

3.5 Path Planning

Without any a priori information, the data collected from most lidar sensors

mounted on a robotic vehicle will not provide adequate range to create a large

enough map to plan optimal paths to a goal location of any significant distance.

In the true off-road tests with scattered vegetation, the majority of the gathered

data from the large lidar mounted on the large UGV was within 50m or less,

which would be traversed in 5s or less for a large vehicle such as the Max ATV

travelling at 24kph. These methods focus on the near-field path planning using

an arc-based planner (Figure 3.20), similar to the methods in [Larson 06] as well

as on the NASA Mars Rovers. These arcs are dependent on the vehicle velocity

v = r
β

where β is the turning rate of the vehicle. Because of this, the faster the

vehicle is driving, the fewer available arcs can be used for path planning, since

it is not desirable for the vehicle to become unbalanced and possibly roll. This

particular 3D path planning algorithm simulates placing the platform centered on

the cells of the arc (starting at the sensor and moving outward) and averaging the

traversability scores for all the cells the vehicle would run over. The traversability

score for each cell should already be calculated based on the terrain found inside

it: positive obstacles, step edges, et cetera. Furthermore, penalties can be added

for tip-over and high-centering [Roan 10], based on the 3D terrain underneath the

vehicle. Due to the inherent curvature of the arcs and the disconnect between

the actual skid-steering capabilities of these platforms (such as rotating in place),

there will be arcs chosen which provide the best route for the first section of the

path but eventually curve into obstacles. Since the robot will be calculating the

traversability arc multiple times a second and revising its arc selection just as

quickly, more weight is given to the cells of the arc in the closer regions than those

in the farther regions. Deviation from the desired arc (the predetermined path)

is also added into the score and a penalty is added for traversing multiple empty

spaces (to keep from going too far into the unknown). The algorithm calculates the
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Figure 3.19: Side view and top-down view of grid cells painted on the screen with
various colors representing the classification features: brown is a horizontal cell
(ground), blue is a potential negative obstacle, green is a step edge, yellow is a
steep slope, and red is a positive obstacle.
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Figure 3.20: Path planning arcs. The arc with the best traversability score will
be chosen

average traversability score as well as records the maximum score. If the maximum

score exceeds a threshold of acceptability, the process is halted for this arc and

the arc is discarded. The arc with the best score (including average traversability

score, deviation score, roughness score, empty spaces score, and possibly tip-over or

high-centerting score) is reported to the vehicle steering module (see Figure 3.21).

For additional speed and reduced search, once an arc with a “good enough” score

is found, it can be chosen as the desired arc and the search ends.
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Figure 3.21: The chosen arc (yellow) after traversability scores have been calcu-
lated



Chapter 4

Experimental Evaluation

It is difficult to accurately label ground truth of negative obstacles in a real

off-road environment. Multiple well-formed negative obstacles in one location are

hard to come by in any natural setting, and they are very laborious to create.

Given these hurdles, as well as limited funds and time, it was decided to measure

performance of detection of negative obstacles in a simulated environment. In

this way, a controlled environment can be created with ground truth of the exact

number of negative obstacles, occluding positive obstacles, roughness of the terrain,

and shape and spacing of the obstacles.

4.0.1 How to Measure Performance

The detection methods follow a vertical alignment of ladar beams and report

the vector ray between two beams where it has detected a negative obstacle. For

each negative obstacle in a simulated terrain map there will be multiple negative

obstacle rays. Because each of the terrains were created from a simulation, the exact

location and vector ray is known and is labeled as ground truth. If the detection

methods finds a ray that overlaps one of the ground truth rays, it is considered a

positive ray detection. Those detected rays that do not match up with a ground

truth ray are considered a false ray detection. If there exists even one positive ray

detection for a negative obstacle, this is counted as a positive obstacle detection.

The results of negative obstacle ray detections as well as negative obstacle detections

are reported in this paper.
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4.0.2 Setup of Simulated Environment

To better analyze negative obstacles and their various representations, multi-

ple simulated scenes were created, filled with negative obstacles that would cause

damage or halt the robotic vehicle. These scenes were created by first building

a height-map of the terrain with any number of negative and positive obstacles

with specified sizes, as well any value of roughness for the rest of the terrain. The

roughness was set by randomly selecting height values from a Gaussian distribution.

To simulate the lidar returns from the terrain, a vector ray was created from the

virtual location of the sensor on the height-map (depending on the size of the

simulated platform), and a height-map intersection algorithm was used to simulate

a lidar pulse from the sensor. This was performed by determining when the z value

of the initial location of the lidar ray switches between ”above” to ”below” the

terrain, or vice versa; comparing z values of the ray vector with the z values of the

terrain heightmap at the same x, y location. The x, y, and z location where the

lidar ray crosses over became the 3D point to be added to the point cloud list. The

simulated 3D point cloud of the terrain was obtained by following the horizontal

and vertical angular resolution pattern of both the small and large 3D lidar sensors

that were used in this research (see Figure 4.1). The height-map for the smaller

lidar had a width of 60m and length of 60m. Similarly, the height-map for the large

lidar had a width of 200m and a length of 200m.

4.0.3 Selecting of Test Cases

For this experiment, the simulations set the height of the small lidar at 0.26m

and the large lidar at a height of 1.81m because that is where they would be placed

on the robotic vehicle platforms for this research.

The first two experiments were conducted simulating the small lidar mounted

on the small UGV. The first test analyzed the NODR method only, with eight

different terrains of varied negative obstacles and positive obstacles, four in smooth

terrain and four in rough terrain. The second experiment included four tests on

smooth terrain and four more on rough terrain, where the results were collected

from both the NODR and the SVM methods. The average terrain height value for
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Figure 4.1: Simulated sample terrain (top) with lidar scans from both the small
(middle) and large (bottom) 3D lidars
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the small UGV was 0.5m, with a the variance of 0.0m for the smooth terrain and

0.0117m for the rough terrain. The negative obstacles for the small UGV terrain

were each 0.5m deep, 0.5m wide, and 0.5m in length, about the minimum width

or length or a negative obstacle that would still be a hazard to the small ground

vehicle, while the positive obstacles were 0.5m tall.

The next two experiments were conducted simulating the large lidar mounted

on a large UGV. The third experiment analyzed the NODR method only, with

eight different terrains of varied negative obstacles and positive obstacles, four in

smooth terrain and four in rough terrain. The fourth experiment includes four

tests from smooth terrain and four more in rough terrain, collecting data from both

NODR and SVM methods. The average height value for the terrain for the large

UGV was 2.5m, with a variance of 0.0m for the smooth terrain and 0.0586m for

the rough terrain. Some of these sample terrains included positive obstacles as well

as negative. The negative obstacles for the large UGV terrain were each 2.5m deep,

1.0m wide, and 1.0m length, while the positive obstacles were 2.5m tall.

The SVM was trained with multiple sample height maps of equal amounts

ground truth negative obstacle rays and non-negative obstacle rays, then tested

with new simulated obstacle maps.

An experiment was also conducted in a true off-road environment. There

were no ground truth negative obstacles or rays for this data set, but maximum

distances for each detected classification class were measured.

4.0.4 Results of the Small Lidar Experiment (NODR Only)

Overall, the NODR method detected 52% of the negative obstacle rays

through both smooth and rough terrain with a graph depicting the total number of

obstacle rays detected vs. ground truth in Figure 4.2. Because of the assumption

that if one negative obstacle ray is detected inside a negative obstacle, the whole

obstacle is considered detected, the NODR method detected 78% of the negative

obstacles (see Figure 4.3).
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Figure 4.2: Negative obstacle rays detected correctly from NODR Only small
lidar experiment

Figure 4.3: Negative obstacles detected correctly from NODR Only small lidar
experiment
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4.0.5 Results of the Small Lidar Experiment (NODR and

SVM)

The SVM trained on 1714 smooth terrain samples and the 1682 rough terrain

samples. In a very limited range of 8m, the SVM method detected 98% of the

negative obstacle rays and 100% of the negative obstacles while the NODR only

detected 39% of the obstacle rays and 78% of the negative obstacles. Figure 4.5

shows the number of correctly detected negative obstacle rays for the eight tests

run for this particular sensor (four from the smooth terrain and four from the rough

terrain) and Figure 4.6 shows the number of correctly detected negative obstacles.

There is a tradeoff, however, because as the terrain becomes rougher, the reported

false positives from the SVM method also increase. In all of the experiments from

the smooth terrain, the SVM is accurate out to around 8m radius. However, in

rough terrain, the SVM is only accurate out to around 6m radius. Experiments

were conducted out beyond 6m in rough terrain and beyond 8m in smooth terrain

and the SVM method innacurately identified every single ray beyond the 6m or

8m mark respectively as negative obstacles. The hypothosis is that the negative

obstacles begin to be smaller than the length between vertical lidar pulses, which is

about 0.5m for the smaller UGV platform. There might also be modifications in the

selection of parameters that would increase the distance the SVM could accurately

perform detection. The point cloud representation with negative obstacle detection

images of the both the rough and smooth test cases are depicted in Figure 4.4.

4.0.6 Results of the Large Lidar Experiment (NODR Only)

Overall, the NODR method detected 27% of the negative obstacle rays

through both smooth and rough terrain with a graph depicting the total number

of obstacle rays detected vs. ground truth in Figure 4.7. Overall, the NODR

method detected 31% of the negative obstacles and actual detection numbers for

each terrain map is shown in Figure 4.8.
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(a) Point cloud and detection results for the
smooth NODR and SVM experiment for the
small lidar

(b) The point cloud and detection results for
the rough NODR and SVM experiemnt for
the small lidar

Figure 4.4: Detection images for the smooth and rough NODR and SVM experi-
ments for the small lidar. The gaps in data are the negative obstacles, and most are
colored by the detection method (NODR is blue and SVM is yellow). The colors
are layered, blue is on top, yellow below that, and red (for ground truth) is under
that so that some colors are not visible in this image. There are positive obstacles
as well, and all the data behind it is occluded from the lidar.

Figure 4.5: Negative obstacles rays detected correctly from SVM and NODR
small lidar experiment
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Figure 4.6: Negative obstacles detected correctly from SVM and NODR small
lidar experiment. The red ground truth line is hidden behind the gree svm line
which is 100% accurate.

Figure 4.7: Negative obstacles rays detected correctly from NODR Only large
lidar experiment
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Figure 4.8: Negative obstacles detected correctly from NODR Only large lidar
experiment

4.0.7 Results of Large Lidar Experiment (NODR and SVM)

The SVM trained on 1404 smooth terrain samples and 722 rough terrain

samples. The SVM method detected 82% of the negative obstacle rays and 100% of

the negative obstacles while the NODR method only detected 53% of the negative

obstacle rays and 89% of the negative obstacles. Figure 4.11 shows the results

from all eight tests run for this particular sensor (four from the smooth terrain

and four from the rough terrain) and Figure 4.12 shows the number of correctly

detected negative obstacles. As in the experiment with the small lidar SVM and

NODR, there were increased amount of false positives for the rough terrain. In all

of the experiments from the smooth terrain, the SVM is accurate out to around

20m radius. However, in rough terrain, the SVM is only accurate out to around

16m radius. Experiemnts were conducted out beyond 20m with the smooth terrain

and 16m in the rough terrain and the SVM method innacurately identified most of

the rays beyond the 20m and 16m mark respectively as negative obstacles, which

can be seen in Figure 4.10. The point cloud representation with negative obstacle

detection images of both the rough and smooth test cases are depicted in Figure
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(a) Point cloud and detection results for the
smooth NODR and SVM experiment for the
large lidar

(b) Point cloud and detection results for the
rough NODR and SVM experiment for the
large lidar

Figure 4.9: Detection images for the smooth and rough NODR and SVM experi-
ments for the small lidar. The gaps in data are the negative obstacles, and most are
colored by the detection method (NODR is blue and SVM is yellow). The colors
are layered, blue is on top, yellow below that, and red (for ground truth) is under
that so that some colors are not visible in this image. There are positive obstacles
as well, and all the data behind it is occluded from the lidar.

4.9.

4.0.8 Results of Real Off-road Course

Data was also collected on a true off-road coarse in the coastal areas in Point

Loma, CA. An image of the course and the route taken can be seen in Figure 4.13.

The lidar collected 1122 frames of point cloud data, and this system was able to

process each frame, detecting obstacles and providing a suggested route, as well as

display the data on the screen, for the front half of the data (everything in front of

the vehicle), at an average rate of 2.23Hz on a dual-core laptop. The maximum

detected ranges of obstacle features in this data set are provided in table 4.1.
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Figure 4.10: False positives (yellow) reported for ranges that were beyond 16m
for the simulated large lidar sensor

Figure 4.11: Negative obstacles rays detected correctly from SVM and NODR
large lidar experiment
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Figure 4.12: Negative obstacles detected correctly from SVM and NODR large
lidar experiment. The red ground truth line is hidden behind the green svm line
which is 100% accurate.

Figure 4.13: Google Maps satellite image of the off-road course with numbers
ordered to show the route taken
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Table 4.1: Maximum detection ranges of obstacles found in off-road test route

Obstacle Feature Maximum
Detection
Range

Description

Positive obstacle 113.4 Vegetation
Negative obstacle 82.6 Steep slope
Overhang 100.6 Tall vegetation
Step edge 115.1 Steep hill
Steep slope 115.1 Steep hill



Chapter 5

Conclusion and Future Work

Based on the results from these experiments and according to the stopping

distance equations, the small vehicle can travel 2.5m/s, which is its maximum

speed, process the data in 0.5s, and still stop 2.2m away, far away from the SVM

rough terrain range limit of 6m. As well, the large vehicle can travel 37kph, process

the data in 0.5s, and stop 14m away, just shy of the svm rough terrain range limit

of 16m. This is a good benchmark to start from for the goal of high-speed off-road

autonomous driving.

The best solution for negative obstacle detection is a combination of SVM

for the short range and NODR for long range detection. Understanding this exact

range limit and how to push it out even further is a task for future work and could

provide even better results.

It has been demonstrated that it is possible to analyze terrain data, classifying

hazards such as positive obstacles, steep slopes, step edges, and even negative

obstacles at a distance far enough to travel at relatively high-speeds. It is possible

to produce traversability scores for the terrain and plan traversable paths for a

small and large UGV off-road environments, all in near-real-time using only a single

3D lidar sensor. The framework has been provided for analyzing the 3D geometry of

the terrain during path planning to begin looking for paths that will avoid tip-over

and high-centering. This work will be beneficial for autonomous UGV military and

commercial applications in off-road terrain.

The traversability analysis software created from this research has been tested

on both a large and a small UGV platform with two different lidar sensors that
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use very different techniques for 3D sensing. It can be assumed that this software

can be ported to a variety of UGV platforms, and has application for other sensors

that create 3D point clouds.

One of the issues of attempting to detect negative obstacles at long ranges is

the vertical angular resolution of the 3D lidar. A possible solution to improving

this angular resolution is to retain multiple scans and analyze them as the vehicle

is moving, either from the 3D lidar or even a single-scan lidar, angled in such a

way that it would find negative obstacles far enough away to react in time. The

distance between consecutive scans would be dependent only on the refresh scan

rate of the lidar and the speed of the vehicle. For instance, a lidar scanning at

40Hz on a vehicle traveling at 32kph can detect the ground every 0.22m (which can

be set any distance away from the vehicle). Currently the smaller lidar skips 2m

between lidar scans at 16m away. The large lidar skips 32m between lidar scans

75m away. This could provide better accuracy for negative obstacle detection.

A major classification class that has not yet been explored in this research

is vegetation. Most off-road terrain is littered with vegetation that, to a simple

obstacle detector, appears to be an obstacle. The current path planner will not

allow the unmanned vehicle to select narrow pathways that would scrape the

vegetation. Vegetation detection could be done by analyzing the visible spectrum

from a camera and combining that with lidar data for enhanced understanding

of the environment; by clustering the data points and classify scatter, linear, or

planar objects [Lalonde 06]; or through analysis of multi-return lidar.
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