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ABSTRACT OF THE DISSERTATION

Multi-hop Routing for Wireless Mesh Networks

by

Abhijeet Bhorkar

Doctor of Philosophy in Electrical Engineering (Communication Theory & Systems)

University of California, San Diego, 2012

Professor Tara Javidi, Chair

Wireless Mesh networks have the potential to provide inexpensive and quick

access to the internet for military communications, surveillance, education, healthcare

and disaster management. This work caters to the growing high-bandwidth demands

by providing low delay and high throughput by designing efficient, robust routing al-

gorithms for wireless mesh networks. Chapters 2 and 3 of this dissertation describe

adaptive routing algorithms that opportunistically route the packets in the absence of

reliable knowledge about channel statistics and the network model. We design two

adaptive routing algorithms, Distributed Opportunistic Routing (d-AdaptOR) and No

Regret Routing (NRR), which minimize the expected number of transmissions and thus

improving the throughput. The remainder of the dissertation concerns with the design

routing algorithms to avoid congestion in the network. In Chapter 4, we describe a
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Distributed Opportunistic Routing algorithm with Congestion Diversity (ORCD) which

employs receiver diversity and minimizes end-end delay. In Chapter 5, we present the

Congestion Diversity Protocol (CDP), a distributed routing protocol for 802.11-based

multi-hop wireless networks that combines important aspects of shortest-path and back-

pressure routing to achieve improved end-end delay performance. This work reports on

a practical (hardware and software) implementation of CDP in an indoor Wi-Fi testbed.
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Chapter 1

Introduction

1.1 Routing in Wireless Mesh Networks

A wireless mesh network (WMN) is a network of nodes connected by wireless

communication links. Wireless Mesh Networks is envisioned as a promising wireless

technology for numerous applications, e.g. broadband home networking, community

and enterprise networking, public Internet access, and so on [2]. In WMN, the wireless

clients are connected to a mesh backbone for network access. The wireless mesh back-

bone typically consists of mesh routers to transport the traffic of wireless client to the

internet using gateways chosen among mesh routers. Wireless mesh backbone can be

rapidly deployed with minimal cost and provides a robust, efficient, reliable, and flexible

system that supports the network access for mesh clients.

Due to the limited transmission range of the wireless nodes, many pairs of nodes

in WMN may not be able to communicate directly; hence they may need other relay

nodes to forward packets for them. The purpose of routing is generally to find paths from

the source to the destination, maintain or update paths when the topology or link quality

changes, and forward packets along the paths. The development of routing algorithms

for WMN has received a tremendous amount of attention from researchers in recent

years. The routing protocols in MWNs can be classified into four different categories

using different notions of relay selection and the forwarding mechanism at the Media

access Control layer as shown in Fig. 1.1.

Most conventional routing strategies in wireless mesh networks are typically

1



2

Figure 1.1: Classification of routing protocols

time invariant and do not change the routing path [3–5] belong to type I in Fig. 1.1.

Furthermore, these routing strategies employ a conventional scheme at the MAC layer

where the each packets next hop is determined apriori before the actual transmission

occurs. The shortest path routing algorithms [3–5] attempt to decrease the number of

transmissions required to relay a packet to its destination. For example, SRCR [6] ex-

tends shortest path routing by selecting paths based upon the expected number of trans-

mission attempts (ETX [3]). However, such fixed path schemes fail to take advantage of

the broadcast nature and opportunities provided by the wireless medium and result in un-

necessary packet retransmissions. Recently, Opportunistic routing algorithms have been

developed in order to overcome the deficiencies of conventional routing [7–12]. The op-

portunistic routing decisions, in contrast, are made in an online manner by choosing the

next relay based on the actual transmission outcome as well as on a rank ordering of

neighboring nodes. Opportunistic routing mitigates the impact of poor wireless links

by exploiting the broadcast nature of wireless transmissions and the path diversity. The

authors in [7], [12] provided a Markov decision theoretic formulation for opportunis-

tic routing. In particular, it is shown that the optimal routing decision at any epoch

is to select the next relay node based on a distance-vector summarizing the expected-

cost-to-forward from the neighbors to the destination. This “distance” is shown to be

computable in a distributed manner and with low complexity using the probabilistic

description of wireless links. The studies in [7], [12] provided a unifying framework

for almost all versions of opportunistic routing such as Selection Diversity Forwarding

SDF [8], Geographic Random Forwarding (GeRaF) [9], and ExOR [10], where the vari-

ations in [8–10] are due to the authors’ choices of which cost measures to optimize. For

instance an optimal route in the context of ExOR [10] is computed so as to minimize
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the expected number of transmissions (ETX), while GeRaF [9] uses the shortest geo-

graphical distance from the destination as a criterion for selecting the next-hop. These

routing algorithms belong to class II in Fig. 1.1 which are congestion unaware and use

opportunistic MAC.

When multiple streams of packets are to traverse the network, however, it might

be necessary to route some packets along longer paths, if these paths eventually lead to

links that are less congested. More precisely, and as noted in [1, 13], the opportunistic

routing schemes in [3–5, 8–12] can potentially cause severe congestion and unbounded

delays (see examples given in [1]). In contrast, it is known that a simple routing policy,

known as backpressure [14], ensures bounded expected total backlog for all stabilizable

arrival rates. In the opportunistic context, diversity backpressure routing (DIVBAR) [13]

provides an opportunistic generalization of backpressure which incorporates the wire-

less diversity. To ensure throughput optimality, backpressure-based algorithms [13, 14]

do something very different from [8–12]; rather than any metric of closeness (or cost)

to the destination, they choose the receiver with the largest positive differential backlog

(routing responsibility is retained by the transmitter if no such receiver exists). This

very property of ignoring the cost to the destination, however, becomes the bane of this

approach, leading to poor delay performance (see [1,13]). These localized and topology

independent routing decisions are also used in various throughput optimal routing poli-

cies [14–20] distributing the traffic locally and resulting in large queue length. In [13],

elements of shortest path computations are used to arrive at an enhanced version of DI-

VBAR (E-DIVBAR) in an attempt to mitigate the shortcomings of the two approaches.

When choosing the next relay among the set of potential forwarders, E-DIVBAR con-

siders the sum of the differential backlog and the expected hop-count to the destination

(also known as ETX). However, and as shown in [1], E-DIVBAR does not guarantee a

better delay performance than DIVBAR.

1.2 Dissertation Overview

The opportunistic algorithms proposed in [7–12] depend on a precise probabilis-

tic model of wireless connections and the local topology of the network. We refer to
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these solutions as genie aided solutions. In a practical setting, however, these proba-

bilistic models have to be “learned” and “maintained.” In other words, a comprehensive

study and evaluation of any opportunistic routing scheme requires an integrated ap-

proach to the issue of probability estimation. The authors in [21] provide a sensitivity

analysis for the opportunistic routing algorithm given in [12]. By and large, however,

the question of learning or estimating channel statistics in conjunction with opportunis-

tic routing remains unexplored. In chapters 2 and 3, we investigate the problem of op-

portunistically routing packets in a wireless multi-hop network when zero or erroneous

knowledge of transmission success probabilities and the network topology is available.

In Chapter 2, we propose an distributed adaptive opportunistic routing algorithm (d-

AdaptOR). This scheme is shown to be optimal with respect to an expected average

per packet reward criterion. In particular, d-AdaptOR achieves an optimal per packet

expected cost even when zero knowledge of the transmission success probabilities and

network topology is available. The optimality of d-AdaptOR in terms of its per packet

expected cost criterion ensures that the accumulated loss relative to the genie aided rout-

ing algorithm (known as regret) grows sub-linearly based on the number of packets in

the network. In Chapter 3, we consider a stronger notion of the optimality criterion and

account for the rate of learning with respect to regret (accumulated loss relative to the

genie aided solution). In particular, we devise an opportunistic routing scheme NRR

and show that it achieves a minimum rate of growth. These class of algorithms belong

to type II in Fig. 1.1.

In Chapter 4, we present a distributed opportunistic routing policy with conges-

tion diversity (D-ORCD) under which the congestion information is integrated with the

distributed shortest path computations of [12]. The main contribution of this chapter is

to design a distributed routing policy that improves the delay performance over exist-

ing routing policies while ensuring throughput optimality for opportunistic routing. We

tackle some of the system level issues observed in realistic settings via detailed Qualnet

simulations. We then show that D-ORCD exhibits better delay performance than state of

the art routing policies, namely, EXOR, DIVBAR and E-DIVBAR. D-ORCD employes

an opportunistic MAC and is time variant based on the congestion in the network; thus

belong to type IV in Fig. 1.1.
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In Chapter 5, we present and report on a practical implementation and testbed

evaluation of a set of congestion aware routing protocols in 802.11 based multihop wire-

less networks: and Backpressure (BP), Enhanced Backpressure protocol (E-BP), Con-

gestion Diversity Protocol (CDP). This work is based on extensions of D-ORCD, E-

DIVBAR and DIVBAR to 802.11 wireless networks. These class of algorithms belong

to type III in Fig. 1.1. This chapter deals with practical issues on the utilizing congestion

diversity and compares the performance of various algorithms against benchmark short-

est path routing algorithm SRCR. Under shortest path model, under-utilization of path

diversity can result in increased delay, congestion, or even queue instability and buffer

overflow. In contrast, the other class of algorithms, exemplified by the well known

Backpressure Protocol (BP) [14] uses differential backlogs at nodes to make routing de-

cisions. CDP and E-BP build upon these classes of existing multi-hop routing protocols

which combine the backlog information and the expected hop-count to the destination.

A brief summary and some concluding remarks are made in Chapter 6.



Chapter 2

Adaptive Opportunistic Routing

protocol

Abstract

In this work, a distributed adaptive opportunistic routing scheme for multi-hop

wireless ad-hoc networks is proposed. The proposed scheme utilizes a reinforcement

learning framework to opportunistically route the packets even in the absence of reliable

knowledge about channel statistics and the network model. This scheme is shown to be

optimal with respect to an expected average per packet reward criterion.

The proposed routing scheme jointly addresses the issues of learning and routing

in an opportunistic context, where the network structure is characterized by the trans-

mission success probabilities. In particular, this learning framework leads to a stochastic

routing scheme which optimally “explores” and “exploits” the opportunities in the net-

work.

2.1 Introduction

In this chapter, we first investigate the problem of opportunistically routing pack-

ets in a wireless multi-hop network when zero or erroneous knowledge of transmission

success probabilities and network topology is available. Using a reinforcement learn-

ing framework, we propose a distributed adaptive opportunistic routing algorithm (d-

6
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AdaptOR) that minimizes the expected average per packet cost for routing a packet from

a source node to a destination. This is achieved by sufficiently exploring the network

using data packets and exploiting the best routing opportunities.

Our proposed reinforcement learning framework allows for a low complexity,

low overhead, distributed asynchronous implementation. The significant characteristics

of d-AdaptOR are that it is oblivious to the initial knowledge about the network, it is

distributed, and it is asynchronous.

The main contribution of this chapter is to provide an opportunistic routing al-

gorithm which 1) assumes no knowledge about the channel statistics and network, but

2) uses a reinforcement learning framework in order to enable the nodes to adapt their

routing strategies, and 3) optimally exploits the statistical opportunities and receiver

diversity. In doing so, we build on the Markov decision formulation in [12] and an im-

portant theorem in Q-learning proved in [22]. There are many learning-based routing

solutions (both heuristic or analytically driven) for conventional routing in wireless and

wired networks [23–28]. None of these solutions exploit the receiver diversity gain in

the context of opportunistic routing. For the sake of completeness, however, we provide

a brief overview of the existing approaches. The authors in [23–27] focus on heuristic

routing algorithms which adaptively identify the least congested path in a wired net-

work. If the network congestion, hence delay, were to be replaced by time-invariant

quantities,1 the heuristics in [23–26] would become a special case of d-AdaptOR in a

network with deterministic channels and no receiver diversity. In this light, Theorem 1

in Section 2.4 provides analytic guarantees for the heuristics obtained in [23–26]. In [28]

analytic results for ant routing are obtained in wired networks without opportunism. Ant

routing uses ant-like probes to find paths of optimal cost such as expected hop count,

expected delay, packet loss probability.2 This dependence on ant-like probing represents

a stark difference with our approach where d-AdaptOR relies solely on the data packet

for exploration.

The rest of the chapter is organized as follows: In Section 2.2, we discuss the

1Delay and congestion are highly time-varying quantities.
2Here, we note that unlike congestion or instantaneous delay, the expected delay under a stable

and stationary routing algorithm is indeed time-invariant and allows for a similar mathematically-sound
treatment.
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system model and formulate the problem. Section 2.3 formally introduces our proposed

adaptive routing algorithm d-AdaptOR. We then state and prove the optimality theorem

for d-AdaptOR in Section 2.4. In Section 2.5, we present the implementation details

and practical issues of d-AdaptOR. We perform a simulation study of d-AdaptOR in

Section 2.6. Finally, we conclude the chapter and discuss future work in Section 2.7.

2.2 System Model

We consider the problem of routing packets from a source node 0 to a desti-

nation node d in a wireless ad-hoc network of d + 1 nodes denoted by the set Θ =

{0, 1, 2, . . . , d}. The time is slotted and indexed by n ≥ 0 (this assumption is not tech-

nically critical and is only assumed for ease of exposition). A packet indexed by m ≥ 1

is generated at the source node 0 at time τms according to an arbitrary distribution with

rate λ > 0.

We assume a fixed transmission cost ci > 0 is incurred upon a transmission from

node i. Transmission cost ci can be considered to model the amount of energy used for

transmission, the expected time to transmit a given packet, or the hop count when the

cost is set to unity. We consider an opportunistic routing setting with no duplicate

copies of the packets. In other words, at a given time only one node is responsible for

routing any given packet. Given a successful packet transmission from node i to the

set of neighbor nodes S, the next (possibly randomized) routing decision includes 1)

retransmission by node i, 2) relaying the packet by a node j ∈ S, or 3) dropping the

packet altogether. If node j is selected as a relay, then it transmits the packet at the next

slot, while all other nodes k 6= j, k ∈ S, expunge that packet.

We define the termination event for packet m to be the event that packet m is

either received at the destination or is dropped by a relay before reaching the destina-

tion. We denote this termination action by T . We define termination time τmT to be the

stopping time when packet m is terminated. We discriminate amongst the termination

events as follows: We assume that upon the termination of a packet at the destination

(successful delivery of a packet to the destination), a fixed and given positive delivery

reward R is obtained, while no reward is obtained if the packet is terminated before it
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reaches the destination. Let rm denote this random reward obtained at the termination

time τmT , i.e. either zero if the packet is dropped prior to reaching the destination node

or R if the packet is received at the destination.

Let in,m denote the index of the node which at time n transmits packet m, and

accordingly let cin,m denote the cost of transmission (equal to zero if at time n packet m

is not transmitted). The routing scheme can be viewed as selecting a (random) sequence

of nodes {in,m} for relaying packets m = 1, 2, . . . .3 As such, the expected average per

packet reward associated with routing packets along a sequence of {in,m} up to time N

is:

JN = E

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m


 , (2.1)

whereMN denotes the number of packets terminated up to timeN and the expectation is

taken over the events of transmission decisions, successful packet receptions, and packet

generation times.

Problem (P) Choose a sequence of relay nodes {in,m} in the absence of knowl-

edge about the network topology such that JN is maximized as N →∞.

In the next section we propose d-AdaptOR algorithm which solves Problem (P).

The nature of the algorithm allows nodes to make routing decisions in a distributed,

asynchronous, and adaptive manner.

Remark 1. The problem of opportunistic routing for multiple source-destination pairs,

without loss of generality, can be decomposed to the single source-destination problem

described above (Problem (P) is solved for each distinct flow).

2.3 Distributed Algorithm

Before we proceed with the description of d-AdaptOR, we provide the following

notations. LetN (i) denote the set of neighbors of node i including node i itself. Let Si

denote the set of potential reception outcomes due to a transmission from node i ∈ Θ,

i.e. Si = {S : S ⊆ N (i), i ∈ S}. We refer to Si as the state space for node i’s

3Packets are indexed according to the termination order.
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transmission. Furthermore, let S = ∪i∈ΘS
i. Let A(S) = S ∪ {T} denote the space of

all allowable actions available to node i upon successful reception at nodes in S. Finally,

for each node i we define a reward function on states S ∈ Si and potential decisions

a ∈ A(S) as

g(S, a) =


−ca if a ∈ S
R if a = T and d ∈ S
0 if a = T but d /∈ S

.

2.3.1 Overview of d-AdaptOR

Figure 2.1: Flow of the algorithm.

As discussed before, the routing decision at any given time is made based on the

reception outcome and involves retransmission, choosing the next relay, or termination.

Our proposed scheme makes such decisions in a distributed manner via the following

three-way handshake between node i and its neighbors N (i).

1. At time n node i transmits a packet.

2. The set of nodes Sin who have successfully received the packet from node i, trans-

mit acknowledgement (ACK) packets to node i. In addition to the node’s identity,
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the acknowledgement packet of node k ∈ Sin includes a control message known

as estimated best score (EBS) and denoted by Λk
max.

3. Node i announces node j ∈ Sin as the next transmitter or announces the termina-

tion decision T in a forwarding (FO) packet.

The routing decision of node i at time n is based on an adaptive (stored) score vector

Λn(i, ·, ·). The score vector Λn(i, ·, ·) lies in space Rvi , where vi =
∑

S∈Si |A(S)|, and

is updated by node i using the EBS messages Λk
max obtained from neighbors k ∈ Sin.

Furthermore, node i uses a set of counting variables νn(i, S, a) and Nn(i, S) and a se-

quence of positive scalars {αn}∞n=1 to update its score vector at time n. The counting

variable νn(i, S, a) is equal to the number of times neighbors S have received (and ac-

knowledged) the packets transmitted from node i and routing decision a ∈ A(S) has

been made up to time n. Similarly, Nn(i, S) is equal to the number of times that a set of

nodes S have received (and acknowledged) packets transmitted from node i up to time

n. Lastly, {αn}∞n=1 is a fixed sequence of numbers available at all nodes.

Table 2.1 provides the notations used in the description of the algorithm, while

Fig. 2.1 gives an overview of the components of the algorithm. Next we present further

details.

2.3.2 Detailed description of d-AdaptOR

The operation of d-AdaptOR can be described in terms of initialization and four

stages of transmission, reception and acknowledgement, relay, and adaptive computa-

tion as shown in Fig. 2.1. For simplicity of presentation we assume a sequential timing

for each of the stages. We use n+ to denote some (small) time after the start of nth

slot and (n + 1)− to denote some (small) time before the end of nth slot such that

n < n+ < (n+ 1)− < n+ 1.

0. Initialization:

For all i ∈ Θ, S ∈ Si, a ∈ A(S), initialize

Λ0(i, S, a) = ν−1(i, S, a) = N−1(i, S) = Λi
max = 0, while ΛT

max = −R.
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Table 2.1: Notations used in the description of the algorithm
Symbol Definition
Sin Nodes receiving the transmission from node i at time n

ain Decision taken by node i at time n

A(S) Set of available actions when nodes in S receive a packet

N (i) Neighbors of node i including node i

g(S, a) Reward obtained by taking decision a when
the set S of nodes receive a packet

νn(i, S, a) Number of times up to time n, nodes S have
received a packet from node i and decision a is taken

Nn(i, S) Number of times up to time n, nodes S have
received a packet from node i

Λn(i, S, a) Score for node i at time n, when nodes S
have received the packet and decision a is taken

Λi
max Estimated best score for node i
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1. Transmission Stage:

Transmission stage occurs at time n in which node i transmits if it has a packet.

2. Reception and acknowledgement Stage:

Let Sin denote the (random) set of nodes that have received the packet transmitted

by node i. In the reception and acknowledgement stage, successful reception of

the packet transmitted by node i is acknowledged by all the nodes in Sin. We

assume that the delay for the acknowledgement stage is small enough (not more

than the duration of the time slot) such that node i infers Sin by time n+.

For all nodes k ∈ Sin , the ACK packet of node k to node i includes the EBS

message Λk
max.

Upon reception and acknowledgement, the counting random variable Nn is incre-

mented as follows:

Nn(i, S) =

Nn−1(i, S) + 1 if S = Sin

Nn−1(i, S) if S 6= Sin
.

3. Relay Stage:

Node i selects a routing action ain ∈ A(Sin) according to the following (random-

ized) rule parameterized by εn(i, S) = 1
Nn(i,S)+1

:

• with probability (1− εn(i, Sin)),

ain ∈ arg max
j∈A(Sin)

Λn(i, Sin, j)

is selected,4

• with probability εn(i, Sin),

ain ∈ A(Sin)

is selected uniformly with probability εn(i,Sin)
|A(Sin)| .

4In case of ambiguity, the node with the smallest index is chosen.
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Node i transmits FO, a control packet which contains information about routing

decision ain at some time strictly between n+ and (n+ 1)−. If ain 6= T , then node

ain prepares for forwarding in next time slot, while nodes j ∈ Sin, j 6= ain expunge

the packet. If termination action is chosen, i.e. ain = T , all nodes in Sin expunge

the packet.

Upon selection of a routing action, the counting variable νn is updated.

νn(i, S, a) =

{
νn−1(i, S, a) + 1 if (S, a) = (Sin, a

i
n)

νn−1(i, S, a) if (S, a) 6= (Sin, a
i
n)

.

4. Adaptive Computation Stage:

At time (n+ 1)−, after being done with transmission and relaying, node i updates

score vector Λn(i, ·, ·) as follows:

• for S = Sin, a = ain,

Λn+1(i, S, a) = Λn(i, S, a) + ανn(i,S,a)

×

(
− Λn(i, S, a) + g(S, a) + Λa

max

)
, (2.2)

• otherwise,

Λn+1(i, S, a) = Λn(i, S, a). (2.3)

Furthermore, node i updates its EBS message Λi
max for future acknowledgements

as:

Λi
max = max

j∈A(Sin)
Λn+1(i, Sin, j).

2.3.3 Computational issues

The computational complexity and control overhead of d-AdaptOR is low.

Complexity

To execute stochastic recursion (2.2), the number of computations required per

packet is of the order of O(maxi∈Θ |N (i)|) at each time slot. The space complexity of
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d-AdaptOR is exponential in the number of neighbors i.e. O(maxi∈Θ 2|N (i)|) for each

node. The reduction in storage requirement using approximation techniques in [29] is

left as future work.

Control overhead

The number of acknowledgements per packet is order of O(maxi∈Θ |N (i)|), in-

dependent of network size.

Exploration overhead

The adaptation to the optimal performance in the network is guaranteed via a

controlled randomized routing strategy which can be viewed as a cost of exploration.

The cost of exploration is proportional to the total number of packets whose routes

deviate from the optimal path. In proof of Theorem 1, we show that this cost increases

sublinearly with the number of delivered packets, hence the per packet exploration cost

diminishes as the number of delivered packets grow. Additionally, communication of

Λmax adds a very modest overhead to the genie-aided or greedy-based schemes such as

ExOR or SR.

2.4 Analytic Optimality of d-AdaptOR

We will now state the main result establishing the optimality of the proposed

d-AdaptOR algorithm under the assumptions of a time-invariant model of packet recep-

tion and reliable control packets. More precisely, we have the following assumptions.

Assumption 1. The probability of successful reception of a packet transmitted by node i

at set S ⊆ N (i) of nodes is P (S|i), independent of time and all other routing decisions.

The probabilities P (·|·) in Assumption 1 characterize a packet reception model

which we refer to as a local broadcast model. Note that for all S 6= S ′, successful

reception at S and S ′ are mutually exclusive and
∑

S⊆Θ P (S|i) = 1. Furthermore,

logically node i is always a recipient of its own transmission, i.e. P (S|i) = 0 iff i /∈ S.
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Assumption 2. The successful reception at set S due to transmission from node i is

acknowledged perfectly to node i.

Remark 2. Assumption 1 is in line with the experimentally tested state of the art routing

protocols MORE [30] and ExOR [10]. These studies seem to indicate that reasonably

simple probabilistic models provide good abstractions of media access control (MAC)

and physical (PHY) layers at the routing layer.

Remark 3. In practice, Assumption 2 is hard to satisfy. But as we will see in Section 2.6,

when the rates and power of the control packets are set to maximize the reliability, the

impact of violating this assumption can be kept extremely low.

Remark 4. In Sections 2.6, we address the severity as well as the implications of As-

sumptions 1 and 2. In particular, via a set of QualNet simulations, we will show that

d-AdaptOR exhibits many of its desirable properties in a realistic setup despite the re-

laxation of the analytical assumptions.

Given Assumptions 1 and 2, we are almost ready to present Theorem 1 regard-

ing the optimality of d-AdaptOR among the class of policies that are oblivious to the

network topology and/or channel statistics. More precisely, let a distributed routing pol-

icy be a collection φ = {φi}i∈Θ of routing decisions taken at nodes i ∈ Θ, where

φi denotes a sequence of random actions φi = {ai0, ai1, . . .} for node i. The pol-

icy φ is said to be (P)-admissible if for all nodes i ∈ Θ, S ∈ Si, a ∈ A(S), the

event {ain = a} belongs to the σ-field Hi
n generated by the observations at node i,

i.e.
⋃
j∈N (i){S

j
0, a

j
0, . . . , S

j
n−1, a

j
n−1, S

j
n}. Let Φ denote the set of such (P)-admissible

policies. Theorem 1 below states that d-AdaptOR, denoted by φ∗ ∈ Φ is an optimal

(P)-admissible policy.

Theorem 1. Suppose
∑∞

n=0 αn = ∞,
∑∞

n=0 α
2
n < ∞, and Assumptions 1 and 2 hold.

Then for all φ ∈ Φ,

lim
N→∞

Eφ∗

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m




≥ lim sup
N→∞

Eφ

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m
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where Eφ∗ and Eφ are the expectations taken with respect to policies φ∗ and φ respec-

tively.5

Next we prove the optimality of d-AdaptOR in two steps. In the first step, we

show that Λn converges in an almost sure sense. In the second step we use this conver-

gence result to show that d-AdaptOR is optimal for Problem (P).

2.4.1 Convergence of Λn

Let U :
∏

iRvi →
∏

iRvi be an operator on vector Λ such that,

(UΛ)(i, S, a) = g(S, a) +
∑
S′∈Sa

P (S′|a) max
j∈A(S′)

Λ(a, S′, j). (2.4)

Let Λ∗ ∈
∏

iRvi denote the fixed point of operator U ,6 i.e.

Λ∗(i, S, a) = g(S, a) +
∑
S′∈Sa

P (S′|a) max
j∈A(S′)

Λ∗(a, S′, j). (2.5)

The following lemma establishes the convergence of recursion (2.2) to the fixed point

of U , Λ∗.

Lemma 1. Let

(J1) Λ0(·, ·, ·) = 0, ΛT
max = −R, Λi

max = 0 for all i ∈ Θ,

(J2)
∑∞

n=0 αn =∞,
∑∞

n=0 α
2
n <∞.

Then the sequence Λn obtained by the stochastic recursion (2.2) converges to Λ∗ almost

surely.

The proof uses known results on the convergence of a certain recursive stochastic

process as presented by Fact 4 in Appendix A.1.1.

5This is a strong notion of optimality and implies that the proposed algorithm’s expected average
reward is greater than the best case performance (lim sup) of all policies [31, Page 344 ].

6Existence and uniqueness of Λ∗ is provided in Appendix A.1.1.
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2.4.2 Proof of optimality

Using the convergence of Λn we show that the expected average per packet re-

ward under d-AdaptOR is equal to the optimal expected average per packet reward ob-

tained for a genie-aided system where the local broadcast model is known perfectly. In

other words, we take a cue from known results associated with a closely related Auxil-

iary Problem (AP). In this Auxiliary Problem (AP), there exists a centralized controller

with full knowledge of the local broadcast model P (·|·) as well as the transmission out-

comes across the network [7, 12]. The objective in the Auxiliary Problem (AP) is a

single packet variation of that in Problem (P): the reward

E

rm − τmT −1∑
n=0

cin,m


for routing a single packetm from the source to the destination is maximized over a set Π

of (AP)-admissible policies, where this set Π of (AP)-admissible policies is a superset

of (P)-admissible policies Φ which also includes all topology-aware and centralized

policies. This Auxiliary Problem (AP) has been extensively studied in [7,12,32], where

a Markov decision formulation provides the following important result:

Fact 1. [12, Theorem 2.1] Consider the unique solution V ∗ : Θ ∪ {T} → R+ to the

following fixed point equation:

V ∗(d) = R (2.6)

V ∗(i) = max({−ci +
∑
S′

P (S′|i)(max
j∈S′

V ∗(j))}, 0) (2.7)

There exists an optimal topology-aware and centralized admissible policy π∗ ∈ Π such

that

Eπ∗

rm − τmT −1∑
n=0

cin,m

 = V ∗(0). (2.8)

Lemma 2 below states the relationship between the solution of Problem (P) and

that of the Auxiliary Problem (AP). More specifically, Lemma 2 shows that V ∗(0) is an

upper bound for the solution to Problem (P).
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Lemma 2. For any (P)-admissible policy φ ∈ Φ for Problem (P) and for all N =

1, 2, . . .,

Eφ

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m


 ≤ V ∗(0).

The proof is given in Appendix A.1.2. Intuitively the result holds because the

set of (P)-admissible policies is a subset of (AP)-admissible policies, i.e. Φ ⊂ Π.

Lemma 3 below gives the achievability proof by showing that the expected av-

erage per packet reward of d-AdaptOR is lower bounded by V ∗(0).

Lemma 3. For any δ > 0,

lim inf
N→∞

Eφ∗

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m


 ≥ V ∗(0)− δ.

The proof is given in Appendix A.1.3. Lemmas 2 and 3 imply that φ∗ (which is

(P)-admissible by construction) is an optimal policy under which

lim
N→∞

Eφ∗

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m




exists and is equal to V ∗(0), establishing the proof of Theorem 1.

Corollary 1. When ci = 1, i ∈ Θ, the network is connected, and R is greater than the

worst case routing cost,7 d-AdaptOR minimizes

DN = Eπ

[
1

MN

MN∑
m=1

{τmT − τms )}

]
, (2.9)

the expected per packet delivery time as N →∞.

This is because when ci = 1,R is sufficiently large, and the network is connected

V ∗(0) = R− inf
π∈Π

Eπ

 1

MN

MN∑
m=1


τmT −1∑
n=τms

cin,m




= R− inf
π∈Π

DN , as N →∞.

7The worst case routing cost can be determined by taking the supremum over ETX metrics for all
source-destination pairs.
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2.5 Protocol Design and implementation issues

In this section, we describe an 802.11 compatible implementation for d-AdaptOR.

2.5.1 802.11 compatible implementation

The implementation of d-AdaptOR, analogous to any opportunistic scheme, in-

volves the selection of a relay node among the candidate set of nodes that have received

and acknowledged a packet successfully. One of the major challenges in the implemen-

tation of an opportunistic routing algorithm, in general, and d-AdaptOR algorithm in

particular, is the design of an 802.11 compatible acknowledgement mechanism at the

MAC layer. Below we propose a practical and simple way to implement an acknowl-

edgement architecture.

The transmission at any node i is done according to 802.11 CSMA/CA mecha-

nism. Specifically, before any transmission, transmitter i performs channel sensing and

starts transmission after the backoff counter is decremented to zero. For each neigh-

bor node j ∈ N (i), the transmitter node i then reserves a virtual time slot of duration

TACK + TSIFS , where TACK is the duration of the acknowledgement packet and TSIFS
is the duration of Short InterFrame Space (SIFS) [33]. Transmitter i then piggy-backs a

priority ordering of nodesN (i) with each data packet transmitted. The priority ordering

determines the virtual time slot in which the candidate nodes transmit their acknowl-

edgement. Nodes in the set Si that have successfully received the packet then transmit

acknowledgement packets sequentially in the order determined by the transmitter node.

After a waiting time of Twait = |N (i)|(TACK + TSIFS) during which each node

in the set Si has had a chance to send an ACK, node i transmits a FOrwarding control

packet (FO). The FO packets contain the identity of the next forwarder, which may

be node i again or any node j ∈ Si. If Twait expires and no FO packet is received

(FO packet reception is unsuccessful), then the corresponding candidate nodes drop the

received data packet. If the transmitter i does not receive any acknowledgement, node

i retransmits the packet. The backoff window is doubled after every retransmission.

Furthermore, the packet is dropped if the retry limit (set to 7) is reached.

In addition to the acknowledgement scheme, d-AdaptOR requires modifications
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to the 802.11 MAC frame format. Fig. 2.2 shows the modified MAC frame formats

required by d-AdaptOR. The reserved bits in the type/subtype fields of the frame control

field of the 802.11 MAC specification are used to indicate whether the rest of the frame

is a d-AdaptOR data frame, a d-AdaptOR ACK, or a FO.8 The data frame contains the

candidate set in priority order, the payload, and the 802.11 Frame Check Sequence. The

acknowledgement frame includes the data frame sender’s address and the feedback EBS

Λmax. The FO packet is exactly the same as a standard 802.11 short control frame which

uses a different subtype value.

Figure 2.2: Frame structure of data packets, acknowledgement packets, and FO packets.

2.5.2 d-AdaptOR in a realistic setting

Loss of ACK and FO packets

Interference or low signal to noise ratio (SNR) can cause loss of ACK and FO

packets. Loss of an ACK packet results in an incorrect estimation of nodes that have

received the packet and thus affects the performance of the algorithm. Loss of FO packet

negatively impacts the throughput performance of the network. In particular, loss of FO

packet can result in the drop of a data packet at all the potential relays, reducing the
8This enables the d-AdaptOR to communicate and be fully compatible with other 802.11 devices.
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throughput performance. Hence, in our design, FO packets are transmitted at lower

rates to ensure a reliable transmission.

Increased overhead

As it is the case with any opportunistic scheme, d-AdaptOR adds a modest ad-

ditional overhead to the standard 802.11 due to the added acknowledgement/handshake

structure. This overhead increases linearly with the number of neighbors. Assuming a

802.11b physical layer operating at 11 Mbps with an SIFS time of 10µs, preamble du-

ration of 20µs, Physical Layer Convergence Protocol (PLCP) header duration of 4µs,

and 512 byte frame payloads, Table 2.2 compares the overhead in the data packet due to

piggy-backing and the control overhead due to ACK and FO packets for unicast 802.11,

genie-aided opportunistic scheme, and d-AdaptOR. d-AdaptOR requires a communica-

tion overhead of 4 extra bytes (for EBS) per ACK packet compared to the genie-aided

opportunistic scheme, while unicast 802.11 does not require such overhead.

Table 2.2: Overhead comparisons
Data Frame Control packets Total

802.11 397µs 40 µs 437µs
(ACK)

Genie-aided 400µs 115 µs + 40µs 555µs
opportunistic scheme (ACK+FO)

d-AdaptOR 400µs 124µs +40µs 564 µs
(ACK+FO)

Note that the overhead cost can be reduced by restricting the number of nodes in

the candidate list of MAC header to a given number, MAX-NEIGHBOUR. The unique

ordering for the nodes in the candidate set is determined by prioritizing the nodes with

respect to Λn(i, {i, j}, j), j ∈ N (i) and then choosing the MAX-NEIGHBOUR highest

priority nodes.9 Such a limitation will sacrifice the diversity gain and hence, the perfor-

mance of any opportunistic routing algorithm for lower overhead. In practice, we have

seen that limiting the neighbor set to 4 provides most of the diversity gain.

9In case of ambiguity, the node with the smallest index is chosen.
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2.6 Simulations

In this section, we provide simulation studies in realistic wireless settings where

the theoretical assumptions of our study do not hold. These simulations not only demon-

strate a robust performance gain under d-AdaptOR in a realistic network, but also pro-

vide significant insight of the appropriate choice of the design parameters such as damp-

ing sequence {αn}, delivery reward R, etc. We first investigate the performance of

d-AdaptOR with respect to the design parameters and network parameters in a grid

topology of 16 nodes. We then use a realistic topology of 36 nodes with random place-

ment to demonstrate robustness of d-Adaptor in splite of the violation of the analytic

Assumptions 1 and 2.

2.6.1 Simulation Setup

In Subsections 2.6.2 and 2.6.3 using appropriate choice of the design parame-

ters, we compare the performance of d-AdaptOR against suitably chosen candidates.

As a benchmark, when appropriate, we have compared the performance against a genie-

aided policy which relies on full network topology information when selecting routes.

This is nothing but π∗ discussed in Subsection 2.4.2. We also compare the performance

against Stochastic Routing (SR) [7] (SR is the distributed implementation of policy π∗)

and ExOR [10] (an opportunistic routing policy with the ETX metric) in which the em-

pirical probabilistic structure of the network is used to implement opportunistic routing

algorithms. As a result, their performance will be highly dependent on the precision of

empirical probability associated with link, pij . To provide a fair comparison, we have

considered simple greedy versions of SR and ExOR. These algorithms adapt {pij} to

the history of packet reception outcomes and rely on the updates to make routing de-

cisions assuming error free {pij}. We have also compared our performance against a

conventional routing SRCR [6] with full knowledge of topology. In this setting, a con-

ventional route is selected with perfect knowledge of link success probability at any

given node. This comparison in effect provides a simple benchmark for all learning-

based conventional routing policies in the literature such as Q-routing [23] and predic-

tive Q-routing [25] when congestion is taken to be small enough (such that finding least
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congested paths coincides with finding the path with the minimum expected number of

transmissions).

Our simulations are performed in QualNet. We consider two sets of topologies

in our experimental study:

1. Grid Topology: In Subsection 2.6.2, we study a grid topology consisting of 16

indoor nodes such that the nearest neighbors are separated by distance L m. If

unspecified, L is chosen to be 25 meters. The source and the destination are

chosen at the maximal distance (on the diagonal) from each other.

2. Random Topology: In Subsection 2.6.3, we study a random topology consisting

of 36 indoor nodes placed in an area of 150m×150m. Here, we investigate the

performance under a multi-source multi-destination setting as the number of flows

in the network is varied and each flow is specified via a randomly selected pair of

source and destination nodes.

The nodes are equipped with 802.11b radios placed in an indoor environment transmit-

ting at 11 Mbps with transmission power of 15 dBm. Note that the choice of indoor

environment is motivated by the findings in [34] where opportunistic routing is found to

provide significant diversity gains. The wireless medium model includes Rician fading

with the K-factor of 4 and Log-normal shadowing with a mean of 4dB. The path loss

follows the two-ray model in [35] with a path exponent of 3. The acknowledgement

packets are short packets of length 24 bytes transmitted at 11 Mbps, while FO packets

are of length 20 bytes and transmitted at a lower rate of 1 Mbps to ensure reliability.

If unspecified, packets are generated according to a constant bit rate (CBR) source at

a rate of 20 packets/sec. The packets are assumed to be of length 512 bytes equipped

with simple cyclic redundancy check (CRC) error detection. The cost of transmission is

assumed to be one unit and the reward R is set to 40. We have chosen α1
n = 1√

n logn
as

the exploration parameter of choice.

2.6.2 Effects of Design and Network Parameters

In this subsection, we investigate the role and criticality of various design param-

eters of d-AdaptOR with respect to criterion of the expected number of transmissions.
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Figure 2.3: Comparison for α1
n = 1√

n log(n)
, α2

n = 1
n log(n)

.

Let us start with design parameters {αn} and R

Exploration Parameter Sequence αn

The convergence rate of stochastic recursion (2.2) depends strongly on the choice

of sequence {αn}. Convergence is slower with a faster decreasing sequence {αn} and

results in less variance in the estimates of Λn, while with a slow decreasing sequence

of {αn}, convergence is fast but results in large variance in the estimates of Λn. In

Fig. 2.3, we have plotted the effect of the choice of αn sequence by comparing two se-

quences {α1
n = 1√

n logn
} and {α2

n = 1
n logn

}. Note that under sequence {α2
n = 1

n logn
}, d-

AdaptOR is slower to adapt to the optimal performance while it shows a slightly smaller

variance. This is because the choice of αn controls the rate with which greedy versus

(randomly chosen) exploration actions are utilized. The optimization of the choice of

{αn} is an interesting topic of study in stochastic approximation [36]- [37], far beyond

the scope of this work.
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Per Packet Delivery Reward R

To ensure an acceptable performance of d-AdaptOR, the value of delivery re-

ward, R, must be chosen sufficiently high. This would ensure the existence of routes

under which the value of delivering a packet (as represented in R) is worth (i.e. larger

than) the cost of relaying and routing that packet. A reasonable choice of R is any

value larger than the worst case expected transmission cost. Increasing R beyond such

a value does not affect the asymptotic optimality of the algorithm. Next, we study the

performance of d-AdaptOR with respect to the convergence rate and delivery ratio.

Figure 2.4: Expected number of transmissions versus time as R is varied.

Fig. 2.4 plots the expected number of transmissions rate as time progresses for

various values of R. As seen in Fig. 2.4, if R increases beyond a threshold R0 (in the

example provided here, this threshold is 18, but in general it depends on the network

diameter), the expected number of transmissions per packet achieve the optimal value

of R0. In contrast, for R < R0, the expected number of transmissions approaches zero

as the packets not worth obtaining a routing reward are dropped.10 Fig. 2.4 also shows

that the convergence rate of the expected number of transmissions for routing per packet

under d-AdaptOR decreases as R increases. The slow convergence for R > R0 for

large R is due to the flexibility of exploring longer paths. The slow convergence to zero

for R < R0 near R0 is attributed to the fact that it takes longer time for d-AdaptOR to

realize that the packet is not worth relaying.

Fig. 2.5 plots the delivery ratio as R is varied. Fig. 2.5 shows that as R increases

beyond a threshold R0, the delivery ratio remains fixed. However, for sufficiently small
10For R < R0, we have plotted negative of the expected per packet reward as the expected number of

transmissions.
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R, nearly all the packets are dropped as the cost of transmission of the packet as well as

relaying is not worth the obtained delivery reward. Due to very slow convergence rate

around R0 for R < R0, we observe that non-negligible number of packets are delivered

in the duration of experiment.
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Figure 2.5: Delivery ratio as R is varied.

Next, we investigate the performance of d-AdaptOR with respect to other can-

didate protocols for the network parameters such as packet length, traffic rate, neighbor

distance, and time varying costs.

Packet Length

We have repeated our simulations for 1024 byte packets. Fig. 2.6 plots the per-

formance as the packet length is varied from 512 to 1024 bytes. Note that due to the

decreasing packet transmission reliabilities, the expected routing cost per packet is in-

creased with the packet size; however, the optimality of d-AdaptOR does not depend on

the packet length.
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Figure 2.6: d-AdaptOR performance as packet length is varied.
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Traffic rate

Fig. 2.7 plots the mean number of transmissions versus CBR rate for candidate

algorithms. Even though the performance gain for d-AdaptOR decreases somewhat with

increase in the load, there is always a non-negligible advantage over greedy solutions.
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Figure 2.7: Performance of d-AdaptOR as CBR traffic is varied.
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Figure 2.8: Small hops provide significant receiver diversity gain.

In an attempt to understand the performance gap between various opportunistic

algorithms, specifically the gap between d-AdaptOR versus learning-based conventional

routing algorithms [23–26] whose performance is bounded by SRCR, one needs to gain

insight about the diversity gain achieved by opportunistic routing. Fig. 2.8 compares the

expected transmission cost for the three opportunistic routing algorithms (d-AdaptOR,

ExOR, and SR) and SRCR as the distance between the neighboring nodes in the grid

topology, measured in L meters, is varied from 10 meters to 30 meters. Note that for
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high values of L, the receiver diversity is low due to retransmission packet losses giving

nearly similar performance for candidate protocols, while small L corresponds to a net-

work with large receiver diversity gain. As expected, when L is small, all opportunistic

routing schemes provide a significant improvement over conventional routing, but per-

haps what is more interesting is the performance gain of learning-based d-AdaptOR over

the greedy-based solutions in medium ranges.

Time Varying Cost

In our analytical setup we assume the transmission costs are fixed. Next, we

discuss a simple scenario where the nodes have time varying transmission costs. Con-

sider a network in which nodes may go into an energy saving mode when they do not

participate in routing (e.g. to recharge their energy sources). Assume that upon entering

the energy saving mode, a node announces a high cost of transmission (100 instead of

usual transmission cost of 1). Fig. 2.9 plots the expected average cost of d-AdaptOR

when two nodes at the center of the grid move into an energy saving mode. It shows

that d-AdaptOR can track the genie aided solution after the nodes move into the energy

saving mode.
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Figure 2.9: Time varying cost: Nodes go into sleep mode at time 300 seconds.

2.6.3 Case Study: Random Network

In this subsection, we study a random network scenario consisting of 36 wireless

nodes placed randomly, with the remaining parameters kept the same as the default
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parameters.

Fig. 2.10 plots the expected number of transmissions and the expected average

per packet reward for the candidate routing algorithms versus network operation time

when a single flow is present in the random topology. We first note that, as expected,

SRCR performs poorly compared to the opportunistic schemes as it fails to utilize the

receiver diversity gain. This underlines our contribution over all existing learning-based

solutions [23–26] which ignore receiver diversity. Furthermore, Fig. 2.10 shows that

d-AdaptOR algorithm outperforms the greedy opportunistic schemes given sufficient

number of packet deliveries. This is because the greedy versions of SR and ExOR fail to

explore possible choices of routes and often result in strictly suboptimal routing policies.

Fig. 2.10 also shows that the randomized routing decisions employed by d-AdaptOR

work as a double-edged sword. On the one hand, they form a mechanism through which

network opportunities are exhaustively explored until the globally optimal decisions are

constructed, resulting in an improved long term performance while these randomized

decisions lead to a short-term performance loss. This in fact is reminiscent of the well-

known exploration/exploitation trade-off in stochastic control and learning literature.

Next we study the performance of d-AdaptOR as the number of flows in the

network is varied where each flow is specified via a randomly selected pair of source and

destination. Fig. 2.11 plots the expected number of transmissions and expected average

reward for the candidate routing algorithms for the random topology. As seen in Fig.

2.11, d-AdaptOR maintains an optimal performance. However, Fig. 2.11 also shows

that the gap between d-AdaptOR and the greedy version of SR significantly decreases

with an increase in number of flows where the natural pattern of traffic flow renders

the (randomized) exploration phase less critical. In other words, while Fig. 2.11 is

consistent with the Remark 1 in Section 2.2 regarding the decomposition of multiple-

flow scenario to multiple single-flow scenarios, it also suggests that a joint design in

which the multiplicity of flows provide a natural (and greedy) exploration of the network

might be beneficial with regard to the transient/short-term performance measures of

interest.
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Figure 2.10: The expected number of transmissions as function of operation time.
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2.7 Summary

In this chapter, we proposed d-AdaptOR, a distributed, adaptive, and oppor-

tunistic routing algorithm whose performance is shown to be optimal with zero knowl-

edge regarding network topology and channel statistics. More precisely, under idealized

assumptions, d-AdaptOR is shown to achieve the performance of an optimal routing

with perfect and centralized knowledge about network topology, where the performance

is measured in terms of the expected per packet reward. Furthermore, we show that

d-AdaptOR allows for a practical distributed and asynchronous 802.11 compatible im-

plementation, whose performance was investigated via a detailed set of QualNet simu-

lations under practical and realistic networks. Simulations show that d-AdaptOR con-

sistently outperforms existing adaptive routing algorithms in practical settings.
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Chapter 3

No Regret Routing protocol

Abstract

In this chapter, we consider the problem of adaptive routing in wireless ad-hoc

networks with respect to the regret (or learning loss) criterion. The regret criterion ac-

counts for the loss of performance incurred because of the implicit on-line learning task

involved when the link probabilities are unknown. In particular, we construct asymp-

totically efficient adaptive control schemes (that minimize the rate at which regret accu-

mulates with time) while coming arbitrarily close to the minimum rate. The intent is to

capture the conflict between learning and control.

3.1 Introduction

The opportunistic algorithms proposed in [7,9,10,12] depend on a precise proba-

bilistic model of wireless connections and the network topology. We refer to the solution

given in [12] as the genie aided routing algorithm. In a practical setting, however, these

probabilistic models have to be “learned” and “maintained.”. In Chapter 2, an adaptive

distributed opportunistic routing algorithm (d-AdaptOR) was proposed. AdaptOR relies

on a large number of packets routed in the network to implicitly learn the optimal routing

decisions. In particular, d-AdaptOR achieves an optimal per packet expected cost even

when zero knowledge of the transmission success probabilities and network topology is

available. The optimality of AdaptOR in terms of its per packet expected cost criterion

33
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ensures that the accumulated loss relative to the genie aided routing algorithm (known

as regret) grows sub-linearly with regard to the number of packets in the network. How-

ever, this per packet optimality criterion does not account for the rate of learning among

policies with sub linear growth in their regret. The optimal rate of growth of regret (the

accumulated loss relative to the genie aided solution) is the topic of this chapter. In par-

ticular, we devise an opportunistic routing scheme under which the first N packets see

a regret (relative to the genie-aided solution) on the order of O(log(N)). This is shown,

in an order sense, to achieve a lower bound on the performance of any uniformly good

policy (a policy that is not tuned in for any given probability model).

The remainder of the chapter is organized as follows. In Section 3.2, we provide

the system model. Section 3.3 introduces our proposed routing algorithm, NRR. Section

3.4 discuses the outline of proof for the optimality of NRR. Finally we conclude in

Section 3.5 and discuss future work.

3.2 System Model

We now consider the problem of routing packets from a source node 0 to a

destination node d in a wireless ad-hoc network of d + 1 nodes denoted by the set

Θ = {0, 1, 2, . . . , d}. Associated with each node i, there is a non-negative transmission

cost ci. The transmission cost ci models the amount of energy used for transmission,

the expected time for transmission of a packet, or the hop count when ci=1. The time

is slotted and indexed by n ≥ 0 (this assumption is not technically critical and is only

assumed for ease of exposition).

We consider an opportunistic routing setting with no duplicate copies of the

packets. In other words, at a given time the node responsible for routing a given packet

transmits the packet and is received by a sub-set of neighbors; the successful reception

of the packet by the neighbors is assumed to be known with zero error and delay at the

transmitter; and finally, the routing algorithm determines the choice of the next relay

among these nodes. More precisely, given a successful packet transmission from node

i to the set of neighboring nodes S, the next (possibly randomized) routing decision

includes 1) retransmission by node i, 2) relaying the packet by a node j ∈ S, or 3)
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dropping the packet altogether. If node j is selected as a relay, then it transmits the

packet at the next slot, while other nodes k 6= j, k ∈ S, expunge the packet.

We define the termination event for packet m to be the event that packet m is

either received at its destination or is dropped by a relay before reaching the destination.

We denote this termination action by T . We define the termination time τmT to be the

stopping time when packet m is terminated. We discriminate amongst the termination

events as follows: We assume that upon the termination of a packet at its destination

(successful delivery of a packet to its destination), a fixed and given positive delivery

reward r is obtained, while no reward is obtained if the packet is terminated before it

reaches the destination. Let rm denote this random reward obtained at the termination

time τmT , i.e. either zero if the packet is dropped prior to reaching the destination node

or r if the packet is received at the destination node.

In this work, we formulate the problem in terms of a specific packet generation

process at source node 0. Let Mn denote the packet generation process at source node 0

(by definitionM0 = 1) where packetm is generated at the source at time τm+1
s = τmT +1,

i.e. a new packet is generated at the source when the previous packet has terminated.

Note that the assumptions are for analytical tractability, the protocol implementation is

not required to abide to this specific traffic generation pattern.

To facilitate learning, we assume that each node also generates probe packets

independently of the process Mn. We assume that the probe packets are generated at

each node such that the number of the probe packets generated in time slot N are order

of log(N) for unit cost.

An admissible routing policy π is a sequence of routing decisions, i.e. for each

packet, it includes the selection of the next hop. The total expected reward obtained upto

time N under policy π is given as

Jπ(0, N) = Eπ

MN∧τm
T
−1∑

m=1

rm −
τmT −1∧N∑
n=τms

cimn


 , (3.1)

where Eπ denotes the expectation taken with respect to policy π, MN denotes the num-

ber of packets generated at the source upto time N , imn denotes the index of the node
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which transmits packet m at time n, Let J∗(0, N) be an optimal total reward such that

J
∗
(0, N) = sup

π
Jπ(0, N). (3.2)

After accounting for the extra overhead of probe packets, we define the actual

regret achieved for policy π as

Rπ(0, N) = J
∗
(0, N)− Jπ(0, N) + (d+ 1) log(N). (3.3)

Here, we are interested in minimizing the regret Rπ(0, N).

Let π be a uniformly good policy if [38]

Rπ(0, N) = O(Nα),∀α > 0. (3.4)

We restrict attention only to the class CU of asymptotically uniformly good adaptive

strategies. The regret of uniformly good policies grow slowly and are asymptotically

efficient [38].

We will first prove that uniformly consistent policies have an lower bound of

O(logN) i.e.,

lim inf
N→∞

Rπ(0, N)

logN
≥ C0, C0 > 0, π ∈ CU . (3.5)

Our objective now is to design policy a φ∗ for which there exists 0 < C1 < ∞
such that

lim sup
N→∞

Rφ∗(0, N)

logN
≤ C1. (3.6)

3.3 Algorithm: Construction of Efficient strategies

Next, we provide the No Regret Routing (NRR) algorithm φ∗ which is based

on efficiently routing the packets based on the observations so far. Algorithm φ∗ uses

an index function Λn and rank-orders the nodes based on index Λn. The node with

the highest value of Λn is chosen for the transmission. Index function Λn takes into

account how much weight we should give for a current estimate of the model (and

hence the greedy decisions) versus how much random exploration we allow for. For

instance, if a particular node is not chosen too often for transmission then the estimates

of the probability model are not credible enough to justify greedy routing decisions.
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In contrast, as the number of packets routed through a given node increases, keeping

track of the transmission outcomes enables the algorithm to learn a reliable model to be

exploited.

Associated with each node i, the algorithm uses two counting variables Nn(i),

Nn(S, i): Nn(i) denotes number of times node i is used for transmission while Nn(S, i)

denotes number of times a set of nodes S are reached when node i is used for transmis-

sion. These counters help to gather the knowledge of the structure of the genie-aided

solution. Next, we give detailed description of NRR.

No Regret Routing (NRR) algorithm φ∗

0. Initialization Stage:

n = 0, Nn(i) = 0, Nn(S, i) = 0, for all i ∈ Θ.

1. Probing Stage:

This stage occurs at time 2j , j ≥ 0. In this stage probe packets are generated

by each node. Let Sin denote the (random) set of nodes that have successfully

received the packet from node i. The counting variables are then incremented as

follows:

Nn(i) =
{
Nn−1(i) + 1 if i is a transmitter ,

Nn(S, i) =

Nn−1(S, i) + 1 if S = Sin

Nn−1(S, i) if S 6= Sin
.

In this stage, the empirical probabilities are updated as:

Pn(S|i) =
min{Nn(S, i), 1}∑
S min{Nn(S, i), 1}

.

The value function Vn at time n is obtained using the procedure in stage 5 with

input (Pn). At time n, Vn(i) = Vn−1(i) if n 6= 2j, j ≥ 0.

2. Reception and Acknowledgment Stage:

This stage is assumed to occur at time n. Let i be the node which has transmitted at

time n−. Let Sin denote the (random) set of nodes that have successfully received

the packet from node i. In the reception and acknowledgment stage, the successful

reception of the transmitted packet is acknowledged by all the nodes in the set

Sin. These nodes form the set of potential relays for node i. Upon reception and

acknowledgement, the corresponding counting random variables are incremented.
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3. Indexing Stage:

This stage is assumed to occur at n+. An index for each decision k ∈ Θ ∪ {T} is

calculated at time n as

Λn(k) = Vn(k) +

√
2 log n

Nn(k)
. (3.7)

4. Relay/Transmission Stage:

This stage is assumed to occur at (n + 1)−. In this stage, the next set of relay

nodes (actions) are selected. A node k is selected such that1:

k ∈ arg max
j∈S∪{T}

Λn(j).

5. Value function computation

This stage is conducted periodically (at a rate much slower than stages 2-4).

(a) Let A = d and let X = Θ\A.

Initialize: V (d) = 0, V (T ) = 0 and for ∀i ∈ X V (i) = −∞.

(b) For each i ∈ X , compute V (i) as

V (i) = max

−ci +
∑

S∈N (i)

P (S|i) max
j∈A∩S

V (j), ri

 ,

where ri = r > 0 for i = d, else ri = 0.

(c) Append node i ∈ X with the highest value of V (i) to the ordered set A and

remove node i from X .

(d) If X is empty stop or else go to step 5b.

This stage rank-orders the nodes assuming that the current estimate of the broad-

cast model is accurate. In [12] this procedure is shown to result in the optimal

opportunistic routing algorithm when the network topology and the local broad-

cast model are available.
1In case of the ambiguity, the node with smallest index is chosen.
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3.4 Optimality of NRR

We will now state the main result establishing the optimality of the proposed

NRR algorithm under the assumptions of a time-invariant model of packet reception

and a centralized controller. More precisely, we have the following assumptions:

Assumption 3. The probability of a successful reception of a packet transmitted by

node i at set S ⊆ N (i) of nodes is P (S|i), independent of time and all other routing

decisions.

Assumption 4. P (·|j) = 0⇒ Pn(·|j) = 0,∀n ≥ n0, n0 ≥ 0.

Assumption 5. The successful reception at set S due to transmission from node i is

known to the centralized controller.

The probabilities P (·|·) in Assumption 3 characterize a packet reception model

referred as the local broadcast model. Note that for all S 6= S ′, successful reception

at S and S ′ are mutually exclusive and
∑

S⊆Θ P (S|i) = 1. Furthermore, logically

node i is always a recipient of its own transmission, i.e. P (S|i) = 0 iff i /∈ S. As-

sumption 3 is in line with the experimentally tested routing protocol ExOR [10] which

indicates that reasonably simple probabilistic models provide good abstractions of the

media access control (MAC) and physical (PHY) layers at the routing layer. Assump-

tion 4 holds valid in practice, since it determines that the existence of neighbours using

probe packets can be achieved reliably. Assumption 5 is for ease of exposition and can

be relaxed. In fact [12] provides a distributed massage passing which can compute Vn(i)

using Bellman-ford iteration.

3.4.1 Lower bound on regret for NRR

We first find the lower bound Rπ(0, N), π ∈ CU by constructing a specific

example of routing. In this example, we decompose the routing problem into a multi-

arm bandit problem. Before we discuss the relationship, we briefly describe the multi-

arm bandit setting.

Multi-arm Bandit Problem: A two multi-arm bandit problem is defined by re-

ward random variables Y i
n, i = 1, 2, where i is the arm. Successive plays of arm i yield
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reward Y i
n which are independent and identically distributed and generated according a

Bernoulli distribution with unknown parameter. Let Zn denote the random variable de-

noting the arm pulled at time n. Let pi, p1 > p2 be the mean of the unknown distribution.

The regret until time N following a policy π is given by,

Rπ
B(N) = Np1 − Eπ

2∑
i=1

N∑
n=1

I(Zn = i)Y i
n (3.8)

Fact 2 (Theorem 3.1 [38]). If the policy π ∈ CU , then a lower bound for Rπ
B is

inf
π∈CU

lim inf
N→∞

Rπ
B(N)

logN
≥ 1

D(p1 || p2)
, (3.9)

where D(p1 || p2) is the Kullback-Leibler divergence between binomial distributions

with mean p1 and p2.

o 1 2 d

p13

p01 p12 p23

Figure 3.1: With probability pij , a packet transmitted by node i is received by node j.

Consider a topology as shown in Figure 3.1 with the link success probabilities as

shown. Let λ(i) = 0, i 6= s. At time τms node s transmits a packet which is successfully

received by nodes 1 and 2. At time slot τms + 1 a node from 1 and 2 is chosen for next

transmission. The problem is equivalent to a multi arm bandit problem, in which an arm

coincides with the choice of a node as the next relay. Thus,

inf
π∈CU

lim inf
N→∞

Rπ(N)

logN
≥ C( for some C > 0 ). (3.10)

3.4.2 Upper bound on regret for NRR

To obtain the upper bound on regret we will need the following definition of the

reward function associated with each packet m. Let the termination action be denoted

by T and the termination state be F . The termination state F is the state visited by

the system when the termination action T is chosen, i.e. P (F |T ) = 1. Given a set S
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of nodes that have received a packet from one of the nodes in Θ, the set of allowable

actions is denoted by A(S) = S ∪ {T}. The allowable action in the termination state F

as well as all states containing the destination is T , i.e. {T} = A(F ) = A(S) for all S

containing d.

It remains to define the reward function g : S×A → R to represent the reward

obtained from taking an action at a given state. In summary, g(S, a) is given as:

g(S, a) =


−ci a = i ∈ S
r a = T , d ∈ S
0 a = T , d /∈ S

.

In view of this model, we can replace regret as following

Rπ(0, N) = E
∗
[

N∑
n=0

g(Sn, an)]−Eπ[

N∑
n=0

g(Sn, an)]. (3.11)

Using the proof technique used in [39], [40] we now reorganize the terms in Lemma 4

and restate Rπ(0, N) as:

Lemma 4.

Rφ∗(0, N) =
∑
S

∑
a:ρ∗(S,a)6=0

Eφ∗ [NN(S, a)]ρ∗(S, a), (3.12)

where ρ∗(S, a) is a constant for each S and a.

Finally, we show that when ρ∗(S, a) 6= 0, E[NN(S, a)] = O(log(N)), which

proves an achievable upper bound for NRR.

3.5 Summary

In this paper, we proposed No Regret Routing NRR, an adaptive opportunistic

routing algorithm whose performance is shown to be optimal with respect to a perfor-

mance loss criterion known as regret in the absence of knowledge regarding network

topology and/or channel statistics. More precisely, under idealized assumptions the ac-

cumulated loss under NRR relative to the genie aided solution is shown to grow loga-

rithmically with time which, in an order sense, coincides with the lower bound on the

performance of any uniformly good policy.



42

Acknowledgement

This chapter, in part, appears in the following publications. The dissertation

author was the primary investigator and author of this paper.

• A. Bhorkar, T. Javidi, No regret routing in wireless Ad-hoc networks, Asilomar

November, 10

I would like to thank my co-author Prof. Tara Javidi.



Chapter 4

Opportunistic Routing with Congestion

Diversity protocol

Abstract

We consider the problem of routing packets across a multi-hop network consist-

ing of multiple sources of traffic and wireless links while ensuring bounded expected

delay. Each packet transmission can be overheard by a random subset of receiver nodes

among which the next relay is selected opportunistically. The main challenge in the

design of minimum-delay routing policies is balancing the trade-off between routing

the packets along the shortest path to the destination and distributing the traffic accord-

ing to the maximum backpressure. Combining important aspects of shortest path and

backpressure routing, this paper provides a systematic development of a distributed op-

portunistic routing policy with congestion diversity (D-ORCD).

D-ORCD uses a measure of draining time to opportunistically identify and route

packets along the paths with an expected low overall congestion. D-ORCD is proved to

ensure a bounded expected delay for all networks and under any admissible traffic. Fur-

thermore, this paper proposes a practical implementation which empirically optimizes

critical algorithm parameters and their effects on delay as well as protocol overhead.

Realistic Qualnet simulations for 802.11-based networks demonstrate a significant im-

provement in the average delay over comparative solutions in the literature.

43
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4.1 Introduction

This chapter provides a distributed opportunistic routing policy with congestion

diversity (D-ORCD) under which the congestion information is integrated with the dis-

tributed shortest path computations of [12]. The main contribution of this chapter is

to design a distributed routing policy that improves the delay performance over existing

routing policies while ensuring throughput optimality. In [41], ORCD, a centralized ver-

sion of D-ORCD, is shown to be throughput optimal without any discussion of system

implications. In this chapter, we extend the throughput optimality proof for the dis-

tributed version and discuss implementation issues in detail. We also tackle some of the

system level issues observed in realistic settings via detailed Qualnet simulations. We

then show that D-ORCD exhibits better delay performance than state of the art routing

policies, namely, EXOR, DIVBAR and E-DIVBAR.

Before we close, we emphasize that some of the ideas behind the design of D-

ORCD have also been used as guiding principles in many routing solutions: some in

an opportunistic context [42, 43] and some in a conventional context [44]. Below, we

detail the similarity and difference between these solutions and our work for the sake

of completeness, even though, in our study, we have chosen to focus only on solutions

with a comparable overhread and similar degree of practicality. In [42], perhaps the

work most related to ours, the authors consider a flow-level model of the network and

propose a routing policy referred to as min-backlogged-path routing, under which the

flows are routed along the paths with minimum total backlog. In this light, D-ORCD

can be viewed as a packet-based version of min-backlogged-path routing without a need

for the enumeration of paths across the network and costly computations of the total

backlog for all paths. In [43], the authors propose a modified version of backpressure

which uses the shortest path information to minimize the average number of hops per

packet delivery, while keeping the queues stable. In [44], a modified throughput optimal

backpressure policy, LIFO-Backpressure, is proposed using LIFO discipline at layer 2.

Neither of these approaches lend themselves to practical implementations: [43] requires

maintaining large numbers of virtual queues at each node thus increasing the implemen-

tation complexity, while [44] uses an atypical LIFO scheduler resulting in significant

reordering of the packets. Furthermore, while LIFO-Backpressure policy guarantees
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stability with minimal queue-length variations, realistic bursty traffic in large multi-hop

wireless networks may result in queue-length variations and thus high delay.

The chapter is organized as follows. In Section 4.2, we describe the D-ORCD

routing algorithm. In Section 4.3, we discuss various of D-ORCD protocol implemen-

tation issues. Section 4.4 describes in detail our simulation results, and we compare

the performance of various routing policies with D-ORCD. We then discuss theoretical

guarantees of D-ORCD in Section 4.5. We provide concluding remarks and discuss di-

rections for future research in Section 4.6. The appendix contains proofs of the through-

put optimality of D-ORCD performance under certain assumptions on the model.

4.2 Opportunistic Routing with Congestion Diversity

The goal of this work is to design a routing policy with improved delay per-

formance over existing opportunistic routing policies. In this section, we describe the

guiding principle and the design of Opportunistic Routing with Congestion Diversity

(D-ORCD). We propose a time-varying distance vector, which enables the network to

route packets through a neighbor with the least estimated delivery time.

D-ORCD opportunistically routes a packet using three stages: (a) a transmission,

(b)an acknowledgment, and (c) further relaying. During the transmission stage, a node

transmits a packet. During the acknowledgment stage, each node that has successfully

received the transmitted packet, sends an acknowledgment (ACK) to the transmitter

node. D-ORCD then makes routing decisions based on a congestion-aware distance vec-

tor metric referred to as the congestion measure. Specifically, during the relaying stage,

the relaying responsibility for the packet is shifted to a node with the least congestion

measure among the nodes that have received the packet. The congestion measure of a

node associated with a given destination node provides an estimate of the best possible

draining time of a packet arriving at that node for reaching to destination. Each node is

responsible for updating its congestion measure and for transmitting this information to

its neighbors. Next, we detail D-ORCD design and the computations performed at each

node to update the congestion measure.
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4.2.1 D-ORCD Design

We consider a network of D nodes labelled by Ω = {1, . . . , D}. Let pij be

the probability that the packet transmitted by node i is successfully received by node

j. Node j is said to be reachable by node i, if pij > 0. The set of all nodes in the

network which are reachable by node i is referred to as the neighborhood of node i and

is denoted by N (i).

D-ORCD relies on a routing table at each node to determine the next best hop.

The routing table at node i consists of a list of neighborsN (i) and a structure consisting

of an estimated congestion measure for all these neighbors in N (i) associated with

different destinations. The routing table acts as a storage and decision component at the

routing layer. The routing table is updated using a “virtual routing table” at the end of

every “computational cycle”: an interval of Tc units of time. During the progression

of the computation cycle, the nodes exchange and compute the temporary congestion

measures to update the virtual routing table. The temporary congestion measures are

computed in a fashion similar to the distributed stochastic routing computation of [12]

using the backlog information at the beginning of the computation cycle (generalizing

the computations of distributed Bellman-Ford). We conceptualize this in terms of a

virtual routing table updating and maintaining these temporary congestion measures.

We assume that each node has a common global time to ensure that the nodes update

the routing table at roughly the same time.

We denote the temporary congestion measure associated with node i ∈ Ω at time

t and destination d ∈ Ω as V d
i (t). Each node i computes V d

i (t) based on congestion mea-

sures Ṽ (i,d)
k (t) obtained via periodic communication with its neighbours k ∈ N (i) and

the queue backlog at the start of the computation cycle. D-ORCD stores these tem-

porary congestion measures {V d
i (t)}d∈Ω and {Ṽ (i,d)

k (t)}d∈Ω,k∈N (i) in the virtual routing

table. More precisely, node i periodically computes its own congestion measure and

subsequently advertises it to its neighbors using control packets at intervals of Ts ≤ Tc

seconds. Finally the actual routing table is updated using the entries in the virtual routing

table every Tc seconds. The sequence of operations performed by D-ORCD are shown

in Figs. 4.1,4.2.

Meanwhile, for routing decisions, node i uses the entries in the actual routing
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Table 4.1: Notations used in the description of the algorithm
Symbol Definition
N (i) Neighbours of node i

V d
i (t) Congestion measure at node i at time t

Ṽ
(i,d)
k (t) Congestion measure obtained at node i from node k

T (t) Ending time of the latest computation cycle before time t

Tc Duration of the computation interval

Ts Control packet transmission interval

Li(t) Local congestion at node i

Di(t) Congestion down the stream for node i

K
(i,d)
D−ORCD(t) Selected relay for transmission at node i

Si(t) Set of nodes receiving the packet transmitted by node i

Qd
i (t) Queue-length at node i destined for d at time t

Q̄d
i (t) Average queue-length at node i destined for d

P
(i,d)
succ−k(t) Probability that the highest priority node k receives the packet

P (i,d)(t) Probability that at-least one higher
priority node receives the packet

H(i,d)(t) Set of higher priority nodes than node i
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Figure 4.1: Operation of D-ORCD

routing table (computed during the last computation cycle). Let T (t) = maxn{nTc :

nTc ≤ t, n ∈ Z} be the ending time of the latest computation cycle. Then node i

stores Ṽ (i,d)
k (T (t)) in the actual routing table and selects the next best hop K

(i,d)
D−ORCD to

minimize the packet’s draining time, i.e.

K
(i,d)
D−ORCD(t) = argmin

k∈Si(t)∪i
Ṽ

(i,d)
k (T (t)), (4.1)

where Si(t) denotes a random set of nodes receiving the packet transmitted by node i at

time t.

Next, we describe the distributed computations performed during each compu-

tation cycle.

4.2.2 Congestion Measure Computations

The congestion measure associated with node i for a destination d at time t is the

aggregate sum of the local draining time at node i (denoted by Ld
i (t)) and the draining

time from its next hop to the destination (denoted by Dd
i (t)), i.e.

V d
i (t) = Ld

i (t) +Dd
i (t). (4.2)

Assuming a FIFO discipline at layer-2, we proceed to decompose the local drain-

ing time. This relies on the observation that when a packet arrives at a node, i, its waiting
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Figure 4.2: Actual routing table and virtual routing table updates.

time is equal to the time spent in draining the packets that have arrived earlier plus its

own transmission time. If P (i,d)(t) denotes the probability that the packet transmitted

by node i is successfully received by a node with a lower congestion measure, then the

packet’s expected transmission time at node i is given by 1
P i,d(t)

. Let Q̄d
i (t) denote the

number of packets destined for destination d averaged over the previous computation

cycle. Q̄d
i (t) is updated as

Q̄d
i (t) =

Ts

Tc

Tc
Ts

−1∑
l=0

Qd
i (T (t)− l).

The local draining time for node i to destination d at time t is approximated as,

Ld
i (t) =

1

P (i,d)(t)
+

∑
d′∈Ω

Q̄d′
i (T (t))

P (i,d′)(t)
. (4.3)

D-ORCD computes the expected congestion measure “down the stream” for

each node i ∈ Ω using the latest congestion measure Ṽ
(i,d)
k (t) received from nodes

k ∈ Ω with lower congestion measure. With respect to the destination d, a node k ∈ Ω

is defined as a higher priority node than node i if Ṽ (i,d)
k (t) < V d

i (t) and the set of higher

priority nodes is defined as H(i,d)(t). Let P (i,d)
succ−k(t) be the probability that node k is the
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highest priority node to successfully hear node i at time t and k ∈ H(i,d)(t). As a result,

the expected congestion “down the stream” Dd
i (t) can be given as

Dd
i (t) =

∑
k∈Ω

P
(i,d)
succ−k(t)Ṽ

(i,d)
k (t). (4.4)

Remark 5. In each computation cycle, assuming Tc is large, D-ORCD computations

converge to the Bellman equation associated with the minimum cost (“shortest path”)

route in a network, where the link costs are given in terms of the queue length Q̄d
i (t).

Remark 6. If the link success probabilities have independent realizations, then for all

S ⊆ Ω, P (Si(t) = S) =
∏

k∈S
∏

l /∈S pik(1 − pil). The success probabilities P (i,d)(t)

and P (i,d)
succ−k(t) can be calculated as

P (i,d)(t) =
∑

S:∃k∈S∩H(i,d)(t)

P (Si(t) = S), (4.5)

P
(i,d)
succ−k(t) =

1

P (i,d)(t)
×

∑
S:Ṽ (k,d)(t)<Ṽ (k′,d)(t)

k′,k∈S∩H(i,d)(t)

P (Si(t) = S). (4.6)

4.2.3 Opportunistic Routing with Partial Diversity

The three-way handshake procedure discussed in Section 4.2.1 to achieve re-

ceiver diversity gain in an opportunistic scheme is achieved at the cost of an increase in

the control overhead. In particular, it is easy to see that this overhead cost, which is the

total number of ACKs sent per data packet transmission, increases linearly with the size

of the set of potential forwarders. Thus, we consider a modification of D-ORCD in the

form of opportunistically routing with partial diversity (P-ORCD). This class of routing

policies is parametrized by a parameter M denoting the maximum number of forwarder

nodes. This is equivalent to a constraint on the maximum number of nodes allowed to

send an acknowledgment per data packet transmission. Such a constraint will sacrifice

the diversity gain, and hence the performance of any opportunistic routing policy, for

lower communication overhead.

In order to implement opportunistic routing policies with partial diversity, before

the transmission stage occurs, we find the set of “best neighbors” for each node i at any
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time t, denoted byB∗i (t), where |B∗i (t)| ≤M . After transmission of a packet from node

i at time t, the routing decision is made as follows: 1) among the nodes in B∗i (t)∩Si(t),

select a node with the lowest congestion measure as the next forwarder; or 2) retain the

packet if none of the nodes in the set B∗i (t) has received the packet. Next we present a

mathematical formulation for modification of D-ORCD with partial diversity.

Let B be the collection of all subsets of Ω of size less than or equal to M , i.e.

B = {B ⊆ Ω : |B| ≤M}.
In the D-ORCD protocol with partial diversity, (PD-ORCD), the corresponding

quantities V̄ d
i (t) are updated as

V̄ d
i (t) = min

B∈B

{
Ldi (t) +

∑
k:k∈B

P
(i,d)
succ−k(t)

˜̄V
(i,d)
k (t)

}
, (4.7)

while the next hop is selected as

K
(i,d)
PD−ORCD(t) = arg min

k∈{Si(t)∩B}∪i

˜̄V
(i,d)
k (T (t)). (4.8)

We carry out a simulation study for the delay performance of D-ORCD with

these modifications and compare it to the delay performance of the other routing policies

in Section 4.4.

Remark 7. When M = 1, each node can send packets to only one of its neighbors.

Therefore, this routing policy cannot take the advantage of the broadcast nature of wire-

less transmissions any longer, and is classified as conventional routing.

In the next section, we discuss the practical issues associated with computation

of the time-varying congestion measures V d
i (t), i ∈ Ω. Furthermore, we propose prac-

tical implementations and heuristics.

4.3 Implementation Details: Protocol Components

In this section, we discuss the implementation issues of D-ORCD which involve

distributed and asynchronous iterative computations of V d
i (t)’s. We provide a brief dis-

cussion of the basic challenges of D-ORCD including the three-way handshake proce-

dure employed at the MAC layer, link quality estimation, and the avoidance of loops

while routing.
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4.3.1 802.11 Compatible Implementation

Three way Handshake

The implementation of D-ORCD, analogous to any opportunistic routing scheme,

involves the selection of a relay node among the candidate set of nodes that have received

and acknowledged a packet successfully. One of the major challenges in the implemen-

tation of an opportunistic routing algorithm, in general, and D-ORCD in particular, is the

design of an 802.11 compatible acknowledgement mechanism at the MAC layer. Below

we propose a practical and simple way to implement an acknowledgement architecture.

The transmission at any node i is done according to 802.11 CSMA/CA mech-

anism. Specially, before any transmission, transmitter i performs channel sensing and

starts transmission after the backoff counter is decremented to zero. For each neigh-

bor node j ∈ N (i), the transmitter node i then reserves a virtual time slot of duration

TACK + TSIFS , where TACK is the duration of the acknowledgement packet and TSIFS
is the duration of Short Inter Frame Space (SIFS) [33]. Transmitter i then piggy-backs a

priority ordering of nodesN (i) with each data packet transmitted. The priority ordering

determines the virtual time slot in which the candidate nodes transmit their acknowl-

edgement. Nodes in the set Si that have successfully received the packet then transmit

acknowledgement packets sequentially in the order determined by the transmitter node.

After a waiting time of Twait = |N (i)|(TACK + TSIFS) during which each node

in the set Si has had a chance to send an ACK, node i transmits a FOrwarding control

packet (FO). The FO packets contain the identity of the next forwarder, which may be

node i itself (i.e. node i retains the packet) or any node j ∈ Si. If Twait expires and

no FO packet is received (FO packet reception is unsuccessful), then the corresponding

candidate nodes drop the received data packet. If transmitter i does not receive any

acknowledgement, it retransmits the packet. The backoff window is doubled after every

retransmission. Furthermore, the packet is dropped if the retry limit (set to 7) is reached.

4.3.2 Control Packets Fidelity

D-ORCD depends on a reliable, frequent, and timely delivery of the control

packets. As documented in [45], the loss of control packets may destabilize the algo-
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Figure 4.3: Typical packet transmission sequence for D-ORCD

rithm operation and cause significant performance degradation for many well known

routing algorithms. In our implementation, we have taken advantage of the priority-

based queuing to implement this component of the control plane. D-ORCD prioritizes

the control packets by assigning them the highest strict priority, reducing the probabil-

ity that the packets are dropped at the MAC layer and ensuring a timely delivery of

the control packets. In particular, D-ORCD utilizes priority queues: data packets are

assigned to the lower priority queue and control packets are assigned to the higher prior-

ity queue. Moreover, D-ORCD scheduler assigns a sufficiently lower PHY rate for the

control packets to improve the probability of successful reception.

4.3.3 Link Quality Estimation Protocol

D-ORCD computations given by (4.2) utilize link success probabilities pij for

each pair of nodes i, j. We now a describe method to determine the probability of suc-

cessfully receiving a data packet for each pair of nodes i, j ∈ Ω. It consists of two

phases: active probing phase and passive probing phase. In the active probing phase,
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dedicated probe packets are broadcast periodically to estimate link success probability.

In passive probing, we utilize the overhearing capability of the wireless medium. The

nodes are configured to a promiscuous mode, hence enabling them to hear the packets

from neighbors. In passive probing, the MAC layer keeps track of the number of packets

received from the neighbors including the retransmissions. Finally, a weighted average

is used to combine the active and passive estimates to determine the link success prob-

abilities. Passive probing does not introduce any additional overhead cost but can be

slow, while the active probing rate is set independently of the data rate but introduces

costly overhead.

4.3.4 Loop Avoidance Heuristic

D-ORCD approximates the solution to the fixed point equation via a distributed

distance vector approach. The classical problem of counting to infinity [46] in distance

vector routing can affect D-ORCD performance due to the time varying nature of the

congestion metric. The problem is most acute when there is a sudden burst of traffic.1

and can cause severe transient effects due to slow updates of the control packets. The

looping results in large delays, increased interference and loss of packets.2

In our experiments, to address this issue, we utilize an extension of the Split-

horizon with poison reverse solution [47] to avoid loops. In Split-horizon with poison

reverse, a node advertises routes as unreachable to the node through which they were

learned. We have extended the rule to D-ORCD by advertising the routes as unreachable

to higher ranked nodes. This removes most looping routes before they can propagate

through the network.

4.4 Simulations

In this section, we compare the expected delay encountered by the packets in the

network using Qualnet simulations under various opportunistic routing policies: ExOR,

DIVBAR, E-DIVBAR and D-ORCD. We first investigate the performance of D-ORCD

1Similar to the broken link scenario in a typical distance vector routing.
2Packet loss occurs when time to live (TTL) value exceeds the number of allowed hops (typically 64).
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with respect to a canonical example to demonstrate D-ORCD gains [1]. We then use

a realistic topology of 16 nodes placed in a grid topology to demonstrate the robust

performance improvement achievable in practical settings.

4.4.1 The Simulation Setup

Our simulations are performed in QualNet. We consider two set of topologies in

our experimental study:

1. Canonical Example: In this example, we study the canonical example in Fig. 4.4.

We motivate the performance improvement for D-ORCD by a scenario which

exemplifies the need to avoid congestion in the network by highlighting the short-

comings of the existing routing paradigms: shortest path and backpressure.

2. Grid Topology: We study an outdoor wireless settings of grid topology consisting

of 16 nodes separated by a distance of 200 meters. These simulations demonstrate

a robust performance gain under D-ORCD in a realistic network.

We now describe parameters settings in the simulation. The nodes are equipped

with 802.11b radios transmitting at 11 Mbps with a transmission power of 15 dBm. The

wireless medium model includes Rician fading with a K-factor of 4 and Log-normal

shadowing with a mean of 4dB. In the canonical example path loss is determined by

pathloss matrix which gives the attenuation of the received signal power with distance

from the transmitter for every pair of network nodes, while for a grid topology the path

loss follows the ITM model in [35]. The antenna model is the standard omnidirectional

antenna model with the default settings of the simulator. The network queues are FIFO

with finite buffer size of 750 KB.

The acknowledgement packets are short packets of length 24 bytes transmitted

at 11 Mbps, while FO packets are of length 20 bytes and transmitted at the lower rate

of 1 Mbps to ensure reliability. If unspecified, packets are generated according to a

poission modulated Markov traffic. The packets are assumed to be 512 bytes in length

and equipped with simple cyclic redundancy check (CRC) error detection. The control

packets are transmitted periodically at an interval of Ts = 0.5 second.
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We have chosen partial diversity M = 4 and an update frequency Tc = Ts = 0.5

second in our experiments. A discussion on the choice of parameters in the design of

D-ORCD is provided in Section 4.4.4.

In our study, we have compared the performance of D-ORCD against the state of

the art routing algorithms. Before we proceed, we describe these candidate algorithms

as well as our implementation of them.

• DIVBAR [48]: We implemented DIVBAR to select the next hop based on a

weighted differential backlog. Specifically, let Q̃(i,d)
k (t) denote the latest infor-

mation at node i about the number of packets buffered in queue k for destination

d. For any destination d, DIVBAR chooses the next hop K(i,d)
DIV BAR(t), such that

K
(i,d)
DIV BAR(t) = arg min

k∈Si(t)∪i
(Q̃

(i,d)
k (t)−Qd

i (t)). (4.9)

We have created virtual queues for each destination to identify differential backlog

associated with different destinations. Note that original backpressure algorithm

proposed in [48] is utilized in conjunction with a scheduler to maximize the net-

work’s overall weighted differential backlog as well as a mechanism to choose

the destination queue to be served. In our implementation, we serve the packets

in a prioritized manner based on the destination using 802.11 MAC. Specifically,

a packet with destination m(t) is selected among all possible virtual queues such

that

m(t) = arg min
d
{min

k
(Q̃

(i,d)
k (t)−Qd

i (t))}. (4.10)

In order to implement a priority scheduling we utilize a priority scheduler such

that the packet destined for m(t) is assigned to a higher priority queue. We have

implemented the DIVBAR algorithm using a structure similar to D-ORCD (in

which V d
i (t) is replaced with Qd

i (t)).

• ExOR [10] : ExOR uses an ETX metric when routing the packet without con-

sidering queuing information at the nodes. Specifically, for a packet destined for

node d, the next hop K(i,d)
ExOR is chosen such that

K
(i,d)
ExOR(t) = arg min

k∈Si(t)∪i
ETX(k,d), (4.11)
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where ETX(k,d) is the minimum number of transmissions from node k to desti-

nation d given by,

ETX(k,d) = min
j

{ 1

pkj
+ ETX(j,d)

}
. (4.12)

We have used our distributed architecture for the calculation of the ETX metric by

taking Qi(t) = 1 for all i ∈ Ω and M = 1 in the calculation of Vi(t), even though,

in principle, the overhead can be held much lower due to the time invariant nature

of node ordering.

• E-DIVBAR [13]: E-DIVBAR is a variant of DIVBAR, where along with the

queue information, ETX metric is used for path selection. In particular, for a

packet destined for d, the next hop K(i,d)
E−DIV BAR is chosen such that

K
(i,d)
E−DIV BAR(t) = arg min

k∈Si(t)∪i

{
(Q̃

(i,d)
k (t)−Qd

i (t))ETX
(k,d)
}
.

The E-DIVBAR algorithm is also implemented using a structure identical to D-

ORCD and DIVBAR, however, the control packets contain information about the

queue-length as well as the ETX for a given destination. The commodity selection

is performed using the same equation (4.10) as for DIVBAR.

Next, we study the canonical example where we compare the average delay en-

countered by packets in the network under various routing policies: ExOR, DIVBAR,

E-DIVBAR and D-ORCD. The choice of the canonical network enables us to clearly

reveal the high capability of D-ORCD in balancing the traffic taking advantage of path

diversity in the network.

4.4.2 Performance of D-ORCD: Canonical Example

Consider the network shown in Fig. 4.4 which is parameterized by N . Nodes

12, 13, . . . , 12 + (N − 1) form a “hole” in the network whose size is controlled by the

parameter N . We now discuss the delay gains under D-ORCD as parameters N and λ1

(the incoming traffic rate at node 1) are varied and verify them in this section.

Note that the source node 1 can route packets either through node 2 or node 3.

Since only node 1 has a routing choice, we focus on the delay experienced by packets
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Figure 4.4: Structure of the canonical network from [1]

originating in node 1. Fig. 4.5 provide plots of the average end-to-end packet delay and

the buffer overflow ratios for all the routing algorithms as the arrival rate λ1 is varied.

We observe that D-ORCD has better delay performance than the other algorithms over

the range of incoming traffic rates considered. Fig. 4.6 plots the highest priority next hop

for node 1 under the candidate protocols throughout the duration of the experiments.

ExOR gives higher priority to node 2 than node 3 independent of the congestion

at intermediate nodes (ETX(2,7) = 2.53 and ETX(3,7) = 4.36). ExOR can thus suffer

from poor delay performance as the arrival rate at node 2 approaches capacity. ExOR

has the worst delay performance among all the algorithms as seen in Fig 4.6 particularly

when the traffic load on the network is high. In Fig. 5.15 we observe that DIVBAR

and E-DIVBAR forward significant number of packets into 12,13 and 14 increasing the

interference and packet drops as well as delay.

Next, we study the impact of the size of the “hole”; i.e. N on the expected per

packet delay. Under DIVBAR the packets that arrive at node 2 from source 1 are likely

to be forwarded and wander between nodes 12, 13 . . . , 12 + (N − 1) before eventually

forwarding to 4. In contrast, increasing N has no effect on the performance of D-

ORCD. This is because V 7
2 (t) < V 7

12+i(t), i = 0, 2, . . . , N − 1, for all time slots t, in
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(a) Delay

(b) Fraction of packet loss

Figure 4.5: Performance for Canonical Example for N=2
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effect, preventing the packets to enter the “hole”. Fig. 4.7 provides the expected delay

encountered by the source packets under various routing policies, as the size of the

“hole”, N , increases and the arrival rate is set to low value of λ1 = 200 kbps. The figure

shows that the average delay under D-ORCD is significantly lower than other candidate

protocols as N increases from 1 to 5.

Figure 4.6: Highest priority nodes for Canonical Example.

4.4.3 Performance of D-ORCD: Grid Topology

We perform simulations for the grid networks of 16 nodes in Fig. 4.8(a) and

4.8(b). UDP Traffic is injected at each node i ∈ Ω, with Poisson distributed packet

arrivals. Figure 4.9(a) shows the expected delay versus the arrival rate under various

routing policies for the network in Fig. 4.8(a). Under ExOR, packets are always routed

opportunistically along the “shortest path” to the destination which results in high delay

under heavy traffic scenarios. On the other hand, DIVBAR, E-DIVBAR, and D-ORCD

are throughput optimal and hence, they distribute the traffic to ensure bounded average

delay for all traffic rates inside the stability region. The performance gap between DI-



61

Figure 4.7: Performance for Canonical Example for λ=200 kbps

(a) Grid topoloogy. All nodes have the

same arrival rate.

(b) Modifications to grid topology with

blockage.All nodes have the same arrival

rate, except node 10 does not generate traf-

fic.

Figure 4.8: Grid topology of 16 nodes (4 x 4). Node 1 is assumed to be the destination

VBAR and E-DIVBAR follows from the fact that DIVBAR does not use any metric

of closeness to the destination when routing the packets; while E-DIVBAR takes into



62

account the ETX of the nodes. A more interesting observation is the comparable perfor-

mance of D-ORCD and E-DIVBAR. In other words, in network 4.8(a) the mere addition

of ETX and queue measures in E-DIVBAR perform sufficiently well.

Next, we consider the network shown in Fig.4.8(b), a modification of the net-

work shown in Fig.4.8(a) in which link qualities are changed due to the existing barriers

in the network. Figure 4.10(a) shows the delay performance of the candidate routing

policies for this network as the traffic load varies. Again, ExOR and DIVBAR show

large delay. But, unlike in the case of the network shown in Fig.4.8(a), the performance

gap between D-ORCD and E-DIVBAR is now rather significant. The reason is that D-

ORCD always route packets along the least congested paths to the destination (without

assuming the network topology and the arrival traffic). In other words, the performance

of E-DIVBAR exhibits high dependence on the underlying network topology and the

arrival traffic: E-DIVBAR performs well in symmetric networks with equal arrival rate

to all nodes (e.g. the network of Fig.4.8(a)), while, it performs poorly in non-symmetric

networks under non-uniform traffic patterns.

4.4.4 Choice of Parameters

Next, we investigate the performance of D-ORCD with respect to the design

parameters in the grid topology of 16 nodes in Figure 4.8(a). It provides significant

insight to the appropriate choice of the design parameters such as the choice of partial

diversity M and choice of computation cycle T .

Choice of partial diversity, M

We focus on characterizing the trade-off between performance and overhead cost

for D-ORCD. We consider modifications of D-ORCD with partial diversity to decide

on the number of neighbors M which acknowledge the reception of the packet. In

particular, we compare the delay performance as well as the overhead cost of D-ORCD.

Figure 4.11 shows the average delivery time of each packet versus the number of M

for Network shown in Fig.4.8(a). Figure 4.11 illustrates the trade-off between the delay

performance and overhead cost D-ORCD. We note that limiting the size of the neighbor

set to 4 provides the best trade-off.
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Choice of computation cycle interval Tc

D-ORCD throughput optimality as we will discuss in Section 4.5 requires that

computation cycle interval be sufficiently large. However, to ensure a better delay per-

formance, Tc must be chosen sufficiently low to make the routing decisions more respon-

sive to the instantaneous congestion. In particular, as Tc increases, the chosen routing

path i) utilizes outdated queue lengths and ii) keeps the routing policy fixed for longer

durations independent of current queue-lengths. In Figure 4.12, we plot the performance

of D-ORCD as Tc varies in terms of multiples of Ts. We observe that for a high load,

the choice Tc = Ts outperforms other values for Tc. We have chosen a more responsive

version of (4.2) at the cost of provable throughput optimality, where Tc is set to Ts = 0.5

second.

4.5 Theoretical Guarantees

In this section, we provide a theoretical guarantee regarding the throughput op-

timality of D-ORCD under the assumptions that i)the flows in the network are destined

for the single destination node D (for multi-destination extensions see [49]), ii) link

probabilities are time invariant, iii) the routing decisions and the successful reception at

set S due to transmission from node i is acknowledged perfectly to node i.

Before we precisely state the optimality, we define the notations. We define

a routing decision µij(t) to be the number of packets (upto 1 packet) whose relaying

responsibility is shifted from node i to node j during time slot t (µii(t) = 1 means that

i retains the packet). Note that µij(t) forms the departure process from node i, while

it creates an endogenous arrival to node j. Without loss of optimality, we assume that

pii = 1 and µiD(t) = 1, if D ∈ Si(t).

Definition 1. A routing policy is a collection of causal routing decisions ∪i,j∈Ω ∪∞t=0

{µij(t)}.

Let Ai(t) represent the amount of data that exogenously arrives to node i during

time slot t. Arrivals are assumed to be i.i.d. over time and bounded by a constant

Amax. Let λi = E[Ai(t)] denote the exogenous arrival rate to node i. We define λ =
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[λ1, λ2, . . . , λN ] to be the arrival rate vector. LetQi(t) denote the queue backlog of node

i at time slot t. We assume any data that is successfully delivered to the destination

D will exit the network and hence, QD(t) = 0 for all time slots t. We define Q(t) =

[Q1(t), Q2(t), . . . , QD−1(t)] to be the vector of queue backlogs of nodes 1, 2, . . . , D−1.

The selection of routing decisions under a routing policy Π together with the

exogenous arrivals impact the queue backlog of node i, i ∈ Ω as:

QΠ
i (t+ 1) = [QΠ

i (t)−
∑
j∈Ω

µΠ
ij(t)]

+

+
∑
j∈Ω

µΠ
ji(t)1{QΠ

j (t)≥µΠ
ji(t)} + Ai(t),

where the superscript Π emphasizes the dependence of queue backlog dynamics on the

choice of policy Π.

Definition 2. Given an ergodic exogenous arrival process with rate λ, a routing policy

Π is said to stabilize the network if QΠ
tot(t) is ergodic and E[QΠ

tot(t)] remains bounded

when packets are routed according to Π. The stability region of the network (denoted

by S) is the set of all arrival rate vectors λ for which there exists a routing policy that

stabilizes the network.

Definition 3. A routing policy is said to be throughput optimal if it stabilizes the network

for all arrival rate vectors that belong to the interior of the stability region.

Fact 3 (Corollary 1 in [13]). An arrival rate vector λ is within the stability region S

if and only if there exists a stationary randomized routing policy that makes routing

decisions {µ̃ij(t)}i,j∈Ω, solely based on the collection of potential forwarders at time t,

{Si(t)}i∈Ω, and for which

E

[∑
j∈Ω

µ̃kj(t)−
∑
i∈Ω

µ̃ik(t)

]
≥ λk.

We are ready to present Theorem 2 regarding the optimality of D-ORCD.

Theorem 2. Suppose Tc = O(D) and M = D. Then D-ORCD is throughput optimal.

The proof of Theorem 2 is based on the Foster-Lyapunov Theorem. For com-

pleteness, the structure of the Lyapunov function and a sketch of the proof is provided in
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the Appendix. By Theorem 2, under D-ORCD, the average total queue backlog remains

bounded. Little’s theorem implies that under D-ORCD, the expected delay is bounded.

Remark 8. The assumptions for the optimality of D-ORCD could be relaxed in many

cases.

1. The packet transmission on a link (i, j) is assumed to be successful with proba-

bility pij , and transmissions on links are assumed to be independent of each other.

The computations in (4.2) and (A.24) can be generalized to incorporate correlated

link qualities. by replacing the term
(∏

k∈S pik
)(∏

l /∈S(1−pil)
)

with P (S|i) in the

definition of P (i,d)(t) and P (i,d)
succ−k(t), where P (S|i) denotes the probability of the

event {Si(t) = S}. Furthermore, it is straight forward to show that the throughput

optimality of D-ORCD is robust to all channel estimation errors, even though, er-

roneous link models, in general, can significantly degrade its delay performance.

2. In this chapter, we assumed that the network topology and the probability of suc-

cessful transmissions are time-invariant. The generalization to the case of time-

varying network topology with stationary transmission probabilities is straight

forward [50].

4.6 Summary

In this chapter, combining the important aspects of shortest path routing with

those of backpressure routing, we provided a distributed opportunistic routing policy

with congestion diversity (D-ORCD). Under this policy packets are routed according

to a rank ordering of the nodes based on a congestion cost measure. Furthermore, we

show that D-ORCD allows for a practical distributed and asynchronous 802.11 compat-

ible implementation, whose performance was investigated via a detailed set of QualNet

simulations for practical and realistic networks. Simulations show that D-ORCD con-

sistently outperforms existing routing algorithms in practical settings.
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(a) Average delay per packet delivery for the network shown in Fig.4.8(a)

(b) Fraction of the packets lost is dominated by FO packet loss. (Packet loss due to

buffer overflow is negligible)

Figure 4.9: Performance results for the grid topology.
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(a) Average delay per packet delivery for the network shown in Fig.4.8(b).

(b) Fraction of the packets lost is dominated by FO packet loss. (Packet loss due to

buffer overflow is negligible)

Figure 4.10: Performance results for the grid topology in Fig.4.8(b)
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Chapter 5

Congestion Diversity Protocol

Abstract

This work reports on a first comprehensive study of congestion-aware routing

algorithms for wireless mesh networks. In particular, 802.11 compatible implementa-

tions of a set of congestion-aware routing protocols are compared against the state of the

art shortest path routing protocol (Srcr): Backpressure (BP), Enhanced-Backpressure

(E-BP) are adapted from [13, 48] suitably adjusted for 802.11 networks, while Conges-

tion Diversity Protocol (CDP) is adapted from [1] recognizing the limitations of BP and

E-BP for 802.11-based networks.

A small testbed consisting of twelve 802.11g nodes was deployed to empirically

compare the performance of congestion-aware routing protocols (BP, E-BP and CDP)

against benchmark Srcr. Surprisingly, backpressure-based routing algorithms (BP and

E-BP) show significant degradation with respect to the Srcr benchmark for both UDP

and TCP traffic. In contrast, CDP performs comparable to Srcr when the traffic is TCP

or has low intensity. For medium to high load UDP traffic, CDP exhibits significant

improvement with respect to both end-end delay and throughput over other protocols

in 60-80% of the network configurations. The cases where CDP performs poorly are

analyzed carefully. These cases are shown to be the negative side-effect of a modu-

lar approach to congestion-aware routing design in which the MAC layer is left intact.

Furthermore, it is shown that these cases are indeed rare in any practical setting.

70
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5.1 Introduction

Traditionally in communication networks, end-end rate adaptation, traffic engi-

neering, and transport layer signaling have been widely developed to prevent network

congestion. On the other hand, the routing layer is tasked to identify shortest-paths to the

destination independent of the congestion in the network. In wireless context, variants

of shortest-path [3–6] have been proposed, without modifications to the functionalities

of the traditional layers, relying various notions distance metric to the destination. A

well known example of this approach is Srcr proposed in [6], whose distance metric is

based on the number of transmissions required to relay a packet. However, such a short-

est path approach to routing traffic falls short in providing acceptable service in wireless

networks as the traffic demand approaches the network capacity and when UDP flows

constitute a significant proportion of the traffic. More precisely, shortest path solutions

are susceptible to an underutilization of path diversity resulting in increased delay, con-

gestion, buffer overflows, and queue instability. In contrast, going back to the seminal

work on Backpressure (BP) routing of Tassiulas and Ephremides [14], a slew of theoret-

ical and simulation-based studies [13, 43, 48, 50, 51] have argued for congestion-aware

routing protocols: protocols that route packets using only neighbors’ congestion lev-

els [48] or overall congestion along the path [13, 43, 50] to the destination.

This work provides a comprehensive approach to the design, implementation

and experimental evaluation of the congestion-aware routing against state of art rout-

ing Srcr in multi-hop 802.11-based (WiFi-based) wireless networks. The salient feature

of our approach is our equal treatment of theory and experimentation in the design of

congestion-aware routing algorithms. The design and the choice of the routing protocols

in this study are inspired by the theoretical studies in wireless networks [13, 14, 48, 50].

We have, however, refrained from a redesign of the network at all layers and function-

alities as suggested by these studies. Instead, we have devised a solution on a testbed

consisting on commercially available 802.11-based wireless radios to shed light on the

implications of incorporating the congestion information at the routing layer. More pre-

cisely, we have restricted our focus to 1) a low overhead implementation of the proposed

protocols in the literature, and 2) a modular solution, where only the functionalities of

the routing layer have been modified, leaving the physical (PHY) and the media access
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control (MAC) layers untouched. This pragmatic approach has allowed us to test the

basic promise of the congestion-aware routing including and beyond backpressure. This

work provides with the first study which carefully investigates the advantages and pit-

falls of backpressure routing and a novel design for end-end delay improvements on a

network consisting of inexpensive commercially available components. Secondly, our

modular approach allows us to investigate the advantages of congestion-aware routing

at the routing layer isolated from the benefits of generalized scheduling [14] or receiver

diversity gain [12].

5.1.1 Overview of Results

In this work, we provide a comprehensive evaluation of various congestion-

aware solutions in the context of a 802.11-based networks with minimal modifications

to the MAC or PHY operations, the only such study to the best of our knowledge. First,

we provide a low overhead practical implementation of backpressure-based algorithms

BP and Enhanced-BP(E-BP) motivated by the theoretical studies proposed in the op-

portunistic routing context [13, 48].1 In particular, we modify DIVBAR [48] and EDI-

VBAR [13], which rely on the receiver diversity and arrive at designs of BP and E-BP

consistent with the widely used MAC of 802.11 wireless cards. The backpressure-

based algorithms provide an important theoretical guarantee of throughput optimality

(bounded expected delay for all stabilizable traffic) by effectively balancing the queue

backlogs at every location. In contrast to the shortest path routing, backpressure-based

routing uses differential backlogs at the nodes to make routing decisions. BP (and DI-

VBAR) selects the neighbor with the most negative differential backlogs at each node

(in the absence of any such neighbor, the node retains the packet). Since BP ignores

the distance of the potential forwarders to the destination, it can lead to a performance

worse than Srcr particularly at the low traffic [1]. To address the shortcomings of BP

(and DIVBAR), E-BP (EDIVBAR) has been proposed in order to integrate the two

approaches [13] by linearly combining the backlog information of BP and distance in-

formation of Srcr. Motivated by a theoretical and simulation study in the opportunistic

1In opportunistic setting, the next hop is chosen after the receiving nodes of a packet are known at the
transmitter.
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routing context [50, 51], we also propose a novel alternative Congestion Diversity Pro-

tocol (CDP). CDP combines the backlog information of BP and distance information of

Srcr, by estimating and utilizing the total draining draining times of nodes. The design

of BP, E-BP and CDP is unified via a class of asynchronous distributed routing algo-

rithms and corresponding congestion measures. In all these cases, the routing decisions

as well as the distributed computations of congestion measures are based on an asyn-

chronous exchange of congestion information amongst neighboring nodes. This unified

approach enables a fair comparison amounts the candidates of interest.

The main contributions of our work include:

• We have implemented and studied the algorithms: Srcr, BP, E-BP and CDP. We

have taken a pragmatic approach by implementing these solutions on the existing

off-the-shelf embedded Alix nodes [52] at the routing layer, leaving rest of the

radio functionalities untouched.

– For TCP traffic, where the transport layer responds to the congestion, CDP

shows a comparable performance with respect to Srcr. In contrast, BP im-

proves the total throughput by significantly increasing the throughput for

short flows at the cost of severe disruption to long flows and hence fairness.

– For UDP traffic, at low traffic loads, CDP performs identical to Srcr, while

BP and E-BP show poor performance due to occasional busrtiness and ran-

dom walk effects in the network.2

– For UDP traffic in medium to high loads, CDP reduces delay, decreases

packet drop rate, and increases throughput in comparison with BP, E-BP

(congestion-aware schemes) and Srcr (congestion blind scheme) in at least

60% of the scenarios.

• As a by-product of the modularity of our approach, we identify intra-flow and

inter-path interference as the main potential drawback of the congestion-aware

routing.

2The desirable performance of Srcr under low traffic indicates the sufficiency of shortest path solutions
in a network with a significant gap between link capacities and ingress traffic, as it is the case with wired
networks.



74

– We provide pathological examples where the intra-flow and inter-path in-

terference significantly over-shadows the benefits of congestion awareness

and path diversity. Furthermore, these pathological behaviors are shown to

be the inevitable side effects of the modular approach to routing where the

MAC layer is kept intact.

– In real networks consisting of low rate background traffic, a modular im-

plementation is sufficient to capture the benefits of congestion diversity. In

other words, we show that the pathological examples are not likely to arise

in practically relevant situations.

5.1.2 Related Work

We close this section with a note on the related work. While, much experimental

research has shown the value of using the differential backlog information in wireless

networks for scheduling and rate allocation at the MAC layer [53], [54], [55] and the

transport layer [56], there are very few experimental studies that have dealt with a prac-

tical implementation of backpressure as a routing solution with commercially available

radios. For example, [55] incorporates the backlog information at all layers making

it hard to come to the conclusions regarding the value of the congestion information

at the routing layer. The authors in [57] have proposed Backpressure Collection Pro-

tocol (BCP) for sensor networks on top on 802.15.4, to enhance data collection. The

BCP implementation requires a LIFO discipline at the MAC layer leading to significant

reordering, unsuitable for various applications.

In literature, many heuristic load balancing and multipath routing solutions [50,

51, 58–62] have been proposed for wireless networks in manners that are reminiscence

of our approach. To the best of our knowledge, these approaches are studied in terms

of simulations and no real implementation is known. Recently, inspired by the theo-

retical framework of [63], Horizon [64], a practical joint load balancing algorithm with

TCP rate control is implemented for 802.11-based networks. Our work supplements the

design and analysis of Horizon by considering both UDP and TCP traffic for a possi-

ble class of distributed asynchronous congestion aware routing algorithms without any

changes at the transport layer.
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The remainder of this work is organized as follows. Section 5.2 introduces the

routing algorithms, CDP, BP, E-BP and Srcr. In Section 5.3, we discuss various imple-

mentation issues for these protocols. Section 5.4 provides the performance results for

UDP and TCP traffic. In Section 5.6, we analyse the performance of the congestion-

aware routing algorithms closely with respect to and determine the causes of perfor-

mance gains and losses by analysing various scenarios. Finally, we conclude the chapter

in Section 5.7.

5.2 Routing with Congestion Diversity

In this section, we start with our 802.11-compatible design for the congestion-

aware routing algorithms BP, E-BP and CDP. Next, we summarize the exiting design

and our implementation for state of the art protocol Srcr.

5.2.1 Congestion-aware routing

The guiding principle of congestion-aware routing has been congestion avoid-

ance in the network taking into account the queue backlog information qdt (n) at each

node n destined for node d at time t and the link qualities W (n, k) between each pair of

nodes n, k.

BP, E-BP and CDP take routing decisions by exchanging a time-varying con-

gestion aware metric, referred to as the congestion measure. For a set of nodes Ω, we

denote the congestion measures for destination d ∈ Ω at node n ∈ Ω as V d
X,t(k), where

X is the protocol of interest in the set {BP, E-BP, CDP}. In practice V d
X,t(k) is only

known at node n via periodic updates received from node k. Let Ṽ (n,d)
X,t (k) be the lat-

est congestion measure advertised by neighbor k and received at node n. Based on the

received congestion-measure Ṽ (n,d)
X,t (k), each node n in the network updates its routing

table. In particular, the routing table determines the next-hop K(n,d)
X,t for a packet at node

n destined for node d. After each successfully acknowledged transmission, the routing

responsibility is then transferred to the next hop. Table 5.1 provides notations used in

the description of these algorithms.

The design of these congestion-aware algorithms rely on a routing table at each
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Figure 5.1: Design of congestion-aware routing algorithms.

node to determine the next best hop. The routing table at node n consists of a list

of neighbors N (n), a structure consisting of estimated congestion measures Ṽ
(n,d)
X,t (k)

for all neighbors k ∈ N (n) associated with different destinations, and the best next

hop vector {K(n,d)
X,t }d∈Ω. Node n periodically advertises the entries of the its computed

congestion measures to its neighbors at intervals of T seconds using control packets.

Thus, the periodic computation and communication of congestion-measures propagates

routing information across the neighbors. The sequence of operations performed are

shown in Figure 5.1.

BP, E-BP and CDP have different notions of measuring the effective congestion

in the network and thus determining next hop selections. Next, we detail the computa-

tions performed at each node to determine the congestion measures and next hops for

BP, E-BP and CDP respectively.
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Table 5.1: Notations used in the description of the algorithms
Symbol Definition
N (n) Neighbours of node n

W (n, k) Transmission time on the link from node n to k

qdt (n) Queue-length at node n destined for d at time t

ETX(k,d) ETX from node k to destination d

V d
X,t(n) Congestion measure computed for protocol X at node n

X ∈ {BP, E-BP, CDP}

Ṽ
(n,d)
X,t (k) Latest congestion-measure obtained at n from node k

K
(n,d)
X,t Selected relay by protocol X at node n

Backpressure Protocol (BP)

For BP, the congestion measure is simply the queue backlog information. In par-

ticular, each node advertises its current queue-backlog information for each destination

as a congestion measure in the control packet. The congestion measure V d
BP,t(n) for

node n, n 6= d is given as V d
BP,t(n) = qdt (n). Thus, effectively, the estimated congestion

measures Ṽ (n,d)
BP,t (k) at node n denotes the latest queue length information at its neighbor

k ∈ N (n).

The BP then selects the next hop based on a weighted differential backlog. For

any destination d, BP chooses the next hop K(n,d)
BP,t , such that:

K
(n,d)
BP,t = arg min

k∈N (n)

1

W (n, k)

(
Ṽ

(n,d)
BP,t (k)− V d

BP,t(n)
)
. (5.1)

The original backpressure [48] assumes a globally synchronized time-slotted

MAC protocol as well as a controller that computes and schedules the nodes in cen-

tralized manner. Note that our implementation of BP is an approximate variant of the

original backpressure proposed in [48] adjusted for the distributed implementation on

802.11-based networks.
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Enhanced Backpressure Protocol (E-BP)

E-BP is a variant of BP, where along with the queue information, the ETX metric

is used for path selection. E-BP, similar to BP, uses queue backlog information as the

congestion measure and V d
E−BP,t(n) = qdt (n). Furthermore, for a packet destined for d,

E-BP chooses its next hop K(n,d)
E−BP,t such that:

K
(n,d)
E−BP,t = arg min

k∈N (n)

{
ETX(k,d)

+
1

W (n, k)

(
Ṽ

(n,d)
E−BP,t(k)− V d

E−BP,t(n)
)}

, (5.2)

where ETX(k,d) is the minimum transmission time from node k to destination d defined

as

ETX(k,d) = min
j

{
ETX(j,d) +W (k, j)

}
. (5.3)

Note that, for E-BP, the control packet needs extra overhead to compute the ETX

(see Section 5.2.2) along with the transmission of the congestion-measure.

Congestion Diversity Protocol (CDP)

The congestion measure for CDP is the aggregate sum of the local draining time

at the node n and the draining time from its next hop till the destination. In CDP, when

relaying packets destined for node d, node n selects the targeted receiver K(n,d)
CDP,t to

minimize the packet’s delivery time, i.e.

K
(n,d)
CDP,t = arg min

k∈N (n)

{
W (n, k) + Ṽ

(n,d)
CDP,t(k)

}
. (5.4)

Assuming a FIFO discipline at layer-2, we proceed to describe the computations

of congestion measure for CDP. The congestion measure associated with node n for a

destination d at time t is the aggregate sum of the local draining time at node n and

the estimated draining time from its next hop, Ṽ (n,d)
CDP,t(K

(n,d)
CDP,t). The local draining time

for a packet destined for d arriving at n at time t is equal to the duration of the time

spent draining the packets that arrived earlier plus its own packet delivery time. In other

words, if qjt (n) is the number of packets destined for j queued at node n at time t, the

local draining time is equal to∑
j∈Ω

qjt (n)W (n,K
(n,j)
CDP,t) +W (n,K

(n,d)
CDP,t). (5.5)
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The congestion measure for node n, n 6= d is then given as

V d
CDP,t(n) = W (n,K

(n,d)
CDP,t) +

∑
j∈Ω

qjt (n)W (n,K
(n,j)
CDP,t)

+Ṽ
(n,d)
CDP,t(K

(n,d)
CDP,t). (5.6)

Thus, in CDP, the congestion measures are computed in a fashion similar to distributed

Bellman-Ford computations [12].

5.2.2 Shortest path routing: Srcr

For the sake of completeness, we describe the design of congestion unaware,

shortest path routing protocol Srcr. This implementation acts as a benchmark for the

comparison purposes with respect to the congestion-aware routing. Srcr proposed in [6]

uses the ETX metric when routing the packet considering only the link quality informa-

tion at the nodes. The ETX to reach the destination is computed using the transmission

duration W (i, j) between each pair of nodes i and j. Specifically, for a packet destined

for node d, the next hop K(n,d)
Srcr,t is chosen such that

K
(n,d)
Srcr,t = arg min

k
ETX(k,d) +W (n, k), (5.7)

where ETX(k,d) is the minimum transmission time from node k to destination d com-

puted as (5.3). We use the distributed architecture of CDP for the calculation of ETX

metric by taking qdt (n) = 1 in the calculation of V d
CDP,t(n).

In the next section, we discuss the practical issues associated with computation

of the congestion measures for these congestion-aware routing algorithms. Furthermore,

we propose practical implementations and heuristics.

5.3 Implementation Details

In this section, we provide the elements of the congestion aware routing re-

sponsible for the computation of the congestion measure including reliability of control

packets, link quality estimation, neighbor discovery, flow selection, and avoidance of

loops while routing.
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5.3.1 Control Packet Reliability

An important component of the implementation is the exchange of congestion-

measures using control packets. In particular, BP, E-BP and CDP depend on a reliable,

frequent, and timely delivery of the control packets. As documented in [45], the loss of

control packets can be the cause of instability in many well known routing algorithms.

Thus, it is important that our implementation ensures a high reliability for the delivery of

control packets. In our implementation, we have taken advantage of the priority-based

802.11e to implement this component of the control plane. In other words, the MadWifi

scheduler assigns highest strict priority to the control packets. It reduces the probability

of control packet drop at the MAC layer and also ensures their timely delivery. In

the context of 802.11e, we utilize two of the four priority queues: data packets are

assigned to the lower priority queue (WME-AC-BK) and control packets are assigned

to the higher priority queue (WME-AC-VO) [65]. In our implementation, the scheduler

assigns a sufficiently reliable and low PHY rate (11 Mbps in our testbed) for the control

packets. These design choices ensure high reliability and speedy delivery of the control

packets.

5.3.2 Link quality estimation

The computations given by (5.1)-(5.7) utilize the transmission time W (i, j) for

each pair of nodes i, j. In this work, we measure the transmission timeW (i, j) by taking

the difference between the instant when a packet enters the hardware at node i and when

the acknowledgement is received from node j at node i.3

The transmission timeW (i, j) for a packet from node i transmitted to node j can

be written as the interval between the transmission of the packet from node i’s interface

and the reception of an acknowledgement (ACK) at node i from node j. The available

drivers and hardware differ in functionalities to accurately measure the transmission

time (up to the accuracy of the operating system scheduling delay). Specifically, in the

context of atheros cards, we will detail the computation of W (i, j). For atheros-based

3Different hardware-independent proxies for transmission times exists in the literature and these can be
of interest for easy implementation. For example, link success probabilities or the number of retries [66]
can be used to obtain approximate transmission times.
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wireless interfaces and the MadWifi driver used in our experiments, we can easily deter-

mine the instant of time when i receives an ACK from j. Now, we are left to determine

the time instant at which packet enters the interface. Unfortunately, the MadWifi driver

does not provide the time of entry at the interface directly. Instead, the driver provides

information on when the packet enters the queue at the MAC layer. With such limited

information at hand, we devise the following algorithm to determine drain time. Times-

tamp T1 when the packet enters the MAC queue, timestamp T2 when the previous packet

exits the interface and timestamp T3 when the current packet exists the interface. The

transmission time is then given as T3 −max(T1, T2).

At the system level, we combine the link quality measurements using actual data

packets at the nodes (passive probing) with dedicated probe packets transmitted to each

neighbor when a node does not engage in data transmission (active probing). These

estimates are combined using a weighted average.

5.3.3 Neighbor Discovery

Each node needs to maintain information on the cost vectors along with the link

quality information for all of its neighbors to efficiently route the packets. In order

to reduce the overhead, we restrict the set of neighbors by using a sufficiently reliable

link. Specifically, the neighbors are defined so that the link success probability for each

neighbor is above a threshold γ. Defining neighbors using a delivery ratio eliminates

any artifacts due to external interference. Out of the many possibilities to implement

this procedure, we have used dedicated probe packets to obtain the relevant information.

5.3.4 Loop Avoidance

Unless carefully designed, distributed computations of any time-varying dis-

tance vector routing algorithm are likely to suffer from the classical problem of counting

to infinity [46]. Looping can result in large delays, increased interference and loss of

packets. The problem is most acute when there is a sudden burst of traffic,4 resulting

in a transient build-up of queue and an overestimation of the quality of the route. Such

4Similar to the broken link scenario in a typical distance vector routing.
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transient effects can be severe due to the resulting slow exchange of control packets.

To address this issue, in case of CDP, we utilize Split-horizon with Poison re-

verse solution [47] to avoid loops. CDP uses control packet information received from

neighbors to gather appropriate information for the split horizon implementation. In

Split-horizon with poison reverse, a node advertises routes as unreachable to the node

through which they were learned. Note that, we apply loop avoidance methods only for

CDP, while BP and E-BP are left in their original form in [13].

5.3.5 Flow Selection

In our design, we have implemented the flow selection criterion proposed in [13,

48], for BP and E-BP. This means that both BP and E-BP perform flow selection among

the packets associated with different destinations using virtual queue mechanism at

layer-2. In particular for protocol X , X ∈ BP, E-BP, each node n at time t selects

the oldest packet destined for node mX,t(n) among available packets and transmits the

packet to the PHY layer. BP performs a flow selection by selecting destinations with

minimum queue differentials, i.e.

mBP,t(n) = arg min
d

min
k∈N (n)

1

W (n, k)

(
Ṽ

(n,d)
BP,t (k)− V d

BP,t(n)
)
. (5.8)

On the other hand, E-BP selects destination which minimizes sum of queue differential

and ETX, i.e.

mE−BP,t(n) = arg min
d

{
min
k∈N (n)

ETX(k,d) +
1

W (n, k)

× (Ṽ
(n,d)
E−BP,t(k)− V d

BP,t(n))
}
. (5.9)

In our implementation, we approximate the above packet level flow selection in (5.8) and

(5.9) using the priority queueing available on the atheros cards. In order to implement

priority scheduling, we utilize the 802.11e-based priority scheduler [52] at the MAC

layer and the highest destination packet (mBP,t(n) or mE−BP,t(n)) is assigned to the

higher priority hardware queue.

CDP takes a simpler approach in flow selection. In particular, rather than using

virtual queues for different destinations, CDP uses a simplistic FIFO discipline at layer-
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2 for all packets. We have found that this simple approach is satisfactory for the CDP’s

performance.

5.4 The Experimental Setup

Our testbed consists of 12 wireless Alix [52] nodes with 512 MB RAM and a

500 MHz processor on Linux version 2.6.22. The nodes placed as shown in Figure 5.2,

are distributed in Atkinson Hall, UCSD, in about 215,000 sq. ft. of space. Each node is

equipped with an Atheros-based 802.11 a/b/g wireless interface (AR 5213) connected

with omni directional antennas. All nodes are connected to Ethernet ports for mainte-

nance and data collection. All nodes are configured in the 802.11g ad-hoc mode with

RTS/CTS disabled and the transmission power is set to 13 dBm. In addition to human

inhabitants, the building contains hundreds of workstations and a large variety of elec-

tronics operating in the same 2.4 GHz unlicensed frequency band as 802.11, resulting

in a highly variable channel quality in different portions of the building and during dif-

ferent times of the day. For consistent data, we performed our experiments during the

night when the variability of the channel is least.

All of the above routing algorithms have been implemented in user space with

appropriate calls to the MadWifi driver, which is supported by the Linux kernel (2.6.22

onwards). These algorithms perform queuing and scheduling on every packet being

transmitted or received by the driver. We have used a transmission rate of 11 Mbps for

the control packets while the data packets are sent at 48 Mbps. The packet size for data

packets is 512 bytes. For each algorithm, each iteration of traffic generation is executed

for 180 seconds.

We study the choice of the parameters in the subsequent analysis. Specifically,

we need to set the following parameters: control packet interval T , probe interval dura-

tion, and neighbor probability threshold γ.

1) Choice of control packet interval T : In our setup, we transmit control pack-

ets periodically at intervals of 200 ms. Each control packet of roughly 200 bytes is

broadcasted at a rate of 11 Mbps.

We need to tradeoff the overhead of the control packets and the need to obtain the
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Figure 5.2: Testbed: Node locations

accurate congestion measures from neighbours. Since broadcast packets do not undergo

a backoff mechanism, the broadcasting cost for control packets is negligible compared

to data transmission. In order to study the interference effects of control packets on the

performance, we vary the control packet transmission interval for Srcr and compare the

performance with various intervals of 50, 100, 200, 300 and 500 ms. We observe that

the performance does not vary for intervals greater than 200 ms, which implies that the

control packets do not have a significant effect on the performance.

2) Choice of link probe interval: In our setup, we transmit probe packets at

regular intervals to probe the channel and learn the link quality. The choice of probing

interval should trade-off the added overhead with the ability to track channel variations.

We set the probe interval to 1 second in accordance with the value chosen in [10, 67]

consistent with indoor environment’s fading parameters. Furthermore, probe packets of

length 512 bytes are selected to match the data packet size (also set at 512 bytes).

3) Choice of probability threshold γ: We have chosen γ = 0.4 for trading off

link reliability with network connectivity. The decision whether a node is a neighbor, is
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based on the initial non-interfering condition of the network.

With the above setup, we are ready to evaluate the performance of congestion-

aware routing protocols for TCP and UDP traffic as reported next.

5.5 Performance Results

In this section, we perform a comparative study of various routing protocols

under TCP and UDP traffic. In our comparative analysis, we investigate the following

performance measures:

1. End-End delay: ForM packets, we define the mean delayD = 1
M

∑M
j=1(τ jA−τ

j
D),

where τ jA is the arrival time at the destination and τ jD is the departure time for

packet j at the source. For TCP traffic, we consider mean delay as mean Round

Trip Time (RTT). We are interested in the distribution of per packet delay, e.g.

the Cumulative Distribution Function (CDF) of D with respect to the random

choice of network topology. For illustration purposes, we consider a differential

delay measure which consists of the difference between CDP and the candidate

protocol. Specifically, we plot the differenceDcandidate−DSrcr, whereDSrcr is the

mean delay for CDP and Dcandiate is the mean delay for the comparative protocol.

2. Throughput ratio: The throughput is the number of bytes received at the destina-

tion for the duration of the experiment. Again when investigating the CDP per-

formance with respect to the network topology, we use the normalized throughput

ratio as a measure of performance, where the normalized throughput ratio is de-

fined as the ratio between the throughput of the candidate protocol versus the Srcr.

5.5.1 Experiments with TCP

In this section, we study the performance of congestion-aware routing algorithms

for TCP used for reliable communications. We report the comparative performance of

the candidate routing protocols (relative to Srcr) under reliable transfer control algo-

rithms TCP-Veno [68] by selecting a configuration of two TCP flows with randomly

selected source and destination pairs. We do not expect to see significant improvement
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for congestion-aware routing protocols with respect to Srcr when the sources of traffic

are TCP. The first reason for the insignificant performance gain is that the current im-

plementations of TCP are non-aggressive. TCP tries to avoid congestion in the network

and thus makes the congestion routing insensitive to congestion routing. Secondly, TCP

is known to have performance degradation with respect to the packet reordering. (Figure

5.4 shows that BP, E-BP and CDP suffer from the reordering of packets introduced by

the dynamic route selection.)

(a) Differential RTT

(b) Normalized throughput

Figure 5.3: Performance for TCP traffic

Given the above considerations, the best we can hope is that the proposed con-

gestion aware routing does not degrade the performance. We show that this is the case

for CDP and E-BP. Figures 5.3(a) and 5.3(b) compare the CDF of the Round Trip Time
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Figure 5.4: CDF of reordering

(RTT) and the normalized throughput for multi-hop flows for CDP, Srcr, BP and E-BP.

These set of experiments show that CDP and E-BP exhibit a comparable performance

with Srcr for TCP flows. For multi-hop flows, the performance of TCP for BP suffers

from the loops and “dead ends”, resulting in timeouts and very low throughput for routes

with multiple hops.

Next, we dissect and study the more interesting case of UDP traffic.

5.5.2 Experiments with UDP

In this section we report on the performance of BP, E-BP, CDP, and Srcr in our

network with two randomly selected flows with two sets of source-destination pairs.

We inject Poisson traffic at each source node with a randomly selected average load

between 0 Mbps and 7 Mbps. We repeat the experiment for 100 such configurations.

Among these random experiments, we consider configurations for comparison where at

least one algorithm delivers 80% of packets. (15% of the scenarios were overloaded).

Furthermore, uninteresting cases with non-overlapping single hop routes are also ex-
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cluded from the analysis (15% of the scenarios contained only single hops). Figures

5.5 plots the offered loads for the remaining configurations in our analysis. We classify

the configurations under considerations into two sets: low load configurations when the

observed delay for Srcr is sufficiently small (less than 0.1 second) and high load con-

stituting the remaining configurations. We report the Cumulative Distribution Function

(CDF) of the performance metrics for various protocols for low and high load scenarios

in Figures 5.6-5.9.

Figure 5.5: Offered load

In Figures 5.6 and 5.7, we plot the delay differential and normalized throughput

for the candidate protocols under a low load scenario. Here, as we expected, CDP per-

forms similar to Srcr while performing significantly better than BP and E-BP. This is

because in absence of congestion, the distributed computation in (5.6) reduces to com-

putation of the ETX, while BP and E-BP reduce to a near random walk in the network.

Figure 5.8 compares the CDF of the delay differential, while Figure 5.9 shows

the CDF of the normalized throughput ratio for high traffic load. Figures 5.8, and 5.9
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Figure 5.6: CDF of delay differential for a low load

show that for about 60% of the network configurations selected, CDP delivers packets

with significantly less delay compared to other protocols5. Figures 5.8 and 5.9 also show

CDP performs worse than Srcr in 30% of the scenarios. In Section 5.5.3 we dissect and

isolate the sources of loss in these scenarios.

5.5.3 Congestion awareness : Pros and Cons

In this section, we investigate the root causes of CDP’s performance losses and

gains as illustrated in Figures 5.8 and 5.9. To gain insight on the strengths and weak-

nesses of congestion-aware routing, we consider two example topologies associated

with delay differentials on both ends of the spectrum on the CDF plot in Figure 5.8.

The performance of these examples with respect to Srcr is marked as point A and point

B respectively in Figure 5.8. The configurations associated with these points A and B

are shown in Figure 5.10. Our first example topology (point A) consists of one high (4

Mbps) unicast flow between nodes 10-17 and another low load flow (1 Mbps) between

5The candidate protocol performs poorly if the CDF lies to the left of the Srcr
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Figure 5.7: CDF of normalized throughput for low load

nodes 14-16. In this setting, the delay performance of CDP is significantly worse than

Srcr. The second topology consists of the same flows 10-17 and 14-16 but flow rates

of 1 Mbps and 4 Mbps are swapped. Note that this second topology coincides with the

case when the CDP significantly outperforms Srcr.

Congestion-aware Routing: Cons (Topology A)

We study the flow configuration at point A consisting of flow 10-17 with high

load and 14-16 with low load. Figure 5.11 plots the end-end delay for the individual

flows. We observe that Srcr performs best, while the delay for CDP is 100 ms poorer

than Srcr. The delay performance of BP and E-BP is order of seconds.

To understand the sources of loss of performance under congestion-aware rout-

ing policies we have illustrated the next hop selections by node 10 in Figure 5.12 where

we plot K(10,17)
X,t under the candidate protocols throughout the duration of the experi-

ments. We observe that Srcr maintains node 14 as the next hop in a static manner while

CDP switches its next hop from node 14 to node 16. BP and E-BP forward significant

number of packets into nodes 5, 7 and 11 increasing the interference in the network.
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Figure 5.8: CDF of delay differential for high load

Figure 5.13 decomposes the loss incurred by each protocol into buffer overflow, retry

loss and loop loss.6 In this example, we observe flow 10-17 suffers a higher queue loss

for CDP compared to Srcr. Other losses remain fairly negligible (even though higher for

BP and E-BP).

Congestion-aware Routing: Pros (point B)

We now study the flow configuration at point B consisting of flow 10-17 with low

load and 14-16 with high load. Figure 5.14 plots the end-end delay for the individual

flows. The delay performance under CDP shows a improvement over the other candidate

protocols by at-least 100 ms.

Figure 5.15 shows the next hop selections by node 10. We observe that Srcr

persistently relies on routing via node 14, resulting in severe congestion and packet

drops for the flow 10-17, reducing the throughput and increasing the delay. BP and

E-BP still forward packets to nodes 5, 7 and 11 resulting in increased interference.

6Loop loss occurs due to the presence of loops in routes resulting in packet drop if the Time to Live
(TTL) value reaches 0.
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Figure 5.9: CDF of normalized throughput for high load

Figure 5.10: Topology used to analyse the performance results.
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Figure 5.11: Mean delay (point A)

Figure 5.16 shows the decomposition of sources of loss under each protocol. In

contrast to the previous example, the number of packet drops for flow 10-17 is significant

for Srcr, E-BP and BP i.e. 20%, 25% and 40% respectively; while the packet loss under

CDP is less than 1% (mostly due to buffer overflow). The retry losses and loop losses

for all protocols are negligible.

The overall performance gain of CDP over Srcr in this network Topology B, sug-

gests that the multi-path load balancing and congestion avoidance inherent to CDP can

result in significant performance gains. However, the overall performance degradation

in the network topology A suggests that the gains can be overshadowed by the intra-flow

and inter-path interference.

5.6 Modular Approach and Multi-path Diversity

In this work, we have taken a modular approach of separating MAC from routing

in designing congestion-aware routing. It is believed that a modular approach can be a

significant limitation in the wireless networking setting. In this section, we relate the
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Figure 5.12: Routing paths taken by node 10 for the flow 10-17 (point A)

Figure 5.13: Loss decomposition percentage (point A)
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Figure 5.14: Mean delay (point B)

loss of the performance in the network topology A, suffering from infra-flow and inter-

path interference to the modularity of our solution. As such, we show that,

• The degraded behavior is an inevitable side effect of the modular approach to

routing where MAC layer is kept intact.

• In real networks consisting of low rate background traffic, a modular implemen-

tation is sufficient to capture the benefits of congestion diversity.

5.6.1 Case studies

In this section, we consider a set of test topologies which contain a single flow

possibly routed using two paths. We analyse the effect of multi-path and congestion

diversity using a set of randomized protocols where the packets at the source node is

routed via Path-1 with probability α. We then compare the delay under CDP as well as

the proposed randomized algorithms as α is varied from 0 to 1.

Next, we consider the examples in Figure 5.17: example 1 and 2, consisting of

a single flow 10-17, with the difference in the quality of link 14-17. In example 3, we
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Figure 5.15: Routing paths taken by node 10 for the flow 10-17 (Topology B)

consider the longer flows 13-3 shown in Figure 5.17. Note that in these examples, Srcr

is a trivial case of our class of randomized policies with α = 1.7

Example 1

We analyse the topology in Figure 5.17 for a high load of 4 Mbps for flow 10-17.8

Figure 5.18 shows the end-end delay performance for CDP and the randomized routing

policy for various quantities of α. As seen in the network topology A in Section 5.5,

the best performance is achieved at α = 1 (hence Srcr). The reason for this observation

is that any simultaneous utilization of Path-1 and Path-2 results in nodes 10, 14, 16

and 6 contending for the wireless channel concurrently. Hence, the gain achieved by

reducing the congestion and load balancing Path-1 and Path-2 is not significant enough

to compensate for the increase in the channel access times and interference.

7Note that we have not analysed the performance of BP and E-BP due to their consistently poorer
performance.

8This topology is similar to the topology for topology A in Figure 5.10.
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Figure 5.16: Loss decomposition percentage (point B)

Figure 5.17: Topology used to study the gains of multipath diversity
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Figure 5.18: Delay performance as α is varied for the topology in Figure 5.10

Example 2

We consider the same topology as example 1, however link 14-17 is low in qual-

ity. In practice, low link quality for 14-17 occurs when there is an obstruction between

14-17. Figure 5.19 shows the delay performance for the set of routing protocols as α is

varied. It is not surprising that the delay is minimized when α = 0 when static use of

longest path is employed.

Example 3

We now turn attention to another special topology with flow 13-3 shown in Fig-

ure 5.17, where the self-interference is significant on both paths and the number of hops

are high along those paths. Figure 5.20 shows the delay performance of the set of rout-

ing protocols as α is varied for flow 13-3. In contrast to the first 2 examples, the mean

delay is minimized for α = 0.5 when congestion diversity is utilized. Note that the CDP

is unable to follow an optimal α = 0.5 (it tracks α = 0.38). This we believe is due to

the lag between the ideal time to switch between paths and the actual time it takes for
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Figure 5.19: Delay performance as α is varied for case 1

CDP to switch paths.

The above examples reveal that exploiting multi-path diversity is a complicated

function of the intra-flow and inter-path interference in the network. Even in very simple

topologies, the interplay of congestion diversity gain and interference is too complicated

to account for. In other words, a modular approach is not supported to address both

effects simultaneously and thus necessitating a cross layer re-design of MAC and routing

layer.

5.6.2 Performance in high interference scenarios

Next, we study the effectiveness of multipath routing in networks with non-

negligible interference. In real deployments, concurrent flows already exist in the net-

work. Unlike the test configurations in Section 5.5, deployed networks are likely to see

a sufficiently high “interference floor”. In presence of such steady interference floor, the

contribution of the intra-flow and inter-path interference is likely to be minimal. In other

words, we argue that in most practical scenarios, even with a modular design of MAC
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Figure 5.20: Delay performance as α is varied for case 2

and routing, the benefits of congestion-aware multi-path diversity are significant.

We test this conjecture by repeating the experiments of Section 5.5, where in

addition to the two randomly selected heavy and long UDP flows, nodes in the network

are engaged in the transmission of low intensity traffic at the rate of 10 packets/sec. Note

that such background traffic can often be attributed to the control plane packets.

Figures 5.21 and 5.22 show the CDF of delay and normalized throughput. In

fact comparing these to Figures 5.8 and 5.9, we can confirm the advantages of CDP over

other candidate protocols.

5.7 Summary

This chapter presents study of a set of congestion-aware routing protocols Back-

pressure (BP), Enhanced Backpressure (E-BP) and Congestion Diversity Protocol (CDP)

for routing packets across a wireless multi-hop network. We modify the protocol stack

at the routing layer to take the congestion in the network into account. In E-BP and

CDP, nodes route packets according to a rank ordering of the nodes based on a conges-
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Figure 5.21: CDF of delay differential for high load with external interference

tion measure which combines the important aspects of shortest path routing with those

of backpressure routing and are designed to alleviate the delay performance of BP.

We evaluated these routing protocols on a real testbed of 12 nodes with end-end

delay and throughput ratio as central metrics for comparison. We compared the per-

formance of BP, E-BP and CDP versus other routing-layer solutions, i.e. SRCR, under

both UDP and TCP connections. We showed significant improvements for most arbi-

trary network set up and traffic conditions for CDP while BP and E-BP showed poorer

performance. We also dissected network scenarios to gain insights and understand the

reasons for improvements and performance degradations with respect to SRCR. In the

process, we shed light on the importance of a cross-layer approach in which scheduling

and transport-layer congestion control enable further improvement and complimentary

roles in addition to the congestion-aware functionality. This set of observations allow us

to suggest and consider a rich set of future directions for our work.



102

Figure 5.22: CDF of normalized throughput for high load with external interference
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we studied various routing algorithms for wireless mesh net-

works. The main objectives were classified into two categories i) determine a routing

algorithm when the topology information is unavailable ii) finding routes to avoid con-

gested paths.

For the first objective, we studies two routing algorithms AdaptOR and NRR in

Chapter 2 and 3 respectively. The long term average reward criterion investigated in

Chapter 2 inherently ignores the short-term performance. To capture the performance,

we designed NRR in Chapter 3 via measuring the incurred “regret” over a finite horizon

with an optimal rate of regret.

In Chapter 4, we provided a distributed opportunistic routing policy with con-

gestion diversity (D-ORCD) combining the important aspects of shortest path routing

with those of backpressure routing. Furthermore, we proposed a practical distributed

and asynchronous 802.11 compatible implementation for D-ORCD, whose performance

was investigated via a detailed set of QualNet simulations under practical and realistic

networks.

In Chapter 5, we studied the implementation of various congestion aware routing

algorithms on a testbed including Congestion Diversity Protocol (CDP), Backpressure

(BP) and Enhanced-Backpressure (EBP). We studied the performance of these algo-

rithms with respect to UDP and TCP traffic against state of the art shortest path routing

103
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algorithm SRCR. We showed that CDP performed significantly better in real network

scenarios while backpressure based algorithms performed poorly. We also studied in-

teresting interaction between the increased interference and exploiting the congestion

diversity in the network.

6.2 Future Work

A number of assumptions are imposed on the optimality of AdaptOR and NRR.

AdaptOR and NRR are designed for a static network. An important area for future

research is to extend these algorithms are mobiles networks. Furthermore, we would

like to relax the centralized controller assumption in proving the optimality of NRR.

In Chapter 4, we do not model the interference at the nodes in the network, but

instead leave that issue to a classical MAC operation. However, the generalization to

the networks with inter-channel interference follow directly from [13]. The price of this

generalization is shown to be the centralization of the routing/scheduling globally across

the network or a constant factor performance loss of the distributed variants [13,16,17].

In the future, we are interested in generalising D-ORCD for joint routing and scheduling

optimizations as well as considering system level implications. Incorporating through-

put optimal CSMA-based MAC scheduler (proposed in [53]) with congestion aware

routing is also a promising area of research.

Our work, however, does not consider this closely related issue. Incorporating

congestion control in opportunistic routing algorithms to minimize expected delay with-

out the topology and the channel statistics knowledge is an area for future research.

An important subsequent endeavour is the implementation and performance anal-

ysis of AdaptOR, NRR and D-ORCD in our lab. The implementation of the three way

handshake procedure at the driver to enable opportunistic routing is a significant chal-

lenge.

In Chapter 5, we have taken a modular approach in which the MAC layer and

the transport layer are kept intact but the routing layer is modified. Our results indicate

the need for the development of practical yet joint MAC, routing, and transport layer

protocols that tackle the issues of contentions, congestion, and delay simultaneously
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as advocated by [53], [56]. This includes the design of a congestion aware MAC and

TCP rate control algorithm based on congestion measure Vt. Given the legacy of the

802.11 MAC protocol, it might be useful to further study the modular approach when

self-interference dominates. In particular, as seen in Section 5.6, sticking with a single

route is beneficial in a self-interfering environment to avoid increased self-interference.

Instead of changing the next hop as soon as any congestion is detected, “hold route

CDP” which is a slightly modified version of CDP, might be useful to hold the route for

a long enough duration until we detect sufficient congestion. Most wireless nodes are

equipped with rate selection mechanisms that attempt to optimize the transmission rate.

However, an appropriate rate selection algorithm remains as an important area of future

work. As a side note, we would like to include a provably loop free mechanisms in

CDP. Provably loop free methods using destination sequence numbers [69] are slow to

propagate and are unsuitable in a very dynamic system. Future work includes extending

a provably loop free technique [70] for CDP.



Appendix A

A.1 Appendix for Chapter 2

We start this section with a note on the notation. On the probability space

(Ω,F , P ), we use notation I : Ω → {0, 1} to denote the indicator random variable

(with respect to F), such that for all ω ∈ Ω, A ∈ F , I(A) = 1 for all ω ∈ A, and

I(A) = 0 for all ω /∈ A. For a vector x ∈ RD, D ≥ 1, we use x(l) to denote the lth

element of the vector. Let ||x||v denote the weighted max-norm with positive weight

vector v, i.e. ||x||v = maxl
|x(l)|
v(l)

. We denote the vector in RD with all its components

equal to 1 by 1. We also use the notation Xn to represent the first n random elements of

the random sequence {Xk}∞k=1.

A.1.1 Proof of Lemma 1

Lemma 1. Let

(J1) Λ0(·, ·, ·) = 0, ΛT
max = −R, Λi

max = 0 for all i ∈ Θ,

(J2)
∑∞

n=0 αn =∞,
∑∞

n=0 α
2
n <∞.

Then the sequence Λn obtained by the stochastic recursion (2.2)

Λn+1(i, S, a) = Λn(i, S, a) + ανn(i,S,a)(
− Λn(i, S, a) + g(S, a) + Λa

max

)
,

converges to Λ∗ almost surely.
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To prove Lemma 1, we note that the adaptive computation given by (2.2) uti-

lizes a stochastic approximation algorithm to solve the MDP associated with Problem

(AP). To study the convergence properties of this stochastic approximation, we appeal to

known results at the intersection of learning and stochastic approximation given below.

In particular, consider a set of stochastic sequences on RD, as {xn, ᾱn,Mn+1},
and the corresponding filtration Gn, i.e. the increasing σ-field, satisfying the following

recursive equation

xn+1 = xn + ᾱn[U(x′n)− xn +Mn+1],

where U is a mapping from RD into RD and x′n =
(
xn1

(1), xn2
(2), ..., xnD(D)

)
, 0 ≤

nj ≤ n, j ∈ {1, 2, ..., D}, is a vector of possibly delayed components of xn. If no

information is outdated, then nj = n for all j and x′n = xn. The following important

result on the convergence of xn is provided in [22].

Fact 4. [22, Theorem 2] Assume {xn, ᾱn,Mn+1} and U satisfy the following condi-

tions:

(G1) For all n ≥ 0 and 1 ≤ l ≤ D, 0 ≤ ᾱn(l) ≤ 1 a.s.;

for 1 ≤ l ≤ D,
∑∞

n=0 ᾱn(l) =∞ a.s.;

for 1 ≤ l ≤ D,
∑∞

n=0 ᾱ
2
n(l) <∞ a.s.

(G2) Mn is a martingale difference with finite second moment, i.e. E{Mn+1|Gn} = 0,

and there exist constants A and B such that

E{M2
n+1|Gn} ≤ A+B(max

n′≤n
||xn′ ||)2.

(G3) There exists a positive vector v, scalars β ∈ [0, 1) and C ∈ R+, such that

||U(x)||v ≤ β ||x||v + C.

(G4) Mapping U : RD → RD satisfies the following properties:

1. U is component-wise monotonically increasing;

2. U is continuous;
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3. U has a unique fixed point x∗ ∈ RD ;

4. U(x)− r1 ≤ U(x− r1) ≤ U(x+ r1) ≤ U(x) + r1, for any r ∈ R+.

(G5) For any j, nj →∞ as n→∞.

Then the sequence of random vectors xn converges to the fixed point x∗ almost surely.

Let Gn be the increasing σ-field generated by random vectors (Λn, S
i
n, a

i
n, νn).

Let xn = Λn be the random vector of dimension D =
∑

i∈Θ

∑
S∈Si |A(S)|, generated

via recursive equation (2.2). Furthermore,

(UΛn)(i, S, a) = g(S, a) +
∑
S′∈Sa

P (S ′|a) max
j

Λn(a, S ′, j),

ᾱn(i, S, a) = ανn(i,S,a)I(Sin = S, ain = a).

Let {Mn+1} be a random vector whose (i, S, a)th element is constructed as fol-

lows:

Mn+1(i, S, a) = max
j

Λna(a, S
a
na , j)

−
∑
S′∈Sa

P (S ′|a) max
j

Λna(a, S
′, j),

where 0 ≤ na ≤ n, and Sana is the most recent state visited by node a.

Now we can rewrite (2.2) and (2.3) as in the form investigated in Fact 4, i.e.

Λn+1(i, S, a) = Λn(i, S, a) + ᾱn(i, S, a)

(
(UΛna)(i, S, a)

−Λn(i, S, a) +Mn+1(i, S, a)

)
.

The remaining steps of the proof reduce to verifying statements (G1)-(G5). This

is verified in Lemma 5 below.

Lemma 5. (Λn, ᾱn,Mn+1) satisfy conditions (G1)-(G5).
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Proof. • (G1): It is shown in Lemma 7 that algorithm d-AdaptOR guarantees that

every state-action is attempted infinitely often (i.o.). Hence,

∞∑
n=0

ᾱn(i, S, a) =
∞∑
n=0

ανn(i,S,a)I(Sin = S, ain = a)

≥ I((i, S, a) visited i.o. )(
∞∑
n=0

αn) =∞.

However,
∞∑
n=0

ᾱ2
n(i, S, a) ≤

∑
i,S,a

∞∑
n=0

α2
νn(i,S,a)I(Sin = S, ain = a)

≤
∑
i∈Θ

|Si||d+ 1|
∞∑
n=0

α2
n <∞.

• (G2):

E[Mn+1|Gn, na] = ESa [max
j

Λna(a, S
a, j)]

−
∑
S′

P (S ′|a) max
j

Λna(a, S
′, j)

= 0.

E[Mn+1|Gn] = Ena [E[Mn+1|Gn, na]] = 0.

E[M2
n+1|Gn, na] ≤ ESa [(max

j
Λna(a, S

a, j))2]

≤ max
Sa

max
j

(Λna(a, S
a, j))2

≤ ||Λna ||
2 .

E[M2
n+1|Gn] = Ena

[
E[M2

n+1|Gn, na]
]

≤ Ena [||Λna ||
2]

≤ max
n′≤n
||Λn′||2 .

Thus Assumption (G2) of Fact 4 is satisfied.
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• (G3): Let Zd = {S : d ∈ S, S ∈ {Si}i∈Θ} denote the set of states which con-

tain the destination node d. Moreover, let Zi
d = {S : d ∈ S, i ∈ Θ, S ∈

Si}. Let τπZd be the hitting time associated with set Zd and policy π ∈ Π, i.e.

τπZd = min {n > 0 : ∃S ∈ Zd, S ∈ {Sin}i∈Θ}. Policy π is said to be proper if

Prob(τπZd < ∞|F0) = 1. Let us now fix a proper deterministic stationary policy

π ∈ Π. Existence of such a policy is guaranteed from the connectivity between 0

and d. Let F be the termination state which is reached after taking the termination

action T . Let us define a policy dependent operator Lπ,

(LπΛ)(i, S, a) = g(S, a) +
∑

S′ /∈Zad∪F

P (S′|a)Λ(a, S′, π(S′)). (A.1)

We then consider a Markov chain with states (i, S, a) and with the following dy-

namics: from any state (i, S, a), we move to state (a, S ′, π(S ′)), with probability

P (S ′|a). Thus, subsequent to the first transition, we are always at a state of the

form (i, S, π(S)) and the first two components of the state evolve according to

policy π. As π is assumed proper, it follows that the system with states (i, S, a)

also evolves according to a proper policy. We construct a matrix Q with each en-

try corresponding to the transition from state (i, S) to (π(S), S ′) with value equal

to P (S ′|π(S)) for all S /∈ Zi
d ∪ F, S ′ /∈ Z

π(S)
d ∪ F for all i.

Since policy π is proper, the maximum eigenvalue of matrix Q is strictly less than

1. As Q is a non-negative matrix, the Perron Frobenius theorem guarantees the

existence of a positive vector w with components w(i,S,a) and some β ∈ [0, 1) such

that ∑
S′ /∈Zad∪F

P (S ′|a)w(π(S),S′,π(S′)) ≤ βw(i,S,a). (A.2)

From (A.2), we have a positive vector v such that ||(LπΛ)− Λπ||v ≤ β ||Λ− Λπ||v,
where Λπ is the fixed point of equation Λ = LπΛ.

From the definition ofU (2.4) andLπ (A.1) we have |(UΛ)(·, ·, ·)| ≤ |(LπΛ)(·, ·, ·)|.
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Using this and the triangle inequality, we obtain

||UΛ||v ≤ ||LπΛ||v
≤ ||LπΛ− LπΛπ||v + ||LπΛπ||v
≤ β ||Λ− Λπ||v + ||Λπ||v
≤ β ||Λ||v + 2 ||Λπ||v ,

establishing the validity of (G3).

• (G4): Assumption (G4) is satisfied by operator U using following fact:

Fact 5. [32, Proposition 4.3.1] U is monotonically increasing, continuous, and

satisfies U(Λ)− r1 ≤ U(Λ− r1) ≤ U(Λ + r1) ≤ U(Λ) + r1, r > 0.

Λ∗ is a fixed point of U . From (2.5) and (2.6) we obtain

max
j∈A(S)

V ∗(j) = max
j∈A(S)

Λ∗(i, S, j) +R. (A.3)

Furthermore, using (2.5) and (A.3), for all i ∈ Θ

Λ∗(i, S, a) = g(S, a) +
∑
S′

P (S′|a) max
j∈A(S′)

V ∗(j)−R. (A.4)

The existence of fixed point Λ∗ follows from (A.4), while the uniqueness of Λ∗

follows from uniqueness of V ∗ (Fact 1).

• (G5): Suppose na 9 ∞ as n → ∞. Therefore, there exists N such that na < N

for all n. This means that the number of times that node a has transmitted a packet

is bounded by N . But this contradicts Lemma 7 which says that each state-action

pair (S, a) is visited i.o. Therefore na → ∞ as n → ∞ for all a, and condition

(G5) holds.

Thus Assumptions (G1)-(G5) are satisfied. Hence, from Fact 4 our iterate (2.2)

converges almost surely to Λ∗, the unique fixed point of U .

Lemma 6. If policy φ∗ is followed, then action a ∈ A(S) is selected i.o. if state S ∈ S

is visited i.o.
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Proof. Define the random variableKn = I(Sin = S for any i ∈ Θ|φ∗). LetKn be the σ-

field generated by (K1, K2, . . . , Kn). LetAn = {ω : ain = a, Sin = S for any i ∈ Θ|φ∗}.
From the construction of the algorithm it is clear thatAn isKn measurable. Now

it is clear that under policy φ∗, An+1 is independent of Kn−1 given Kn and Nn(i, S), i ∈
Θ. Define,

P (An+1|Kn, Nn(i, S) for all i ∈ Θ)

≥

{
0 if Kn = 0
mini∈Θ εn(i,S)
|A(S)| if Kn = 1

(A.5)

∞∑
n=0

Prob(An+1|Kn)

≥
∞∑
n=0

Prob(An+1|Kn, Nn(i, S) for all i ∈ Θ)

≥ I( S is visited i.o.)
∞∑
n=0

min
i∈Θ

εn(i, S)

|A(S)|

≥ I( S is visited i.o.)
|A(S)|

∞∑
n=0

1∑
i∈Θ Nn(i, S) + 1

≥ I( S visited i.o. )

|A(S)|

∞∑
n=0

1

n(d+ 1) + 1
=∞. (A.6)

The next step of the proof is based on the following fact:

Fact 6. [71, Corollary 5.29, (Extended Borel-Cantelli Lemma)] LetKk be an increasing

sequence of σ-fields and let Ak be Kk-measurable. If
∑∞

k=1 Prob(Ak|Kk−1) = ∞ then

P (Ak i.o.) = 1.

Thus, from Fact 6, a ∈ A(S) is visited i.o, if S is visited i.o.

Lemma 7. If policy φ∗ is followed, then each state-action (S, a) is visited infinitely

often.

Proof. We say states S, S ′ ∈ S communicate if there exists a sequence of actions

{a1, . . . ak, k < ∞} such that probability of reaching state S ′ from state S following

the sequence of actions {a1, . . . ak} is greater than zero. Using Lemma 6, if state S ∈ S
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is visited i.o., then every action a ∈ A(S) is chosen i.o. as the set A(S) is finite. Hence,

states S ′ such that P (S ′|a) > 0, S ′ ∈ S, are visited i.o. if S is visited i.o. By Lemma

6 every action a′ ∈ A(S ′) is also visited i.o. Following a similar argument and with

repeated application of Lemma 6, every state S ′′ ∈ S which communicates with state S

and actions a ∈ A(S ′′) are visited i.o.

Under the assumption of the packet generation process in Section 2.2, a packet

is generated i.o. at the source node 0. Thus state {0} is reached i.o. The construction of

set S is such that every state S ∈ S communicates with state {0}. Thus each (S, a) is

visited i.o since |S| is finite.

A.1.2 Proof of Lemma 2

Lemma 2. For any (P)-admissible policy φ ∈ Φ for Problem (P) and for all

N = 1, 2, . . .,

Eφ

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m


 ≤ V ∗(0).

Proof. To prove the lemma, we refer to the Auxiliary Problem (AP). In this problem we

have assumed the existence of a centralized controller with full knowledge of the local

broadcast model. Mathematically speaking, let P be the sample space of the random

probability measures for the local broadcast model. Specifically, P := {p ∈ R2d × Rd :

p is a non-square left stochastic matrix}. Moreover, let PP be the trivial σ-field gener-

ated by the local broadcast model P ∈ P (sample point in P), i.e. PP = {P,P\P, ∅,P}.1

Recall that Sin denotes the set of nodes that have received the packet due to a trans-

mission from node i at time n, while ain denotes the corresponding routing decision

node i takes at time n.2 For Auxiliary Problem (AP), a routing policy is a collection

π = {πi}i∈Θ of routing decisions taken for nodes i ∈ Θ at the centralized controller,

where πi denotes a sequence of random actions πi = {ai0, ai1, . . .} for node i. The

routing policy π is said to be (AP)-admissible for Auxiliary Problem (AP) if the event

{ain = a} belongs to the product σ-field PP ×
∏

iHi
n [72].

1The σ-field captures the knowledge of the realization of local broadcast model and assumes a well-
defined prior on these models.

2Si
n = ∅, ain = T if node i does not transmit at time n.
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From Fact 1, since π∗ is the optimal policy for one packet, for each packet m

and for any feasible policy φ ∈ Φ,

V ∗(0) = Eπ∗

rm − τmT −1∑
n=τms

cin,m|F0


≥ Eφ

rm − τmT −1∑
n=τms

cin,m

 ,
where the inequality follows from the fact that Φ ⊆ Φ. The remaining steps are straight-

forward.

Eφ

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m


 ≤ Eφ

(
1

MN

MN∑
m=1

V ∗(0)

)

= V ∗(0).

A.1.3 Proof of Lemma 3

Lemma 3. For any δ > 0,

lim inf
N→∞

Eφ∗

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m


 ≥ V ∗(0)− δ.

Proof. From (2.5), (2.6), and (A.3) we obtain the following equality for all i ∈ Θ, S ∈
Si,

arg max
j∈A(S)

V ∗(j) = arg max
j∈A(S)

Λ∗(i, S, j) . (A.7)

Let

b = min
i∈Θ

min
S∈Si

min
j,k∈A(S)

Λ∗(i,S,j)6=Λ∗(i,S,k)

|Λ∗(i, S, j)− Λ∗(i, S, k)|.
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Lemma 1 implies that, in an almost sure sense, there exists packet index m1 < ∞ such

that for all n > τm1
s , i ∈ Θ, S ∈ Si, a ∈ A(S),

|Λn(i, S, a)− Λ∗(i, S, a)| ≤ b/2.

In other words, from time τm1
s onwards, given any node i ∈ Θ and set S ∈ Si,

the probability that d-AdaptOR chooses an action a ∈ A(S) such that Λ∗(i, S, a) 6=
maxj∈A(S) Λ∗(i, S, j) is upper bounded by εn(i, S). Furthermore, since Nn(i, S) → ∞
(Lemma 7), for a given γ > 0, with probability 1, there exists a packet index m2 < ∞
such that for all n > τm2

s , maxi,S εn(i, S) < γ.

Let m0 = max{m1,m2}. For all packets with index m ≤ m0, the overall ex-

pected reward is upper-bounded by m0R < ∞ and lower-bounded by −m0

λ
dmaxi ci >

−∞, hence, their presence does not impact the expected average per packet reward.

Consequently, we need to only consider the routing decisions of policy φ∗ for packets

m > m0.

Consider the mth packet generated at the source. Let Bm
k be an event for which

there exist k instances when d-AdaptOR routes packet m differently from the possi-

ble set of optimal actions. Mathematically speaking, event Bm
k occurs iff there exists

instances τms ≤ nm1 ≤ nm2 . . . n
m
k ≤ τmT such that for all l = 1, 2, . . . , k

Λ∗(inml ,m, Snml , anml ) 6= max
j∈A(Snm

l
)
Λ∗(inml ,m, Snml , j),

where Snml is the set of nodes that have successfully received packet m at time nml due

to a transmission from node inml ,m. We call event Bm
k a mis-routing of order k. For

m > m0,

Prob(Bm
k ) ≤ (max

i,S
εn(i, S))k ≤ γk.

Now for packets m > m0, let us consider the expected differential reward under

policies π∗ and φ∗:

Eπ
∗

rm −
τmT −1∑
n=τms

cin,m |F0


−Eφ

∗

rm −
τmT −1∑
n=τms

cin,m
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= V ∗(0)− Eφ∗

rm −
τmT −1∑
n=τms

cin,m




=
∞∑
k=0

Eφ∗

V ∗(0)−

rm −
τmT −1∑
n=τms

cin,m

 |Bm
k


×Prob(Bm

k )

≤
∞∑
k=0

k R Prob(Bm
k ) (A.8)

≤ R
∞∑
k=1

kγk (A.9)

= δ, (A.10)

where δ = γR
(1−γ)2 . Inequality (A.8) is obtained by noticing that the maximum loss of

the reward occurs if algorithm d-AdaptOR decides to drop packet m (no reward) while

there exists a node j in the set of potential forwarders such that V ∗(j) ≈ R.

Thus, for all δ > 0, the expected average per packet reward under policy φ∗ is

bounded as

lim inf
N→∞

Eφ∗

 1

MN

MN∑
m=1

rm −
τmT −1∑
n=τms

cin,m




≥ lim inf
N→∞

Eφ∗

[
1

MN

MN∑
m=1

(V ∗(0)− δ)

]
= V ∗(0)− δ.

A.2 Appendix for Chapter 3

A.2.1 Proof of Lemma 4

Let λ∗ = sup
π

lim inf
N→∞

1

N

N∑
n=0

Eπ [g(Sn, an)]. (A.11)

Furthermore, let ρ∗(S, a) = h
∗
(S)− h∗(a), a ∈ A(S).
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Fact 7. ( Chap 9, [31]) We can associate a bias function h∗(S) and a constant average

reward λ∗ independent of state, with (A.11) as:3

h∗(S) = max
a∈A(S)

g(S, a) +
∑

S′⊆N (a)

P (S′|a)h∗(S′)− λ∗
 . (A.12)

Using 7 and following the steps of Proposition 1 in [39], we can prove the result

in Lemma 1.

Next we will bound the term NN(S, a). For each ε > 0 let us define events An,

as An := {||Vn − V ∗||∞ ≤ 2ε}.

N1
N (S, a, ε) =

N−1∑
n=0

1[{(Sn, an) = (S, a)} ∩ {An}

∩{Λn(a) ≥ V ∗(S)− ε}]

N2
N (S, a, ε) =

N−1∑
n=0

1[{(Sn, an) = (S, a)} ∩ {An}

∩ {Λn(a) < V ∗(S)− ε}]

N3
N (ε) =

N−1∑
n=0

1[Ān],

where Ān denotes the complement of An and V ∗(S) is an extended set valued function

such that V (S) = maxj∈A(S) V (j). It follows that:

NN(S, a) ≤ N1
N(S, a, ε) + N2

N(S, a, ε) + N3
N(ε).

Lemma 8. E[N1
N(S, a, ε)] = O(logN)

3The Bellman equation holds for weakly communicating class of MDP. It is easy to see that the
induced MDP for the routing problem is weakly communicating.
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Proof:

E[NN(S, a, ε)]

≤
N−1∑
n=0

1[{(Sn, an) = (S, a)} ∩ {|Vn(a)− V ∗(a)| < 2ε}

∩{Λn(a) > V ∗(S)− ε}]
(a)

≤
N−1∑
n=0

1[(Sn, an) = (S, a) ∩ |Vn(a)− V ∗(a)| < 2ε

∩Vn(a)− V ∗(a) +

√
2 log n

Nn(a)
> V ∗(S)− V ∗(a)− ε]

(b)

≤
N−1∑
n=0

1[(Sn, an) = (S, a) ∩ (2ε+√
2 log n

Nn(a)
> V ∗(S)− V ∗(a)− ε)]

≤
N−1∑
n=0

1[(Sn, an) = (S, a) ∩√
2 log n

Nn(a)
> V ∗(S)− V ∗(a) + ε]

≤
N−1∑
n=0

1[(Sn, an) = (S, a) ∩

Nn(a) ≤ 2 log n

(V ∗(S)− V ∗(a)− 3ε)2
]

(c)

≤ 2 logN

(V ∗(S)− V ∗(a)− 3ε)2

• (a): Follows from the definition of Λn in (3.7).

• (b): Follows from the condition |Vn(a)− V ∗(a)| < 2ε.

• (c): Follows from Lemma 3 [39].

Lemma 9. E[N2
N(S, a, ε)] = o(logN)

Proof: Let

En(S, a, ε) := {(Sn, an) = (S, a) ∩ An ∩ Λn(a) ≤ V ∗(S)− ε}
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Thus N2
N(S, a, ε) =

∑N
n=1 1[En(S, a, ε)]. Let a∗ = arg maxj∈A(S) V (j) = V ∗(S).

When event En(S, a, ε) occurs,

Λn(a∗) ≤ Λn(a) < V ∗(S)− ε. (A.13)

(A.13) follows from the fact that a∗ is not selected but a is selected. Thus,√
2 log n

Nn(a∗)
+ V ∗n (S) <

√
2 log n

Nn(a)
+ Vn(a) < V ∗(S)− ε

⇒

√
2 log n

Nn(a∗)
+ V ∗n (S) < V ∗(S)− ε,∀S

⇒ V ∗(S)− V ∗n (S) >

√
2 log n

Nn(a∗)
+ ε (A.14)

The difference between the value function Ṽ and V
∗ induced by the optimal

policies of the local broadcast models P̃ (S ′|a) and P (S ′|a) respectively is related as,

Fact 8 ( [21]). There exists K1 > 0, such that,

max
S

∣∣∣Ṽ (S)− V ∗(S)
∣∣∣ ≤ K1 max

a
σ(P̃ (·|a), P (·|a)),

if P (·|a) = 0 ⇒ P̃ (·|a) = 0, where σ(P (·|a), P̃ (·|a)) = supS∈S
∑

S′∈S(P (S ′|i) −
P̃ (S ′|i)).

Using Fact 8, Assumption 4, and Scheffe’s lemma [72], ∃ K, with

||V ∗ − Vn||∞ ≤ K max
i
||P (·|a)− Pn(·|a)||1 .

From (A.14),

En(S, a, ε) ⊆

{
||V ∗ − V ∗n ||∞ >

√
2 log n

Nn(a)
+ ε

}

⊆
⋃
a

{
||P (.|a)− Pn(.|a)||1 >

1

K

√
2 log n

Nn(a)
+ ε

}

⊆
n⋃

m=0

{Nn(a) = m ∩ ||P (.|i)− Pn(.|i)||1 >

1

K

√
2 log n

Nn(a∗)
+ ε

}
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By the chernoff bound,

Prob(||Pn(S|a)− P (S|a)||1 > δ|Nn(a) = m)

≤ C exp(−mδ2/2).

P rob(En(S, a, ε))

≤
n∑

m=0

C exp(−m

(
1

K

√
2 log n

m
+ ε

)2

)

≤ C

n

∞∑
m=1

exp(−ε2m/2− ε

K2
(
√

2m log n))

= o(
1

n
)

E(N2
n) =

N∑
n=0

E[1[En(S, a, ε)]]

=
N∑
n=0

Prob(En(S, a, ε)) =
N∑
n=1

o(
1

n
) = o(logN)

Lemma 10. E[N3
N(ε)] = O(logN)

Proof: Note that An ⊆ {||Pn − P ||1 > 2ε}. The lemma is proved using the

Chernoff bound, and the fact that there are log(n), i ∈ Θ probe packets in time n.

A.3 Appendix for Chapter 4

A.3.1 Throughput Optimal CDP

We now relate CDP to a closely related throughput optimal algorithm.

Definition 4. A routing policy is said to be throughput optimal if it stabilizes the network

for all arrival rates that belong to the interior of the stability region.

Consider the following variation of CDP algorithm wherein instead of using

(5.4) for choosing the next hop KCDP , the next hop is chosen as

K
(n,d)
OPT = arg min

k

{
q(n)W (n, k) + V d

t (k)
}
. (A.15)



121

Using the techniques provided in ( [50]) it can be proved that such choice of choosing

next hop is throughput optimal the assumptions that transmission times are instanta-

neously and perfectly available at any instant of time.

Thus, optimal algorithm is optimistic in exploration non-congested paths without

realizing the causal impacts of interference and performance degradation. In practice,

we have modified the throughput optimal routing strategy. This modification reduces

the exploratory behaviour and the back-pressure ability of the optimal algorithm (Op-

timal algorithm tries to forward along high quality links if the a node experiences high

congestion at the node itself. However, it can degrade the performance due to increased

spreading of packets and self-interference.) as shown in Fig. A.1.

(a) CDF of delay (scenario 1) (b) CDF of delay (scenario 2)

Figure A.1: Optimal vs. CDP performance

A.3.2 Optimization Perspective of CDP

We will now interpret the fixed point equation of CDP as a maximization prob-

lem of a utility maximization problem. Consider a single flow with s as the source node

and d as the source node. Let y be the rate with which packets are injected at s, while

xij denote the packet flow rate from node i to node j. Let U : R → R be a concave
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utility function. Consider the optimization problem P1:

maximize U(y) (A.16)∑
j

xij −
∑
j

xji − y1{i=s} = 0, (A.17)

xij ≥ 0, (A.18)∑
j

xijWij ≤ Ti, (A.19)

where 1{i=s} = 1 if i = s otherwise 0, while Ti > 0 represents the medium access (per

unit time) for node i and Wij denote the average rate of transmission attempts for link

ij. Constraint (A.19) imposes average constraint on channel access, which (though not

exactly) achieved by the CSMA/CA protocol.4 We now convert the problem into its

dual and let λi denote the Lagrange multiplier for constraint (A.18) and µi denote the

constraint associated with constraint (A.18) for node i.

Λ(y, λ, µ) = U(y)−
∑
i

λi(
∑
j

xij −
∑
j

xji (A.20)

−y1{i=s})−
∑
i

µi
∑
j∈N (i)

xijWij (A.21)

By KKT conditions, if xij > 0
(λi − λj)
Wij

= µi (A.22)

Under the stable and stationary state of the network, constraints (A.18) and (A.19) are

satisfied with equality. Thus,

λi = µiWij + λj (A.23)

λi = V (i) and µi = qi satisfy (A.23) and optimaization problem P1 is convex. Thus

CDP maximizes the utility under flow constraints (A.18) (A.19).

A.4 Appendix for Chapter 5

We provide a sketch of the proof for the throughput optimality of D-ORCD for

a connected network.5

4Assume that Ti is fixed and known.
5In a connected network each node has a positive probability path to a destination. If a node has no

path to a destination, it cannot sustain any traffic and can be ignored without loss of generality.
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A.4.1 Relationship to the Centralized ORCD

We prove the throughput optimality by relating the D-ORCD update equation

(4.2) to the convergence of the closely related fixed point equation. In particular, we

relate the routing decisions for D-ORCD with the decisions taken according to the con-

gestion measures {V ∗i (t)} obtained from the fixed point equation:

V ∗i (t) =
Qi(t)

P (i,D)(t)
+

∑
k:H(i,D)(t)

P
(i,D)
succ−k(t)

P (i,D)(t)
V ∗k (t). (A.24)

We refer to the centralized routing algorithm which makes decisions at each

instant according to V ∗i (t) as C-ORCD. The following lemma states a relationship be-

tween D-ORCD and C-ORCD.

Lemma 11. Assume Tc is sufficiently large (Tc ∼ O(D)). Then during T (t) ≤ t <

T (t + Tc), (4.2) converges to the fixed point equation (A.24), i.e. {V D
i (T (t + Tc)}i∈Ω

solves (A.24) and V D
i (T (t+ Tc)) = V ∗i (T (t)).

Proof. The convergence V D
i (t) → V ∗i (T (t)) during T (t) ≤ t < T (t + Tc) follows by

relating (4.2) to the Bellman-Ford algorithm with fixed link cost. It is known from [73,

Theorem 2.4] that an asynchronous distributed Bellman-Ford algorithm converges in

finite time when the control packets are instantaneously received (or control packets are

timestamped and older packets are discarded). Furthermore, with high probability, the

time until the termination of the asynchronous Bellman-Ford algorithm is O(D), where

D is the number of nodes in the network.

To implement the D-ORCD algorithm, we broadcast control packets using high

priority and the control packets do not undergo backoff. This ensures with high proba-

bility that the packets are instantaneously received. Thus the convergence in Lemma 11

is justified.

We now provide the proof for the throughput optimality of D-ORCD for Tc ∼
O(D). To simplify the notation, let policies in C-ORCD and D-ORCD be represented

by π∗ and π̂ respectively. In [41], the authors constructed an appropriate Lyapunov

function L∗ to show that C-ORCD is throughput optimal. In particular, it is shown that:
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Fact 9. There exists a Lyapunov function. L∗ : RD
+ → R+ such that for all time slots t

and B > 0, ε > 0,

E
[
L∗(Qπ∗(t+ 1))− L∗(Q(t))|Q(t)

]
≤ B − ε

N∑
k=1

Qk(t), (A.25)

where superscript π∗ inQπ∗ implies that routing decisions are made according to policy

π∗.

To prove throughput optimality of D-ORCD, it suffices to show that the Lya-

punov drifts under π∗ and π̂ have a bounded difference. More precisely,

Lemma 12. Let L∗ be the Lyapunov function as proposed in [41]. Then for B′′ > 0,

E
[
L∗(Qπ̂(t+ 1))|Q(t)

]
− E

[
L∗(Qπ∗(t+ 1))|Q(t)

]
< B′′.

Lemma 12 together with (A.25) implies the existence of a Lyapunov function

with a negative difference i.e. for Lyapunov function L∗, there exists B′ > 0 and ε′ > 0

such that,

E
[
L∗(Qπ̂(t+ 1))− L∗(Qπ̂(t))|Q(t)

]
≤ B′ − ε′

N∑
k=1

Qk(t).

The details of the construction of L∗ and the proof of Lemma 12 are provided in

Appendix A.4.3.

A.4.2 Review of C-ORCD results

Before proceeding, we introduce some notations. Let [x]+ = max{x, 0}. The

indicator function 1{X} takes the value 1 whenever event X occurs, and 0 otherwise.

For any set S, |S| denotes the cardinality of S, while for any vector v, ‖v‖ denotes

the Euclidean norm of v. When dealing with a sequence of sets C1, C2, . . . , we define

Ci = ∪ij=1Cj .

The following definitions are required in order to identify the Lyapunov func-

tions for C-ORCD and D-ORCD.
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Definition 5. A rank ordering R = (C1, C2, . . . , CM) is an ordered list of non-empty

sets C1, C2, . . . , CM (1 ≤ M ≤ D), referred to as ranking classes, that make up a

partition of the set of nodes {1, 2, . . . , D}, i.e., ∪Mi=1Ci = {1, 2, . . . , D} andCi∩Cj = ∅,
i 6= j.

Definition 6. A rank ordering R = (C1, C2, . . . , CM) is referred to as path-connected if

for each node i ∈ Ck, 1 ≤ k ≤ M , there exist distinct nodes j1, j2, . . . , jl ∈ Ck−1 such

that pij1 > 0, pj1j2 > 0, . . . , pjlD > 0. The set of all path-connected rank orderings is

denoted byRc.

Let f be a bivariate function of the following form:

f(m,n) =
1

Km(Kn − 1)
for all m ≥ 0, n > 0,

where K = 1 + 1
pmin

for pmin = min{pij : i, j ∈ Ω, pij > 0}.
In [41], the authors proposed a method that utilizes the bivariate function f and

partitions the space of queue backlogs, RD
+ , into |Rc| cones denoted by {Dc

f (R)}R∈Rc .
The piece-wise Lyapunov function, L∗f : RD

+ → R+, is then constructed by assigning to

each cone Dc
f (R), R = (C1, C2, . . . , CM) ∈ Rc, a weighted quadratic function of the

form:

Lf (Q, R) =
M∑
i=1

f(|Ci−1|, |Ci|)Q2
Ci
, (A.26)

where QC(t) =
∑
i∈C

Qi(t). More precisely,

L∗f (Q) =
∑
R∈Rc

Lf (Q, R)1{Q∈Dcf (R)}. (A.27)

Let us consider the Lyapunov drift whenQ(t) ∈ Dc
f (R) for some

R = (C1, C2, . . . , CM) ∈ Rc.

Since the collection of cones {Dc
f (R)}R∈Rc partitions RD

+ , we define function Uf :

Ω× RD
+ → R+ such that

Uf (k,Q) = f(|Ci−1|, |Ci|)QCi(t), (A.28)

whereQ ∈ Dc
f (R), R = (C1, C2, . . . , CM), and k ∈ Ci.
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Let {µ∗ij(t)}i,j∈Ω represent the routing decisions under C-ORCD, {µ̂ij(t)}i,j∈Ω

represent the routing decisions under D-ORCD. For ease of notation and exposition

define AC(t) =
∑
i∈C

Ai(t), µC,in(t) =
∑D

k=1

∑
j∈C µkj(t)1{Qk(t)≥1}, and µC,out(t) =∑

k∈C

∑D
j=1 µkj(t)1{Qk(t)≥1}. We have,

L∗f (Q(t+ 1))− L∗f (Q(t))

(a)
=

M∑
i=1

f(|Ci−1|, |Ci|)
[
Q2
Ci

(t+ 1)−Q2
Ci

(t)
]

+O(‖Q(t+ 1)−Q(t)‖2)

(b)
= −2

M∑
i=1

f(|Ci−1|, |Ci|)QCi(t)
(
µCi,out(t)− µCi,in(t)

− ACi(t)
)

+O(1)

= −2
M∑
i=1

f(|Ci−1|, |Ci|)QCi(t)1{Qk(t)≥1}

( D∑
j=1

∑
k∈Ci

µkj(t)−
D∑
k=1

∑
j∈Ci

µkj(t)− ACi(t)
)

+O(1), (A.29)

where (a) follows from the continuity and the differentiability of L∗f [41, Lemma 3] and

writing L∗f (Q(t+ 1)) in terms of its first-order Taylor expansion around L∗f (Q(t)), and

(b) follows from Fact 10 below.

Fact 10 ( [41]). Let R = (C1, C2, . . . , CM) ∈ R andQ(t) ∈ Df (R). We have

Q2
Ci

(t+ 1)−Q2
Ci

(t) =

βf − 2QCi(t)(µCi,out(t)− µCi,in(t)− ACi(t)),

where βf is a constant bounded real number.
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Finally from (A.28) and (A.29),

L∗f (Q(t+ 1))− L∗f (Q(t))

= −2
M∑
i=1

∑
k∈Ci

D∑
l=1

Uf (k,Q)µkl(t)1{Qk(t)≥1}

−
M∑
i=1

∑
l∈Ci

D∑
k=1

Uf (l, Q)µkl(t)1{Qk(t)≥1} −
M∑
i=1

ACi(t) +O(1)

= −2
D∑
k=1

D∑
l=1

Uf (k,Q)µkl(t)1{Qk(t)≥1}

−
D∑
k=1

D∑
l=1

Uf (l, Q)µkl(t)1{Qk(t)≥1} −
M∑
i=1

ACi(t) +O(1). (A.30)

Fact 11 ( [41]). Routing decisions under C-ORCD are such that µ∗ij = 1, only when

j ∈ Si(t) and Uf (j,Q(t)) ≤ Uf (k,Q(t)) for all k ∈ Si(t).

This fact together with (A.30) provides the proof of Fact 9.

A.4.3 Proof of Lemma 12

We begin the proof of Lemma 12 by stating the following Claim.

Claim 1. Routing decisions under D-ORCD are such that µ̂ij = 1, only when j ∈ Si(t)
and Uf (j, Q̂(t)) ≤ Uf (k, Q̂(t)) for all k ∈ Si(t), where Q̂(t) = Q̄(T (t)).

With this, we are ready to proceed with the proof of Lemma 12.

E[L∗f (Q
π̂(t+ 1))|Q(t)]− E[L∗f (Q

π∗(t+ 1))|Q(t)]

= E
[
2

D∑
k=1

D∑
l=1

(µ̂kl(t)− µ∗kl(t))
(
Uf (k,Q(t))

− Uf (l,Q(t)
)
1{Qk(t)≥1}|Q(t)

]
+O(1), (A.31)

where the equality follows from (A.30).

Suppose node i’s transmission at time t is received by potential forwarders Si(t).

Furthermore, suppose that nodes a, b ∈ Si(t) are the nodes with the highest rank under
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C-ORCD and D-ORCD respectively, i.e. µ∗ia(t) = µ̂(t)ib = 1. From Fact 11 and

Claim 1, we have

Uf (a,Q(t)) ≤ Uf (b,Q(t)), (A.32)

Uf (a, Q̂(t)) ≥ Uf (b, Q̂(t)). (A.33)

In order to prove Lemma 12 it suffices to show that

Uf (b,Q(t))− Uf (a,Q(t)) = O(‖Q(t)− Q̂(t)‖). (A.34)

Consider the line that connects Q(t) and Q̂(t) in RD
+ . Suppose this line goes

through M − 1 cones in RD
+ . Let Z1, Z2, . . . , ZM be respectively the intersection of the

line connecting Q(t) to Q̂(t) with the M separating hyperplanes of the M − 1 cones

between them, i.e.

‖Q(t)− Q̂(t)‖

= ‖Q(t)−Z1‖+ ‖Z1 −Z2‖+ · · ·+ ‖ZM − Q̂(t)‖.

Note that since Z1, Z2, . . . , ZM are on the hyperplanes, every two consecutive

points in set {Q(t), Z1, Z2, . . . , ZM , Q̂(t)} can be considered to belong to the same

cone, and hence, have same rank ordering of the nodes. From the definition of the

function Uf , we obtain:

|Uf (a,Q(t))− Uf (a,Z1)| = O(‖Q(t)−Z1‖),

|Uf (a,Zm)− Uf (a,Zm+1)| = O(‖Zm −Zm+1‖), 1 ≤ m ≤M,

|Uf (a,ZM )− Uf (a, Q̂(t))| = O(‖ZM − Q̂(t)‖).

Therefore,

Uf (a,Q(t))− Uf (a, Q̂(t))

= [Uf (a,Q(t))− Uf (a,Z1)] + [Uf (a,Z1)− Uf (a,Z2)]

+ · · ·+ [Uf (a,ZM )− Uf (a, Q̂(t))] = O(‖Q(t)− Q̂(t)‖).

We can derive the same result for all other nodes in the network. In other words,

there exist constants ηa, ηb such that

Uf (a,Q(t)) = Uf (a, Q̂(t)) + ηa‖Q(t)− Q̂(t)‖, (A.35)

Uf (b,Q(t)) = Uf (b, Q̂(t)) + ηb‖Q(t)− Q̂(t)‖. (A.36)
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However, (A.32), (A.33), (A.35), and (A.36) imply that ηa ≤ ηb and

Uf (b,Q(t))− Uf (a,Q(t)) ≤ (ηb − ηa)‖Q(t)− Q̂(t)‖. (A.37)

With this, the proof is now complete.



Appendix B

B.1 CDP Implementation description

B.1.1 Testbed Setup

The testbed consists of 12 wireless Alix nodes with 512 MB RAM, a 500 MHz

processor and Linux version 2.6.22. The nodes placed as shown in Figure 5.2, are dis-

tributed in Atkinson Hall, UCSD, in about 215,000 sq. ft. of space. Each node is

equipped with an Atheros based 802.11 a/b/g wireless interface (AR 5213). The nodes

are connected to the internet through a Power Over Ethernet router: 137.110.119.80 lo-

cated on calit 4-th floor. The nodes are assigned IP address in the range 172.19.119.201:

172.19.119.222 for the Ethernet cards. Out of these nodes only 12 nodes are selected

for the purpose of the experiment.

The nodes use a low end operating system based on Linux for x86 processors

http://linux.voyage.hk/. Each node has a configuration file in /etc/CDP which it uses

at the start-up. Based on the nodeID, a wireless IP is selected as 192.168.3.NodeID.

/CDP/parameters is the parameter file used to store the nodeID and other constant pa-

rameters used during the experiments. The nodes are set to the 802.11g mode at the

startup.

The nodes are controlled from server ansel.ucsd.edu. For the following text, we

assume that the controlling scripts are stored at /home/bhorkar. The mapping between

node ID, wireless IP, wired IP, MAC addresses is stored in /home/bhorkar/Listnodes.
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B.1.2 Configuration files

For the purpose of testing, we generate UDP and TCP traffic using a modified

version of iperf. The modified version is stored in

˜/thrulay_dir/src

The application traffic can be generated using a Configuration file referred to as

Appfile. In this file we store the information about the source Wireless IP, Destination

Wireless IP, source Wire IP, destination IP, duration of experiment and type of traffic.

Example 1

Let us write the script to generate UDP at a rate of 100KBps from source node

10 to destination node 17. The wireless ip and wired ip for node 10 is 192.168.3.10

and 172.19.119.209. The wireless ip and wired ip for node 10 is 192.168.3.17 and

172.19.119.221.

The configuration line in the Appfile is:
Src IP Dst IP Duration(sec) Traffic Type

192.168.3.10 192.168.3.17 60 100K UDP

If we add a TCP flow from 10-17, then the configuration file will look like

Src IP Dst IP Duration(sec) Traffic Type
192.168.3.10 192.168.3.17 60 100K UDP
192.168.3.10 192.168.3.17 60 0 TCP

We can further specify any particular TCP protocol of interest as

192.168.3.10 192.168.3.17 60 0 TCP Veno

Here TCP Veno can be replaced with any known TCP protocol.

This file is then fed as input to script which sets up the various parameters for

the experiments.

˜/setup_CDP_mix.py -a Appfile -p protocol

Many other options such as power level and data rate of the transmitter can also be set

as parameter.
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B.1.3 Routing Layer

The main routing layer is implemented in the following file.

madwifi-CDP/tools/CDP.c

This file contains the implementation of CDP and various other protocols. Important

functions and their objectives are listed below:
server handles different received packets
client generates various control and probe packets

CDPInit initializes various parameters
CDPCalculateandUpdateVn updates Vn for different protocols

CDPAlixIoctlPrioList generates a next hop and feeds it to kernel
CDPCreatePriorityListUpdatePacket generates control packet

B.1.4 MAC layer

The MAC driver is based on the modifications of the following file

˜/madwifi-ng_CDP_over_802.11/ath/if_ath.c

The current file reflects changes in the version 4307 of the madwifi-driver. Important

functions and their objectives are listed below:
calc− usecs− unicast− packet− wait Calculates waiting time

for different neighbours
ath− get− nexthop This function obtains the next hop
ath− get− nexthop for a given destination

Experimental setup

Before we setup any experiment, the following steps need to be performed:

make ˜/madwifi-ng_CDP_over_802.11/
make madwifi-CDP/tools/
˜/setup.py

setup.py is a script which copies all the driver files and the routing files to each of the

nodes.
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