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PHOTON STORAGE CAVITIES

Kwang-Je Kim and Andrew M. Sessler

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

August 30, 1991

Abstract

A general analysis is presented of a photon storage cavity, coupled to a free-electron laser
(FEL) cavity. It is shown that if the coupling between the FEL cavity and the storage cavity is uni-
directional (for example, a ring resonator storage cavity) then storage is possible, but that if the
coupling is bi-directional then storage is not possible. Parameters are presented for an infra-red
FEL storage cavity giving an order of magnitude increase in the instantaneous photon power within

the storage cavity.



I._Introduction

Saturation of a free-electron laser (FEL) occurs at a field level which depends upon many
things such as the wiggler length and strength, the electron beam characteristics (for example,
emittance and current), the wavelength of the light, and the reflectance of the mirrors forming the
optical cavity. Luis Elias [1] has asked if one can design a storage cavity, coupled to the FEL
cavity, so as to remove the saturation limit of an FEL. In this note we answer this question by
analyzing storage cavities, and show that they can be effective if the coupling from the FEL cavity
to the storage cavity is uni-directional, but not if the coupling is symmetric. The general analysis is
given in Sections I and III.

A reflecting plate with holes that allow some of the radiation to pass through (usually only a
few percent is needed) can provide coupling in the infra-red. We consider this case in Section IV,
and give parameters leading to an order of magnitude increase in photon power. Numerical studies
are presented in Section V supporting the analytic work of the previous sections.

Assuming the storage cavity can be Q-switched, operation of an FEL with a storage cavity

‘canlead to a significant increase of instantaneous photon power, which for certain experiments
would be advantageous.

The use of optical elements, in order to improve performance, is a well-known technique in
conventional laser technology [2]. In this note we show how some of these techniques are useful
for an FEL.

II. General Analysis of Coupled Cavities

The system we analyze is shown in Fig. 1. The quantities g, and g, are the round trip

factors

g1 = frleie’gF )

g2 = rrye¥z, 1)

where g is the FEL amplitude gain factor and 6, is the round-trip phase factor in each cavity.



Assuming that the round trip times for cavity 1 and cavity 2 are the same, we can derive the

matrix recursion relations for the cavity fields at nth pass as follows:

=
iy (2.2)

For purpose of seeing the nature of storage it is adequate to ignore saturation; i.e., to have
g1 and g, independent of field strength. In that case, we can simply find the eigenvalues, 4; and

_lz. of the matrix. We find:

2
1 (gx+gz)i]/(g1 “oP 4 Y g (2.3)
3 2 '
For boundary conditions we can consider no field in the storage cavity E2+ (0) =0 while

E{” (0) = E,,. The fields at n'h pass are then given by

E;  (n) = (—M—%[(M - g;) Al o+ (gz - 11) lzn] ;

2.9
(7L g1 Eo

[- A"+ 2,1].
(lz - /U)

E;* (a) =

From the general expression for the eigenvalues, eq. (2.3), roughly (rigbrous proof is

given in ref. [3]) there are two cases (or orderings). The first is when

l4 (IE)Z ngzl >> l(g; - gz)zl (2.5)

and the second is the reverse. It is clear that we want to consider the situation where g, and g, are

very near unity. We may set



g1=1+8,
2.6
fi-5, 2.6)

knowing that the FEL will make the real part of € positive while losses in the storage cavity will
make the real part of & positive.

In the first case it is easy to show that

Rl

+€=0 4 (2.7)

ﬂ,§=1i‘ >

If %/r has a non-zero real part then 4; dominates at long time and

E; (n)
}E’;Ej’ - 1. - (2.8)

In this case the storage cavity is not effective. If (#/r) is pure imaginary then there is oscillation of
energy between the first and second cavities. The field builds up, with n, but not at a greater rate
than if there were a single FEL cavity; i.e., there is no storage.

In the second case we have

(f

Ai=1+e+ =L
£+ 6
2.9
T
,12__:1_5__(112__,
£+6

and since A; dominates at long time



Ep(n) , (w) (2.10)
Ei(n) £+6

But the ordering in the present case implies that

2()] << e+ 6; (2.11)

) Ey(n)
i.e., that E,()

is less than unity and there is no storage, either, in this case.

The intermediate situation doesn't work either, as is shown rigorously in reference [3].

II1. Photon Storage Cévitv

For an effective storage, it is necessary to decouple the storage cavity from the FEL cavity.
One way to achieve the unidirectional coupling is with a ring resonator as shown in Fig. 2. This
consists of a resonant ring cavity and a prism so arranged that there is no coupling from the storage

cavity to the FEL cavity.

Referring to Fig. 2, we have

Ey=1E +rEs3, 3.1

where T and r characterize the right hand surface of the prism. Clearly

E3 = gFEy . 3.2)

From these, it follows

E,=—T E" .

Cl-rg (3.3)



By making the reflectivity r close to unity, and reducing the losses in the storage cavity so that g3 is
also close to unity, we can achieve E5 >> E’ The goal of the storage cavity is to have E; >> E. In
general E’is determined by the requirement that the reflectivity in the FEL cavity is adequate for the
FEL operation. In practice, this implies that E’< E (E’~ 0.1 E), and hence rg, must be made very

close to unity (rg2 >> 0.9).

For the prism, as indicated in Fig. 2, with an index of refraction n, and with no plate

coupler, we have

E__2

E 1+n’ (3.4)
E; _ 2n cos 0 sin 6

EY nsin@cos 0 (1 +gp)+[1-n2sin2 0] sin 0 (1 - gy) (3.5)

where @ is the prism angle.
An alternative photon storage cavity could be a Fabry-Perrot resonator coupled with a FEL
cavity. In this case, the requisite decoupling can be provided by a polarization rotator.

IV. Plate Coupling

The coupling between two cavities can be readily achieved by a plate with holes. Such a
plate can be augmented with a prism, as shown in Fig. 2, for uni-directional coupling. For a plate

the reflection coefficient is given by [4]

r = _L& R (4.1)
2-iB

where the real quantity B > Q is given by

2
B = M . (4.2)



In this formula Z; is the impedance of free space, @ is the angular frequency o
the spacing between holes of radius r.

A convenient representation is given by writing

B=2cotn, (4.3)

where 7] is a real quantity. Thus
r=-cosnein, T=1isinnein, (4.4)

Note that, for a plate, T =1 +r. It is easy to see that, as it should be, no energy is lost in the plate;

le.,
Irf? + Izl = 1 (4.5)

V. Numerical Examples
A computer iteration program, employing the relation given for the fields in cavity 1 and

cavity 2 on the nth pass in terms of its value on the previous pass, €q. (2.2), was developed. For
this purpose we specialized to plate coupling and therefore employed the notation of Section I'V.
We, furthermore, assumed plates at locations 1 and 2 in Fig. 1 and characterized by 7; and 1.
Thus the central plate and the two reflecting plates are characterized by

Y

T__j =] ~
L= 1tann,rj— itan 1, (5.1)

where j =1 or 2.

For the round trip factors g; and g2 we employed



g2=cosTncosny ,

(5.2)

gir=cosncosng |l + ————
1+ k|EP

Thus g, describes the loss from the two plates of cavity 2. In cavity 1 we have the same thing, but
in addition an FEL whose performance is assumed to saturate with increasing field in the FEL
cavity.

We took for initial conditions Eq = 1, E5 =0. We took the saturation parameter k£ = 0.001
and we assume that the cavity lengths can be adjusted so that g; and g, are real. The result is
shown in Fig. 3. It is seen that, consistent with the discussion in Section II, there is no storage,
but the field oscillates between the two cavities.

Storage can be achieved, as was discussed in Section III, with a resonant ring. For
example, we may consider storage, even without a coupling plate, by having the prism made of
germanium whose index of refraction n = 4 in the infra-red. From eq. (3.4) (E7E) = 0.4, implying
the power gain of the FEL must be more than 16%. From eq. (3.5), and taking 6 = 12.75 °, and
g2 =—0.9, we obtain (E/E’)2 = 10. The storage of power (Eo/E)2 = 16 for this example.

The parameters are all most reasonable, although g2 implies good reflecting mirrors in the
storage cavity (in practice, over a range of wavelengths). Use of a coupling plate would improve
performance or further relax parameters.
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Figure Captions

Fig. 1. General configuration of coupled storage cavity and FEL cavity. The reflecting surfaces
are characterized by reflectivity r and transmitivity 7.

Fig. 2. A ring resonator storage cavity coupled through a reflective prism to an FEL cavity.

Fig. 3. Fields in cavity 1 (FEL) (solid line) and in cavity 2 (dashed line) for two coupled cavities.
For this case 1= 0.1974, n1 = 177 = 0.03439 and k = 0.001.
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APPENDIX A

Rigorous Proof

We analyze completely a bi-directional cavity, but under the special assumption that the
coupling is by means of a plate and, hence, thatr =r; =rp, 7= T, =Tpand T~ 1 +r. When gp

does not vary as n increases,

AR

M = 1 (gl -lz)lfl—(gl ‘ll)lzﬂl %g2 (ﬂ,lll_lzﬂ)
-2 (Za (A -28) (e - 2) AT - (g A1) A7

Here A4, and A, are two eigenvalues of M:

(- g) (i - &) - (%)2 g18 =0

. 2
ie., Ai - (g1 + g2) M +g1g2|—1?=0
tr

T . e
where we used the fact that 1 — (;)2 = , ,2 . A, also satisfies
r

11+3~2=g1+g2

11



When the FEL gain | 8r I is above a certain threshold value, at least one of lll | and ]221
is larger than unity and the field strength in the cavity grows. For a sufficiently high field, the gain

starts to decrease, and the system reaches an equilibrium where the FEL gain just balances the loss

through coupling. At this "saturated” state, at least one of the eigenvalues, say 4, must have
|ll | =1, and the other Iﬂz | <1. We analyze the behavior near this saturated state, and prove
that it is impossible for the system to reach a configuration where | E, | >> |E 1 |. We do this in

the following steps:

i) First consider the system at saturation. We prove that, assuming MI l =1, the other
eigenvalue has also a unit magnitude l Ay I =1. The field ratios for the eigenvector

corresponding to the eigenvalue A;,

N o B
R(I) ’_EZ—'A = A

are shown to satisfy

IRi Ryl =1

The eigenvector corresponding to 4, is the desired configuration if |R1 | >> 1.

i1) To determine which of the eigenstate is the dominant one, we consider the situation

before saturation where the FEL gain is (1 + €) times larger than that required for

saturation. The eigenvalues for this case are

A=A = A+ 8h . > Ay = Ay +

12



and the new field ratios

Rl‘“>R1 , Rz—)Rz

We show that, if R; >> 1, then [ 4, = (1 + &), [A;] =1, thus |4, ] > [A,] .
Furthermore R, << 1. Thus the dominant eigenvalue is 4,, the corresponding field
configuration for which is such that the field in the storage cavity is much less than that

in the FEL cavity. We now supply details of the proof:

Analysis of the Saturated State

Assume ,/11| = 1. We show that ,gll = |g2| =|r|,and lﬂzl = 1. From the

eigenvalue equation,

2
Al -{g1+ @) A+ gigll P =0

it follows
_ Al - &)
L - gl P
Let Ay =e* | g=|r|e¥
Then 1-]r|edv-x)

= {2x - y)
gi=lrle 1-|r]eilv-x)

From this it follows that

13



il =lr rigd=1rl. [rigr|=1
Thus both | g, | and [g, | are equal to | 7|. From the relation A, A, =g; g,/!r 12, it then follows

that lillzl = 1. Therefore Mll =1and l/’{gl =1

The eigenvectors corresponding to A, satisfies
T
gi-i. L& [Ej=0~
Tei -4 E _

Thus

_ =ll1-gz|
’M-gll T

‘]::11 :'Itgz ,: A - &

Bl |2, - & te

Lz | Je-e
g e

Ry =

Since 4; — gy =- A, + goand A — g, =~ A, + g, it follows from above that

RiRj = 1.



The desired configuration where |E2 | >> |E 1 | can be obtained for A, eigenstate if Ry << 1

which requires

i - g << T<< 2 - il
This then implies Ry >> 1. At this stage, we do not yet know which of the eigenvectors is the
dominant one. If the eigenvector corresponding to 4, is dominant, then the field in the storage

cavity is low. We show this is the case in the following:

Analysis of the Case Before Saturation

We consider now the case where FEL gain is larger than that required for saturation. Thus

we write

gF—>gF=gF(1+8)»g1—>g;=g1 (1+8),g2—>g;;£>0

The quantities without prime are those for the saturated case. The matrix becomes

i

g (t+g &

Mo M =
%g; (1+g), &

The new eigenvalues are

Ao A=A+ Ohy . da > Ay = Ay + Sy

)

and satisfy the equation

15



(l1+ 5li—g1 (1 +8))(2,1'+ 6Ai—g2)-(%)2g1 g2 (1 +€)=0

To first orderin €

Ai [li-gz] €
2Ai-g1-&

oA =

e m-hbial g mls),
11—12 11_12

The new field ratios for eigenvectors A; are obtained from

(M,—iif) E’ =0
E
We find
’ E,
R, =4 =R+ ehy
Ezﬁ-l )'1_12
R;:E,I oy — E{
E, |, M- Qo
Thus R R,=R Ry (1-8

Assume that A;-eigenstate is the desired configuration where R; << 1. Then R, << 1

leading to I Al — g | <<t << ] M- &1 | <2. (We assume € ~ 0(7), then the correction to R is

small.) Then

16



N

Oy

Therefore

hl-tsesi)=1

Therefore A,-eigenstate is the dominant one, and the energy storage is not possible.

17
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