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Abstract of the Thesis

RegTools: A Julia Package for Assisting Regression

Analysis

by
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Professor Yingnian Wu, Chair

The RegTools package for Julia provides tools to select models, detect outliers and diagnose

problems in regression models. The current tools include AIC, AICc and BIC based model

selection methods, outlier detection methods and multicollinearity detection methods. This

article briefly outlines the methodologies behind these techniques, and tests the functions

by comparing with corresponding functions in R. The identical conclusions drawn from Julia

and R prove the validity of RegTools.
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CHAPTER 1

Introduction

Julia is a high-level, high-performance programming language designed specifically for scien-

tific computing, which appeared in 2012. Its performance can approach that of statically-

compiled languages like C. As a young language, Julia still lacks many basic and useful

functions and packages existed in other computing languages like R and Matlab. The ex-

isting Julia package GLM provides simple linear model and generalized linear model fitting

functions, but it has no functions for post-fitting process such as model selection, outlier

detection and model diagnostics, which usually take most of time in regression modeling.

Therefore, a package that helps regression modeling is in need among the Julia community.

RegTools can be accessed at https://github.com/joemliang/RegTools.jl

The main aims of the RegTools are:

• Measure goodness of fit by R2, adjusted R2, AIC, AICc, BIC, etc.

• Select variables or models by AIC-based stepwise methods.

• Detect outliers using Cook’s distance, jackknife methods, etc.

• Diagnose potential model problems such as multicollinearity and heteroscedasticity.

During the development, I have been mainly referencing to two books to decide which

regression tools should be included in RegTools – A Modern Approach to Regression with

R by Simon J. Sheather (2009) , and Linear Models with R by Julian J. Faraway (2004) .
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CHAPTER 2

Methodolgy

2.1 Notation

In this chapter, we are looking at some methods for regression modeling. The regression

model involve is defined as below. We will use the same way of notation throughout this

article.

Define the (n × 1) vector Y of response and the n × (p + 1) matrix X of intercept and

predictors by

Y =


y1

y2
...

yn

X =


1 x11 . . . x1p

1 x21 . . . x2p
...

...
...

1 xn1 . . . xnp

 (2.1)

Also define the (p+ 1)× 1 vector β of regression coefficients and the (n× 1) vector e of

random errors by

β =


β0

β1
...

βp

 e =


e1

e2
...

en

 (2.2)

We write the linear regression model in matrix notation as

Y = Xβ + e (2.3)
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2.2 R2 and Adjusted R2

R2 and adjusted R2 have been widely used to indicate the goodness of fit to a statistical

model. With a dataset of n observations, and Y as the response, R2 is given as below:

R2 = 1− RSS

SST
(2.4)

where RSS =
∑n

i (yi − ŷi)2, SST =
∑n

i (yi − ȳ)2. Adjusted R2 is given by

R2
adj = 1− RSS/(n− p− 1)

SST/(n− 1)
(2.5)

where p is the number of predictors in the model not counting in the intercept if any.

2.3 Half-Normal Plots

Half-normal plots visualize the leverage against the positive normal quantiles, which are

useful to identify the outliers (Faraway, 2004) . To be specific, on the vertical axis of a

half-normal plot are h[i]’s, while on the horizontal axis are ui’s. h[i]’s are hi’s in ascending

order, which are the diagonal elements of the hat matrix

H = X(XTX)−1XT (2.6)

ui’s are given by

ui = Φ−1

(
n+ i

2n+ 1

)
(2.7)

2.4 Jackknife Residuals

In addition to the visualization way above, another quantitative way to detect outliers is

called Jackknife residuals by doing a t-test on it. The jackknife residual

ti =
yi − ŷ(i)

σ̂(i)(1 + xT
i (XT

(i)X(i))−1xi)1/2

= ri

(
n− p− 1

n− p− r2i

)1/2
(2.8)
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where ri’s are the studentized residuals, which is given by

ri =
êi

σ̂
√

1− hi
(2.9)

where σ̂ =
√
RSS/(n− p).

The jackknife residual ti ∼ tn−p−1. Thus, we can test whether case i is an outlier or not

by doing a t-test on the corresponding jackknife residual.

2.5 Cook’s Distance

Cook (1977, 1979) proposed a widely used measure of the influence of individual cases, which

is given by

Di =
r2i
p

hi
1− hi

(2.10)

after simplification, where ri is the ith studentized residual.

There is no significance test for Di. However, Fox (2002) is among many authors who

recommend 4/(n− p) as a rough cutoff.

2.6 Akaike’s Information Criterion (AIC)

Akaike’s (1973, 1985) information criterion (AIC) is proposed to balance the goodness of fit

and a penalty for model complexity. The goodness of fit is measured by the expected infor-

mation loss, which is asymptotically equivalent to negative log-likelihood of the candidate

model; while the model complexity is measured by K the number of parameters put in the

candidate model. The AIC is defined as

AIC = 2
[
− log

(
L
(
β̂0, β̂1, ..., β̂p, σ̂

2|Y
))

+K
]

(2.11)
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2.7 Corrected AIC (AICc)

Corrected AIC (AICc) (Sugiura,1978 , Hurvich and Tsai, 1989 ) adds a bias correction term

for small sample size, which is recommended when n/K < 40 (Burnham and Anderson,

2002, p. 445) .

AICc = AIC +
2K(K + 1)

n−K + 1
(2.12)

where n is the sample size.

2.8 Bayesian Information Criterion (BIC)

Schwarz (1978) derived the Bayesian information criterion as

BIC = −2log
(
L
(
β̂0, β̂1, ..., β̂p, σ̂

2|Y
))

+K log(n) (2.13)

Burnham and Anderson (2004) pointed out that ”BIC is a misnomer as it is not related

to information theory”, and ”most applications of BIC use it in a frequentist spirit and hence

ignore issues of prior and posterior model probabilities”.

2.9 Stepwise Model Selection

Based on AIC, AICc and BIC, a stepwise model selection (Hastie, Trevor J. and Daryl

Pregibon, 1992) can be implemented on regression models. Since the smaller the value of

AIC, AICc or BIC the better the model, we can add or drop one predictor and compare the

criterion values at each step. There are three main approaches:

• Forward selection, starting with the existing model, tests the addition of each vari-

able by a chosen criterion, then adds the variable of the best improvement if any.

Repeat this process until none of the candidate variables can improve the model.

• Backward elimination, starting with the existing model, tests the deletion of each

5



variable by a chosen criterion, then deletes the variable of the best improvement if any.

Repeat this process until none improves the model.

• Bidirectional adaptation, a combination of the above, tests if a addition or a deletion

should be done at each step.

2.10 Added-Variable Plots

Added-variable plots (Mosteller and Tukey, 1977) help assess the effect of each predictor,

having adjusted for the effects of the other predictors, in a multiple linear regression model,

Y = Xβ + e. (2.14)

Suppose we are considering the introduction of an additional predictor variable Z to the

model, i.e., we are considering the model

Y = Xβ + Zα + e. (2.15)

The added-variable plot is obtained by plotting on the vertical axis the residuals from

model (2.14) êY.X against on the horizontal axis the residuals êZ.X from model

Z = Xδ + e (2.16)

Thus, the added-variable plot model is given by

êY.X = êZ.Xα + e∗ (2.17)

where e∗ = (I−H)e.

Hence, the effects brought by X are eliminated from both axes. α̂ will indicate if a

predictor should be added into the model given other predictors.

Besides, Velleman and Welsch (1981) listed some useful properties of this plot:

• The least squares linear fit to this plot has the slope βi and intercept zero.
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• The influences of individual data values on the coefficient estimation are easy to iden-

tify.

• In addition, it enables us to find other kinds of model failures or violations of the

underlying assumptions like nonlinearity, heteroscedasticity, etc.

2.11 Variance Inflation Factor (VIF)

Multicollinearity can inflate the variance amongst the variables in the model, which is prob-

lematic since some variables add very little independent information to the model (Belsly,

et al. 1980) . Consider a multiple regression model

Y = β0 + β1x1 + β2x2 + ...+ βpxp + e (2.18)

The variance inflation factor of one variable xj is the value of R2 from the regression of

xj on the other predictors,

V IFj =
1

1−R2
j

(2.19)

To keep a predictor in the model, its VIF value needs to be small. Generally, we consider

5 as the cut-off, over which there would be a big chance that multicollinearity would cause

a poor estimation.

7



CHAPTER 3

Comparison with R: A Real World Example

3.1 LifeCycleSavings Data

We want to compare RegTools results with R results to validate Julia package. Let’s use

LifeCycleSavings data, a dataset on the savings ratio over 1960–1970 in R, which can also

be accessed in Julia through the package RDatasets, shown in Table 3.1. The meaning of

each variable is listed as below:

• sr: numeric aggregat personal savings

• pop15: % of population under 15

• pop75: % of population over 75

• dpi: real per-capita disposable income

• ddpi: % growth rate of dpi

Table 3.1: An overview of the dataset LifeCycleSavings

Country sr pop15 pop75 dpi ddpi

Australia 11.43 29.35 2.87 2329.68 2.87

Austria 12.07 23.32 4.41 1507.99 3.93

Belgium 13.17 23.80 4.43 2108.47 3.82

Bolivia 5.75 41.89 1.67 189.13 0.22

Brazil 12.88 42.19 0.83 728.47 4.56

Canada 8.79 31.72 2.85 2982.88 2.43

8



We use sr as response to fit a regression model in R and Julia respectively. Regression

model fitting in Julia is done by the function from package GLM.

R> lm1 = lm(sr ˜ pop15+pop75+dpi , data = LifeCycleSavings)

R> lm1

Call:

lm(formula = sr ˜ pop15+pop75+dpi, data = LifeCycleSavings)

Coefficients:

(Intercept) pop15 pop75 dpi

31.4573811 -0.4921418 -1.5676746 -0.0008336

julia> lm2 = fit(LinearModel, SR ˜ Pop15+Pop75+DPI, LifeCycleSavings)

julia> lm2

DataFrameRegressionModel{LinearModel{DensePredQR{Float64}},Float64}:

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 31.4574 7.48219 4.2043 0.0001

Pop15 -0.492142 0.149044 -3.30199 0.0019

Pop75 -1.56767 1.1208 -1.39871 0.1686

DPI -0.000833645 0.000932509 -0.893981 0.3760

3.2 Goodness of Fit – Function rsquared and adjrsquared

First, we check how well the model fits the dataset. I omit the beginning part of the model

summary of coefficients and t-values, only showing the R2 and adjusted R2 part for R output.

R> summary(lm1)

......

9



Residual standard error: 3.939 on 46 degrees of freedom

Multiple R-squared: 0.2744, Adjusted R-squared: 0.227

F-statistic: 5.797 on 3 and 46 DF, p-value: 0.001898

julia> rsquared(lm2)

0.27435285763662065

julia> adjrsquared(lm2)

0.22702804400422627

3.3 Outliers Detection – Function halfnorm, rstudent, jackknife

, and cooksdistance Half-normal plots are designed to detect outliers by visualization. Func-

tion halfnorm draws a half-normal plot given a regression model object, and marks potential

outliers with the corresponding case number. There is no function for half-normal plot in

common R packages.

An example is shown by Figure 3.2, from which we can see that Case 44 and 21 are

probably two outliers.

julia> halfnorm(lm2)

10



Figure 3.1: The half-normal plot with two potential outliers marked

Function rstudent gives the studentized residuals of a regression model, in the same order

as the case number.

julia> rstudent(lm2)

50-element Array{Float64,1}:

0.228114

0.0710395

0.571627

-0.609063

1.08655

-0.0285486

-2.25827

0.991539

-0.431082

1.32022
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.

.

.

-1.0164

-0.998823

-0.160697

0.715791

2.74097

-0.123284

-0.925846

0.623287

-0.603056

Function jackknife returns the jackknife residuals of a regression model, but does not do

the test. To determine whether a case is an outlier or not, one needs to look up to the

t-table. There is no function for jackknife in common R packages, so I only listed RegTools

function here.

julia> jackknife(lm2)

50-element Array{Float64,1}:

0.225799

0.0702834

0.567489

-0.60494

1.08868

-0.0282435

-2.36618

0.991358

-0.427317
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1.33101

.

.

.

-1.01676

-0.998797

-0.159022

0.712027

2.9584

-0.121985

-0.924412

0.619185

-0.598928

Function cooksdistance generates the Cook’s distance for each case, and can output a

graph and mark the cases of which the Cook’s distances are greater than the cutoff (4/(n−p).

The example graph suggests that case 46 and 23 might be outliers.

julia> cooksdistance(lm2)

50-element Array{Float64,1}:

0.000944858

0.000169391

0.00781867

0.00467338

0.0204861

3.81398e-5

0.0458411

0.01411

0.00279714
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0.0353162

0.0368696

0.00961817

0.0035392

.

.

.

0.046377

0.0072154

0.00591886

0.015858

0.0279255

0.00315124

0.00995356

0.116378

0.000149496

0.0173407

0.0128716

0.00556643

julia> cooksdistance(lm2, plotit = true)
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Figure 3.2: The plot for Cook’s distance

3.4 Model Comparison Criterions

Besides checking R2 and adjusted R2, we can also examine AIC, AICc and BIC of the model.

In RegTools, we use function AIC, AICc and BIC, all taking a RegressionModel argument.

For R, we only show AIC and BIC since R has no function for AICc. We can see that R and

RegTools yield identical results.

R> extractAIC(lm1)

[1] 4.0000 140.9267

R> n = length(lm1$residuals)

R> extractAIC(lm1, k=log(n)) # BIC

[1] 4.0000 148.5748

julia> AIC(lm2)
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140.926680670782

julia> AICc(lm2)

141.81556955967088

julia> BIC(lm2)

148.57477269249458

3.5 Functions add1 and drop1

Functions add1 and drop1 is to add one variable from the candidate variables and to elim-

inate one predictor from the current model, respectively. add1 takes three arguments: a

RegressionModel, a scope of String type, and a full dataset of DataFrame type.

R results suggest we should add ddpi as AIC lowers from 140.93 to 138.30; in terms of

drop1, we should drop dpi as AIC would go down to 139.79.

R> add1(lm1, ˜ ddpi + I(ddpiˆ2) + .)

Single term additions

Model:

sr ˜ pop15 + pop75 + dpi

Df Sum of Sq RSS AIC

<none> 713.77 140.93

ddpi 1 63.054 650.71 138.30

I(ddpiˆ2) 1 32.946 680.82 140.56

R> drop1(lm1)

Single term deletions

Model:

sr ˜ pop15 + pop75 + dpi

16



Df Sum of Sq RSS AIC

<none> 713.77 140.93

pop15 1 169.181 882.95 149.56

pop75 1 30.357 744.12 141.01

dpi 1 12.401 726.17 139.79

RegTools gives the same conclusions as R.

julia> add1(lm2, "DDPI+DDPI&DDPI", LifeCycleSavings)

Add DDPI with AIC = 138.3022838270998

julia> drop1(lm2)

Drop DPI with AIC = 139.78791765459198

3.6 Stepwise Model Selection

We test the stepwise model selection function here. Stepwise method is just a combination

of add1 and drop1 at each step, and will keep going until no action can improve the model.

Function step takes one argument - RegressionModel.

Again, the results of R and RegTools agree with each other. Also, running time is shown

here - 0.020 seconds in R and 0.0032 seconds in Julia.

R> system.time(step(lm1))

Start: AIC=140.93

sr ˜ pop15 + pop75 + dpi

Df Sum of Sq RSS AIC

- dpi 1 12.401 726.17 139.79

<none> 713.77 140.93

17



- pop75 1 30.357 744.12 141.01

- pop15 1 169.181 882.95 149.56

Step: AIC=139.79

sr ˜ pop15 + pop75

Df Sum of Sq RSS AIC

<none> 726.17 139.79

- pop75 1 53.343 779.51 141.33

- pop15 1 158.915 885.08 147.68

user system elapsed

0.018 0.001 0.020

julia> @time step(fm3, "both", false)

Drop DPI with AIC = 139.78791765459198

elapsed time: 0.003172594 seconds (373644 bytes allocated)

3.7 Function avPlot for Added-Variable Plots

The added-variable plots can be used to identify which variable adds little information to

the model with the existence of other predictors. The function avPlot generate Figure 3.3

for corresponding predictors, which suggests that Pop15 adds the most information, while

DPI adds little. The code is as following:

julia> avPlot(lm2, :Pop15)

julia> avPlot(lm2, :Pop75)

julia> avPlot(lm2, :DPI)

Figure 3.4 is generated by R function avPlots from the package car.

R> avPlots(lm1)

18



Figure 3.3: Added-variable plots generated by Julia function avplot: Pop15, Pop75, DPI
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Figure 3.4: Added-variable plots generated by R

3.8 Function vif for Variance Inflation Factor (VIF)

As stated previously, variance inflation factor tests multicollinearity in a model. Function

vif accepts a linear regression object, return a VIF for each predictor in the model. In the

example, the VIFs of Pop15 and Pop75 are both greater than 5. We may consider remove

one of them from the model.

julia> vif(lm2)

3x2 DataFrame

| Row | variable | vif |

20



|-----|----------|---------|

| 1 | "Pop15" | 5.87532 |

| 2 | "Pop75" | 6.60925 |

| 3 | "DPI" | 2.6961 |

Below is the output of VIF function in R.

vif(lm1)

pop15 pop75 dpi

5.875320 6.609254 2.696100
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CHAPTER 4

Conclusions and Thoughts for Future Development

4.1 Conclusions

The Julia package RegTools aims at providing various tools for regression modeling, includ-

ing measures of goodness of fit, outlier detection, variable and model selection, failure of

underlying assumption detection, which are familiar to R users.

Through the LifeCycleSavings example, we see that Julia package RegTools gives similar

result as R with a faster speed, which is one of the major advantages Julia holds. In addition,

RegTools covers some methods that are not included in common R packages, such as half-

normal plots and jackknife residuals.

4.2 Future Development

So far, still some widely used tools for regression modeling have not been included in Reg-

Tools. I will include more outlier detection and model diagnostics functions like ANOVA for

model selection, Park test for heteroscedasticity, Durbin-Watson test for serial correlations,

etc.
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CHAPTER 5

Appendix

Some key portion of the code are attached here.

abstract VarSel

type add1 <: VarSel

aic::Float64

add::String

model::RegressionModel

end

type drop1 <: VarSel

aic::Float64

drop::String

model::RegressionModel

end

function add1(dfrm::RegressionModel, scope::String, data::DataFrame)

# e.g. scope = "X1+X2+X1&X2"

replace(scope, " ", "") # remove whitespace in scope

scope = split(scope, "+")

index = find(notnull, scope)

scope = scope[index]

23



lhs = dfrm.mf.terms.eterms[1] # response

rhs = extractrhs(dfrm)

add = ""

aic = AIC(dfrm)

model = dfrm

for var in scope

if var in rhs.rhsarray

continue # if var already in model, try next var

end

rhsnew = rhs.rhsstring * "+" * var

rhsnew = rhsnew[2:end]

rhsnew = parse(rhsnew)

fnew = Formula(lhs, rhsnew)

newfit = fit(LinearModel, fnew, data)

newaic = AIC(newfit)

if newaic < aic

aic = newaic

add = var

f = fnew

model = newfit

end

end

if add == ""

println("No term added")

return add1(aic, "N/A", dfrm)

else

println("Add $add with AIC = $aic")

return add1(aic, add, model)

24



end

end

function drop1(dfrm::RegressionModel, scope::String)

# e.g. scope = "X1+X2+X1&X2"

replace(scope, " ", "") # remove whitespace in scope

scope = split(scope, "+")

index = find(notnull, scope)

scope = scope[index]

lhs = dfrm.mf.terms.eterms[1] # response

rhs = extractrhs(dfrm) # extract rhs

drop = ""

aic = AIC(dfrm)

model = dfrm

for var in scope

if var in rhs.rhsarray

var = "+"*var

rhsnew = replace(rhs.rhsstring, var, "")

else

error("$var is not in the original model,

please modify scope")

end

rhsnew = rhsnew[2:end]

rhsnew = parse(rhsnew)

fnew = Formula(lhs, rhsnew)

newfit = fit(LinearModel, fnew, dfrm.mf.df)
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newaic = AIC(newfit)

if newaic < aic

aic = newaic

drop = var

f = fnew

model = newfit

end

end

if drop == ""

println("No term dropped")

return drop1(aic, "N/A", dfrm)

else

println("Drop $(drop[2:end]) with AIC = $aic")

return drop1(aic, drop, model)

end

end

drop1(dfrm::RegressionModel) = drop1(dfrm, extractrhs(dfrm).rhsstring)

type step <: VarSel

aic::Float64

model::RegressionModel

end

function step(dfrm::RegressionModel, scope::String, data::DataFrame,

direction::String, trace::Bool=false)

directions = ["backward", "forward", "both"]

if ˜ (direction in directions)
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error("direction must be one of ’backward’, ’forward’,

or ’both’")

end

# turn scope to a string array

scope = split(scope, "+")

index = find(notnull, scope)

scope = scope[index]

# initialize variables

todrop = ""

aic = AIC(dfrm)

model = dfrm

if direction == "backward"

drop = drop1(dfrm, scope)

while drop.drop != ""

scope = replace(scope, drop.drop, "")

drop = drop1(drop.model, scope)

end

if drop == ""

println("No term dropped")

return step(drop.aic, dfrm)

else

return step(drop.aic, model)

end

elseif direction == "forward"

add = add1(dfrm, scope, data)

while add.add != ""

scope = replace(scope, add.add, "")

add = add1(add.model, scope, data)
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end

if add == ""

println("No term dropped")

return step(add.aic, dfrm)

else

return step(add.aic, model)

end

else # both

drop = drop1(dfrm, scope)

add = add1(dfrm, scope)

while drop.drop != "" | add.add != ""

if drop.aic < add.aic

model = drop.model

aic = drop.aic

scopenew = replace(scope, drop.drop, "")

else

model = add.model

aic = add.aic

scopenew = replace(scope, add.add, "")

end

drop = drop1(model, scopenew)

add = add1(model, scopenew)

end

if scopenew == scope

println("No term changed")

return step(AIC(dfrm), dfrm)

else

return step(aic, model)
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end

end

end

function step(dfrm::RegressionModel, direction::String;

trace::Bool=false)

directions = ["backward", "both"]

if ˜ (direction in directions)

error("If no scope specified, direction must be ’backward’

or ’both’")

end

todrop = ""

aic = AIC(dfrm)

model = dfrm

if direction == "backward"

drop = drop1(dfrm)

while drop.aic < aic

aic = drop.aic

todrop = drop.drop

model = drop.model

drop = drop1(model)

end

if todrop == ""

println("No term dropped")

return step(aic, dfrm)

else

return step(aic, model)

end
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else # both

scope = extractrhs(dfrm).rhsstring

data = dfrm.mf.df

toadd = ""

drop = drop1(dfrm)

add = add1(dfrm, scope, data)

while drop.aic < aic || add.aic < aic

if drop.aic < add.aic

aic = drop.aic

todrop = drop.drop

model = drop.model

else

aic = add.aic

toadd = add.add

model = add.model

end

drop = drop1(model)

add = add1(model, scope, data)

end

if todrop == "" && toadd == ""

println("No term changed")

return step(AIC(dfrm), dfrm)

else

return step(aic, model)

end

end

end
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function avPlot(dfrm::RegressionModel, variable::Symbol)

varNames = names(dfrm.mf.df)

# get e_yx

lhs = dfrm.mf.terms.eterms[1]

rhs = extractrhs(dfrm)

rhsnew = replace(rhs.rhsstring, "+"*string(variable), "")

rhsnew = rhsnew[2:end]

rhsnew = parse(rhsnew)

fnew = Formula(lhs, rhsnew)

newfit = fit(LinearModel, fnew, dfrm.mf.df)

e_yx = residuals(newfit)

# get e_zx

X = dfrm.mf.df[2:end]

Z = X[variable]

X = X[˜[(name in [variable]) for name in names(X)]]

intercept = ones(Int, nrow(X), 1)

X = convert(Array, X)

X = hcat(intercept, X)

H = *(*(X, inv(*(transpose(X), X))), transpose(X))

e_zx = *((eye(size(H)[1])-H), Z)

df = DataFrame(e_yx=e_yx, e_zx=e_zx)

# get alpha

avlm = fit(LinearModel, e_yx˜0+e_zx, df)

alpha = coef(avlm)

# plot

xs_range = abs(maximum(df[:e_zx]) - minimum(df[:e_zx]))

xs = linspace(minimum(df[:e_zx])-xs_range/10,

maximum(df[:e_zx])+xs_range/10)

ys = alpha .* xs
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xy = DataFrame(xs=xs, ys=ys)

plot(layer(df, x="e_zx", y="e_yx", Geom.point),

Guide.xlabel(string(variable)*" | others"),

Guide.ylabel(string(varNames[1])*" | others"),

Guide.title("Added-Variable Plot"),

layer(xy, x="xs", y="ys", Theme(default_color=color("red")),

Geom.line))

end

function cooksdistance(dfrm::RegressionModel; plotit::Bool=false)

r = rstudent(dfrm)

X = dfrm.mm.m

H = *(*(X, inv(*(transpose(X), X))), transpose(X))

h = diag(H)

p = size(dfrm.mm.m, 2)

d = (r.ˆ2 .* h) ./ (p*(1-h))

if !plotit

return d

else

# identify outliers

n = length(d)

cutoff = 4/(n-p)

labels = 1:n

outlierlabel = labels[d.>cutoff]

df = DataFrame(n=labels, d=d, label="")

for i in outlierlabel

df[:label][i] = string(i)

end

plot(df, x="n", y="d", label="label",
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Guide.xlabel("Case number"),

Guide.ylabel("Cook’s distance"),

Geom.bar, Geom.label)

end

end

function vif(dfrm::RegressionModel)

X = dfrm.mf.df[2:end]

rhs = extractrhs(dfrm)

result = DataFrame(variable=rhs.rhsarray, vif=0.0)

i = 1

for (var in rhs.rhsarray)

lhs = parse(var)

rhsnew = replace(rhs.rhsstring, "+"*var, "")

rhsnew = rhsnew[2:end]

rhsnew = parse(rhsnew)

fnew = Formula(lhs, rhsnew)

newfit = fit(LinearModel, fnew, X)

r2 = rsquared(newfit)

result[:vif][i] = 1 / (1-r2)

i = i + 1

end

result

end

function rsquared(dfrm::RegressionModel)

SStot = sum((dfrm.model.rr.y - mean(dfrm.model.rr.y)).ˆ2)

SSres = sum((dfrm.model.rr.y - dfrm.model.rr.mu).ˆ2)
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return (1-(SSres/SStot))

end

function adjrsquared(dfrm::RegressionModel)

SStot = sum((dfrm.model.rr.y - mean(dfrm.model.rr.y)).ˆ2)

SSres = sum((dfrm.model.rr.y - dfrm.model.rr.mu).ˆ2)

n = size(dfrm.model.rr.y, 1) #number of samples

if dfrm.mf.terms.intercept

p = size(dfrm.mm.m, 2) - 1

else

p = size(dfrm.mm.m, 2)

end

return 1- ( (SSres/(n-p-1)) / (SStot/(n-1)) )

end

function rstudent(dfrm::RegressionModel)

SSres = sum((dfrm.model.rr.y - dfrm.model.rr.mu).ˆ2)

n = size(dfrm.model.rr.y, 1) #number of samples

if dfrm.mf.terms.intercept

p = size(dfrm.mm.m, 2) - 1

else

p = size(dfrm.mm.m, 2)

end

sigma2 = SSres / (n-p)

X = dfrm.mm.m

H = *(*(X, inv(*(transpose(X), X))), transpose(X))
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h = diag(H)

r = residuals(dfrm) ./ (sqrt(sigma2 .* (1 - h)))

return r

end

function jackknife(dfrm::RegressionModel)

r = rstudent(dfrm)

n = size(dfrm.model.rr.y, 1) #number of samples

if dfrm.mf.terms.intercept

p = size(dfrm.mm.m, 2) - 1

else

p = size(dfrm.mm.m, 2)

end

t = r .* sqrt((n-p-1) ./ (n-p-r.ˆ2))

return t

end

function halfnorm(dfrm::RegressionModel)

N = size(dfrm.model.rr.y, 1)

n = 1:N

X = dfrm.mm.m

H = *(*(X, inv(*(transpose(X), X))), transpose(X))

h = diag(H)

labels = sortperm(h)

h = h[labels]

U = (N+n) / (2*N+1)

d = Normal()

u = quantile(d, U)
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# prepare labels for potential outliers

df = DataFrame(u=u, h=h, label="")

outlierlabel = labels[u.>2]

no_outliers = length(outlierlabel)

for i in (length(labels)-no_outliers+1):length(labels)

df[:label][i] = string(labels[i])

end

plot(df, x="u", y="h", label="label", Geom.point, Geom.label,

Guide.xlabel("Half-normal quantiles"),

Guide.ylabel("Leverages"))

end
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