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Trajectory-Switching Algorithm for a
MEMS Gyroscope

Sungsu Park, Roberto Horowitz, Member, IEEE, Sung Kyung Hong, and Yoonsu Nam

Abstract—The motion of a conventional force-balancing-
controlled gyroscope in a mode-matched operation does not have
sufficient persistence of excitation, and as a result, all major
fabrication imperfections cannot be identified and compensated
for. This paper presents an adaptive force-balancing control
for a microelectromechanical-system z-axis gyroscope using a
trajectory-switching algorithm. The proposed adaptive force-
balancing control supplies additional richness of excitation to the
internal dynamics of the gyroscope by switching the trajectory
of the proof mass of the gyroscope, and it provides quadra-
ture compensation, drive- and sense-axis frequency tuning, and
closed-loop identification of the angular rate without the mea-
surement of input/output phase difference. This algorithm also
identifies and compensates the cross-damping terms which cause
zero-rate output.

Index Terms—Adaptive control, force-balancing control, gy-
roscope, microelectromechanical systems (MEMS), trajectory
switching.

I. INTRODUCTION

MOST microelectromechanical-system (MEMS) gyro-
scopes are vibratory rate gyroscopes that have structures

fabricated on polysilicon or crystal silicon, and the mechanical
main component is a two degree-of-freedom vibrating struc-
ture, which is capable of oscillating on two directions in a plane.
Their operating physics is based on the Coriolis effect. When
the gyroscope is subjected to an angular velocity, the Coriolis
effect transfers energy from one vibrating mode to another. The
response of the second vibrating mode provides information
about the applied angular velocity. Ideally, in the conventional
mode of operation, the vibrating modes of a MEMS gyroscope
are supposed to remain mechanically uncoupled, their natural
frequencies should be matched, and the gyroscope’s output
should only be sensitive to angular velocity. In practice, how-
ever, fabrication imperfections and environmental variations are
always present, resulting in a frequency of oscillation mismatch
between the two vibrating modes and a coupling between
the two mechanical vibration modes through off-diagonal
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terms in the stiffness and damping matrices. These imperfec-
tions degrade the gyroscope’s performance and cause a false
output [1], [2].

Currently, force-balancing feedback control schemes [3]–[5]
have widely been used to cancel the effect of the off-diagonal
terms in the stiffness matrix, which is referred to as the
quadrature error, as well as to increase the bandwidth and
dynamic range of the gyroscope beyond the open-loop mode of
operation. However, they rely on the exact measurement of the
input/output phase difference, and moreover, they are inher-
ently sensitive to some types of fabrication imperfections which
can be modeled as cross-damping terms, which produce zero-
rate output (ZRO).

In this paper, we develop an adaptive force-balancing control
scheme for a MEMS z-axis gyroscope using a trajectory-
switching algorithm. This adaptive algorithm provides quadra-
ture compensation, drive- and sense-axis frequency tuning, and
closed-loop identification of the angular rate without the mea-
surement of the input/output phase difference. This algorithm
also identifies and compensates the cross-damping terms and
does not produce ZRO.

In the next section, the dynamics of MEMS gyroscopes
are developed and analyzed by accounting for the effect of
the fabrication imperfections. The conventional force-balancing
control is reviewed and reinterpreted for the extension to an
adaptive scheme in Section III. In Section IV, a trajectory-
switching strategy is proposed to supply additional richness
of excitation to the internal dynamics of the gyroscope. In
Section V, an adaptive control is developed based on the
trajectory-switching algorithm. Finally, computer simulations
are performed in Section VI.

II. DYNAMICS OF MEMS GYROSCOPES

Common MEMS vibratory-gyroscope configurations in-
clude a proof mass suspended by spring suspensions, electrosta-
tic actuation, and sensing mechanisms for forcing an oscillatory
motion and sensing of the position and velocity of the proof
mass. These mechanical components can be modeled as mass,
spring, and damper system. Fig. 1 shows a simplified model
of a MEMS gyroscope having two degrees of freedom in the
associated Cartesian reference frames.

By assuming that the motion of the proof mass is constrained
to be only along the x−y plane by making the spring stiffness
in the z-direction much larger than in the x- and y-directions,
the measured angular rate is almost constant over a long
enough time interval, and linear accelerations are canceled out,
either as an offset from the output response or by applying

0018-9456/$25.00 © 2007 IEEE
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Fig. 1. Model of a MEMS z-axis gyroscope.

countercontrol forces, and then, the equation of motion of a
gyroscope is simplified as follows:

mẍ+d1ẋ+
(
k1−m

(
Ω2

y+Ω2
z

))
x+mΩxΩyy = τx+2mΩz ẏ

mÿ+d2ẏ+
(
k2−m

(
Ω2

x+Ω2
z

))
y+mΩxΩyx = τy−2mΩzẋ

(1)

where x and y are the coordinates of the proof mass relative
to the gyroframe, d1,2 and k1,2 are the damping and spring
coefficients, Ωx,y,z denotes the angular-velocity components
along each axis of the gyroframe, and τx,y denotes the control
forces. The two last terms in (1), which are 2mΩzẋ and
2mΩz ẏ, are due to the Coriolis forces and are the terms that
are used to measure the angular rate Ωz .

As shown in (1), in an ideal gyroscope, only the component
of the angular rate along the z-axis Ωz causes a dynamic
coupling between the x- and y-axes under the assumption
that Ω2

x,y ≈ ΩxΩy ≈ 0. In practice, however, small fabrication
imperfections always occur, which cause dynamic coupling
between the x- and y-axes through the asymmetric spring and
damping terms. By taking into account the fabrication imper-
fections, the dynamic equations (1) are modified as follows [6]:

mẍ + dxxẋ + dxy ẏ + kxxx + kxyy = τx + 2mΩz ẏ

mÿ + dxyẋ + dyy ẏ + kxyx + kyyy = τy − 2mΩzẋ. (2)

Equation (2) is the governing equation for a MEMS z-axis
gyroscope. The fabrication imperfections mainly contribute
to the asymmetric spring and damping terms kxy and dxy .
Therefore, these terms are unknown but can be assumed to
be small. The x- and y-axis spring and damping terms are
mostly known but have unknown variations from their nominal
values. The proof mass can very accurately be determined.
The components of angular rate along the x- and y-axes are
absorbed as part of the spring terms as unknown variations.
Note that the spring coefficients kxx and kyy also include the
electrostatic spring softness.

Based on m, q0, and ω0, which are the reference mass (i.e.,
a proof mass of the gyroscope), the length, and the natural

resonance frequency, respectively, the nondimensionalization
of (2) can be done as follows:

ẍ +
ωx

Qx
ẋ + dxy ẏ + ω2

xx + ωxyy = τx + 2Ωz ẏ

ÿ + dxyẋ +
ωy

Qy
ẏ + ωxyx + ω2

yy = τy − 2Ωzẋ (3)

where Qx and Qy are the x- and y-axis quality factors,
respectively, ωx =

√
kxx/(mω2

0), ωy =
√

kyy/(mω2
0), ωxy =

kxy/(mω2
0), dxy ← dxy/(mω0), Ωz ← Ωz/ω0, τx ← τx/

(mω2
0q0), and τy ← τy/(mω2

0q0).

III. MOTIVATION

The general tasks of the conventional drive-axis feedback
control in a vibratory gyroscope can be reinterpreted as keeping
the total energy level of the device constant while forcing the
trajectory of the proof mass of the gyroscope to be a straight
line in the x−y plane when no angular rate is present. The
force-balancing control can also be interpreted as the task of
maintaining a straight-line motion, even under the presence of
the angular rate. In order to understand how the angular rate can
be measured by maintaining a gyroscope straight-line motion,
we will first study the dynamic response of an ideal planar
vibratory gyroscope. This ideal gyroscope under the presence
of the angular rate is defined as follows:

q̈ + ω2
0q = −2Ωq̇ (4)

where q = [x y ]T, and Ω =
[

0 −Ωz

Ωz 0

]
. Equation (4)

presents a two degree-of-freedom pure spring-mass system with
the same natural frequency ω0 in both axes, which is oscillating
on a rotating frame with an angular rate Ωz . When no angular
rate is present, depending on whether the initial displacement
vector is parallel to the velocity vector or not, this ideal gyro-
scope will either oscillate along the straight line or along an
ellipsoid trajectory. When the gyroscope is rotating, the line of
oscillation precesses because the Coriolis acceleration causes a
transfer of energy between the two axes of the gyroscope while
conserving the total energy of the gyroscope. This can be shown
by defining the total energy E and the angular momentum P of
the gyroscope, respectively, as

E =
1
2

(
q̇Tq̇ + ω2

0q
Tq

)
P = qTSq̇ = qT

S q̇ (5)

where S =
[

0 1
−1 0

]
, and qS = STq.

Note that the angular momentum is a good measure of how
much the motion of a gyroscope deviates from a straight-
line oscillation since in a straight-line oscillation, P = 0 [6].
The time derivatives of the total energy and the angular
momentum are

Ė = q̇Tq̈ + ω2
0 q̇

Tq = q̇T
(
−ω2

0q − 2Ωq̇
)

+ ω2
0 q̇

Tq = 0

Ṗ = q̇TSq̇ + qTq̈ = qT
S

(
−ω2

0q − 2Ωq̇
)

= −2Ωzq
Tq̇. (6)
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From (6), it is clear that the Coriolis-acceleration term does
not change the total energy and only causes precession, i.e.,
a change of angular momentum. When no angular rate is
present, the angular momentum is also conserved. For example,
if the initial angular momentum is zero or, equivalently, the
displacement and velocity vectors are parallel, the oscillation
will remain in a straight line. Therefore, this suggests that we
may be able to measure the angular rate by generating a control
action such that the angular momentum is not changed, even
under the presence of the angular rate. Unfortunately, in the
case of nonideal gyroscopes, because of damping terms, the
total energy is not conserved. Moreover, because of quadra-
ture errors and damping terms, the angular momentum is not
conserved even when the angular rate is zero. Therefore, one
possible approach to measure the angular rate with a nonideal
gyroscope is to generate control forces such that a gyroscope
emulates the behavior of an ideal gyroscope operating under no
angular rate or, equivalently, such that the total energy is kept
unchanged and the angular momentum converges to zero (i.e.,
the trajectory converges to a straight-line oscillation).

IV. TRAJECTORY-SWITCHING STRATEGY

In this section, we will formulate a control law and parameter
adaptation algorithms for the z-axis gyroscope such that the
total energy error and the angular momentum asymptotically
converge to zero. The total energy error is defined by

Ẽ =
1
2

(
q̇Tq̇ + ω2

0q
Tq

)
− E0 (7)

where E0 is a prescribed intended energy level. Note that
the total energy is computed based on the ideal gyroscope
parameters. Now, let us rewrite the nondimensional gyroscope
equation (3) as follows:

q̈ + Dq̇ + Kq = τ − 2Ωq̇ (8)

where K =
[
ω2

x ωxy

ωxy ω2
y

]
, D =

[
ωx/Qx dxy

dxy ωy/Qy

]
, and

these are assumed to be constant. Consider the following posi-
tive definite function (PDF):

V =
1
2

(
γEẼ2 + γPP 2

+tr
{
γ−1

R R̃R̃T + γ−1
D D̃D̃T + γ−1

Ω Ω̃Ω̃T
})

(9)

where γ(·) denotes the positive constants, and

R̃ = R̂−K + ω2
0I, D̃ = D̂ −D, Ω̃ = Ω̂− Ω

where R̂, D̂, and Ω̂ are the estimates of R = K − ω2
0I , D, and

Ω, respectively, I is an identity matrix, and tr(M) defines the
trace of the matrix M . The derivative of the PDF V along the
trajectory of (8) is

V̇ = γEẼ ˙̃E + γPPṖ

+ tr
(
γ−1

R R̃ ˙̃R
T

+ γ−1
D D̃ ˙̃D

T

+ γ−1
Ω Ω̃ ˙̃Ω

T
)
. (10)

If the control law τ is chosen to be

τ = τ0 + R̂q + D̂q̇ + 2Ω̂q̇ (11)

where τ0 is an auxiliary control action, which will subsequently
be defined, the derivatives of the total energy error and the
angular momentum can then be computed as follows:

˙̃E = Ė = q̇T(τ0 + R̃q + D̃q̇ + 2Ω̃q̇)

Ṗ = qT
S (τ0 + R̃q + D̃q̇ + 2Ω̃q̇). (12)

Substituting (12) into (10) results in

V̇ =(γEẼq̇ + γPPqS)Tτ0

+ (γEẼq̇ + γPPqS)T(R̃q + D̃q̇ + 2Ω̃q̇)

+ tr
(
γ−1

R R̃ ˙̃R
T

+ γ−1
D D̃ ˙̃D

T

+ γ−1
Ω Ω̃ ˙̃Ω

T
)
. (13)

If τ0 is chosen to be

τ0 = −(γEẼq̇ + γPPqS) (14)

then (13) becomes

V̇ = −(γEẼq̇ + γPPqS)T(γEẼq̇ + γPPqS)T

+ tr

{
R̃

(
γ−1

R
˙̃R
T

− 1
2
qτT

0 −
1
2
τ0q

T

)

+ D̃

(
γ−1

D
˙̃D

T

− 1
2
q̇τT

0 −
1
2
τ0q̇

T

)

+ Ω̃
(
γ−1
Ω

˙̃Ω
T

− q̇τT
0 + τ0q̇

T

) }
. (15)

Equation (15) suggests the following adaptation laws for the
estimates R̂, D̂, and Ω̂:

˙̂
R =

1
2
γR

(
τ0q

T + qτT
0

)
˙̂
D =

1
2
γD

(
τ0q̇

T + q̇τT
0

)
˙̂Ω = γΩ

(
τ0q̇

T − q̇τT
0

)
(16)

in order to guarantee that V̇ will be negative semidefinite

V̇ = −[ Ẽ P ]
[

γ2
E q̇Tq̇ γEγP q̇TqS

γEγP q̇TqS γ2
P qTq

] [
Ẽ
P

]
≤ 0. (17)

From (17), it is easy to show the convergence of Ẽ and P to
zero by using Barbalat’s lemma [7]. However, this by itself does
not guarantee the convergence of parameter errors R̃, D̃, and
Ω̃ to zero. Since the main role of a gyroscope is to measure
the applied angular rate, which, in this context, requires that
Ω̃ = 0, we need to determine the conditions that guarantee the
asymptotic convergence of Ω̃ to zero. Regarding this, we have
the following results.
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Theorem 1: With the control laws (11) and (14) and the
adaptation algorithm (16), the following results hold for the
system (8).

1) The convergence of the angular-rate estimate Ω̂z to its
true value is guaranteed only when the damping matrix
D is known.

2) The angular-rate estimate error Ω̃z is biased by one half
of the off-diagonal damping term dxy if the trajectory is
forced to converge to a straight-line oscillation along the
x-axis and if no adaptive compensation is utilized on the
off-diagonal damping terms.
Proof: By using Barbalat’s lemma, one can easily show

that, as time t→∞

˙̃E = q̇T(R̃q + D̃q̇ + 2Ω̃q̇)→ 0 (18)

Ṗ = qT
S (R̃q + D̃q̇ + 2Ω̃q̇)→ 0 (19)

P = qT
S q̇ → 0. (20)

Convergence property (20) implies that the trajectory of the
system converges to a straight-line oscillation in the x−y plane.
By (20), (18) and (19) imply that

(R̃q + D̃q̇ + 2Ω̃q̇)→ 0 (21)

since q̇ and qT
S converge to be perpendicular to each other. The

convergence behavior of (21) at the instance of q = 0 and q̇ = 0
shows that each term of (21) should independently converge to
zero, i.e.,

R̃q → 0 and (D̃ + 2Ω̃)q̇ → 0. (22)

Therefore, if D is known or, equivalently, D̃ = 0, the conver-
gence of the angular-rate estimate to its true value can be proved
since

2Ω̃q̇ → 0→ Ω̃z → 0 since Ω̃ =
[

0 −Ω̃z

Ω̃z 0

]
.

Because the trajectory converges to a straight line, i.e., q
becomes parallel to q̇, (22) can be rewritten as

η(t)R̃ν̂ → 0

κ(t)(D̃ + 2Ω̃)ν̂ → 0 (23)

where ν̂ is the unit vector in the x−y plane along the straight-
line oscillation, and q → η(t)ν̂ and q̇ → κ(t)ν̂, where η(t) and
κ(t) are the scalar periodic functions. This is equivalent to[

ω̃2
x ω̃xy

ω̃xy ω̃2
y

] [
νx

νy

]
→ 0

[
d̃xx d̃xy − 2Ω̃z

d̃xy + 2Ω̃z d̃yy

] [
νx

νy

]
→ 0. (24)

If the trajectory converges to be along the x-axis, i.e., νx = 1
and νy = 0, then

ω̃2
x→0, ω̃xy→0, d̃xx→0, and Ω̃z→−

1
2
d̃xy. (25)

Therefore, if the trajectory is forced to converge to an oscil-
latory motion along the x-axis, the angular-rate estimate is
biased by one half of the off-diagonal term of the damping
matrix when no adaptation action is done on dxy , i.e., Ω̃z →
−(1/2)dxy . �

Consequently, based on Theorem 1, the following lemma
holds.
Lemma 1: If the total energy level is kept constant and

the trajectory of the proof mass of a nonideal gyroscope is
forced to be aligned along the drive axis, then the drive-axis
frequency, the drive-axis damping, and the quadrature error
can be identified and compensated for. Moreover, the applied
angular rate can be estimated to the accuracy of the magnitude
of the off-diagonal damping term.

In this control, the quadrature compensation does not rely on
the measurement of the input/output phase difference, whereas
it does in the conventional force-balancing control. However,
there remains a deterministic bias in the angular-rate estimate,
as in the case of the conventional force-balancing control. In a
similar fashion to the conventional mode of operation, this bias
term can be calibrated out. The reason why the parameters do
not converge to their true values is lack of persistent excitation
because of the simple internal dynamics of the gyroscope.
Theorem 1 provides a hint for seeking another control strategy
for guaranteeing Ω̃z → 0. This can be achieved by supplying
additional richness of excitation to the internal dynamics of the
gyroscope. This is summarized in the following theorem.
Theorem 2: If the control law and the parameter adaptation

algorithms are formulated such that the total energy level is
kept constant and the trajectory of the proof mass converges to
a straight line in one direction (ν̂2), after it has first converged
to a straight line in another direction (ν̂1) in the x−y plane,
while preserving the following conditions on parameter
adaptation laws

˙̃Rν̂1 → 0 and ( ˙̃D + 2 ˙̃Ω)ν̂1 → 0 (26)

then all gyroscope parameter estimates, including the angular-
rate estimate, converge to their true values.

Proof: By Theorem 1, the convergence properties given
by (22) are achieved on ν̂1, i.e.,

R̃ν̂1 → 0 and (D̃ + 2Ω̃)ν̂1 → 0. (27)

With the condition (26), if a similar convergence is achieved
along ν̂2, i.e.,

R̃ν̂2 → 0 and (D̃ + 2Ω̃)ν̂2 → 0 (28)

then (27) and (28) lead to

R̃→ 0 and (D̃ + 2Ω̃)→ 0.

Since D̃ is a symmetric matrix and Ω̃ is a skew-symmetric
matrix, this implies that

R̃→ 0, D̃ → 0, and Ω̃→ 0. �
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The next section proposes a control strategy which switches
between two straight-line oscillation modes and achieves all
conditions in Theorem 2.

V. TRAJECTORY FOLLOWING AND SWITCHING CONTROL

As mentioned in Theorem 2, unbiased estimation of the
angular rate can be achieved if the asymptotic trajectory of
the gyroscope is switched between two oscillatory motions
along nonparallel vectors in the x−y plane. However, because
the adaptive algorithm in Section IV deals with only the total
energy and the angular momentum, it cannot control the di-
rection of the straight-line oscillation to which the gyroscope
converges. Instead of controlling the total energy and the angu-
lar momentum, one may try to control the energy level of each
axis together with the angular momentum of the gyroscope.
However, this is also difficult because of lack of sufficient
control degrees of freedom. In this section, an alternative model
reference-trajectory-following method is proposed to achieve
trajectory switching. The reference trajectory is generated by an
ideal gyroscope such that its total energy level is conserved, and
its angular momentum is kept to zero. Therefore, the reference-
trajectory-following method indirectly realizes both the goal of
adaptive control in Section IV and trajectory switching.

A. Design of Adaptive Control Law

Suppose that the reference trajectory satisfies the equation
of the ideal gyroscope and makes the angular momentum be
zero, i.e.,

q̈m + ω2
0qm = 0

P = qT
mSq̇m = 0 (29)

where qm = [xm ym ]T. This may be realized by the follow-
ing trajectory model:

qm =
[

cosαX0 sin(ω0t)
sinαX0 sin(ω0t)

]
(30)

where α is the slope angle of the straight-line trajectory as
measured from the x-axis in the x−y plane, and X0 is the
amplitude of oscillation. Similar to the adaptive control strategy
based on energy and angular momentum in the previous section,
the control law τ in this case is chosen to be

τ = τ1 + R̂q + D̂q̇ + 2Ω̂q̇ (31)

where τ1 will subsequently be defined. By defining the tra-
jectory error as ep = q − qm, the trajectory error dynamics
becomes

ëp + ω2
0ep = τ1 + ũ (32)

where

ũ = R̃q + D̃q̇ + 2Ω̃q̇.

Consider the following PDF candidate:

V =
1
2

(
γeė

T
p ėp + γeω

2
0e

T
p ep

+ tr
{
γ−1

R R̃R̃T + γ−1
D D̃D̃T + γ−1

Ω Ω̃Ω̃T
} )

(33)

where γ(·) denotes the positive constants. The time derivative of
the PDF along the trajectory of (32) is

V̇ = γeė
T
p ëp + γeω

2
0 ė

T
p ep

+ tr
{
γ−1

R R̃ ˙̃R
T

+ γ−1
D D̃ ˙̃D

T

+ γ−1
Ω Ω̃ ˙̃Ω

T
}

= γeė
T
p τ1 + γeė

T
p ũ

+ tr
{
γ−1

R R̃ ˙̃R
T

+ γ−1
D D̃ ˙̃D

T

+ γ−1
Ω Ω̃ ˙̃Ω

T
}
. (34)

If τ1 is chosen to be

τ1 = −γeėp (35)

then (34) becomes

V̇ = −γ2
e ė

T
p ėp + tr

{
R̃

(
γ−1

R
˙̃R
T

− 1
2
qτT

1 −
1
2
τ1q

T

)}

+ tr
{
D̃

(
γ−1

D
˙̃D

T

− 1
2
q̇τT

1 −
1
2
τ1q̇

T

)}

+ tr
{

Ω̃
(
γ−1
Ω

˙̃Ω
T

− q̇τT
1 + τ1q̇

T

)}
. (36)

Therefore, the parameter adaptation laws

˙̂
R =

1
2
γR

(
τ1q

T + qτT
1

)
˙̂
D =

1
2
γD

(
τ1q̇

T + q̇τT
1

)
˙̂Ω = γΩ

(
τ1q̇

T − q̇τT
1

)
(37)

lead to V̇ = −γ2
e ė

T
p ėp ≤ 0.

Theorem 3: With the control laws (31) and (35) and the
parameter adaptation laws (37), the total energy error Ẽ =
1/2(q̇Tq̇ + ω2

0q
Tq)− E0, the angular momentum, and their

time derivatives converge to zero.
Proof: V̇ ≤ 0 implies that V (t) ≤ V (0). Thus, V is

bounded. The derivative of V̇ is

V̈ = −2γ2
e ė

T
p ëp

= −2γ2
e ė

T
p

(
−ω2

0ep + τ1 + ũ
)
.

This shows that V̈ is also bounded. Therefore, by Barbalat’s
lemma, V̇ → 0, or, equivalently, ėp → 0. Taking one more
derivative of the trajectory error equation gives

...
ep= −ω2

0 ėp − γeëp + ˙̃u

= −ω2
0 ėp − γe

(
−ω2

0ep − γeėp + ũ
)

+ ˙̃u.
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Thus,
...
ep is also bounded. Application of the Barbalat’s

lemma indicates that ëp → 0, implying that ep → ũ. On the
other hand, the integral error equation gives

ω2
0

∞∫
0

epdt =

∞∫
0

(−ëp − γeėp + ũ) dt

= −ėp |∞0 − γeep|∞0 +

∞∫
0

ũ dt.

Thus, the integral of ep is bounded. Again, by Barbalat’s
lemma, ep → 0, and ũ→ 0. Since, as t→∞ trajectory of the
nonideal gyroscope follows that of the ideal gyroscope, Ẽ → 0,
˙̃E → 0, P → 0, and Ṗ → 0 are achieved. �

Therefore, with this control scheme, the trajectory of the
gyroscope can be controlled while preserving all convergence
properties of the adaptive control discussed in Section IV.

B. Convergence-Rate Analysis

As Theorem 1 indicates, if the trajectory is forced to converge
to an oscillatory motion along the x-axis, the drive-axis fre-
quency, the quadrature, and the angular rate with cross-damping
term are estimated and compensated for. In this section, the
convergence rate of these parameters is derived.

Averaging analysis is commonly used in the adaptive control
literature [8] and will be used to estimate the convergence
properties of the gyroscope parameter estimates. The conver-
gence rate of the angular-rate estimate is important because
it determines the bandwidth of the gyroscope. By using the
fact that the parameter estimation dynamics is slower than
the trajectory dynamics, we can relate the slow parameter
estimation dynamics with the averaged parameter estimation
dynamics. By using the fact that the products of sinusoids at
different frequencies have zero average, the averaged dynamics
of the parameter error estimates can be obtained as follows:

˙̃ω
2

x|avg ≈ −
γR

2
X2

0ω
2
x|avg

˙̃ωxy|avg ≈ −
γR

4
X2

0ωxy|avg

˙̃
dxx|avg ≈ −

γD

2
X2

0ω
2
0dxx|avg

( ˙̃
dxy + 2 ˙̃Ωz)|avg ≈ −

1
4
(γD + 4γΩ)X2

0ω
2
0(d̃xy + 2Ω̃z)|avg.

(38)

By assuming that d̃xy = 0, the average dynamics of the angular-
rate estimate is approximately given by

˙̃Ωz|avg ≈ −γΩX
2
0ω

2
0Ω̃z|avg (39)

and the bandwidth of the adaptive controlled gyroscope is
approximately given by BW ≈ γΩX

2
0ω

2
0 . Thus, the bandwidth

of a MEMS gyroscope under adaptive control is proportional to
the adaptation gain and the energy of oscillation of the reference
model.

C. Modification of Adaptation Laws

Theorem 2 indicates that if the condition (26) is satisfied
while the trajectory is switched from the oscillation along v̂1 to
the oscillation along v̂2 	= v̂1, then R̃→ 0, D̃ → 0, and Ω̃→ 0
are guaranteed. This condition can be satisfied by introducing
the following modification to the adaptation laws (37).

By considering (36), the idea behind the selection of the
adaptation laws is to make the terms that contain parameter
adaptation errors equal to zero, i.e.,

tr
{
R̃

(
γ−1

R
˙̃R
T

− 1
2
qτT

1 −
1
2
τ1q

T

)}

+ tr
{
D̃

(
γ−1

D
˙̃D

T

− 1
2
q̇τT

1 −
1
2
τ1q̇

T

)}

+ tr
{

Ω̃
(
γ−1
Ω

˙̃Ω
T

− q̇τT
1 + τ1q̇

T

)}
= 0. (40)

The modification in the adaptation laws should preserve (40)
and should also satisfy the convergence properties of (26). By
rearranging (40), we obtain

tr
{
2γ−1

R R̃ ˙̃R
T

+ 2γ−1
D D̃ ˙̃D

T

+ 2γ−1
Ω Ω̃ ˙̃Ω

T
}

− tr
{
τT
1 R̃q + qTR̃τ1 + τT

1 (D̃ + 2Ω̃)q̇ + q̇T(D̃ − 2Ω̃)τ1
}

= 0.

(41)

To satisfy the convergence properties in (26), it is useful to de-
compose q, q̇, and τ1 into their parallel and normal components
with respect to the unit vector v̂1

q = qn + qp

q̇ = q̇n + q̇p

τ1 = τ1n + τ1p (42)

where subscripts n and p stand for normal and parallel compo-
nents to v̂1. Substituting (42) into (41) yields

tr
{

2γ−1
R R̃ ˙̃R

T

+ 2γ−1
D D̃ ˙̃D

T

+ 2γ−1
Ω Ω̃ ˙̃Ω

T
}

− tr
{

(τ1n+τ1p)TR̃(qn+qp)+(qn+qp)TR̃(τ1n+τ1p)
}

− tr
{

(τ1n + τ1p)T(D̃ + 2Ω̃)(q̇n + q̇p)

+ (q̇n + q̇p)T(D̃ − 2Ω̃)(τ1n + τ1p)
}

= 0. (43)

Convergence properties (26) simplify (43) further

tr
{

2γ−1
R R̃ ˙̃R

T

+ 2γ−1
D D̃ ˙̃D

T

+ 2γ−1
Ω Ω̃ ˙̃Ω

T
}

− tr
{
τT
1nR̃qn + qT

n R̃τ1n

}
− tr

{
τT
1nD̃q̇n + q̇T

n D̃τ1n + τT
1p(D̃ + 2Ω̃)q̇n

+ q̇T
n (D̃ − 2Ω̃)τ1p

}
= 0. (44)
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TABLE I
KEY PARAMETERS OF THE GYROSCOPE

Finally, we have

tr
{
R̃

(
γ−1

R
˙̃R
T

− 1
2
qnτ

T
1n −

1
2
τ1nq

T
n

)}

+ tr
{
D̃

(
γ−1

D
˙̃D

T

− 1
2
q̇nτ

T
1 −

1
2
τ1q̇

T
n

)}

+ tr
{

Ω̃
(
γ−1
Ω

˙̃Ω
T

− q̇nτ
T
1p + τ1pq̇

T
n

)}
= 0. (45)

Therefore, the modified adaptation laws that satisfy the condi-
tions in Theorem 2 are given as follows:

˙̂
R =

1
2
γR

(
τ1nq

T
n + qnτ

T
1n

)
˙̂
D =

1
2
γD

(
τ1q̇

T
n + q̇nτ

T
1

)
˙̂Ω = γΩ

(
τ1pq̇

T
n − q̇nτ

T
1p

)
(46)

where γD/2 = 2γΩ. These adaptation laws are used in place of
(37) while the trajectory switches.

Although the online identification and compensation of all
major fabrication imperfections and their variations are highly
desirable to achieve robust and high-performance gyroscope
operation, the proposed trajectory-switching algorithm is not
suitable to the online operation because continuous switching
must be involved during the gyroscope operation. Instead,
the switching algorithm can be used at the initial calibration
stage when the gyroscope is turned on or at regular calibra-
tion sessions which may periodically be performed to identify
fabrication imperfections. Once imperfections are identified,
their values can be frozen until the next calibration session
and be used for the adaptive force-balancing control without
the trajectory-switching algorithm because the variation of the
fabrication imperfections is negligibly slow compared with that
of the angular rate.

VI. SIMULATIONS

A simulation study using the preliminary design data of
the Massachusetts Institute of Technology-Silicon on Insulator
(MIT-SOI) MEMS gyroscope was conducted to evaluate the
proposed algorithm. The data of some of the gyroscope param-
eters in the model are summarized in Table I. For simulation
purposes, we allowed±20% parameter variations for the spring
and damping coefficients and assumed ±10% magnitude of

Fig. 2. Trajectory of the proof mass in the x−y plane.

Fig. 3. Time response of the angular-rate estimate error.

nominal spring and ±0.1% magnitude of nominal damping
coefficients for their off-diagonal terms. Note that the simu-
lation results are shown in nondimensional units, which are
nondimensionalized based on the proof mass, the length of
1 µm, and the x-axis nominal natural frequency.

Fig. 2 shows the trajectories of the proof mass of the gyro-
scope in the x−y plane. With the control laws (31) and (35)
and the parameter adaptation laws (46), the trajectory of the
proof mass has first converged to a straight line of the slope
angle +15◦ (ν̂1 direction in Fig. 2). After switching occurs at
t = 1000 nondimensional time, the trajectory converges to a
straight line of the slope angle −15◦ (ν̂2 direction in Fig. 2).
Figs. 3 –5 show the simulation results which illustrate the con-
vergence properties of the trajectory-switching adaptive control
scheme designed in this paper. Note that before the trajectory
is switched, all parameter estimates are biased, but after the
trajectory switching occurs, all parameter estimates converge
to their true values. Figs. 6 and 7 show the estimate of angular-
rate response to the step and the sinusoidal input angular rates
after freezing the estimated parameters obtained by switching.
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Fig. 4. Time responses of the frequency estimate errors.

Fig. 5. Time responses of the damping estimate errors.

The simulation supports the convergence results derived for the
trajectory-switching adaptive control scheme.

VII. CONCLUSION

Dynamic analysis of typical MEMS gyroscopes shows that
fabrication imperfections are a major factor limiting the per-
formance of the gyroscope. However, the conventional force-
balancing-controlled gyroscope in a mode-matched operation
does not have sufficient persistence of excitation and as a result,
all major fabrication imperfections cannot be identified and
compensated for.

This paper proposed the adaptive force-balancing control
with a trajectory-switching algorithm. By switching the trajec-
tory of the proof mass of a gyroscope, additional richness of
excitation is supplied to the internal dynamics of the gyroscope,
and thus, the quadrature compensation, the drive- and sense-
axis frequency tuning, and the closed-loop identification of the
angular rate are possible. The proposed control scheme does not
rely on the measurement of the input/output phase difference

Fig. 6. Time response of the angular-rate estimate to the 5deg/s step input.

Fig. 7. Time response of the angular-rate estimate to the 5deg/s sinusoid input
at 50 Hz.

and does not produce ZRO, which is caused by the cross-
damping terms.

A simulation study using the preliminary design data of
the MIT-SOI MEMS gyroscope was conducted to evaluate the
proposed control scheme. Simulation results supported the con-
vergence results derived for the trajectory-switching adaptive
control scheme.
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