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 ABSTRACT 

 

 

 The Mountain West region of the United States is highly dependent on the 

ecosystem services from the mountain snowpack, one of the most vulnerable components 

of earth’s fresh water cycle. The growing demand for fresh water in a period of climatic 

non-stationarity requires new approaches to monitoring and prediction. We investigate 

snow distribution and its effect on subsurface water storage in the southern Sierra 

Nevada, California using the combination of in-situ measurements, airborne LiDAR-

snow-depth altimetry, satellite snow-cover maps, and novel spatial analysis. Using these 

data and methods we address questions about the mountain snowpack pertaining to: i) 

broad-scale distribution of snow accumulation governed by elevation and topography, ii) 

the effects of forest canopy on snow accumulation and ablation, at multiple scales, and 

iii) the partitioning of water in the vadose zone after snowmelt. Our results show that 

snow depth as a function of elevation increased at a rate of approximately 15 cm 100 m
-1

 

until reaching an elevation of 3300 m where depth sharply decreased at a rate of 48 cm 

100 m
-1

. Departures from this
 
trend were mostly negative below 2050 m, mostly positive 

between 2050-3300 m and negative above 3300 m, and attributed to orographic 

processes, mean freezing level, slope, terrain orientation and wind redistribution. High 

point-density LiDAR measured 31-44 % of under-canopy area, where snow depth was12-

24 % lower than in the open, depending on forest vegetation type. The metrics of mean 

canopy height, canopy-to-ground surface ratio, fractional canopy cover, and canopy-

height standard deviation individually explained half 45-58 % of the storm accumulation 

variability. Sky view factor explained up to 87 % of the variability in snow ablation rates 

in the cloudiest snow-melt seasons and direct beam solar irradiance explained up to 58 % 

in the clearest. The timing of soil dry-down is relatively uniform, but due to the 

heterogeneity of snowmelt it’s timing is offset by up to 4 weeks at the same elevation 

depending on location. Baseflow and evapotranspiration continue after soil dry down has 

reached a plateau, suggesting that water is drawn from soil saprolite and saprock at 

depths >1 m below the surface. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1. Rationale 

 Mountain ecosystems provide much of the earth’s usable fresh water and are 

important components of the regional water balance of mountain areas across the globe. 

These ecosystems face historic shifts in function due to the impacts of a warming climate 

combined with changes in land use patterns. Thus, knowledge of their function is critical. 

The Mountain West of the United States, and the Sierra Nevada in particular, has an 

emerging network of instrumental observatories and remote sensing platforms that, when 

combined, provide a unique opportunity for developing adaptive mitigation strategies to 

on-going shifts in ecosystem structure and hydrologic response.   

 Winter precipitation in the Mountain West predominantly falls as snow, and 

serves as a temporary storage reservoir of water and the main source of surface runoff 

and ground water recharge (Bales et al. 2006). In the Mediterranean, semi-arid climate of 

California’s Sierra Nevada, wet winters are followed by a prolonged dry period, when the 

region is influenced by subtropical high pressure. Snow typically accumulates from 

November to March, followed by a one to three month snow-melt transition period that 

depends on altitude, snow water equivalent (SWE), and latitude (Peterson et al. 2008).  

Annual snowmelt meets approximately half of the regions fresh water demand, produces 

approximately half of the California’s 37,000 gigawatt-hours of hydro-electricity, and 

sustains Sierra Nevada forests and downstream riparian ecosystems (Kattelmann et al. 

1983, Guegan et al. 2012). 

 In forested ecosystems the effect of vegetation on the water cycle is significant 

and an important factor in the hydrology of the Sierra Nevada (Stephenson 1998). Trees 

in mountain environments mediate discharge and soil moisture by affecting the quantity 

and timing of snow that accumulates on the forest floor and the snowmelt infiltrating the 

soil. The dominant processes affecting snow accumulation in forests are interception, 
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sublimation, and alteration of the radiation budget of the snowpack by canopy (Hardy et 

al. 1997).  In recent decades higher winter minimum temperatures have resulted in a one 

to four week shortening of the snowmelt period (Dettinger et al. 2004, Stewart et al. 

2005).  The resulting earlier runoff period and prolonged summer-dry-period of low soil 

moisture impact forest ecosystems through increased water stress. These changes in 

forest hydrology demonstrate the potential for irreversible changes in ecosystem structure 

and function (Trujillo et al. 2012, Diffenbaugh and Field 2013).  

 The Sierra Nevada is ideally oriented to intercept moisture-laden air masses 

coming from the Pacific Ocean. Orographic precipitation occurs through the fundamental 

principle of unsaturated air rising, expanding and cooling. As Pacific air masses move 

eastward, rise and become saturated as they ascend the west slopes of the Sierra Nevada 

precipitation increases with elevation (Roe 2005). The accumulating winter snowpack is 

further influenced by local topography and subsequently redistributed by wind and 

unequally ablated by radiative forcing and energy exchange with the atmosphere, ground 

and vegetation. 

 The effect of vegetation on snow accumulation is explained by:  

 

         (             )                                             (1) 

 

where, SWE at any point in time can be described by initial accumulation       , 

precipitation from snow (  ), and rain (  ), minus net interception and melt (M) for a 

time-step (t) adapted from (Pomeroy et al. 2007, Ellis et al. 2010). Sublimation is snow 

that is intercepted minus unloaded or melted snow (       and evaporation is 

intercepted rain minus rain that has dripped from the canopy        . The efficiency 

with which snow is intercepted and subsequently lost through sublimation or evaporation 

is central to quantifying vegetation effects on the overall water balance in forested 

ecosystems (Pomeroy et al. 1998).  

 Snowmelt, soil moisture and surface discharge in the Sierra Nevada are tightly 

coupled temporally and spatially. In the spring, with increasing radiative energy, the 

snowpack becomes isothermal at 0
○ 

C and a diurnal cycle of melt-freeze ensues. Snow 
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melts through diel melt-freeze cycles of increasing frequency and duration until all of the 

snow is melted and has been partitioned to surface runoff or entered the subsurface 

through infiltration or macro-pore pathways. A change in the timing of the snowmelt has 

cascading effects on soil moisture, surface discharge and ecosystems processes at 

multiple time-scales (Weltzin et al. 2003).  

 Conceptually, the partitioning of snowmelt to soil water and vegetation are 

explained by:    

                                                                                                                                                                                                      

                         (2) 

           

where   is effective soil porosity, RZ  is depth to regolith, sweI is infiltration from snow 

melt, L is leakage through macropores, regolith or fractures, ET is a bulk term for 

evaporation and transpiration, sQ  is surface runoff, and s is soil-water storage (adapted 

from (Rodriguez-Iturbe 2000).   

 Snow distribution in the Sierra Nevada demonstrates variability at multiple scales.  

Scaling is intrinsically dependent on the phenomena we wish to observe and a central 

question in any discussion of temporal or spatial analysis (Kirchner 2006).  If we wish to 

understand the hydrologic processes of a large watershed multiple methods and scaling 

are often required (Wilson and Guan 2004, Robinson et al. 2008). Emerging observation 

and instrumentation strategies now make it possible to investigate watershed hydrology at 

spatial and temporal scales appropriate to the focus of this research. The use of light 

detection and ranging radar (LiDAR) to measure ground snow and vegetation surfaces at 

centimeter accuracy provides direct observations for analysis from plot to watershed 

scales. Watershed observatories use strategically deployed instruments to study the links 

between landscape climate variability and water and material fluxes (Anderson et al. 

2008). Current research using these methods include water-balance observations, 

manipulations and modeling to predict climate-change impacts and mitigation strategies 

for sustainable water yield (Bales et al. 2011, Lin et al. 2011).  

 

 

ssweR QLETI
dt

ds
Z 
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2. Objectives 

 The purpose of this work is to address knowledge gaps in our understanding of 

Sierra Nevada snow cover in order to inform how we monitor and potentially mitigate 

climate-induced impacts on snow hydrology. Our current monitoring methods rely upon 

limited ground measurements, precipitation forecasts and statistically driven models that 

have limited predictive power in the increasingly common climatic extremes. There is an 

urgent need, and vast potential, for improvement in the monitoring and prediction of 

hydrologic conditions in the Sierra Nevada using the emerging tools and methods 

mentioned above. In the following chapters we use these tools to address three key 

questions:  

 

1.) What is the broad-scale distribution of snow accumulation, as governed by the land-

surface properties of elevation, azimuthal orientation, freezing level and prevailing winds 

in the southern Sierra Nevada? (Chapter 2 and appendices A and B). 

 

2.) How does forest canopy mediate the processes of ablation and accumulation? 

(Chapter 3 and appendices C and D). 

 

 3.) How does snowmelt water delivery affect the shallow and deep vadose-zone 

processes of the forest hydrologic cycle? (Chapter 3 and appendices E and F)  
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3. Methods 

 Remote-sensing measurements of heterogeneous spatial features such as snow 

cover and forest canopy require calibration. Calibration at the appropriate density, 

granularity, and spatially appropriate distribution of measurements is a key problem 

(Blöschl 1999). Previous studies have successfully applied regression trees and 

geostatistical methods to define snow distribution variability by determining the spatial 

and temporal covariance (Jost et al. 2005, Molotch and Bales 2005). We approached this 

problem by blending physiographic data (e.g. LiDAR-generated digital surface models), 

large-scale surveys (e.g. vegetation maps), synoptic surveys and plot measurements. Our 

study areas are located in the southern Sierra Nevada, in the Marble Fork of the Kaweah 

River in Sequoia National Park and in the Kings River experimental watershed (Figure 

1). Previous studies have successfully applied regression trees and geostatistical methods 

to define snow distribution variability by determining the spatial and temporal covariance 

Figure 1. California and Sierra 

Nevada region with digital 

elevation inset (right), land 

management jurisdiction with 

study area locations (left). 
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(Jost et al. 2005, Molotch and Bales 2005). To develop a process level understanding of 

snow accumulation and distribution we measured at the plot, catchment and watershed 

scales employing instrumental observations, models and two remote sensing platforms. 

We used the emerging field of LiDAR snow-depth retrievals to develop novel methods 

for evaluating snow accumulation under forest canopies and across an elevation gradient. 

 LiDAR data were collected, in the winter and summer of 2010, to determine snow 

depth across the study areas and these data were used to create 1-m grids of ground, 

canopy and snow surfaces that allowed an in depth spatial analysis. Synoptic surveys 

took place over a period of five years and measured snow depth, density and SWE each 

winter. Field locations were identified using a high-resolution global positioning system 

and entered into a geographic information system to facilitate spatial and temporal 

analysis (Schume et al. 2003, Jost et al. 2005).  Study plots were selected by analyzing 

digital elevation models for representative areas of slope, aspect, vegetation type, 

proximity to existing instrumentation, and elevation. The sites represent slopes aspects 

and elevations where typical forest stand associations are found in the southern Sierra 

Nevada (Stephenson 1998) (appendix D).    

 Some of the instrument clusters installed and used for this study are part of the 

Critical Zone Observatory (CZO) and were located to capture the variability of the mesic, 

north, and xeric, south, aspects that represent the mean slope and aspect conditions of 

research catchments. CZO sites are instrumented to detect changes in snow depth and soil 

moisture in open areas and in relation to tree canopies (Anderson et al. 2008). Our 

instrumentation includes snow-depth sensors and time-domain-reflectometry to 

determine volumetric water content at up to four different depths in the soil profile (Allen 

et al. 2007, Flint et al. 2008, Robinson et al. 2008) (appendix F). The network also 

includes two meteorological stations recording temperature, relative humidity, wind 

speed and wind direction (appendix B). Continuous measurements for these data are 

collected using recording data loggers. These sites are also proximal to other monitoring 

networks that collect additional local long-term data from met stations, snow courses, 

snow pillows and depth sensors (Bales 2005, CDEC 2007).  Long-term snow courses 

were also used to calibrate the data for the study period to the historical means. 
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Abstract  

We present results and analysis from snow on and snow off airborne scanning LiDAR 

measurements over a 53.1 km
2
 area and 1850-3495 m elevation range in the southern 

Sierra Nevada. We found that snow depth as a function of elevation alone increased at a 

rate of approximately 15 cm 100 m
-1

, with short length-scale departures, until reaching an 

elevation of 3300 m where depth sharply decreased at a rate of 48 cm 100 m
-1

. 

Departures from the 15 cm 100 m
-1 

trend, based on one-meter elevation band means of 

regression residuals using a combined metric of slope and aspect, were mostly negative 

below 2050 m, +30 to -40 cm; mostly positive between 2050-3300 m, +30 cm; and 

negative above 3300 m, – 10 to -140 cm.  Although the study area is partly forested, only 

measurements in open areas were used. At lower elevations ablation is the primary cause 

of departure from the orographic trend. Above this elevation, to 3300 m, greater snow 

depths than predicted were found on the steeper terrain of the northwest and the less-

steep northeast, suggesting that ablation, terrain orientation, slope and wind redistribution 

from the west all play a role in local snow depth variability at these elevations. At 

elevations above 3300 m orographic processes mask the effect of wind deposition when 

averaging over large areas due to flatter terrain. This suggests a reduction in precipitation 

from upslope lifting, the exhaustion of precipitable water from ascending air masses, or 

both. Our results suggest a precipitation gradient for the 2100-3300 m range of about 5.7 

cm 100 m
-1

 elevation, a higher gradient than the widely used PRISM precipitation 

products, and a lower gradient than results from reconstruction of snowmelt amounts 

based on daily satellite snowcover data.   
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1. Introduction  

 

 In mountain regions of the western United States snowmelt is a dominant 

contributor to surface runoff, water use by vegetation and groundwater recharge (Bales et 

al. 2006, Earman 2011). Because of this importance, and the vulnerability of the 

mountain snowpack to climate warming, recent research has focused on the impacts of a 

rising elevation of the rain-snow transition on the annual and multiyear mountain water 

cycle and mountain ecosystems (Peterson et al. 2000, Marks et al. 2001, Lundquist et al. 

2005, Barnett et al. 2008, Maxwell and Kollet 2008, Anderson and Goulden 2011, 

Trujillo et al. 2012). 

 The distribution of mountain precipitation is poorly understood at multiple spatial 

scales because it is governed by processes that are either not well measured or accurately 

predicted. However, since a large majority of precipitation in the middle and upper 

elevations of the southern Sierra Nevada falls and accumulates as snow, with little 

ablation through much of the winter, we can examine snow accumulation to assess 

processes governing the distribution of precipitation.  

 Snow accumulation across the mountains is primarily influenced by orographic 

processes, involving feedbacks between atmospheric circulation, terrain and the 

geomorphic processes of mountain uplift, erosion and glaciation on the earth’s surface 

(Roe 2005, Kessler et al. 2006, Roe and Baker 2006, Stolar et al. 2007, Pedersen et al. 

2010). Orographic precipitation is well documented and central to determining the 

amount of snow water equivalent (SWE) in mountainous regions. The Sierra Nevada, a 

major barrier to land-falling storms from the Pacific, is ideally oriented to produce 

orographic precipitation and exerts a strong influence on the upslope amplification of 

precipitation and the regional water budget (Pandey et al. 1999). Despite this well-

developed conceptual understanding, our ability to apply this knowledge at spatial and 

temporal scales relevant to questions of regional climate and local forecasting are limited 

primarily due to our lack of accurate precipitation measurements in mountainous 

locations (Viviroli et al. 2011). Additionally, long narrow land-falling bands of         

extra-tropical Pacific water vapor, referred to as atmospheric rivers, frequently deposit 
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large fluxes of orographic precipitation as they ascend over the Sierra Nevada (Neiman et 

al. 2008, Ralph and Dettinger 2011). In some years atmospheric rivers can deposit more 

than half of the winter precipitation in the Sierra Nevada and represent a major link 

between ocean-atmosphere interactions and snowfall in the Sierra Nevada (Dettinger et 

al. 2011, Guan et al. 2012). 

 Peak seasonal SWE in snow-dominated elevations was originally conceived as a 

resource-management concept, used for defining the peak seasonal accumulation of 

snowpack water storage at index sites and to force statistically based runoff-prediction 

models for the subsequent spring and summer. In the Sierra Nevada April 1
st
 is 

operationally defined as an index date for peak accumulation, and is coincident with 

monthly cooperative snow surveys conducted for over a century at various locations in 

the Sierra Nevada (Church 1933). While this approach has provided operationally robust 

predictions in years near the long-term normal, snow accumulation varies from year to 

year, is associated with changes in long-term climatic conditions, and has in recent 

decades, trended outside the statistical normal (Milly et al. 2008). Hence, our current 

methods are becoming less reliable and accurate predictions require a more 

comprehensive approach to understanding the processes affecting precipitation and the 

probabilities of extremes (Rahmstorf and Coumou 2011). Thus, it is expected that a 

principal uncertainty in future forecasts of runoff, moisture stress and other water-cycle 

fluxes is accurately estimating the amount and distribution of SWE (Rice et al. 2011, 

Meromy et al. 2012).  

 Current mountain-basin operational SWE estimates are made with a limited set of 

synoptic surveys and continuous in-situ point measurements. Snow-covered area and 

reflectance properties from satellite at landscape scales, and experimental data from 

satellites and aircraft, are used in research, and to a very limited basis in experimental 

forecasts. In both cases these measurements can be blended using statistical or spatially 

explicit models to produce discharge forecasts (Fassnacht et al. 2003, Molotch et al. 

2005, Bales et al. 2008, Rice et al. 2011, Kerkez et al. 2012). Current ground 

measurements are limited by scale and by the heterogeneity of snow-accumulation 

processes (Bales et al. 2006, Viviroli et al. 2011). In a given watershed, uncertainty in 
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SWE estimates include the lack of spatially representative ground-based measurements, 

especially at the rain-to-snow transition and at high elevations, and the lack of         

under-canopy snow measurements (Molotch and Margulis 2008). Additionally, 

increasing winter temperatures will impact the distribution of rain versus snow across 

elevation gradients (Cayan et al. 2001). Thus, the skill of models for forecasting stream 

discharge are hindered by our lack of data in critical elevation bands and our limited 

ability to link remote-sensing and atmospheric data to precipitation patterns.   

 Research reported in this paper was aimed at determining the influences of terrain 

and orographic precipitation on patterns of seasonal snow accumulation along a 1650-m 

elevation gradient in the southern Sierra Nevada. Three specific questions posed in this 

research were: i) what is the variability in snow accumulation along an elevation gradient, 

ii) what is the magnitude of the orographic snow-accumulation pattern and, iii) to what 

extent do local terrain and wind redistribution influence this pattern. It was also our aim 

to use these results to assess prior model-based estimates of accumulated SWE and total 

precipitation.  

 

2. Methods 

 Our approach involved analysis of: i) two LiDAR acquisitions, one when the 

ground was snow free and one near peak snow accumulation, ii) continuous ground-

based measurements of snow depth, SWE, wind speed and air temperature, plus 

operational bright-band radar observations, and iii) model estimates of SWE and 

precipitation. The LiDAR data were used to estimate snow depth across the study area at 

a 1-m spatial resolution in open areas without canopy cover. The ground measurements 

were used in interpreting the spatial patterns and in estimating snow water equivalent, 

and the bright-band radar in determining the rain-snow transition elevation for 

precipitation events.   

 

2.1 Location 

 Our study area is centered at approximately 36.5° latitude, and includes the 53 

km
2
 area covered by the two LiDAR flights in the southeastern part of the 135 km

2 
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Marble Fork of the Kaweah River watershed, located in Sequoia National Park in the 

southern Sierra Nevada (Figure 1). Elevations were 1850-3494 m, going from a Giant 

Sequoia grove at the lowest elevation, through mixed-conifer forests, to Red fir forests, 

subalpine forests and the alpine zone at the highest elevations. Continuous ground 

measurements of snow depth (26 points), SWE and meteorological variables (6 stations) 

in and near the flight area, plus 16 operational snow-depth and SWE sensors within 95 

km of the study area, and operational bright-band radar observations up to 100 km 

upstream in the San Joaquin Valley and on the California coast were used to interpret the 

LiDAR-measured snow depth.  

 

2.2 LiDAR altimetry 

 For this study airborne-scanning LiDAR altimetry was collected by the National 

Center for Airborne Laser Mapping (NCALM) using an Optech Gemini
®
 ALTM 1233 

airborne-scanning laser (Zhang and Cui 2007). The two campaigns were conducted in the 

2010 water year: March 21-22 for snow on, and August 15 for snow off (Appendix A). 

The instrument settings used for acquisition provided a high point density, average >10 

m
-2

, and fine-scale beam-sampling footprint of approximately 20 cm (Table 1). Ground 

points were classified by NCALM through iteratively building a triangulated surface 

model with discrete points classified as ground and non-ground, where last returns were 

only considered for identifying ground points (Shrestha et al. 2007, Slatton et al. 2007). 

The nominal horizontal and vertical accuracy for a single flight path are 0.11m and 0.75 

m, respectively; but higher accuracy was likely achieved where flight paths overlapped.  

 A digital surface model (DSM) was created by using first-return points and 

discarding outliers >100 m (tallest trees are approximately 85 m) and returns below -0.1 

m; where values in the range -0.1 to 0 m were classified as 0. A continuous-coverage 

bare-earth digital elevation model (DEM) was created through kriging of ground points 

using a linear variogram with a nugget of 15 cm, a sill of 10 m, a range of 100 m, and a 

search radius of 100 m, where the minimum number of points was 5 (Guo 2010).  We 

used a 1-m gridded model for representing our data, as this is the smallest footprint that 

most closely matches the expected beam sampling footprint and uncertainty in horizontal 
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accuracy. After interpolation, digital models of mean elevation and point-return density 

grids were georegistered to a common grid for snow-on and snow-off flights. The 

average point-return densities were 8 m
-2 

for the surface model and 3 m
-2

 for the bare-

earth model. Grids with no point returns in 1m
2
, primarily under forest canopy, were 

considered null thus minimizing interpolation errors.  

 The accuracy of the LiDAR altimetry was evaluated using 352 geo-registered 

2.5×2.5 m grid samples of the point cloud along the paved highway in the western part of 

the domain; because the highway is plowed regularly surface heights do not change with 

snow accumulation. These samples had a bias of +0.05 m and a standard deviation of 

0.07 m, which is below the estimated combined two-flight instrumental elevation error of 

0.11 m (Zhang and Cui 2007, Xiaoye 2008). A possible explanation of the 0.05 m bias 

for the snow-on flight is that some sections of the road had a small amount of snow 

remaining after plowing (personal communication Juan Fernandez, NCALM). 

 A 1-m gridded digital surface model of the vegetation canopy, created by 

subtracting the DSM from the DEM, was used to create a layer of vegetation canopy ≥ 2 

m. In order to accurately determine snow depth, snow-depth values were further 

classified into two groups, where snow depth was either greater or less than the 

coincident vegetation height. This allowed us to consider for further analysis only snow 

from open slopes or where it had accumulated in the gaps between vegetation, mainly 

between trees, or covered it completely, i.e. covered understory. To reduce the amount of 

error we eliminated locations with slope >55°, warranted by the high number of 

erroneous values and known issues of vertical inaccuracies due to slope angle (Schaer et 

al. 2007, Deems et al. 2013).  Additionally, we eliminated areas with rapid annual 

vegetation growth that had negative snow-depth values (e.g. areas within a wet meadow); 

and lastly we filtered out areas with open water, buildings, and parking lots where returns 

were not representative of local snow accumulation. Mean snow depth for each 1-m 

elevation band, with areas >100 m
2
, was computed from the snow-depth grid. 

Additionally a 5-m elevation model, aggregated from the 1-m bare-earth model, was 

produced to remove scaling biases in the analysis of slope and aspect (Kienzle 2004, 

Erskine et al. 2006).   

16



 
 

 
  
 

 

2.3 Spatial analysis 

 To analyze possible correlations between terrain steepness and snow distribution 

we calculated the first derivative of slope and snow depth, over distances of 5-100 m, 

using the 1-m mean snow depths and the corresponding mean slope for each 1-m 

elevation band, computing the correlation at 5-100 m using 5-m steps. Using the 

derivatives identifies transition areas. 

 For quantifying the combined effect of slope and aspect on snow depth we 

indexed aspect on a scale of 1 to -1 using methods adapted from Roberts (1986): 

      

                                              (1)  

 

where    is the aspect value,    is the azimuth variable and    the focal aspect, e.g. 45° 

for northeast. The aspect value was further scaled by the sine of the slope angle, yielding 

0 in flat terrain and approaching 1 as the mean slope increases:  

     

                               (2) 

 

where    is aspect intensity and   the slope angle. The method of scaling the cosine of 

aspect by sine of slope is referred to as “northness” (Molotch et al. 2004). In this paper 

we expand this concept to include other aspects as well by centering the maximum value 

of the cosine on the focal aspect. 

 

2.4 Ground measurements 

 Meteorological data were obtained from six meteorological stations in the flight 

area for the period from the first significant snowfall on December 3, 2009 to the LiDAR 

acquisition date, henceforth referred to as the snow-accumulation period. At these 

stations temperature was measured using Vaisala HMP-35 and Campbell T-108 sensors, 

with wind speed and direction measured using RM Young 5103 sensors. All 

meteorological stations measure hourly average wind speed; and two stations, Wolverton 
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and Panther, recorded maximum wind gusts at 10-second scan intervals (Appendix B). 

The M3, Topaz, and Emerald Lake stations are managed by the University of California 

Santa Barbara, Giant Forest is operated by the California Air Resources Board (data from 

http://mesowest.utah.edu/) and Case Mountain is managed by the Bureau of Land 

Management (data from http://www.raws.dri.edu). The Giant Forest station is located on 

an exposed shrub-covered slope; the Case Mountain, Wolverton and Panther stations are 

in forest openings; Emerald Lake is an alpine cirque; and Topaz and M3 are in alpine fell 

fields. 

 Wind sensors are between 4.2 and 6.5 m above ground level, and wind speeds 

were scaled to 10 m using a logarithmic profile to estimate saltation thresholds: 

 

       [
   

  
 

  
   
 

]                                                 (3) 

 

where     is wind velocity at 10 m,   is measured velocity, z is instrument height, and   

the site specific roughness length. To identify periods with the greatest potential for wind 

redistribution of snow we screened for times when temperature was below 0°C and wind 

velocity above the minimum saltation threshold of 6.7 m sec
-1

 established by Li and 

Pomeroy (1997a).  

 Snow depth was measured continuously by 26 ultrasonic snow-depth sensors 

(Judd Communications) placed on various slopes, aspects and canopy covers within 300 

m of the Panther and Wolverton meteorological stations. These snow-depth sensors have 

an effective beam width of 22°, and were mounted 4.6 m above the ground on a steel arm 

extending 0.9 m from a vertical steel pipe anchored to a U-channel post.  This 

arrangement provided up to a 2.3 m
2
 snow-depth observation area over flat bare ground, 

with sampling area decreasing as snow depth increases. 

 The LiDAR measurements, plus ground-based snow-density measurements, were 

used to develop estimates of SWE versus elevation. Paired snow-depth and snow-pillow 

SWE measurements were part of the California Cooperative Snow Survey network and 

data were acquired from the California Department of Water Resources 
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(http://cdec.water.ca.gov/) for all 16 operable stations on the western slope of the 

southern Sierra Nevada within 100 km north and 50 km south of the study area (Figure 

1). One snow pillow (GNF) is located 2.5 km west-southwest of the LiDAR acquisition 

area. Daily snow densities were estimated by dividing the daily mean SWE from the 

snow pillows by snow depth from the collocated ultrasonic depth sensors. To minimize 

the error from intermittent noise associated with snow pillows we used the daily average 

SWE and did not consider measurements under a 20-cm SWE threshold, where complete 

snow coverage of the pillow is unlikely and the combined uncertainties of depth sensors 

and snow pillows can yield significant error in SWE and density (Johnson and Schaefer 

2002). All instrumental data were formatted, calibrated and gap filled by interpolation or 

correlation with other sensors and aggregated to daily means prior to analysis (Moffat et 

al. 2007). Less than 1% of meteorologic data required filtering or gap filling, snow-pillow 

data required slightly more, <5%, and snow depth required up to 20%, where data 

exceeding error thresholds required gap filling or interpolation (Appendix A).  Stations 

with data gaps >2 days with no nearby station for interpolation were not used in our 

analysis.  

 

2.5 Bright-band radar 

 The atmospheric rain-snow, hydrometeor transition elevation was determined 

from Doppler-radar bright-band snow-level analysis (Ryzhkov and Zrnic 1998, White 

2003, Lundquist et al. 2008, White et al. 2009). These data, from analyses done by 

National Weather Service scientists, resolved hourly freezing levels of precipitation 

events occurring over wind profilers upstream of the LiDAR-acquisition area. We present 

data compiled from observations collected over the 2010 water year snow-accumulation 

period from the three nearest upwind locations of Punta Piedras Blancas, Lost Hills, and 

Chowchilla, California (Figure 1). 
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2.6 Model reanalysis 

 We calculated spatial SWE from LiDAR snow-depth measurements using mean 

snow-density measurements from the 16 snow-pillow sites. These values were compared 

with two scales of the widely used PRISM precipitation estimates, plus SWE estimates 

reconstructed from daily satellite snowcover (Daly et al. 1994, Daly et al. 2008, Rice and 

Bales 2011, Rice et al. 2011).  Using the available 4-km and 800-m PRISM model output 

we summed precipitation for the accumulation period at the spatial extent of the LiDAR 

acquisition. The 4-km data were for the 2010 water year and the 800-m data were 30-year 

means. For comparison, we then calculated the total seasonal precipitation for each 1-m 

elevation band across the elevation gradient of both data sets, and aggregated values to 

the resolution of the comparative data. Whereas the reconstruction data presented are the 

2000-2009 accumulation-period means of the entire Kaweah River watershed based on 

300-m elevation-bin averages of MODSCAG reconstructed SWE (Rice and Bales 2013).   

 

3. Results 

3.1 LiDAR-measured snow depth 

 Of the 53.1 km
2
 planer footprint of the LiDAR survey, 0.8 km

2
 were over water or 

in areas that exceeded filter thresholds of the DSM. An additional 0.01 km
2
 of area with 

slope >55°, roads and buildings, and rapidly growing meadow vegetation were also 

excluded from the analysis. The total snow-covered area, where both LiDAR and ground 

returns were available at a density >1 m
-2

, was 40.2 km
2
 and of this area 5.0 km

2
 was 

under tree canopies and also excluded from analysis. This left an area of 35.2 km
2
 

remaining and of this <0.2 km
2
, mostly below 2300 m, was snow free. Mean snow depth 

of this area, measured by LiDAR, increased with altitude from 1850 to 3300 m elevation, 

with depths decreasing above 3300 m (Figure 2a). At elevations below 2050 m the linear 

slope of snow depth versus elevation is similar to that above with the exception of a short 

steep increase in snow depth at 2000-2050 m. Up to 3300 m, snow depth shows a strong 

correlation with elevation (R
2
 = 0.974, p < 0.001), increasing at 15 cm per 100 m 

elevation. Above 3300 m, snow depth sharply decreased at a rate of -48 cm. The increase 

in snow depth with elevation up to 3300 m is accompanied by a decrease in canopy cover 
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with elevation. Canopy cover, based on the canopy-height model, is greater than 40% 

below 2600 m, and near zero above 3300 m (Figure 2b). Overall, the total area of canopy 

cover over 2 m in height is 11.9 km
2
 and mostly below 2800 m in elevation. 

 

3.2 Wind and topographic effects 

 Hourly average wind speed at the 6 meteorological stations showed that the 

highest potential for redistributing snow was from the westerly directions, with a few 

periods with strong winds from the northeast at Topaz (Figures 2f and 2g). We found the 

greatest potential for redistribution at the 3 stations above 2800 m and, to a lesser extent, 

at one lower elevation station, Giant Forest, which is located in an exposed area free of 

upwind vegetation. Only five instantaneous gusts over 6.7 m sec
-1

 were recorded at 

Panther during the snow-accumulation period, and one at Wolverton; and no hourly 

averages at these sites were over 6.7 m sec
-1

 (Appendix A). 

 Snow depths classified by aspect were lowest in the southwest and southeast 

quadrants, and highest in the northwest and northeast (Figure 2c). This pattern was most 

pronounced at elevations above 2400 m in all quadrants, and especially between 2300-

2700 m in the southeast; although only a small percentage of area falls into the southeast 

classification at this elevation (Figure 2c). The aspect with the least overall area of 

representation is northeast and the greatest is the northwest.  

 A visual comparison of mean slope with mean snow depth suggests a secondary 

trend due to terrain slope (Figure 2d). The derivatives, or changes in mean snow depth 

and slope over 5-100 m averaging lengths show an (anti) correlation at 5 m of -0.16, 

which becomes most negative at 35 m (-0.36), and tapers to -0.16 at 120 m (Figure 2h). 

When plotted together the most rapid changes in slope show the greatest antithetical 

response in snow depth until reaching 3300 m, where they become more-positively 

correlated as the terrain becomes flatter (Figure 2e).   

 The combined effects of slope and aspect express the “aspect intensity” (  ), 

where higher values represent more terrain at that aspect and/or greater slope angles 

(Figure 3a). This analysis reveals the terrain-feature space of the study area, where the 

predominant (half quadrant) aspects are north, southwest, west and northwest, which 
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have positive    values; and their less-represented respective reciprocals of south, 

northeast, east and southeast, which have negative values. At elevations <2000 m, 

moderate east and southeast slopes, indicated by the slightly negative    values, quickly 

rise to steeper north, northwest and west slopes, as indicated by the higher and positive    

values (Figure 3a). Near 2400 m, southwest aspects become more predominant than 

north, as indicated by the crossover in    values, and at higher elevations aspect becomes 

equally represented by west, southwest and northwest, with some southerly aspects 

(negative north    values) above 2800 m (Figure 3a). 

 To evaluate the terrain effects secondary to elevation we applied a regression to 

all snow depths as a function of elevation using the slope and intercepts for 1850-3300 m 

(Table 2).  The residuals from this regression were then correlated with    . The    

profiles most highly correlated with residuals were southwest at the lowest (1850-2051 

m) and highest (3300-3494 m) elevations, and northwest at the mid elevations (2051-

3301 m) (Table 2). Relatively high correlations where also found with north at 1850-2050 

m, though of opposite sign, and west at 2051–3300 and 3301-3494 m, of the same sign.  

 

3.3 Bright - band radar 

 The radar sounding data include 8287 hourly observations (353 missing), with 

freezing levels ranging from 200 to 2700 m (Figure 4). The greatest variability and 

highest mean freezing level occurred at the coastal station of Punta Piedras and the lowest 

at the furthest inland station of Chowchilla. This decline in mean and freezing levels, 

going from the coast inland, suggests that the snow level drops as the air mass moves 

inland. The freezing level of the farthest inland station, Chowchilla, is 2263 m; this 

closely tracks the break in the coefficient of variation and correlation between snow 

depth and elevation observed from LiDAR at 2050 m (Figure 2a). 

 

3.4 Ground measurements 

 The LiDAR flights were 17 days after peak depth and three weeks before peak 

SWE (Figures 5a, 5b).The mean and standard deviation of snow depth during LiDAR 

acquisition, recorded by the 42 depth sensors, was 210 +38 cm. This was 19% less than 
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the mean peak depth of 266 +44 cm recorded on March 4
th

. However, the mean SWE 

recorded by the 16 snow pillows during LiDAR acquisition was 82 +16 cm, 2% less than 

the mean peak SWE of 83 +20 on April 14. Two snow pillows, the lowest, Giant Forest 

(GNF) at 2027 m, and the most southerly, Quaking Aspen (QUA) at 2195 m, reached 

peak SWE one week before acquisition, on March 15
th

, and had ablated 9% and 7 % 

SWE, respectively, prior to the time of the LiDAR acquisition (Figure 5b).  All other 

snow pillows either gained SWE or ablated <5 % in the period prior to the snow LiDAR 

acquisition. Snow depths measured at the snow-pillow sites on the days of the LiDAR 

flights failed to show the elevation patterns apparent in the LiDAR depths (Figure 6).  

 Daily density values calculated for the 16 snow-pillow locations for Feb 1 to Apr 

30 indicate a general trend of increasing density and consistent intra-site patterns of 

accumulation and densification corresponding with stormy and clear conditions (Figure 

5).  Over the 3-month period, density decreased with each accumulation event and 

increased through densification as the snowpack settled, metamorphosed and integrated 

free water from melt or rain. At the time of the LiDAR flights the mean density was 384 

kg m
-3

, with a range of +83 kg m
-3

 and standard deviation of 42 kg m
-3

 across the 1036-m 

elevation range represented in these data. The combined measurement error of snow-

pillow and depth-sensor instruments used in the density calculation can be greater than 

the range of variability reported here (Johnson and Schaefer 2002). We found low spatial 

variability in density that showed no significant relationship with elevation at our sites. 

This observation concurs with other studies of mountain snowpacks finding spatial 

consistency in the density of mountain snowpacks (Mizukami and Perica 2008, Jonas et 

al. 2009). Making these assumptions we estimated the SWE for each elevation band over 

our measurement domain to be the product of mean density and snow depth as 

represented in (Figure 4c).   

 

3.5 Model reanalysis 

 The 4-km resolution PRISIM data were comprised of 7 grid elements in the study 

domain, whereas the 800-m product had approximately 4225 grid elements. The 

snowmelt and PRISM data show a positive correlation between precipitation and 
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elevation up to ~3300 m and a reversal of this trend at the higher elevations, as do the 

LiDAR data; but they differ markedly in their slopes and intercepts (Figure 7). The 4-km 

and 800-m PRISM data demonstrate similar magnitudes of increase in precipitation with 

elevation, 3.3 and 2.3 cm 100 m
-1 

respectively. The LiDAR SWE and reconstructed 

snowmelt both have slopes of 6 cm 100 m
-1

. However, the SWE estimates from 

reconstructed snowmelt are offset 0.2-0.4 cm from the LiDAR estimates. Because of the 

shallow slope of the precipitation versus elevation line, the PRISM estimates diverge 

from the LiDAR values below about 2800 m. 

 

4. Discussion 

 The patterns of snow depth on Figure 2 represent the interplay of orographic, 

physiographic, and climatic influences on precipitation and snowmelt. Local departures 

from the orographic/climatic pattern at finer scales may reflect the influence of 

physiographic variability in slope and aspect on snow accumulation.  

 Early in the year, before high solar zenith angles accelerate spring snow ablation, 

orographic deposition, vegetation and wind are the dominant influences on snow 

distribution. While interannual snow depth varies significantly, these factors should 

produce spatial patterns of snow accumulation that are somewhat stationary from year to 

year, e.g. deep or shallow snow will be found in the same locations. This stationarity has 

been observed in environments as diverse as the Arctic and Rocky Mountains (Erickson 

et al. 2005, Deems et al. 2008, Sturm et al. 2010). The overall increase in snow depth 

with elevation in the current domain is consistent with the orographic effect of mountains 

on precipitation (Roe 2005, Roe and Baker 2006). At lower elevations, e.g. below 2050 

m, a mix of rain and snow precipitation appears to influence the amount of seasonal snow 

accumulation. Above 3300 m, the reduced lift over flatter terrain and an exhaustion of 

precipitable water as storms rise less steeply result in declining snow depths at the higher-

elevations (Houze 2012). 
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4.1 Rain-snow transition 

 Seasonal snow accumulation at the lowest elevations and on south-facing slopes 

is “warmer” than snow from higher elevations and on north-facing slopes that has fallen 

at colder temperatures, accumulated to greater depths and kept cold for longer periods of 

time. Hence, locations with less snow, greater positive net energy exchange (from 

radiation or condensation), and a larger fraction of liquid precipitation, are most 

susceptible to melt during the accumulation period. The impact of a warming climate is 

most evident at these elevations due to the increase in minimum winter air temperatures 

and liquid precipitation from tropical storms; and both affect the amount of snow covered 

area on mountain slopes (Aguado 1990, Cayan 1996, Cayan et al. 2001, Dettinger et al. 

2004).  

 Below 2050 m we find a consistently high coefficient of variation in depth, and a 

steep increase in snow depth vs. elevation between 2000 and 2050 m (Figure 2a). This 

elevation range tracks very closely with the seasonal-aggregate hourly freezing-level 

consensus resolved with bright-band reflectance data collected from upwind profiler 

stations on the California Coast and Central Valley (Figures 1 and 4 ). The hourly 

consensus of bright-band freezing levels over wind profilers represent the transition 

elevation where hydrometeors turn from frozen to liquid, and our instrumental data 

frequently show a concurrent reduction in snow depth with bright-band freezing levels.  

However, as other researchers have noted, it is difficult to identify the effects of specific 

storms on snowpack ablation due to the variability of atmospheric conditions close to the 

earth’s surface (Ryzhkov and Zrnic 1998, Lundquist et al. 2008). Local SWE 

measurements are only available at one location below 2050 m (GNF); and this station 

does show a loss of SWE in mid-February as a result of a rain-on-snow event (Figure 5). 

SWE, stream discharge or soil-moisture measurements may help resolve the impact of 

individual rain events and identify the elevations where this transition occurs. 

Nevertheless, given the expected large storm-to-storm variation in freezing level, the 

relatively sharp transition in slope of snow accumulation at about 2050 m does suggest 

that in the winter 2010, most precipitation above this elevation fell as snow and winter 

melt was of secondary importance. 
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4.2. Terrain slope, wind redistribution and aspect intensity  

 The profiles of snow depth and slope (Figures 2a and 2d) suggest an inverse 

relationship. This is seen most clearly at an averaging window of 35 m, as indicated by 

the correlation between the change in slope and the change in snow depth (Figures 2e and 

2h). These results indicate that greater snow depths will be found in locations of 

decreasing slope, e.g. the toe of slopes and valley bottoms, suggesting the role of wind 

redistribution in these less-turbulent and gravitationally favorable locations. In 

concurrence with our wind observations, snow-depth profiles by aspect also show more 

accumulation on the northeast slopes and less on the southwest; however, in our domain, 

northeast has the least total area of all aspect quadrants (Figure 2c).   

 Our results suggest that wind patterns from a single station may be a poor 

indicator of the wind fields influencing snow redistribution across the entire domain. We 

attribute the inconsistent wind direction between stations to terrain capable of modifying 

the turbulence of the free atmosphere upwind of the stations. The M3 and Emerald Lake 

sites have upwind obstacles, and the Wolverton and Panther stations have low wind 

speeds, reflecting the muting effect of tall forest cover on wind speed and consequently 

snow redistribution. Topaz Lake is located in smooth terrain with limited upwind 

influence; and for this reason the Topaz Lake station may best represent the wind patterns 

of the free atmosphere and predominant southwest storm winds. We expected snow 

transport by wind to be coarsely defined by the consensus of the station data, with a 

strong potential for anisotropic deposition, favoring primarily northeast and secondarily 

southeast slopes. We see this pattern reflected when considering snow depths classified 

only by aspect as in Figure 2c, and to a limited extent the distribution of residuals to the 

southeast below 3300 m (Figure 3c).  

 The residuals plotted with    indicate that snow depths on the steeper, northwest-

facing slopes at the mid elevations and northerly slopes at the lowest elevations show the 

greatest positive departures from depth predicted by elevation alone (Figure 3c). The 

most-negative departures are found at the highest elevations, trending from the southwest 

to northeast on the shallow slopes of the flatter terrain. However, the correlation of snow 

depth residuals with     does not emphasize greater snow depths in the limited area of 
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low-gradient easterly aspects, where wind deposition is most likely to occur (Figures 3a 

and 3c). These findings suggest that small-scale departures from the overall orographic 

trend can be observed in the elevation profile, but require a localized approach such as 

classification to identify relevant spatial patterns on the landscape. This approach has 

been effective in the case of localized wind deposition, offering a deterministic 

explanation for spatial stationarity in snow-patch development and persistence (Winstral 

et al. 2002, Schirmer et al. 2011). In our domain it is possible that wind effects are 

masked when considering topography as an elevation-band mean due to the limited 

easterly aspects in the predominantly northwest-facing basin. It is also possible that there 

is limited utility in considering prevailing winds when predicting localized effects of 

wind on snow redistribution, where the roughness length exceeds the scale of interest.  

Research into the relationship between slope, aspect and wind has found small-scale 

slope breaks and surface roughness, dynamic in a snow-covered environment, having the 

most significant effects on where snow accumulates (Li and Pomeroy 1997b, Pomeroy 

and Li 2000, Winstral et al. 2002, Fang and Pomeroy 2009). 

 Aspect intensity provides a method for characterizing the combined influence of 

slope and aspect and its effect on physical or ecological processes. It can serve as a proxy 

for several processes affecting snow depth, radiation, upslope deposition and potentially 

wind and gravitational redistribution. The radiation influence arises because aspect and 

slope greatly enhance or reduce incoming and reflected radiation in relationship to the ray 

path from the sun. Upslope deposition is important because precipitation amounts are 

highly correlated with the steepness of the terrain and winds that are orthogonal to the 

slope (White et al. 2003). The processes of wind saltation and turbulent redistribution, 

farther from the ground surface, favor deposition on leeward aspects but not on the 

steepest slopes. For this reason   , which is amplified by slope, does not have a linear 

relationship with wind deposition; likewise for gravitational redistribution. However, by 

using classification methods and further analysis, beyond the scope of this paper,    will 

likely be an effective tool for this as well. 
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4.3. Depth-density relationship 

 Time-series data in and around our measurement domain suggest that melt and 

sublimation are limited during the accumulation period, and snow density is relatively 

consistent between measurement sites (Figures 5 and 6). Measurements of SWE from 16 

snow pillows over 1300 m of elevation show snowmelt losses ranging from about 10 cm 

at GNF to zero at KSP, with most sites showing less than 3 cm loss in SWE over the 

entire accumulation period (Figure 5b). In dry intercontinental locations the sublimation 

plus evaporation rates can be in excess of 50%, but are much lower in the maritime 

climate of the Sierra Nevada and lowest during the accumulation period (Essery and 

Pomeroy 2001, Ellis et al. 2010b). Studies conducted at 2800 and 3100 m in the Emerald 

Lake basin, located in the center of our measurement domain, found net losses due to 

evaporation and sublimation of <10% for the period between December 1st and April 1st 

(Marks and Dozier 1992, Marks et al. 1992). In the 2010 water year we consider 

cumulative loss due to sublimation/evaporation and snowmelt to be minimal prior to the 

LiDAR acquisition at all elevation bands, with more melt occurring at the lowest 

elevations and on the southeast facing slopes as indicated by the loss of SWE measured at 

the low-elevation snow-pillow sites and reduced snow depths on the southeast mid-

elevation slopes (Figure 3).  

 

4.4 Model comparisons 

 Although orographic precipitation is a well-documented first-order process, in the 

Sierra Nevada it is not well described at the watershed to basin scale owing to the very 

limited availability of ground-based SWE and precipitation measurements. One set of 

measurements, described above, and two additional model data sets, which are based in 

part on measurements (mainly from lower elevations), are available for comparison with 

the current LiDAR snow-depth data: i) the point snow-pillow data, ii) the widely used, 

gridded PRISM precipitation estimates (Daly et al. 1994, Daly et al. 2008) and iii) 

seasonal snowmelt estimates reconstructed from daily satellite snowcover data (Rice and 

Bales 2011, Rice et al. 2011). Each set of measurements provides a different index of 

orographic response where i) LiDAR is a one-time snapshot of snow depth; ii) 
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reconstructed snowmelt is a retrospective SWE estimate, reflecting precipitation minus 

evaporation and sublimation; and iii) PRISM is a retrospective precipitation estimate, 

based largely on lower-elevation stations. Nevertheless, these models offer the best 

available spatially relevant indices of seasonally accumulated precipitation and 

incorporate in-situ measurements, remote-sensing observations or both.  

 As Figure 6 shows, snow depths from snow-pillow sites fail to capture the 

elevation patterns apparent in the LiDAR data. This pattern is also apparent in the SWE 

values from the same sites (Figure 5b). While the least depth is registered at the lowest 

elevation site (GNF, 2027 m), where a greater percentage of precipitation falls as rain, the 

other sites do not consistently increase with elevation; for this reason we chose to convert 

LiDAR snow depth to SWE using the mean of all available instrumental snow densities. 

PRISM data from the 4-km and 800-m PRISM models are calculated over the same area 

as the LiDAR data, whereas the retrospective-snowmelt model data are for the entire 

Kaweah River watershed (Figure 7). The snowmelt reconstruction and PRISM data both 

show a positive correlation between precipitation and elevation up to ~3300 m and a 

reversal of this trend at higher elevations, as do the LiDAR data, but they differ markedly 

in their slopes and intercepts (Table 2). The two PRISM profiles do not demonstrate the 

same magnitude of increase in precipitation with elevation that we see in the LiDAR or 

reconstructed SWE. We believe this is due to a combination of three factors. First, the 

limited number of stations used to calculate the PRISM trends, the lack of mountain 

stations in particular; second, the fraction of total precipitation contributed by rain; and 

third, SWE loss from ablation due to melt, sublimation and evaporation, mostly at lower 

elevations in the SWE reconstruction and LiDAR. While these effects are most important 

below 2050 m, they can have a small influence, on the order of about 10%, above that 

elevation. 

 SWE from reconstructed snowmelt and LiDAR SWE have very similar slopes, 

but the reconstruction has less SWE, particularly at the lower elevations. The reduced 

lower-elevation SWE in the reconstruction is expected because: i) as seen in Figure 3 the 

LiDAR domain encompasses more northerly, less-ablation-prone slopes than the more-

evenly split watershed, ii) there is a decreased contribution of under-canopy SWE due to 
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lower-elevation forest cover, which was filtered from LiDAR measurements, and iii) 

there was 90% of average precipitation in the 2000-2009 snowmelt reconstruction period 

versus a 106% seasonal average when the 2010 LiDAR data were collected. Also, the 

offset in the reconstructed SWE estimates may reflect a bias in snow-covered area 

estimates, which have a 500-m spatial resolution and are heavily influenced by canopy 

(Rice et al., 2011). That is, the LiDAR data represent open areas, and the reconstructed 

SWE values represent the full domain, but empirically corrected for canopy. Further, 

these reconstructed SWE estimates are based on a temperature-index calculation, versus a 

full energy-balance approach. Regardless of these differences, the reduction in snow 

depth we observe at the highest elevations is captured by the two PRISM models and the 

snowmelt reconstruction. The latter also closely follows the pattern of precipitation found 

by our measurements, albeit at a much courser scale and larger domain. These results 

emphasize the need for instrumental data assimilation across the entire elevation gradient 

for accurate estimates of SWE.   

 

5. Conclusions 

 The current results show elevation as the primary determinant of snow depth near 

the time of peak accumulation over 1650 m of the west slope of the southern Sierra 

Nevada, which drop-off near the crest. This profile shows large- and small-scale trends 

from orographic processes, mean freezing level, slope, terrain orientation and wind 

redistribution. Snow depth increased approximately 15 cm per 100 m elevation
 
from 

snow line to about 3300 m and, when scaled using mean regional snow density on the 

acquisition dates (384 kg m
-3

), equals approximately 6 cm per 100 m elevation
 
SWE. 

This rate is nearly equal to SWE reconstructions but much higher than the widely used 

PRISM precipitation data. Localized departures from this trend of +30 to -140 cm from 

the km-scale pattern of linear increase with elevation are seen in an elevation profile of 1-

m elevation bands. From 3300 m to our highest measurements at 3494 m, snow depth 

decreases approximately 48 cm per 100 m elevation. Both PRISM and SWE 

reconstructions show reductions at higher elevations as well.  
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 The spatial coverage of LiDAR-derived snow depth demonstrated here provides 

an effective bridge between space-borne observing platforms, point-scale measurements 

and models to resolve persistent patterns of snow accumulation. LiDAR-derived snow-

depth measurements obtained at peak accumulation provide a scalable template for 

identifying the spatial variability of seasonally integrated snow-depth and SWE within a 

domain. LiDAR estimates of snow accumulation in open areas with limited canopy 

influence provide a much-needed "ground truth" estimate of precipitation free of canopy 

influence.  

 These scalable results of snow elevation gradients and finer-scale patterns of 

deposition and melt provide a basis for developing accurate representations of snow 

depth of local to regional relevance for snow researchers, the remote-sensing community 

and water-resource managers. As this body of data grows from research initiatives to 

operationally useful assessments of seasonal water storage, discharge and flood potential, 

so too should our understanding of ecohydrologic responses to short- and long-term 

perturbations. Catalogs of repeat snow-depth measurements will further constrain 

estimates of SWE in specific watersheds with respect to elevation, the persistent seasonal 

effects of wind, topography and the impact of anomalous climate patterns.  
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Table 1.  Target parameters and attributes for LiDAR flights 

Flight parameters Instrument attributes 

altitude AGL 600 m wavelength 1064 nm 

flight speed 65 m sec
-1

 beam divergence 0.25 mrad 

swath width 233.62 m laser PRF 100 kHz 

swath overlap 50% scan frequency 55 Hz 

point density 10.27 m
 2
 scan angle + 14° 

cross track res. 0.233 m scan cutoff 3° 

down track res. 0.418 m scan offset 0° 
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Table 2. Regression of residuals with IA 

Elevation, m 

r
2 

/intercept/slope
a
 

North Northwest Southwest West 

1850-2050 0.32/-23/124 0.22/-26.4/74.3 0.34/2.0/-531.4 0.14/-28/81 

2051-3300 0.22/1/102 0.42/-10/134 0.00/3/10 0.37/-15/160 

3301-3494 0/-68/-260 0.08/-72/594 0.32/-105/1625 0.25/-91/1028 

a
All p < 0.001, with exception of north at 3301-3494 m and southwest at 2051-3300 m. 
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Figure 1. Study area, instrument locations and snow depth. Lower left shows California with Sierra 

Nevada, outline of Sequoia and Kings Canyon National Parks and location of radar stations. Inset shows 

LiDAR footprint and location of snow-depth sensors and snow pillows. Upper right shows elevation and 

50-m contour map with locations of met stations (Case Mountain, 5 km southwest, and Giant Forest, 

900 m southwest, not shown). Bottom right is LiDAR measured 1-m mean snow depth in areas free of 

vegetation; legend shows lower cut-off values. Snow-pillow sites shown are, from north to south: 

Graveyard Meadow (GRV), Green Mountain, Chilkoot Meadow (CHM), Poison Ridge (PSR), Kaiser 

Pass (KSP), Huntington Lake (HNT), Upper Burnt Corral (UBC), Tamarack Summit (TMR), Bishop 

Pass (BSH), Black Cap Basin (BCB), Charlotte Lake (CRL), Giant Forest (GNF), Chagoopa Plateau 

(CHP), Farewell Gap (FRW),  Casa Vieja (CSV), Quaking Aspen (QUA). 
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Figure 2. Left panel shows 1-m elevation band mean of: a) snow depth with regression lines with upper 

quartile of Chowchilla bright band radar freezing level at 2068 m, and snow depth coefficient of variation, 

b) percent canopy cover, c) 35-m running average of mean snow depth and stacked area by elevation for 

each 90
o
 quadrant, d) terrain slope, and e) first derivative of mean slope (green) and snow depth (blue) over 

35-m running average. Right panel shows: f) hourly average wind speed and direction for accumulation 

period (top) and periods with highest probability of snow redistribution (bottom), with radius scale in m 

sec
-1

, azimuth in degrees, and g) correlation coefficient between the first derivative of slope and the first 

derivative of snow depth for averaging intervals of 5-100 m of elevation all p < 0.001. 
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Figure 3. a) Aspect intensity, b) residuals of mean snow from 1850-3300 m regression line (from Figure 

2a), and c) regression of residuals for lower middle and upper elevations showing aspect and slope 

dependent departures from elevation trend. 
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Figure 4. Data distribution for the seasonal-

accumulation hourly bright-band freezing 

level recorded at three wind-profiler stations 

upwind of the study area, locations shown in 

Figure 1.  
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Figure 5. In-situ measurements of: a) snow depth, b) SWE and c) density; data for all 

west-slope snow-pillow and depth sensors in sites located within one degree latitude 

of study area.  Upper panels show data for individual stations, with highest and lowest 

elevations plotted in bold.  Lower panels show mean in black, with +1 standard 

deviation shaded in grey; vertical blue line indicates LiDAR acquisition dates. Figure 

1 shows station names and locations. 
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Figure 6. Snow depth on LiDAR acquisition date for 

all operational west-slope snow-pillow sites equipped 

with depth sensors, plotted with mean LiDAR snow 

depth (dark gray) and 1 standard deviation (light gray). 

Giant Forest (GNF), Farewell Gap (FRW), and 

Chagoopa Plateau (CHP) are within 21 km of the 

measurement domain.  Chilkoot Meadow (CHM) and 

Poison Ridge (PSR) are the sites furthest to the 

northwest. Locations shown on figure 1. 
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Figure 7. Precipitation and SWE estimates for the 

Kaweah River watershed, elevation trend for two 

scales of PRISM precipitation, LiDAR SWE 

estimate, and SWE reconstructed from daily total 

snowmelt estimates. 
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Abstract  

We estimated under-canopy snow depth across a 53-km
2
 study area with a variety forest 

types using seven LiDAR derived and three in-situ canopy metrics. Snow-depth 

measurements were made with periodic synoptic surveys, continuous snow-depth 

sensors, and snow depth derived from LiDAR altimetry near the time of peak 

accumulation. At a resolution of 1 m
2
, overall 31-44% of the under-canopy area was 

measured using the high-point-density LiDAR acquisition. Variability by dominant 

vegetation type showed 40-100 cm (12-24%) lower snow depth under-canopy versus in 

the open. The highest variability was in locations subjected to early season ablation or 

wind redistribution. The metrics of mean canopy height, canopy-to-ground surface ratio, 

fractional canopy cover, and canopy-height standard deviation individually explained up 

to half of the variability (R
2
 of 0.45-0.58) and slightly more in combination. The under-

canopy differences in snow water equivalent early in the snow season were partially 

offset by 8-15 kg m
-3

 (2-4%) higher snow density at under-canopy locations. However, 

under-canopy areas shifted to lower snow densities later during snowmelt with locations 

where radiative forcing is higher, such as south-facing slopes and the south azimuth of 

trees, having consistently higher snow densities. Although high-density LiDAR can 

directly measure approximately one third of the under-canopy area, the combination of 

in-situ measurements and LiDAR-derived canopy models proved effective for obtaining 

spatially explicit and scalable snow-depth information in Sierra Nevada conifer forests.   
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1. Introduction 

 Estimates of mountain snow accumulation are central to forecasting runoff across 

the Western United States. At present, most Sierra Nevada runoff predictions rely on 

snow measurements at long-established index sites, e.g. snow courses at mid elevations 

in openings with minimal forest cover, rather than spatially representative measurements 

(Rice and Bales 2010). Measurements made in the canopy openings have been found to 

be biased representations of the snow depth of surrounding forested areas, but serve as a 

widely used basis for forecasting because of their robust data record through a period of 

climatic stationarity (Rice et al. 2011, Meromy et al. 2012). However, these statistical 

forecasts perform better in years closer to the normal, or mean, of the historical record 

and poorly in years with extremes; and as we enter a period of greater climatic 

uncertainty we can expect worsening performance and thus greater use of spatially 

explicit models based on physical processes (Milly et al. 2008). This expected shift 

toward more process-based models requires improved descriptions of snow dynamics, 

including the effect of forest canopy (Bales et al. 2006).  

 Satellite remote-sensing observations can provide daily estimates of snow covered 

area, and together with spatially representative ground-based measurements, can serve as 

a basis for accurate forecasts snowmelt across a river basin (Bales et al. 2008). These 

observations are most reliable at high elevations with little or no forest cover, and with 

close-to-nadir view angles (Liu et al. 2008, Molotch and Margulis 2008).  However, 

much of the Sierra Nevada’s snow-covered area is found under forest canopy where few 

reliable measurements are made. Measurements are needed at multiple scales in snow-

covered forests because there are significant differences in snow accumulation and melt 

between open and under-canopy locations, due to interception of falling snow by trees 

and the effect of canopy on the energy available for melting snow (Bales et al. 2011b).  

The effect of forest vegetation on snow accumulation, ablation and ultimately watershed 

discharge, has been the subject of research in the forests of the interior and Pacific 

Northwest of North America (Berris and Harr 1987, Pomeroy and Dion 1996, Hedstrom 

and Pomeroy 1998, Essery and Pomeroy 2001, Storck et al. 2002, Andreadis et al. 2009, 

Jost et al. 2009, Varhola et al. 2010, Molotch et al. 2011). However, these topics remain 
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largely unstudied in the extensive snow-covered forests of the Sierra Nevada. With 

growing pressures on land managers to address water-related ecosystem services, there is 

renewed interest in understanding the impacts of disturbance and forest management on 

snow and its subsequent contribution to water yield from forested landscapes (Westerling 

et al. 2006, Bales et al. 2011a, Boon 2011).  

 The relationship between forest gaps and snow accumulation was first recognized 

in the Sierra Nevada and published by Church (1912b) and the first comprehensive study 

on snow properties in Sierra forests was published by Kittredge (1953). Research on the 

potential of forests to attenuate melt and prolong discharge was later conducted by 

Anderson (1963) and more-recent research in the Sierra Nevada has addressed 

observations and modeling of the energetics of ablation (Musselman et al. 2012a, 

Musselman et al. 2012b, Yatheendradas et al. 2012). 

 While some measurements of interception have been made and reported in the 

literature, they have generally been limited to a single or small subset of trees (Lundberg 

and Halldin 2001, Storck et al. 2002, Essery et al. 2003, Floyd and Weiler 2008, 

Musselman et al. 2008). Up scaling of these measurements to forest stands or watersheds 

is generally done using indirect measurements of leaf area index. Now with increased 

availability of high-resolution LiDAR altimetry from snow-accumulating landscapes it is 

possible to evaluate direct measurements of forest-canopy metrics to predict the effect of 

canopy on snow accumulation. Researchers have begun to do this by building on the use 

of canopy closure measured in situ with hemispherical photographs and remote-sensing 

data from multiple platforms (Teti 2003, Varhola et al. 2010, Varhola et al. 2013). 

 In assessing snow accumulation, it is important to consider both snow depth and 

density measurements, given that both LiDAR and low-cost ground-based sensor 

networks that are being introduced measure snow depth rather than SWE (Welch et al., 

2013). At the scale of river basins and operational forecasts, these types of spatially 

extensive measurements will continue to rely on less-extensive measurements of density 

at more-traditional, operational sites or through synoptic surveys. Research reported in 

this paper addresses the effects of canopy cover in Sierra Nevada conifer forests on snow 

depth and density, from plot to watershed scales. We addressed three specific questions. 
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First, what is the predictive capability of LiDAR-measured canopy characteristics for 

observed patterns of snow accumulation in mixed-conifer and sub alpine forests? Second, 

how does under-canopy snow density vary between open areas versus under the forest 

canopy? Third, how can we make accurate estimates of under-canopy SWE based on 

canopy metrics and density measurements made in various canopy conditions? 

 

2. Methods 

 In this research we used multiple sets of measurements in a mountain study area 

including: i) a summer 2010 LiDAR flight for ground and canopy-surface altimetry, and 

an early spring 2010 LiDAR flight to estimate snow depth across the study domain, ii) 

continuous snow-depth, manual snow-density and continuous soil-moisture 

measurements at 26 nodes for water years 2008 through 2011, iii) LAI-2000, 

hemispherical photography and other ground measurements to characterize the forest 

canopy at these 26 nodes, iv) early April manual snow surveys for snow depth, density 

and water equivalent in 2007, 2008 and 2009 in the vicinity of these 26 nodes, and v) 

operational snow-course data.  

2.1. Study area 

 Our study area is centered at approximately 36.5° latitude in the southeastern part 

of the 135 km
2 

Marble Fork of the Kaweah River watershed in Sequoia National Park, 

and is defined by the extent of the two LiDAR flights (Figure 1). The approximately 53 

km
2
 area of the LiDAR flights covers Giant Sequoia groves at the lowest elevations, 

through mixed-conifer forest, to red-fir forest, subalpine forest and alpine peaks at the 

highest elevations (1850-3494 m elevation range). Areas of synoptic and instrumental 

surveys include the forested Wolverton watershed located in the lower half of the LiDAR 

extent (2150- 2900 m elevation). In this watershed there are four instrument clusters and 

two met stations stratified by aspect and elevation in addition to a grid of 600 × 600 m 

around an operational snow course where synoptic snow surveys were conducted   

(Figure 1).  
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2.2. LiDAR data 

 LiDAR altimetry, with return density of approximately 8 m
-2

, was collected in 

March and August of WY 2010. We represented the bare earth, snow on and off, and 

canopy with a 1-m grid, as this is the smallest area that matches the beam sampling 

resolution and uncertainty in horizontal accuracy. The filtered mean values from the 

snow-on and snow-off acquisitions were subtracted to obtain snow depths from locations 

where returns for snow depth were ≥1 m
-2

, as described in chapter 2. A 1-m gridded 

digital surface model of the vegetation canopy, created from the filtered first-return 

LiDAR point cloud, was used to create a layer of vegetation canopy ≥ 2 m. Under-canopy 

snow depths were distinguished from those in gaps by classifying the snow depths using 

this canopy-height model (Figure 2). The visible under-canopy area is defined here as 

locations with filtered LiDAR ground-return densities ≥1 m
-2

 for snow on and off thus, 

only grid points with filtered LiDAR returns for both flights are considered in our 

analysis.  

 Using the canopy-height model, for each snow-sensor node we calculated the 

percent canopy cover, and the maximum, mean, standard deviation and coefficient of 

variation of canopy height, for 2 to 40 m radii at 1-m intervals. Two meters was chosen 

as a starting radius because the maximum integrating area of our depth-sensor 

arrangement, described below, is greater than 1 m. The distance to the nearest canopy >2 

m in height, subsequently referred to as minimum gap radius, was also determined from 

canopy-radius estimates generated in this step and represent the shortest distance to 

canopy >2 m at each node. In addition, a 1-m triangular irregular network of the canopy 

surface was calculated to estimate the canopy surface area for each radius of the 

calculation. Using the LiDAR-derived bare-earth digital-elevation model we derived the 

mean slope for the area defined by each radius, and the canopy-to-ground surface-area 

ratio:  

     
  

  

      

⁄      (1) 

where    is the canopy surface area,    is the ground surface area and        is the 

cosine of the mean slope. 

53



 

 
 

2.3. Other vegetation characteristics 

 We estimated canopy closure at each sensor node using hemispheric digital 

photographs taken with a high-resolution digital camera equipped with a ~170° view 

lens, henceforth referred to as hemiphotos. These images were processed using Gap Light 

Analyzer software following the methods described in Mussleman et al. (2012a) 

(Appendix C).  The result is an integrated value of the Sky View Fraction (SVF), at 1° 

increments at each snow-depth sensor, 1.5 m above ground.  

 Effective Leaf Area Index (LAI
e
) was estimated with two of the most-common 

methods, by measuring radiation transmittance from a fractional sky view. The first was 

estimated from hemiphotos, collected as described above, using the methods described by 

Norman and Campbell (1989) and accounting for a sloped surface as described by 

Schleppi et al. (2007). The second used an average of 8 measurements collected at each 

node with Licor LAI-2000 plant-canopy analyzer and processed using a radiative-transfer 

model based on uniform canopy assumptions, as described in Chen et al (1997).  

 Forest types were classified using vegetation maps prepared from 

photointerpretation of digital orthophotos and validated with extensive field data  and 

based on the United States, National Vegetation Classification Standard (1994) 

(Appendix D). Forest types are reported here by common name of the dominant tree 

species in the associated floristic alliance described by this standard and documented by 

(USGS-NPS 2007).  To estimate the non-accumulating area under the canopy occupied 

by the trunk or “stem” of these dominant species we compiled field measurements of 

canopy cover and basal-area estimates proximal to our study area (Table 1) (Rundel et al. 

1977, Vankat and Major 1978, Battles et al. 2013). Measurements made in forest study 

plots and belt transects were assumed to be representative of forest types. The fraction of 

stem area for species is: 

 

     
     

  
        (2) 

where       is the mean basal area, measured as diameter at breast height, of species x 

and    is fractional canopy cover. Where belt transect surveys reported canopy cover >1 

due to crown overlap,    was set to 1 (Table 1). 
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2.4. In-situ snow measurements 

 Synoptic snow surveys in a 600 × 600 m area were conducted within 4 days of 

April 1 in 3 years, 2007-2009, using a federal snow sampler. Depth and density were 

measured under tree canopies at 36 grid points, four individual measurements, one for 

each cardinal direction, 1 m from the nearest tree trunk >30 cm diameter at breast height 

and 3-4 times in the closest forest-gap >2 m from overhead canopy. Additionally, snow 

depth, SWE and density were measured 6-8 times in March-June 2010 and March-May in 

2011 at 3-6 of the continually recording snow-depth sensor nodes. These sensors were 

installed under mature forest canopy and stratified as: a) under-canopy, canopy directly 

overhead; b) open, in a forest-gap at least 2 m from the canopy edge and; c) drip edge, 

under the canopy edge.  

 Snow density was determined from gravimetric measurements made in snow pits 

and standard measurement methods using snow tubes (Church 1912a). Records of mean 

snow depth and density were also obtained for the Panther Meadow California 

Cooperative Snow Survey course for 89 years from the California Data Exchange Center 

(http://cdec.water.ca.gov/snow/); and data for individual snow-course points were 

compiled from survey notes for the 2007-2011 water years supplied by cooperators. We 

multiplied snow-tube measurements by a correction factor of 0.9, as determined through 

comparison with densities in snow pits that were excavated each year at a single location 

within our sampling grid and sampled at 10-cm intervals. This correction agrees closely 

with the value of  0.91 determined from other comprehensive gravimetric analysis of the 

standard federal sampler (Goodison 1978, Farnes et al. 1983). All grid points and sensors 

were located using a hand held Trimble
®
 GeoXT GNSS receiver mounted with an 

external Tornado antennae, and post processed to within 1-3 m accuracy to facilitate re-

locating grid points and spatial analysis of gathered data (Trimble Navigation Limited, 

Sunnyvale, CA). 

 Each node was equipped with an ultrasonic snow-depth sensor, which operates 

based on the air temperature-corrected return time of an ultrasonic reflectance at a beam 

width of 22° (Judd Communications, Salt Lake City, UT). There are six sensors at each 

instrument cluster and one at each met station, mounted with a 4.6-m mast and 95-cm 
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boom normal to the surface. This arrangement results in an effective observation area of 

2.5 m
2
.  However, the area of observation (Aobs) for ultrasonic sensors, mounted as 

described, becomes smaller with increasing snow depth  

 

    Aobs = π[(tan 11) × (4.6 – d)]
2
     (3)  

 

where    is the snow depth observed by the sensor. 

 Recognized sources of error in ultrasonic depth sensors include instrument error, 

atmospheric conditions during measurements (e.g. heavy snowfall and riming 

conditions), boom misalignment due to snow loading and creep that affects the resulting 

beam angle, snow depth variability within the observation area and variability of ground-

cover height due to litter fall and compaction after wetting and loading with seasonal 

snow.  To estimate error we averaged 2-4 manual depth measurements collected under 

each sensor 2-5 times per water year and compared them to sensor measurements. The 

resulting RMSE was 10 cm. Hourly snow depths were filtered for erroneous values and 

gaps less than 6 hours filled by interpolation, or by correlation with the nearest sensor 

when greater than 6 hours (Moffat et al. 2007). One extreme snowfall event in April 2011 

required extrapolation from neighboring sensors when snow depth exceeded some sensor 

heights. Hourly derivatives of snow depth were calculated to allow separation between 

accumulation and ablation events. Four major snowfall precipitation events were selected 

for each of the five years, approximately one in each month December-May, where the 

majority of the 26 sensors recorded accumulation. Cumulative totals were calculated for 

each sensor. Sensor nodes were stratified by high and low elevation, separated 

approximately 400 m in elevation, for a total of  13 sensors from two clusters and one 

met station at each elevation (Figure 1). The maximum depth from each storm was used 

to normalize the remaining depth of each sensor to a fraction of maximum. These 

fractional accumulations were used for analysis with canopy variables. 
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2.5. Data analysis  

 To determine which attributes, individually or in combination, had the greatest 

predictive ability for snow accumulation we conducted linear regression analysis using 

the canopy variables described in sections 2.2 and 2.3. These included the six LiDAR-

derived canopy variables extracted for radii of 2-20 m (9880), integrated SVF for 0-40° 

(2050), the two estimates of LAI (920) and gap radius (520), where the numbers in 

parenthesis indicate the number of observations of each variable.  

To determine the optimal model we used the six LiDAR-derived canopy variables at radii 

with the highest predictive power to conduct backwards stepwise regression for the mean 

snow accumulation of all 20 precipitation events. When selecting independent variables 

for inclusion or elimination we gave preference to those with the greatest coefficient of 

determination that demonstrated statistically significant p <0.05 regressions with the 

greatest number of snowfall events.  

 We tested our models with a leave-one-out cross validation using the relative 

accumulation at each node from a single snowfall as validation data, and the remaining 

accumulation values as the training data. We repeated this procedure for each of the 20 

precipitation events until each event was used once as validation data. Finally, the results 

of all rounds of validation for each model were averaged and compared to determine 

those with the greatest predictive power.  

 

3. Results 

3.1. LiDAR-measured snow depth 

 Under-canopy snow depth showed distinct patterns between elevation, aspect and 

forest type (Figure 2). Mean snow depth in the open and under-canopy each demonstrated 

a steady increase with elevation until approximately 3300 m for the open and 2900 m 

under-canopy, with the highest covariance below 2100 m, and at the highest elevations 

(Figure 3a). The fractional canopy cover was 0.45-0.70 below 2600 m, dropping to <0.1 

by 3100 m. The fraction of total area with under-canopy LiDAR snow depth retrievals 

was also greatest below 2600 m, where it remained fairly consistent at 0.18-0.23 (Figure 

3b). Below about 2900 m, average under-canopy snow depths were 20-40 cm below 
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those in the open, increasing to a 100-cm difference at the upper-elevation canopy. 

Overall, snow depth under the canopy was 12-24% below that in the open, with a 

coefficient of variation of 0.20-0.42 (Figure 4). 

LiDAR-derived snow depths were retrieved from 39% of the total 12 km
2
 of under-

canopy area, with a range of 31-44% depending on forest type, classified by the dominant 

species of the corresponding forest alliance (USGS-NPS 2007). Vegetation alliances used 

in our analysis are listed in parenthesis after each species name. The Western White Pine 

(P. monticola; 3130, 4540) association had the highest fraction of under-canopy retrievals 

and the Giant Sequoia (S. gigantium; 4020) the least (Figure 4). Classified forests were in 

fairly contiguous domains, with the exception of Sierra Lodgepole (P. contorta var. 

murrayana, 3020), and demonstrated distinct characteristics with respect to under-canopy 

snow depth.  Red fir (A. magnifica; 4050) and White fir (A. concolor; 4070, 4080) 

associations were greatest in area with 536 and 318 ha, respectively; all others range from 

11 to 86 ha. The greatest coefficients of variation were found with the Jeffry pine (P. 

jeffreyi; 3070) and White fir associations, where some under-canopy melt had likely 

already occurred, and in the highest-elevation forest association of Foxtail Pines (P. 

balfouriana; 3200, 3540), where wind likely redistributed snow through the small open 

stands. 

 The fraction of under-canopy area occupied by the stem, or “trunk”, of the tree, 

that does not accumulate snow, was estimated to range between 0.005, for Ponderosa (P. 

ponderosa) and Jeffry pine, to 0.013, for Giant Sequoia forests (Table 1, Appendix D).  

 

3.2. Snowfall accumulation at sensor nodes 

 The 20 precipitation events selected for this study were largely prior to snowmelt, 

with 4 during the early part of snowmelt (Figure 5). They ranged in duration from 5 to 14 

hours. The period of record represented dry, normal and wet years, where peak mean 

snow depth for all sensors in the 2008-2011 water years had a range of 174 cm in 2009 to 

392 cm in 2011; these depths were 73 % and 165% of the 30-year-April 1
st
 mean from 

the Panther Meadow snow course, located between clusters 3 and 4, and within the 

domain of the grid surveys. Peak snow depth occurred prior to April 1
st
 in 2008 and 2009, 
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after in 2010 and near April 1
st
 in 2011. The 2010 spring LiDAR acquisition occurred 

during a settling period, between two precipitation events and just prior to the peak 

seasonal depth accumulation.  

 

3.3. LiDAR and in-situ canopy characteristics 

 Node-specific canopy characteristics extracted from the LiDAR data, calculated 

for radii of 2-40 m around each of the 26 snow-depth sensors, showed the greatest 

variability between 2 and 20 m (Figure 6). We chose the 2-20 m range of radii to evaluate 

with mean snow accumulation for all precipitation events, because LiDAR-derived 

variables demonstrated at least twice the variability at radii <20 m and overlapped less 

with the corresponding radii of other sensors in the cluster. The minimum distance to 

canopy >2 m in height was 2-10 m horizontally, where distances <2 m comprised half of 

the 26 measurements (Figure 6).   

 In-situ measurements of canopy closure and effective LAI were made 1.5 m 

above the ground at 25 and 23 nodes, respectively. Canopy closure from hemiphotos 

integrated at zenith angles of 0-40° showed significant variability between nodes, e.g. 

sensor 1_1 and 1_5 (Figure 7a, Appendix C). Sensor nodes 1_1, 1_3, 3_6 and 4_5 had the 

greatest canopy cover over them, and thus the lowest SVF, and sensors 1_5, 2_5, 3_2 and 

3_4 the lowest canopy cover and highest SVF. The integrating zenith angle at each node 

showed considerable variability as well, with a range >50% in some cases. Mean 

fractional accumulation demonstrated approximately 1:3 scaling ratio with SVF with 4 

exceptions (Figure 7b). Effective LAI, measured using two methods, hemispherical 

photographs and the Licor LAI-2000, differed significantly in magnitude between the two 

methods but showed a positive correlation, (R
2
 = 0.38, p 0.002) (Figures 7c and d).  

 

3.4. Snow depth and SWE 

 Comparisons of 2007-2009 synoptic surveys, conducted within 4 days of April 1 

from open (10 single snow-course points), forest gaps (104-132 survey points per year), 

and under-canopy (144 survey points per year) locations showed consistent inter-annual 

variability (Figure 8). The depth differences between under-canopy and forest-gap 
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measurements averaged 30-35 cm in all years, despite the nearly double accumulation in 

2008 versus 2007. The depth difference between forest-gap and open (snow course) 

depths averaged 30, 35 and 45 cm in 2007, 2008 and 2009, respectively. The differences 

in SWE between under-canopy and forest gaps and between forest-gap and open 

locations averaged 11-14 cm over the 3 years (Figure 8). All of the differences were 

statistically significant (p<0.001).  

 

3.5. Snow density 

 Mean snow densities in forest gaps and under-canopy were 386 +60 and 371 +70 

kg m
-3

, respectively, with slightly lower average densities in the open locations of the 

snow course (Figure 8). Density differences between these 3 sets of measurements 

however, were only statistically significant for under-canopy versus forest-gap points in 

2009 (p <0.05). The coefficient of determination between all forest-gap and under-

canopy locations considered for all years was small (R
2
 = 0.19) but did show a statistical 

difference (p = 0.041). Under-canopy density measurements made 1 m from the tree 

trunk in the azimuths of north, south, east and west showed the highest densities on the 

south sides of trunks (p = 0.019) (Table 3). 

 The 2007 snow-course-density values are lower and have a greater range as 

compared to the 2008-2009 values (Figure 8). Soil moisture measured, at 3-13 locations 

per year inside the survey area (Appendix F) demonstrated diel melt patterns prior to the 

survey in 2007 (March 10-27), after the survey in 2008 (April 10 to May 15) and close to 

the time of the surveys in 2009 (March 25 to April 18), reflecting the thin, variable 2007 

snowpack.  

 The spatial and temporal variability of density at snow-depth sensor nodes in 

2010 and 2011 showed a seasonal increase, consistent with the trends observed at nearby 

snow pillows (Figure 9).  The mean of density measurements made during accumulation, 

prior to March 15
th

, were 15 kg m
-3

 higher than in the open, which is not significant (p = 

0.17). In contrast, measurements after March 28 showed 8 kg m
-3

 lower under-canopy 

densities (p = 0.20) (Figure 9). Sensors were also stratified by north versus southeast 

aspects, and were 38 kg m
-3

 lower on the north aspects (p<0.001).  
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3.6. Regression and modeling.  

 The highest coefficients of determination between the fractional 

snow depths for the precipitation events and LiDAR-derived canopy variables were at 

radii of 8-10 m (Figure 10). The coefficients of determination for SVF demonstrated a 

broad peak at zenith angles between 2-40°, with the greatest for any event at 16°, and the 

peak in the highest mean R
2
 at about 25

o
 (R

2 
of 0.58) (Figure 10). Due to the broad range 

in coefficients of determination we chose to use the mean SVF integrated over this range 

of zenith angles to compare with fractional accumulation (Figures 7b and 11). Mean 

canopy height, standard deviation, CSR and fractional canopy cover each explained close 

to half of the variability (Table 2). The single-node variables of both LAI measurements 

and minimum gap radius were the lowest, with R
2 
of 0.25-0.31.  

 Regression of variables with all storm events showed considerable variation, 

where mean canopy height, fractional canopy cover, CSR, mean SVF, and minimum gap 

distance all showed consistent slopes for each storm (Figure 11). Regression of the 

radius-dependent canopy variables and other attributes versus the fractional snow depth 

at each of the 20 nodes, with values at each node averaged over the 20 precipitation 

events, gave R
2
 of 0.25-0.58, p<0.001 to 0.01 (Table 2) For the LiDAR-derived canopy 

variables, the highest R
2
 values were at radii of 8-10 m. For all variables, it was found 

that 11-17 of the 26 nodes were significant at p <0.05.  

 Backwards stepwise regression with the fractional means of all precipitation 

events and LiDAR canopy variables indicated that the most-robust single or        

multiple-variable regression models included the mean canopy height at 8, 9 or 10 m 

radii. Multiple regression models with the variables of percent canopy cover, standard 

deviation of canopy height, and CSR at 8, 9 or 10 m radius slightly improved the 

coefficient of determination by up to .06 and slightly reduced standard error. The 

LiDAR-derived canopy variables of maximum canopy height and coefficient of variation, 

and the in-situ measurements of two effective LAI’s showed the lowest regression 

coefficients and were not included in models. Due to sample sizes and covariance, 

multicollinearity existed between some variables, for this reason we only selected 
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variables known to be independent for model inclusion (eg. standard deviation and mean 

canopy height).   

 

4. Discussion 

4.1. LiDAR snow depth 

 Our methods for classifying under-canopy snow depth using LiDAR altimetry 

yield direct information in locations where return pulses can be recorded (Figures 2 and 

3). However, in our data set less than half of the under-canopy area met these criteria 

(Figures 3 and 4). We found a 12-24% depth reduction, when compared to canopy gaps, 

in locations where LiDAR returns were available and expect less snow accumulation 

under the densest areas of the canopy where no LiDAR returns are available. Thus, we 

expect this percentage to be lower when considering the total under-canopy area. In the 

mixed-conifer zone, this represents a 40-cm difference, similar to that observed using 

continuous depth sensors in the southern Sierra Nevada (Appendix E).  Past research has 

demonstrated the negative correlation between canopy cover and snow accumulation, and 

typically estimated as a percent reduction referred to as interception efficiency (Schmidt 

and Gluns 1991, Hedstrom and Pomeroy 1998, Pomeroy et al. 1998a, Storck et al. 1999, 

Storck et al. 2002, Musselman et al. 2008).  

 Canopy-surface-area metrics, for quantifying forest structure, have also been 

identified and named for various purposes. Some examples of these are: roughness, for 

quantifying canopy effect on atmospheric turbulence Leonard and Federer, (1973); 

rugosity (standard deviation), to deduce stand development Parker (2004); and rumple to 

characterize successional stage through the structural complexity of forest canopy (Kane 

et al. 2010). While each of these methods, and others referred to by Parker and Kane in 

the above citations, use different metrics to quantify the canopy surface, when coupled 

with spatial extent, they describe the relationship between the ground and canopy surface 

area. As a result, each of these measurement methods is subject to scaling uncertainties 

and limited by its resolution and spatial extent.  

 Our measurement of CSR is calculated similarly to rumple as defined by Kane 

(2010) but accounts for greater ground surface area by considering slope, and our 
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measurement of standard deviation is defined as rugosity by Parker. However, both of 

these measurements are derived using different spatial extents and granularity.  

Snow interception on 3 conifer species was measured and estimated by Schmidt and 

Gluns (1991) to be 10-50%, primarily dependent on the amount and density of the falling 

snow and not on leaf morphology. Research in the boreal forests of Canada found that up 

to 60% of seasonally accumulated snow was intercepted, reaching a species-dependent 

maximal loading where subsequently up to half of the intercepted snow was sublimated 

(Pomeroy et al. 1998b). These two examples approximate the range of published 

interception efficiencies. This process has been characterized as a function of leaf 

morphology and species specific unloading characteristics of the canopy, coupled with 

new snow density, the rate of snowfall and the prevailing meteorologic conditions 

(Hedstrom and Pomeroy 1998).  

 We expected the variables that most accurately describe the canopy-to-ground 

surface-area ratio to perform best in single and multiple regressions with relative 

accumulation. However, the best indicator was not our calculated variable of CSR but 

mean canopy height and standard deviation of canopy height, followed by CSR and 

percent canopy cover calculated over radii of 8-12 m from the point of measurement 

(Table 2, Figure 11). We suspect this is because our mean–canopy-height measurement is 

the best integrator of canopy surface area and the intra-canopy effects of turbulence on 

the trajectory of falling snow as it passes through and around the forest canopy. 

 

4.2. Snow depth and SVF 

 Zenith angles of SVF represent the integrated fraction of sky hemisphere visible 

at each sensor location. Lower, closer-to-nadir zenith angles are more representative of 

planer measurement of fractional canopy cover, where higher angles incorporate lateral 

vegetation and terrain elements (Figure 7a). Hence, we expected more snow to 

accumulate in locations with greater SVF at lower zenith angles. In the forests of British 

Columbia, Teti (2003) found zenith angles of 60-80° to be most effective for predicting 

peak SWE, the product of accumulation and ablation. Further investigations by Varhola 

(2013) found 45° to be the best predictor of ablation rates. Furthermore, Varhola found 
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good agreement (R
2 

> 0.6) between hemiphoto SVF and SVF derived by transforming 

airborne LiDAR returns to polar coordinates.   

 Due to lower canopy cover the zenith angles at which SVF has the greatest impact 

on accumulation should estimate the factors impacting interception efficiency: LAI, 

canopy density, gap structure, canopy height, and height to canopy base. However, we 

did not find a discrete relationship between a particular zenith angle integration of SVF 

and mean fractional accumulation of snow. Instead, we found the highest correlation at 

zenith angles <40°, with results varying between individual storms, suggesting the 

influence of factors other than canopy structure such as prevailing weather conditions. 

The apparent scaling ratio of mean SVF at zenith angles of 1-40° to fractional snow 

accumulation at individual sensors, seen in figure 7 b, is confirmed by the regression 

slope of 0.35 shown in figure 11 suggesting an interception efficiency of 35 % slightly 

lower than findings from the forests of New Mexico (Musselman et al. 2008).  

 

4.3. Forest-stand snow depth, SWE and density  

 With April 1
st
 synoptic surveys we found the greatest snow depths and SWE in 

the open snow-course locations and the lowest under-canopy, with forest-gap locations 

falling in between (Figure 8). The clustering of densities also demonstrated the effect of 

the final stages of melt on snow density, where water year 2007, the shallowest and 

earliest melting snowpack of the study period, had the lowest density and widest range of 

variance. This was likely a result of the advanced melt in some places, as indicated by 

diel patterns of water flux passing through the soil column, recorded 3 to 5 weeks earlier 

by soil-moisture sensors collocated with the snow-depth sensors (Appendix F). 

Densification of the snowpack occurs principally through two processes: i) those 

affecting porosity, i.e. gravitational settling and metamorphism through crystal sintering 

and vapor flux, and ii) energetic processes that affect crystal structure and increased 

liquid-water content (Gray and Male 2004, DeWalle and Rango 2008). The greatest 

increase in density occurs when the snowpack becomes isothermal and pore space is 

sufficiently small to retain water between the snow granules. This stage is often referred 

to as a “ripe” snowpack and precedes daily cycles of melting and freezing. Followed by a 
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final stage where a shallow snowpack of large granular crystals holds limited liquid water 

and decreases in density. Thus, we expect to find densities proportional to the cold 

content of the snowpack in a particular location until the final stages of melt, when 

density will decrease.   

 Variability in SWE, the product of snow depth and density, is disproportionately 

influenced by the heterogeneous distribution of depth rather than the more-homogeneous 

density (Steppuhn 1976, Sturm and Benson 2004, Sturm et al. 2010). Despite the 

spatially conservative nature of density it can be affected on small scales by forest canopy 

through unloading of canopy-held snow and snow melt, (Berris and Harr 1987, Storck et 

al. 2002) and mediation of the energy budget (Pomeroy and Dion 1996, Pomeroy et al. 

2008). The processes of canopy unloading, a function of new-snow density and the rate 

of snowfall, as observed by Schmidt and Gluns (1991), is decoupled from the under-

canopy energy budget, where variability is a function of canopy-mediated radiation. 

Consistent with our findings, Mussleman (2008) found the proximity to the tree trunk to 

be a significant factor in the density of under-canopy snow, with the highest densities on 

the south side of the stem (Table 3). The effect of the trunk also leads to greater ablation. 

For example, Pomeroy et. al. (2009) observed and quantified the increased temperatures 

of exposed tree trunks due to shortwave extinction and the resulting increased excitance 

of long-wave radiation from tree stems.  

 Our findings also suggest that the observed difference in snow density between 

under-canopy and open locations is small and primarily influenced by radiative forcing 

versus unloading or canopy drip. Under-canopy snow density was nearly equal between 

forest gaps and under canopies in pooled data from April 1
st
 surveys and slightly higher 

(14 kg m
-3

, p = 0.07) at paired under-canopy and forest-gap measurements made at sensor 

nodes after March 15
th

 (Figure 9).  However, periodic measurements collected in the 

same locations prior to early March showed under-canopy densities to be (15 kg m
-3

, p = 

0.17) higher relative to open locations. Kittredge (1953) found seasonal averages of 

under-canopy snow density to be approximately 5-25 kg m
-3

 higher than open locations, 

where the smallest differences were found in the highest-elevation Red Fir forests, which 

were 400-1000 m lower than the forests in our study.  The seasonal shift from higher 
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under-canopy snow density to values nearly equal to those in forest gaps suggests a 

crossover point, where seasonal mediation of incoming radiation influences the radiative 

forcing on the snowpack, causing ripening to occur more rapidly in open locations after 

mid-March. This is likely a result of canopy mediation of incoming short wave radiation 

as the sun zenith angle rises and less reaches the forest floor (Pomeroy et al. 2008, Ellis et 

al. 2010a). Further evidence in support of this are measurements at sensor nodes that 

collectively show higher densities on the southeast than north and northwest aspects, and 

higher densities on the south side of trees (Table 3). 

 Thus, reduced depth due to the interception of falling snow and its subsequent 

loss due to sublimation in the canopy are the main factors in under-canopy SWE 

reduction, not densification upon redistribution or drip from canopy melt, which appear 

to have a minor influence on this process in higher-elevation forests. Additionally, the 

greater variability in under-canopy locations is likely due to a wider range of energy 

environments. April 1
st
 forest-stand surveys show that under-canopy snow had greater 

variance and slightly lower density than snow in adjacent forest gaps (Figure 8). While 

measurements of density at individual trees in mixed-conifer and sub-alpine forests 

showed no statistical difference between under-canopy, drip-edge and open locations 

within 2 m of the canopy edge, they did show differences between under-canopy and 

forest gaps (Figure 9). Further, LAI, the most common metric used for quantifying under-

canopy accumulation efficiency, was measured with two frequently used methods 

(hemispheric photographs and LAI-2000) that utilize sky-view measurements and 

uniform transfer models. These measurements explained less than a third of snow 

accumulation variability and showed low correlation with each other (Figure 7d).   

 

4.4. Effective LAI   

 Because LAI describes the functional relationship between leaf and surface area it 

is an intuitive variable for describing interception efficiency (Lundberg and Halldin 2001, 

Keane et al. 2005, Winkler and Moore 2006, Ellis and Pomeroy 2007).  While Pueschel 

et al. (2012) and others, demonstrate  progress in addressing the differences between 

methods of measuring LAI in practice it remains impractical to directly measure or 
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extrapolate LAI to specific forests using indirect methods of measurement. In our study 

we found high levels of uncertainty in correlations between snow depth and LAI
e
, 

demonstrating a limited predictive capacity with respect to snow accumulation. 

A comparison of effective LAI measurements at 23 snow-depth sensors, using 

hemispherical photographs and the Licor LAI- 2000, showed a correlation but also a high 

level of uncertainty and potential positive bias with the hemiphoto method (Figure 7d).  

Regression analysis with snowfall precipitation events showed a weak relationship for 

both methods, with the LAI-2000 performing only slightly better than the hemiphoto 

method, with a mean R
2
 of 0.32. Only one precipitation event had an R

2
 of over 0.4 

(P<0.05) (Figure 10).  Extrapolating these measurements to greater spatial scales and 

interpolating them with other measurements, such as NDVI, would further increase 

uncertainty with respect to snow accumulation patterns.  

  

5. Conclusions 

 Direct LiDAR measurements with high return densities (e.g. >8  m
-2

) and 

favorable sensor geometry offer the best opportunity for determining snow depth and 

distribution over multiple scales. While this analysis provides a basis for developing 

under-canopy snow depth interpolation strategies for repeat measurement campaigns; 

multiple flights during the snow covered season are costly and may be operationally 

impractical. In these locations a viable option for determining under-canopy snow depth 

is to estimate the fraction lost to canopy interception based on measurements of LiDAR-

derived canopy metrics and in-situ snow depth. 

 In the sub-alpine forests of the Sierra Nevada over half of the local variability in 

snow accumulation can be explained with LiDAR-derived mean canopy height over a 8-

10 m radius, and can be improved with the addition of other canopy variables. The 

standard deviation of canopy height, percent canopy cover, and CSR also show high 

predictive capability. LAI, used to estimate interception, had limited predictive ability, 

due in part to the high uncertainty of indirect measurements of LAI. 

 We found under-canopy snow density to be 2-5% higher than in forest gaps 

during the accumulation season; however, this pattern shifted during the ablation season 

67



 

 
 

with under-canopy densities being 2-5% less. Snow density was also greater in locations 

with greater energy influx such as south-east-facing aspects, and the southerly azimuth 

from tree trunks. While these differences in density were also small, they were 

consistently positive during the melt season.  

 The current high uncertainty in SWE under forest canopy can be reduced using a 

combination of LiDAR canopy structure, snow-depth altimetry and ground-based 

instrumentation in forests. The best approach for calibrating LiDAR snow-depth 

altimetry for SWE retrieval in forested landscapes is a strategy that includes snow-depth 

measurements in the full range of mean canopy heights and canopy surface areas found in 

the watershed of interest. Locations for measurement can be estimated using the 

aforementioned classifications and calculations based on high-resolution LiDAR-derived 

canopy-height models. In contrast, density, which is more spatially conservative than 

depth, can be best estimated with distributed measurements across a range of anticipated 

depths and radiative forcings.   
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Table 1. Sequoia National Park under-canopy basal area by forest type 

Forest type Cover %
a
 

Basal area m
2
 

ha
-1 

Fractional under-

canopy area 

Ponderosa pine
b,c 

139
a
, 60-80

c
 48, 46 0.48 

Jeffery pine
d
 26, 48, 86, 59 31, 38, 42, 62 0.48, 0.79, 1.1, 1.2 

White Fir
b 

110
a 

70 0.70 

White Fir – sugar pine
c 

60-100
c 

52 0.70 

White Fir – Giant Sequoia
b 

115
a 

83 0.82 

Giant Sequoia
c 

60-100
c
 101 1.26 

Red fir
b 

74 93 1.2, 1.24 

Lodgepole pine
b 

55 65 1.17 

Western white pine
b 

28 34 1.25
 

Foxtail Pine
d
 56 32 0.57

 

a 
Estimated cover % > 100 includes overlapping canopies and is considered 100% 

canopy cover in basal area calculation 

b 
Adapted from (Vankat and Major 1978) 

c 
Adapted from Table 1 in (Battles et al. 2013) 60-100% canopy cover was 

calculated at 80%
 

d 
Data from (Rundel et al. 1977) 
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Table 2. Individual canopy variable regression results for precipitation events 

Variable Range 

Number of 

precip. events
a
  

Radius or view 

factor of max R
2
 R

2
/p 

Mean height
 

0-40 m 17 8 m 0.58/<0.001 

Stdev height 0-18 m 17 10 m 0.51/<0.001 

CSR 0-13 16 11 m 0.48/<0.001 

Frac. cover 0-1 15 8 m 0.45/<0.001 

CV height 0-5.6 13 9 m 0.38/<0.001 

Max height 0–66 m 11 10 m 0.40/<0.001 

Mean SVF 0-100% 12 21° 0.59/<0.001 

LAILicor 1.0-3.2 13 - 0.32/=0.002 

LAIHemi 1.1-3.9 12 - 0.27/=0.01 

Gap radius 0-10 m 11 - 0.25/<0.001 

a 
number of statistically significant events out of 20 where p <0.05 at radius 

or view factor with highest R
2
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Table 3. Snow density (
 
kg m

-3
) 1 m from tree trunk 

Azimuth n Mean
a
 STD

a
 SEM

a 
 

south 100 399 81 8 

north 104 382 69 7 

west 107 374 73 7 

east 98 366 79 8 
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Figure 1. Study area locations. Map in upper left shows Sierra Nevada elevation, with inserts for snow 

depth and vegetation. On the vegetation insert the darkness of green shading indicating vegetation 

types, with 50-m elevation contours and locations of Wolverton watershed and Panther study areas 

also shown. The lower-left digital orthophoto shows locations for upper instrument clusters 3 and 4, 

Panther met station and snow course transects (lines). The right panels are digital surface models of 

vegetation height over orthophotos for south-facing (2 and 3) and north-facing (1 and 4) instrument 

clusters, showing sensor-node locations. The Wolverton met station, approximately 100 m north of site 

1, is not shown. 
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Figure 2. Upper panels: Photographs of typical lower-

elevation, south-facing (left) and higher-elevation north-

facing (right) forests. Lower panels: Classified LiDAR 

snow depth under canopy >2 m overlain on orthophotos. 

Note lack of LiDAR data under densest canopy closest to 

center of crown for each tree. 
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Figure 3. a) LiDAR-derived snow depth by elevation for visible 

under-canopy and open areas with coefficient of variation. b) 

Total of area for each 1-m elevation band (dark gray), fraction 

of area covered by forest canopy over 2 m and fraction of area 

with under-canopy LiDAR snow-depth retrievals. Colored lines 

are 16-m running averages and light grey circles are 1-m 

intervals. 
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Figure 4. Mean fractional reduction in 

snow depth relative to open areas, 

coefficient of variation in under-

canopy snow depth, and fraction of 

canopy visible from LiDAR 

retrievals, clustered by dominant tree 

species as determined from mapped 

forest-alliance classifications, (total 

hectares for each in parens). Digital 

orthophotos on right show the extent 

of area for Red Fir and White Fir, the 

two largest alliances. The LiDAR 

footprint is outlined in red and species 

are arranged from left to right in 

ascending elevation on bar graph.  
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Figure 5. Snow depth for the 26 sensor nodes (gray), with mean depth in black. The vertical blue 

drop lines mark precipitation events evaluated in this study, dashed red line LiDAR acquisition 

date and horizontal dashed line 30-year mean snow course depth. 
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Figure 6. LiDAR-derived canopy metrics from 26 snow-depth 

sensor nodes. Top panels show mean values at 2 -40 m radii, 

solid gray lines indicate radii with the highest coefficient of 

determination with snow accumulation, and dashed line at 20 m 

is upper range of measurements used for further regression 

analysis. Lower panel shows distance from node to gap edge 

(minimum gap radius) at each sensor location. 
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Figure 7. In situ derived canopy metrics for snow depth sensor locations a) hemi-photos represent the 

range of canopy closure, with open white circle illustrating the 0-40° range shown in each box plot. b) 

Distribution of integrated SVF for 25 snow-sensors for 0-40° of zenith; note fraction of local 

maximum snow depth scales to ~1:3 with the exception of 4 outliers in red boxes. c) LAI derived by 

the two indirect methods at 23 sensor nodes. d) Regression between the two methods of measuring 

LAI. 

85



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Early April snow depth, SWE and density 

measurements from Panther Meadow snow course (left) and 

repeat grid surveys (right); snow course is mostly open and grid 

samples are under canopy,  1 m from the trunk in each cardinal 

direction, and in forest gaps, >2 m from the canopy edge.  
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Figure 9. Periodic 

measurements of snow 

density at continuous depth-

sensors, Giant Forest and 

Farwell Gap snow pillows 

shown as dashed lines for 

comparison (top). Under-

canopy density shifts 

between accumulation and 

ablation period (left). 
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Figure 10. Coefficient of determination
 

for standardized 

fractional snow accumulation of 20 precipitation events 

and: six LiDAR canopy parameters over 2 – 20 m radii, 

grey lines; mean black line (top 6 panels), SVF from 1 to 

40º zenith angles (lower left), and single node variables of 

minimum gap distance, m; LAI
e

 from LAI-2000 and 

hemiphoto (lower right) all data are p < 0.05. 
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Figure 11. Linear regressions of mean 

fractional snow depth and: LiDAR canopy 

variables at 10 m radii, mean SVF and two 

methods of effective LAI, for 20 

precipitation events at 26 sensor locations. 

Slopes of best-fit radii are listed after 

variable with highest R
2
 area of integration. 
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CHAPTER 4 

 

CONCLUSIONS 

 

 

 This work was motivated by the need for greater certainty in monitoring and 

predicting water resource availability from snowmelt in the Mountain West. Due to a 

climatically uncertain future our current snowmelt water resources monitoring and 

prediction methods are not adequate to meet the challenge. With the use of emerging 

technologies, such as airborne LiDAR altimetry and hydrologic observatory sensor 

networks, new approaches to constraining this uncertainty are now possible. We 

investigated specific problems of quantifying hydrologic resources for the Mountain 

West and the southern Sierra Nevada in particular.  

 

1. Elevation and topographic effects on accumulation 

 We presented research into the distribution of snow over a 1650 m elevation 

gradient using LiDAR-derived snow-depth altimetry and ground based instrumentation. 

We found evidence of large-and small-scale trends from orographic processes, mean 

freezing level, slope, terrain orientation and wind redistribution. Snow-depth increased 

approximately 15 cm per 100 m elevation
 
from snow line to about 3300 m and, when 

scaled to the mean regional snow density on the acquisition dates (384 kg m
-3

), this 

equaled approximately 6 cm per 100 m elevation
 
SWE. This rate is nearly equal to SWE 

reconstructions but much higher than the widely used PRISM precipitation data. From 

3300 m to our highest measurements at 3494 m, snow-depth decreased approximately 48 

cm per 100 m elevation. Both PRISM and SWE reconstructions show reductions at 

higher elevations as well. Local departures from the trend of linear increase with 

elevation of +30 to -140 cm were also found in the elevation profile of 1-m elevation 

bands. The likely causes of these finer-elevation-scale departures are: ablation, terrain 

orientation, slope and wind redistribution from west to east, reduction in precipitation 
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from upslope lifting, and or the exhaustion of precipitable water from ascending air 

masses. These results are presented in chapter 2 and Appendix A and B. 

 

2. Forest canopy effects on accumulation and ablation 

 Using high-point-density LiDAR-derived snow-depth we measured 31-44% of the 

under-canopy area, depending on dominant vegetation type. Snow-depth was 40-100 cm 

(12-24%) lower under-canopy versus in the open, with the highest variability in locations 

subjected to early season ablation or wind redistribution. The metrics of mean canopy 

height, canopy-to-ground surface ratio, fractional canopy cover, and canopy-height 

standard deviation individually explained up to half of the variability (R
2
 of 0.45-0.58) 

and slightly more in combination. The under-canopy differences in snow water 

equivalent early in the snow season were partially offset by 8-15 kg m
-3

 (2-4%) higher 

snow density at under-canopy locations. However, under-canopy areas shifted to lower 

snow densities later during snowmelt, with locations having higher radiative forcing, e.g. 

south-facing slopes the south azimuth of trees, showing consistently higher snow 

densities.  The combined metrics of cumulative direct-beam solar irradiance and Sky 

View Factor (SVF), derived from hemispherical photographs, explain most of the SWE 

ablation-rate variability observed at the plot scale. In the most cloud-free season direct-

beam solar irradiance explained 58 % of the variance and in the cloudier snowmelt 

season SVF explained 87%. These results are presented in chapter 3 and appendices C, 

D, E and F. 

 

3. Subsurface water partitioning 

 Diel patterns in soil moisture, measured by collocated snowdepth and soil-

moisture sensors, are good indicators of snowmelt timing and duration at the plot scale. 

When these measurements are distributed over a range of canopy conditions and 

topography they reveal the variability in melt conditions at broader scales. 

Measurements made in the top meter of soil showed streamflow response to rainfall and 

snowmelt above a soil moisture threshold of about 21 cm. After snowmelt soils dried at a 

fairly uniform rate due to fairly homogeneous soil-texture properties, and the limited 
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water-holding capacity of the soils in our study areas. However, the timing of melt was 

offset by up to 4 weeks depending on the location and the timing of the snowmelt. We 

also found that baseflow and evapotranspiration continued after soil dry down has 

reached a plateau, suggesting that water continues to be drawn from soil saprolite and 

saprock at depths greater than our measurements 1 m below the surface. These results are 

presented in chapter 3 and appendices E and F. 

 

4. Future work 

 New remote sensing efforts collecting high resolution LiDAR and snow 

reflectance properties in strategically important watersheds are being conducted in 

California and Nevada in addition to on-going ground observations and planned 

modeling efforts (Lin et al. 2011, Buis et al. 2013). Using the findings and methods 

presented we will address the following objectives.  

1.) Prediction of the temporal and spatial variability of snow density using snowpack cold 

content with radiative forcing as a proxy.  

2.) Model development for quantifying under-canopy SWE over a broad range of 

topography and forest types. 

3.) Developing a time series of elevation precipitation gradients and analysis of their 

response to specific climate circulation patterns and individual events such as 

atmospheric rivers. 

 Insights gained from this work may also support research in other fields of earth 

and ecosystem science.  Researchers modeling mountain glacier growth and recession 

should benefit from the insights of this research into the relationship between snow 

distribution and geomorphology (Galewsky 2009, Barr and Spagnolo 2013).   

 Lastly we expect further application of the novel spatial analysis methods we 

developed, i.e. aspect intensity and canopy surface area, for investigations of ecosystem 

structure and function.  For example, to better understand how the position on the 

landscape may affect the energy environment of critical zone processes (Chorover et al. 

2011). 
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APPENDIX B 

WOLVERTON BASIN METEOROLOGIC DATA 

 

 

Meteorologic data collected with the Wolverton Basin Critical Zone Observatory. 
Metadata, raw data and higher level data can be found at: 
https://eng.ucmerced.edu/snsjho/files/MHWG/Field/SEKI/Wolverton or by contacting 
the author. All other meteorologic data sources are cited in main body of text or 
acknowledgements.  
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Figure B1: 2007 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Wolverton meteorologic 
station.
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Figure B2. 2008 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Wolverton meteorologic 
station.
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Figure B3. 2009 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Wolverton meteorologic 
station.
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Figure B4: 2010 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Wolverton meteorologic 
station.
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Figure B5. 2011 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Wolverton meteorologic 
station.
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Figure B6. 2007 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Panther Meadow 
meteorologic station.
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Figure B7. 2008 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Panther Meadow 
meteorologic station.
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Figure B8. 2009 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Panther Meadow 
meteorologic station.
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Figure B9. 2010 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Panther Meadow 
meteorologic station.
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Figure B10. 2011 hourly averages of: mean air temperature, relative humidity, 
mean wind speed, and maximum wind speed from the Panther Meadow 
meteorologic station.
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APPENDIX C 

 

 

INFLUENCE OF CANOPY STRUCTURE AND DIRECT BEAM SOLAR 

IRRADIANCE ON SNOWMELT RATES IN A MIXED CONIFER FOREST 
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The published journal article is available at: elsevier.com/locate/agformet 
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APPENDIX D 

FOREST ALLIANCE CLASSIFICATION 

 

Forest alliances used to determine dominant species forest type in chapter 2, adapted 

from USGS - NPS (2007) 

Sierra Lodgepole Pine Forest Alliance (3020)  

This forest alliance is mapped on a wide range of sites from gentle canyon bottoms to 

steep high slopes and ridges between 2028 -- 3523 m. Forests and woodlands included in 

this alliance are characterized by a closed to moderately open tree canopy that is 

dominated by Pinus contorta var. murrayana. P. contorta ssp. murrayana occupies a 

broad array of habitats in the Sierra Nevada, and this is reflected in the diverse range of 

associations it characterizes. Stands may be even- or multi-aged depending on geographic 

location, edaphic characteristics, and local fire history. Shrub and herbaceous layers may 

be present or absent depending on tree canopy characteristics and local site conditions. 

Stands are characterized by upland, palustrine, and seasonally flooded hydrology. Soils 

are well drained sands, loams, and sandy loams.  

 

Ponderosa Pine Forest Alliance (3050) 

This forest alliance is mapped on gentle to steep primarily south to southwest-facing 

slopes between 1165 -- 2125 m. The open tree canopy is often dominated by Pinus 

ponderosa, with Abies concolor, P. lambertiana, Quercus chrysolepis, and Q. kelloggii 

often occurring as co-dominants and Calocedrus decurrens sometimes contributing low 
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cover. The shrub layer can be sparse or dense and may contain Arctostaphylos patula, A. 

viscida, Ceanothus cordulatus, C. integerrimus var. californicus, Chamaebatia foliolosa, 

and/or Chrysolepis sempervirens as 

important species. The herbaceous layer is characteristically sparse. The hydrology is 

upland. Soils are well drained sandy loams. 

 

Giant Sequoia Forest Alliance (4020)  

This forest alliance is mapped on gentle to steep slopes of varying aspect between 1371 -- 

2426 m on the western slope of the Great Western Divide. The tree canopy is dominated 

by a mixture of montane conifers, including Abies concolor, Calocedrus decurrens, and 

Pinus lambertiana, which provide a matrix within which Sequoiadendron giganteum 

provides an important component. A secondary layer of Cornus nuttallii is frequently 

present. The shrub layer is generally open and contains scattered patches of Ceanothus 

integerrimus, Chrysolepis sempervirens, Corylus cornuta var. californica, and young 

conifers. The herbaceous layer is generally sparse but can be locally well developed 

depending on microsite characteristics; it frequently includes Adenocaulon bicolor, 

Draperia systyla, Galium spp., Lupinus polyphyllus var. burkei, and Pteridium 

aquilinum. The hydrology is upland. Soils are moderately well drained sandy loams. 

 

California Red Fir Forest Alliance (4050)  

This forest alliance is mapped on gentle to steep slopes of varying aspect between 2003 -- 

3275 m. The tree canopy of associations in this upper montane alliance is dominated by 

Abies magnifica. Other trees in the canopy may include A. concolor, Pinus contorta var. 
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murrayana, P. jeffreyi, P. lambertiana, and P. monticola. The shrub layer ranges from 

absent to well developed, and most frequently includes Acer glabrum, Arctostaphylos 

nevadensis, A. patula, Artemisia tridentata, Ceanothus cordulatus, Chrysolepis 

sempervirens, Holodiscus discolor, Ledum glandulosum, Phyllodoce breweri, Prunus 

emarginata, Ribes spp., or Symphoricarpos mollis. The herbaceous layer is 

characteristically sparse to absent, with Apocynum androsaemifolium, Arabis spp., Aster 

breweri, Carex rossii, Elymus elymoides, Hieracium albiflorum, Lupinus latifolius var. 

columbianus, Monardella odoratissima, Pedicularis semibarbata, Pteridium aquilinum, 

Pyrola picta, and Senecio triangularis among the most frequently encountered species. 

The hydrology is upland. Soils are moderately well drained to well drained sandy loams.  

 

California Red Fir-White Fir Forest Alliance (4070)  

This forest alliance is mapped on gentle to steep slopes of varying aspect between 1703 -- 

3077 m. The tree canopy of associations in this montane alliance is dominated by a 

mixture of Abies magnifica and A. concolor. Other trees in the canopy may include 

Juniperus occidentalis var. australis, Pinus contorta var. murrayana, P. jeffreyi, P. 

lambertiana, and P. monticola. The shrub layer ranges from absent to well developed, 

and most frequently includes Acer glabrum, Arctostaphylos patula, Ceanothus 

cordulatus, Chrysolepis sempervirens, Prunus emarginata, Ribes spp., or 

Symphoricarpos spp. The herbaceous layer is characteristically sparse to absent, with 

Apocynum androsaemifolium, Arabis platysperma, Aster breweri, Elymus glaucus, 

Hieracium albiflorum, Lupinus spp., Monardella odoratissima, Pteridium aquilinum, and 
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Pyrola picta among the most frequently encountered species. The hydrology is upland. 

Soils are well drained sandy loams.  

White Fir-Sugar Pine Forest Alliance (4080)  

This forest alliance is mapped on gentle to steep slopes of varying aspect between 1109 -- 

2897 m. This forest alliance includes some of the most extensive montane forests mapped 

in the two parks, including stands of what is frequently referred to as the 'mixed conifer' 

forest. The tree canopy is dominated by a mixture of Abies concolor and Pinus 

lambertiana, with Calodedrus decurrens important on lower elevation sites. Other trees 

in the canopy frequently include P. jeffreyi, P. ponderosa, and/or Quercus kelloggii; P. 

contorta var. murrayana may also occur in colder air drainages. The shrub layer is 

dominated by regeneration of the coniferous overstory and may also contain 

Arctostaphylos patula, Ceanothus cordulatus, Chamaebatia foliolosa, Chrysolepis 

sempervirens, Cornus nuttallii, Corylus cornuta var. californica, Prunusemarginata, or 

Ribes spp. depending on site conditions. The herbaceous layer is characteristically sparse, 

but frequently includes Adenocaulon bicolor, Apocynum androsaemifolium, Draperia 

systyla, Galium sparsiflorum, Hieracium albiflorum, and/or Pteridium aquilinum in 

addition to young conifer seedlings. The hydrology is upland. Soils are well drained 

sandy loams. 

 

Western White Pine-Sierra Lodgepole Pine (4540)  

This forest mapping unit is an aggregation of the Pinus monticola - Pinus contorta var. 

murrayana woodland association (3132) and the Abies magnifica-Pinus monticola-Pinus 

contorta var. murrayana woodland association (4055). The aggregated mapping unit is 
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mapped on gentle to steep slopes of varying aspect between 2383 -- 3278 m. The open to 

moderately dense tree canopy is dominated by a mixture of Pinus monticola and P. 

contorta var. murrayana, with Abies magnifica important in lower elevation stands. P. 

albicaulis, and P. balfouriana ssp. austrina are also often present at low cover. The shrub 

layer is absent to well developed; when present, it is frequently dominated by 

Arctostaphylos nevadensis A. patula, Chrysolepis sempervirens, , various Ribes spp. 

and/or Holodiscus microphyllus. The herbaceous layer is sparse to absent, with Arabis 

spp., Aster breweri, Elymus elymoides, Pteridium aquilinum, Carex exserta, C. rossii, 

Juncus parryi and Senecio triangularis most common. The hydrology is upland. Soils are 

well drained sands or sandy loams. 
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SOIL MOISTURE RESPONSE TO SNOWMELT AND RAINFALL IN A SIERRA 

NEVADA MIXED-CONIFER FOREST 
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APPENDIX F 

 

WOLVERTON BASIN SOIL MOISTURE DATA 

 

 
Volumetric water content data collected with the Wolverton Basin Critical Zone 

Observatory. Metadata, raw data and higher level data can be found at:  

https://eng.ucmerced.edu/snsjho/files/MHWG/Field/SEKI/Wolverton  

or by contacting the author. 
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Figure  F1. All sensor soil moisture over four annual melt seasons from 
low elevation north-facing site-1 sensor-cluster.
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Figure  F2. Open soil moisture over four annual melt seasons from low 
elevation north-facing site-1 sensor-cluster.
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Figure  F3. Drip-edge soil moisture over four annual melt seasons from 
low elevation north-facing site-1 sensor-cluster.
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Figure  F4. Under-canopy soil moisture over four annual melt seasons 
from low elevation north-facing site-1 sensor-cluster.
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Figure  F5. All sensor soil moisture over four annual melt seasons from 
low elevation southeast-facing site-2 sensor-cluster.
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Figure  F6. Open soil moisture over four annual melt seasons from low 
elevation southeast-facing site-2 sensor-cluster.
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Figure  F7. Drip-edge soil moisture over four annual melt seasons from 
low elevation southeast-facing site-2 sensor-cluster.
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Figure  F8. Under-canopy soil moisture over four annual melt seasons 
from low elevation southeast-facing site-2 sensor-cluster.
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Figure  F9. All sensor soil moisture over four annual melt seasons from 
high elevation southeast-facing site-3 sensor-cluster.
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Figure  F10. Open soil moisture over four annual melt seasons from 
high elevation southeast-facing site-3 sensor-cluster.
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Figure  F11. Drip-edge soil moisture over four annual melt seasons 
from high elevation southeast-facing site-3 sensor-cluster.
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Figure  F12. Under-canopy soil moisture over four annual melt seasons 
from high elevation southeast-facing site-3 sensor-cluster.
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Figure  F13. All sensor soil moisture over four annual melt seasons 
from high elevation north-facing site-4 sensor-cluster.
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Figure  F14. Open soil moisture over four annual melt seasons from 
high elevation north-facing site-4 sensor-cluster.
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Figure  F15. Drip-edge soil moisture over four annual melt seasons 
from high elevation north-facing site-4 sensor-cluster.
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Figure  F16. Under-canopy soil moisture over four annual melt seasons 
from high elevation north-facing site-4 sensor-cluster.
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