Driven by the biological sciences, there is an increased need for imaging modalities capable of live cell imaging with high spatial and temporal resolution. To achieve this goal in a comprehensive manner, three-dimensional acquisitions are necessary. Ideal features of a modern microscope system should include high imaging speed, high contrast ratio, low photo-bleaching and photo-toxicity, good resolution in a 3D context, and mosaic acquisition for large samples. Given the importance of collecting data in live sample further increases the technical challenges required to solve these issues. This work presents a practical version of a microscopy method, Selective Plane Illumination Microscopy re-introduced by Huisken et al. (Science2004,305,1007-1009). This method is gaining importance in the biomedical field, but its use is limited by difficulties associated with unconventional microscope design which employs two objectives and a particular kind of sample preparation needed to insert the sample between the objectives. Based on the selective plane illumination principle but with a design similar to the Total Internal Reflection Fluorescence microscope, Dunsby (Dunsby, Opt Express 2008,16,20306-20316) demonstrated the oblique plane microscope (OPM) using a single objective which uses conventional sample preparation protocols. However, the Dunsby instrument was not intended to be part of a commercial microscope. In this work, we describe a system with the advantages of OPM and that can be used as an adaptor to commonly used microscopes, such as IX-71 Olympus, simplifying the construction of the OPM and increasing performance of a conventional microscope. We named our design inclined selective plane illumination microscope (iSPIM).