- Yau, Christina;
- Sninsky, John;
- Kwok, Shirley;
- Wang, Alice;
- Degnim, Amy;
- Ingle, James N;
- Gillett, Cheryl;
- Tutt, Andrew;
- Waldman, Fred;
- Moore, Dan;
- Esserman, Laura;
- Benz, Christopher C
Abstract Introduction Outcome predictors in use today are prognostic only for hormone receptor-positive (HRpos) breast cancer. Although microarray-derived multigene predictors of hormone receptor-negative (HRneg) and/or triple negative (Tneg) breast cancer recurrence risk are emerging, to date none have been transferred to clinically suitable assay platforms (for example, RT-PCR) or validated against formalin-fixed paraffin-embedded (FFPE) HRneg/Tneg samples. Methods Multiplexed RT-PCR was used to assay two microarray-derived HRneg/Tneg prognostic signatures IR-7 and Buck-4) in a pooled FFPE collection of 139 chemotherapy-naïve HRneg breast cancers. The prognostic value of the RT-PCR measured gene signatures were evaluated as continuous and dichotomous variables, and in conditional risk models incorporating clinical parameters. An optimized five-gene index was derived by evaluating gene combinations from both signatures. Results RT-PCR measured IR-7 and Buck-4 signatures proved prognostic as continuous variables; and conditional risk modeling chose nodal status, the IR-7 signature, and tumor grade as significant predictors of distant recurrence (DR). From the Buck-4 and IR-7 signatures, an optimized five-gene (TNFRSF17, CLIC5, HLA-F, CXCL13, XCL2) predictor was generated, referred to as the Integrated Cytokine Score (ICS) based on its functional pathway linkage through interferon-γ and IL-10. Across all FFPE cases, the ICS was prognostic as either a continuous or dichotomous variable, and conditional risk modeling selected nodal status and ICS as DR predictors. Further dichotomization of node-negative/ICS-low FFPE cases identified a subset of low-grade HRneg tumors with <10% 5-year DR risk. The prognostic value of ICS was reaffirmed in two previously studied microarray assayed cohorts containing 274 node-negative and chemotherapy naive HRneg breast cancers, including 95 Tneg cases where it proved prognostically independent of Tneg molecular subtyping. In additional HRneg/Tneg microarray assayed cohorts, the five-gene ICS also proved prognostic irrespective of primary tumor nodal status and adjuvant chemotherapy intervention. Conclusion We advanced the measurement of two previously reported microarray-derived HRneg/Tneg breast cancer prognostic signatures for use in FFPE samples, and derived an optimized five-gene Integrated Cytokine Score (ICS) with multi-platform capability of predicting metastatic outcome from primary HRneg/Tneg tumors independent of nodal status, adjuvant chemotherapy use, and Tneg molecular subtype.