Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Novel mutations in MERTK associated with childhood onset rod-cone dystrophy.

Abstract

Purpose

To report the clinical phenotype in patients with a retinal dystrophy associated with novel mutations in the MER tyrosine kinase (MERTK) gene.

Methods

A consanguineous family of Middle Eastern origin was identified, and affected members underwent a full clinical evaluation. Linkage analysis was performed using the Affymetrix 50K chip. Regions of homozygosity were identified. The positional candidate genes protocadherin 21 (PCDH21), retinal G protein-coupled receptor (RGR), and MERTK were polymerase chain reaction (PCR) amplified and sequenced. Long-range PCR was performed to characterize the deletion. Two hundred and ninety-two probands with autosomal recessive, childhood onset, retinal dystrophies were analyzed using the Asper Ophthalmics Leber congenital amaurosis chip to screen for known MERTK mutations.

Results

Analysis of a 50K-Affymetrix whole genome scan identified three regions of homozygosity on chromosomes 2 and 10. Screening of the candidate gene MERTK showed a possible deletion of exon 8. Long-range PCR identified a ~9 kb deletion within MERTK that removes exon 8. Screening of DNA from a panel of Saudi Arabian patients with autosomal recessive retinitis pigmentosa identified a second consanguineous family with the same mutation. One patient with a known MERTK mutation (p.R651X) was identified using the Asper Ophthalmics Leber congenital amaurosis chip. Further screening of the gene identified a second novel splice site mutation in intron 1. The phenotype associated with these identified MERTK mutations is of a childhood onset rod-cone dystrophy with early macular atrophy. The optical coherence tomography (OCT) appearance is distinctive with evidence of debris beneath the sensory retina.

Conclusions

Mutations in MERTK are a rare cause of retinal dystrophy. Non homologous recombination between Alu Y repeats near or within disease genes may be an important cause of retinal dystrophies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View