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ABSTRACT OF THE DISSERTATION

Statistical Modeling of Marked Point Processes and (Ultra-)High Frequency Data

by

Musen Wen

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2010

Professor Keh-Shin Lii, Chairperson

The studies of stock transaction data, i.e., both the regularly-spaced high frequency data

and the irregularly-spaced ultra-high frequency data, have been among the frontiers of mod-

ern financial data analysis. One of those data sets is the Trade and Quote (TAQ) data from

the New York Stock Exchange (NYSE), which is a collection of all stock transaction infor-

mation (e.g., the transaction date, time, prices and volumes, etc.) for every trading day. The

analysis of the intraday transaction data still remains highly challenging today, especially on

the statistical modeling aspects.

In this research, two new statistical modeling frameworks, namely, the Multi-Logit Mix-

ture Autoregressive (MLMAR) models and the multivariate Mixture Transition Distribution

(MMTD) models, are proposed respectively to handle above two types of financial data. The

models are the univariate and multivariate generation of the MTD-type time series models.
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The MLMAR time series model is a univariate time series model for the regularly-spaced

intraday stock prices, which includes the exogenous information, such as the transaction

volumes, the trading frequencies or any other market information, into the modeling frame-

work. The MMTD model is a modeling framework for marked point processes in general,

and ultra-high frequency transaction data in particular.

In both modeling frameworks, we solve a series of problems, which include the model

specification, parameter estimation, prediction methodology and their applications to the

stock transaction data. To show the capacity and advantage of the new models over the

existing models, we also compare the new models with those benchmark models and show

the new models’ advantages in terms of either describing the underlying data generating pro-

cess or prediction performance. For each class of time series model, potential extensions and

related modeling issues are also discussed thereafter.
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Chapter 1

Introduction

1.1 Ultra-high frequency data and issues

Since the seminal paper by Engle and Russell [26], the modeling and statistical analysis of

financial transaction data have been among the frontiers of modern financial econometrics.

One of the most famous transaction dataset is the Trade and Quote (TAQ) database from the

New York Stock Exchange (NYSE).

Table 1.1 illustrates a typical record of the stock transaction data in the TAQ database.

The first column is the symbol of the stock. In Table 1.1, it is a record for the IBM stock.

The IBM stock transaction data has been widely used in the studies of ultra-high frequency

data (a named first used by Engle). The second column is the date of the transactions. In our

research, we mainly focus on intraday data, i.e., the transaction data from a particular trading

day. The third column is one of the most interested quantities - the time for each transaction.
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This can be seen as the time stamp when each transaction is made. The most distinguished

feature of transaction data is that all transactions are irregularly-spaced in time. From the

view of stochastic processes, the arrival of transactions is a point process. In the fourth

and fifth column, the corresponding price and size/volume of the transaction are given. For

different markets, the last column are quite different. These may generally include all other

information related to the transactions.

Table 1.1: NYSE Trade and Quote (TAQ) database.

SYMBOL DATE TIME PRICE SIZE OTHERS
IBM 20070103 8 : 24 : 40 97.4 100 -
IBM 20070103 8 : 25 : 23 97.4 400 -
IBM 20070103 8 : 25 : 47 97.4 100 -
IBM 20070103 8 : 29 : 11 97.4 100 -
IBM 20070103 8 : 29 : 11 97.4 300 -
IBM 20070103 8 : 32 : 40 97.5 300 -
IBM 20070103 8 : 34 : 11 97.4 1000 -
· · · · · · · · · · · · · · · -

In practice, such datasets are also called tick-by-tick data, or simply tick data. Some dis-

tinguished features include irregularly-spaced transactions, the discreteness of price changes

and intraday seasonality. For example, the empirical studies of stock market data show that

the intraday data has seasonality. This happens because the transactions generally occur more

frequently during the open and close hours and less frequently during the lunch time. This

can be characterized by introducing a “U”-shape intensity function for the point process. In

what follows, we take a look at these features in a bit more details.
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The intraday prices and price changes are all discrete, because the smallest price change,

as regulated by the stock exchanges, lives on a small collection of discrete values. For exam-

ple, in stock market, the price change is a multiple of 1/16 cent in 1990’s. In recent years, the

smallest jump of price is set to be 1/10 cent. The smallest price change is thus called “a tick”.

For most of the intraday stock data, over 90% of the price changes fall into the categories of

{−5, · · · ,−1, 0, 1, · · · , 5} multiple of one tick. The discreteness of the price changes causes a

significant positive excess of kurtosis of the return distribution.

Trend or seasonality is also widely observed in the intraday transaction data. A typical

“U”-shape pattern widely exists in transaction volumes series, frequencies of trades and the

spread series, etc. A reverse “U”-shape pattern is generally observed in the transaction dura-

tions series. This implies that, in modeling long term ultra-high frequency data, these types

of patterns should be captured firstly. In fact, people would generally deseasonalize the tar-

get time series using different methods. For example, [17] uses a second-order polynomial

function to detrend the intraday data.

The most important features of intraday data are the dependence structures. These have

been intensively studied in the past and could be found in many literatures in empirical fi-

nance and financial econometrics. Extensive introduction and investigation could be found

in standard textbooks, such as [39] [59].

In financial econometrics, the focus of the studies is aiming at providing better estimation

of volatility. On the other hand, in real practice, the modeling and prediction for such type

of data are of more importance when people want to develop some useful trading strategies.
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However, the modeling and prediction of intraday data are far more difficult. This is reflected

by the fact that there exist only a few literature dealing with the modeling issues. The main

focus of our research is to model the intraday transaction data. Before we study the new

model, it will be helpful to review some existing models for the ultra-high frequency data,

which is covered in next chapter.

Finally, notice that apart from some common features of the dataset, there exist many

types of ultra-high frequency data. One important type is the ultra-high frequency data from

the foreign exchanges (FX) market. In recent years, transaction data is also available in some

derivatives markets. In our research, we focus on the transaction data from stock market only.

1.2 Outline

We outline the structure of the dissertation. In Chapter 2, we review some of the most suc-

cessful models for ultra-high frequency transaction data.

In Chapter 3, we generalize the (univariate) Mixture Transition Distribution (MTD) model

[47] and the Logistic Mixture Autoregressive model [70] to a new time series model, the

Multi-logit Mixture Autoregressive (MLMAR) model. This new class of model is specifi-

cally built to model the high frequency intraday stock prices. We study the statistical proper-

ties of the new model, solve the estimation problem via an ECM algorithm, and investigate

the prediction performance of the new model for the IBM stock intraday data.
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In Chapter 4, we propose a new modeling framework for marked point processes in gen-

eral and ultra-high frequency data in particular. The new time series model, i.e., the multi-

variate Mixture Transition Distribution model, is the multivariate extension of the MTD-type

models and the bivariate MTD (BMTD) model [40]. In this new class of model, we discuss

series of statistical modeling problems and use it to model the ultra-high frequency stock

transaction data. We show that the new model outperform the benchmark BMTD model in

capturing the underlying data generating processes.

In Chapter 5, we conclude by discussing some possible directions, existing issues and

open problems.
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Chapter 2

A Review of Models for Ultra-high

Frequency Data

In this chapter, we discuss a few important models for ultra-high frequency financial data.

It aims at providing a quick overview of the past development of the modeling of ultra-high

frequency data. After the proposal of each benchmark model, there exist numerous follow-up

and extended models. Such literature is so extensive that we are not able to list all of them.

Instead, to illustrate the idea of modeling ultra-high frequency data, we focus on introducing

a few benchmark models in this chapter.

2.1 ACD model

Engle and Russell [26] proposed a benchmark Autoregressive Conditional Duration (ACD)

model for financial transaction data. Since then, it has been widely used and became a suc-
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cessful model. This also opens a door for the modern studies of financial transaction data. In

the past decade, we have seen extensive development of new models under the general ACD

modeling framework. A series of extended, modified or combined models have been actively

explored and studied. Some of these models could be found in [5]. Now we introduce the

benchmark models, following the introduction and notations as in [50].

Let ti be the time stamp that a stock transaction is made. Denote xi = ti − ti−1 to be the

interval between two successive arrived transactions. We call xi’s durations. If we define Ψi

to be the conditional expectation of the ith duration, then we have the ACD model as follows.

Definition 2.1 (Autoregressive conditional duration (ACD) model) The class of ACD(q, p)

model for transaction durations {xi} is specified by

xi = Ψiεi (2.1)

Ψi = g(xi−1, · · · , xi−q,Ψi−1, · · · ,Ψi−p) = ω +

q∑
j=1

α jxi− j +

p∑
j=1

β jΨi− j (2.2)

where {εi}’s are i.i.d. sequences with E(εi) = 1, and ω > 0, α j, β j ≥ 0.

To obtain the likelihood for ACD models, one should further specify the distribution of the

error term {εi}. Different specifications of the error distribution result in different classes of

ACD-type models. Here we look at two simple ACD model as described in [26] [50]. The

first one is the ACD model with exponential errors.

Example 2.1 (Exponential ACD) A simple EACD(1, 1) model could be written as

xi = Ψiεi (2.3)

Ψi = ω + αxi−1 + βΨi−1 (2.4)

7



where {εi}’s are i.i.d. exponentially distributed sequences with E(εi) = 1, and ω > 0, α, β ≥ 0.

The second example is the ACD model with Weibull errors, which is called Weibull ACD

(WACD) model.

Example 2.2 (Weibull ACD) A simple WACD(1, 1) model is given by

xi = Ψiεi (2.5)

Ψi = ω + αxi−1 + βΨi−1 (2.6)

where {εi}’s are i.i.d. Weibull
((

Γ(1 + 1
γ

)−γ
, γ

)
distributed sequences, and ω > 0, α, β ≥ 0.

Given any assumed distributions of the errors, the estimation of the model could be car-

ried out by maximizing the log-likelihood function

l (θθθ; x) =

n∑
i=1

log f (xi|Ii−1;θθθ) (2.7)

where f (xi|Ii−1;θθθ) is the conditional density for the duration xi given the past; Ii−1 is the past

information up to time i − 1 and θθθ is the model parameter as given in (2.2). In other words,

we obtain the estimates as

θ̂θθ = arg max
θθθ

n∑
i=1

log f (xi|Ii−1;θθθ) (2.8)

This could be easily done for simple cases, such as the EACD(1, 1) model (Example 2.1).

For many other cases, one should generally turn to numerical optimizations.

Many extended and modified ACD type models have been developed and studied there-

after. Details of those models and related studies could be found in [5] [6] [22] [25] [48] [49]

[50] [73].
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2.2 Marked DSPP model

Another important modeling framework for stock transaction data is the class of marked

doubly stochastic Poisson process (marked DSPP) model proposed by Rydberg and Shephard

[63]. Essentially, the prices {P(t)} evolve as follows.

P(t) = P(0) +

N(t)∑
i=1

Zi (2.9)

Here, P(t) is the stock price at time t; P(0) is the starting price; N(t) is a counting process for

the transaction arrivals; Zi is the tick return (i.e., the price difference between two successive

transactions). In fact, this pure jump process completely describes the price dynamics.

One drawback of this modeling framework is that a lot of (strong) assumptions are needed

to build the model. For example, in [63] a simple MA(1) structure is assumed for tick return

{Zi}’s. Another example of the marked DSPP model proposed for ultra-high frequency finan-

cial data is by Centanni and Minozzo [16]. We refer to [17] for a detailed description of the

model.

A key concern in proposing a specific marked DSPP is the tractability of the estimation

schemes for the unobserved stochastic intensity. In Rydberg and Shephard’s model [63], a

particle filtering method is proposed to solve the estimation problem. While in Centanni and

Minozzo’s model [17], a reversible jump MCMC (RJMCMC) scheme is suggested based on

the formulation of the particular type of intensity process used.

On the other hand, if our interest is in modeling the financial durations, this turns out to

be a pure point process modeling problem. In fact, various types of point process models

9



have been proposed for the transaction data, such as the self-exciting point process model

and others [8]. Essentially, a successful model mostly relies on a proper type of the intensity

process. Some related studies can be found in [5] [8].

2.3 Bivariate MTD model

Almost at the same time as the proposal of Centanni and Minozzo’s model [17], Hassan and

Lii [40] proposed a new framework for modeling more general marked point processes, with

an application to model the transaction data, in particular, the durations and the volumes.

In Hassan and Lii’s bivariate Mixture Transition Distribution (BMTD) modeling framework,

one significant advantage over the marked DSPP model is that in the BMTD model, no

assumption of the independence between the marks and points is imposed. In fact, one of the

key features for the BMTD model is its ability to model the dependence between marks and

points.

This is a benchmark model that we will investigate in more details in later chapter, be-

cause the BMTD model is where we begin our research. For completeness, we describe it

here briefly.

Definition 2.2 (Bivariate mixture transition distribution (BMTD) model) A bivariate process

{(Xt,Yt), t ∈ Z} is generated by a BMTD model if the conditional distribution of (Xt,Yt) given

the past, evaluated at (xt, yt), is given by

F(xt, yt|xt−1, yt−1) =

p∑
j=1

α jF j(xt, yt|xt−1, yt−1) (2.10)
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where
∑p

j=1 α j = 1, α j > 0, j = 1, · · · , p; F j(xt, yt|xt−1, yt−1) is the conditional bivariate cumu-

lative distribution function of (Xt,Yt) given (Xt−1,Y t−1) = (xt−1, yt−1) = ((x1, y1), · · · , (xt−1, yt−1)),

which is the past information up to time t − 1.

The dependence structure of the marks and points relies on the particular class of bivariate

distributions. For example, in modeling the transaction durations and volumes, a bivariate

distribution with Gamma and Pareto marginals is used. We describe this case as follows.

In particular, let the bivariate sequences {(xt, yt)} be the transaction durations and volumes.

Then a BMTD model for this is given by

f (xt, yt|xt−1, yt−1) =

p∑
j=1

α j f j(xt, yt|xt−1, yt−1) (2.11)

where f j takes the form

f j(xt, yt|xt−1, yt−1) =
xγt e−xt(1/η j+yt/β j)

η
γ
jΓ(γ)β j

(2.12)

with built-in lag information given by

η j = θ jxt− je−yt− j , η j, θ j, β j > 0, j = 1, · · · , p (2.13)

The BMTD model successfully captures some features like bursts, outliers and jumps

in the ultra-high frequency data. The model outperforms some benchmark models in terms

of the prediction performance. Following this idea, in Chapter 4 we start from the BMTD

model and build up a more flexible modeling framework. Then, a series of related statistical

modeling and forecasting issues are studied.

At this point, we shift to discuss another important aspect of the studies of ultra-high

frequency data. It is on the volatility estimation from the ultra-high frequency data.
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2.4 Volatility estimation from ultra-high frequency data

Combining the ACD model with a GARCH model for prices, Engle [25] proposed an ultra-

high frequency measure of volatility. In the past decades, the volatility estimation from the

ultra-high frequency data has been a hot topic in financial econometrics. In our studies, we

will not focus on volatility estimation or forecasting using ultra-high frequency data. Instead

of providing complete references, we mention only some seminal papers, i.e., some pioneer

works done by Engle [25], Barndorff-Neilsen and Shephard [2] [3], etc.

At the end of this chapter, we make some remarks as follows.

Firstly, although the transaction dataset looks “simple” (at least from the first sight), the

modeling of such data is extremely difficult and still very challenging so far. This should not

be a surprise, since the transaction data are generally driven by very complicated background,

such as economics situations, policies and the release of news, etc. In other words, they

are driven by so many factors. In our research, we approach to such data set and propose

statistical models for the transaction data at two different scales - the data at transaction level

and the data at high frequency level.

Secondly, in modeling high frequency data or ultra-high frequency data, we adopt the

“let data speak for themselves” approach. In other words, we observe the data and propose

new statistical time series model to capture the underlying data generating processes. If the

model successfully capture the features in the data, we hope to obtain much better prediction

performance. Econometrics models generally consider more information or factors, thus the

12



models may have intuitive meanings. However, the statistical time series modeling approach

does not need to impose too much (economics) assumptions. Thus the statistical modeling

is, in some sense, a “data-oriented” approach.

Lastly, one of the key motivations in modeling transaction data is to obtain better predic-

tion performance. This is very useful in practice. Thus, whenever a new model is proposed,

we investigate the model’s prediction performance and compare them with some benchmark

models.
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Chapter 3

Multi-Logit Mixture Autoregressive

Processes

In this chapter, we propose a new class of non-linear non-Gaussian time series model, the

Multi-logit Mixture Autoregressive (MLMAR) model. We start with reviewing some key con-

cept in time series analysis and some well known benchmark linear and non-linear time se-

ries models, which include the famous ARCH model [24] and Raftery’s MTD model [62]. In

Section 3.2, we propose the MLMAR model after a careful discussion of the motivations and

modeling concerns for the high frequency intraday stock prices. In Section 3.3, we study the

statistical properties of the new model and propose an ECM algorithm to solve the estima-

tion problem. The prediction methodology and model selection criteria are also discussed.

In Section 3.4, we fit the MLMAR model to the IBM intraday stock transaction data and

compare its prediction performance with some benchmark models. In Section 3.5, as an in-
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teresting application of the new model to real trading practice, we develop a simple trading

algorithm based on the forecasting capacity of the MLMAR model. Last, we conclude by

pointing out some possible extensions and potential statistical modeling problems.

3.1 Introduction

In this section, we review some fundamental concept in time series analysis. The classical

linear and non-linear time series models are briefly introduced thereafter. In particular, we

take a close look at the Raftery’s MTD model [62] and other MTD-type models, since our

new time series model is also a specific MTD-type model.

3.1.1 ARIMA(p, d, q) processes

Since the proposal of the Box-Jenkins [12] approach in 1970s, linear ARIMA time series

model has been a popular tool for analyzing most time series data. A modern account of

this classic topic could be found in [14] or [37]. Notice that we interchange the notation

of processes and time series frequently. The notation time series is used when a process

is observed on discrete time index, while the notation processes is particularly reserved for

continuous-time processes. When introducing the ARIMA model and related fundamental

concepts in time series analysis, we follow the definitions and the notations as in [14].

The concept of stationarity plays an important role in linear time series analysis.
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Definition 3.1 (Autocovariance function (ACF)) If {Xt, t ∈ T } is a processes such that Var(Xt) <

∞,∀t ∈ T, then the autocovariance function γX(·, ·) of {Xt, t ∈ T } is defined by

γX(r, s) = Cov(Xr, Xs) = E [(Xr − EXr)(Xs − EXs)] , r, s ∈ T (3.1)

Definition 3.2 (Strict stationarity) A time series {Xt, t ∈ Z} is said to be strictly stationary if

the joint distribution of (Xt1 , · · · , Xtk)
′ and (Xt1+h, · · · , Xtk+h)′ is the same, i.e.,

(Xt1 , · · · , Xtk)
′ d

= (Xt1+h, · · · , Xtk+h)′, ∀{t1, · · · , tk}, k ∈ Z+, h ∈ Z (3.2)

However, the strict stationarity is a quite strong assumption. It is useful only in some the-

oretical studies. Instead, a weak form of stationarity, i.e., 2nd-order stationarity, or covariance

stationarity, is widely used and practically useful. If there is no ambiguity from the context,

when a time series is said to be stationary, it generally refers to 2nd-order stationarity.

Definition 3.3 (2nd-order stationarity) A time series {Xt, t ∈ Z} is said to be 2nd-order sta-

tionary if

E|Xt|
2 < ∞,∀t ∈ Z (3.3a)

EXt = m ,∀t ∈ Z (3.3b)

γX(r, s) = γX(r + t, s + t) ,∀r, s, t ∈ Z (3.3c)

With the stationary concept in mind, we are ready to define the benchmark Autoregressive

Moving Average (ARMA) time series model.
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Definition 3.4 (ARMA(p, q) process) A process {Xt, t ∈ Z} is said to be an ARMA(p, q) pro-

cess if {Xt} is stationary and

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q (3.4)

where {Zt} is white noise, i.e., {Zt} ∼ WN(0, σ2).

If we define the backward shift operator B such that BXt = Xt−1 and B j(Xt) = Xt− j, a more

compact form for the ARMA(p, q) processes is given by

φ(B)Xt = θ(B)Zt (3.5)

where φ(z) = 1 − φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · · + θqzq.

Two special classes of the ARMA(p, q) processes are the AR(p) and MA(q) processes:

Example 3.1 (AR(p) process) If θ(z) ≡ 1, then

Xt − φ1Xt−1 − · · · − φpXt−p = Zt (3.6)

is said to be an autoregressive (AR) process with order p.

Example 3.2 (MA(q) process) If φ(z) ≡ 1, then

Xt = Zt + θ1Zt−1 + · · · + θqZt−q (3.7)

is said to be a moving average (MA) process with order q.

The ARMA processes could be generalized to a class of important non-stationary pro-

cesses, the Autoregressive-Integrated Moving Average (ARIMA) processes. It is defined as

follows.

Definition 3.5 (ARIMA(p, d, q) process) If d is a non-negative integer, then {Xt} is said to

be an ARIMA(p, d, q) process if Yt := (1 − B)dXt is a causal ARMA(p, q) process, i.e., {Xt}
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satisfies a differential equation of the form

φ∗(B)Xt ≡ φ(B)(1 − B)dXt = θ(B)Zt, {Zt} ∼ WN(0, σ2) (3.8)

For more details and a systematic treatment of the ARMA(p, q) and ARIMA(p, d, q)

processes, we refer to standard text [14] or [37].

As the most widely accepted and used tools in modeling time series, the ARMA models

have their own advantages, such as their relatively simple tractability, well developed esti-

mation schemes and diagnostic tools, etc. Most importantly, the widely existing statistical

softwares to implement the ARMA models greatly help maintaining the models’ popularity.

However, the ARMA models may fail to capture some important features in many real time

series data, such as the conditional heteroscedasticity, the multi-modality in the conditional

distribution and the regime switching behaviors, etc. These features mentioned are frequently

observed in various types of financial time series. All these call for the innovations of non-

linear time series models. We will then review some of the popular nonlinear time series

models.

3.1.2 Classical nonlinear time series models

In principle, as described in [66], the innovations of coming up new nonlinear time series

models are infinite. In this section, we review some of the most important nonlinear time

series models in history. We introduce these benchmark nonlinear time series models, fol-

lowing similar orders or notations as in [1] [28] [61] [66].
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The first important class of nonlinear time series models is the Autoregressive Condi-

tional Heteroscedastic (ARCH) model proposed by Engle [24]. This is undoubtedly the most

important model in financial econometrics. It achieves huge success in modeling and fore-

casting volatility of financial time series. In recognition of the invention of the ARCH model,

Engle was awarded the Nobel prize in Economics in 2003. Here, instead of using the original

notation and definition, we follow the descriptions and notations as in [61].

Definition 3.6 (ARCH(r) model) An autoregressive conditional heteroscedastic process of

order r, i.e., ARCH(r), is defined as

zt =
√

htεt, ht = α0 + α1z2
t−1 + · · · + αrz2

t−r (3.9)

where {εt} ∼ IID(0, 1), α0 > 0, αi > 0 (i = 1, 2, · · · , r).

In practice, the {εt}’s are often specified to be standard Gaussian or Student-t distributed.

The ARCH model keeps the stationarity but is able to capture the time-varying conditional

variances. For the most simple ARCH(1) model, if the fourth moment of {zt} exists, the

unconditional kurtosis of {zt} is given by

z4
t

[Var(zt)]2 = 3
1 − α2

1

1 − 3α2
1

> 3 (3.10)

Thus the ARCH model is able to capture the fat-tailed behavior which is widely observed

in financial return series. Above properties still hold for general ARCH(r) models, although

the formulations are much more complicated. Many other specifications of the conditional

variances have been proposed since the first ARCH model. Among these, the Generalized

ARCH (GARCH) model by Bollerslev [11] is the one that is widely used in practice.
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Definition 3.7 (GARCH(r, s) model) A process {zt} is a pure Generalized ARCH, GARCH(r, s),

process if µt = E(zt|Ft−1) = 0 and

zt =
√

htεt, ht = α0 +

r∑
i=1

αiz2
t−i +

s∑
j=1

β jht− j (3.11)

where {εt} ∼ IID(0, 1), α0 > 0, αi ≥ 0 (i = 1, 2, · · · , r); β j ≥ 0 ( j = 1, 2, · · · , s);
∑max(r,s)

i=1 (αi +

βi) < 1.

The GARCH models are able to capture the long run effect of the shocks. The ARCH(r)

models that are used to model the volatility of asset returns are generally obtained with large

order r (for example, r = 8, 9 or higher). However, the GARCH(r, s) models are able to

capture the volatility process with much fewer parameters. It is not easy to identify of the

orders of GARCH models. Thus, one generally fits the GARCH models with lower orders.

Autoregressive models have been extended in various ways to handle different types of

nonlinear time series data. As emphasized in [66], in principle, the linear AR model can be

generalized to a broader class of models, the nonlinear autoregressive of order k with general

noise model [66], if there exists a mapping f : Rk+1 7→ R and

Xt = f (Xt−1, · · · , Xt−k, εt), t ∈ Z (3.12)

where {εt} is a sequence of i.i.d. random variables. Further, it may assume that εt is also in-

dependent of {Xs, s < t}. These models could be further generalized by including exogenous

variables up to time t. In what follows, we only briefly mention a few represented nonlinear

time series models from these generalizations.
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Definition 3.8 (Self-exciting threshold autoregressive (SETAR) model [66]) A simple self-

exciting threshold autoregressive, SETAR(l; k, · · · , k) model, where k is repeated l times, takes

the form

Xt = φ
( j)
0 +

k∑
i=1

φ
( j)
i Xt−i + ε

( j)
t (3.13)

conditional on Xt−d ∈ R j ( j = 1, · · · , l), where d is the delay lag and {R j, j = 1, · · · , l} forms

a partition of R.

The model is proposed by Tong and further developed into a rich class of nonlinear models

[65] [66] [67]. A further generation of the idea of the threshold AR model would be con-

sidering certain types of smooth transitions between these regimes. These are the Smooth

Transition Regression (STR) models. The following Exponential Autoregressive (EXPAR)

model is one special example.

Definition 3.9 (Exponential autoregressive (EXPAR) model [1] [36]) A simple EXPAR model

takes the form

Xt =

p∑
i=1

{
ai + bi exp(−γX2

t−1)
}

Xt−i + εt (3.14)

with γ > 0, ai, bi (i = 1, · · · , p) are the coefficients.

This is the model proposed in [36]. Notice that those STR models belong to a broader class

of models, the Random Coefficient Autoregressive (RCA) models [57].

As we mention before, the innovations of coming up new nonlinear time series models

are infinite. At the end of this subsection, we mention the class of bilinear models [33],
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following the notations as in [1]. For other nonlinear time series models, we refer to those

classical works, such as [1] [28] [30] [66].

Definition 3.10 (Bilinear model) A bilinear model take the form

Xt =

p∑
i=1

φiXt−i +

q∑
j=1

θ jεt− j +

P∑
i=1

Q∑
j=1

τi jXt−iεt− j + εt (3.15)

3.1.3 Raftery’s MTD-type models

Now, we introduce a recent class of nonlinear non-Gaussian time series models, the MTD-

type models. Since our new model is built upon the idea of MTD-type models, here we

introduce most of the important MTD-type models developed so far.

Raftery [62] proposed a new model for high-order Markov Chain. The idea is that the

conditional probability of observing Xt = j0 given the past is a linear combination of the

contributions from each of Xt−1, · · · , Xt−l. More specifically, consider a random sequence

{Xt ∈ {1, 2, · · · ,m}, t ∈ Z}, the transition probability is given by

P(Xt = j0|Xt−1 = j1, · · · , Xt−l = jl) =

l∑
i=1

λiq j0 ji (3.16)

where
l∑

i=1
λi = 1 and Q = {q jk} is a non-negative m × m matrix with column sums equal to 1,

and

0 ≤
l∑

i=1

λiq jki ≤ 1 ( j, k1, · · · , kl = 1, · · · ,m). (3.17)

The model can be generalized to model time series with continuous states. Following this

idea, a series of important nonlinear non-Gaussian time series models have been proposed

22



and studied in the past decade. The benchmark model is the Mixture Transition Distribution

(MTD) model [47] described as follows.

Definition 3.11 (Mixture transition distribution (MTD) model) A time series {Xt, t ∈ Z} is

generated by a mixture transition distribution model if the conditional distribution of Xt given

the past follows the form

F(xt|Ft−1) =

p∑
i=1

αiGi(xt|xt−i) (3.18)

where F(xt|Ft−1) is the conditional cumulative distribution function of Xt given the past,

evaluated at xt. Also,
∑p

i=1 αi = 1, αi ≥ 0 (i = 1, · · · , p). Gi(·|x) is the conditional distribution

for each value of x.

In [47], Gi(·|·) is specified as Gaussian distribution.

The MTD model explicitly specifies the data generating processes. It can be used to

model a variety of nonlinear non-Gaussian features in many time series, such as the flat

stretches, jumps and outliers. The following example shows a simple MTD model and its

sample path.

Example 3.3 (MTD model) A simple MTD model with 2 mixture components, up to 2-lags

and constant variance for each mixture, could be specified by

f (xt|Ft−1) = α1φ1(xt|xt−1) + α2φ2(xt|xt−2)

= 0.60
1

√
2π · 0.5

exp
(

xt − 0.88xt−1

2 · 0.52

)
+ 0.40

1
√

2π · 2
exp

(
xt − 0.94xt−2

2 · 22

)

A simulated sample path from this specific example is illustrated in Figure 3.1.
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Figure 3.1: A simulated sample path from a MTD model.

Another important MTD-type model is the mixture autoregressive (MAR) model [71]

described as follows.

Definition 3.12 (Mixture autoregressive (MAR) model) A time series {Xt, t ∈ Z} is generated

by a K-component MAR(K; p1, p2, · · · , pK) model if

F(xt|Ft−1) =

K∑
k=1

αkΦ

(
xt − φk0 − φk1xt−1 − · · · − φkpk xt−pk

σk

)
(3.19)

where F(xt|Ft−1) is the conditional cumulative distribution function of Xt given the past,

evaluated at xt. Φ(·) is the cumulative distribution function of standard Gaussian distribution

and
∑K

k=1 αk = 1, αk ≥ 0, k = 1, · · · ,K.

The MAR model provides much wider range of shape changing predictive distributions

than the MTD model. Moreover, Wong and Li shows that the MAR model has the ability to

handle cycles and conditional heteroscedasticity.
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Notice that both MTD and MAR models assume constant variances in each mixture

(Gaussian) density. When releasing such constraint, a useful class of time series model that

is able to model similar ARCH effect may be obtained. This is the model to be described

below [72].

Definition 3.13 (Mixture autoregressive conditional heteroscedastic (MAR-ARCH) model)A

time series {Xt, t ∈ Z} is generated by a MAR-ARCH(K; p1, p2, · · · , pK; q1, q2, · · · , qK) model

if

F(xt|Ft−1) =

K∑
k=1

αkΦ

 ek,t√
hk,t

 (3.20)

with

ek,t = xt − φk0 − φk1xt−1 − · · · − φkpk xt−pk , hk,t = βk0 + βk1e2
k,t−1 + · · · + βkqke

2
k,t−qk

(3.21)

where F(xt|Ft−1) is the conditional cumulative distribution function of Xt given the past infor-

mation Ft−1, evaluated at xt. Φ(·) is the cumulative distribution function of standard Gaus-

sian distribution and
∑K

k=1 αk = 1, αk ≥ 0 (k = 1, · · · ,K). To guarantee the non-negativity of

conditional variance, βk0 > 0 (k = 1, · · · ,K), and βki ≥ 0 (i = 1, · · · , qk; k = 1, · · · ,K).

Previous effort has been putting in parameterizing the conditional mean and conditional

variance for each mixture component. There exist two other ways to generalize the idea to

other MTD-type models. In what follows, we mention three models constructed by some

new types of generalizations.

To model different types of time series data, it is necessary to switch to a certain dis-

tribution for the mixture components rather than staying with Gaussian distribution. For
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example, in modeling heavy tailed financial time series, Wong, Chan and Kam [69] show the

great advantages by using Student-t distribution rather than Gaussian distribution to build a

MTD-type model. Their model is described as follows.

Definition 3.14 (Student t-mixture autoregressive (TMAR) model) A time series {Xt, t ∈ Z}

is generated by a K-component TMAR(K; p1, p2, · · · , pK) model if

F(xt|Ft−1) =

K∑
k=1

αkFvk

(
xt − φk0 − φk1xt−1 − · · · − φkpk xt−pk

σk

)
(3.22)

where
∑K

k=1 αk = 1, αk ≥ 0 (k = 1, · · · ,K). F(xt|Ft−1) is the conditional cumulative distri-

bution function of Xt given the past information, evaluated at xt. Fvk(·) is the cumulative

distribution of the standardized Student t-distribution with vk degrees of freedom.

With a Student-t distribution for each mixture component, the TMAR model is able to

model the tail behavior of the conditional distributions.

Another type of generation is to consider taking the exogenous time series or variables

into the model. For example, one can use exogenous variables to define the time changing

weights of the mixtures. A model following this direction is described as follows [70].

Definition 3.15 (Logistic mixture autoregressive (LMARX) model) The major time series of

interest {Yt, t ∈ Z}, together with l time series of exogenous variables {Xi,t, i = 1, · · · , l}

follows a LMARX model if

F(yt|Ft−1,Ωt) =

2∑
k=1

αk,tΦ

(
ek,t

σk

)
(3.23)

where

ek,t = yt − µk,t = yt − φk0 −

pk∑
i=1

φkiyt−i −

l∑
i=1

qki∑
j=0

δki jxi,t− j (3.24)
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log(α1,t/α2,t) = β0 + β1v1t + · · · + βmvmt (3.25)

Here F(yt|Ft−1,Ωt) is the conditional c.d.f. of Yt given the information in the sets Ft−1 and

Ωt , evaluated at yt; Ft−1 = {yt−1, yt−2, · · · }; Ωt = {x1,t, x1,t−1, · · · ; · · · ; xl,t, xl,t−1, · · · }; Φ(·)

is the cumulative distribution function of standard Gaussian distribution; αk,t is the mixing

proportion of the kth component, with α1,t + α2,t = 1; and vit ∈ Ft−1 ∪Ωt for i = 1, · · · ,m.

The LMARX model takes into account of the exogenous information in a way that exogenous

variables control the time-varying weight for each mixture component. This also brings into

rich predictive densities and may produce good prediction performance for some dataset.

All past developments of the MTD-type models have been focusing on univariate models.

Hassan and Lii [40] generalize the MTD-type models to the bivariate situations, where their

key motivation is to model marked point processes. We have described this model in Chapter

2. However, for completeness, we reproduce the BMTD model [40] here again.

Definition 3.16 (Bivariate mixture transition distribution (BMTD) model) A bivariate pro-

cess {(Xt,Yt), t ∈ Z} is generated by the BMTD model if the conditional distribution of (Xt,Yt)

given the past, evaluated at (xt, yt), can be written as

F(xt, yt|xt−1, yt−1) =

p∑
j=1

α jF j(xt, yt|xt−1, yt−1) (3.26)

where
∑p

j=1 α j = 1, α j > 0, j = 1, · · · , p; F j(xt, yt|xt−1, yt−1) is the conditional bivariate cumu-

lative distribution function of (Xt,Yt) given (Xt−1,Y t−1) = (xt−1, yt−1) = ((x1, y1), · · · , (xt−1, yt−1)),

which is the past information up to time t − 1.
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The BMTD model is originally proposed to model marked point processes. Thus, the

bivariate distributions proposed should have at least one non-negative marginal distribution.

In fact, in [40] a specific class of bivariate distributions satisfying this constraint is proposed.

For a bivariate random variable (X,Y), it follows the density form

fX,Y(x, y) = Cxδ+γ+1/φ−1
∣∣∣∣∣y − µβ

∣∣∣∣∣δ e−xα(λ+|y−µ|φ/βφ), x > 0,−∞ < y < ∞ (3.27)

where α, φ, δ and γ are all positive shape parameters; β and λ are positive scale parameters;

µ ∈ R is a location parameter; C is the normalized constant.

3.2 A MLMAR model for intraday stock prices

After a brief review of the important MTD-type time series models, we now propose a new

MTD-type model with direct motivation for the modeling of intraday high frequency stock

prices. Thus, we will discuss the model always with stock prices data in mind. However, this

is a more general time series modeling framework and it surely can be used to model many

other types of time series met in practice.

In this section, we first discuss our motivation to propose the time series model with

emphasis on empirical investigation of the intraday stock prices. After introducing the gen-

eralized Gaussian distribution (GGD), a key component of the new model, we propose the

new MTD-type model and illustrate it with some examples.
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3.2.1 Intraday prices and statistical modeling issues

Due to the fast development of information technology, the detailed information for each

stock transaction can nowadays be fully recorded and released to public with some reasonable

costs. One of such data sets is the daily Trade and Quote (TAQ) dataset from the New York

Stock Exchange. In TAQ dataset, the time stamp for each transaction, the corresponding

price, size, and description of the transaction conditions are recorded. For actively traded

stocks, these result in a massive data set.

The easy access to the transaction data in real time cultivates an industry called automatic

or algorithmic trading, where the trading signals and trading instructions are automatically

generated by computers. As estimated in 2009, automatic trading accounts for about 73%

of the all US equity trading volumes. It is undoubtedly that the success of the algorithmic

trading relies mostly on the forecasting capacity from the statistical models used for the stock

prices.

The tick-by-tick transaction data is the data set that we will model in next chapter. In

this chapter, we want to model the high frequency data. Notice that there exists no strict

definition of the high frequency data. Commonly, when the intraday data is sampled at time

interval less than 1 minute, the resulted data will be referred as high or very high frequency

data. This is an important playground for automatic trading and financial econometrics [9],

[23], [31]. Figure 3.2 shows the sample paths of intraday IBM stock prices sampled at every

20 or 30 seconds. Although two paths seem to be similar, in financial studies they are treated

differently.
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Figure 3.2: Intraday IBM stock prices (9:30AM - 4:00PM, 01/29/2007), sampled at every (a)
20 seconds and (b) 30 seconds.

Traditional market microstructure theory claims that the market variables can generally

be categorized into several distinct groups. For example, in option market, the participants

could be either hedgers, speculators or arbitragers; in stock market, traders can be informed

traders and uninformed traders. Participants from different groups utilize different strategies

and (should) illustrate different behaviors. Thus, a natural conjecture is that, when these

reflect into the market data, the mixture of distributions models would generally obtain a

better fit for the market data in many situations.

A review of the mixture of distributions model (MODM) in market microstructure theory

can be found in [32]. Actually, in transaction data analysis, the mixture models are very suc-

cessful in modeling i.i.d. returns [38]. Recently, within the ACD-type modeling framework,

different mixture ACD models, such as [41] [48] [50] and the time varying mixture ACD

model [49] obtain better fits for many different transaction data sets.

However, these models mainly focus on modeling the transaction durations. In this chap-

ter, in order to build a model for high frequency stock prices, we target at constructing a
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MTD-type model and, at the same time, taking into account of the other available informa-

tion accompanied with the price series. These helpful information could be the transaction

volumes, transaction frequencies and durations, etc. Above discussion would greatly help in

understanding our new model.

The MLMAR model we propose for modeling high frequency data is a two-step further

generalization of Wong and Li’s Logistic Mixture Autoregressive (LMARX) [70] model,

which consists of a mixture of (only) two Gaussian transition functions and allows the mix-

ture proportions to change over time. The LMARX model has been applied to model the

river flow data and the Canadian lynx data. However, in high frequency financial modeling,

this model is not an ideal candidate. The reasons are given as follows.

Firstly, a model with two mixture components is not sufficient. When the market is very

volatile, the conditional distribution of the current observation given the past may have three

or even more modes. Figure 3.3 and Figure 3.4 illustrate some of the multimodal condi-

tional density of the high frequency prices when conditioning on one-lag. As the sampling

interval increases, the multi-modality of conditional density seems more common and sig-

nificant. Thus, an extension of the LMARX model to allow arbitrary k time-varying mixture

components will be well rewarded.

Secondly, it is a widely accepted fact from empirical studies that the discreteness of price

movements always induces a high degree of kurtosis for the high frequency data [27]. Figure

3.3 and 3.4 show some signs that the conditional distributions have much higher excess of

kurtosis, i.e., some densities have very sharp “peaks”. Thus, a better idea (within the MTD-
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Figure 3.3: Conditional density of the intraday price. (a-d) for dates 01/22/2007 - 01/25/2007.
(a)-(b) are sampled every 20 seconds; (c)-(d) are sampled every 30 seconds. The conditional
density estimation and the optimal bandwidth chosen are via [4].
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Figure 3.4: Conditional density of the intraday price. (a-d) for dates 02/05/2007 - 02/08/2007.
(a)-(b) are sampled every 20 seconds; (c)-(d) are sampled every 30 seconds. The conditional
density estimation and the optimal bandwidth chosen are via [4].
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type modeling framework) is to select alternative types of distributions that are capable to

capture such distributional features, instead of using the Gaussian distribution.

The generalized Gaussian distribution (GGD) turns out to be a good candidate for this.

One of its nice properties is that beyond providing much greater flexibility (leptokurticity and

platykurticity), the estimation for the resulted time series model still remains tractable, which

we will see later. We will also see that such kind of model building could capture most of

those conditional densities illustrated in Figure 3.3 and Figure 3.4.

Other models considering using alternative distributions could be found in [69], where

Student t-mixture is used for modeling heavy tailed time series; and [40] , where a mixture

of bivariate distributions are studied for tick-by-tick transaction data. Before introducing the

new model, it is well deserved to take a look at an important distribution, i.e., the generalized

Gaussian distribution (GGD).

3.2.2 Generalized Gaussian distribution (GGD)

The generalized Gaussian distribution (GGD) [53] has been used intensively in electroni-

cal engineering and computer science. In particular, it is a powerful tool in modeling non-

Gaussian noise, where most of its successful applications are in signal processing and image

processing [18] [21] [44]. It is a key building component in our new model. We briefly

introduce some of its properties in this subsection. Here we follow the definition as in [53].
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Figure 3.5: Generalized Gaussian density (GGD).
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Definition 3.17 (Generalized Gaussian distribution (GGD) [53]) A random variable X has

a generalized Gaussian distribution (GGD) if its density has the form

φ̃(x; µ, σ, s) =
s

2σ Γ(1/s)
exp

{
−

∣∣∣∣∣ x − µσ
∣∣∣∣∣s} (3.28)

where µ, σ and s are the location, scale and shape parameter respectively. The density is

symmetric at µ. By varying the shape parameter, we may obtain the Gaussian distribution

and the Laplace distribution as its special cases. Some of the densities obtained by varying

the shape parameter is plotted in Figure 3.5. We take a look at two examples as follows.

Example 3.4 (Gaussian distribution) From the GGD, if we set s = 2, the density becomes

φ̃(x; µ, σ) =
1
√
πσ

exp
{
−

∣∣∣∣∣ x − µσ
∣∣∣∣∣2} (3.29)

which is Gaussian distribution with mean µ and variance σ2

2 .

Example 3.5 (Laplace distribution) From the GGD, if we set s = 1, the density becomes

φ̃(x; µ, σ) =
1

2σ
exp

{
−

∣∣∣∣∣ x − µσ
∣∣∣∣∣} (3.30)

which is Laplace distribution with location parameter µ and scale parameter σ.

We quote two results on the moment properties of GGD from [53].

Proposition 3.1 (Moments) If a random variable follows the generalized Gaussian distribu-

tion φ̃(x; µ, σ, s), the nth-order moments are given by

E(Xn) =
µn ∑n

k=0

{
Ck

n(σ
µ

)k[1 + (−1)k]Γ((k + 1)/s)
}

2Γ(1/s)
(3.31)

In particular,

E(X) = µ; E(X2) = µ2 +
σ2Γ(3/s)
Γ(1/s)

; E(X3) = µ3 +
3µσ2Γ(3/s)

Γ(1/s)
(3.32)
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E(X4) = µ4 +
6µ2σ2Γ(3/s)

Γ(1/s)
+
σ4Γ(5/s)
Γ(1/s)

(3.33)

Proposition 3.2 (Central Moments) If a random variable follows the generalized Gaussian

distribution φ̃(x; µ, σ, s), the nth-order central moments are given by

E
[
(X − µ)n] =

σn{1 + (−1)n}Γ((n + 1)/s)
2Γ(1/s)

(3.34)

In particular,

Var(X) =
σ2Γ(3/s)
Γ(1/s)

; E
[
(X − µ)3

]
= 0; E

[
(X − µ)4

]
=
σ2Γ(5/s)
Γ(1/s)

(3.35)

Moreover, skewness is 0 and kurtosis are given by

Kurt(X) =
Γ(1/s)Γ(5/s)

Γ2(3/s)
(3.36)

Above results will be useful in deriving the statistical properties of the new model. More

detailed results on both GGD and its statistical properties could be found in [53] [55].

3.2.3 MLMAR model for intraday prices

After the discussion in previous sections, we are ready to propose the new MTD-type time

series model. We generalize the MTD-type models [47] [69] [70] [71] to a new class, namely,

the Multi-Logit Mixture Autoregressive (MLMAR) model.

Definition 3.18 (Multi-logit mixture autoregressive (MLMAR) model) The major time

series of interest {Yt, t ∈ Z}, together with l exogenous time series {X j,t, j = 1, · · · , l} follows

a MLMAR(k, p, q) model if

f (yt|Ft−1,It−1) =

k∑
i=1

αi,tφ̃
(
yt; µi,t, σi, si

)
(3.37)
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where

µi,t = φi1yt−1 + · · · + φipyt−p, i = 1, · · · , k (3.38)

log(αi,t/α1,t) = βi,0 +

l∑
j=1

q∑
r=1

βi, jr x j,t−r, i = 2, · · · , k (3.39)

f (yt|Ft−1,It−1) is the conditional density function of Yt given the past information Ft−1 and

It−1 , evaluated at yt; Ft−1 = {yt−1, yt−2, · · · };It−1 = {x1,t−1, x1,t−2, · · · ; · · · ; xl,t−1, xl,t−2 · · · };

φ̃(·) is the density of generalized Gaussian distribution; αi,t is the ith weight for the mixtures

and
∑k

i=1 αi,t = 1 for all t.

The MLMAR model is an extension of the LMARX [70] model. We have following

remarks.

• The LMARX model has two mixture components; the MLMAR model allows for ar-

bitrary k mixture components. MLMAR model is an extension of the LMARX model.

• The conditional density in each mixture of the LMARX model is limited to be Gaus-

sian density; the MLMAR model considers far more flexible densities, while retaining

the Gaussian density as one special case. Together with the generalization from two

mixture components to k mixture components, the MLMAR model provides much

richer predictive densities.

• In LMARX model, the past information set for exogenous time series isIt; in MLMAR

model, we regularize and specify it as It−1, which is more realistic. Notice that at time

t, the exogenous information could only be observed up to time t − 1 in most real
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situations. However, it is no doubt that the MLMAR model could also take It as the

information set. This depends on real situations.

• In LMARX model, the parametrization of the conditional mean in each mixture com-

ponent takes into the exogenous variables and the parametrization of mixture weights

takes into account of {yt}. It is no doubt that MLMAR model could be specified as

this also. However, up to now, there is no convincing ways for the model selections

or hypothesis tests of such arbitrary specification. Thus, in modeling high frequency

data, we particularly specify a simplified model form of the MLMAR model, i.e., the

exogenous variables control the weights only.

We give a general definition of the MLMAR model above. Since our main motivation for

this new model is to model the high frequency intraday stock prices. For convenience, we

rewrite the model specifically for the problem of interest. Thus, in what follows, we discuss

the MLMAR model using the notations that are related to intraday data.

Suppose we observe the intraday stock prices {yt, t = 1, 2 · · · }, sampling at every T sec-

onds; the total transaction volume during the time period t−1 and t, given by vt =
∑

t−1<τ j≤t uτ j ,

where uτ j is the traded size at transaction time τ j; the total numbers of trades happening dur-

ing time t − 1 and t, given by nt =
∑

j 1{t−1<τ j≤t}, which is a measure of trading frequency.

Figure 3.6 and Figure 3.7 plot two intraday data. Each figure includes the prices, transac-

tion volumes and the total number of trades for each sample intervals (i.e., 20 seconds or 30

seconds).
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Figure 3.6: A plot of IBM stock intraday prices, volumes and number of transactions sampled
every 20 seconds on 01/22/2007.
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Figure 3.7: A plot of IBM stock intraday prices, volumes and number of transactions sampled
every 30 seconds on 01/24/2007.
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With previous notations, we reformulate the model in terms of modeling high frequency

intraday prices.

Definition 3.19 (MLMAR(k, p, q) model for high frequency intraday prices) An intraday

price series {yt, t = 1, 2, · · · } is said to follow a MLMAR(k, p, q) process if

f (yt|Ft−1,It−1) =

k∑
i=1

αi,t
si

2σiΓ(1/si)
exp

{
−

∣∣∣∣∣yt − µi,t

σi

∣∣∣∣∣si
}

(3.40)

where

µi,t =

p∑
j=1

φi jyt− j (i = 1, · · · , k)

log
(
αi,t

α1,t

)
= βi,0 + βi,1vt−1 + · · · + βi,qvt−q + βi,q+1nt−1 + · · · + βi,2qnt−q = X′tβi, i = 2, · · · , k

where {vt; t = 1, 2 · · · } and {nt; t = 1, 2 · · · } are the total transaction volumes and the total

number of transactions made in each fixed time interval respectively. In the equations that

model the weights, Xt = (1, vt−1, · · · , vt−q, nt−1, · · · , nt−q)′ and βi = (βi,0, βi,1, · · · , βi,2q)′.

In modeling high frequency intraday prices, we have following remarks:

• We want to emphasize that the ultra-high frequency data discussed in [26] considers

the essential features of irregularly-spaced transaction time. In this chapter, the price

series are sampled at fixed time interval, thus it belongs to the category of high or very

high frequency data. However, since the exogenous variables include the transaction

volumes and the transaction frequencies for the fixed time intervals (which are highly
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related with transaction arrivals), this model is also a type of ultra-high frequency data

model with the prices as main focus.

• The choice of the exogenous variables or their functional transformations can be very

flexible. For example, we can consider the largest transaction size traded in each fixed

interval and the longest or average duration in each fixed interval. Both are important

economic indicators that are related to liquidity. The exogenous variables can also be

indicator variables, depend on whether the trades are buy-initiated or sell-initiated, etc.

A model that includes these variables will be very useful in build up real statistical

trading algorithm in practice.

• The shape parameter and the scale parameter of the generalized Gaussian distribution

in the model could also be time dependent. However, we have not confirmed how

much benefit could such kind of enlarged flexibilities bring in. Thus, in current stage,

we consider these two sets of parameters as fixed scalars.

After introducing the new model, we would like to see a simple example.

Example 3.6 (MLMAR(3,2,2)) A simple MLMAR(3,2,2) model for the high frequency data

can be specified as:

f (yt|Ft−1,It−1) =

3∑
i=1

αi,tφ̃(yt; µi,t, σi, si) (3.41)

where φ̃(x; µ, σ, s) is the generalized Gaussian density with location µ, scale parameter σ

and shape parameter s. A particular form of the MLMAR(3,2,2) model could be

µ1,t = 1.000yt−1, σ
2
1 = 1.5, s1 = 2.0; (3.42)
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µ2,t = 0.7021yt−1 + 0.2979yt−2, σ
2
2 = 1.0, s2 = 1.0; (3.43)

µ3,t = 1.1087yt−1 − 0.1087yt−2, σ
2
3 = 2.0, s3 = 2.0; (3.44)

log
α2,t

α1,t
= 0.68 + 0.3vt−1 + 0.2vt−2 + 0.4nt−1 − 0.5nt−2; (3.45)

log
α3,t

α1,t
= 0.88 + 0.2vt−1 + 0.1vt−2 + 0.4nt−1 + 0.3nt−2. (3.46)

Notice that in this simple example, the exogenous variables are the volumes and the transac-

tion frequencies only.

3.3 Statistical inference

In this section, we study some statistical properties of the model. Essentially, the new class of

MLMAR model is a time series model for general non-stationary and nonlinear time series.

However, under very special conditions, we can obtain certain stationary conditions as in

[47] [68] or [71].

3.3.1 Statistical properties

From the model specification, we can show that the conditional mean is given by

E(yt|Ft−1,It−1) =

k∑
i=1

αi,tµi,t =

k∑
i=1

p∑
j=1

αi,tφi jyt− j (3.47)
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One advantage of the model lies in its capability in capturing time changing conditional

variance, which is given by

var(yt|Ft−1,It−1) =

k∑
i=1

αi,tciσ
2
i +

k∑
i=1

αi,t

 p∑
j=1

φi jyt− j


2

−

 k∑
i=1

p∑
j=1

αi,tφi jyt− j


2

(3.48)

where ci =
Γ(3/si)
Γ(1/si)

. The model has great flexibilities in capturing unimodal and multi-modal

conditional distributions of the prices.

Notice that the MLMAR model is a model for non-stationary time series. Only under very

special situations, we may obtain stationary time series. The non-stationarity is largely due

to the exogenous time series {X j,t, j = 1, · · · , l}. If we take no account of the exogenous time

series and only consider the major time series Yt, we have similar weak stationary conditions

for the MLMAR model. Since all mixture weights are assumed to be constant, the stationary

conditions for the MTD-type model with a mixture of generalized Gaussian distributions are

exactly the same as that for a model with mixtures of Gaussian distributions. Thus, follow

[47] [68] or [71], we have two theorems.

Theorem 3.1 (1st order stationarity of MLMAR(k,p,0) [68]) For a MLMAR(k,p,0) pro-

cess, a necessary and sufficient condition for the process {Yt} to be 1st order stationary is all

roots of the equation

1 −
p∑

j=1

 k∑
i=1

αiφi j

 z− j = 0

lie inside the unit circle.
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Theorem 3.2 (2nd order stationarity of MLMAR(k,1,0) [68]) For a MLMAR(k,1,0) pro-

cess, which is 1st order stationary, a necessary and sufficient condition for the processes {Yt}

to be 2nd order stationary if ∣∣∣∣∣∣∣
k∑

i=1

αiφ
2
i1

∣∣∣∣∣∣∣ < 1

The proof of the above theorems for the generalized Gaussian distributions situations is

quite similar to the proof for the Gaussian case [47] and [68], apart from a few constants

involving the shape parameters.

3.3.2 Parameter estimation: an ECM algorithm

In this section, we discuss the model estimation problem. Since the problem involves mix-

tures, the EM algorithm originally proposed by Demspter, Laird and Rubin [20] turns out

to be a natural candidate to obtain the maximum likelihood estimates. We propose here an

ECM algorithm [52] to solve the estimation problem, where quite complicated optimizations

in the M-Step of the ECM algorithm are involved. The efficiency of the ECM algorithm is

considered and evaluated via intensive simulation studies.

Recall that the MLMAR(k, p, q) model is given by

f (yt|Ft−1,It−1) =

k∑
i=1

αi,tφ̃
(
yt; µi,t, σi, si

)
=

k∑
i=1

αi,t
si

2σiΓ(1/si)
exp

{
−

∣∣∣∣∣yt − µi,t

σi

∣∣∣∣∣si
}

=

k∑
i=1

αi,t
si

2σiΓ(1/si)
exp

{
−

∣∣∣∣∣ei,t

σi

∣∣∣∣∣si
}

(3.49)
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where

ei,t = yt − µi,t = yt −

p∑
j=1

φi jyt− j = yt − Y′tφi; Yt =
(
yt−1, yt−2, · · · , yt−p

)′
; φi =

(
φi1, · · · , φip

)′
log

(
αi,t

α1,t

)
= βi,0 + βi,1vt−1 + · · · + βi,qvt−q + βi,q+1nt−1 + · · · + βi,2qnt−q = X′tβi (i = 2, · · · , k)

The conditional log-likelihood for the observed data is given by

l∗∗ =

n∑
t=p+1

log f (yt|Ft−1,It−1)

=

n∑
t=p+1

log

 k∑
i=1

αi,t
si

2σiΓ(1/si)
exp

{
−

∣∣∣∣∣ei,t

σi

∣∣∣∣∣si
} (3.50)

To find the maximum likelihood estimates directly by maximizing this log-likeliood

is practically intractable, even numerically. However, a proposed Expectation-Conditional

Maximization (ECM) [52] algorithm enables us to obtain the m.l.e. for this problem itera-

tively.

Suppose our observations are {yt, (vt, nt)′}nt=1, where yt is the observed transaction price at

time t; and (vt, nt)′ is the exogenous information flow as previously discussed. We define

Z = (Z1, · · · ,Zn) =



z1,1 · · · z1,t · · · z1,n

...
...

...

zk,1 · · · zk,t · · · zk,n


(3.51)

be the unobserved random variables, such that at each time t, z j,t = 1 ( j = 1, 2, · · · , k) if yt is

generated from the jth component of the conditional distribution and z j,t = 0 otherwise.
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Then the conditional log-likelihood for the complete data is given by

l =

n∑
t=p+1

k∑
i=1

(
Zi,tlog(αi,t) + Zi,tlog(si) − Zi,tlogΓ(1/si) − Zi,tlog(σi) − Zi,t

∣∣∣∣∣ei,t

σi

∣∣∣∣∣si
)

(3.52)

The ECM algorithm for the MLMAR model is derived as follows.

E-Step: Let the conditional expectation of the ith component of Zt be z̃i,t, then

z̃i,t =
αi,tφ̃(yt; µi,t, σi, si)∑k

j=1 α j,tφ̃(yt; µ j,t, σ j, s j)
(3.53)

CM-Steps: Notice that the likelihood involving the mixture proportions is

l∗ =

n∑
t=p+1

k∑
i=1

z̃i,tlog
(
αi,t

α1,t
α1,t

)
=

n∑
t=p+1

k∑
i=1

z̃i,t

(
log

αi,t

α1,t
+ logα1,t

)

=

n∑
t=p+1

 k∑
i=2

z̃i,tβ
′
i Xt −

 k∑
i=1

z̃i,t

 · log

1 +

k∑
j=2

β′jXt


 (3.54)

Taking partial derivatives with respect to βi (i = 2, · · · , k) yields,

∂l
∂βββi

=
∂l∗

∂βββi
=

n∑
t=p+1

z̃i,t −

k∑
i=1

z̃i,t

1 +
k∑

j=2
β′jXt

 Xt (3.55)

∂2l
∂βββi∂βββ

T
i

=

n∑
t=p+1

k∑
i=1

z̃i,t(
1 +

k∑
j=2
β′jXt

)2 XtX′t (3.56)

Similarly, other partial derivatives with respect to σi, si and the φi’s are given as follows.

∂l
∂σi

=

n∑
t=p+1

−z̃i,t

σi
−

n∑
t=p+1

z̃i,t|ei,t|
si si

σsi+1
i

(3.57)

∂l
∂si

=

n∑
t=p+1

z̃i,t

si
+ z̃i,t

1
Γ(1/si)s2

i

− z̃i,t|
ei,t

σi
|silog|

ei,t

σi
| (3.58)
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∂2l∗

∂s2
i

=

n∑
t=p+1

−z̃i,t

s2
i

{
1 +

2
siΓ(1/si)

−
1

Γ′(1/si)s2
i

}
− z̃i,t

(
log|

ei,t

σi
|

)2

|
ei,t

σi
|si (3.59)

∂l
∂φφφi

=

n∑
t=p+1

k∑
i=1

z̃i,tsi

σsi
i

{
1{ei,t>0}

(
yt − φ

′
iYt

)si−1
− 1{ei,t<0}

(
−yt + φ′iYt

)si−1
}

Yt (3.60)

∂2l
∂φφφiφφφ

T
i

= −

n∑
t=p+1

k∑
i=1

z̃i,tsi

σsi
i

{
1{ei,t>0}(si − 1)

(
yt − φ

′
iYt

)si−2
+ 1{ei,t<0}(si − 1)

(
−yt + φ′iYt

)si−2
}

YtY′t

(3.61)

Then starting with β(0) =
(
β(0)

2
′
, · · · ,β(0)

k
′)′

, φ(0) =
(
φ(0)

1
′
, · · · ,φ(0)

k
′)′

, σ(0)
i (i = 1, · · · , k)

and s(0)
i (i = 1, · · · , k), for the CM-steps we have the iteratively updates given as follows

βββ(m+1)
i = βββ(m)

i −



(
k∑

i=1
z̃i,t

)
XtX′t(

1 +
k∑

j=2
β(m)

j
′
Xt

)2



−1 
n∑

t=p+1

z̃i,t −

k∑
i=1

z̃i,t

1 +
k∑

j=2
β(m)

j
′
Xt

 Xt

 (3.62)

The update of σ(m+1)
i is

σ(m+1)
i =


 n∑

t=p+1

z̃i,t|e
(m)
i,t |

s(m)
i s(m)

i


 n∑

t=p+1

z̃i,t


−1

1/s(m)
i

(3.63)

The update of s(m+1)
i is

s(m+1)
i = s(m)

i −

{
∂2l
∂s2

i

}−1 ∣∣∣∣∣
s(m)

i ,e(m)
i,t ,σ

(m+1)
i

{
∂l
∂si

} ∣∣∣∣∣
s(m)

i ,e(m)
i,t ,σ

(m+1)
i

(3.64)

At last, the update of φφφ(m+1)
i is

φφφ(m+1)
i = φφφ(m)

i −

{
∂2l
∂φφφiφφφ

T
i

}−1 ∣∣∣∣∣
s(m+1)

i ,e(m)
i,t ,σ

(m+1)
i

{
∂l
∂φφφi

} ∣∣∣∣∣
s(m+1)

i ,e(m)
i,t ,σ

(m+1)
i

(3.65)

Then the ECM algorithm runs the E-step and the CM-steps iteratively until converge.

Since the ECM algorithm belongs to the generalized EM algorithm, it preserves the increas-
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Table 3.1: Empirical means and standard deviations(SD) of the parameter estimates via ECM
algorithm for simulated data.

sss mean(sd) σσσ2 mean(sd) φφφ1 mean(sd) φφφ2 mean(sd)
2.0000 2.0515 (0.19700) 1.5000 1.7327 (0.0923) 1.0000 0.9492 (0.0207) 0.7021 0.7089 (0.0191)
1.0000 1.0001 (0.03280) 1.0000 1.0065 (0.0622) 0.0000 0.0507 (0.0207) 0.2979 0.2911 (0.0190)
2.0000 1.9863 (0.08916) 2.0000 1.9893 (0.0469)

φφφ3 mean(sd) βββ1 mean(sd) βββ2 mean(sd)
1.1087 1.1134 (0.0142) 0.6800 0.6056 (0.3855) 0.8800 0.9484 (0.3566)
-0.1087 -0.1135 (0.0143) 0.3000 0.3319 (0.0572) 0.2000 0.2097 (0.0675)

0.2000 0.2331 (0.0908) 0.1000 0.1312 (0.0957)
0.4000 0.4219 (0.0664) 0.4000 0.3945 (0.0735)
-0.5000 -0.5357 (0.0775) 0.3000 0.3119 (0.0985)

ing likelihood property. Thus, if the likelihood is bounded above, then the ECM algorithm

surely converges to the maximized likelihood estimates given enough iterations.

A simulation study

To investigate the performance of the ECM algorithm, we simulate 100 sample paths from

the MLMAR(3,2,2) model as in Example 3.6. Each sample path has 5000 successive ob-

servations. In particular, the exogenous information series are simulated with two AR(1)

processes: X1,t = 0.7X1,t−1 + ε1,t and X2,t = 0.6X2,t−1 + ε2,t with ε1,t and ε2,t are both Gaussian

white noise with mean 0, but with variance 3 and 4 respectively.

The ECM algorithm is carried out. The empirical means and standard deviations of the

estimates are summarized in Table 3.1. The result shows that the ECM algorithm works

pretty well, where the means are very closed to the true parameters with relatively small

standard deviations.
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Figure 3.8: (1) Simulated MLMAR(3,2,2) processes with three Gaussian components; (2a)-
(2e) conditional densities.
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Figure 3.9: (1) Simulated MLMAR(3,2,2) processes with two Gaussian components and one
Laplace component; (2a)-(2e) conditional densities.
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Figure 3.10: (1) Simulated MLMAR(3,2,2) processes with two Laplace components and one
Gaussian component; (2a)-(2e) conditional densities.
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Figure 3.11: (1) Simulated MLMAR(3,2,2) processes with three Laplace components; (2a)-
(2e) conditional densities.
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3.3.3 Prediction and model selection

One advantage for the MLMAR model is its ability to obtain multi-modal predictive distribu-

tions. When the interest is in the point forecast, the highest density point from the predictive

distribution may be used. If we want to construct a prediction confidence interval, a highest

density region is preferred. In such situation, the predictive highest density region may be

comprised of several disjoint intervals.

In practice, the point forecast could be used to get a single best predictive price. A

fully visualized density forecast could be used for risk accessment. Figure 3.8 - Figure 3.11

illustrate some of the realized predictive densities from the MLMAR models. All parameter

settings are similar to those in the Example 3.6, except that the conditional distributions for

the mixture components are different; the scale parameters are σ2
1 = 0.1, σ2

2 = 0.7 and σ2
3 =

0.2; and the exogenous informations are given by two AR(1) process: X1,t = 0.7X1,t−1 + ε1,t

and X2,t = 0.6X2,t−1 + ε2,t with ε1,t and ε2,t are both Gaussian white noise with mean 0, but

with variance 3 and 4 respectively.

Figure 3.8 illustrates a sample path and some conditional densities facilitated by a model

whose all three mixture components are Gaussian distributions. This is similar to the case as

the LMARX model [70].

Figure 3.9 illustrates a sample path and some conditional densities facilitated by a model

whose first two mixture components are Gaussian distributions and last one is Laplace dis-

tribution.
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Figure 3.10 illustrates a sample path and some conditional densities facilitated by a model

whose first two mixture components are Laplace distributions and last one is Gaussian dis-

tribution.

Figure 3.11 illustrates a sample path and some conditional densities facilitated by a model

whose all three mixture components are Laplace distributions.

From above discussions and observations, we could see very clearly that the MLMAR

model provides far more flexible and richer conditional densities than the LMARX model.

Now, so many types of predictive densities are possible. These may include asymmetric

densities, heavy or light tails densities, densities with multi-modality and leptokurtic densi-

ties, etc. All these good properties are facilitated by using mixtures of generalized Gaussian

distributions.

Last, we discuss the model selection problem. For most MTD-type models, a widely

accepted and used model selection criteria is the BIC value. The most recent development

for the model selection problem is due to [54], where the situation of a mixture of Gaussian

distributions is studied. For the MLMAR model, we would suggest using BIC as the general

model selection criteria, although better criteria for such model may exist and will be well

deserved for further studies.
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3.4 Modeling IBM intraday stock prices

In this section, we apply the MLMAR model to real intraday stock transaction data. We pick

a piece of IBM intraday stock transaction data from the TAQ data base. The date we select

here is the data on 01/22/2007. Notice that there exist some transactions before and after

the standard trading hours. To be unified, we select the data that strictly falls between the

nominal trading hours, i.e., 9:30AM - 4:00PM.

The dataset comprises the intraday stock prices {yt, t = 1, 2, · · · }, sampling at every T =

20 seconds. This results in totally 1170 observations. The exogenous information include the

transaction volumes and frequencies of transactions. The total transaction volume (in 10,000

shares) during the time period t − 1 and t is vt =
∑

t−1<τ j≤t uτ j , where uτ j is the traded size at

transaction time τ j. A measure of the transaction speed/frequency is the average number of

trades per second during time interval t − 1 and t, given by nt = 1
20

∑
τ j

1{t−1<τ j≤t}. Notice that

here, nt is the average number of trades rather than the total number of trades, which we used

when introducing the new modeling framework.

We fit a combination of the MLMAR(k, p, q) models to the intraday data with k =

1, · · · , 4; p = 1, · · · , 4; and q = 1, · · · , 4. The best MLMAR model with the minimum

BIC value turns out to be a MLMAR(2, 3, 2) model given by

f (yt|Ft−1,It−1) = α1,tφ̃(yt; µ1,t, σ1, s1) + α2,tφ̃(yt; µ2,t, σ2, s2) (3.66)

where

µ1,t = 0.9326yt−1 + 0.0382yt−2 + 0.0272yt−3, σ
2
1 = 0.02, s1 = 1.67;
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Figure 3.12: A comparison of the predictive densities of the fitted model with Gaussian
density (with common scale parameters). (a) for the first mixture component (s=1.67); (b)
for the second mixture component (s=1.27).

µ2,t = 0.8707yt−1 − 0.0448yt−2 + 0.1742yt−3, σ
2
2 = 0.03, s2 = 1.27;

log
α2,t

α1,t
= −1.6780 − 0.0828vt−1 + 0.2975vt−2 + 0.7906nt−1 + 0.2018nt−2.

Figure 3.12 shows a comparision of the predictive densities (given by above model) with

Gaussian densities. The fitted GGD indicates positive excess of kurtosis in this case, since

the shape parameters are both less than 2.

We want to compare the prediction performance of the fitted MLMAR(2, 3, 2) model with

the standard univariate ARIMA model. The best fitted ARIMA model for the high frequency

prices is given by a ARIMA(2, 1, 4) model

(1−0.6514B+0.9534B2)(1−B)yt = (1−0.7534B+0.9408B2−0.0148B3−0.0850B4)zt (3.67)

where B is backward shift operator and {zt} is are white noise WN(0, σ2
z ).

We also fit the LMARX model to the real data, which is a special case of the MLMAR

model with a mixture of two Gaussian transition distributions.
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Table 3.2: Prediction mean square error for the IBM high frequency intraday prices.

Sample Frequency MLMAR (Model) LMARX (Model) ARIMA (Model)
20s 0.000604 (2,3,2) 0.000603 (2,3,2) 0.000672 (5,1,5)
30s 0.000927 (4,2,3) 0.000931 (2,2,2) 0.001044 (3,1,5)
45s 0.001513 (2,2,2) 0.001530 (2,2,2) 0.001668 (1,1,2)
60s 0.001985 (2,2,2) 0.001998 (2,2,2) 0.001954 (2,1,2)

In high frequency trading, the one-step ahead prediction is of the key concern in building

up the trading signals. Thus, we calculate the one-step ahead prediction mean square error

for all fitted models.

We fit the models to the data sampling every 20, 30, 45 and 60 seconds, and calculate the

one-step ahead prediction mean square errors. Results are summarized in Table 3.2. Overall,

we see that the prediction performance of the MLMAR model are very attractive. For the

data sampled every 30, 45 and 60 seconds, the overall prediction accuracy is improved by

25% of 1-tick (i.e., USD 1 cents) than the LMARX models . However, for the time series

with sampling frequency to be 60 seconds, the linear ARIMA model seems doing a better job.

This gives us a hint that for the high frequency intraday data, the best models may depend on

the sampling frequencies.

3.5 Application: simplified high frequency trading

One of the most important motivations to model the high frequency data is to facilitate au-

tomated trading. In recent years, the orders are able to be placed and executed tens or even

hundreds of times per day for the same stock, FX, or other financial products that can be
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traded via electronic systems. As an interesting application of the MLMAR model to stock

trading, we discuss a simplified example. We first provide the trading definition and criteria.

Then we investigate the algorithm’s performance in generating profit.

To set up a high frequency trading algorithm, let Ft ∈ {−1, 1} be the position (long/short)

taken at time t. Neutral positions are not allowed so that the“trader” is always in the market.

During each trading, the realized price return is given by

rt = yt − yt−1 (3.68)

Also, a standard practice is that a fixed amount c is invested in each trade with a transaction

cost δ for each transaction unit. Then the cumulative profit at time T , PT , is given by

PT =

T∑
t=1

Rt =

T∑
t=1

c · (Ft−1rt − δ|Ft − Ft−1|) (3.69)

where Rt is the realized return taken into the consideration of transaction cost. For highly

liquid market, the transaction cost δ would be very small. To gain an insight for the perfor-

mance of the MLMAR model in this simplified trading example, we calculate the cumulative

profit by dropping the term that involves transaction cost and setting c = 1000 share of the

stocks.

The data is sampled every 30 seconds. Thus, for a single stock, it results in 780 ob-

servations of prices {yt}
780
t=1 and related exogenous informations. The first 450 observations

are used to fit the MLMAR(k, p, q) time series model; the remaining 330 observations are

reserved for out of sample forecast and testing the trading algorithm. Suppose the one-step
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Figure 3.13: High frequency trading experiment based on the out-of-sample forecast of ML-
MAR model. Training with first 450 observation on prices, cumulative volumes and frequen-
cies of transactions; forecasting with remaining 330 observations.
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forecast of the price yt is ŷt . Then a straightforward trading signals (long/short) would be

Ft−1 = 1 if ŷt > yt−1, and Ft−1 = −1 if ŷt < yt−1.

Figure 3.13 shows the result of the cumulative profit via the trading based on MLMAR

mode for the date 01/22/2007. The algorithm trading performance is very interesting and

attractive. However, we notice that this is a much simplified case for real trading, which

excludes transaction cost and the uncertainty of obtaining the target executed prices one wish

to get. Thus, the real performance based on the MLMAR model would be different. In this

example, it mainly illustrates the out-of-sample prediction performance of the model.

3.6 Conclusion and discussion

In this chapter, with an aim at modeling high frequency stock prices from the TAQ dataset, we

proposed a class of Multi-Logit Mixture Autoregressive model. Related statistical modeling

and estimation problem are discussed. The model is used to fit the high frequency stock

prices series and a potential profitable trading algorithm based on the new model is derived

and illustrated. There exist possible extensions of the model. For example, one may choose

different types of functions to define the time changing mixture proportions.

For the estimation problem, the requirement of large sample size may turn out to be a

potential problem for practical data modeling. This issue may be alleviated by using other

estimation methods. The final goal of modeling the high frequency data is to put them into

practice. To be a potential successful algorithm trading model, the MLMAR model should
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be extended and enriched in ways such as adding more (important) exogenous variables that

represent the current market conditions. However, all these are tractable from the statistical

modeling aspects. The difficulty is from the financial interpretations of new variables.
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Chapter 4

Multivariate MTD Framework for

Marked Point Processes

In Chapter 3, we discussed the high frequency intraday data, i.e., the intraday prices sam-

pled at fixed time interval (h = 20 seconds, for example). Such kind of data is indeed an

aggregation of the TAQ data, which undoubtedly loses certain useful information. The most

distinguished feature of the ultra-high frequency data is that the transactions are irregularly-

spaced in time [26]. The ultra-high frequency data is essentially a type of marked point

process (MPP).

In this chapter, the marked point process data sets, in particular the ultra-high frequency

data or tick-by-tick data, are the main subjects that we are going to model. In Section 4.1,

we briefly review the past research and motivate our new model. We also introduce a useful

statistical technique for constructing multivariate distributions. It is called the Copula. Most
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of the nice features of our new model naturally originate from the good properties of Copula.

In Section 4.2, we propose the multivariate MTD (MMTD) model and discuss its relation-

ship with existing models. In Section 4.3, we study the estimation schemes and discuss the

prediction issues. In Section 4.4, we illustrate the usefulness of the new modeling framework

via two numerical examples - one with simulated data and one with real ultra-high frequency

data. We conclude in Section 4.5.

4.1 Introduction

4.1.1 Review

We have introduced the MTD-type models in Section 3.1 of Chapter 3. In this section, we

briefly review some literature that represent the recent development. At this moment, we

particularly focus on the motivation aspects for the proposal of our new model.

Le, Martin and Raftery proposed a univariate Mixture Transition Distribution (MTD)

time series model [47]. In their model, a time series {Xt : t = 1, 2, · · · } is generated from the

MTD model if

F (xt|Ft−1) =

p∑
i=1

ωiGi (xt|xt−i)

such that
∑p

i=1 ωi = 1, ωi > 0, i = 1, 2, · · · , p; F (xt|Ft−1) is the conditional cumulative

distribution function (cdf) of Xt evaluated at xt, given the past; Gi(·|x), i = 1, 2, · · · , p, is a

Gaussian cumulative distribution function for each value of x.
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By introducing more complicated parametrizations in above Gi’s, a series of extended

univariate time series models have been developed and found their applications in modeling

a quite broad range of financial data. For example, they are able to model the daily stock

prices [71], interest rate [45], S&P 500 stock index [72] and the U.S. annual consumer price

inflation data [10], etc. The MTD-type models are particularly helpful in capturing features

like bursts, flat stretches, heteroscedasticity and outliers.

Recently, we see quite extensive development of the MTD-type models. For example,

in [51], the construction of stationary MTD models is considered; in [46], the MTD models

within the Bayesian context are studied. Another direction is to extend the model to the bi-

variate situation. In [40], the univariate MTD model is generalized to the bivariate case. It

mainly relies on the proposal of a particular class of bivariate distributions. In [7] a multi-

variate (Gaussian) MTD model under the mixed multivariate Gaussian situations is proposed

and used to model bivariate stock price series.

The motivation of the multivariate MTD (MMTD) model in this Chapter is twofold.

Firstly, in most existing literature, the models are exclusively built under the Gaussian distri-

bution framework. This is no longer suitable for the time series derived from marked point

process data, whose duration series are subjected to non-negative constrain. Moreover, for

financial transaction durations, the dynamic range may be from 1 second to hundreds of

seconds. Thus, moving away from Gaussian construction of the MTD-type models is quite

necessary.
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Secondly, in modeling marked point processes, the marks and points comprise a multi-

variate time series. Thus, it is necessary to consider building up a multivariate model for

such kind of data. In this chapter, we generalize the univariate MTD-type models to the

multivariate case and extend beyond the Gaussian distribution.

We observe that the multivariate MTD model to be discussed later provides simple, flex-

ible and powerful ways to model marked point processes data. Moreover, it has the potential

to model high-dimensional marks and allows flexible choices of dependence structures be-

tween the marks and the point process.

4.1.2 Copula and dependence

Before we get into the details of the new multivariate MTD model, we introduce a statistical

technique that is used to build up multivariate distributions - the Copula. Copula is a useful

tool to construct multivariate distributions with various dependence structures. One nice

property of Copula is that one can model the marginal distributions and the dependence

separately. The popularity of Copula in financial modeling starts from the 1990s, when it

was used to model joint default risk for a portfolio.

In this subsection, we review some important definitions and properties of Copula, fol-

lowing Nelsen’s [56] standard introduction and notations. Extensive applications of Copula

in financial modeling can be found in [19].

Definition 4.1 A Copula function C is a mapping C : I2 → I, where I = [0, 1], with the

following properties
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• For every u, v ∈ I

C (u, 0) = C (0, v) = 0; (4.1)

• For every u, v ∈ I,

C (u, 1) = u; C (1, v) = v; (4.2)

• For every u1, u2, v1, v2 ∈ I such that u1 ≤ u2, v1 ≤ v2,

C (u2, v2) − C (u2, v1) − C (u1, v2) + C (u1, v1) ≥ 0 . (4.3)

The usefulness of Copula is based on a fundamental theorem by Sklar, which we called

the Sklar’s fundamental theorem for Copula.

Theorem 4.1 (Sklar’s Fundamental Theorem) Let H be the joint distribution function with

marginals F and G. Then there exists a Copula C such that for all (x, y) in R2,

H(x, y) = C (F(x),G(y)) (4.4)

If F and G are continuous, then C is unique; Otherwise, C is uniquely determined by

RanF(range of F) × RanG(range of G). Conversely, if C is a Copula and F and G are

distribution functions, then the function H determined by (4.4) is a joint distribution function

with marginals F and G.

By taking a partial derivatives on both hand sides of (4.4), the following corollary could

be obtained.
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Corollary 4.2 For continuous random vector, the Copula density, cθ(u, v) := ∂2Cθ(u,v)
∂u∂v is re-

lated to the density of the distribution H, denoted as h, by

h(x, y) = c (F(x),G(y)) f (x) · g(y). (4.5)

where f (x) and F(x)(or g(y) and G(y))are the PDF and CDF for the random variable X(or

Y).

In many practical applications, the Copula family called ”Archimedean Copulas” receives

much attention because of its capacity to capture various dependence structures and many

other nice properties. In our examples of new MMTD models, we illustrate them mostly

with Archimedean Copulas. In what follows, we review their definitions following [56].

Definition 4.2 Let φ be a continuous, strictly decreasing function, φ : I → [0,∞], such that

φ(1) = 0. The pseudo-inverse of φ is the function φ−1 : [0,∞]→ I given by

φ[−1](t) =


φ−1(t) if 0 ≤ t ≤ φ(0);

0 if φ(0) ≤ t ≤ ∞.

(4.6)

Lemma 4.3 Let φ and φ[−1](t) defined as above. Let C : I2 → I given by

C (u, v) = φ[−1] (φ(u) + φ(v)) . (4.7)

Then C satisfies the boundary conditions (4.1) and (4.2).

Lemma 4.4 Let φ and φ[−1](t) defined as above and let C : I2 → I defined as in the previous

Lemma. Then C satisfies (4.3) if and only if for all v ∈ I, whenever u1 ≤ u2,

C (u2, v) − C (u1, v) ≤ u2 − u1. (4.8)
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Theorem 4.5 Let φ and φ[−1](t) and C : I2 → I defined as previous. Then the function C is

a Copula if and only if φ is convex.

Definition 4.3 Copula of the form (4.7), provided that φ is convex, are called Archimedean

Copulas. The function φ is called generator of the Copula. If φ(0) = ∞, we say φ is a strict

generator. In this case, we have φ[−1](t) = φ−1(t).

More details, such as the proof of above lemmas and theorem, could be found in [56]. We

take a look at a special Copula, the product Copula.

Example 4.1 Let φ(t) = −ln(t) for any t ∈ (0, 1]. Because φ(0) = ∞, thus it is strict. In this

case, we can easily verify φ[−1](t) = φ−1(t) = e−t. The constructed Copula is thus given by

C (u, v) = e{−[−ln(u)−ln(v)]} = uv. (4.9)

This is called the product Copula. Further, it’s trivial to show that bivariate random variable

constructed using product Copula is independent.

Now, we turn to the dependence concept for Copula. Notice that the merit of the Copula

largely relies on its ability to model various dependence structures. For Copula, a widely

used scale-invariant measure of associations is the Kendall’s τ, given as follows.

Definition 4.4 Kendall’s τ is defined as the probability of concordance subtracted the prob-

ability of discordance,

τ = τX,Y = P{(X1 − X2)(Y1 − Y2) > 0} − P{(X1 − X2)(Y1 − Y2) < 0}. (4.10)

where (X1,Y1) and (X2,Y2) are independent identically distributed random vectors.
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For the dependence (in terms of Kendall’s τ) of the Archimedean Copulas, we have the

following theorem [56].

Theorem 4.6 Let X and Y be random variables with an Archimedean Copula C generated

by φ. The Kendall’s τ for X and Y, τC , is given by

τC = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt. (4.11)

Above brief review of Copula will greatly help in understanding the construction of our

new multivariate MTD model given later. Now, we turn to another important issue of Copula.

In fact, there exist hundreds of Copulas proposed so far. Given so many Copulas, which

Copula shall we choose? In practice, one generally fits a bunch of different Copulas and uses

criterias such as AIC, BIC, or goodness-of-fit tests to select the best fitted Copula. Thus,

choosing a Copula that describes the dependence structure properly would be an important

issue and is well deserved for further investigations. In current research, our main emphasis

is in the demonstration of the utility of the proposed multivariate MTD model. Thus we

would limit our scope to the Archimedean Copulas. And in particular, we pick the Clayton

Copula as our main illustration of some models. Other types of Copulas could be explored

in the future.

71



4.2 The multivariate MTD model

Now, we introduce the multivariate MTD (MMTD) model for general multivariate time se-

ries, and for marked point processes data in particular. The general modeling framework is

given as follows.

4.2.1 The model: a model for marked point process

Definition 4.5 (Multivariate mixture transition distribution (MMTD) model) A time series

{xt ∈ Rk, t = 1, 2, · · · } is generated from a k-variate, p-component multivariate Mixture

Transition Distribution (MMTD) model, if the conditional distribution of the observation at

time t, namely, xt = (x1t, · · · , xkt)′, given the past is specified by

F
(
xt|xt−1

)
=

p∑
i=1

ωiCi

(
xt|xt−1

)
, s.t.

p∑
i=1

ωi = 1; ωi > 0, i = 1, 2, · · · , p (4.12)

where

Ci

(
xt|xt−1

)
= Ci,θi

(
Fi1

(
x1t|xt−1

)
, · · · , Fik

(
xkt|xt−1

)
; Θi

)
(4.13)

is a certain k-variate Copula.

In (4.12), F
(
xt|xt−1

)
is the conditional cumulative distribution function (cdf) of Xt evalu-

ated at xt given the past Xt−1 = xt−1 = (x1, · · · , xt−1); the multivariate distribution Ci

(
xt|xt−1

)
is a conditional cdf for the ith mixture, which is to be constructed via Copula. In (4.13),

Ci,θi(·, · · · , ·) is the ith Copula with parameters θi = (θi1, · · · , θiqi); Fi j

(
x jt|xt−1

)
, j = 1, 2, · · · , k

specifies the conditional distribution for the jth-variate at time t given the past, within the ith

mixture; Θi represents a collection of all the parameters involving into the Fi j

(
x jt|xt−1

)
’s,
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j = 1, 2, · · · , k. The Sklar’s Fundamental Theorem (4.4) guarantees (4.13) to be well defined

multivariate distributions.

This definition of the multivariate MTD model is very general. In application we expect

that some simple models with certain unified structure are used. Thus, we consider the cases

with following simplifications. Some examples will be given later.

s1. Same type of Copula for all mixture components, i.e., Ci,θi’s are from a certain Cop-

ula and θi = θ for all i’s. Further, we focus on Copula from the one-parameter

Archimedean Copulas, i.e., θi = θ, which is a scalar parameter.

s2. In (4.13), let Fi j

(
x jt|xt−1

)
(for fixed j = 1, 2, · · · , k) has the same class of univariate

distribution over all i = 1, 2, · · · , p. For example, Fi1

(
x jt|xt−1

)
’s, i = 1, 2, · · · , p may

all be Gamma distribution.

When specifying models from (4.12) and (4.13), it is convenient to take three succes-

sive steps — specify the marginal distribution; choose a Copula and specify the build-in lag

information.

In particular, when k = 2 the model can be written as

F
(
xt, yt|xt−1, yt−1

)
=

p∑
i=1

ωiCθ

(
Fi1

(
xt|xt−1, yt−1

)
, Fi2

(
yt|xt−1, yt−1

)
; Θi

)
(4.14)

where (xt−1, yt−1) = {(x j, y j), j = 1, · · · , t − 1} is the past information up to time t − 1.

If all probability density functions exist, we may rewrite (4.14) in a density form, which

is convenient and useful in future computations.

f
(
xt, yt|xt−1, yt−1

)
=

p∑
i=1

ωi fi(xt, yt|xt−1, yt−1; θ,Θi) (4.15)
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Figure 4.1: IBM stock transaction data - first 500 transactions starting from 12:30PM (where
time stamp here is zero) on 02/06/2007. (a) transaction prices (in US dollars) versus time
stamp; (b) (normalized) tick-returns (i.e., returns divided by minimum tick size 0.1) versus
time stamp; (c) transaction volumes (in thousand shares) versus time stamp; (d) inter-trades
durations (in seconds).

with

fi(xt, yt|xt−1, yt−1; θ,Θi) = fi1(xt|xt−1, yt−1) fi2(yt|xt−1, yt−1)·

cθ
(
Fi1(xt|xt−1, yt−1), Fi2(yt|xt−1, yt−1)

) (4.16)

where cθ(u, v) =
∂2Cθ(u,v)
∂u∂v is the density function of Copula Cθ(u, v). fi1, fi2 are the density of

Fi1 and Fi2 respectively. Notice that the parameters Θi appeared in (4.15) is implicit on the

right hand side of equation (4.16).

In what follows, we discuss why the multivariate MTD model proposed will be a good

candidate in modeling marked point processes. The ultra-high frequency financial transaction
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Figure 4.2: Earthquake record (1885-1980, magnitudes ≥ 6.0) in an offshore region east of
Honshu and south of Hokkaido [58].

data is just a particular type of marked point process data. The most distinguished feature of

such data is the irregularily-spaced transaction time.

To facilitate the discussion, we illustrate all ideas within certain real data context. Let

Ti, i = 0, 1, 2, ... be the time when the ith transaction occurs (with T0 = 0). We denote

X1i = Ti − Ti−1 to be the duration between two successive transactions. Let (X2i, · · · , Xki)′

represents the k − 1 dimensional marks at time Ti, which can be the associated transaction

returns, traded volumes or other recorded quantities. Then, the transaction data can be fully

represented by the sequences {Xt = (X1t, · · · , Xkt)′}Nt=1.

We say that the financial transaction data is generated from a multivariate MTD model

if the conditional distribution of Xt evaluated at xt given the past follows (4.12) and (4.13).

A natural constraint for such specification is that the first component of Xt (i.e., durations)

should have non-negative support.
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Figure 4.1 displays the typical multivariate time series from the transaction data set. It

is a record of IBM stock transactions made on the New York Stock Exchange (NYSE) for

a period of about 2000 seconds (i.e., about half an hour). We see the irregularly-spaced

transaction time (see Figure 4.1 (a), (b) and (c); where in (d) the derived inter-trades durations

are directly plotted) and the very frequent bursts or outliers for both transaction volumes and

the tick-returns series (i.e., the difference between successive prices). Moreover, we notice

that the inter-trades durations also display very similar features (bursts, jumps and outliers,

etc.) and even show some sign of clustering effect.

An amazing fact is that for most marked point processes data met in practice, there exist

many common features as those mentioned for the transaction data. The earthquake data is

another example, which we will see later. For such kind of marked point processes data, to

our best knowledge, very few statistical models are built so far to capture the underlying data

generating processes. In particular, for the transaction data, very few statistical research is

on describing the transaction dynamics simultaneously for the marks and points. Hassan and

Lii [40] propose a bivariate MTD model as a first trial.

As mentioned before, apart from the transaction data, other data sets such as the earth-

quake data (see [13], [58] and Figure 4.2), sea wave data (see [40]) and precipitation data

(see [34]), etc. all share very similar nonlinear non-Gaussian features mentioned above. A

unified modeling framework to model such kind of marked point processes data will be very

useful.
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The univariate (Gaussian) MTD-type models have been proved to be able to capture such

kinds of features. However, notice that for most data sets mentioned above, the marks and

durations all belong to positive interval (0,+∞). Further, the marks and the points should

be considered simultaneously. In other words, they are multivariate time series. Thus it is

necessary to generalize the univariate MTD-type models to the multivariate situations as in

(4.12) and (4.13). We will see later that many marked point processes data, especially the

transaction data, can be easily modeled via the multivariate MTD models. Figure 4.3 shows

the simulated transaction data via a specific multivariate MTD model.

In the remaining of this section, to illustrate the multivariate MTD modeling, we specify

two types of models. They are for k = 2 (bivariate series) and k = 3 (trivariate series)

respectively. In these examples, the multivariate MTD models all move beyond the Gaussian

distribution and bring in different dependence structures by using different Copulas. We will

see their realizations and applications in later sections.

Model A1 When k = 2, we can specify the ith component in (4.16) as follows,

fi1(xt|xt−1, yt−1) =
1

Γ(αi1)βαi1
i1

xαi1−1
t e−xt/βi1 , xt > 0. (4.17)

with αi1 > 0 as a scalar; βi1 = β∗i1e−(xt−i+yt−i), i = 1, 2, · · · , p as the built-in lag information.

In modeling financial transaction data, the first variate in this bivariate sequence is generally

used to represent the inter-trades duration. Similar, we specify

fi2(yt|xt−1, yt−1) =
1

Γ(αi2)βαi2
i2

yαi2−1
t e−yt/βi2 , yt > 0. (4.18)

with αi2 > 0 as a scalar; βi2 = β∗i2e−
√

xt−i , i = 1, 2, · · · , p. This second variate is used to repre-

sent transaction volumes. Then, Θi =
(
αi1, β

∗
i1, αi2, β

∗
i2

)
, i = 1, 2, · · · , p are model parameters.
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Figure 4.3: Simulated stock transaction data (500 observations of a period around 1000 sec-
onds, i.e., 15 minutes) with Model B. (a) transaction prices versus time stamp; (b) (normal-
ized) tick-returns versus time stamp; (c) transaction volumes (in thousand shares) versus time
stamp; (d) inter-trades durations (in seconds).
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• Similar to the discussion in [40], the built-in lag information can be arbitrary in prin-

ciple so that very broad dependence, linear or non-linear, can be explored and con-

structed.

• On the other hand, the particular specifications of built-in lag information are also sub-

jected to domain knowledge, model stability and the estimation concerns, etc. Similar

arguments also apply to the construction of other models.

Last, we specify the Clayton Copula in (4.16), whose density is given by

cθ(u, v) = (1 + θ)u−1−θv−1−θ
(
−1 +

1
uθ

+
1
vθ

)−2− 1
θ

, θ ∈ (−1,∞)\{0}. (4.19)

Model A1 will be used to study the efficiency of the estimation procedures that will be dis-

cussed later.

Model A2 Similar to Model A1, we modify the specification of the built-in lag informa-

tion (through the parameterizations of βi1 and βi2) as follows,

βi1 = β∗i1

 1 + y−1
t−ie

−yt−i

1 + y1/3
t−i x−1

t−ie−xt−i

 , βi2 = β∗i2

 1 + x−1
t−ie

−xt−i

1 + x1/3
t−i y−1

t−ie−yt−i

 , i = 1, 2, ..., p. (4.20)

where we obtain a slightly different model, which we will use to model the real tick-by-tick

transaction data.

Model B We consider a trivariate (k = 3) time series. This is because in modeling

the transaction data, not only the inter-trades durations and transaction volumes but also the

tick-returns are all of great interest. We specify in (4.12) using Gaussian Copula as follows,

Ci

(
xt|xt−1

)
= ΦΣ

(
Φ−1

(
Fi1

(
x1t|xt−1

))
,Φ−1

(
Fi2

(
x2t|xt−1

))
,Φ−1

(
Fi3

(
x3t|xt−1

)))
(4.21)
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where ΦΣ is the standardized multivariate Gaussian distribution with correlation matrix Σ3×3;

Φ−1 is the inverse of the univariate standard Gaussian cumulative distribution function Φ.

For i = 1, 2, · · · , p, we specify fi1(xt|xt−1, yt−1, zt−1) and fi2(yt|xt−1, yt−1, zt−1) similar to the

specifications in Model A1, where the component {xt} is for durations and {yt} for transaction

volumes. Finally, let {zt} represents the tick-returns,

fi3(zt|xt−1, yt−1, zt−1) =
1

√
2πσi3

exp
(
zt − µi3

2σ2
i3

)
. (4.22)

We may specify the built-in lag information σi3 = σ∗i3e−
√

xt−i , for example. This very simple

model will be used to simulate the transaction processes with two dimensional marks, i.e.,

transaction volumes {yt} and tick returns {zt} .

4.2.2 Relationship with existing models

Due to the fact that the use of product Copula (C (u, v) = uv) implies independence, the

multivariate MTD model can be decomposed into independent univariate MTD-type models.

Its relationship with most existing MTD-types models could be summarized in the following

two results.

• The multivariate MTD model can be decomposed into univariate MTD-type models to

obtain the MTD model by Le, Martin and Raftery [47] and all other extended models,

such as Berchtold’s [10] and Wong and Li’s [71] [72], etc.

• The multivariate (Gaussian) MTD model by Bauwens, Hafner and Rombouts [7] can

be constructed from the multivariate MTD modeling framework.
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We verify above arguments by providing following two examples. At the same time, they

also serve as examples of the MMTD models, in addition to those previously constructed

models. On the other hand, we see that the MTD model, its extended models and the recent

multivariate (Gaussian) MTD models [7] can be treated as special cases of the multivariate

MTD models.

Example 4.2 (A decomposition) Consider the bivariate case given in (4.16). Let’s specify

the following construction for the ith component:

fi1(xt|xt−1, yt−1) =
1

√
2πσi

exp
(

xt − φixt−i

2σ2
i

)
(4.23)

Similar construction applies to fi2. Moreover, in (4.16) we specify a product Copula, whose

density function is given by cθ(u, v) = 1. Via this specific construction, the univariate time

series {Xt} and {Yt} are independent. Both follow the benchmark MTD model as described in

[47].

We may generalize this by specifying the ith component in more complicated way. For

example,

fi1(xt|xt−1, yt−1) =
1

√
2πσi

exp

 xt − φi0 −
∑pi

j=1 φi jxt− j

2σ2
i

 (4.24)

with similar construction applies to fi2. The product Copula is used again. We then decom-

pose the multivariate MTD model to obtain the Mixture Autoregressive (MAR) model as

described in [71].

Example 4.3 (Multivariate (Gaussian) MTD model) Bauwens, Hafner and Rombouts pro-

posed a multivariate (Gaussian) MTD model [7] to model multivariate stock returns series.
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In their model, the dynamics of the k-dimensional vector time series {xt = (x1t, . . . , xkt)
′

}Nt=1

are specified by

f
(
xt|xt−1

)
=

p∑
i=1

ωi fi (xt|µi,Σit) (4.25)

where fi (xt|µi,Σit) are multivariate Gaussian densities with constant mean vector µi = {µi1, · · · , µik}

and time changing variance-covariance matrix Σit.

Within the general multivariate MTD modeling framework, for the ith component in the

mixture, we specify in (4.12) with Gaussian Copula, i.e., Ci(u;Σit) = ΦΣit

(
Φ−1(u1), . . . ,Φ−1(un)

)
,

where ΦΣit is the multivariate Gaussian distribution with zero mean vector and time chang-

ing correlation matrix Σit and the Φ−1 is the inverse of the standard univariate Gaussian

distribution function Φ. Further, we may let each marginal to be Gaussian distributed with

mean from corresponding element of µi and variance from the diagonal element of Σit. Then,

with such specification, we reconstruct the multivariate (Gaussian) MTD model from the

multivariate MTD modeling framework, due to the fact that “Gaussian Copula generates the

multivariate standard Gaussian distribution if and only if the margins are standard Gaus-

sian.” . We also mention that the restriction (s1) mentioned before has to be dropped here,

since model (4.25) takes time-varying Copula parameters, Σit.

From previous discussions, we see that the multivariate MTD model may be seen as a natural

multivariate extension of the univariate MTD-type models.
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4.3 Parameter estimation and predictions

4.3.1 An EM algorithm

Generally, for the statistical models related to mixtures, a good candidate for parameter esti-

mation is the Expectation Maximization (EM) algoritm [20]. For the estimation for MMTD

model here, however, a direct EM algorithm will not work efficiently, if not impossible. This

is largely due to the extremely complicated likelihood for all types of MMTD models con-

structed via Copula.

We propose an EM algorithm for the MMTD model. The new EM algorithm proposed

here has a refined two-step optimization within the M-step. To simplify our notation, we

derive and illustrate the new EM algorithm for the bivariate model as described in (4.15) and

(4.16). It is obvious that the algorithm could be carried over to higher-dimensional cases

without any difficulties.

Suppose the observed marked point process data {(xt, yt)}nt=1 is generated from model

(4.15)-(4.16). We may define the “unobserved” random variables as follows,

Z = (Z1,Z2, ...,Zn) =



z11 z21 . . . zn1

. . . . . . . . . . . .

z1p z2p . . . znp


(4.26)

where Zt = (zt1 , zt2 , ..., ztp)
′, t = 1, . . . , n is an indicator random variable, such that zt j equals

to 1 if (xt, yt) is generated from the jth component, and zero otherwise.
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It can be shown that the probability that a certain observation comes from the jth mixture

component is given by,

P
{
Zt =

(
zt1 , zt2 , . . . , zt j , . . . , ztp

)′
=

(
0, 0, ..., 1( jth), ..., 0

)′}
= ω j, j = 1, 2, ..., p. (4.27)

Under the previous setup, we obtain the (conditional) log-likelihood for the complete data

given as follows,

l (Θ|(X,Y),Z) =

n∑
t=p+1

p∑
j=1

zt jlog ω j +

n∑
t=p+1

p∑
j=1

zt jlog f j(xt, yt|xt−1, yt−1; θ,ΘX,ΘY) (4.28)

In (4.28), Θ =
{(
ω1, ω2, ..., ωp

)
,ΘX,ΘY , θ

}
are the model parameters, where θ is the pa-

rameter for Copula and ΘX and ΘY are the parameters being involved in the built-in lag

information parametrization for {Xt} and {Yt} respectively. For example, in Model A1, ΘX =(
αi1, β

∗
i1; i = 1, 2, · · · , p

)
and ΘY =

(
αi2, β

∗
i2; i = 1, 2, · · · , p

)
. (X,Y) = {(xt, yt)}nt=1 are the ob-

served data; f j(·) is of the same form as in (4.16).

The EM algorithm runs iteratively via the following two steps:

E-Step let Θ(m) denote the estimates from the mth iteration (m = 1, 2, · · · ). The condi-

tional expectation of the jth component of Zt, z̃t j , given the observed data is

z̃t j =
ω j f j(xt, yt|xt−1, yt−1;Θ(m))∑p
i=1 ωi fi(xt, yt|xt−1, yt−1;Θ(m))

, j = 1, 2, · · · , p. (4.29)

M-Step Given the the “missing data” {z̃t}, the M-Step aims to maximize the complete

(conditional) log-likelihood function l overΘ. In (4.28), by taking the partial derivatives with

respect to ω j, we obtain a direct estimator,

ω̂ j =

∑n
t=p+1 z̃t j∑n

t=p+1
∑p

i=1 z̃ti
, j = 1, 2, · · · , p. (4.30)
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However, the full density form (4.15) and (4.16) would be extremely complicated, since

the Copula density cθ(u, v) itself would be complicated in general. Thus it is not feasible to

optimize over the parameter space (ΘX,ΘY , θ) simultaneously. Instead, A two-step optimiza-

tion procedure within the M-step is proposed instead.

M(1)-step Maximize over each marginal, i.e.,

Θ̂X = arg max
ΘX

 n∑
t=p+1

p∑
j=1

z̃t jlog f j1

(
xt|xt−1, yt−1; ΘX

) (4.31)

and

Θ̂Y = arg max
ΘY

 n∑
t=p+1

p∑
j=1

z̃t jlog f j2

(
yt|xt−1, yt−1; ΘY

) (4.32)

M(2)-step Given the estimates from the M(1)-step, maximize with respect to the Copula

parameter θ, where in our example is a scalar parameter.

θ̂ = arg max
θ

 n∑
t=p+1

p∑
j=1

z̃t jlog
(
cθ

(
F j1(xt|xt−1, yt−1; Θ̂X), F j2(yt|xt−1, yt−1; Θ̂Y)

)) (4.33)

Lastly, updated the parameter estimates Θ(m+1) =
{(
ω̂1, · · · , ω̂p

)
, Θ̂X, Θ̂Y , θ̂

}
and run the

E-Step and M-Step iteratively.

Above outlines an EM algorithm for the estimation of multivariate MTD models. We

have following remarks.

• For each optimization problem involved, Newton-Raphson or other optimization schemes

would suffice to find the optimal parameter values. For the initial values used in the

EM algorithm, equal weights for ω’s can be used. The parameters ΘX and ΘY can be

estimated initially by method of moments.
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Table 4.1: Empirical means and standard deviations(SD) of the parameter estimates via EM
algorithm for simulated data.

ω Mean(sd) αi1 Mean(sd) β∗i1 Mean(sd)
0.40 0.4057(0.0217) 1.0 1.0065(0.0589) 0.3 0.3060(0.0269)
0.60 0.5943(0.0217) 2.0 2.0192(0.1200) 0.2 0.1981(0.0139)
αi2 Mean(sd) β∗i2 Mean(sd) θ Mean(sd)
3.0 3.0137(0.2251) 0.2 0.2026(0.0200) 8.0 8.3218(0.3959)
2.0 1.9968(0.1228) 0.4 0.4026(0.0292)

• The two-step optimization procedure within the M-Step is similar to the Inference

Functions for Margins (IFM) method proposed by [43] for i.i.d. samples. This proce-

dure is one of the widely used estimation methods for Copula. Our experiments show

that the convergence of the proposed EM algorithm is quite fast in general.

• Most importantly, the proposed EM algorithm could be easily generalized to the cases

when k > 2, as in the general MMTD model (4.12). For example, when k = 3, we need

to consider the processes {Xt, (Yt,Zt)}nt=1, where Xt is the duration and (Yt,Zt) are the

associated two-dimensional marks. With the new EM algorithm, only one optimization

term is needed to add in the M(1)-step. Thus the complexity of the algorithm remains

the same! We adopt this EM algorithm as a general scheme for the estimation problems

in the MMTD modeling framework.

4.3.2 Simulation studies

Simulation studies are carried out to evaluate the performance of the proposed EM algorithm.

We simulate 100 realizations from Model A1 (p = 2). Each sample path has 1000 observa-
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tions. We run the EM algorithm iteratively until convergence. The parameters specified to

generate the processes, the sample mean and standard deviation of the estimated parame-

ters are summarized in Table 4.1. The result shows that the EM algorithm works very well.

The estimated means are very closed to the true parameters with relatively small standard

deviations.

We point out that for small value of the Copula parameter θ that characterizes the depen-

dence, the estimate is not as precise as those for large θ’s. For example, if we use θ = 2.5

(and other parameters remain the same) to generate the processes, the empirical mean for

the estimated θ value is 3.0518, with a standard deviation 0.2204. The estimate is out of the

range of two standard deviation from the true value. Thus, it seems there might be room for

further improvement. However, for Clayton Copula whose generator is φ(t) = 1
θ

(
t−θ − 1

)
, the

Kendall’s τ is given by τ(θ) = θ
2+θ

. We see that
∣∣∣∣ τ(3.0)−τ(2.5)

τ(2.5)

∣∣∣∣ = 8%. Thus, the relative difference

that describes the dependence, in terms of Kendal’s τ, is indeed quite small.

4.3.3 Prediction and visualization

For the prediction of marked point processes, an important concern is the joint prediction of

marks and points. This is very meaningful for such data sets. For example, in the earthquake

data (see Figure 4.2), given the past earthquake history, people are equally interested in both

the time (i.e., point) and the magnitude (i.e., mark) for next earthquake. Moreover, in the

context of MTD modeling, it is a well known fact that the conditional mean is no longer a

proper predictor (see [72]). This is because the predictive distribution may be multimodal.
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In view of above two reasons, we thus consider the concept of Highest Density Region

(HDR) for the joint prediction problem. We suggest using the predictive HDR as the joint

prediction region for the multivariate MTD models. In one-step ahead prediction, given

the conditional distribution from the MMTD model, a simple scheme is to sample large

enough i.i.d. observations from the given distribution and adapt those available multivariate

density estimation schemes, such as [42], to construct the predictive HDR contour for next

observation.

An illustration of the above discussed method will be given later by an example for the

real transaction data. For the predictive HDR, a full predictive density can also be visualized

via the estimation schemes [42]. This helps to provide detailed density information (see

Figure 4.5).

The predictive HDR approach works efficiently for cases with k ≤ 3, which are the major

interest for most practical problems. As the dimension of the MMTD model increases, the

computational time increases dramatically.

4.3.4 Model evaluation: empirical coverage

Notice that in univariate MTD-type models [47] [70] [71], an evaluation criteria for the model

in terms of describing the data generating processes is the empirical coverage. We generalize

this concept to the multivariate situations. The discussion in this subsection paves the way

for the evaluation of different models for real transaction data.
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For univariate time series, we define the empirical coverages of the prediction intervals

(PI) to be the percentages of the data that falls within them. Thus, if the model adequately de-

scribes the underlying data generating process, the empirical coverages of those PI’s should

be close to the nominal coverages (see [47]). However, in the multivariate cases, or in partic-

ular, under the settings of bivariate time series, we generalize this concept to the prediction

highest density regions (PHDR). Notice that, since the model involves mixture of distribu-

tions, the PHDR might be comprised of several disjoint regions.

To construct the prediction HDR given by the MMTD models, a formulation of the re-

gions is generally analytically intractable. However, due to the easy simulation schemes for

most Copulas, we can construct the prediction HDR via Monte Carlo sampling. Then our

last problem turns to how to judge whether a data point falls into the prediction HDR or not.

This could be done via the density quantile approach as described below.

We first sample enough i.i.d. bivariate observations (via the predictive distribution) to

construct the 1 − α density quantile [42]. To evaluate the empirical coverage of the PHDR,

we compare the predictive density evaluated at each (xt, yt), i.e., f̃
(
xt, yt|xt−1, yt−1

)
, and the

corresponding estimated 1 − α predictive density quantile f̂1−α. If the former is greater than

the later, then we may conclude that the true observation is within the PHDR, and vice versa.

We report some simulation results that we carry out to investigate the efficiency of the

methodology proposed above. In the simulation studies, we generate 30 sample paths from a

bivariate time series {(xt, yt)}1000
t=1 specified by Model A1. We estimate the model parameters

and then calculate the prediction HDR and the empirical coverages. The result is summarized
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in Table 4.2. At the same time, we calculate the empirical coverage from the best fitted

BMTD model for the simulated data (which is generated from the MMTD model). The result

is given in In Table 4.3. Clearly, we see that the empirical coverages from the estimated

MMTD model are very close to the nominal probabilities, while the fitted BMTD model

fails to capture the underlying data generating processes. The empirical coverages for fitted

BMTD model are far away from the nominal probabilities.

Table 4.2: Empirical coverages of one-step ahead PHDR from the fitted multivariate MTD
model.

nominal probability empirical coverage (standard deviation)
0.4 0.36 (0.0197)
0.5 0.49 (0.0193)
0.6 0.61 (0.0205)
0.7 0.73 (0.0153)
0.8 0.83 (0.0100)
0.9 0.90 (0.0054)

Table 4.3: Empirical coverages of one-step ahead PHDR from the fitted BMTD model.

nominal probability empirical coverage (standard deviation)
0.4 0.53 (0.0185)
0.5 0.63 (0.0198)
0.6 0.71 (0.0201)
0.7 0.79 (0.0175)
0.8 0.86 (0.0126)
0.9 0.92 (0.0101)
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Table 4.4: Parameters used to simulate a transaction data series with transaction durations,
volumes and tick-returns.

(ω1, ω2, ω3) (α11, α21, α31) (α12, α22, α32) (β11, β21, β31)
ω (0.40 , 0.30, 0.30) α1 (1.25, 2.0, 1.20) α2 (1.50, 1.00, 1.20) β1 (0.15, 0.07, 0.14)

(β12, β22, β32) (µ13, µ23, µ33) (σ∗13, σ∗23, σ∗33)

β2 ( 0.01, 0.10, 0.05) µ3 (0, -1.0, 1.0) σ∗3 (0.20, 0.40, 0.80) Σ

 1 −.4 −.4
−.4 1 −.4
−.4 −.4 1


4.4 Numerical examples

In this section, to illustrate the utilities of the proposed MMTD model, we provide two nu-

merical examples. In the first example, we simulate a MMTD process with two dimensional

marks and show the similarities between its sample path and the real transaction data. In the

second example, we fit the MMTD models for the real IBM transaction data and compare

them with the benchmark bivariate MTD [40] models.

4.4.1 A simulated example

The multivariate MTD model provides a way to model the marked point processes with high-

dimensional marks, which is beyond the capability from the univariate MTD-type models

and the BMTD model. In this example, we simulate a marked point process from Model B,

where the vector (Xt,Yt,Zt) corresponds to the duration, transaction volume and tick return.

The parameters used to generate the transaction data are given in Table 4.4. Notice that this

is a model with p = 3 and a simple Σ.
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A realization from Model B is plotted in Figure 4.3. The prices, which start with initial

price 99.80 and follow the simulated tick-returns, are constructed and plotted. Notice that,

since the (normalized) tick returns are discrete, we round the simulated series to their nearest

integer values.

Compare Figure 4.1 and Figure 4.3, we see that the model is capable to capture certain

nonlinear features, such as frequent burst and flat stretches, etc. in the real transaction data.

A careful evaluation of the modeling will be discussed in next example with real transaction

data sets.

4.4.2 Modeling IBM tick-by-tick data

The data

In this example, we are going to model real tick-by-tick transaction data made on the New

York Stock Exchange (NYSE). Three pieces of short time trading data (on Feb 6, 15 and 22

of 2007) for IBM stock are extracted from the TAQ database. Each piece of data is comprised

of a full record of all transactions made during 12:30PM to 1:30PM. In Figure 4.1, only the

first half of the Feb 6 data is plotted for easy visualization purpose.

We are particularly interested in modeling the transaction volumes and inter-trades du-

rations. Among all quantities recorded in the TAQ database, the volumes and durations are

two most important proxies for the stock market liquidity [59], which is an important risk

measure for high frequency trading.

92



Inter−trades Durations

F
re

q
u
e
n
c
y

0 1 2 3 4

0
6
0
0

0 1 2 3 4

0
.0

2
.5

Inter−trades Durations

D
e
n
s
it
y

Traded Volumes

F
re

q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0 2.5

0
6
0
0

0.0 0.5 1.0 1.5 2.0 2.5

0
8

Traded Volumes

D
e
n
s
it
y

Figure 4.4: Unconditional marginal frequency histograms and smoothed densities estimated
for inter-trades durations (in tens of seconds) and transaction volumes (in thousand of shares)
of the IBM stock recorded from 12:30PM to 1:30PM on 02/06/2007.

Since the smallest time unit recorded is one second, there may exist “simultaneous” trans-

actions (this is the case when the trading intensity is super high). [15] provides a comprehen-

sive discussion of the data handling concerns for tick-by-tick transaction data. One natural

way is to take the first recorded ones as the marked point processes observations. We par-

ticularly select the data from time 12:30PM to 1:30PM, a period when the trading activity

is relatively much lower than other periods of the day so that there are few “simultaneous”

transactions. Other natural ways may be choosing the last ones of those simultaneous obser-

vations or adding up the volumes (that being traded at the same time) and considering them

as one transaction, etc.
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Table 4.5: Estimations of the multivariate MTD and BMTD for the IBM Feb 06 data.

ω̂ωω α̂αα1 β̂ββ
∗

1 α̂αα2 β̂ββ
∗

2 θ̂
multivariate MTD 0.5229 0.8019 0.3153 0.6425 0.6574 0.8272

0.4771 1.5656 0.0930 1.1664 0.1749
α̂αα β̂ββ θ̂θθ

BMTD 0.2143 0.2464 5.4398
0.4700 0.0376 1.7319
0.3157 0.0362 1.6919

Fitted Models

In Figure 4.4, the frequency histogram and the smoothed (unconditional) density are plotted

for both the inter-trades durations and the traded volumes of the IBM TAQ data on Feb 6

(12:30-1:30PM). This might give us a hint that a mixture of Gamma distributions for both

durations ([50], etc.) and volumes might be appropriate.

We fit Model A2 to the February 6 IBM stock transaction data. For the built-in lag infor-

mation construction, we take into account of the model stability and simplicity. Surely, these

can be other types of built-in lag information, linear or nonlinear. The domain knowledge,

where in this example the market microstructure theory and empirical findings ([59], [35],

etc.), would play a significant role.

We use the Bayes Information Criteria (BIC) to select the order of the models,

BIC = −2 · log (maximized likelihood) + K · log(n), (4.34)

where K is the number of independent parameters to be estimated and n is the sample size.

The estimation is carried out via the proposed EM algorithm in Section 4.3. In terms of

BIC values, the best fitted multivariate MTD model for the February 6 data is of order p = 2.
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We also fit the BMTD [40] model to the February 6 data, the best model is of order p = 3.

Estimation results for both models are given in Table 4.5.

Moreover, univariate ARIMA models are also fitted to the inter-trades durations and

traded volumes individually. The best fitted model for the demeaned inter-trades durations is

given by a ARIMA(1,0,1) model,

Xt − 0.9397Xt−1 = Zt − 0.8788Zt−1 (4.35)

where Zt is white noise series with variance 0.2016.

The best fitted model for the demeaned traded volumes series is given by a ARIMA(1,0,0)

model,

Xt − 0.0061Xt−1 = Zt (4.36)

where Zt is white noise series with variance 0.08547.

By plotting a simulated series from both ARIMA models for the transaction data, we

see that such kinds of linear models are no longer suitable since they can easily violate the

nonnegativity requirement for both durations and volumes.

Thus, we would further compare the multivariate MTD models with the BMTD models.

Table 4.6 summarizes a comparison between these two models used to fit all three pieces of

IBM stock transaction data. In terms of the maximized log-likelihood and the BIC values,

the preference for the multivariate MTD model over the BMTD model is quite strong.
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Table 4.6: Model comparison for the IBM transaction data.

Data Model k log-likelihood BIC
Feb 6 BMTD(p=3) 9 -1275 2612
(12:30-1:30PM) MMTD(p=2) 11 -349 774
Feb 15 BMTD(p=3) 9 -998 2056
(12:30-1:30PM) MMTD(p=3) 16 -475 1056
Feb 22 BMTD(p=3) 9 -1079 2220
(12:30-1:30PM) MMTD(p=2) 11 -77 230
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Figure 4.5: One-step ahead (1−α = 10%, 30%, 50%, 70%) PHDR for an observation of the
IBM Data (Left: BMTD model; Right: Multivariate MTD model). y-axis represents volumes
(in thousand of shares); x-axis represents durations (in tens of seconds); the ^ represents the
true observation; “o” represents the estimated highest density point; the shaded areas are the
corresponding estimated HDR via [42].
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Prediction & empirical coverage

Figure 4.5 displays a typical one-step ahead PHDR for a particular time point of the IBM

Feb 6 data. We see that the true observation (denoted as ^) falls into the 30% prediction

HDR for both models. A careful comparison shows that the area of the PHDR (10%, 30%

HDR, for example) in the multivariate MTD models is much smaller than that in the BMTD

model. The estimated highest density point in the multivariate MTD is much closer to the

true observation than that of the BMTD model.

An overall prediction is studied by looking at the empirical coverages of the one-step

ahead prediction for both BMTD and multivariate MTD models. We first sample enough

i.i.d. bivariate observations (via the predictive distribution) to construct the 1 − α density

quantile [42]. To evaluate the empirical coverage of the PHDR, we compare the predictive

density evaluated at each (xt, yt), i.e., f̃
(
xt, yt|xt−1, yt−1

)
and the corresponding estimated 1−α

predictive density quantile f̂1−α. If the former is greater than the later, then we shall conclude

that the true observation is within the PHDR, and vice versa.

We repeat the estimation of the empirical coverages of predicted HDR (i.e., the proportion

of the data that falls into the nominal predicted HDR) for 50 times. If the model fits the data

well, then the empirical coverages should be very close to the nominal probability coverages

[47]. Table 4.7 shows the mean and standard deviation of each estimated empirical coverage.

A comparison of the empirical coverages for these two models is given.

The results from these three transaction data sets show that the multivariate MTD model

provide more accurate prediction than the BMTD model, in a sense that the multivariate
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Table 4.7: Empirical coverages of the (1−α) PHDR’s for the IBM transaction data (12:30PM
- 1:30PM on 02/06/2007, 02/15/2007 and 02/22/2007).

Data 1 − α .40 .50 .60 .70 .80 .90 .95
Feb 06 BMTD 0.34 0.55 0.68 0.78 0.86 0.93 .96
12:30-1:30PM (sd) (0.0046) (0.0032) (0.0034) (0.002) (0.0019) (0.0020) (0.0014)

MMTD 0.38 0.51 0.62 0.74 0.84 0.90 0.94
(sd) (0.0029) (0.0020) (0.0026) (0.0027) (0.0021) (0.0016) (0.0011)

Feb 15 BMTD 0.40 0.55 0.67 0.77 0.85 0.94 0.97
12:30-1:30PM (sd) (0.0035) (0.0033) (0.0031) (0.0031) (0.0014) (0.0015) (0.0015)

MMTD 0.42 0.53 0.65 0.73 0.82 0.89 0.92
(sd) (0.0033) (0.0032) (0.0037) (0.0021) (0.0019) (0.0016) (0.0016)

Feb 22 BMTD 0.40 0.56 0.68 0.78 0.86 0.94 0.97
12:30-1:30PM (sd) (0.0046) (0.0033) (0.0028) (0.0028) (0.0025) (0.0009) (0.0012)

MMTD 0.37 0.47 0.60 0.72 0.82 0.90 0.93
(sd) (0.0026) (0.0032) (0.0034) (0.0029) (0.0020) (0.0014) (0.0014)

MTD predictive HDR has empirical coverages much closer to the nominal coverages than

the BMTD model in general. We conclude that the multivariate MTD model captures the

underlying data generating process quite successfully.

4.5 Conclusion and discussion

In this chapter, we proposed a new time series modeling framework by generalizing the uni-

variate MTD-type models and the BMTD model to the multivariate cases. The multivariate

MTD models can be used to model the marked point processes in general and the financial

transaction data in particular. When bivariate series are considered, it provides an alternative

construction to the BMTD model [40]. Further, an EM algorithm is proposed to solve the

general estimation problem. Within the multivariate MTD modeling framework, we have

very flexible choices of the building components, the parameterizations and the dependence

structures between marks and the points. For further development, autoregressive types of

98



parameterizations, time varying Copula parameters and discrete marginals (so as to model

tick-returns, for example) may be considered. The MMTD modeling framework proposed

will be very useful in modeling various kinds of marked point processes data sets we meet in

practice.
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Chapter 5

Future work

We have generalized the MTD-type models to two new time series models, the MLMAR

mode and the MMTD model. We applied the models to the financial transaction data at

two different levels - the high frequency and ultra-high frequency levels. The models are

shown to be successful in terms of either describing the underlying data generating processes

or prediction performance. However, there exist some statistical modeling issues and open

problems to be further investigated in the future.

Firstly, in both MLMAR and MMTD modeling frameworks, how to specify a model, i.e.,

the model selection beyond the BIC/AIC criteria, still remains as an open problem. Notice

that very recently, Naik, Shi and Tsai [54] has brought up this issue and tried to solve it

for the Gaussian situation. Moreover, for the MMTD model, further research on how to

selecting a suitable Copula should be a well deserved task. This may be done via certain tests

of hypothesis.
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Secondly, we may consider building the MMTD model with discrete marginals. This

will be very meaningful. Since most time series data we met in practice are discrete. For

example, the tick returns (i.e., the price difference between two successive transactions) in

the transaction data sets take only a handful of integer values. To model the prices, we

also need to consider discrete marginal for the MMTD models. Moreover, it will be very

interesting to model marked point processes with high-dimensional marks. For example, we

may consider the earthquake location, which is determined by its latitude and longitude, as

two dimensional mark.

Lastly, the MMTD model indeed provides a general modeling framework for all marked

point processes. Thus, it will be very interesting to see whether other types of marked point

processes data (for example, earthquake data) can be modeled and forecasted accurately. This

is undoubtedly a highly rewarding task.
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