Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis.

Abstract

Pathological cardiac hypertrophy is one of the notable causes of heart failure. Circular RNAs (circRNAs) have been studied in association with cardiac hypertrophy; however, the mechanisms by which circRNAs regulate cardiac hypertrophy remain unclear. In this study, we identified a new circRNA, named circCacna1c, in cardiac hypertrophy. Adult male C57BL/6 mice and H9c2 cells were treated with isoprenaline hydrochloride (ISO) to establish a hypertrophy model. We found that circCacna1c was upregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. Western blot and quantitative real-time polymerase chain reaction showed that silencing circCacna1c inhibited hypertrophic gene expression in ISO-induced H9c2 cells. Mechanistically, circCacna1c competitively bound to miR-29b-2-5p in a dual-luciferase reporter assay, which was downregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. MiR-29b-2-5p inhibited the nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) to control hypertrophic gene expression. After silencing circCacna1c, the expression of miR-29b-2-5p increased, which reduced hypertrophic gene expression by inhibiting NFATc1 expression. Together, these experiments indicate that circCacna1c promotes ISO-induced pathological hypertrophy through the miR-29b-2-5p/NFATc1 axis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View