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Safety interventions (e.g. median barriers, photo enforcement) and road features (e.g. median type and width) 
can influence crash severities, crash frequencies, or both. Both dimensions—crash frequency and crash 
severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both 
dictate that all crashes are not ‘created’ equal—with fatalities costing society more than 1000 times the cost of 
property damage only crashes. Despite this glowing disparity, the profession has not unanimously embraced or 
successfully defended a non-arbitrary severity weighting approach for analyzing safety data and conducting 
safety analyses.  
 
This paper argues that both the crash frequency and severity dimensions are made available by intelligently and 
reliably weighting crash frequencies and converting all crashes to property damage only crash equivalents 
(PDOEs) using comprehensive societal unit crash injury costs. This approach is analogous to calculating axle 
load equivalents when predicting pavement damage—for instance a 40,000 lb truck causes 4025 times more 
stress than does a 4000 lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit 
crash costs is the most defensible and non-arbitrary weighting scheme, allows for the simple incorporation of 
severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. 
Moreover, we show that using PDOEs diminishes the errors introduced by under-reporting of less severe 
crashes—an added benefit of the PDO equivalent analysis approach. The method is illustrated using rural road 
segment data from South Korea (which in practice should apply Korean crash cost data). Finally, the results 
and remaining issues with PDOEs and their adoption in safety analysis are discussed.   
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Causal mechanisms that influence crash frequency and crash severity are different but overlapping. 
Fundamental knowledge and empirical evidence dictate that crash countermeasures or interventions can 
influence crash severity, crash frequency or both to varying degrees. Often there are trade-offs between severity 
and frequency as a result of safety investments. Thus both the crash frequency and severity dimensions are 
needed to fully assess the safety impacts of interventions. While there is a long list of examples to illustrate this 
two-dimensionality of safety interventions, a couple of idealized hypothetical examples are considered here for 
illustrative purposes.   
 
Consider the widening of a paved shoulder. The primary motivation for widening a paved shoulder is to 
provide systematically a larger margin of error and recovery distance should a driver wander out of the travel 
lane—it provides a greater ability to recover safely and without incident should a driver depart the travel lane. 
There are secondary motivations ignored here for illustrative purposes. If a vehicle should exit the paved 
shoulder the chance for a safe recovery is severely diminished, and crash severity depends on the roadside 
environment and impact speed. The severity of crashes that exit the road assuming the roadside has remained 
unchanged and exit speeds are constant would remain unchanged due to the widening—crashes involving 
vehicles exiting high speed roads would be more severe than those exiting lower speed roads. However, if the 
intervention works as intended, fewer drivers will leave the roadway because they will recover from their lane 
departure more easily. As a result this countermeasure is expected to reduce the frequency of run off road 
crashes, as described in Souleyrette et al. (1) and found by Turner et al. (2), Rogness et al. (3), Crane et al. (4), 
and Zegeer et al. (5). Since run-off road crashes tend to be severe, reducing their occurrence will also reduce 
the overall severity distribution of crashes on these same roads. Thus, to understand the safety performance of 
paved shoulders one must examine both crash frequency and severity.  
 
Now consider cable median barriers, which are installed within the medians of high speed mostly rural roads 
with intent to eliminate or significantly reduce median cross-over crashes that often result in head-on, severe 
collisions. This device is predominately installed to mitigate a crash severity problem, and is unlikely to have a 
significant effect on crash frequencies, as vehicles have already departed the travel lane when they encounter 
this countermeasure (6, 7). It is very difficult (though not impossible) to imagine a situation where the cable 
barrier systematically impacts the frequency of crashes (e.g. there is a new obstacle to hit). Thus, the effects of 
this countermeasure will be best measured through examination of the effect of the barriers on crash severity, 
while a frequency based analysis will be insufficient. 
 
There are numerous additional examples with ample empirical support that highlights the importance of 
considering both crash frequency and severity and their tradeoffs. Despite this fundamental two-dimensional 
nature of system safety, the safety profession has focused primarily on modeling crash frequencies and refining 
the statistical methods for doing so. A fundamental thrust of this paper rests on the assertion that ignoring 
either the frequency or severity aspect of crash occurrence results in an incomplete analysis of road safety (or 
risk), and ignores the fundamental mechanisms by which safety countermeasures actually function to improve 
road safety.  
 
Numerous recent studies have explored advanced approaches for modeling crash frequencies, all of which were 
focused on the modeling of raw crash counts without regard to crash severities. Lord (8) examined the use of 
Poisson-Gamma models when sample sizes or sample means are low using fatal and non-fatal injury crash 
counts from 59 unsignalized intersections from 1990 to 1995. Anastasopoulos et al. (9) examined crash rates 
(dividing total crash counts by traffic volumes) of police reported crashes occurring on 337 roadway segments 
during a 5 year period. Li et al. (10) examined the viability of support vector machine models for predicting 
motor vehicle crashes using roadway segment data at 88 frontage road roads in Texas using a total of 122 
crashes over a 5-year period. Li et al. (11) explored the nature of the modeled relationships with crashes, 
including Bayes’ and Empirical Bayes’ approaches, using the count of crashes per month at roadway segments 
during 1982 to 2004. Brijs et al. (12) examined the effects of weather on daily crash counts on major roads in 
three cities in the Netherlands. Is it possible that the examination of crash counts examined in these studies 
could be enhanced by the inclusion of crash severity? As described previously, road safety is two dimensional—
and thus it is likely that additional insights could be obtained by considering both frequency and severity 
dimensions.  
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In practice some also include severity weights but the selection of weights are seldom justified and seem to be 
arbitrarily determined. For example, in the FHWAs Five Percent Report (14), Exhibit 1, presents a severity 
weighting scheme that applies 5 to fatalities, 4 to incapacitating injuries, 3 to non-incapacitating injuries, 2 to 
possible injuries, and 1 to PDOs. In failing to provide a justification for the weights, the report reads: “Each of 
the severity classifications are assigned weighting factors as follow: (Note it is anticipated that greater weights 
will be given to more severe crashes in future years).” While a greater emphasis on severe crashes is provided 
here; the weighting appears to be entirely arbitrary, or subjective. A similar sampling of arbitrary weights can be 
found in methods surveyed by Tarko et al. in a 2000 report (15). A weighting scheme based on crash data from 
Denmark (16) developed a weighting scheme based on socio-economic costs and factors such as accident type, 
accident location, and number of vehicles involved. Although the source document is written in Danish, this 
weighting scheme is likely to be a similar approach to the one proposed in this paper.  
 
Perhaps the most comprehensive and current effort to explicitly model both frequency and severity is 
described in Ma et al. (17). In their quite complex (statistically speaking) approach, a multivariate Poisson-
lognormal specification is used to model the simultaneous nature of severity and frequency while also 
accounting for correlation among severity counts and over-dispersion. While this approach is extremely capable 
of modeling both frequency and severity, it is cumbersome for practitioners and safety managers to apply due 
to its significant complexity and time commitment to estimate.  
 
Finally, there is a large body of research that has explored the economic impacts associated with various crash 
severities. In these studies crash costs are typically applied post-modeling, where modeling is done by severity 
or crash type (e.g. rear-end, sideswipe, etc.) and is coupled with unit crash costs. For example, Shin et al. (13) 
tracked crash severity and frequency differences in a before-after evaluation of freeway photo enforcement in 
Scottsdale, Arizona. The study estimated the effects of photo enforcement on both crash frequencies and 
severities separately. This considerable research is not reviewed here, as its focus is on explicit consideration of 
crash costs after crash frequencies (by type or severity) have been modeled.  
 
The objective of this research is to devise a non-arbitrary weighting scheme for use in modeling that facilitates 
the analysis of crash severity and frequency simultaneously while implicitly reflecting crash costs. Its origin and 
development is defended, and how such weights will impact the analysis and conclusions drawn from crash 
data are empirically demonstrated. Of course the strengths and limitations of the approach are documented.   

PDOEs for Capturing Both Crash Severity and Frequency 
The pavements profession explicitly recognizes that the wheel load a vehicle axle imparts on pavements is a 
non-linear function of the weight or load over the axle. As a result, the pavements profession developed axle 
load equivalency factors to aid in the assessment of pavement damage (18). The pavement stresses and strains 
in fact are so non-linear that for a flexible pavement (with terminal serviceability index , TSI = 2.5 and 
Structural Number, SN = 3) a 20,000 lb single axle load does 1620 times the damage to pavement as does a 
2000 lb single axle load. Moreover, 80,000 and 40,000 lb axle loads do 392,000 and 20,600 times the damage to 
flexible pavements as does a 2000 single axle load respectively (19). The main point is this: simply counting 
traffic over a section of road is insufficient for predicting or explaining pavement damage (and their associated 
costs), since all axle loads are not created equal.  
 
A corollary exists in roadway safety, one might ask: What is the prime unit of interest with respect to the 
impact of an intervention or countermeasure on safety? Clearly, there are parallels between pavement damage 
and motor vehicle crashes. Not all crashes are created equal, since fatal and severe injury crashes are far more 
costly to society than are property damage only (PDO) crashes. As seen in Table 1, the average fatal crash in 
2000 cost nearly $3,366,388, whereas the average PDO crash cost $2,532—a ratio of about 1330 to 1. Societal 
crash costs include medical, emergency services, lost market productivity, lost household productivity, 
insurance administration, workplace costs, legal costs, travel delays, and property damage. Additional details of 
the societal costs can be found in Blincoe et al. (20). In terms of societal safety cost, or total safety impact, the 
average fatal crash in 2002 was 1330 times more costly than the average PDO crash. Equivalently, a PDO-
equivalency factor suggests that a fatal crash is worth 1330 PDO crashes. PDO equivalency factors calculated 
for major and minor injury crashes (adapted from Blincoe et al., (20)) are 949 and 11 respectively.  
 
Table 1: Crash Costs by Injury Severity Class (Blincoe et al. (20)) 
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Since the vast majority of surface transportation systems in the United States are publicly owned and operated, 
the relevant costs to be considered in severity weighting are those to society. It is argued, therefore, that 
estimates from Blincoe et al. (20) represent appropriate, current, and defensible estimates of the relative safety 
impacts of PDO, injury, and fatal crashes. These estimates include a wide variety of costs of crashes to society, 
as listed previously, and represent a non-arbitrary weighting scheme for leveling the playing field with respect to 
crash impacts. Moreover, assuming that Blincoe et al. (20) represents the most current and accurate estimates 
of US crash costs—other weighting schemes are arbitrary. For example, subjectively weighting fatal crashes by 
a factor of 100 compared to PDOs is not based on any defensible or logical discourse—it merely reflects the 
desire to correct for perceived crash cost imbalances.  
 
What happens when differential safety impacts are considered in a safety analysis as is done in pavement 
distress calculations? How will a PDO equivalency analysis compare to the modeling of crashes that are simply 
counted and modeled, as has been the standard practice? Answers to these questions are addressed next using 
hypothetical, idealized, yet somewhat realistic examples. The intent of these scenarios is to present compelling 
theoretical arguments for the use of PDOEs instead of raw crash counts in a variety of crash analysis applications. 
Empirical data are examined later in this paper.  
 
Scenario 1: Suppose, for explication purposes, an analyst is interested in comparing the safety performance of 
two road segments, each 1 mile in length. The road segments are for all intents and purposes identical (traffic, 
weather, roadway design, road users, etc.) except that segment A has posted speed of 100 km/h while segment 
B is posted 80 km/h. Suppose that both sites record 5 crashes each in a given year. Suppose furthermore, that 
the ratio of reported fatal to minor injury crashes was 1:4 at site A and 0:5 at site B. For any type of analysis of these 
two sections using crash counts—be it a before-after study, with and without comparison, regression, etc., one would conclude that 
each site revealed equivalent safety performance. One might conclude that the differential in speed had no effect on 
safety. This is often not the case, however—as higher speeds often increases crash severities.  
 
If instead PDO equivalency factors were applied, site A would have 4(11) + 1330 = 1374 PDOEs, while site B 
would have 5(11) = 55 PDOEs. For any type of analysis of these two sections using PDOEs—be it a before-after study, with 
and without comparison, regression, etc., one would conclude that the speed limit differential is responsible for the difference in 
PDOEs.  
 
This simplistic scenario yields a general result for the use of PDOEs: analyses on raw crash counts will fail to 
identify (statistically) site-related factors that affect crash severity. In particular, site-related factors that reflect crash 
impact speeds (e.g. posted speeds, average speeds, speed at impact, speed controls), severity upon impact (e.g. 
roadside environment variables), and crash attenuation devices (e.g. median treatments can affect severities) will 
be minimized or not identified as contributing factors.  
 
Scenario 2: Suppose interested is focused on comparing the safety performance of two road segments, each 1 
mile in length. The road segments are practically identical (travel speeds, traffic, weather, roadway design, road 
users, etc.). Suppose furthermore, that the ratio of reported fatal to PDO crashes was 1:4 at site C and 0:5 at 
site D. It turns out that in one of the crashes at site A, a driver was not wearing her safety restraint and as a 
result died. All other drivers and occupants involved in crashes at site C and D were wearing safety restraints 
and as a result did not suffer injuries.  
 
As in the prior scenario, an analysis using crash counts would reveal no differences in sites and no difference in 
crashes to explain. Conversely, the PDO equivalency analysis would reveal Site C as having recorded 1334 
PDOEs compared to 5 at Site D. 
 
Scenario 2 also yields a general result: analysis using PDOEs will enable the identification of driver-related 
factors that affect severity, whereas a crash count analysis will fail to identify driver-related factors that affect 
severity. In practice, however, many driver-related factors are often missing from a crash database. As a result 
the PDOE approach may introduce variation across sites that is unexplained given the set of possible 
covariates. This is not a limitation of the PDOE approach per se, but instead a limitation of crash datasets 
where many if not most driver-related factors are unavailable. The simple fact remains, however, that the 
PDOE data will reflect sensitivity to driver factors that given their missing status will lead to increased 
modeling error or the identification of measured factors that are correlated with driver-related factors. 
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Scenario 3: Suppose the safety performance of a roadside improvement project on a road segment 1 mile in 
length (assume random selection for treatment) is of interest. The road segment is ideal for a naïve before-after 
study, as travel speeds, traffic, weather, roadway design, road users, etc. are the same from before to after. A 
roadside improvement project is implemented at the site which results in a more forgiving roadside 
environment. Suppose furthermore, that the reported crashes before and after are as follows: 
 

Before: 2 fatal, 3 major injury, 6 minor injury, 15 PDO = 26 total crashes, 
After:  1 fatal, 2 major injury, 8 minor injury, 17 PDO = 28 total crashes. 

 
In terms of PDOEs, these crashes yield: 

Before: 2(1330) + 3(949) + 6(11) + 15 =  5588 PDO equivalent crashes, 
After: 1(1330) + 2(949) + 8(11) + 17 =  3333 PDO equivalent crashes. 

 
Using raw crash counts, a naïve before-after analysis of these sites reveals a deterioration of safety of 2 crashes 
whereas the same analysis using PDOEs yields a safety improvement of over 2200 PDOEs. The respective 
estimated accident modification factors (AMFs) for this roadside improvement project would be θ = 1.07, 
while θ = 0.60 using PDOEs. The PDO equivalency estimate reflects the estimated reduction of true crash 
impacts (costs), whereas the former reflects simply a percentage reduction/increase in crash frequencies 
irrespective of their severity.  
 
Furthermore, consider the likely under-reporting of PDO and minor injury crashes in this above scenario—an 
artifact of safety analysis that is particularly problematic (21). According to Blincoe et al. (20), about 50% of all 
PDO and 20% of minor injury crashes are not reported to the police, while major injury and fatal crashes are 
close to 100% reported. Hauer and Hackert (22) estimated these same values to be 60% and 20% respectively. 
Of course under-reporting varies across time and space, and so PDOs may be under-reported by 40% in one 
period, 60% in another, etc.  
 
If one were to apply national average corrections to the reported crashes in the previously described 
hypothetical scenario with the intent to obtain a more accurate estimate of the ‘true’ crash counts, a more 
realistic crash count at the site would be (rounded to nearest whole crash): 
 

Before: 2 fatal, 3 major injury, 6(1.2) minor injury, 15(1.5) PDO = 35 total crashes, 
After:  1 fatal, 2 major injury, 8(1.2) minor injury, 17(1.5) PDO = 38 total crashes. 

 
In terms of PDOEs: 

Before: 2(1330) + 3(949) + 6(11)(1.2) + 15(1.5) = 5609 PDO equivalent crashes, 
After: 1(1330) + 2(949) + 8(11)(1.2) + 15(1.5) =  3358 PDO equivalent crashes. 

 
Comparing the estimates corrected for un-reported crashes the following is obtained: 
 

Crash Counts 
Before: Reported—26, Corrected—35; Percent Difference—25.7% 

After:  Reported—28, Corrected—38; % Percent Difference—26.3% 
 

PDOEs 
Before: Reported—5588, Corrected—5609; % Percent Difference—0.4% 
After:  Reported—3333, Corrected—3358; % Percent Difference—0.7% 

 
Thus, the use of PDOEs—because more completely reported crashes are weighted more heavily—results in 
significantly lower analysis errors due to incomplete reporting. In this example, errors are 40 to 50 times less 
when using PDOEs then when using raw crash counts. Also, the overall magnitude of error is negligible—less 
than 1% when using PDOEs (in this example), whereas the error (compared to truth) deviates as much as 25% 
using raw crash counts. This benefit cannot be over-emphasized and is an added advantage of using PDOEs 
that has heretofore not been acknowledged.  
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The impact of performing a regression analysis on both raw crash counts versus PDOEs using rural road 
segment data from South Korea is now examined. Standard negative binomial regression (23) models with 
structured over-dispersion (24) are estimated. Despite the preponderance of zeroes in the data, the use of zero 
inflated models is avoided for reasons iterated in Lord et al. (25).  

Case Study: Analysis of rural road segments in South Korea 
For the empirical investigation of PDOEs rural road segment data from South Korea are examined. This, of 
course, raises a fundamental question regarding the use of South Korean data and PDOEs developed from US 
crash costs. Since the intent of this paper is to illustrate a concept this inconsistency is largely ignored; however, 
in practice US factors should be applied to US data and vice versa. Moreover, an attempt was made to obtain 
these same factors from South Korean medical cost data but these data were unavailable. In fact the medical 
crash costs associated with motor vehicles are difficult to obtain and estimate, and as such many countries such 
as South Korea may opt to use US derived factors until such data are made available. It is worth noting that the 
PDOEs are ratios, and thus the absolute dollar values of crash costs do not influence the analysis.  
 
Data for this study were collected under the explicit recognition that accidents at rural road segments are 
affected by both local and regional characteristics. Road segments in rural locations adjacent to metropolitan 
areas, for example, may consist of different driving populations and hence safety compared to intersections in 
rural locations. Roadside conditions are different depending on the location of rural segments within South 
Korea. Considering this expected heterogeneity across sites, road segment crash and geometric data were 
obtained from two sites in South Korea, as shown in Figure 1.  Site A is outside of Seoul, which is the capital 
of South Korea and the largest city in South Korea. The population of Seoul was about 10 million in 2008. Site 
B represents a rural site, with no major cities nearby. 
 
Figure 1: Sampling Locations of Sites within South Korea 
 
The data are based on a total of 2,916 highway road segments in rural areas and were obtained from two 
sources. First, detailed accident records from 2005 to 2007 were obtained from the national policy agency. 
Roadway inventory data were secondly obtained from field surveys that were conducted from 09/01/2008 
through 11/30/2008. Based on underlying theories of crash causation and with the intent to establish 
defensible statistical models to enable the examination of possible relationships among accident frequencies, 
geometric, and traffic characteristics of road segments, a total of 45 possible variables were considered in the 
analysis. 
 
Table 2 shows the variables collected during the study, their mnemonics applied in the modeling and later 
references, and their measurement units. All of the variables that appear in the table were collected either as a 
result of prior studies having revealed a possible relationship to safety or due to an anticipated association. 
Average daily traffic volumes (ADT) and heavy truck traffic volumes (HVADT) for example have been well 
established to affect safety in numerous prior studies, while the number of bus stops (bustop) is a potential 
factor worthy of exploration.  
 
Table 2: Road Segment Variable Names, Descriptions, and Measurement Units or Levels 
 
The means, standard deviations, minimums, and maximums for the variables listed in Table 2 are shown 
in Table 3. The segment with the most fatal (fatal) crashes recorded 2, while one site recorded 8 minor injury 
crashes (mininj). The range of total crashes is zero to thirteen. Note that for binary and ordinal variables the 
means have less useful interpretations.  
 
Table 3: Variable Samples Sizes, Means, Standard Deviations, Minimums, and Maximums (N=2916) 
 
Negative binomial regression models are estimated using crash frequencies (crashfreq) in the first regression 
and PDO-equivalents (PDO-E) in the second. The results are first presented followed by a detailed discussion 
of the contrast.  
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An unusual feature of the model output is that model coefficients are provided as incident rate ratios (IRRs), 
that is exp(β) rather than β. Standard errors and confidence intervals are similarly transformed. The advantage 
is that IRRs represent the multiplicative effect of a unit change in the predictor (with other variables assigned 
their means).  

Negative Binomial Regression Models 
Negative binomial regression models were used to estimate mean crash frequencies as a function of covariates 
across sites using the raw crash count data (crashfreq) and then using PDOEs as described previously. Negative 
Binomial regression has become the standard practice for modeling crash data and references on this subject 
and slight variants are abundant (8, 11, 17, 21, 22, 23, 24, 25). In keeping with sound modeling practice only 
predictors that were both logically defensible and statistically significant at α ≤ 0.05 were retained in the 
regressions. Segment length (length) is applied as an exposure variable in all of the regressions (no coefficient), 
and dispersion is allowed to be structured if appropriate.  
 
Table 4: Negative Binomial Regression Model I: Raw Crash Counts 
 
Table 4 shows the generalized negative binomial regression model results based on reported raw crash count 
data (Model I). Crash frequencies across road segments in South Korea are a function of a variety of 
statistically significant factors.  
 
The presence of a horizontal curve within a segment suggests that the frequency of predicted crashes increases 
by 50% on average. As the radius of a horizontal curve increases it has a decreasing average effect on crash 
frequencies, albeit this effect is very small in magnitude.  
 
Traffic volumes have a large effect on crash frequencies as found in a multitude of studies. For every 10,000 
vehicles (all vehicles) there is an average 1.32 factor increase in crash frequencies, while for each 1,000 heavy 
duty vehicles there is a 3.2 factor increase in crash frequencies. These results suggest that for predicting crash 
frequencies heavy duty trucks are far more important than are total volumes which include cars, trucks, vans, 
motorcycles, etc. 
 
Land use seems to serve as a reliable proxy for operational differences across land uses that affect crash 
frequencies. Residential (landuse 1) and industrial areas (landuse 4) are associated with increases of about 5.8 
and 5.2 times the crash frequencies observed in all other land use categories, including commercial areas, 
farmland, and their interactions. An unexpected finding is the omission of commercial areas which tend to 
contribute complex vehicle turning movements not explained by the other land use categories. Finally, when 
the terrain is flat (compared to rolling or mountainous) there is about a 30% reduction in reported crash 
frequencies on average.  
 
Finally, the only speed limit category that seems to be associated with crash frequencies is the 40 km/h 
category, which has about double the frequency of crashes compared to all other road types. All other speed 
limit categories were not statistically significant.  
 
The negative binomial model using PDOEs as the dependent variable—shown in Table 5—identifies a 
substantially different set of statistically significantly and logically defensible predictors. To remind the reader, 
the model on PDOEs is intended to reflect a more complete picture of segment safety by including both 
frequency and severity effects. As shown previously, an analysis based on PDOEs will not mask the safety 
effect of severity-related variables. Moreover, the reduced effect of under-reporting substantially reduces the 
error in analysis. To facilitate comparisons between the models it is important to note that raw crash counts 
range from 0 to 13, whereas PDOEs range from 0 to 2091. As a result, the incident rate ratios will differ 
significantly across the models. Also, dispersion is substantially higher in the PDO-equivalency analysis, and 
thus the ability to explain differences across sites more difficult.  
 
 Table 5: Negative Binomial Regression Model II: PDOEs 
 
The effect of traffic volume in Model II (PDO-equivalents) is diminished compared to Model I (raw crash 
counts). All else being equal, a 10k increase in traffic volume will increase PDOEs by a factor of 1.7.  
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Land use category 7 replaces category 4 and acts to reduce PDOEs on average. Thus, farmland-industrial areas 
seem to have one-tenth the PDOEs than do other land uses (except category 1), whereas residential areas seem 
to increase PDOEs by a factor of slightly more than 4.  
 
The large increases in PDOEs are associated with posted speed limits in Model II. Model 1 revealed 40 km/h 
segments as ‘more dangerous’ than other posted speeds by a factor of 2. In contrast, Model II reveals 
significant speed effects across 4 posted speed categories. The largest effect is on 40 km/h roads (184 
segments)—these roads have 3700 times more PDOEs than did 30 km/h and 50 km/h roads (35 and 7 
segments respectively). Eighty km/h roads had approximately 1060 times more PDOEs than did 30 km/h and 
50 km/h roads, whereas 70 km/h roads had nearly 1750 times more PDOEs. Finally, 60 km/h roads had 
about 900 more PDOEs than did 30 km/h and 50 km/h roads.  
 
No other variables were statistically significant in the Model II. Notably, truck volumes do not uniquely 
contribute to explaining PDOEs. Nor does the presence of a horizontal curve, its radius, or whether terrain is 
flat or not.  
 
The additional dispersion introduced by the PDOEs is explained in part by both total traffic volumes and truck 
volumes in Model II. In other words, unexplained variation is a function of not only the mean PDO equivalent 
prediction but also traffic and truck volumes—with higher volumes contributing to higher unexplained 
variation.   
 
The speed-related results were anticipated and are insightful. It is readily seen that the largest magnitude 
systematic effects on PDO-equivalents are associated with posted speed limits. The fact that speed affects 
severity is expected; however, that 40 km/h roads have the highest association with PDOEs is quite surprising. 
The impact of this speed category cannot readily be explained and points simply to a need to examine the 
South Korean road data and to examine further what other factors may be associated with 40k roads. Both 
Models I and II identify this class of road as the ‘most risky’; however, Model II identifies other speed limits as 
having substantial effects on the predicted safety performance of facilities.  
 
The large magnitude IRRs in Model I are associated with land use, that is, the “message” from Model I is that 
being in a residential or industrial area has a significant effect on safety. Model II, in contrast, suggests that 
whether or not a road segment is in a residential area has about 1/265 the effect on safety as does the facility 
being posted 80 km/h. Thus, Model II suggests that speed limit is far more important than land use in 
explaining both severity and frequency of crashes, as expected.  
 
A direct quantitative comparison of these models is not possible because the dependent variables are measured 
on different scales. All GOF comparisons are based on statistics derived from the dependent variable (R-
squared, log-likelihood, mean square error, absolute error, etc.) and thus comparisons of them are not 
meaningful. The results do not suggest that Model II is superior in any way to Model I; instead the results 
indicate simply that Model II is sensitive to total societal crash cost and Model I is not. The modeling results 
suggest that the set of predictors that are sensitive to both severity and frequency are revealed through the use 
of PDOEs as compared to raw crash counts.  

Discussion and Conclusions  
Crashes are not equal when it comes to their influence on safety. Substantial research reveals and common 
sense dictates that a fatal crash is far more costly than a PDO crash, and injury crashes also represent a greater 
impact on system risk than do PDOs. Much like using axle load equivalents to measure pavement damage (and 
associated costs), the use of PDOE factors is proposed for an enlightened analysis of crashes. PDOEs are 
derived from the relative costs to society of fatal, major injury, and minor injury crashes compared to PDOs. 
These weights are non-arbitrary—unlike past efforts that have considered weights—and can be defended based 
on their reflection of true crash costs to society.  
 
Through several hypothetical, somewhat idealistic, and insightful scenarios we demonstrate several properties 
that result from using PDOEs. First, analyses of system locations (segments, intersections, etc.) using raw crash 
counts will fail to illuminate site-related factors that affect crash severity—be they before-after studies, 
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regression analysis, etc. Statistically, these factors will not be identified as statistically significant, with likely 
candidates being factors such as driving speeds and factors that influence crash survivability. Conversely, using 
PDOEs will enable the identification of factors that are sensitive to crash severity and the true societal costs of 
crashes.  
 
A second finding is that the use of PDOEs enables the identification of driver-related factors that influence 
crash severity. Often, however, driver-related factors are not available in the analysis of system segments. For 
example, we often do not have disaggregate or aggregate occupant restraint use information associated with 
crashes that occur at an intersection. If PDOEs are used and driver-related factors that affect severity are 
unavailable, then unexplained variation will exist and increase the overall model error term. The unexplained 
variation may be systematic if there are, say, patterns of restraint compliance rates within a region, otherwise it 
will be largely random.  
 
A third scenario showed that applying a before-after analysis using crash counts can be misleading. If a 
countermeasure influences the severity of crashes but has a minor influence on the frequency of crashes (many 
countermeasures behave this way), raw crash counts are inferior. PDOEs, in contrast, do a superior job in 
enabling a before-after analysis to reveal the true impact of a countermeasure on safety. Moreover, PDOEs are 
less prone to analysis errors due to the impact of under-reporting, with a simple example revealing a 40 fold 
decrease in the analysis error compared to raw crash counts.  
 
A negative binomial regression analysis using South Korean segment data (in practice US data should be 
coupled with US based PDOEs) revealed stark differences using raw crash counts vs. PDOEs. As theoretically 
argued, speed-related factors become more prevalent when both frequency and severity are considered in the 
analysis. Factors that typically explain crash frequency become less important when severity is considered. 
While the concept of weighting crashes by severity is not new, using PDOEs based on the true costs to society 
is non-arbitrary and, it is argued, better reflects true safety impacts. Despite the strong case made for PDOEs, 
important questions remain.  
 
How would this approach influence a before-after analysis, and would the results be improved? As discussed previously, 
before-after results could be drastically altered if crash counts across severity classes were simply being used in 
the analysis. The change in both severity and frequency from before to after would provide a much more 
complete assessment of the safety impact of a countermeasure. The introduction of PDOEs to the largely 
accepted before-after methodology, and its impact on the statistical computations has yet to be explored.  
 
Could the approach be used to improve the ability to identify ‘high risk’ sites? Clearly using PDOEs to rank high risk sites 
has strong intuitive appeal. Again, ranking would not be a function of only crash frequency—which is 
influenced heavily by under-reporting of PDO crashes, but by severity as well. Sites with a high proportion of 
severe crashes would be on average ranked much higher than those with large numbers of PDOs. The 
influence on safety management and high risk site identification also deserves exploration.  
 
How does one justify the weights applied to calculate PDOs? In this analysis the most recent national study on the costs 
of crash severity were used along with assumptions about vehicle occupancy and number of vehicles involved 
in crashes. If another researcher depended upon another study or made different assumptions—the results here 
would then change. In addition, issues associated with methods used to value human life could contribute to 
this debate. A discussion on the correct relative weights and assumptions warrants attention, and might require 
an agreed upon standard of measure that is adopted by the profession. While this debate could be significant, 
we believe it pales in comparison to the need to consider severity in order to gain a complete representation of 
road safety, with a ratio of PDOs to Fatal costs of 1:1330 clearly their societal impacts are drastically different 
no matter what assumptions are agreed upon.  
 
Isn’t the approach an approximation based on severity classes? Yes, weights could be established for a number of 
different severity classes, such as the commonly used KABCO scale which would require five weights instead 
of the four applied here. Moreover, weights could be calculated ‘within severity class’; for example, severe rear-
end crashes may be less costly on average than severe angle crashes. As all researchers must defend all aspects 
of their research with sound science, the selection and calculation of how many weight classes to use and apply 
represents yet another of those aspects that must be defended. In the final analysis severity classes are an 
arbitrary discretization of a continuous cost function of crashes, which in the final analysis results in an 
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approximation. It is argued, though, that the explicit consideration of costs—even if approximate—is better 
than their exclusion.   
 
Do statistical complexities arise from the PDO equivalent approach? The usual assumptions of Poisson and Negative 
Binomial distributed crash counts are severely strained in this approach. The PDO equivalency calculation 
introduces a great deal of dispersion into the data, which theoretically makes the identification of statistically 
significant variables easier but places distributional assumptions on questionable ground. The impact of the 
method on the econometrics deserves more attention, and it is likely that more suitable statistical approaches 
for analyzing PDO equivalency data can be applied, such as non-parametric methods.  
 
Aren’t severe crashes influenced more by random events than less severe crashes? Severe crashes—including fatalities and 
severe injuries, are captured more accurately in crash databases. Some of the mechanisms differentiating severe 
from fatal crashes are quite simple and thought to be random, such as weather passengers are wearing safety 
restraints or are carrying excessive speed. However, the argument for randomness also applies to minor injury 
and PDO crashes as well, since past research has established that about 90% (or so) of all accidents are caused 
by human error (distraction, failure to perceive, etc.); thus it seem unfair to single out the most severe crashes 
in this regard. Small datasets, regardless of severity, will lead to greater difficulties in drawing firm conclusions 
regarding roadway safety.   
 
The intent of this research was to devise, develop, and illustrate the use of a straightforward and heretofore 
untested analysis method for considering both severity and frequency. Based on both theoretical and empirical 
arguments herein we believe the PDOE approach offers considerable complement to, if not significant 
advantages over state of the practice methods in raw crash count modeling. The sole intent is to solve the 
problem posed by the two-dimensional character of motor vehicle safety that is often analyzed in only one 
dimension or is offered in cumbersome and complex multi-level models.  
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Figure 1: Sampling Locations of Sites within South Korea 
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1 Table 1: Crash Costs by Injury Severity Class (Blincoe et al.(20)) 
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Table 2: Road Segment Variable Names, Descriptions, and Measurement Units or Levels 
 
Variable 
Mnemonic 

Description of variable

crashfreq Total Number of traffic crashes
fatal Number of reported fatal crashes (crash where at least 1 person is fatally injured)
majinj Number of reported major injury crashes (crash where at least 1 person suffers non-

fatal major injury) 
mininj Number of reported minor injury crashes (crash where at least 1 person suffers non-

fatal minor injury) 
PDO Number of reported property damage only crashes
ADT10k Average daily traffic volume [veh/day] in tens of thousands of vehicles 
HVADT1k Average daily heavy vehicle volume [veh/day] in thousand of vehicles 
site Rural segments outside metropolitan area=0, rural segments located in level and rolling 

areas =1 
length Roadway segment length [meters]
hc The presence of horizontal curve 
vc The presence of vertical curve 
hcradius Horizontal curvature [meters]
grade Vertical grades [%]
numdriv The number of driveways
numlite The number of lighting
width Traveled width [meters]
numlan The number of lanes
shldwdth The shoulder width [meters]
shldtyp [1-4] The shoulder type [Non=0, Pavement=1, Non pavement=2, Others=3] 
spdcntrl The number of speed control system/ Device
terrain [1-3] Terrain [level=1, rolling=2, mountainous=3]
delin The presence of delineation system [yes=1, no=2]
medtype [1-5] The median type [None=0, Concrete=1, Guardrail=2, greenbelt=3, Others=4] 
medwidth The median width [meters]
postspeed Posted speed in km/h [30=1, 40=2, 50=3, 60=4, 70=5, 80=6]
landuse [1-10] 
 

Land-use around Roadway Segment [residential area=1, commercial area=2, farmland 
area=3, industrial area=4, residential-commercial area=5, farmland- industrial area=6, 
farmland –industrial area=7, residential-farmland area=8, industrial-farmland area=9, 
others=10] 

crosswalk The number of crosswalks
bustop The number of bus stops

3 
4 
5 
6 
7 
8 
9 

Conversion: 1km/h = 0.621mi/h ; 1m = 3.28ft 
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Table 3: Variable Samples Sizes, Means, Standard Deviations, Minimums, and Maximums (N=2916) 
 

    Variable Mean            Std. Dev. Minimum  Maximum 
hc 0.5366941 0.4987372 0 1
hcradius 183.5152 381.1388 0 6800
vc 0.9358711 0.2450245 0 1
gradbeg -0.3631687 2.745238 -10 8
gradend -0.3727709 2.737566 -10 8
length 178.3254 136.3228 25 3000
width 9.732545 4.196879 6 45
numlan 2.684499 0.9490881 2 4
numdriv 0.5562414 0.9348919 0 10
shldtyp 0.9406722 0.2650197 0 3
shldwdth 1.123457 0.5200196 0 5
numlite 0.6412894 1.622609 0 16
medtyp 0.6683813 1.076543 0 4
medwidth 0.414952 0.9560905 0 20
postspeed 64.93827 11.87252 30 80
ADT10k .9135172 .9938237 .0961 4.3992
HVADT10k .110033 .1164396 .0047 .4342
spdcntrl 0.021262 0.1442812 0 1
terrain 1.752743 0.8155285 1 3
LU 3.83642 2.29123 1 10
crosswalk 0.1796982 0.4452294 0 6
bustop 0.1563786 0.4226403 0 3
delin 0.1203704 0.3254499 0 1
crashfreq 0.2040466 0.8119164 0 13
fatal 0.0130316 0.1249423 0 2
majinj 0.0836763 0.374845 0 4
mininj 0.0617284 0.3338475 0 8
PDO 0.0452675 0.3054815 0 5
PDO-E 40.81001 175.3895 0 2091

3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
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Table 4: Negative Binomial Regression Model I: Raw Crash Counts 
 
Variable  IRR Std. Err. Z-value P>|z| 95% Confidence Interval 
Crash Frequency Predictors 
hc  1.502059 .2548964 2.40 0.017 1.07706       2.09476 
hcradius .9996784 .0001791 -1.79 0.073 .9993274     1.00003 
ADT10k 1.32805 .1154485 3.26 0.001 1.120002     1.574744 
HVADT1k  3.210471 2.52819 4.41 <0.001 .6859028     15.0271 
landuse 1
   

5.818681 1.827065 5.61 <0.001 3.14447       10.76717 

landuse 4   5.267146 3.244749 2.70 0.007 1.574726     17.61756 
terrain 1  .6900592 .1127516 -2.27 0.023 .5009622     .9505341 
postspeed 2  2.045392 .8567063 1.71 0.088 .9000227     4.64836 
constant (β) -7.841476 .2004915 -39.11 <0.001 -8.234432    -7.44852 
length   (exposure)  
Dispersion Function Predictors (β’s) 
ADT10k -.9394965 .1210357 -7.76 <0.001 -1.176722    -.7022708 
constant 3.191968 .1724014 18.51 <0.001 2.854068    3.529869 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Model Log Likelihood = -1218.9287 
Pseudo R-Squared = 5.32% 
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Table 5: Negative Binomial Regression Model II: PDOEs 
 
Variable  IRR Std. Err. Z-value P>|z| 95% Confidence Interval 
Crash Frequency Predictors 
ADT10k 1.703442 .3938173 2.30 0.021 1.082776    2.679883 
landuse 1 4.167768 3.043731 1.95 0.051 .9960221    17.43966 
landuse 7 .1079958 .088743 -2.71 0.007 .0215751    .5405817 
postspeed 2 3707.715 7789.995 3.91 <0.001 60.35487    227772.1 
postspeed 4 906.2048 1746.919 3.53 <0.001 20.71758    39638.19 
postspeed 5 1740.362 3609.499 3.60 <0.001 29.87126    101397.1 
postspeed 6 1060.69 2087.303 3.54 <0.001 22.41464    50193.22 
constant (β) -9.062803 1.911832 -4.74 <0.001 -12.80993   -5.315681 
length   (exposure)  
Dispersion Function Predictors (β’s) 
ADT10k    -.3672362 .0824673 -4.45 <0.001 -.5288691   -.2056033 
HVADT1k    -2.484343 .7570695 -3.28 0.001 -3.968172   -1.000514 
constant     5.103508 .109587 46.57 <0.001 4.888721    5.318294 
Model Log Likelihood = -2800.5798 3 

4 Pseudo R-Squared = 0.59% 
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