- Main
Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4
Published Web Location
https://doi.org/10.1021/acs.chemmater.5b04013Abstract
All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na+) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm-1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na3PSe4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mS cm-1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na3PSe4 only permits rapid Na+ diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se2- oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-