
UC Berkeley
Earlier Faculty Research

Title
Developing an Object-Oriented Testbed for Modeling Transportation Networks

Permalink
https://escholarship.org/uc/item/0376j3sg

Authors
Kwan, Mei-Po
Speigle, Jon M.
Golledge, Reginald G.

Publication Date
1997

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0376j3sg
https://escholarship.org
http://www.cdlib.org/


Developing an Object-Oriented Testbed for
Modeling Transportation Networks

Mei-Po Kwan
Jon M. Speigle
Reginald G. Golledge

Reprint
UCTC No. 409

The University of California
Tmnsl~ortation Center

Urdvers~ty of California
Berkeley, CA 94720



The University of California
Transportation Center

The University of California
Transportation Center (UCTC)
is one of ten regional units
mandated by Congress and
established in Fall 1988 to

support research, education,
and training in surface trans-
portation. The UC Center
serves federal Region IX and

is supported by matching
grants from the U.S. Depart-
ment of Transportation, the
California Department of

Transportation (Caltrans), and
the University.

Based on the Berkeley
Campus, UCTC draws upon
existing capabilities and
resources of the Institutes of
Transportation Studies at
Berkeley, Davis, [rvine, and

Los Angeles; the Institute of
Urban and Regional Develop-
ment at Berkeley; and several
academic departments at the
Berkeley, Davis, Irvine, and
Los Angeles campuses.
Faculty and students on other

University of California
campuses may participate in

Center activities. Researchers
at other universities within the
region also have opportunities
to collaborate with UC facultT
on selected studies.

UCTC’s educational and
research programs are focused

on strategic planning for
improving metropolitan
accessibility, with emphasis
on the special conditions in
Region IX. Particular attention

is directed to strategies for
using transportation as an
instrument of economic
development, while also ac-
commodating to the region’s
persistent expansion and
while maintaining and enhanc-
ing the quality of life there.

The Center distributes reports
on its research in working
papers, monographs, and in
repr/nts of published articles.
It also publishes Access, a
magazine presenting sum-

maries of selected studies. For
a list of pubIications in print,
write to the address below.

University of Cniiforaia
Transportation Center

108 Naval Architecture Building
Berkeley, California 94720
Tel: 510/643-7378
FAX: 510/643-5456

The contents of this report reflect the views of the author who is responsible
for the facts and accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California or the
U.S. Department of Transportation. This report does not constitute a standard,
specification, or regulation.



Developing an Object-Oriented Testbed for Modeling
Transportation Networks

Mei-Po Kwan
Department of Geography

Ohio State University
Coiumbus, OH 43210-1361

Jon M. Speigle
Department of Psychology

University of California, Santa Barbara
Santa Barbara, CA 93106

Reginald G. Golledge
Department of Geography

and
Research Unit in Spatial Cognition and Choice

University of California, Santa Barbara
Santa Barbara, CA 93106

Reprinted from
Santa Barbara Geographical Press

(1997)

UCTC No. 409

The University of California Transportation Center
University of California at Berkeley



Abstract

The objective of the paper is to discuss the development of an alternative representation

of the transportation network using object-oriented GIS. This representation is important

for the supply side of transportation planning and modeling. Object-orientation provides a

way of solving the problem in a planar network for routing. It can facilitate the

calculation of detailed network characteristics using properties such as inheritance and

polymorphism. This representation is also closer to human perception of a transportation

network. It is argued that by using an object-oriented GIS we can facilitate path selection

using different criteria. We experiment with the design of the object-oriented system by

developing an object-oriented representation of a transportation network and

incorporating different path selection algorithms based on various behavioral

assumptions. It is especially useful in the design for a versatile ATIS.

Introduction:

Transportation Science is host to a variety of theories concemkng (among others) network

structure, routing algorithms, traveler activity pattems, mode choice, demand forecasting,

vehicle or traffic assignment, trip allocation, and traveler behavior. It has an expressed

goal of increasing accessibility for all groups of people with regard to the environments in

which they live and interact. A significant component of these goals is to further develop

Intelligent Transportation Systems (ITS) through multi-level and multi-modal research

and testing. This includes contributing to research on transportation system architecture,

technology development, policy formation, and operational tests of vafous systems.

ITS objectives aim at utilizing advanced communication and transportation technologies

to achieve traffic efficiency and safety. There are different components of ITS, including

Advanced Traveler Information Systems (ATIS), Automated Highway Systems (AHS),

Advanced Traffic Management Systems (ATMS), Advanced Vehicle Control Systems



2

(AVCS) and Advanced Public Transportation Systems (APTS). Development 

coherent system for ITS depends on our ability to deal with a vast amount of data about

the locations of places, as well as with the complex representation of the transportation

network linking those places, and the incorporation of both of these into a geographic

database. The system therefore, can be constructed based upon the foundation of an

integrated and comprehensive Geographic Information System (GIS).

To achieve the ITS aim of using advanced information technology and processing to

inlprove traffic efficiency, both static and dynamic information is needed.

In addition a representation of the real world environment is required, with all the streets

and their properties, and with information about location of related objects being

required. Vehicle routing and navigation is then based on this network representation.

F~m.her, dynamic traffic information updating in a short time interval must be included

for accurate traffic forecasting. With recent advances ha technologies, fast location and

temporal updating are possible. Global Positioning Systems (GPS) can accurately fix and

trace the location of a vehicle to within several meters. Movement detectors can provide

era’rent traffic counts. The central question is how to handle this fast temporal change and

update of vehicular location and volume within an efficient database system.

Thus, the successful development of ITS depends on the capability of incorporating a vast

amount of information about the location of facilities which generate travel, with as

realistic a representation as possible of elements of the transportation network in which

travel occurs. Such a system can be based on an innovative and comprehensive

Geographic Information System (GIS)o Whereas current ITS primarily use simplified

transportation networks as their basis, using GIS allows us to provide a more realistic

representation of elements of the network and the ways that people perceive them. We

can represent the network by defining roads or street hierarchies and by storing



environmental data as layers which can be overlain, aggregated, or decomposed at will.

Storing the transportation network as a hierarchy facilitates the calculation of different

paths through the network and allows the introduction of different path selection criteria,

and the ability to handle overlapping modal use of network elements (e.g. cars, busses,

and freight carriers). Since a long-run aim of ITS is to develop a real time multi-strategy

travel decision support system over a multi-modal network, it is necessary to develop a

data host and system modet that is flexible, comprehensive, and realistic.

GIS have the potential to handle human movement in space and time. Existing GIS

routines have been used to perform basic network actions such as finding a shortest path,

solving a traveling salesperson problem, and recently, handling location-allocation

problems. Applications commordy available in existing GIS software like TRANSCAD

and ARC/INFO NETWORK have largely been operated in data models that rely on a

simple planar link-node representation of network structure. However, this structure does

not satisfy the various requirements of today’s traffic management. In this paper,

therefore, we illustrate a way of developing a testbed of a transportation network that

could provide a realistic base on which to graft many ITS components.

I. System Review

A. System Overview:

Our system is implemented in C++, under the Windows NT operating system, and has a

user-extensible interpreted frontaend. The interpreted environment is comprised of

variables, classes, and functions. The user is able to create text flies which define classes

and named sequences of statements which manipulate one and two-dimensional

variables. The variables may be either homogeneous arrays of a primitive type (i.e.,

integer, floating point number, character, or string) or arrays of class instances. The arrays



4

of instances may be either all of the same type (homogeneous) or of different types

(heterogeneous). The operations supported by a given array depends, accordingly, on the

content type. For the numeric types, basic matrix operations are defined as well as a

number of standard mathematical functions° For the string type, the operations include

concatenation, comparison and formatted assignment. For the instance arrays, the method

ftulctions may be called and the attributes may be accessed°

Figure 1

Copy/Cut/Paste

file

Refresh
Zoom

Parse lineScroll
Find variableOpen file
Find functionOpen database
Execute functionPartition
Create class
Create instance
Register function

Figure I. Interface components. The Edit and Graph classes derive from a common, MDI

ddld class. The Command Window extents the functionality of the Edit class by adding

the parser.

The interpreter supports complex data types by means of aggregation and inheritance.

Each type corresponds to a class definition and a set of"metadata". The metadata

characterizes the types and names of attributes possessed by all instances of the class, the

n~maes and input/output signatures of methods supported by the instances, and the inter-



class, parent/child relations. The metadata also includes the set of all instances of the

class, or class extents.

Classes are defined in one of two ways. The first method is for the user to create a text

file which when interpreted creates the class. A class "road" is declared as follows.

"Road" has two single-precision floating point attributes and a member function called

"Cost". The members may be referred to as "road::name", where "name" refers to either a

method or attribute name.

class "road" {
float s;
float t;
function Cost;

}

The syntax for deriving a class "highway" from "road" is as follows. A derived class

"inlaerits" the attributes and methods of its parent class° "Highway" has two integer

attributes as well as the floating point attributes and Cost method of class "road".

class highway : road {
int x;
int y;
function Cost;

}

If a method defined in the derived class has the same name as a method of the parent

class, then it "overrides" or "hides" the method of the parent class. This feature,

combined with the capability to store heterogeneous arrays of instances, allows for a

method name to evaluate to a different function calI depending on the type of the

instance. In the following, classes ’road’ and ’highway’ are instantiated, the instances are

stored in a vector, and their cost method is invoked:



’Road’ road(l);
’ Highway’ highway(2);
v=[road,highway];
x=v.CostO

For the instance of Road, Road::Cost is called; for Highway, Highway: :Cost is called.

This is referred to as polymorphism.

6

The second method of creating classes is for the metadata to describe a "built-in", C++

cl~ss. The metadata in this case describes a mapping from the method names to an index

into a dispatch table. The index is used to call actual C++ methods for the class. The

distinction between attributes and methods is blurred, as the methods provided in the

dispatch table are the only means of accessing the attributes. In some cases, the built-in

classes may be instantiated at the command-line. The spatial data types which will be

described below fit into this category. Any built-in class which may be instantiated may

also be derived from. This is the primary method of adding attributes to the built-in types.

In other cases the built-in classes do not allow instantiation (e.g., the "Graph" or

"MetaData" classes). Instances of this sort are returned by some routines (e.g.,

"gr=GetCurrentGraph"). The user may then pass methods to the instances (e.g.,

"gr.Zoom(2)"). The user interface to the two types of metadata are consistent.

As with to the class definitions, the operations supported by the interpreter come in two

flavors: built-in and user-defined. Built-in operations are implemented as C++ routines

and perform such tasks as listing and deleting variables, retrieving instances of built-in

types (e.go, Graphs or MetaData), and interacting with the file system. The user-defined

operations are text files which may contain any number of statements. When the first

word of the file is "function" a local environment is created when the function is called

(e,.g., "z = Square(2)").



function [y] = Square(x)
y = x’x;

The first line of the file declares the input and output signature of the function. For

"Square" the input variable is "x" and the output variable is "y". The newly created

environment is initialized with the function inputs arguments. The output variables are

culled from the environment when the function is exited. Alternatively, when the first

word is not "function", the calling environment is used.

The member functions of user-defined classes are also text files. From outside a member

function, the member variables may be accessed and the functions invoked by following

an instance’s variable name with the method name. When a method is invoked, only the

member variables corresponding to the class defining the method are accessible. But from

within a method, these other method or attribute names may be referenced directly. For

the case of overridden functions, a syntax is defined for explicitly calling the overridden

function.

Queries are supported both against a class’s extents and against the results of previous

queries. In the following example a class is defined, several instances are created, a query

is made against the class, and a second query is made against the first query’s results.

class Road {
int

l;
v_road;

Road a(1);
Road b(2);
Road c(3);
Road d(4);

def=-findclass(Road);
resl=def.Find("v__road>=4’’)

res2---resl.Find("vroad>=3")



Wtmn a query is made against a named class’s extent, it is also made against the extents

of ~my derived classes. The conditional is evaluated for each instance of the base class

and then recursively on any derived classes. The instances for which the conditional

evaluates to ’true’ are accumulated as a heterogeneous instance list. This list may be

assigned to a variable and subsequently used as the extent for further queries. The

ev;fluation process sets the environment state as in a method call, to the particuIar

instance against which the query is being evaluated. This means that complex, "path"

expressions may be used within the conditional, that is, involving the attributes of fields

wNch are themselves instances (i.e., "road.highwa~l’).

A query conditional may be composed of any number of sub-conditionals. Each sub-

conditional will be a fimction/method call which evaluates to true or false, a relational

expression (i.e., ">", "<", ">=", "<="), or an equality expression (i.e., "~" or "!="). 

sub-conditionals will be joined by the logical "and" and "dr" operators: && and II. The

precedence of the arithmetic, relational and logical operators is as in C++. The bindings

for method calls are determined at run-time. The following example would return the

ir~tances of class Road for which the attribute was between 1 and 4:

res=def.Find("v_road>l && v_road<4")

B. Built-In, Spatial Types

The spatial type hierarchy is shown in Figure 2. The basic spatial types are the Point,

Line, Polyline and Circle. The types specific to a network implementation are the Node

at~.d Link. Each of these types is implemented as a C++ class and has a corresponding

metadata description. The user is able to instantiate these classes at the command-line, to

access the instance’s methods and attributes, and to derive from these classes. The classes

used to represent a hierarchy of road types are described in the next section. The methods



common to all types derived from spatial object include drawing, topological

comparisons, and serialization. Each spatial object possess a "location" (i.e., x, y, and 

coordinate) and unique "identifier". Polyline adds a list of vertices (i.e., x, y, and 

coordinates). The Link adds attributes for identifying the "junctions" at the endpoints of

the list of vertices. The Node adds a list of links to the basic attributes.

IsIn Box

flay

Distance to

Cost

Figure 2. Built-in spatial object hierarchy.

Cost

The spatial classes and any classes derived from them support spatial indexing of the

class’s extents. A quadtree of depth N is created for each class. Each quadtree leaf

contains a list of pointers into the class extents. The list contains pointers to the instances

whose centroid fell within the bounding box for that leaf. We refer to this procedure as

"partitioning". Figure 3 shows the hierarchical relation between the basic meta-class type

and the specialized, spatial meta-class type.



~
Find instance

Create instance~

~ -’~ Partition instances

[instance list] ~ Create instance
" Find instance

I0

Figure 3. Meta-Class hierarchy.

As noted above, member functions may be utilized within queries as well as value-based

relational or equality statements. The topological member functions may therefore be

used to select instances. A fully optimized query evaluator would utitize the spatial

indexing when available. Such optimizations are operational for simple queries (i.e.,

queries composed of only a single spatial method call) and are under construction for

more complicated, compound queries. The following example illustrates instantiating a

built-in spatial class, partitioning, and executing several spatially based queries:

Line a([0 01,[1 11);
Line b([1 0],[2 1]);

def=findclass(Line);
bbox=def.ComputeBBox();
def.Partition(bbox,3);

disp("Testing spatial query: find a");
res=def.Find("IsInBBox([0 0 1 1])")

disp("Testing spatial query: find b");
res=def.FindCIsInBBox([1 0 2 I])")

disp("Testing spatial query: find a and b");
res=def.FindCIsInBBox([0 0 2 1 ])")



1I

C. Road Hierarchy

The spatial classes were extended by deriving user-defined classes. The derived classes

added attributes as well as constructor/destructor member functions. As shown in Figure

4, the class "Road" was derived from Link.

i

I t

vl__

I

Figure 4. Road hierarchy.

The class definitions for Road, Highway and Addressed are as follows. The remainder of

the definitions do not add attributes. Their purpose may be viewed as providing a

hierarchical classification scheme. Member functions may be added to distinguish the

favorability/unfavorability of any of the road classes.

class Road" Link {
string
int
int
int
int
int

name;

nLanes;
divider;
paved;
speedLimit;
oneWay;

function Cost;

};



12

The attributes of class Highway are the "level", which may take values of STATE or

INTERSTATE.

class Highway : Road {
int level;

function Cost;
};

The AddressedRoad contains attributes for characterizing the address ranges along the

segment. The member functions determine the address given a position and the inverse

process of determining the position given an address.

class AddressedRoad : Road {
int lowAddress;
flat highAddress;

function PositionToAddress;
function AddressToPosition;

};

D,, Junction Hierarchy

Tiffs section is still relatively undeveloped because at this stage, only the approach toward

Junctions has been conceptualized. Currently, the Links contaku only pointers to Nodes.

Tiffs will be converted to pointers to Junctions in later phases of the work.

The basic network behavior is represented by class Node, which inherits from Point. The

Node class adds a cost function and a list of connected Links. The class Junction inherits

from Node and adds the capability to describe a set of turn restrictions. The Cost method

of class Junction determines the cost of traversing the junction given a pair of links.

F![gure 5 shows several user-defined classes which further specialize class Junction. These

classes basically override the Cost function for class Junction. The further derivation of

~tis derivation is shown in Figure 6.



13

iturn restrictions

Figure 5. Members of Point, Node and Junction classes.

Cost

turn restrictions

Cost

\ \
Cost Cost

Figure 6. Junction hierarchy.

Cost Cost

E. How does OO affect route finding?

First, polymorphism allows us to calt different cost functions for different types of road.

For instance, the cost function for Link (Link=Cost) might just return the length of the

link. The cost function of Road, which derives from Link, might divide the length by the

speed limit to have the cost reflect the time needed to traverse the link (i.e.,

"Link::Cost/speed"). Polymorphism is the OO capability to call different cost functions

depending on the type of the instance. Each road type in the Road hierarchy may define



14

its own cost function. A Djikstra algorithm requires the network topology and the

capability to evaluate a cost for each instance. The algorithm does not care about exactly

how the cost is assigned. With polymorphism we are able to call different cost functions

for different types of roads or we are able to minimize different crite6a by modifying the

cost functions. The code which implements the network algorithm is "re-used" while only

the cost functions are modified.

v~rith our system it is possible to minimize other criteria besides distance or time. Each

cost function in the Road hierarchy is based on the output of the previous level. If

Highway does not supply a specialized cost function, then its cost will automatically call

the Cost function of its parent class. This is "Luheritance". But if we wanted highways to

be preferred over other types of roads, then Highway::Cost could be set to

,, ~ ,,Road::Cost 0.1 . The cost for a highway would be less than for another type of Road. In

ffds way, it would be possible to use the Djikstra route finding algorithm with the

following criteria: shortest path, shortest time, at-the-highest-speed, minimurn-tmffic-

volume, most aesthetic, maximum proportion on a road-class, maximum use of one-way

travel (or on divided road).

A similar strategy may be used to specialize cost functions for different types of

junctions. We use a modified Djikstra algorithm which allows assigning costs to

traversing a node. With this implementation we may minimize criteria such as the

number of left turns. The node has associated with it a turn matrix. A specialized, "hate-

left-turn" cost function could produce a higher cost for making a left turn. This allows us

to incorporate "behavioral" criteria into the route finding process. These behavioral

criteria may even be customized for different users. With ajanction hierarchy we may

deal with the following criteria: minimize left turns, minimize delay at intersection,

minimize number of signaled intersections.



15

Some types of criteria will, however, lie outside the capabilities of the polymorphic

Djikstra algorithm. Those types of criteria could not be handted because they require

information to be passed to the cost function which is not normally passed by the Djikstra

algorithm. For example, a criteria could be to "always proceed in a corridor toward the

destination". Evaluating this criteria would require the endpoint and the position of the

last point, neither of which Djikstra automatically supplies. Other questionable criteria

are "place the longest/shortest leg first", "avoid high accident places", "maximize number

of destinations along a single route", or "maximize length of a dominant leg"o

F. Versant

The Versant ODBMS is designed as a fault-tolerant, multi-user, and distributed system.

Some set of databases may be distributed across a number of machines and may be

accessed simultaneously by any number of users. Versant’s client-server architecture

supports distribution, the capability of which is essential for scalabiiity. Transactions are

handled in a robust fashion by using "two-phase commits". The multi-user requirements

have resulted in a sophisticated set of object locking and concurrency mechanisms. Users

may "checkout" items from a group database to a personal database, with the items being

locked until the corresponding "checkin’.

Our use of Versant’s system does not utilize many of the advanced features. A fully

operational ITS system would, however, require the system to be highly distributed and

robust. Our use of the distribution capabilities was limited to placing the database on one

machine and the client program on another. We also did not explore the issues concerning

concurrent access by a large number of users. In the testbed, a single user possessed

read/write access to the database. In a fully operational ITS, different classes of users

would have different levels of access. "End-users" would have only read access.



16

Concurrency would be an issue only for the "administrators" because they are likely to be

tile only users able to modify the database.

Versant provides interfaces for a number of programming languages: Smalltalk, C, and

C-H-. We utilized the C++ interfaces, including the capability to declare classes at run-

time.

We selected a particular OO DBMS software - VERSANT - as our primary medium (see

atso the recommendation in G611ii, 1995). Part of using Versant software as the medium

fi)r an object-oriented GIS is the development of the partitioning scheme. This is possible

because of Versant’s implementation as a client-server database. Our application is the

",client" and would request data from the database "server." Of the several ways in which

a client’s request may be couched, one is to use simple equality/inequality statements on

a given class’s attribute values. The server will return class instances for which the

conditional is met. We believe that this is the highest complexity of queries supported by

Versant. More complicated, user-defined selection procedures are not supported yet

because such procedures would need to reside on the server side. This is what is meant as

"storing class methods on the server." Versant only provides the means to store the data,

not the methods. The only way around this inability to conduct complicated queries (such

as a bounding box comparison against an entity’s position) seems to be to "recompute"

these necessary computations° This is why it seems necessary to partition the map within

Versant. The need is probably greater than it was for displaying the map.

"[lae methods described above for creating hierarchically defined attributes and a

hierarchically structured set of layers were mapped to Versant. Versant’s role was to

allow for storage of class instances between sessions. In a relational database, this

amounts to the storage on disk of an application’s tables and their loading when next



17

required. In much the same way that Versant scans the application’s C++ header files to

determine the class hierarchy, the code that has been written for creating class hierarchies

does the same thing. The class definitions are used to create the "meta-class" information

used to describe the memory layout of the attribute fields. The procedures to store class

instances to disk were then written based on the meta-class information (i.e., the class

fields are stored as a stream of bytes wbdch is exactly what is needed to store the instance

to disk). This approach is an interim solution while the partitioning, network and entity-

attribute relations are worked out. All of these components seem required prior to storing

class instances using Versant. First, the data to be stored in Versant must be instances of

C++ classes. Second, using Versant as the storage mediary appears to require storing the

map within the database. Storing the map requires partitioning. It is still possible even

with a partitioning approach that map storage in Versant will prove prohibitively

expensive in terms of space or access time. We will investigate possible solutions to this

problem, particularly one that would be to store only the partitioning structure within

Versant, store the map separately in some other file format, and then load the map into

the partitions at run time.

G. A Real-World System Experiment

1. Conversion of Etak map to Object-Oriented Data Mode[

[This section is very sketchy and will be elaborated upon.] The road hierarchy was

defined and the Etak map of the Santa Barbara area was read into it. There are

approximately 28,000 nodes and some 14,000 links in the Etak county map, and 7800

notes and 3900 links in the testbed area.

I have not dealt with converting the Etak map into the junction hierarchy, as this may

involve much more user intervention. Making this jump requires the additional user-

interface capability of mouse tracking and selecting objects in the graph. The task of



18

converting nodes to/from different junction classes might also be automated by a set of

dialog boxes.

2. "Modified" Djikstra Routing algorithm

A description of the "modified" Djikstra algorithm should be inserted here and how it

was implemented using the Road and Junction classes.

Evaluating the Testbed:

Some of the critical features involved in evaluating the worth of any object-oriented data

model or object-oriented data structure include its ease of use, the relevance of the

at~ibutes defined in the system, whether or not the model deals with real or artificial

concepts, the degree to which there is a clear translation between model entities and the

a~-tual objects, and whether or not there are acceptable matches between those activities

undertaken in the real world and those activities incorporated into the model. Other

c~.-iteria relate to the number of modules embedded in the system that have to be changed

in order to work in a real environment, the number of steps that operation of the system

requires, the degree to which one must know and accept a process model of the system,

aad the time that is required to integrate changes in the system to ensure it is dynamic real

time.

Our project was designed to contribute to the next generation of traffic management

technology, particularly in terms of dispensing information to travelers in a pre-planning

or en-route phase via an ATIS. ITS generally appears to be moving more towards Object-

Oriented data structures and models and we believe our work is in line with these

nationwide trends.



We expect that this research will have important significance on both basic and applied

levels. We have conceptualized and developed an object-oriented geographic information

system from transportation modeling. Our continuing effort wilI focus on the data

modeling issues of a multi-modal network, and the implementation of a multi-strategy

travel decision support system built on this object-oriented system. Elsewhere (Kwan,

Golledge, & Speigle, 1996) we have discussed the advantages and disadvantages of an

object-oriented approach to transportation modeling. Apart from its improved capability

of handling the transport network as more of a perceptually accurate system, the object-

oriented data modeI allows us to incorporate hierarchical layering within the basic

network that ties to the normal engineering way of interpreting road systems.

Polymorphism allows us to perform ITS functions on various classes of objects in the

transportation network, an ability that is not easily obtained using existing software

systems. The approach also appears likely to substantially decrease the time involved in

interacting with the database, particularly by using partitioning and inheritance

characteristics. Cost of operation should consequently be reduced. Both these factors are

important when considering that the primary aim of an ATIS component of an ITS is to

get useful information to travelers in as timely a manner as possible so that on-route

decision making can be undertaken. There are many basic research problems relating to

the development of workable object-oriented data models for use in transportation

planning and this research has examined some of these. We also expect that the data

model as developed wilI greatly facilitate the implementation of ITS by more quickly

resolving conflicts with respect to ultimate selection of routes, substituting destinations,

changing activity patterns, and rescheduling activities.



20

References

Booch, G. (1991)

Booch, G. (1994). Object-Oriented Analysis and Design with Applications,
Benjamin/Cummins, Redwood City, California.

Clementini, E., and Difelice, P. (1994) Object-oriented modeling of geographic data.
Journal of the American Society for Information Science, 45, 9: 694-704.

Date, C.J. (1985)An introduction to database systems. Reading, MA: Edison Wesley.

D~wid, R., Raynal, I., Schorter, G., and Mansart, V. (1993) "GeO2: Why Objects in 
Geographical DBMS." The Third Symposium Databases, 264-276.

Davison, P.A. (1986) Inter-relationships between British driver’s age, visual attributes,
and road accident histories. In A.G. Gaile, et al (Eds.), Vision in vehicles. North
Holland: Elsevier Science Publications, pp. 23-32.

Diaagus, T.A., et al. (1989) Intentional demand requirement of an automobile moving-
map navigation system. Transportation Research A, 23A, 4:301-315.

Egenhofer, M.J., and Frank, A.U. (Eds.) (1989) Object-oriented modeling in GIS:
Inheritance and propagation. Falls Church: American Congress on Surveying and
Mapping, American Society of Photogrammetry and Remote Sensing.

Frank, A.U., and Egenhofer, M.J. (1992) Computer cartography for GIS - an object-
oriented view on the display transformation. Computers & Geosciences, 18, 8: 975-
987.

Gahegan, M.N., and Roberts, S.A. (1988) An intelligent, object-oriented geographical
information system. International Journal of Geographical Information Systems, 2,
101-110.

GrlI(i, A.O. (1995) Object Management Systems. California PATH Research Report
UCB-ITS-PRR-95-19.

Gunther, O., and Lamberts, J. (1994) Object-oriented techniques for the management 
geographic and environmental data. Computer Journal, 37, 1 : 16-25.



21

Guptill, S. C. (1989) "Speculations on Seamless, Scaleless Cartographic Data Bases."
Auto-Carto 9, Ninth International Symposium on Computer-Assisted Cartography,
Baltimore, Maryland, 436-443.

Guttman, A. (1984) "R-Trees: A Dynamic Index Structure for Spatial Searching." ACM
International Conference on Management of Data.

Haas, L. M., and Cody, W. (1991). "Exploiting Extensible DBMS in Integrated
Geographic Information Systems." Advances in Spatial Databases. Report from
Second Symposium, SSD91, O. Gunther and H. Schek, eds, New York, Springer-
Veriag, Zurich, 423-450.

Har-EI, Z., and Kurshan, R.P. (I987) COSPAN Users guide. Murray Hill, NJ: AT&T
Bell Laboratories.

Herring, J.R. (1992) Tigris - a data model for an object-oriented geographic information
system. Computers & Geosciences, 18, 4: 443-452.

Hoare, C.A.R., (1985) Communicating sequentialprocesses. Prentice-Hall International.

Inan, K., and Varaiya, P. (1988) Finitely recursive process models for discrete event
systems. IEEE Transactions, AutooControl, Volume AC-33, No. 7, pp. 626-639.

Jackson, R. W. (1994). "Object-Oriented Modeling in Regional Science: An Advocacy
View." Papers in Regional Science, 73(4), 347-367.

Jonah, B.A., and Dawson, N.E. (1987) Youth and risk: Age differences in risky driving,
risk perception and risk utility. Alcohol, Drugs, and Driving, 3, 3-4:13-29.

Kemp, K. (1992) "Environmental Modelling with GIS: A Strategy for Dealing with
Spatial Continuity." GIS/LIS Annual Conference, 397-406.

Khoshafian, S. (1993). Object-Oriented Databases, WileY, New York.

Khoshafian, S., and Abnous, R. (1990). Object-Orientation: Concepts, Languages,
Databases, User Interfaces, Wiley, New York.

(NOTE: THE KWAN (1994) REFERENCE WAS NOT CITED IN THE TEXT)



22

Kwan, M.-P. (1994). "GISICAS: A GIS-Interfaced computational-Process Model for
Activity Scheduling in Advanced Traveler Information Systems,", University of
California, Santa Barbara.

Kwan, M.-P., Golledge, R.G., and Speigle, J. (1996) A Review of Object-Oriented
Approaches for Transportation Modeling.

Lohman, G., Lindsay, Bo, Pirahesh, H., and Schiefer, K. B. (1991). "Extensions 
Starburst: Objects, Types, Functions and Rules." Communications of the Association
for Computing Machinery, 34, 94-109.

Medeiros, Co, and Pires, F. (1994). "Databases for GIS." SIGMOD Record, 23(1), 
115.

MJ.kne, P., Milton, S., and Smith, J.L. (1993) Geographical object-oriented databases - 
case study. International Journal of Geographical Information Systems, 7, 1 : 39-55.

Milner, R. (1980)A calculus of communicating systems. Springer-Verlag.

Nievergelt, J., Hinterberger, H., and Sevcik, K. (1984) "The Grid-File: An Adaptable
Symmetric Multikey File Structure." ACM Trans. on Database Systems.

Noy, I.Y. (1990)Attention and performance while driving with the auxiliary in-vehicle
displays. Road Safety and Motor Vehicle Regulation - Transport Canada, Ottawa,
Report #TP 10727(E), December.

()~eren, C.M. (1989) Analysis and control of discrete event dynamic systems: A state
space approach. Ph.D. dissertation, MIT.

Praehofer, H., Auemig, F., and Resinger, G. (1993) Art environment for DEVS-based
multiformalism simulation in common LISL/CLOS. Discrete Event Dynamic
Systems: Theory and Application, 3, 2:119-149.

Ptolemy Manual (1995) The almalmagest, Volume I-4, Version 0.5.2, College 
Engineering, UC Berkeley.

Ramadge, P., and Won_ham, W. (1987) Supervisor control of a class of discrete event
processes. SIAM Journal of Control Optimization, 25, 1: 206-230.

Roberts, S.A., and Gahegan, M.N. (1993) An object-oriented geographic irdormation
system shell. Information and Software Technology, 35, 10:561-572.



23

Roberts, S.A., Gahegan, M.N., Hogg, J., and Hoyle, Bo (1991) Application of object-
oriented databases to geographic information systems. Information and Software
Technology, 33, 1: 38-46.

Rowe, L. A., and Stonebraker, M. R. (1987)"The Postgres Data Model." The 13th VLDB
Conference, San Mateo, California, 83-96.

Rumbaugh, J., et al. (1991) Object-oriented modeling and design. Englewood Cliffs, N J:
Prentice-Hall.

S chiaer, S., and Mellor, S. (1988) Object-oriented systems analysis: Modeling the worm
in data. Englewood Cliffs, N J: Yourdan Press.

Scholl, M., and Viosard, A. (1992) Object-oriented database systems for geographic
applications: An experiment with 02. Paper presented at the Geographic Database
Management Systems Workshop Proceedings, Capri, Italy. May 1991.

Schwetman, H. (1989) CSIM Reference Manual (Revision 13)° Micro Electronics 
Computer Technology Corporation, 3500 West Valcones Center Drive, Austin, Texas
78759.

Shinar, D. (1978) Psychology on the road- the human factor in traffic safety. New York:
John Wiley & Sons.

Tomlin, C. D. (1990). Geographic Information Systems and Cartographic Modelling,
Prentice-Hall, Englewood Cliffs, New Jersey.

van Oosterom, P., and van den Bos, J. (1989) An object-oriented approach to the design
of geographic information systems. Computers & Graphics, 13, 4:409-418.

Walker, J., Alicandri, E., Sedney, C., and Roberts, K. (1990) In-vehicle navigation
devices: Effects on the safety of driver performance. Report #FHWA-RD-90-053.
Office of Safety and Traffic Operations, Research and Development, Federal
Highway Administration, McLean, Virginia, May.

Wiegand, N., and Adams, T. M. (1994). "Using Object-Oriented Database Management
for Feature-Based Geographic Information Systems." Journal of the Urban and
Regional Information Systems Association, 6(1), 21-36.

WiUiamson, R., and Stucky, J. (1991). "An Object-Oriented Geographical Information
System." Object-Oriented Databases with Applications to CASE, Networks and VLSI
CAD, R. Gupta and E. Horowitz, eds., Prentice-Hall, Englewood Cliffs, N J, 29%311.



24

Worboys, M.F. (I 992a) A generic model for planar geographical objects. International
Journal of Geographical Information Systems, 6, 5: 353-372.

Worboys, M. F. (I 992b). "Object-Oriented Models of Spatiotemporal Information."
GIS/LIS Proceedings, 2, 825-834.

Worboys, M.Fo (1994a) A unified model for spatial and temporal information. Computer
Journal, 37, 1: 26-34.

W orboys, M.F. (1994b) Object-oriented approaches to geo-referenced information.
International Journal of Geographical Information Systems, 8, 4: 385-399.

Worboys, M.F., Heamshaw, H.M., and Maguire, D.J. (1990) Object-oriented data
modelling for spatial databases. International Journal of Geographical Information
Systems, 4, 4: 369-383.

Yourdan, E. (1989) Modern structural analysis. Englewood Cliffs, N J: Yourdan Press.

Zcigler, B. (1984) Multifaceted modeling and discrete event simulation. London:
Academic Press.




