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This is the first of a series of papers proposing a new framework for modelling complete information
games in contnuous time.! Our objective is 1o construct a theory that conforms as closely as possible to
discrete-til_ne game theory.2 Indeed, there is a precise sense in which our continuous-time formulation can be
interpreted as "a discrete time model, but with a grid that is infinitely fine."

A fundamental problem for game theory in continuous time is that there is no natural notion of a "last
time before r."> Therefore induction cannot be applied. Since induction is fundamental to discrete-time
game theory, the most primitive concepts of this theory have no direct continuous-time analogs. These
concepts--decision trees, strategies and outcomes--must therefore be defined from first principles.

To see the problem, consider the following strategy for a one-person game-form in discrete time:

*I play ‘left’ at time zero; at every subsequent time, play the action I played last period.” 0.1)
We will attempt to play this strategy in continuous time, say on the interval [0, 1), The first question that
arises is: does this strategy have any meaning in continuous time, when there is no longer any notion of "last
period?" Possibly, we can resolve this problem by replacing “last period” with "in the immediate past." But
then there is a second problem: what "outcome™--ie., path through the game iree--do we associate to this
strategy? This outcome must specify a choice for the player at every time in {0, 1). However, at every posi- '
tive time, ¢, there have been times strictly between zero and ¢. The action the agent should choose at ¢
depends on the choices he made at these earlier times, so these choices must be determined before we can
determine his action at 7. But the same thing is true for every ¢! Thus, at every positive time, we have
insufficient information to determine what the agent should be doing. We conclude from this that the very

language of discrete time game theory ceases to be meaningful when extended to continuous time.

1 In the present paper, agents are restricted to choosc pure strategies. In subsequent papers, (Simon [213, Simon [22], Simon-
Stinchcombe [24]) we extend the model to allow for randomization.

2 Stinchcombe [25] propoeses an aliemative approach io modelling continuous-time games, using technigues from the theory of sto-
chastic processes. His model admits a very rich (but noncomparable) class of strategies and allows for incomplete information. On the
other hand, the connection between his formulation and conventional discrete-time game theory is more tengous.

3 Or a "first ime after £.° This is because neither "greater than” nor "less than™ well-order the continuum. Sce Anderson [1] for an
related discussion of this issue.

4 Anderson [1] contains a related example.
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Questions like these must be addressed before we can even begin to formulate a continuous time model.
Specifically, we must identify a class of strategies with the property that when any member of the class is
combined with any other (or several others), some outcome is uniquely identified. Moreover, there must be
some sense in which the rule that defines outcomes is an "appropriate” one. This is a nontrivial task. Even
for so simple a strategy as (0.1) above, there are a vast number of outcomes to choose from. Consider, for
example, the ocutcome: "play ‘left’ on the interval [0, ], and ‘right’ thereafter,” where ¢ is any time in the
interval [0, 1). This outcome is "compatible” with strategy (0.1}, in the strongest possible sense. At every
s € t, the player has played ‘leff in the immediate past, so that according to his strategy, he should play
‘lefr’ at 5. The outcome has him doing so. At every s > ¢, there have been times in the recent past at which
he has played ‘right’, so that according to his strategy, he should play ‘righ? at s. The outcome has him
doing so. The problem here is that there is no first s beyond ¢ at which the agent jumps from ‘left’ to ‘right’,
and therefore no point at which the strategy and outcome are incompatible.

In spite of these and related problems, we believe that the development of a continuous-time formula-
tion will repay the effort, for several reasons. First, in many actual economic situations, agents can make
decisions virtually whenever they wish. A model that restricts agents to, say, one move a day may therefore
yield misleading predictions, especially if agents stand to gain a great deal by moving just before their allot-
ted times. Second, a variable that frequently proves important in dynamic models is the length of reaction or
information lags. Economists are often particularly interested in the polar case. of negligible lags. In
discrete-time, "negligible” can only mean "the length of one period." In continuous-timé, agents can react
instantaneously, so that lags may truly be negligible. It turns out that the difference between one period lags

-------and—n&-}ags—at—a&-ean—be—dramatic:—ther&are_problems_fo:_which_we..can_ubﬁin_uniquﬁ___a_l_.l_d__izl_mitive solutions

that contrast sharply with the predictions of discrete time models. (See sections Il and V for examples.) A
third reason for studying continuous time is that in certain contexts, it is much more convenient. Economists
usually model quantities and prices as continuous variables, because these are easier to work with than
discrete ones. In particular, differential calculus techniques can be used to make marginal calculations.
These reasons may be equally valid when time is the economic variable being analyzed. (See section V for

an example.)
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Aside from the particular virtues of continuous-time, it is useful to have an allernative perspective from
which to view dynamic problems. The predictions of continuous- and discrete-time models can then be
checked against each other for robustness. Our continuous-time alternative will be all the more useful if it is
highly compatible with the traditional, discrete-time model, because then sharper comparisons can be made.
Our model has been designed with these considerations in mind. Indeed, there is a sense in which our model
and the traditional one can be viewed as special cases of the same overall structure. Accordingly, we can ask
questions such as, "Is discrete-time with a very fine grid a good proxy for continuous time?” and "Does every
equilibrium in our model have a discrete-time analog?" Some partial answers to the'se questions are provided
in section VL

The paper is organized as follows. We begin with three informal and heuristic sections. Section I
introduces the model, II illustrates it and IiI explains various conceptual issues that arise in modelling con-
tinuous time. Section IV sets out the formal model. (We cannot, of course, prove existence until randomiza-
tion is introduced.”) Section V considers two examples. In particular, we obtain a striking unigueness result

for a class of repeated games. In section VI, we study the relationship between our model and the conven-

tional discrete-time one. Proofs are gathered together in the Appendix.

1. Introduction to our continuous-time model.

There is a finite set of agents. Each agent can choose from a finite set of actions. There is a set of
times at which agents can move. In a discrete-time game, this set would be a finite subset of the unit inter-
val. In continuous-time, it is the interval [0, 1).6 Qur agents can change their actions at any point in this in-

terval__A _decision_node is a point in time, paired with a complete description of the moves that agents have

made in the past. A strategy is a function that assigns an action to each decision node. A strategy profile is
a list of strategies, one for each agent. An outcome is a complete record of the decisions made throughout

the game, that is, a path through the game tree. An outcome function is a mapping from decision nodes and

strategy profiles to outcomes. To define a continuous-time game-form, we must identify (a) a set of

5 Sec Simen [21] for an existence theorem for a simple class of games.

5 With virtually no modifications, the time interval could be changed to [0, o), We could also work with the closed unit interval,
but chose not to because the last point in the game must be treated specially.




-4 .

continuous-time outcomes, (b) a family of strategy profiles and (c) a consistent way to associate outcomes 10
decision nodes and profiles.

Unless some limitations are imposed on agents’ behavior, the program outlined above is daunting. As
we have seen, things can go wrong with even the simplest conceivable strategies. These problems become
much more severe when strategies are more complex. Accordingly, we will simplify matters by restricting
the options available to our agents. In particular, we will require that agents can make only finitely many
changes in the actions they play.7 This simultaneously restricts the set of admissible strategies and the set of
outcomes that we need to consider. It does, of course, also limit the applicability of our model. However,
there remains a large variety of problems for which our simplified model is applicable. (This discussion is
taken up in section HI).

We now introduce our outcome function. First observe that the decision nodes for each discrete-time
game are contained by the set of continuous-time decision nodes. Therefore, a continsous-time strategy
profile can be restricted to the decision nodes for a given discrete-time game, to define a strategy profile for
this game, aﬁd hence an outcome starting from each node. Thus, a continuous-time strategy can be
interpreted as a set of instructions about how to play the game on every conceivable discrete-time grid.
There is, now, a natural candidate procedure for defining outcomes: (a) fix a continuous time decision node
and strategy profile; (b) restrict the profile to an arbitrary, increasingly fine sequence of discrete-time grids
and play the restricted profiles from the given node; () define the continuous time outcome to be the limit of
the discrete-time outcomes.

For example, the procedure works nicely for example (0.1) above (p. 1). On any discrete time-grid,

this strategy generates by induction the unique outcome: "play “leftat-every grid point."—The-limit of these ———————
outcomes as the grids become finer is the uniquely defined outcome: "play ‘lefi’ at every time in [0, 1)." In
this example, therefore, the approach just described selects the only outcome that is intuitively sensible. In
general, however, the procedure may break down. For some sﬁ-ategies. the Himit of discrete time outcomes
may not exists. For others, it may exist but depend on the particular sequence of grids. Finally, for some

profiles, a unique limit may exist, but it may be "incompatible” with the original strategies in a fundamental

7 Stinchcombe [25] allows for countably many changes in action and infinite action spaces. This enables him to medel time paths
that depend smoothly on time.
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way. Accordingly, for our procedure to be coherent, we need to identify a class of strategies with the follow-
ing property: starting from any decision node, the discrete time outcomes defined by playing the restrictions
of a given profile on an arbitrary sequence of grids must converge to a unique limit that is independent of the
particular Sequence of grids and is compatible with the original strategies. Once we have identified this fami-
ly of strategies, and by implication, the universe of possible outcomes, we will have completed the
specification of our continuous-time game-form.

To define a continuous-time game, we need to add a valuation function. In all of our applications, this

function will be included in the "intuitive" specification of the problem. The natural solution concept for our
model is Selten’s [20] subgame perfection (SGP). In an SGP equilibrium, each agent’s strategy must be a
best response to other agents’ strategies, starting from every node in the game. In some applications this
equilibrium notion will be too weak and we will invoke a much stronger solution concept, involving iterated
elimination of weakly dominated strategies.s This concept uses the special properties of continuous-time to

obtain sharp predictions that simply cannot be obtained from discrete-time models.

II. A Simple Example.

In this section we study two variants of a simple preemption game.9 The first illustrates various as-
pects of our model. The second is a "negative” example in the sense that it has no pure-strategy equilibrium.
It does, however, highlight an important difference between discrete- and continuous-time.

We now describe the first variant. There are two firms, who may enter a market at some time in the in-

terval [0, 1). Earlier entry is more costly: if a firm enters at ¢, it incurs a cost of (1 - ¢)*>. Once a firm has

entered the market, it cannot leave again. So long as only one firt is active in the iNAUSEY, it earns monopo-
ly flow profits $x™ per unit time. In the first variant of the problem, we set x™ = 2. If both firms are active,

industry flow profits are $3 per unit time. The earlier entrant acquires loyal customers over time and hence

% Thic idea has 2 long history that goes back to Luce and Raiffa [15]. Moulin formalized the concept as "dominance solvabiiity”
[16]. Our concept is closely related, but not identical to Moulin's. We proceed in the following way: we first climinate weakly dom-
inated strategies from each agent's strategy set; oncc agents’ sirategy sets have becn shrunk, new domination relations appear, so that
further strategies can be climinated. And so on. Alternatively, there is a natural way io extend Myerson’s "propemess” [17] to games
such as ours {(See Simon [23]). This concept is strictly more stringent than the one we use in this paper, and thus yields unigneness also.

S They are related to a version of the game discussed in Fudenberg-Tirole {7
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maintains a larger market share once the second firm enters. Specifically, if j enters at ; and i follows at

1; 2 t;, then i receives the fraction {}% — (1, = ;)] of industry flow profits.

Entering an Industry with Loyal Customers.

We begin by analyzing the problem from an "intuitive” standpoint. While the logic presented below is
convincing, it is a nontrivial matter to formalize it within a rigorous game-theoretic model. Indeed, one of
the main goals of our research program is to provide a simple framework within which these arguments can
be made formal.

There is a unigue “infuitive” solution: both players enter at time * = Va. Though a monopolist would

enter at time zero (since m™ = 2), neither duopolist will attempt preemptively to monopolize the market, be-
cause it anticipates that the other will follow suit immediately if it enters. We then show how the problem
can be formulated as a continuous-time game. The game has multiple SGP equilibria. However, the unigue
equilibrium that satisfies our stronger solution criterion (see fn. 8) implements the intuitive solution. By con-
trast, when the problem is formulated as a discrete-time game, there is a unique equilibrium, but it is quite
different from the intuitive one. Finally, we use the example to illustrate the relationship between continu-
ous- and discrete-time games.
First observe that if j enters the market at £; and i waits for a while before entering, his market share
will fall at a faster rate than his entry cost declines. Therefore, i should respond by entering “immediate-
ly."'0 Precisely, let T1;(t;, ¢;) denote i’s payoff when he and j enter at, respectively, # and ¢ and let 7;(¢;)

denote the maximizer of IL(-, ¢;) on [#;, 1). 1t is easy to check that for each t;, 7; (1)) = t_,-.”

Now-consider—an—agent’s_problem_before_either _firm_has_entered the market. Assume that j never

enters first, but follows suit immediately if i enters. Firm i’s problem is to choose f, to maximize

I;(4, 7;(z;)) on [0, 1). This function is strictly concave and is maximized when f; = Y. By symmetry, each

10 A priori, the meaning of "immediately” is unclear in continucus time. it will have a precise meaning once we have specified our
model, but for the moment, we will remain vague.

]

: 1
N We have: It 1) = j,_ Odr + L. 3% — (e = 1kt — (1= 1) = PAl+ - )1 -8) = (1 - t)?. For every 1,
(e 1) ds strictly decreasing on [f;,-, 1) and therefore attains a constrained maximum at 7,(8;} = ;. Morcover, TI{t;, ;) is strictly posi-

tive. This verifics that 7;(1;} = 2.
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agent’s optimal action is to wait until time % and then enter. This, then, is our "intuitive" solation.

We now explain how to formulate this problem as a continuous time game. The time interval is {0, I).
Each agent has two actions, ‘enter’ and ‘wait’. Once an agent has entered the market, he cannot leave again.
A decision node in this game is a point in time, paired with a complete description of past activity in the
game. In this context, past activity can be summarized by a list of the times-—-if any--that agents have entered
the market in the past. A strategy is a function mapping each of these nodes 10 either ‘wait’ or ‘enter’.

The "intuitive" outcome is 2 SGP equilibrium outcome for this game, but not the unique one. For
every t < V4, there is a symmetric SGP strategy profile --{IL.1(t)} below--that implements the outcome in
which both players enter simultaneously at . For each i, the strategy is:

"play ‘wait’ at time zerq; at every time 0 < s < ¢, play ‘wait’ if both players have always [IL1(1)]

played ‘wait’ in the past, otherwise play ‘enter’; play ‘enter’ at every s 2 t, regardless of

the history."”
We now show that these strategies indeed implement the specified outcome and form a subgame perfect
equilibrium for our model. Fix r < V4. If the strategies [IL.1(t)] are played on an arbitrary discrete-time grid,
the resulting outcome 1s that both players jump simuitaneously at the first grid-point weakly beyond 12 In
the Limit, they nmove exactly at . [Each player’s payoff from this outcome is
IO,(f, r,(th) = CA+t - 1)1 -1t). To see that [IL1(t)] is an equilibrium, we need to check that, starting
from each decision node in the game, each agent’s action is a best response (o the other’s. The only nodes
that are nontrivial to check are those of the form (¢, nobody has entered). If s 21, then j’s strategy has him

entering at s, regardless of i’s action. Since r,{t) = 5, entering simultaneously is as good as any response for

: ----F.—------Now—s-uppese--th-ap-&.<...t...and..mat..i_deviates_hy_emex:ing_at this time instead of waiting. When i’s deviant

strategy is combined with j’s and played on any discrete-time grid, the resulting outcome will be: i enters at
the first grid-point weakly beyond s, and j follows suit at the next. In the limit, i’s termination at s will
result in an instantaneous response by j, i.e., the two agents will move "consecutively, but at the same in-

stant of time." Since, TL (-, 7,(?)) is strictly concave, i’s defection at s < t < ¥ will result in a lower payoff

12 We will use the expression "weakly” beyond f to mean greater than or equal to . Similarly, "weakly beforc™ ; means less than or
equal to 1.
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than had he waited until 7. This establishes that #'s strategy is indeed optimal, given j’s (credible) strategy
of immediate response.

After iterated elimination of weakly dominated strategies (see fn. §), the only outcome that survives is
our "intuitive” solution: both- players move at ¥4, The elimination process proceeds as follows. Any strategy
that has | waiting for an interval before entering, once j has already entered, is weakly dominated by the
strategy that is identical to it, except that i follows suit immediately. After one round of elimination, the
strategy [11.1(%4)] weakly dominates all other "instantaneous response” strategies. The proof of this parallels
our earlier argument (pp. 6-7) that ¢ = % maximizes IL, (- rj(-)}.13 .

Summarizing, our modgl yields the strong and intuitive prediction that each agent will be deterred from
preempting by the other’s credible declaration of intent to follow suit immediately. By contrast, in every
discrete-time version of this game, the unique SGP outcome is that each player enters at time zero and earns
the suboptimal payoff IL;(0, 7;{0)). To see this, observe that there can be no equilibrium in which termina-
tion occurs at any positive time ¢, because either player could gain the slight advantage of one-period’s
monopoly profits--as well as an increased market share--by preempting one period before 1

This result is counterintuitive. When reaction lags are very small, the downside potential of the stra-
tegy “follow suit as quickly as possible if j enters, otherwise enter at ¥a" is virtually zero, while its upside
potential can be as large as IT(%, ¥4) — IL(0, 0). Informally, therefore, this strategy "ought to" dominate
early entry. This intuition cannot be formalized in a discrete-time model: when it comes to the elimination of
"inferior” strategies, "virtually zero® is not small enough. We cannot eliminate a strategy on the grounds that

it is - "nearly weakly dominated.”" On the other hand, when lags are literally zero, the downside risk associat-

ed with "wait and see” is exactly zero. Weak dominance can then be invoked to reduce the set of equilibria
to a singleton set. The example thus illustrates our earlier observation (pp. 2-3) that from a modelling stand-

point, there is a significant difference between very short reaction lags and no lags at all.

13 More preciscly, compare [IL1(¥%)] against the instantaneous response that has ¢ entering unilaterally at some 1 < V4, I j enters
weakly before ¢, then i's response is the zame in either case: enter immediately, If j does nof enter unilaterally until after ¢, then if §
plays [15.1(1%)], both players will enter strictly later than they wonld have, if i had preempted.

14 The above argument is entirely familiar. It closely paraliels the argument that "always defect” is the unique equilibrium in the
finitely repeated Prisoners® Dilemma.
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The example also illustrates one of our results relating continuous- to discrete-time equilibria. This
result states that under weak conditions, any continuons-time equilibrium is close to some approximate
equilibrium for any nearby discrete-time game. In this example, these discrete-time equilibria are just the
restrictions of the continuous-time strategies {IL1(1)] to the appropriate grids. To see this, observe that if j
plays [I1.1()] on any grid, then j can gain only a one-period advantage by entering before ¢, because i will
follow at the very next grid point. For any &, we can choose a grid sufficiently fine that the gain to deviating

will not exceed £.

Entering an Industry with Fickle Customers.
This second variant of our game differs from the first in two respects. First, monopoly profits ™ are
smaller, lying in the interval (>4, 2). Second, duopolists share the market equally, regardless of their relative

entry times. This second difference radically alters the nature of the problem. Specifically, i’s payoff if he

enters at 7, given that j has entered at #, is II{(y, 1;) = *A(1 — ) = (1 - )% If t; < Y4, i will choose to
wait until ¥ and then enter. Now consider the problem facing i at the beginning of the game. Since
n™ € (34, 2), the optimal time for a monopolist to enter is 1™ =1- 141" e (0, ¥4). Ideally, plaver i wouldA
also choose to enter at this time, and enjoy monopoly profits until j enters at %. When there are two poten-
tial entrants, however, monopoly rents will be dissipated by preemptive entry. The only possible equilibrium
outcome in this model (modulo relabelling of agents) is that one of the players enters at the "preemption
time" 7 € (0, :™), where P is defined as follows. If player i would strictly prefer to enter the market at

time.zero_and monopolize it until V4, rather than enter as a duopolist at ¥, then 7 = 0. Otherwise, ¢? is the

unique time at which i is indifferent between being the first entrant at t? and the second at Y.
On any discrete-time grid, the following pair of "chattering” strategies form an equilibrium that imple-

ments this outcome:

Player #1: "play ‘wait’ before ¢¥; at the k’th grid point in the interval (t7, 1), play ‘enter’ if (11.2-1]
k is odd and both players have always played ‘wait’ in the past, otherwise play
‘enter’; at every grid point after %, play ‘enter’ regardiess of the history."

Player #2's strategy, [11.2-2], is identical to #1’s, except that odd is replaced by even. These strategies imple-

ment the outcome: #1 enters at the first grid point after t#, while #2 enters at V2. To see that these strategies
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form an equilibrium, observe that if +* = 0, then #2 cannot preempt; if ¢7 > 0, then by definition of r?, #2
does not want to preempt.
These “chattering” or "alternating” strategies have no analogs in continnous time. Indeed, the

15

continuous-time version of the game has no pure strategy equilibrium.”” The reason is that the chattering

strategies depend on the fact that discrete-time is well-ordered, i.e., that there is a first, second, third , ...,
grid point after ¢?. In the equilibrium just described, player #1 is willing to enter if he reaches an odd grid
point in the interval (+7, ™) only because if he didn’t enter, then #2 would enter at the ﬁexr grid-point. Since
there is no notion of "next" in continuous-time, it is not possible to formulate continuous-time counterparts of
[IL2]. The strategies thus depend intrinsically on the special properties of discrete time. One cannot, there-
fore, have confidence in the predictions of a model that involves strategies like [I1.2], unless one believes that
"in actuality,” the notion of a "next time" is really meaningful. If not, these "chattering” equilibria must be

viewed as artifacts of the discrete-time formulation.

HI. Specifying a continuous-time game form: the conceptual issues.

This section contains examples illustrating various conceptual problems that we confront in this paper.
The first subsection focuses on issues that arise because induction cannot be applied in continuous time. The
second is concerned with problems specific to our particular view of continuous time as "discrete-time, but
with an infinitely fine grid." In each of our examples, each agent has two actions, ‘left’ (if) and ‘right’ (rt).
We emphasize at the outset that the issues raised in this section are more primitive than those discussed in

section IL. The difficulties that concern us at the moment are at the level of defining a game-form, rather than

a game. That is, we discuss sirategies and outcomes, but make no mention of payoffs or equilibria.

Defining a game-form without induction on the set of time nodes.
We began with the observation that since induction cannot be applied in continuous time, there is no

obvious way to specify an outcome function. Our example (0.1) on (p. 1) showed that there may be a con-

15 QOnce behavior strategies are introduced into the model, there is 2 unique equilibrium (modulo relabelling of agents). Sec Simon
[21] and Simon-Stinchcombe [24].
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tinuum of outcomes that are all "compatible” with a given strategy. We now show that for some strategies,
there may be no conceivable outcome that is sensible. More precisely, we will say that an outcome is
consistent with-a given strategy if except at a finite set of time points, agents’ strategies are "compatible”
with the o-utcome, i.e., they are acually playing what their strategies specify they should play. (A stronger
definition of consistency would require agreement between strategies and the outcome at every point in time,
We show below that this more stringent notion is too strong a requirement.) For the strategy profile that fol-

lows, there is no consistent cutcome.

The example is called the Odd Couple proﬁle.16 There are two players. The first attempis to "match”
the second, while the second attempts to "mismatch” the first.

Player #1: "play ‘left’ at time zero; at every positive time 1, play ‘left’, if player #2 was play- (l.1-1}
ing ‘left’ just before ¢; otherwise, play ‘right’.” :

Player #2: "play ‘leff’ at time zero; at every positive time, play ‘lefr', if player #1 has been (TI1.1-2)

playing ‘right' just before ¢; otherwise, play ‘right’.

In discrete-time, "just before 7" can only mean "at the last grid point before £." When these strategies

are played on any discrete-time grid, the resulting outcome is the finite-length cycle that begins with
Gr, Ifre, rert, t If, P, ..., ). If we could apply induction in continuous time--i.e., identify a "last

continuous-time moment before ¢"—then the uniquely identified continuous-time outcome would be the

infinite-length analog of this cycle, with the cycles occuring infinitely fast. Since there is no such last mo-
ment, the Odd Couple strategies make sense only if they are fundamentally reinterpreted. For example, in
continuous time, "just before " might mean "at some peint in every open interval- (t — 8, 1).” However,

when the Odd couple profile is reinterpreted in this way, there is no conceivable outcome that is consistent

17 . - . -
with it.” We conclude from this that agé“ﬁfs—ixraﬁjrconﬁnuousaume--modelr-m-ust-be-prohxbxte&ffem--ehoes-mg—— ----------------- .

5 The above asscrtion remains true if the notion of consistency is weakened by replacing "finite” with "nowhere dense.”
16 This example is related to one discussed by Krishna [13]. It was brought to our attention by Karl lorio.

17 Suppese there exists an outcome that is consistent with the Odd Couple profile. Assume first that this outcome has player i play-
ing a single action throughout some interval, apart from a finite number of exceptions (henceforth af.c.). Since the outcome is consistent
with j’s strategy, j must also be playing 2 single action on the interval (af.e). Since #1 "matches” and #2 "mismaiches,” however, at
least one of the players’ actions on this interval must be incompatible (a.f.c.) with his strategy. It follows, therefore, that each player
mast play both ‘lefi’ and ‘right’ infinitely often on every open interval in {0, 1). In particular, for every positive s and &, player #1 must
play ‘right’ at some point in the interval (5 - &, 5). But in this case, #2°s strategy profile instructs him to play ‘left’ at every point in
{0, 1). Since the outcome is consistent with #2's strategy, he must indeed playing ‘left’ throughout (af.e.). But we have just established
that this cannot happen. This contradiction completes the proof.
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strategies of this kind.

Our second example illustrates a rather different kind of problem. Quite apart from whether or not an
outcome can bg uniquely identiﬁed, there is the question of how it should be represented as a mathematical
object. In particular, we need a way to represent the limit of discrete-time outcomes in which agents move at
consecutive grid po:'mts.18 Without induction, there is no notion of "consecutive." Therefore, we must think
of the limit chain of consecutive moves as occuring at a single instant of time. On the other hand, it is im-
portant that we keep track of the order in which the moves occur. This means that we need a way to
represent the apparently paradoxical idea of moves that occur consecutively but at the same moment in time.

Our third example, called "Follow the Leader,” illustrates the point. There are three players: #1 leads,
#2 follows #1 and #3 follows #2. The strategies for players #1 and #{ = 2, 3 are:

Player #1: "At every time ¢ < ', play ‘left’; at every ¢ beyond !4, play ‘right’." (I11.2-1)

Player #i: "play ‘left’ at time zero; at every positive time, play ‘left’ if #i~1 has played ‘left’ (Oi.2-i)
at every point in the past; otherwise, play ‘righr’.”

In discrete-time, the outcome generated by this profile is: #1 jumps at the first grid point weakly beyond %;
#2 follows suit at the second, and then #3 at the third. In the limit, the time intervals between these moves
collapse and we must find a mathematical form to represent this limit. It cannot be represented as a function
on [0, 1) without some loss of information, Any such function would have to have exactly one discontinuity
point, i.e., at t = ¥4 However, a single discontinuity point cannot *carry" more than two pieces of "order"
information, one fewer than we need. Thus, any functional representation must necessarily confound at least
19.20,

some of the information that is available in the passage to the limit.

We resolve this issue is by representing limit histories as vectors of pairs. Each pair corresponds to a

distinct jump that occurs in the passage to the limit. For example, the limit outcome for "Follow the Leader”
is represented as the "4-length" vector of pairs: [0, If if if), (4, rt If i), C4, re vt If), (4, rtrert)). The

first pair denotes the actions that agents take at the start of the game. The others list their jumps and jump

12 We saw a simple example of this in section I If onc agent entered the industry, the other would follow suit "immediately.” At
that point, we were being sufficiently vague that the issuc could be avoided.

18 »Confound” reans "o mix up or mingte so that the slements become difficult ta distinguish or impossible to separate.” (Q.E.D.)

0 If the function were right-continuous at ', then the order in which the agents move would be suppressed completely. If #1 moves
left-continuously, and the others right continuously, then the fact that #2 moves before #3 would be suppressed. Etc.
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destinations in the comect order. We interpret this outcome as: ¢ach f)hyer plays ‘left' on the interval {0, '4);
at time A, they consecuﬁvély switch from ‘lef to ‘right’; each of them then plays ‘right’ on (%4, 1). Note
that this outcome is "consistent” with the profile (II1.2) above, in the sense defined on pp. 10-11. At every
¢ # 1, the outcome has agents are playing what their strategies specify they should play. At = 14, agents
are not playing any single action, so the notion of "compatibility” defined above (pp. 10-11) cannot be ap-

plied.

Continuous time outcomes as the limit of discrete time outcomes.

In this subsection, we focus on problems that are specific to the particular modelling approach outlined
in section I. We need to identify a class of strategies that yield well-defined, consistent outcomes, in the
sense defined on pp. 10-11. To accomplish this, we will impose three restrictions on strategies. We will in-
troduce these assumptions informally, and illustrate what goes wrong when they are violated.

The first class of strategies that must be excluded are those in which agents move unboundedly often.
The Odd Couple profile (Example (I11.1-2)) illustrates the reason. We observed that no conceivable continu-
ous time outcome can sensibly be associated with this profile. Not surprisingly, therefore, our specific propo-
sal for defining outcomes breaks down in this instance: the cyclic outcomes generated by the profiles in

1

discrete time have no limit in the topology we impose on outcomes.>! To exclude strategies of this kind, we

will impose the assumption (F1 below) that for every strategy an agent chooses, there is a uniform upper
bound on the number of jumps that the agent makes. '

From an abstract mathematical standpoint, F1 is a seriously restrictive assumption. Moreover, we be-

leve. it is--and will remain--the_most_serious practical limitation of our model. For example, we see no pros-

pect of ever being able to formulate the idea of an infinitely repeated game on the unit interval. 22 There are,
however, many applications in which our finiteness condition is satisfied automatically. For example, are

games in which there is a given, ordered progression of moves that players can make. In a duel, for instance,

2! Indeed, there is no Hausdorff topology for which they converge.

22 This is because we insist on assigning outcomes to strategies and then vajuations to cutcomes. If one is willing to go directly
from strategies to payoffs without specifying what actually happens when the strategies are played, then the frequency with which agents
move need not be a problem.
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agents might have a finite number of bullets to fire. Once these bullets have been ﬁe¢ the agent has no
more moves left to make. In other models, agents may incur costs every time they change their actions. If
agents’ financial resources are bounded in these models, then the constraint will again be satisfied.

Gur secoﬁd regularity condition on strategies is that they should not fluctuate too wildly with respect to
time. The following example illustrates why this restriction is needed. There is one agent, whose strategy is:

"play ‘left’ at time zero; if ¢ is a rational number larger than 1643, and ‘left’ has always been (IIL.3)
- played in the past, play ‘right’; otherwise, play ‘left’.”

When (I11.3) is restricted to a discrete-time grid, the outcome that results will be very sensitive to the particu-
lar grid. If the grid contains no rational numbers beyond 542, the agent will play ‘lefr’ throughout the game.
Otherwise, he will jump at the first rational grid point beyond 42 (which could be anywhere between Va2
and 1). To eliminate strategies like this, we will require (as F2 below) that strategies depend piecewise con-
itnuously on time.

Even piecewise continuous strategies may be very sensitive to grid structure. Consider for example:

"play ‘lefr at time zero; if t = 1442, and ‘left’ has always been played in the past, play (Ill.4)
‘right"; otherwise, play ‘left’.

If (I11.4) were restricted to a discrete-time grid without further modification, the resulting outcome wouid
clearly depend on whether or not 1647 were contained in the grid. It is easy, however, to neutralize this sen-
sitivity by "moulding” each strategy profile to each grid, before "playing” it. For example, before playing
(I11.4) on a grid, we will reinterpret it to mean: "play ‘right’ at the first grid point bgyond 152" The
modified strategy will be called a "graph preserving restriction.” Clearly, the cutcomes generated by the

reinterpreted strategies will have the well-defined timit: [0, If), (Vaz, D).

We now explain our most severe restriction on strategies. In general, the jump-times of the discrete-
time histories generated by a given strategy will differ, but converge "from above," as the grids become finer,
(Example (II1.4) above illustrates this.) To ensure the existence of a unique, consistent limit history, we
must guarantee that agents’ actions later in the game are not 100 sensitive to the precise times at which ear-
lier jumps occured. Now, our model is constructed so that the only possible sequences of jump-times that
can arise are nonincreasing ones. Therefore we will impose the restriction that agents’ strategies be continu-

ous with respect to sequences of histories whose jump-times converge from above (i.e., from "the nght").
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The precise form of continuity we need turns out 0 be very strong indeed. Roughly, we require that there
exists some some countable partition of the universe of possible "pasts” into sets that are "closed from
above," such that the strategy does not distinguish between any two "pasts” that are members of the same set
in the partition.

This is a severely restrictive assumption. Fortunately, it plays a less fundamental role in our model
than the other two assumptions. A perfectly sensible game form can be defined for the class of strategies that
satisfy only F1 and F2. In particular, we can construct an outcome function for this set of strategies that is
congistent in the sense above (pp. 10-11). If F3 is violated, however, our interpretation of continuous-time
outcomes as limits of discrete-time outcomes, will no longer be valid. Strategies may generate discrete-time
outcomes that have no limits. Altemnatively, a unique limit may exist, but differ from the {consistent) out-
come identified by the constructed outcome function. A relate_d point is that F3 plays an essential role in the
proof of our theorems relating continuous- and discrete-time equilibria.

There is, nonetheless a sense in which F3 is dispensable. Subgame perfect equilibrium profiles that
satisfy F1 and F2 can be arbitrarily closely approximated by approximate equilibrium profiles that satisfy
F1-F3. This means that if F3 proves too restrictive, we can relax it and still provide a satisfactory interpreta-
tion of the model] and its predictions.23

Example (IIL.5) below iliustrate the role of the condition. Player #1°s strategy is independent of the
past, while #2’s depends linearly on histories. The strategies are thus extremely well behaved, and ought to

be allowable. The example thus illustrates why such a stringent condition is needed and the importance of

being able to relax it in the way described above.

Player #1: "Play ‘left’ at all times before 24, otherwise play ‘right’." (I1L.5-1)
Player #2: "play ‘left’ before ', play ‘right between '/4 and twice the last time some agent (IIL5-2)
jumped; beyond this point, jump back to “left’, provided that player #1 has always

played ‘left’ in the past; otherwise, continue to play ‘right’."
When these strategies are played on a discrete-time grid, the outcome depends on whether '4 is contained in

the grid. To see this, play the profile on a sequence of grids that contain '/4. In the discrete-time outcomes,

player #2 makes his first jump at exactly '4. At the first grid point weakly beyond 4, #2 observes that #1

23 See Simon-Stinchcombe [24].
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has always played ‘left’ in the past, and so jumps back again to “left’. At the same instant, player #1 jumps
to ‘righr’. The limit outcome, therefore, is [(0, if If), (A, If rt}, (2/§, rt If Y. Now assume that the »’th grid
in the sequence contains the points '4A+ '/ and *4, but not '4. When the profile is plﬁyed on the n’th grid,
player #2's first jump will occur at '4 + '4 and #1 will jump at *4. Player #2 does not consider jumping
again until 24 + 24 By this time, however, player #1 has already jumped and is no longer playing ‘left’.
According to #2's strategy, therefore, he should continue to play ‘left’. For this sequence of grids, then, the

limit outcome is [(0, If &), CA, If r1), CA, rt )],

IV. The Formal Model.
Our game is played on the interval 0, 1) (see fn. 6). Let / denote a finite set of agents, with generic

element i. At any point in time, each agent can choose from a finite set of actions, A, which is called the

action set for player i. Let A = HA,- denote the set of possible action profiles, with generic element
i€

a =A{a;)iq1 € A% A profile 2 will frequently be written as (a;, a_;), where a_; = (g;)jxi-

Histories.

A history of the game is a string of pairs, representing the "jumps" that agents have made during the
play of the game. For an explanation and interpretation of the formalism below, the reader is referred back
to our earlier discussion on pp. 12-13. Each "jump” is denoted by a pair (¢, ) € [0, 13 x A, where ‘¢’ is

called a jump-time and ‘g’ is called a jump-destination. A “k-length-history,” &, is a string of £ jumps, ie.,

h= [(t‘(h}, al(h)), ..., (¢<(h), a“(b), ..., (t*(h), a"(h))], where (t1(h), a'(k)) is the initial “"jump,”

necessarily taken at the beginning of th‘e"g‘:m're:‘arrd—(t"‘('h-),—-a"(-k))-is-the-ﬂte—r’tirjump:——%—let—le(h)—de-nate
the length of the history # but will usually denote the last (i.e,. the k(h)’th) jump of a history by
(+'5*(h), a"*(h)). We will also represent a history 4 as a pair of vectors (t(h), a(h)), where a(h) € AH®)

is called the action vector of k and t(h) € [0, 1)*™ the vector of jump times of h. We remind the reader

# In practice, the actions available 1o an agent at any point in time may depend on the past evolution of the system. For example, in
certain simple games, it is natural to assume that jumps cannot be reversed. For instance, in a doel, there is no obvious way to reverse
the action “fire a bullet." We will enforce such restrictions within our model by an appropriate choice of payoff function: an inadmissi-
ble sequence of jumps will result in a prohibitively low payoff.
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that a novel feature of histories in our model is that agents can jump consecutively, but at the "same" instant
in time. For this reason, t(#) need not be strictly increasing. Formally, /# must satisfy:
)i = G

(ii) the vector of jump times is nonincreasing, ie. for 1 € x < k(h), t5(h) € t**(h);

(iii) adjacent actions are distinct, i.e. for 1 £ x < k(hk), a**1(h) # a*(h).
Let H* denote the set of k-length histories. In addition to the positive-length histories, there will also be an
artificial "zero-length” history, denoted by the null symbol "@." Let H =y H ¥ denote the universe of
E=0

finite length histories. Since we are restricting agents to move only finitely often, H is exactly the mathemat-
ical space we need in order to represent ouiComes.

We now define a metric, 4%, on H. Two histories will be at distance one from each other if their
lengths are different or if they have different action vectors. Otherwise, the distance between them will be
the sum of the absolute values of the differences between the corresponding jump times of the two histories,

k(hy
t 1e(h) — t*(WY if k(h) = k(K ) and a(h) = a(h’)

x=l

. H oo
ie., d%(h, 1) = |4 otherwise

In this metric, a sequence

of histories (k") converges to 4 if and only if, for » sufficiently large, 2" is an k(h)-length history whose ac-
tion vector agrees with A’s and the vectors of jump-times of the A™s, i.e., the t(h™)'s, converge to t(k), in
the usual sense of convergence on RY"_ Thus, the set of admissible histories is the disjoint union of a col-

lection of finite dimensional subsets of Euclidean space. Note that in this metric, a history in which i moves

just before j is far away from the one that is identical except that j moves before i. Moreover, both these
histories are far away from the one in which i and j move simultaneously.

We will denote by &, the x-length truncation of h: h;, is the history obtained from A by truncating

it after the first ¥ jumps. For example, if & = [(0, if If), (4, rt lf), (%, rt rt}], then hy, is the 1-length histo-

1y (0, If i), and hyy is (O, If If), (4, rt D).
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Decision Nodes.

A decision node is a point in time, paired with a complete description of past activity in the system.
Just as in discrgte-time, the set of decision nodes is the domain on which a strategy in our model is defined.
Because our class of admissible histories is small, the set of possible decision nodes is also small. This is
important, because it bounds the complexity of the model. Pure strategies are functions with a simple domain
and finite range and are therefore relatively easy to deal with.

There is a distingnished node, denoted by' 0, @), that represents the start of the game. A

regular decision node is a pair (f, 4), where 7 is a point in time, and & is a positive-length history whose

last jump-time is no greater than ¢. For example, in a two person game, the regular decision node

(t, [(O, If If), (4, rt rt)]) , is interpreted as follows, for every 7 2 : the present time is t; agents chose
‘left’ at the beginning of the game, and simultaneously jumped to ‘right’ at ‘4.

Observe that we allow decision nodes of the form (7, k), where ¢ coincides with the last jump-time of
k..In such cases, 7 is interpreted as the first available opportunity after the last jump in & occured. On
every discrete-time grid, this first opportunity is well-defined. Singe we view continuous-time as "discrete-
time, but with an infinitely fine grid,” it is natural--and extremely convenient--to allow for a corresponding
"first" moment in our continuous time model.

Let DN denote the set of all decision nodes, ie., DN = J{(4, )t € [ ='(h), 13} (U {0, D)}
heH

We denote the generic element of DN by (z, k). We emphasize that DN is not the cartesian product of [0, 1)

and H. Whenever we refer to (¢, i) € DN, we are implicitly asserting that either (t, k) = (0, &) or that ¢

weakly exceeds the last jump-time of A.

Discrete-time games.
We now explain how to represent a discrete-time game in our framework. For each discrete subset, R,

of T, we will say that a history in H is R -admissible if its jump-times are stricrly increasing and contained in

25

R. Let HR denote the set of such histories, ie.,

25 There is, clearly, no sensible way to interpret in discrete time a history in which consecutive jumps that occur at the same instant.
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HR = {h € H: for all k < k(h), t*(k) € R and t*(h) < t**!(R)}. Now let DNR  denote the set of
R -admissible decision nodes, i.e., points in R, paired with R-admissible histories whose last jump times oc-
cur swictly before r. That is, DN® = {(r, k)€ DN:re R, h € HR and ™' (h) < r} U {0, D)). A

R -admissible strategy is any function from DN® 10 A;.

Profiles of discrete-time strategies uniquely define outcomes in the usual way. Specifically, fix a
discrete-time grid R, a strategy g and a regular decision node (¢, £) for the game-form on R The profile
g defines by induction a unique history from (£, h)--call it k—in exactly the usual way. The first k(&) jumps
of & are the same as those of k. If agents play a'*'(h) from ¢ until the end of the game, then the
specification of & is complete. Otherwise, (15 EX(EY, g*EX(IY) is defined as follows: t¥EX(R ) is the first
grid-point after ¢ at which agents choose some action profile that differs from a®'(h). Next, set a*®¥(h)
equal to the actions chosen by agents at RO e, a*@(R) = Ft*ER(R), k) Now inductively define
the remaining jumps of h in the comesponding way. It should be clear that this formulation of 2
discrete-time game-form is exactly to the conventional one (see, for example Fudenberg-Levine [4]) except

that our representation of histories is terser than the usual one: we record only the jumps that agents make,’

rather than listing the actions they choose at every discrete-time node.

Continuous-time pure strategies.
We now state precisely the three assumptions discussed in the preceding section. The formal descrip-
tion will be rather terse. The reader is urged to refer back to the corresponding heuristic discussion in section

M1 at_each point.

Assumption Fi1: uniformly bounded number of jumps (cf. pp. 13-14).

This condition states that for each strategy, there exists some upper bound n such that if i has jumped
more than n times in the past, he never jumps again. Unless this condition is carefully stated, it will be
hopelessly restﬁctive. The problem is that each strategy must instruct the agent how to play at every possible

decision node, including ones that would never be reached had the agent been playing this strategy in the

2% If (¢, i) = {0, @), modify the procedure below in the obvious way.
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past. In particular, there will be "off the equilibrium path” nodes at which the agent has made jumps that
were not specified by his strategy. For example, consider the constant strategy "always play ‘left’." For any
given n, there are “off the equilibrium path” nodes at which the agent has aiready jumped more than n times
and has ended up playing, say, ‘right’. At such nodes, the constant strategy instructs the agent to jump once
more. Thus, a restriction that imposed an unqualified upper bound on the number of jumps that an agent can
make would exclude even constant strategies!

To avoid excluding such strategies, we will require that our upper bound apply only in situations where

i’s last jump could conceivably have occured, had i been playing f; in the past. To formalize this idea, we
let k(h) denote the largest x at which / jumps, ie., such that af(h)# a¥~'(h). For example, if
R = [(0, If If), (4, rtIf), (4, rt rt)], then ky(h) = 2 and ky(h) = 3. We now say that a decision node (1, h)

is "compatible with f;" if there exists some time s either at or immediately after +%(h) such that at the node

(5, Aipcnr1), 1's strategy actually calls for the jump to af‘(h). In symbols, (¢, k) is compatible with f; if for
(k) p

all 3, there exiéts s € {tk"(")(h), t%®)h) + 8) such that fi(s, h, E(hy-1) = af"“')(h). (For example, suppose
that £, is the constant strategy "always play ‘left’," and 7 is defined as above. For s 2 14, the node (s, 2) is
incompatible with f; because for every s € ['4, 1), fi(s, Bi) = If.) Assumption Fl requires that there is
some upper bound on jumps that applies to all decision nodes that are compatible with f;. Precisely, a stra-
tegy f; satisfies F1 if

there exisis n € N such that for all (¢, 2) € DN, if () (¢, h) is compatible with f; and

(b) the_number_of x’s such that_aX*'(k) = aX(h) exceeds n, then f;(¢, h) = al®X(h).

The order of quantifiers is important. There are strategies with arbitrarily large upper bounds, but some uni-

form upper bound must exist for each strategy.

Assumption F2: piecewise continuity with respect to time (cf. p. 14).

Our next condition states that for each history &, the function f;(-, k), must be piecewise continuous

on that interval on which it is defined, i.e., on [/*'(k), 1). That is, we require that f,(-, h) be discontinuous

on at most a finite set of points. Note that this and the previous assumptions are unrelated. F1 concerns the
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number of jumps an agent has made in the past, while the present assumption restricts the way strategies can

vary with time in the future.

Assumption F3: strong right fonzinuity with respect to histories (cf. pp. 14-16).

Our final condition restricts the way agents can condition their actions on the past. The requirement is
that strategies be insensitive to slight differences in the jump times of histories, provided these times are con-
verging "from above.” More preciéely, the condition is: for every &, there exists a positive & such that if #’
is within & of k in the metric d¥ and if all of the jump times of 4" weakly exceed the corresponding jump
times of &, then for every s> t/(k), the nodes (s, h) and (s, b'), are treated in exactly the same way.
Also, (+/#7(h), k) and (¢+"*"(K'), i) are treated identically. In symbols, we say that a strategy f; is

strongly right continuous w.r.t. & if for all k € H, there exists & >0 such that if 4%(K', k)< 8 and

K'Y 2 t(R), then Fi(#'%(h), k) = Fi(t'(K'), K') and, for alt 5 > ¢t""(K'), fi(s, h) = fi(s, I'). A simple
but useful class of strategies that satisfy F3 are "jump-time-independent” strategies. Strategies of this kind

depend on histories only through their action vectors. That is, f; is jump-time-independent if f;(-, h)

depends on a(h), but not on t(h). A strategy will be called admissible if it satisfies conditions F1-F3. A

profile of such strategies will be called an admissible strategy profile.

Continuous-time outcomes as the limits of discrete-time outcomes,
We first show how a profile of strategies generates a well-defined discrete-time cutcome when it is res-
tricted to an arbitrary discrete-time grid. As we explained on p. 14, before "playing” a profile f on a given

grid, we first "mould” it to take account of the particular structure of the grid. The "moulded” strategy is

called the "graph preserving restriction” of f and defines by induction a history in H. We then now state
precisely the relationship between our continuous-time outcome function and the discrete-time outcome func-

tions. For any strategy profile f and decision node (¢, k), there exists a unique history n with the following

property: for any sequence of increasingly fine grids, (R™), the sequence of outcomes generated by playing

27 This and the following subsection involve considerable technical detail and some additional notation, but, essentially, merely pgen-
eralize the procedure we have been applying intuitively all along. A reader who has strong intuition but is impatient with detail may
wish to skip to expression (IV.1) and Theorem I below.
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the graph preserving restrictions of f from (z, k) converges to 7.

We now explain how a strategy profile f is "moulded” to a grid R.®® First, set F1r0, @) = (0, D).
Now fix a positive-length history k. Recall that f(, k) is a piecewise function defined on the interval
[t h), 1), Sﬁm the range of f is finite, the function consists of a finite number of constant segments.
The "moulded" function, £ z{~ %), will be defined on the finite set (™' (h), 1) ~ R. If R is sufficiently fine,
the graph of fz(+ k) will be very similar to that of f{(-, &), except that the beginning of each constant seg-
ment of f(-, k) will be shifted slightly to the right. We will now be more precise. For each point ¢ in [0, 1),
let |#]® ( [r]® ) denote its immediate strict predecessor (strict successor) in R. For each grid point r strictly
exceeding the successor of ¢“(k) in R, define f(r, k) as follows: If the interval ({r}®, r) contains one or
more discontinuity points of f{-, k), then set f,z(r, h) equal to the value of f at the largest such po:)int.29
Otherwise, set f z(r» k) = f(Lr}%, k). Now define f 5 at ([+"*'(1)]%, k) in exactly the same way, except
that the relevant interval is (+"(h), [t"*'(k)]®) rather than of ([r|%, r). Note that if R has few grid points
relative to the number of discontinuity points of f(-, ), then fz(, k) may bear little relation to f(-, h). For
any' given h, however, we can choose a grid R sufficiently fine that the graphs of fz(~ k) and f(-, h) will

be very similar.>® For this reason, we call £, the graph preserving restriction of f to R .

The following example illustrates the varions aspects of our moulding procedure (see figure I). As usu-

al, suppose there are two players, and each can choose between ‘lefe’ and ‘right’. Fix the one-length history

rtlf ift=0

. _ - fr ift="hort=1 . _
h = (0, If If) and define f(-, k) as follows: f(t, h) = ¥ ifre @ HuChED Figure 1 ittus-

rert ift e (A A

\

wates the graph preserving restrictions of this profile to two grids, R3=1{0,4,..., *4} and

R = {0, "4, ..., “/o}. The restrictions are:

Z® We will always assume that discrete-time grids contain the point zero.
29 A largest discontinuity point exists because f(r, h) is piccewise continuous.

30 This is another consequence of piecewise continuity.
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IfIf  if r={'4, 2o, ‘A *ho}
rtlf ir="A

ifre ifr=24

rert if r e {15, *4, "Ao}

rtlf ifr="'4
fipstrs kY = {ire ifr=24 i fipelr, B) =
¥if ifre {’4,4)

Note that neither restriction is defined at (0, k), since O is the last jump-time of h. The first grid is
insufficiently fine to capture all of the details of f(- 7). In particular, the segments (0, '4) and (4, 1) are

not represented; on the other hand, the graphs of f(, &) and f zio(, k) are very similar.

Summarizing, the graph preserving restriction of f to R is defined by, for (r, 1) € DN such that

r € R and swictly exceeds (k)

f©, &) if (r, B) = (0, &)
W = f(t'='(h), h) if r = [t*"(h)]® and (- k) is continuous on ([+**(h)]%, r)
Fialro by = furl® » if r & ([#(k)]%, 1) and f(, h) is continuous on (|r}¥, r)

f(max[’ <r fi,h)is dis-}, k) otherwise

continuous at &

Néte that f,p is not an R-admissible strategy, because its domain is too big. Specifically, fx(+ k) is
defined for all possible histories, not just R -admissible ones. “This is immaterial, however. Clearly, f g ¢an
be played from any continuous-time decision node and will generate a unique history by the inductive pro-
cedure described above (p. 19). For our purposes, this is all that matters.

To illustrate the process described above, we considér three profiles, £, f® and f °._ The examples ii-
Justrate that certain differences between strategy profiles matter a great deal while others are unimportant. As

usual, there are two players, each with two strategies, ‘left’ and ‘right’. The first two profiles are identical,

except that £ is discontinuous from the left, while f bis discontinuous from the tight.As one would-expect;
the limit outcome is insensitive to this difference. In the third example, player #1's strategy has a discon-
tinuity from the left, while #2s is discontinuous from the right. In this case, the difference between the
discontinuitics matters a great deal: the graph preserving restrictions of f° preserve this distinction and the
resulting outcome has player #1 jumping alone.

The first profile, f2, is defined as follows: #1 begins by playing ‘left’, then switches to ‘right’ at 14, re-

gardless of the past history; #2 begins by playing ‘“leff’, but switches to ‘right’ if #1 ever plays 'right’.
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. If fr<¥t Y rt if #1 has ever played rt
R =y drrzw  TEER = Ay omerwise

Now consider the graph preserving restriction of f“ to a grid R. We have: i, @)y=IfIf and

Fif ifr<
FiRtn @ FUN =1 otherwise - Also forall and r> 1, fig (r, [, If If), (¢, rt If)]) =rtri. Fi-

nally, forall r > ¢t" 2 1 2 3, fiz (r, [0, IFIF), (e, re UF). (2", 1t rt)]) = rt rt. Applying the algorithm above,

the discrete-time outcome generated by 9z from (0, @) is: player #1 jumps at the first grid point strictly

greater than %4; player 2 follows suit at the next grid point; there are no further jumps. Now define f% identi-
cally to f% except that f b has player 1 shifting to ‘right' immediately after A, le.,

¥ ifr<gh
fot, by = {rt 1>/ - The discrete-time outcome generated by f bz has player #1 jumping at the

second grid point sirictly greater than %2, and player #2 following suit at the third. It is easy to see that the
two profiles converge to the same kimit, ie., [(0, If If), (4, rt If), (4, rt r)]. Thus, player #1 jumps at 12
and player #2 follows suit immediately afterwards.

Finally, we consider a third profile, f°. The two players’ strategies are identical, except that #1 shifts

from ‘left’ 10 ‘right’ exactly at Y4, while #2 shifts immediately after .

rt ifrz%andalh)y=1IfIf . rt ifr>Yanda'(hy=¥If
filt, k) = {If otherwise v f3B R = Y otherwise

Our "moulding” procedure preserves the one difference between the two players’ strategies. For any gnd R,

f.r has player #1 jumping alone at the first grid point sinctly Iawr

beyond this time. The limit outcome is that player #1 jumps exactly at '4; player #2 never jumps.

An explicit algorithm for computing continuous-time outcomes.

There is a simple inductive algorithm for determining limit histories directly, without ever constructing
graph preserving restrictions or computing discrete-time outcomes. The algorithm closely parallels the con-
ventional one that determines discrete-time outcomes, but induction plays a fwlndamentally different role. In

discrete time, we do induction on the set of possible times that agents can move. In continucus time, we in-

than Y% and-both—jumping-together———-———-
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duct on the set of times that they choose t0 move. Our restriction F1 ensures that this latter set is finite, and
so induction is possible.

Given a profile, f, and a decision node, (¢, k), the formula below identifies a umique history, n,
defined as follows. Its first k(h) jumps cotrespond to those of h. If f has agents playing a'*'(h) at every t
berween ¢ and the end of the game, then the specification of % is compiete. Otherwise, ¥ () is defined
as the infimum of the times beyond ¢ at which agents choose an action profile that differs from a'* (h). Ifr f
has some player jumping at exactly t*®*1(1)), then g*®*!(1) is the action profile chosen at this time, ie.,
FUEER(R)Y, h).  Otherwise, a*®*!(n) is the profile chosen immediately after Ry, e,

Eﬁ: F(t*¢R* () + &, n). The remaining jumps of n are defined in the corresponding way. Summarizing,

for each f and regular node (z, h), the history generated by f from (¢, k) is the unigue history, n,

identified by the following conditions:

for 1 < x < k(h), (<), a“(n) = *(), a*(h) av.1
for x > k(h), if 1~"'(n) has been defined and there exists s > max(z, £*-1(n)) such that £(s, 1 ,,) # a*(n)
() = inf{l> s> max(, 700 F(8, 1 1e-1) # 7))

FESTY Mixat) if FEM) 7 1ent) # @)
}Siigf(r"(r_z )+ 8, N,y) otherwise

a*(n) =
If {t, h) is the start of the game, the formula is identical to the one above except that

¢t'(m), a'm = (O, £0, D).

To illustrate the formula, we return to the two examples, f“ and f b discussed above (pp. 23-24) Let

77 and 7 * denote, respectively, the outcomes generated by f % and f® from (0, @). Clearly, the two his-
tories have the same first jumps: (£'(n %), a'(n %) = (t-‘(r-p by, a'(n®)) = (0, if If). The second jump-time is
the infimum of the times beyond zero at which some player plays ‘right’. In each case, this time is t = 1, s0
that (7% = r}7?) =14 Now f° has some player jumping exaclly at 4 so that
@7 %)) = £°0%4 n{) = rt if. On the other hand f* has both players continuing to play ‘left” at %, so that

a*(n?) is determined by their choices immediately after 4. Once again, this limit choice is rt If, ie.,
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atnty = lim £5(% + 8, 7% ) = rt If. Finally, consider the third jumps. Both f* and f” have player #2 fol-

lowing suit immediately afier #1's jump, so that (:*(n %), @*(n ) = (B2@h, @) = ¢4 rere)

We have now completed the program set out on p. 4for specifying our outcome function. Our first
theorem verifies that the history identified by our explicit construction (IV.1) is indeed the limit of the
discrete-time histories it induces. Say that a discrete-time grid is 8-fine if it contains zero, its largest member
exceeds 1 — & and the largest distance between any two adjacent grid points is at most 8. Theorem I states
that for any profile and any decision node, the history defined by (IV.1) is the limit (in the metric d¥) of the
histories generated by playing the graph-preserving restrictions of the profile, starting from the given decision
node, on any sequence of increasingly fine grids.

Th'm I: Let f be a profile satisfying F1-F3. From any decision node (¢, k) and for & > 0, there
exists & such that if R is a 8-fine grid, then the discrete-time history generated by fiz
from (z, k) is within £ of the history generated by f from (1, k).

Valuation functions, payoff functions and equilibrium notions.

The valuation function, V = (V,);¢s, for a game assigns to each history a vector of payoffs; Vi(h) is

the value player i assigns to the history . In most of the applications we consider, we will assume that V()

is uniformly continuous with respect to d¥. At first sight, this seems like a strong assumption, because most
games of timing are thought of as highly discontinuous. In fact the assumption is extremely weak, because
the topology induced by 47 is very fine (see p. 17).

In many games, the valuation function is obtained by integrating with respect to ume some

instantaneous flow payoff matrix, u: [0, 1) x A —» R¥, which depends only on time and the current state of

the system. To define payoffs in such cases, it is convenient to have an alternative representation of histories
that can be integrated. We will define the time_path of # to be the function p*, defined from & by: ph(t) is

be the last action chosen weakly before ¢. For example, the time path of the history

Fiy t<lh

h = [, If If), (%, rt If), (%, rt r1)] would be p*, where p*(r) = {n s ift 21 - This representation

suppresses the information that player #1 jumped before #2. With integral payoffs, however, this information

is imrelevant. Now, if the instantaneous payoff matrix is u, the value to i of the history h 1is
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Vi(h) = J‘[m)u,-(s, p*(s))ds. For illustrations, see the following section. It is straightforward to show that
whenever u(-, @) is an integrable function, for every a, the derived valuation function will be uniformly con-

tinuous in the metric d¥.

The continuous-time payoff function, P = (P,);c;» assigns a payoff vector to each strategy profile and

decision node. The payoff function is derived from the valuation function in the obvious way: if 7 is the
outcome generated by f from (¢, k), then Pi(f, t, k) = Vi(n), ie., player i’s payoff if agents play f from
the subgame beginning at (¢, h).

We will say that strategy profile is an e-best reply from a decision node, if in the subgame starting

from this node, no agent can gain more than & by deviating from his part of the profile. That is, f is an

e-best reply from (¢, h) if for all i, and all f/, P(f,t, k) 2 PA(f/, f_). t, k)~ €. A profile f is an

e-subgame perfect equilibrium (¢-SGP equilibrium) if it is an & best reply from every decision node. Final-

ly, f is a subgame perfect equilibrium if it is an £-SGP equilibrium, for every £ > 0.

For certain kinds of games, the set of SGP equilibria may be extremely large. (We saw one example in
section II. The following section contains another.) In some instances, this set can be reduced considerably

by iterative elimination of dominated strategies. To formalize this idea, we define the notion of an "iterative-
ly undominated equilibrium” (see fn. 8). Let F? denote player i’s set of admissible strategies. Let

FS =[] FP- Say that f; is zero-th order undominated if f; € F°. Now suppose that for each agent, the

i

set of (k—1)-th order undominated strategies has been defined and is denoted by FF', We will say that a

strategy f; for i is k-th order undominated if there exists no (k—1)-th order undominated strategy for i that

is at least as good as f; against any (k—1)-th order undominated strategies by the other players and strictly

better against at least one. Let F} denote the k-th order undominated strategies for i. In symbols,

F¥= {f; € FFU: there exists no f; e F}~! satisfying: for all f_; € F5', and all ¢+, h) € DN

PA(F!, £ty B) 2 Pi((fi, ), t, B), with strict inequality holding for some f_;}.

We now say that a profile f is an jteratively undominated equilibrium if it is a subgame perfect equilibrium

-2
and survives an infinite number of rounds of iterated elimination, i.e., ifforalli, f; € ™ FE
k=0




Y. Applications.

This section considers two applications.” The first is a stylized model of a deterministic race, in the
spirit of Fudenberg et. al. [3] and Harris-Vickers [9] (see also [8]). The second is a "one-sided matching
game™: at- least one agent strictly prefers to match the action being played by the other. We believe that these
applications are interesting in their own right. Their main purpose, however, is to illustrate various aspects
of our model. Both applications illustrate the usefulness of a framework that allows zero reaction lags. In
the first example, this is simply convenient from a computational standpoint. In the second, the consequence

is more far reaching. It enables us to isolate the cooperative cutcome as the unique solution for the game.

Brinkmanship in a deterministic race.

We consider a race run over the interval [0, 1). A prize of #* is won by the first player to accumulate
a certain stock of "knowledge.” We assume 7* is not an integer and that n* > 23 I o agent completes
the course in the allotted time, the prize is forfeited; in the event of a tie, the prize is divided evenly among
the winners. Participants in the race choose over time a integer level of investment. Knowledge is accumu-
lated at a rate proportional to the agent’s level of investment. Investment levels can be upgraded, but not
downgraded.33 If an investment level of » is chosen, a lump sum cost of $» is incurred. The cost of up-
grading from level n to # is $(n"—n). Agenti is endowed with $i at the start of the game. Bomowing is
prohibited, so that i’s maximum possible investment fevel is i.

We now formulate this problem as a continuous-time game. There is a set of agents, I = {1,..., il

Player i’s action set 4; is {0, ..., i]. Atany decision node, (z, h), i’s progress up to r can be calculated

fwm—i—’&cﬁmpoﬂenbaf—the—timerpath—of_k,_i.e.rfmrmp,-"fﬁ_.lmpanicular. i’s current stock level is f(: pls)ds.

(For example, if i invests at Jevel 1 at time zero, and upgrades to 2 at !4, then by time ' his accumulated

31 For more applications, involving behavior strategics, see {241, [21} and [22].
32 The first assumption avoids complications arising from indifference. The second ensures that tics will not occur in equilibrium.

33 This assumption ensures that our finite move constraint (F1} will be satisfied.

3 Recal} that p* was the alternative representation of /, defined on pp. 26-27. The information lost in the canversion from the his-

tory b to p"--i.c., instantancous sequences of upgrades—is not relevant for computing the agent’s progress.
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stock of knowledge is 24) For any 4, let 7,(h) denote the time--if any--at which player / crosses the finish

line, ie., 7,(k) = inf{s > 0: j(: pi(s)ds = 1}. Let I(h) the set of winners of the race, if the history is k, ie.,

I¢h) contains the j’s whose 7;(h)’s are minimal. The game is now summarized by the valuation function, V,

below. Player i is disqualified from the race if pl ever decreases. Disqualified players earn —eo, Otherwise,
i’s payoff is his share of the prize, if he is a winner, minus his terminal investment level. Thus, V; is defined

(#F(h))'m* — a/*(h)  if his nondecreasing and i € I(h)

by Vi(h) = Y—a/™'(h) if hjis nondecreasing and i ¢ I(h).
-0 otherwise

To completely specify a solution to this problem, we would need to introduce behavior strategies. Ran-
domization is, however, necessary for existence only at decision nodes that are so far away from the equili-
brium path to be “irrelevant."> There are, therefore, equilibria in which agents play pure sirategies along the
equilibrium path. We will characterize these equilibria in an informal way.

Apart from its continuous-time setting, our model differs in several respects from those in [9] and [3]:
there are many agents instead of two; investment is irreversible; investment costs are lump-sum rather than '
flows; agents have different resources available for investment.>® As a result of these differences, our game
has some interesting properties that, we believe, have not been discussed in the patent race literature. There
are two kinds of equilibria. In the first kind--which we call preemptive equilibria--some agent other than i
invests at the outset at a level so high that no other agent can profitably compete. In these equilibria, the

rents to winning are almost entirely offset by the cost of preemption. In addition, there is one more solution,

. which_we_call a brinkmanship_equilibrium. In this solution, player i maintains the lowest possible level of

investment throughout the race. Rents are barely dissipated at all. In each kind of equilibrium, the outcome

is completely determined by the actions agents take at the start of the game.

35 Like Fudenberg et. al. [3], we need to introduce randomization only at nodes where agents have, in a certain sense, equal chances
to win. Since our agents are unevenly mawhed at the outsct, these nodes can be reached only if the stronger agents fall behind 2 little
way, but not far enough that they cannot profitably catch up. The nodes of this kind are bounded away any equilibrium path for the

game.

36 [6] have a related assumption, but in [3], the competitors are identical.
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The equilibria are discussed in detail in the Appendix. The following is a brief summary. Only i, the

strongest agent, can win the race without committing significant resources to it. This is because i is the only
player with the resources to sustain a fight in which the stakes of the game escalate. The irreversibility of in-
vestment plays an important role here: because "sunk costs are sunk,” i is willing to match any investment
that any other agent is willing to make. If 7 sinks $1 into the project at time zero, he will maintain his com-
petitive edge if he merely matches the expenditure of his closest competitor. (At the beginning of the game,
no stocks have been accumulated, so the agent with the "edge” is the one who has already committed to the
highest rate of investment.) Moreover, no challenger will be willing to spend more than $|n*¥| to challenge
737 while 7 is always willing to spend up to $|7*) to maintain his lead, regardless of the size of his sunk
costs. For this reason, all other agents are deterred from challenging, once i has a minimal "edge" in the
race.

For example, suppose that [ = {1, 2, 3} and n* = 2.5. This game has two equilibria. In the preemp-
tive equilibrium, player #2 invests 2 units at the outset and maintaing this level throughout, Player #3 can ei-
ther force a tie or win, but in either case, the cost of doing so would exceed the benefit. In the brinkmanship
equilibrium, #3 invests one unit. Player #2 will certainly not be willing to spend more than $2 on the race; if
#72 challenges by investing either $1 or $2, #3 will immediately match this expenditure and maintain his lead.
Knowing this, #2 refrains from challenging.

To conclude this discussion, we characterize the equilibrium set for this game and partially describe the
equilibrium strategies. (What is missing is a description of what happens off the equilibrium path, if the

designated leader has fallen behind.)}

3 We will denote by |n*] the largest integer amount less than =
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There is a brinkmanship equilibrium in which / wins the race. The equilibrium has the fol- V.0

lowing properties. At the start of the game, i chooses an investment level of one and no
other agent invests. Along the equilibrium path, no further investment occurs by any agent.

Off the equilibrium path, / upgrades in response to a challenge by another player if and only
if the upgrade is (a) minimal (i.e., no smaller response would suffice); (b) feasible (i.e.,

within 7’s budget constraint); (c) profitable (i.e., yields i a higher payoff than he would
achieve by not responding). In addition to this equilibrium, there is for every / € [l=*], i),
a preemption equilibrium in which i invests at level |n*] at the beginning of the game, and
maintains this level throughout. The other properties of preemption equilibria are similar to
those of the brinkmanship equilibrium. There are no other equilibria.

A ‘one.sided’ coordination game,

Our second application is related to the one in section II. As in that example, we iteratively eliminate
weakly dominated strategies to obtain a unique equilibrium. In this case, however, the elimination process is
more extensive and delicate.

The example is a two person game in which payoffs are obtained by integrating a time-independent
flow payoff matrix. We will assume that there is some exogenously fixed number n* such that neither agent
can change lus action more than n* times.3 & Each player has two actions, ‘good’ (gd) and ‘bad’ (bd).
Player #1 strictly prefers to be playing whatever #2 is playing. Player #2 strictly prefers to match #1, if #1 is
playing ‘bad’. Each player strictly prefers the state ‘gd gd’ to 'bd bd’. When played in continuous-time,
any game in this class has multiple subgame perfect equilibria. In discrete-time, the "bad" outcome is always
an equilibrium; there may or may not be others. We will establish, however, that in continuous time, the
Pareto superior outcome is the unigue equilibrium that survives iterated elimination of weakly dominated stra-
tegies.

The two flow payoff matrices below illustrate the qualitative features of the game.

38 Onpe could endogenize this bound by supposing that each move is costly, and that agents have finite resources. This gain in real-
ism complicates the problem but adds no new insights.
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‘good’  'bad’ ‘good’  ‘bad’
‘good’ (3.3 0.7 * ‘good’ (3.3 | 0,0)
‘bad’ 2,0 | LD \ ‘bad’ 0.0 | 1D

The right-hand matrix is an example of a class of games that has recently been the focus of consider-
able attention. Games like this, in which agents’ payoffs are identical, are known as "pure coordination”
games. Since agents’ interests coincide exactly, one would expect that in such games, noncogperative
behavior by individuals would always lead them to the Pareto superior outcome. Traditional models have
been unable to predict this. In particular, both the discrete- and continuous-time versions of the game defined
by the right-hand matrix have a continuum of subgame perfect equilibria. For example, for any subinterval T
of [0, 1), there is an equilibrium in which both agents play ‘bad’, when ¢t € T and otherwise play ‘good’. '

It has proved surprisingly difficult to construct alternative models and solution concepts that yield
unigue predictions in such games. The first such results has only recently been obtained:>® in particular,
Aumann-Sorin [2] show that if a two-person. pure coordination game is “perturbed“ in an appropriate way, the
modified game has a pure strategy equilibrium that is close (in payoffs) w the cooperative outcome.*® Our
uniqueness result is therefore striking, since for the class of games we consider, it may be that the coopera-
tive outcome cannot even be sustained as a one-shot equilibrium.

We now formulate the problem as a continuous-time game. Each player is allowed to change his action
no more than n* times, where n* € N. There is a time-independent flow payoff matrix for the game, u,

_ satisfying the following inequalities: (i) for each i, u;(gd gd) > u;(bd bd), (ii) u,(gd gd) > u(bd gd) and

u,(bd bd) > uygd bd); (iii) uy(bd bd) > u,(bd gd). Observe that "bd bd" is a one-shot Nash equilibrium,
while "gd gd" may or may not be, depending on whether or not u,(gd gd) weakly exceeds u,(gd bd). The

u(pf(s))ds if i has jumped no more than n* times

valuation function V is defined by V(k}= _[?;;) otherwise

3% Kreps et al. [12] obtain unig in the repeated Prisoners’ Dilemma by allowing for a small possibility that some agent is a
compulsive tit-for-tat player. On the other hand, Fudenberg Maskin {6] show that when the model is expanded 1o allow for arbitrary
Xinds of compulsiveness, then virtually anything can happen.
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(As usual, p” is the time path of the history h.)

Prop’n II: ‘The unique payoff vector that can be implemented by an Iteratively Undominated
equilibrium for a2 game in the class described above is u(gd gd).

We now give a brief sketch of the proof. (Details are deferred to the Appendix.) The idea is to prove
that if players start out the game by playing anything other than ‘gd gd’, then afier iterated elimination, the
only surviving strategies have them cycling from state to state until they eventually seitle at the state
‘gd gd’.“ Moreover, the cycle must occur in zero time!

As usual, we begin at terminal subgames of the game and work forwards. First suppose that #1 has one
move remaining and #2 has none. If #1 is not already matching #2’s action then, obviously, he should switch
immediately. Now suppose that both players have one move remaining and are currently matching each oth-
er. If both are playing ‘bad’, then #2 must lead #1 out of the bad state by switching to ‘good’, because he
knows that #1 must follow suit. Since #1 can respond instantly to #2, there will be no interval of time during
which the players will be mismatched. Therefore, the cost to #2 of leading in this way is zero.

The next step of the argument is more delicate. Assume that #1 has two moves remaining and is play-
ing ‘bad’, while #2 has one move left and is playing ‘good *. We need to show that #1 must switch immedi-
ately to ‘good’. The problem here is that #2 might switch to ‘bad’ at the very instant that #1 switches.
Nevertheless, we can show that #1 must indeed switch. We can then proceed by induction.

Note that this argument depends critically on the fact that reaction lags are literally nonexistent. In
discrete-time, the argument just given would break down. Certain anti-cooperative strategies will be "almost

weakly dominated,” but, as we pointed out in section II, this is not a sufficient reason to eliminate them.

V1. Equilibria of discrete- and continuous-time games.
This section studies the relationship between our model and the conventional discrete-time one. We

. : 2
first say what it means for a discrete-time profile to approximate a conunuous-tme one.®? We then study the

40 There is a very easy version of the argument given below that yiclds uniqueness in the model considered by Aumann-Sorin [2].
provided that agents can move only finitcly many times. Aumann-Sorin's resuit, however, does not depend on finiteness.

41 Apents may cycle through a large number of steps before settling down, or they might sele down immediatcty. However, cycles
that are longer than necessary would not occur in equilibrium if movement costs werc intreduced (see n. 38). '

42 For a parallel discussion of the relationship between finite- and infinite-horizon games, see Fudenberg-Levine [4], [5] and Hamis
[10). [5]is also compares discrete- and continuous fime. See also Hendriks-Wilson [11] for a comparison of discrete- and continuous-
time equilibria in a very different context.
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continuity properties of the SGP equilibrium correspondence. We emphasize that this section says nothir;g
about iteratively undominated equilibria. As we have emphasized repeatedly, the equilibria are very special
to continuous time and have no discrete-time analogs.

There are two general kinds of questions that are of interest. Is discrete time with a very fine grid a
good proxy for contnuous time? Conversely, do the equilibria for our continuous-time model have discrete-
time analogs? The first question has arisen frequently in the literature on dynamic games. In the absence of
an established continuous-time framework, many authors have studied sequences of discrete-time equilibrié,
allowing the grids to become increasingly fine, and have interpreted the limit of such equilibria as proxies for

the equilibria of an unspecified continuous time version of the game;43 With a continuous-time model and a
notion of closeness for strategies in place, we can pose the question precisely. If a sequence of e"-equilibria

increasingly closely approximates a continuous time profile, f, with " — 0 as the period length shrinks,

will f be an equilibrium? The answer to this question is "not in general.” There is, however, a positive
gualification that can be added. If the discrete-time profiles happen to be the graph-preserving restrictions of
£, then f will be an equilibrium. We will state this formally as Theorem III.

From our particular perspective, the second question--do our continuous-time equilibria have discrete-
time analogs?--is of more direct concern. The answer is "yes, provided that agents’ payoffs are insensitive to

44 \When this condition is satisfied, we have a

the actions other agents choose near the end of the game."
compelling, if conservative, validation of the equilibria of our model: they do not depend intrinsically on the
special propesties of continuous time. When it fails, continuous time is intrinsically different from discrete

time. Once again, the source of this difference is that discrete time is well-ordered, while continuous time is

not. ¥ (See below for an illustration.)

43 Among the best known of these studies are Rubinstein [19] and Kreps-Wiison [14].

& This is the discrete- to continuous-time counterpart of the now familiar continuity results linking finite- and infinite-horizon
discrete time games. Sec Radner {18] and Fudenberg-Levine [4], [5].

45 This intrinsic difference becomes much more apparent once randomization is introduced. For example, Simon [21] constructs a
continuons-time SGP equilibrium in behavior strategics that is far away from any approximate equilibrium of any nearby discrete-time
game. I we are 1o base predictions on equilibriz of this kind, we must believe that time in reality is better described by the continuum
than by a finite sct.
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We now define what it means for a discrete-time strategy profile to approximate a continuous-time
one*® We will say that an R-admissible profile g -approximates a continuous-time profile f if for each
R -admissible &ecision node {r, h) such that r < 1 — ¢, there exists a nearby continuous-time decision node
such that the outcomes generated by g and f from the respective decision nodes are close to each other.
Two points about this notion need to be highlighted. First, we add the caveat "r < 1 — ¢" because in general
it will not be possible for a discrete-time strategy to closely approximate a continuous-time strategy at the
very end of the game. The reason is that any discrete time grid must have a second-to-last, third-to-last,...,
grid point, but there are no corresponding last points "at the end” of the continuum. Second, we have not
defined a metric on profiles, but rather a "one-way” notion of closeness. This is because the domain of a
continuous-time profile is so much more complex than that of a discrete-time one. Therefore, in general, it
will be difficult if not impossible to represent all of the _strategic detail of a continuous-time profile on a given
discrete-time grid. We now state the definition precisely. Let o/>*" denote the outcome generated by f from
the decision-node ‘dn’. Given a discrete-time grid R, we say:

an R-admissible strategy profile ¢ g-approximates a continuous-time strategy profile f if for
every R -admissible decision node (r, #) such that r <1 - ¢, there exists (£, n} € DN such
that (i) 17 — 1 + d¥(k, ) < € and () d¥(0*"", n/"") < ¢

The only node close to (0, &), in the sense of (i) above, is (0, @) itself. Therefore, g will approximate f
only if the two profiles generate similar outcomes from the start of the game.
We now return to our first question: is discrete-time a good proxy for continuous-tme? The example

below establishes that the answer is "not in general.” There are three players. Each has two actions, ‘contin-

ue’ (ct) and ‘terminate’ (tm). Players #2 and #3 are completely inciiferent about the giitcome of the game:—————

Player #1’s payoff depends only on the terminal state of the game. His payoff is

1 if al®'(h) = al*'(h) = tm o _ . .
Vihy = 0 otherwise . An exact equilibrium fqr the discrete-time game played on R” is

the strategy g”, defined as follows:

4 We emphasize that our notion of closeness is defined for profiles not for individual strategies. This is because metrics defined on
individual agents' strategy sets tend to have very poor continuity properties. In discrete-time game theory, this fact is well-known. See
Fudenberg-Levine {4], [5] and Harris [10].
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"player #1 never terminates; player #2 terminates iff ¢ = ¥4 '4 and nobody has yet ter- (VL.1.n)
minated; player #3 terminates, iff both #1 and #2 have already terminated and both of them
terminated at some time weakly after 15."

The profile (V1.L.n) is clearly an exact equilibrium for the game played on R, since no unilateral deviation
by player #1 will induce player #3 to terminate. Moreover, g" clearly ¢"-approximates the limit of the
(VL.1.n)’s. In this limit, player #2 terminates exactly at %4, The limit is not an equilibrium, however. If #1
deviates and terminates simultaneously with #2 at %, #3 will terminate also and #1’s payoff will increase.
Summarizing, even though player #1’s payoff function is continuous with respect to histories, player #3’s
strategy is not (though it is strongly right continuous w.r.t. histories). Because #3 reacts discontinuously to
other players’ jump-times, #1°s strategic opportunities vary discontinuously with the time at which #2
jumps.‘”

In this example, #2’s strategy "converges” from below (i.e., his jump-times are strictly increasing in the
passage to the limit). On the other hand, a consequence of strong right continuity (F3) is that if a
continuous-time strategy can be approximated "from above" by discrete-time approximate equilibrium stra-
tegies, then the limit strategy will be an equilibrium. In particular, the discrete-time strategies defined by the
graph-preserving restrictions of f do converge "from above" to f 8 We have the following result: |

Th’m III: Consider a continuous-time¢ game with a 4%-continuous valuation function. Let f be
a continuous-time strategy profile satisfying F1-F3. Suppose that there exists a se-

quence of 8"-fine grids, (R"), where 6" — 0 and a sequence (g", ") such that
n
£" = 0 and for each n, g" is an e"-SGP equilibrium for the game played on R".
]
Further suppose that g” is defined by further restricting f | g» to the R-admissible deci-
sion nodes. Then f is an SGP equilibrium for the continuous time game.

We now come to the main result of the section, which is our lower hemi-continuity result. For this, we

need a further restriction on the game and an additional assumption on payoffs. We assume there is an upper

bound, that is uniform over strategies, on the number of jumps that agents can make ¥ Our assumption on

47 This failure of upper hemi-continuity is entirely consistent with our experience from discrete-time game theory. It is well known
that topologies on discrete-time stratcgics must be esseatially discrete to guaraniee upper hemi-continuity. See Fudenberg-Levine [4],
[5] and Harris [10].

48 Recall that graph preserving restrictions arc not actually discrete-time strategies, because their domains ar¢ too large. However,
when f p is further restricted to the R-admissible decision nodes, the resulting profile is R -admissible.

49 This is stronger than our assumption F1, which allowed the upper bound on moves to vary with the strategy. We could easily en-
dopetize the restriction by imposing suitable conditions on payoffs: for example, a cost of moving plus a budget constraint.
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agents’ payoffs is that they are not too sensitive to other agents’ actions at the very end of the game. That is,
we assume that player i will assign similar values to two histories if the only difference between them is that
other players’ actions differ at the very end of the game.so Formally, we say that two histories » and &4’
agree before s if for every « such that t*(h)<s, (t5(h), a“(h)) = (#"(K'), a*(k")). Now set
h; = (t;(h), a;(h)), where t;(h) is the vector of times at which i moves and a,;(h) is the corresponding vector
of i's jump destinations. Our assumption is

For all g, there exists 8 > 0 such that if two histories & and &’ agree before 1- & and (*)

k= B then | Vi(h) - Vi(K'M <&.
If V; is determined by integrating an instantaneous flow payoff matrix then (*) will automatically be satisﬁéd.
In general, however, the restriction is nontrivial. For example, it may well fail if i’s valuation depends
signficantly on the terminal action taken by some other agent.

The following example illustrates why lower hemi-continuity may fail if () is not satisfied. There are
two players; each has two actions, ‘cooperate’ (cp) and ‘defect’ (df). The game is like a repeated prisoners’
dilemma, except that payoffs depend only on the Iast action that players choose. Specifically, the valuation

(1,1) ifa*'(h)y=cpcp
@2, -2 ifa™'(h)=df cp

(=2,2) ifa™'(h)=cpdf’
0,0 ifd=m)y=d df

functon for the game is V(h) = This function clearly fails (*). In
discrete-time, cooperaiion cannot be sustained even as an approximate equilibrium, because each agent has 2
large incentive to defect at the last period of the game. In continuous time, however, there is no "last” period

in which an agent can defect.”! The outcome "cooperate forever” can be sustained as an SGP equilibrium by

the threat of immediate retaliaton. We now state the result.

50 This condition is related to the assumption that Fudenberg-Levine [4] invoke to obtain the analogous relationship between finite-
and infinite-horizon games. Our assumption is swictly weaker, since they require that agents be approximatcly indifferent between any
two historics that differ only at the end of the game.

31 In a two-person game played on a closed time interval, (#) would not be needed to obtain lower hemi-continuity, With three or
more players, however, (¥} is once again required. In a three player game, the source of the problem will be that there is no
second+0-last period before the end of the game.
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Th'm IV: Consider a continuous-time game in which payoffs are d¥-uniformly continuous and
satisfy assumption (*). Assume there exists n* such that no agent can move more
than n* times. If f be a continnous-time SGP equilibrium for this game, then for all
€ > 0, there exists & > 0 such that for every 8-fine grid R, there exists an £-SGP
equilibrium for the game played on R that e-approximates f.

We begin our discussion of this result with an example that shows why it is difficult to prove. The
example also illustrates how we go about proving it. We then discuss the proof in more detail. The point of
the example is that we cannot obtain our approximating sequence merely by restricting the original profile to
the seguence of discrete-tisne g:'ids.52 The reason is that in the process of restricting the profile, we may
significantly distort the strategic implications of the strategies.

The example has two players. Each two possible actions, ‘continue’ (ct) and ‘terminate’ (tm). If a
player ever once plays ‘terminate’, he must do so for the remainder of the game. Payoffs are obtained by

integrating the following instantaneous flow payoff matrix:

‘continue’  ‘terminate’

‘continue’ 0,0 {0, 4t -2)

‘terminate’ (,4:1-3) -L0O

First consider #1’s problem in this game. If he could preempt #2, terminate before ¥ and ensure that
#2 would never follow suit, then he would certainly choose to do so. However, #1 would rather continue
forever than terminate and have #2 terminate also, Now coasider player #2. From his poi:it of view, the best
possible outcome in this game is: #2 terminates at time 1%, and #1 continues forever. Notice that so long as

#2 can deter #1 from entering before 4, he can aftain this outcome, since once #2 terminates, #1 has a strong

incentive not to follow suit. Moreover, #2 can indeed deter #1, by threatening to terminate immediately after
#1 does. This threat is credible so long as ¢ < 14, because at this stage of the game, the short-run gains to
terminating offset the long term loss. We have verified, therefore, that the following strategies form an

equilibrium for the continuous-time version of this game,

52 It does not help to take the graph-preserving restriction.
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Player #1: "play ‘continue’ if #1 has always played ‘continue’ in the past otherwise play {V1.2-1)
‘terminate’.” :

Player #2: "play ‘continue’ at time zero; at every positive time ¢, play ‘continue’ if either (V1.2-2)
¢t < 15 and no agent has yet terminated or r 2 % and #1 has already terminated;
otherwise play ‘terminate’.”
The outcome generated by this profile is that player #2 jumps at ¢ = 15, while player #1 never jumps. Player
#1’s payoff is zero, while #2°s 15 }4.

Now suppose that these su-ategiés are simply restricted to a discrete-time grid. We will show that the
strategic opportunities available to #1 are significantly changed. If #1 terminates at the last grid point in R
before 14, #2’s first opportunity to react to this deviation will not occur until weakly beyond 4. By this time,
however, his strategy instructs him to continue. Thus, there is a deviation available 10 #1 against #2’s res-
tricted strategy that yields #1 a payoff exceeding Y4. The problem here is that when #2's strategy is restrict-
ed, a gap is opened up in his defenses, through which #1 can slip and escape unpunished! Therefore the res-
tricted profile is not even an approximate equilibrium for the discrete-time game.

There is, however, an obvious way to perturb the restricted profile that leaves #2's defenses intact
without seriously affecting his credibility. Observe that if #1 terminates just before 14, #2 is approximately
indifferent between terminating immediately and continuing forever. We can, therefore, slightly extend the
period over which #2 threatens to terminate in response to an early termination by #1, and still have an ap-
proximate equilibrium. Specifically, the restriction of #1’s strategy above, together with the following stra-
tegy for #2, form an approximate equilibrium for any discrete-time game, if the grid is sufficiently fine.
Player #2: "Play ‘continue’ at time zero; at every positive time ¢, play ‘continue’ if either ~ (V1.2-2)

¢ < Y and no agent has yet terminated or ¢ strictly exceeds the first grid point
beyond 4, and #1 has already terminated; otherwise play ‘terminate’.”

The only difference between (V1.2-2) and (6.2-2") is that "t 2 14" is replaced by "t strictly exceeds the first
grid point beyond %4." If #1 terminates at any time before ' on any discrete-time grid, this strategy has #2
responding by terminating at the next grid point. The strategic flavor of the original profile is thus restored,
and the original outcome is implemented as an approximate equilibrium.

The above example illustrates our constructive technique for proving the theorem. We now explain the
algorithm that we use for the general case. Fix a continuous-time SGP equilibrium profile f and a fine

discrete-time grid R. We will "build" a profile g that e-approximates f and is an approximate equilibrium
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for the corresponding game on R. First, let 7 denote the outcome generated by f from the start of the game.
Let 7i denote the closest R-admissible history to 7} whose vector of jump-times exceeds t(17). (Note in par-
ticular that if 1 has jumps that occur at the same instant of time, the corresponding jumps of h will be
spread out over consecutive grid points of R.) Our first step in the definition of g ensures it generates h
from the start of the game. For each r, let %, denote the history defined by truncating % after the last jump
that occurs strictly before r. Now set g(r, R = p'T {r). Clearly, the outcome defined by g from (0, &) is
indeed 7.

Now suppose that agent i deviates from g; by playing 4; # gi(}, E",) at the node (r, }-zn,}. We need to
~ ensure that this deviation is no rﬁore than slightly profitable. Let n j: denote the (unique) wuncation of n that
is close to h i~ Find a continuous time node (¢, 1 gr) "close to" (r, I—zur) and let n%* denote the outcome that
would result if i played a; # f;(, M) at (t, n,) and agents played f thereafter. Construct h?" close to
7% just as we constructed & close to 77. Now define g so that if i plays g; a'u (r, hy,), the resulting out-
come will be #%. By construction, 2% ~ n9, while & = n. Since i weakly prefers n to %, he cannot
greatly prefer h%" 10 h.

We proceed in this way to complete the definition of g, taking into account deviations from deviations,
etc. The process is more complicated but the basic principle is the same. Each deviation by agent { from g
is treated by other agents as if they were playing in continsous-time, and i had made the corresponding devi-

ation from a corresponding node. Since the corresponding deviation is assumed to be unprofitable in continu-

ous time, it can be only barely profitable in discrete time.




APPENDIX.

Proof of Theorem L.
Fix a regular decision node (2, h) and € > 0. (The proof if (z, k) is the start of the game is essentially
identical) Let n denote the outcome generated by f from (z, k). First note that 7 must have only finitely

many jumps, because f satisfies F1. If n = h then, obviously, there is nothing to prove. Assume therefore,

that n # h. Pick 8 < _ZT::):-T sufficiently small that for every k(2) < x < k(n), (a) if d4(m,., K)< &

and €A 2 t(n,.), then £,(t°(n ), 1)) = (¢ ()), k') while for all s> t*"(K'), f(s, M) = f(s, #');
(b) the smallest distance between any two discontinuity points of f{- n,,) exceeds 28. Such a & exists, be-
cause f satisfies F2 and F3. Now let R be a &-fine grid and let h denote the outcome generated by f
from (¢, k). We will show that df#(h, n) < e. First observe that from the definition of fyp,
By = [([HE (n3]RNE, if £ 1200 7 1eqn)) IS left continuous at £ (n), and [r*@Mi(n )]? otherwise.

2e

— ok
Also at®M(n) = g* (). It follows that 4% (N xcayets Biaye)) < SEel

and t(Aeay1) 2 U0 @)

Now fix x > k() and assume that d(n(,. k) < -%%——%(% and t(h,,) 2 t(n,.). From our choice of

5, it follows that then fi(#"'(n.), M) = Fi(t™' (k) k) and, for all s> 1t (B,
f(s, M) = F(s, hy). Therefore, proceeding as above, t*+1(h) is at most two grid points beyond ¢¥*!(n)

A +1-k(h)e
2k(n)+1

and a**'(n) = a**'(h). Therefore d¥(n cs1, Bixsr) < and (A1) 2 80 41). This

completes the proof of Theorem L. [

A ‘proof’ of statement (V.1)

The following discussion focuses on the very beginning of the race. Specifically, when we demonstrate
that a profile is an equilibrium, we will consider only deviations at decision nodes whose time components
are zero. We can do this without loss of generality because if it is not profitable for a contender to challenge
the leader at the outset, before the anybody has accumulated any stock of knowledge, _then it cannot be

profitable latter in the game, since by then, the leader will have a head start.
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We now discuss the equilibrium in which i wins. We will show that i can credibly threaten to respond

immediately to any challenge that another player might have an incentive to make at time zero. More pre-
cisely, a player j might challenge 7 at time zero, by increasing his investment rate t0 a level exceeding I’s.
However, j cannot possibly gain if he upgrades by more than |7*] units: even if he ultimately won the race,
the incremental cost would exceed the value of the prize. (Recall that |#*] is the largest integer smaller than
7*.) On the other hand, we will show that if j upgrades by an amount less than |7*], 7 will respond by up-
grading his investment level to one unit above j’s, and so maintain his lead. If j retaliates, { will respond
yet again. Since i resources exceed j’s, any escalation cycle must result in a victory for i.

More precisely, we establish that the following statements are true for any decision node (0, k), any

player j <7 andany 0 < x < ' j. In what follows, we will assume w.l.o.g. that j is i’s closest contender.
"If @(h) > max(x, a/**(h)), then in any equilibrium from this subgame, j stays behinds 7 (A-1.x)
for the remainder of the game.

“If ¢(h)2 x and a(h) 2 a/*(h) + 1~ |7*], then in any equilibrium from this (4-2.%)
subgame, 7 must beat j to the finish line.”

The proof is by induction. If @'k} > j, then I’s current investment level exceeds j’s maximum possible
investment level, so that j must obviously stay behind 7. Therefore, (A.l.x) is trivially true for x = j. Now
fix 1 £ k¥ < j and assume that (A.l.x) is true for x = k. We will show that {A.2.x) is true for x = k — 1.
First, consider a profile in which j beats 7, starting from the node (0, k), so that i’s payoff is at most

—a'(h). We will show that this profile cannot be an equilibrium, because i can profitably deviate by up-

grading to_a®(h) + 1. (Since 7 > j, this upgrade iy certainly affordable for i.) Also, by assumption,

a}“"(h) > k, so that if 7 deviates in this way, his level will weakly exceed k + 1. If he deviates, therefore,
the conditions of (A.1.k) will therefore be satisfied, so by assumption he will stay ahead of j. Since j is i's
closest contender, this means that 7 can win the race and attain a payoff of
¥ - (a}“’(h) + 1y> |m*] - (aj""(h) + 1), which by assumption exceeds — f"‘(h). The deviation is thus

profitable. This establishes (A.2.k).




-A3-

Now assume that (A.2.x) is trﬁe for x = k. We will show that (A.1.k) is also true. Fix a decision
node (0, #') satisfying the assumptions of (A.1.k) and a profile that has j upgrading to a level weakly
exceeding 1°s at this node. We will show that j would do better to stay put, so that this profile cannot be an
equilibrium. Let (0, #) be the decision node that is reached immediately after j ’s upgrade. By assumption,
a®'(h) 2 a*(K') 2 k, so that the first condition of (A.2.x) is satisfied. Moreover, j’'s upgrade cannot be
profitable if he jumps by more than |x*] steps. We can assume, rtherefore, that
a*i(h) < a®(K) + {n*] < a*(W) + |7*] = af*(h) + |n*]. That is, al*(h) 2 a®(h) + 1 - |n*}, so0
that the second condition of (A.2.k) is satisfied. Since (A.2.k) is true, i must win the race.” Therefore,
would have done better not to jump at all. This establishes that j’s jump couid not have been part of an
equilibrium profile from (0, #") and establishes (A.l.k).

The inductive argument just given establishes that (A.l.x) and (A.2.x) are true for j < i, and all
k < j. In particular, if 7 chooses an invesiment level of one at the beginning of the game, and no other
agent invests, then i must win the race.

The equilibrium in which i < 7 takes the lead is simpler to analyze. If / invests {#*| units at the start
of the game, then he cannot be beaten unless some player upgrades to a level exceeding m*. But no such up-

grade can be profitable. By upgrading to |7*|, a challenger might force a tie, but since z* > 2, this would

also result in a net loss.
We now show that there can be no other equilibria. First note that in ery equilibrium that has i invest-

ing at time zero and subsequently winning, 7 must announce an initial level of one. This is because if 7 is

going 10 win, then all other agents should not invest at all. But if no other agents invest, then i should invest

at the smallest level necessary to ensure a win. On the other hand, there can be no equilibrium in which
some i <7 invests less than |#*] at time zero and wins. To see this, suppose that the highest bidder at the
outset bids & < [n*]. In this case, the conditions of (A.2.k) are satisfied, since £ + 1 - |*] < 0. There-
fore, 7 must win from this subgame. Finally, we show that there cannot be an equilibrivm in which the first

investment occurs al some positive time. If 7 > [n*], there are at least two potential winners of the race; un-

less the ultimate winner invests at the start of the game, one of the other potential winners can preempt and
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win. If 7 < |a*], then the only potential winner is 7. If he postpones his initial investment until s > 0, then
he must invest at a level exceeding 1 to win. He could win at a lower cost by investing at level one from the

outset. This completes the discussion of this example.

Proof of Propesition IL

For any history, &, let M (k) = (M(h), M(h)) denote the number of moves that #1 and #2 have left to
make., Now fix an arbitrary decision node, (¢, k). If M(k) = (n, 0) and al®*(h) = a®'(h), then, clearly, any
strategy that has #1 failing to match #2 immediately is weakly dominated. We have established, therefore,

that:

If M(R) = (n,0) and ai®*(h) # ai'(k), then afier iterated elimination (a.ie), #1 must (4.3
switch to #2’s action immediately.

Similarly, it is obvious that
If M;(h) = 0 and a/*(h) = ‘bad’, then a.i.e., j will continue to play ‘bad’. A.9

Next, consider a node (¢, A) such that M(h) = (1, 1) and ai®'(h) = ai (k). If both agents are playing

‘good’, then for each i, switching at any point beyond ¢ is weakly dominated with respect to j’s reduced-

strategy set: this is because if / jumps, then j will follow suit immediately, so that a jump by one results in
strictly lower payoffs for each. On the other hand, if both are consuming, then player #2 must stop investing
immediately. If he does so, then #1 will follow suit immediately, and thus #2 will achieve the maximum pos-
sible continuation payoff. Thus, any strategy other than "switch immediately” is now weakly dominated for

#1. We have established, therefore:

If M(h) = (1, 1) and al*'(h) = a®'(h), then a.i.e., both agents will continue t0 play good" €A

for the remainder of the game.

Lt

7

We now proceed to the inductive step. We will prove the following statements, each x < n*.

if M(h) = (x, x — 1) and a®'(h) = @ (h), then in any iteratively undominated equilibri- (4.6-x)
um, at least one of the players will immediately switch to whatever action the other is play-

P (k) = (x, x) and @™ (h) = a?®'(h) = ‘bad’, a.ie, #2 will switch immediately to play
‘good’. (A.7.x)

Statement {A.6.1) is implied by (A.4) and (A.7.1) by (A.5). We now show that statement {A.62) is

true. Suppose that M(h) = (2, 1) and al®'(h) # a¥'(h). Suppose that there exists an wneliminated strategy
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for #2 that has him play ai®' (k) for an interval of time in this state. We will show that in this case, "switch-
ing immediately” must dominate "not switching immediately.” for #1. First suppose that a""’(h) = (bd gd).
If #1 switches t ‘good’ at (¢, k) and #2 stays put at this node, then each will have one move remaining and
(A.5) above will apply; both players will continue 1o play ‘good’ for the remainder of the game. This is the
best possible outcome for #1 from this node. Had #1 nor switched immediately and #2 continued to play
'bad’ for an interval, this outcome would not be attained. This establishes that "switching” is strictly better
than "not switching” against some uneliminated strategy for #1. Now suppose that #2 switches simultaneous-
ly with #1 at (¢, h). In this case, the new state will be (gd bd); #1 will have one move remaining, and #2
will have none. Condition (A.6.1) above will apply: #1 will switch back to ‘bad’, and the state will be
(bd bd) for the rest of the game. Had #1 played ‘bad’ at this node, then the next state would again be
(bd bd). Since #2 would now have no more moves, (A.4) would apply and, once again, the state would
;'emain at (bd bd) fo_r the rest of the game. We have established, therefore, that #1 cannot do worse, and may
do better, if he switches immediately, rather than continues to play ‘bad’.

Now suppose that a“**(h) = (gd bd) and #1 switches to ‘bad’ at (1, k). If #2 stays put: each will have
one move left; (A.7.1) will apply, #2 will switch back to ‘good” and #1 will immediately follow suit. The
best possible outcome for #1 will result. On the other hand, if #2 switches to ‘good” at the same instant that
#1 switches to ‘bad’, then #2 will have no moves left, and (A.6.1) will apply. #1 will switch back to ‘good’
and, once again, the best possible outcome for #1 will result. This completes our verification of (A.6.2).

(A.7.2) now follows immediately: I M (k) = (2, 2) and a'*(h) = bd bd, then #2 should switch im-

-------mediatély_to_igoodi.r_(Aﬁ.2.)..w.culd_themapply;_#Lwili_&witqh__to_‘gaod’. By (A.4), this state will be main-

tained until the end of the game.

To complete the inductive step, we need to show that for k > 2, if (A.6.k-1) and (A.7.k-1) are true,
then (A.6.k) and (A.7.k) are also true. In the argument that established (A.6.%) and (A.7.k) for &k = 2, we
used the particular value of & at only one point: when a***(h) = bd gd and both players switched their ac-
tions simultaneousty. We now return to this particular stage of the argument, for the general case in which

Suppose that M(h) = (k, k—1), £ = 3 and both switch simultaneously. In this case, (A.6.k—-1) will apply.
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Now retrace our earlier argument to establish that agents will eventually (but in zero time!) arrive at (gd gd)
and stay there for the rest of the game. This completes the proof of the inductive step.

To complete the proof of Proposition II, we need to consider agents® actions at the start of the game.
We can conclude from facts (A.5), (A.6.x) and (A.7.x) that if #1 and #2 choose the same action at the start
of the game, then they will "end up" playing (gd gd) at time zero. They will then remain in this state for the

remainder of the game.53

If agents choose the same actions initially, therefore, we are done. Consider a
profile that has them choosing different actions at the outset, and that in the resulting outcome, they choose
some state other than (gd gd) for an interval of time. In this case, #1’s payoff will be strictly lower than if
he had matched #2 at the outset. But whatever #2 plays at the beginning of the game, #1 could have

matched his action, and so could have attained the maximum possible payoff. Therefore the candidate profile

cannot be even a Nash equilibrium. This completes the proof of Proposition II. O

Proof of Theorem III.

Suppose there is a strategy fi» a decision node (z,h) and ¥>0 such  that
PAGs foihts B) > Pi(f, 1, ) + 2y, Let f = (fi, f_). Let (1) denote the outcome generated by f (f).
from (¢, h). For each n, let r" = [£1%", and let 2" denote the closest R”"-admissible history whose jump
B").

times weakly exceed those of k. Let A" (h") denote the outcome generated by fg» ¢ g~ from (7,

Using Theorem I, and the fact that strategies are strongly right continuous (F3), we have k" — n and
n

-

h" > ﬁ For n sufficiently large, therefore, V,-(fz") > Vi(h™) + y and &” < y. But this contradicts the as-

R". This completes the proof of Theorem III. I

53 This is not sirictly accurate. Agents may "frivoiously” eycle through a sequence of consecutive switches, but these cycles musi
end at the same instant that they started. Cycles of this kind would of course be silly, but strategies that are al worst silly cannot be éx-
cluded by weak dominance arguments.
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Proof of Theorem IV
To operationalize the restriction on jumps, assume that any history that has i jumping more than n*

jumps yields a payoff of —co. Once a grid R has been fixed, we will simplify notation by refering 1o Lr}®

simply as |r] and [r1¥ as [r]. Let [t] denote the smallest » € R that is weakly greater than ¢. Recall from

p. 40 that hy, is the history defined by truncating 4 after the last jump that occurs strictly before r. Finally,

let k(h,r) denotes the last jump of  that occurs strictly before r.

Picking a sufficiently fine grid.

Fix £ < 1. First pick a positive 8 < £ such that condition (*) is satisfied for °4, i.e., if two histories &

and K agree before 1— 8° and h; = h/, then 1V;(k) — V;(¥")! < “A. Then pick a positive 5% such that

SNt 5

ok Now pick any &*-fine
n*i

max | V,(h) — V,(¥)] < % whenever d¥(h, ') <. Finally, set &* =

grid R. Our choice of 8* guarantees that there will be n*i? grid points between 1 — 8% and 1. We will now
define an R-admissible strategy profile, g that will e-approximate f and be an ¢-SGP equilibrium for the

game played on K.

Constructing the g-approximation of f .

We will simultanecusly define a map m from R-admissible decision nodes to continuous-time nodes.
m(r, i) will be the node close to (r, ) identified in the statement of the theorem, i.e., the outcomes gen-
erated by g and f from, respectively, (r, h) and m(r, k), will be élose. The procedure is the formal VETSIon

of the one described on pp. 38-40.

Set m(0, @) = (0, @). Proceed as follows: (a) construct the continuous-time history n that is gen-
erated by f from (0, &); (b) identify a history 7 that is very close 1o 77; (c) define the map m at each deci-
sion node along the path defined by k after (0, @). The map m is defined only for nodes (r, #) such that

r <1 - &b (d) specify the profile g at each node for which m has been defined; construct g so that the out-

52 +xny* denotes the minimum of x and y. Similarly, ‘xvy’ denotes the maximum of x and y.
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come generated by g from the node is k. (e) consider each node (r, £) such that m({r], By 7)) was defined
in step (c) and define m(r, k). We can now go to the inductive step. After step (e), there are number of
nodes for which m has been defined but for which g has nor been defined. At each such node, repeat steps
(a)-(d) above. replacing (0, @) with the appropriate node. Clearly, after finitely many repititions of the
unductive step, we will have defined m and g on DNZ®,

Step (a): Let 7] denote the history generated by f from (0, ©).

Step (b): Associate to 1 the close R-admissible history ki, uniquely identified as follows: a(k) = a(n),

max( [r"(ﬁ)], [="1m)DH if *(n)<1-8°

Ty — sl¢m (hy = L :
tih)y=t'(n) and for x>1, t"(k) = max([t"“(ﬁ)'i, r(l"5b)'|)) if %) > 1— 8 kh is the

closest R-measurable history to 1 whose vector of jump-times exceeds the vector of jump-times of A.
Observe that for ;i such that #%7(k) < (1 — &%), a jump-time of # can be separated by at most n*i grid

points from the corresponding jump-time of 1. Since the maximum number of jumps is n*i, the "total”

b

separation between two histories is n*i? grid points. Since &* £ it follows that d%(n, h) < 148°.

(n¥iy’

(n"‘?)2 ’

If 12(h) 2 (1 — 6%), extend the above argument, incorporating the fact that &* <

Step (c): For each node (r, h,)e DN® such that r>0, we define the node

_ _ _ _ t*(n) if r = t*(i), for some x
m(r, hy,) = (m{o.n(h Ry, my(r, hﬂr)) as follows: myp(r, by = 1, otherwise ’

and my(r, El]r) = ﬁlk(i.r)'

Step (d): Define g so that it generates h from (r, h), ie., for (r, i-:u,) such that 0 < r <1 - 8%, set
g(r, ) = a™(k). Beyond 1 - 8°, pick the history that maximizes i’s payoff, starting from the appropri-
ate subgame, and construct g; to "follow” that history. (In general, other players’ will not be foliowing the
same history, but by (*), i’s payoff will still be almost maximized).

Step (e): Consider a x-length history % and a node (7, 7i) such that ¥ £ 1 — 5% and m(|F], Boeen)

was defined in step (c). Let 1 = my(lF], Boieot) Let
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F_, = inf{s > mu[F]s 7 1g1): fuils, 1) # @®(E)}. We now define the continuous time node m(¥, k).
There are three cases to consider., Case (3) requires the choice of a positive y*. Since the details of choos-
ing y* are tedious but routine, we defer them to the end. Before proceeding, we describe the delicate part of
the specification of m. Suppose / deviates unilaterally from g by not jumping at some node at which he is
supposed to be the only agent to jump. If this deviation were made at the comresponding node in continuous
time, the result would be that some agent other that i would immediately afterwards. m is designed to
"catch” this continuous time reaction and replicate it at the appropriate discrete-time decision node. For
example, suppose that f has i alone playing ‘left’ at the continuous-time node (!4, nobody has moved), and
j alone playing ‘left’ at the node (¢, nobody has moved), for every t € (14, % + €). In continuous time, if {
didn’t move at ¥, the resulting outcome would be that j would move at /4. To preserve the strategic flavor
of f in discrete-time, we need to "catch" j’s reaction and replicate it at the node discrete-time node
(['4], nobody has moved). To accomplish this, we -set m([14], nobody has moved) = % + y*, where ¥* is
chosen in advance to be small enough to catch each of the finite number of possible such reactions. We then
run f from this node, and use the resulting outcome to define g at ([14], nobody has moved). In this case
g [14], nobody has moved) will be equal to ‘lefr. We now consider the various cases.

(1) At least two agents deviated unilaterally from g at the preceding grid point, i.e., for all i, there

exists j # i such that g;([F ], 7 1x-1) # @’k ). In this case, set m(F, %)= (F, ). we can be casual about

how we define m at such nodes, because they cannot be reached by any unilateral deviation.

(2) Some i deviated unilaterally from g at the preceding grid point and 7 is the first grid point after a

jump in k. That is, r*'(h)=[F] and theére exists i such—that—g; ¢} F | Frieop) = a!*¢h)—while
g7l Bio_q) = a®(k). In this case, myy)(F, ) is different depending on whether or not agents other

than i jump at the preceding grid point. Specifically, set

o men(Fl i) if a%;(k) = a7} (k)
m(F. h) =1 | o B . ~ o where
min[mp y([F ] Aieatd + 7% T2 if a5 (h)y = a7’ (h)

-

F_; = inf{s > my (|7 ], Fieo1): Foils, m) # a'(R)}. Let my(F, %) be the x-length history n defined by
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(™), @™ (1)) = (mpy(F, k), a™' (k) and 1.1 = 1.
(3) Some i deviated unilaterally from g at the preceding grid point and there is at least one grid point

between 7 and the most recent jump in F. That is, t*'(h) < |F] and there exists i such that
g (LF ], B 1eo) # al*R) while g_i([F], % x1) = a’(R). Choose y* according to the procedure described

min[mg {[F, By + 7%, Fo] H T <F

at the end of the proof and define myo (7, £) = {r otherwise

choice of +¥* ensures that f_{,;)=f_(f +v, 1) on the interval 7,7 +v%). Let

my(F, kY = mg(}F ], 7).

We now proceed to the inductive step in the definition of g. Pick a regular node (z, #) such that
m(r, k) has been defined by step (e) above, but at which g has not yet been defined. The procedure

described below virtually duplicates steps (a)-(e) above, but with slight modifications.

Step (a): Let 1 denote the history generated by f from m(z, k).

Step (b): Associate to 7 the close R-admissible history %, uniquely identified as follows: a(h) = a(n %
for x < k(h) such that <)< (1 - 8%, t5(h) = t*(n ); otherwise,

max([e=(@)], [ TS 1 - 88

max([e=-Y(R)], [1 - 8°1) if <(7) 21~ s Observe as before that d7(n, k) < 148°.

1*(h) =

Step (c): For each node (r, ky,) € DN® such that r > r, define m(r, hy,) = ("’[0.1)(” hy) my(r, }7",))

(r"(r_-;\ if r = ¢*(h), for_some x > k(i)

as fOHOWS: mlo_,)(r, h"r) = 1,_ OtherWise s and mH(rs h“r) =7 Ik(ﬁ,r)‘

Step (d): Define g so that it generates h from (r, k), ie., for (, hy,) such that r € r < 1 - 8, set
g(r, hy) = a"*'(h). Beyond 1 - &%, pick the history that maximizes i’s payoff, starting from the appropri-
afe subgame, and construct g; to "follow™ that history.

Step (e): Repeat exactly as above.




-All-

This completes the inductive definition of g and m. Note that for every (r, ), mp(r, k) and r are
separated by at most n*i grid points.  Therefore  |myy(z, h) - rl <%8% so that
Empny(z, B) = rl + d®(n, k) < 8% Also, from (c), the history 7 generated by f from m{z, k) is within

5 of the history & generated by g from (r, #). Therefore g indeed e-approximates 1.

Showing that g is an e-equilibrium.

Suppose that there exists a strategy £; and a decision-node (r*, h*) such that i prefers the history gen-
erated by (2,, g_,;) from this node to the one generated by g. Let h denote this history., We can assume that
fz,- has no more than n* juinps (otherwise W(ﬁ) = —o0), Also, we will assume that t’“"(ﬁ) <1 - 8% (The

argument below needs modifying if this is not true. Since the modification is obvicus, we will leave it to the

reader.) We will construct a corresponding deviation f ; such that when {f,-, f-i) is played from the close .

continuous-time decision node m(r*, A*), the resulting history is very close to k. Since the outcome gen-
erated by g from (r*, h*) is also very close to the outcome generated by f from m(r*, h*), we will be done.
(We will assume that (r*, i*¥) is a regular decision node; the argument if (r*, £*) = (0, @) is virtually the
same.)
Define f; as follows, for each k(i;) 2 x> k(h*), each s 2 t"“(fz), each n such that a(n) = a(fz,,_l)
and each s> t9(n),
By if af(h) = aFTih), a5(h) # as7(h) and £oi(s, ma(®, Bio) # aXP(R)

Fiso B) = {ax(hy  if af(h) # af'(R), ax.(hy = a57i(h) and s = mpg n([15(A)], By Define §;

a¥~'(h) otherwise

to be constant on the remaining decision nodes. Since h; has no more than n* jumps, f ;(-, n) will instruct i
to jump no more than n* times. Also, for every 7, f‘ .(+, 1) has at most one discontinuity, so that F2 is
satisfied. Finally, f ,.. is jump-time independent so that F3 is satisfied.

Let f = (f i F—;) and let ﬁ denote the outcome generated by f from m(r*, h*). We will show that

for all x 2 k(A*), ma(r* v [5()], h),) < M- (A.8.%)
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~ A

where we write A —f— # if f treats h and K’ identically, in the sense of reswriction F3. Since .4, = h,

ﬁl k) = ﬁ and the map m separates histories by no more than &%, we will have established that
d”(ﬁ, 1'1)< &*, once we have established (A.8.x) for x = k(fz). For x = k(h*), r* 2 ft“(fz)’}, SO we are
concerned with m(r*, k). But by definition, m(r¥, h,,) = m(r*, h*), so that (A.8.k(h*)) is wivially
sarisfied.

Now assume that for x > k(h*), (A8.x-1) is true. We will show that (A8.x} is true. Set
(%, &%) = m(r*, h%). Setr = r*V[t=}(i)] and £ = r#v [ ()], Set i1 = [1¥(R)] and /0= t¥(h). Set
1% = my (1, h\,._;). Let k denote the history generated by g from (z, h,..;) and 1 denote one generated
by f from m(z, hye-)

First suppose that r® = r*, If i moves alone at this time, then our construction of f; has i jumping
exactly at *. Since g_;(r*, k1) = a%7'(h) it must be the case that f_;(#*, f11en) = a<7i(h). Therefore,
ﬁ has 7 jumping alone to af}‘l(ﬁ) at r*. Now suppose some agent other than i jumps at r*. By our coﬁ-
struction of g_;, f.; must have agents other than / moving either at or just after *. If i also jumps at r*,
then our construction of f . ensures that i moves exactly when these other agents move, i.e., either at or just-
gfter *,

Next, suppose that r® > r* and #,. = k. This case can happen only if 2(, Bier) = 805 Rie_y) at
every grid point in the interval [r, r%). In this case, it follows from the definition of f; that

Fils A1ema) = Fils Miey) 0N the interval (¢, ()] = (¢, 1°]. In this case, by step (c) of the algorithm,

mH( ;'t"(!al)ql, il—i;)_= '.1- ik(f;’l‘rr(ﬁ)‘l) - 1‘; Ixs so_thal_(_ATSTE}_is_tﬂle.
Finally, suppose that r® > r* and that Ri # By, In this case, mg(r?), k,.) is defined in Step (e) of

the algorithm, Since a jump occured at the previous grid point, case (2) applies. There are two cases 10 con-
sider: (A) player i jumps alone at t*(h); (B) players other than i jump at tX(h). In either case, my(r*!, hio)
is the x-length history 1 defined by (#'(n), a'**()) = (mpep(r*', hio), a¥(h)) and g = M.y, Where

m[o,l)(fO. finx-q) if case {A) applies

+ by = N h
migo(r™s Bix) min{myo 1,(r% hyey) + 75, #.;]  if case (B) applies ’ where
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3, = inf(s > mp (% Aear) foils, f1eoy) # a57(h)). We will establish that 7, 7 my(r*, hye), by

showing that the difference in the x'th jump-times of the two histories is at most ¥*. By construction of fir

a}‘“’(fz) if case (A) applies and 5 < myq 1,(r*, B
we have: F.(s, hyx_) = {a¥~(h) if case (B) applies and f_,(s, M.y = af"'(h) . In case (B), our
a,-"(fz) otherwise
choice of y* guarantees that g_; jumps at °, fz,,-l) to the same place that f_; jumps to at mm)(r", ﬁ,x_,);
moreover, our construction of f, ensures that in continuous time, { jumps simultaneously with other agents,
just as he does in discrete time. Therefore, by definition of mH(r‘”. fz,,,), we will be done once we have
shown that in case (A) no agent other than { jumps at or before m[(,_”(r“, ﬁ;,_,), while in case (B), no agent

other than / jumps before Z_;.

Define r~! = [/°] and set +™! = my (™, fz",.l}. We first establish that in case (A), f.; has no jumps
in the interval (7}, mlo.l)(’+1’ h,)). Since mlo_l}(r“, h,,) was defined at Step (¢}(2) and no agent other than
i jumped at the last jump, my ;(r*', h,) = 1° We need therefore consider how ¢° was defined. If i played
according to g; at the node (7', i!"f-;)’ then g called for all players to play a*~'(h) at r~', then ° was
defined at step (c) c;f the algorithm: it was set equal to #%, if nobody jumped at the node r° I"zh,_,), and oth-
erwise equal to the first time after ¢~! that some agent jumped. 'In either case, therefore, f.; cannot have
jumps between ~! and %, If i deviated at (r™', hy,-), 1° was defined at step (e), case (3), of the algorithm.

In this case, had f_; had a jump between ¢~ and r°, then {° would have "caught" this jump and g_; would

have replicated this jump at (r°, h,,.;), contradicting the hypothesis that case (A) applies. Now suppose that
case (B) applies. In this case, m[c._,)(r*‘, ﬁi,) was set equal to or just beyond %_;, so that agents other than i
jump only barely before mp1,(r*, B

If r=r"", then we are done. Assume therefore that r< .

We now show that
foils Mieor) = af~'(h) on [¢, +7']. Suppose to the contrary that there exists £° € [z, r~'] such that

f-iCs ﬁ,,_l) # a}‘“(fi). Clearly, 5° # f; otherwise f_; would have agents other than i jumping way from
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a}‘“(fz) exactly at ¢ and so g_; would similarly have agents jumping away from af"(iz) at r. Assume there-
fore, that 5° > ¢ and let r* denote the largest r € R such that mg,\(r, Bieoy) < 5% Let £ = myo (7, PN
Since ¢t~ = my 1, (r~, RBi_p) 2 5° we know that ¥ < r so that [7] < vl IE fuC, Niet) = a*~(n) on
the interval [¢, s°), then the outcome generated by f from the continuous time node (7, N1x-1) has some
player other than i jumping at s°. But since this outcome is what defines g at ([r'], ;t;,:_i), the agents that
f.; has jumping at (7, N,c;) must also be jumping at ([+'], hy._;). But this is a contradiction, since
Y <r'<r® and by assumption, g k) is constant on (r, r%). Assume therefore that
fis ﬁ,,_]) # a"‘l(ﬁ) on [7, s°). In this case, the node ([r'], le,_l) must be defined at step (e}, case (3) of
the algorithm. But then my ) ([7'1, Ji,o_y) is chosen so that f_x(t, Niet) # a5} (n). To determine g at
(1, %,._1), we Tun f from the node (myy([r], Bieot) N1c_y); some agent other than i jumps immedi-

ately, so that once again, g_;([r'], fz;,_l) # al; (n). Once again, we reach a contradiction.

Choosing v* (this is the deferred substep of (e)(3) above).

(The reader will note that our choice below depends crucially on the finiteness of the space H® and the
fact that f satisfies F2 and F3.) For any subset B of H, let J(B) denote the set of jump-times of histories in
B,ie,J(B)={te[0,13:Slhe Hand1<x < k(h)s.t. t¥(h) = t}. Let J(hY = J({Rh)).

We now describe a method of picking a finite set § Y(h) c H, for each h € H. Let h g ) denote the

largest jump of h that is weakly before L, Now define

DN{h)={(r, B').€ DN:t € R W J(h), higw »n = Bixny ey =1t). W(h) consists of all #'s in

R w J(h), paired with possible truncations of # and histories that are "built" by adding chains of consecutive

moves at the last jump-times of these truncations. For B < H, set W(B) = W{h). Let o/"* denote the
heB

outcome generated by f from the decision node (s, K’). Now define S'(h) by

Sihy = (W' e H: k' = o) or i = }iii%atf-”‘v"'), for some (¢, #') € W(h)}. For a subset B of H, set

S'(B) = 1 §'(h). Now inductively define the k-fold composition of SYB) by: S¥B) = S} (S*"'(B)). Let
heB

§* = SE(HF), where § = 2n*i#R. Note that for all k 2 &, SY(HF) = SE(HR). Define W* = W(S*).
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Pick y* >0 to satisfy: (i) min{ls ~¢l: s, r e J(S¥)and s # ¢} S y*% () ¥(, h) € W, Yy< ¥,
df (ol i), Eﬁotf-”s-")) < v (iif) ¥(t, k) € W*, i such that t(n') 2 t(h),

Fst (), k) = f£(2"*(R'), k') and, for all s> ' (K'), f(s, h) = f(s, K'). [(i) uses the fact that J(§*) is a

finite set; (i) uses the finiteness of W* and assumptions F2 and F3; (iii) uses the finiteness of W* and F3.
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