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Abstract

Facility-Level and System-Level Stochastic Optimization

of Bridge Maintenance and Replacement Decisions Using History-Dependent Models

by

Charles-Antoine Robelin

Doctor of Philosophy in Engineering-Civil and Environmental Engineering

University of California, Berkeley

Professor Samer M. Madanat, Chair

This dissertation addresses the determination of optimal decisions for bridge maintenance

and repair both for one facility and for a system of heterogeneous facilities. Deteriora-

tion models are used to predict the future condition of facilities, which is required in the

optimization. More specifically, deterioration models decrease or capture the uncertainty re-

garding future condition. This dissertation concentrates on the use of deterioration models

that take into account aspects of the history of deterioration and maintenance.

The first part of the dissertation presents the optimization of bridge inspection, mainte-

nance, and repair decisions for a system of heterogeneous facilities, using a deterioration

model from the literature; this model is non-Markovian, and its formulation makes the opti-

mization problem computationally complex. The determination of exact optimal solutions

is unlikely to be achieved in polynomial time, and we derive bounds on the optimal cost.
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We show in a case study that these bounds are close to the optimal cost, which indicates

that the corresponding policies are near optimal.

The second part of the dissertation presents the optimization of maintenance and repair

decision for a system of heterogeneous bridge decks, using a Markovian deterioration model.

The dependence of this model on history is achieved by including aspects of the history of

deterioration and maintenance as part of the state space of the model. We present an ap-

proach to estimate the transition probabilities of the model, using Monte Carlo simulation.

This model is then used to formulate the problem of optimizing maintenance and repair deci-

sions for one bridge deck as a finite-state, finite-horizon Markov decision process. Numerical

simulations show that the benefits provided by this augmented-state model, compared to a

simpler Markovian model, are substantial.

Based on the facility-level results, optimal maintenance and repair decisions are determined

for a system of heterogeneous facilities. Recommendations are provided for each facility, and

we provide formal proofs of optimality in the continuous case. A numerical study shows that

the results obtained in the discrete-case implementation seem to be valid approximations

of the continuous-case results. The computational efficiency of the system-level solution

makes this approach applicable to systems of realistic sizes.

Professor Samer M. Madanat
Dissertation Committee Chair
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Chapter 1

Introduction

This dissertation addresses the problem of determining optimal maintenance and repair

decisions in the context of civil infrastructure systems, for a bridge or a system of several

bridges. This problem consists of making sequential resource allocation decisions based on

the evolution of the system over time, which is stochastic in nature.

Civil infrastructure management is the process by which agencies monitor, maintain, and

repair deteriorating systems of facilities, within the constraints of available resources. More

specifically, the management process refers to the set of decisions made by an infrastructure

agency over time to maximize system performance. The basic maintenance and repair

(M&R) decisions an agency has to make are: in every time period, what M&R activity

should be performed on each facility in the system?

Based on the recent Status of the Nation’s Highways, Bridges, and Transit (FHWA, 2002),

the average year of construction of the bridges in the United States was determined to

be 1963. In 2002, 50% of the daily traffic in the U.S. utilized bridges that were more

than forty years old. Of the 586,000 bridges in the nation, 28% were deficient, where half
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of these were structurally deficient. The deteriorating bridge population, as well as the

limited amount of funds available for maintenance and inspection, led to the development

of bridge management systems to optimize the use of available funds by helping agencies

make maintenance and repair decisions.

Experience with infrastructure management systems in the United States shows that the

benefits of systematic approaches to facilities management have been substantial in prac-

tice. For example, the Arizona Department of Transportation reported that the implemen-

tation of their Pavement Management System (PMS) to optimize pavement rehabilitation

expenditures has saved over $200 million in maintenance and rehabilitation costs over a

five-year period (OECD, 1987). These savings were achieved because the maintenance and

rehabilitation resource allocation decisions were made by the PMS with the objective of

minimizing the life-cycle costs of the pavement sections in the network. In the area of

bridges, the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 required

every state Department of Transportation and metropolitan planning organization to im-

plement a bridge management system in order to optimize the allocation of resources for

maintenance planning. This federal mandate has recently been waived (Schweppe, 2001).

Despite the waiver, government agencies are still faced with aging infrastructure and limited

resources. Thus, there is a definite need for the optimization of the allocation of resources

for maintenance planning.

1.1 Motivation

This dissertation considers maintenance and repair decisions for a bridge or a system of

several bridges. The result of the optimization presented in this dissertation is a set of

maintenance and repair policies, i.e., a set of recommendations of maintenance or repair
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actions for each facility, depending on the year and the condition of each facility. The

cost of a maintenance action of a given type increases as the condition of the facility on

which it is performed deteriorates. Optimal decisions are based on this fact, as well as the

relationship between the costs and effectiveness of maintenance actions of different types,

and on trade-offs between immediate and future costs.

Evaluating the cost effectiveness of maintenance and repair decisions requires the estima-

tion of the future condition of the facilities. This estimation is done through the use of

deterioration models. Given the inherent stochasticity associated with the deterioration,

the purpose of a deterioration model is to decrease the uncertainty on the prediction of

the future condition. There exists a wide range of deterioration models, differing in their

required inputs and their prediction capabilities.

The selection of a deterioration model for use in the optimization of maintenance and repair

decisions is generally based on the trade-off between the desired level of realism and the

computational complexity. The more realistic a model, the lower the uncertainty in the

prediction of the future deterioration is but the higher the complexity of the optimization

is. This dissertation concentrates on the use of deterioration models that take into account

aspects of the history of maintenance and deterioration. We present the use of these history-

dependent models in computationally efficient formulations of the problem of optimizing

maintenance and decisions for one facility and for a system of several facilities.

Figure 1.1 shows the reduction in the future condition prediction uncertainty if the age of

the facility is included as an explanatory variable of the deterioration model. More precisely,
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Figure 1.1: Range of condition predictions, starting from year 15, according to two models
based on the same physical processes: (A) model including the current condition; (B) model
including the current condition and the age of the facility.

the shaded regions indicate the range of condition prediction after year 15. The two graphs

compare the ranges of predictions of two models based on the same physical processes,

assuming that the information provided to the deterioration models is:

• on the left-hand side, the condition of the facility in year 15;

• on the right-hand side, the condition of the facility in year 15, as well as the age of the

facility (i.e., 15 years).

This example shows one way to include information about history in a deterioration model;

other possibilities are presented in this dissertation.

1.2 Outline

The remainder of the dissertation is orgranized as follows:

Chapter 2 reviews existing bridge management systems and optimization models. We

present five bridge management systems used or designed for use by agencies in charge

of the management of bridges. We also compare models of optimization of bridge mainte-

nance and repair decisions from the literature.
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Chapter 3 addresses inspection, maintenance, and repair decision making for a system of

heterogenous facilities, using non-Markovian models of deterioration. Since the determina-

tion of the exact solution to the optimization problem rapidly increases with the number of

facilities in the system, we derive bounds on the optimal cost and near-optimal policies.

Chapter 4 addresses maintenance and repair decision making for a single facility. We present

the derivation of an augmented-state Markovian model of deterioration, taking into account

aspects of the history of deterioration and maintenance. We use this model in the optimiza-

tion of maintenance and repair decisions, formulating the problem as a finite-state, finite-

horizon Markov decision process. The benefits of including the additional information (i.e.,

regarding history) are evaluated through simulation.

Chapter 5 addresses maintenance and repair decision making for a system of heterogeneous

facilities, based on the facility-level results from chapter 4. Optimal policies are determined

for all facilities in the system. We present formal proofs of the results in the continuous

case. The optimization is implemented in the discrete case, and a parametric study shows

that the discrete-case results can be considered a valid approximation of the continuous-case

results.
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Chapter 2

Review of Bridge Management

Systems and Optimization Models

Given available resources and a set of possible maintenance and repair (M&R) actions,

the objective of infrastructure management is to determine the optimal M&R decisions

in the current year and in future years. The solution of this problem is based on the

consequences of possible actions on the future condition of the system. Since information

about future conditions is not available at the time of decision making, deterioration models

are used to predict future deterioration. This framework is common to all existing bridge

management optimization methods, although the actual formulation of the optimization

and the deterioration models differ.

In the present section, the differences, characteristics, and limitations of bridge management

systems (BMS) implemented by agencies, or designed for implementation, are presented

first. Optimization models of bridge maintenance and repair, found in the literature, are

reviewed in the second part of this section.
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2.1 Characteristics and Limitations of Existing Bridge Man-

agement Systems

Pontis (Golabi and Shepard, 1997), Bridgit (Hawk, 1994), the North Carolina Bridge Man-

agement System (Al-Subhi et al., 1990) and the Indiana Bridge Management System (Sinha

et al., 1988; Saito and Sinha, 1989a,b; Jiang and Sinha, 1989; Gion et al., 1992) are four

major BMS that have been developed in the United States. Their purpose is to support

M&R decision making for a system of several bridges, considering constraints of available

budget and system performance. The types of deterioration models used in these four BMS

are similar; however, the optimization approach in Pontis differs from that in Bridgit, the

North Carolina Bridge Management System (NCBMS), and the Indiana Bridge Manage-

ment System (IBMS).

• In Pontis, the optimization approach is top-down. Maintenance and repair optimization

is performed at the system level. Actions are recommended for fractions of the bridge

population. Actual bridges on which actions are performed are then selected, either man-

ually or by a subroutine. This final selection may differ slightly from the optimization

done earlier at the system level. This approach overcomes dimensionality problems in

a very effective manner. Pontis considers populations of bridge components rather than

individual bridges, which makes it well suited for large systems. However, some of the as-

sumptions required in this approach are unrealistic. Parameters, recommendations, and

facility conditions must be aggregated over the bridge population. This may be prob-

lematic, as a group of bridges is usually less homogeneous than a system of pavement

sections. Moreover, bridge-specific information or environmental factors cannot be taken

into account. The version of Pontis described in Golabi and Shepard (1997) divides the
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bridges into components, which does not allow the interactions between the components

of a bridge to be considered, with the following two consequences: it leads to inaccurate

modeling of deterioration, and it prevents the optimization model from favoring prac-

tical maintenance strategies. For example, if a bridge deck is to be maintained and its

substructure will need maintenance in the near future, it is logical to group the mainte-

nance actions in order to minimize the closure of the bridge. Based on conversations with

engineers at the Federal Highway Administration and at the California Department of

Transportation, the aforementioned limitations are seen as the main reasons why bridge

management systems such as Pontis are not used to their fullest capacity by state agencies

in the United States.

• In Bridgit, the NCMBS, and the IBMS, the optimization approach is bottom-up. Main-

tenance and repair optimization is performed for every facility. Actions are evaluated for

individual bridges. These recommendations are then aggregated and certain actions are

selected to take into account system level constraints, such as budget or overall perfor-

mance. The general layout of the optimization in these BMS occurs in two steps. The

first step is to define possible sets of actions at the bridge level, called life-cycle activity

profiles. The second step selects one life-cycle activity profile for each bridge to maximize

the total effectiveness, under constraints of budget and overall performance. This step

requires the use of integer programming. The maintenance costs calculated in these BMS

are called life-cycle costs. However, the optimization is performed over a limited period,

which we refer to as the optimization period (five years in the IBMS, twenty years in

Bridgit). Beyond this period, maintenance actions are fixed. It is possible to address

this issue by extending the optimization period. However, this would require increasing

the number of alternatives for each bridge, which may make the problem intractable.
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2.2 Review of Bridge Management Optimization Models

Optimization models present in the literature typically have a higher degree of complexity

than bridge management systems. However, they usually cannot be readily implemented

and can be viewed as prototypes for future BMS. As was the case for the BMS presented

above, the objective of these models is to optimize M&R decisions, based on the knowledge

of the current condition of the system through inspections and on the prediction of future

condition through the use of deterioration models. While the general framework of the

optimization models is similar, these models differ from each other in many aspects: rep-

resentation of the facility condition, scope of optimization, decision variables, deterioration

models, layout of the optimization, and assumptions about the knowledge of the current

condition.

Representation of the facility condition. In pavement management, a facility is usu-

ally evaluated in terms of its serviceability, i.e., the level of service it provides to its users

with respect to the function it is required to perform. For example, highway pavements are

evaluated in terms of their ability to provide riders with a safe and comfortable ride, which

also limits fuel consumption (Watanatada et al., 1987). Such an indicator is also used in

the case of highway bridge decks, for example, in Pontis. Other models, such as in Mori

and Ellingwood (1994a) and Kong and Frangopol (2003), consider the probability of failure

(or a quantity directly related to the probability of failure) as the measure of the condition

of highway bridges. In these models, the condition is represented as a continuous variable,

whereas most models considering serviceability use discretized states.

Scope of the optimization. The optimization is performed on a given system for a

given planning horizon. The system can be composed of one facility or a system of several
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facilities.

The facility-level problem deals with one bridge only and is obviously less complex than

the system-level problem. It is also less realistic, especially in the presence of budget

constraints. Namely, a budget is usually provided for several facilities and not for a single

facility. In practice, a facility-level bridge management system is not very useful. However,

most advances in deterioration or optimization models are first explored at the facility

level (Madanat and Ben-Akiva, 1994; Mori and Ellingwood, 1994b; Guillaumot et al., 2003;

Chung et al., 2003; Kong and Frangopol, 2003).

The system-level problem represents the realistic case where a budget is used for the man-

agement of several facilities. Arbitration between actions on different facilities must be

performed. Some facility-level models have been extended to the system level. For exam-

ple, the model developed Smilowitz and Madanat (2000) can be considered a system-level

extension of Madanat and Ben-Akiva (1994). However, many facility-level models, in par-

ticular the reliability-based models from Mori and Ellingwood (1994b) and Chung et al.

(2003), have not been extended to the system level.

Decision variables. The main objective of bridge management optimization models is

to optimize the maintenance of a bridge or of a system of bridges, i.e., to help with the

decision of which maintenance action to apply on a given facility in a given year.

The decision to inspect a facility in a given year can also be part of the decision vari-

ables (Madanat and Ben-Akiva, 1994; Mori and Ellingwood, 1994b; Smilowitz and Madanat,

2000; Chung et al., 2003).

Pontis, Bridgit, and the model developed in Guignier and Madanat (1999) include improve-

ment as a decision variable. Improvements are different from regular maintenance and repair
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actions. The goal of maintenance and repair actions is to restore a facility to its original

condition, stop its deterioration, and/or decrease its deterioration rate over a limited period

of time. Improvements alter the functionality of a facility, e.g. increase the vertical or hor-

izontal clearance, increase the load limit, etc. Improvements and maintenance actions are

optimized separately in Pontis and Bridgit, and jointly in Guignier and Madanat (1999).

This latter model showed that the joint optimization results in cost savings.

Deterioration model. The optimization of bridge maintenance and repair decisions is

based on predictions of future condition. Deterioration models are used for these predic-

tions. Many models present in the literature of optimization of maintenance are time-

independent: the models from Madanat and Ben-Akiva (1994), Smilowitz and Madanat

(2000), Jiang et al. (2000), and Durango and Madanat (2002). This is also the case for

some of the bridge management systems described earlier: Pontis, Bridgit, and the Indiana

bridge management system. This means that the predicted future condition of a facility

only depends on its current condition and is independent from its past condition. In other

words, using states to represent the condition of a facility, the probability for an element to

transition from an initial state A to a lower state B does not depend on the time spent in

state A. This assumption is linked to the use of Markov chains to represent the deterioration

of a facility. A transition probability matrix is defined for each maintenance action. These

models recognize that the deterioration of a facility is a stochastic process. However, they

consider that this process is known. The formulation developed in Durango and Madanat

(2002) explicitly accounts for the uncertainty in the model definition. The definition of the

model is updated over time, as information about the actual deterioration becomes avail-

able. It should be noted that this deterioration model is also time-independent, in the sense
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that the deterioration of the facility from time period n to time period n+1 only depends on

its condition at n. However, the dependence, expressed by a transition probability matrix,

changes over time.

Other models use time-dependent deterioration models (Mori and Ellingwood, 1994a; Kong

and Frangopol, 2003). These models are based on physical processes such as corrosion.

Moreover, the deterioration is expressed by continuous variables instead of the discretized

states described earlier. For example, the deterioration in Mori and Ellingwood (1994b) is

composed of two phases, a period before the initiation of damage and a period of linear

deterioration. The influence of maintenance is modeled by stopping the deterioration for

a period of time and/or decreasing the deterioration rate. The parameters of the models

are represented by known, random variables. The uncertainty in the model is not taken

into account in the optimization models described in Mori and Ellingwood (1994b) and

Kong and Frangopol (2003). A method to update the model parameters using available

data is provided in Enright and Frangopol (1999), but it has not been implemented in an

optimization model.

Layout of the optimization. The optimization model can be set up in several ways.

The first formulation described here is common to the problems posed as Markov decision

processes, the model by Madanat and Ben-Akiva (1994) at the facility level and the model

by Smilowitz and Madanat (2000) at the network level. The objective of these models

is to minimize the total cost under a budget constraint. The total cost is composed of

the agency costs and the user costs. The agency costs represent the actual cost of the

maintenance, while the user costs are an expression of the condition of the facilities in
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monetary units. In Madanat and Ben-Akiva (1994) and in Smilowitz and Madanat (2000),

the cost of maintenance also includes the cost of inspections. These problems are solved

using dynamic programming at the facility level and linear programming at the system level.

At the system level, the dimensionality is overcome by aggregating homogeneous facilities

into groups, and providing recommendations for fractions of the population of these groups.

A different approach is presented in Mori and Ellingwood (1994b). This facility-level model

minimizes the sum of the agency costs and the expected failure costs, under the following

safety constraint: the probability of failure of the facility within the planning horizon must

be kept under a user-defined value. In this model, agency costs also include inspection

costs. In Kong and Frangopol (2003), the costs to be minimized are only the maintenance

costs, but they are estimated in a more complex manner and depend on the condition of

the facility. The constraint serves the same purpose as in Mori and Ellingwood (1994b),

but uses a slightly different formulation: the reliability index of the structure must be kept

above a predetermined target level.

In the BMS with a bottom-up approach described earlier (Bridgit, the Indiana BMS, and

the North Carolina BMS), the objective of the optimization is to maximize the effectiveness,

under constraints of budget and overall performance. Effectiveness is generally defined as

a monetary measure of the benefits of maintenance policies with respect to their costs,

with slight variations depending on the model. Referring to the von Neumann-Morgenstern

decision theory, Val and Stewart (2003) justify that minimizing the expected life-cycle cost

is equivalent to maximizing the expected utility expressed in monetary values.
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Knowledge of current condition. The current condition of the system is estimated

through inspections. In the United States, bridges are usually inspected every two years

(CFR, 2002). In the model from Kong and Frangopol (2003) (as well as in the bridge man-

agement systems described earlier), inspections are assumed to be performed periodically

and are not part of the decision variables. Moreover, the current condition of the system is

considered known exactly in these models. This is not realistic, as the condition of bridges

is assessed predominantly through visual inspections (AASHTO, 2000), which are subject

to errors. In the presence of uncertainty with respect to the bridge elements’ conditions,

a conservative approach is to assume the worst possible condition. Such an approach may

lead to unnecessary maintenance actions, thus yielding higher M&R costs. To reduce this

uncertainty, it is possible to inspect the bridge components’ conditions more frequently.

Thus, a trade-off exists between M&R costs and inspection costs.

An improved model is presented in Mori and Ellingwood (1994b) for concrete structures and

in Chung et al. (2003) for steel bridges. In these reliability-based models, inspections are

part of the decision variables and are assumed to be error-free. While the model in Chung

et al. (2003) uses a more complex and more realistic deterioration model, it considers only

one maintenance action. The probability of performance of a maintenance action is provided

by a model and is not part of the decision variables. The model in Mori and Ellingwood

(1994b) introduces a threshold of detectability of damage. If the damage is smaller than

the threshold, it is not detected, whereas if it is larger than the threshold, it is detected and

repaired with probability 1. This model also considers partial inspections. Each scheduled

inspection starts with the inspection of two small portions of a facility. If no damage

occurrence greater than a predetermined threshold is detected in one or both portions, no
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further inspection or repair is performed until the following scheduled inspection. Otherwise,

the entire facility is inspected and all detected damage occurrences are repaired.

The models developed in Madanat and Ben-Akiva (1994) at the facility level and Smilowitz

and Madanat (2000) at the system level also jointly optimize inspections and maintenance.

However, these models differ from the previous ones, as they explicitly recognize the presence

of random errors in the inspection results. The methodology developed in these models is

referred to as a latent Markov decision process: the Markov decision process is not defined

over the space of the condition states of the system, which is unknown, but over the space

of the information states. The information state contains all measured condition states and

actions performed since the beginning of the planning horizon and the initial condition of the

system, which is assumed known. The model developed in Guillaumot et al. (2003) optimizes

jointly M&R actions and inspections and does not assume error-free inspections. It also

considers uncertainty in the deterioration model definition, as was introduced in Durango

and Madanat (2002) and Durango (2004).

2.3 Limitations of Bridge Management Systems and Opti-

mization Models

Optimization models using more realistic, history-dependent deterioration models consider

only one facility (Mori and Ellingwood, 1994b) or a system of homogeneous facilities (Kong

and Frangopol, 2003). Moreover, the set of decision variables considered in this latter model

is limited. This is also the case in existing bridge management systems such as Bridgit, the

Indiana BMS and the North Carolina BMS.
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On the other hand, existing optimization models considering a large set of decision variables

for a system of facilities use Markovian models of deterioration. The limitation of these

Markovian models is the memoryless assumption. Although parts of this assumption may

be valid for certain bridge states, namely those where the deterioration is primarily governed

by mechanical processes, Mishalani and Madanat (2002) have shown empirically that it

is unrealistic for bridge states where the deterioration is primarily governed by chemical

processes. These optimization models are based on a top-down approach. The limitations

identified in the case of Pontis, in relation to the aggregation required for this approach,

also apply to these models.

This dissertation presents optimization models that address these limitations. The optimiza-

tion of maintenance and repair decisions is first formulated using the realistic, reliability-

based, history-dependent model presented in Kong and Frangopol (2003). The optimization

is done for a system of facilities, considering a realistic set of decision variables.

Markovian models of deterioration allow for the use of standard optimization techniques,

such as dynamic programming and linear programming. The Markovian models we present

also take into account aspects of the history of deterioration and maintenance, which in-

creases their prediction capability. These models are implemented in facility-level mainte-

nance and repair optimization. The optimization is also extended to a system of heteroge-

neous facilities, providing action recommendations for each facility.
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Chapter 3

Bottom-Up Optimization Using

Non-Markovian Deterioration

Models

The limitations identified in the literature review point to the need for a method to optimize

maintenance and replacement decisions for a system of bridges, with the following objectives:

• Bridge-specific attributes, including environmental factors and probability of failure,

must be taken into account in the optimization.

• For each bridge or each component of each bridge, a set of recommended actions must

be determined.

• System-level constraints (budget, overall performance) must be taken into account.

• History-dependent deterioration models, whether physical or empirical, should be used.
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3.1 Definitions and Assumptions

System. The system considered is a system of highway bridges. The system is managed

by a single agency, such as a state Department of Transportation. While the condition of

the bridges obviously changes over time, the system remains constant over the planning

horizon; no bridges are built or decommissioned.

Budget. For accounting and fiscal reasons, an agency usually has a yearly budget available

for the maintenance of the system. In some cases, the available budget has specific funds

dedicated to a certain type of activity. For example, a portion of the budget can only be used

for replacement of facilities, while another part may be reserved for routine maintenance.

In the present model, such refinements are not taken into account and the yearly budget is

available for all activities. However, including this refinement does not increase significantly

the complexity of the problem. In the present chapter, the budget is not assumed to

be cumulative, i.e., the agency cannot save part of its budget in a given year for use in

subsequent years.

Costs. The agency incurs costs when maintenance actions or inspections are performed.

Moreover, maintenance actions on a bridge usually imply the closure of some or all of its

lanes. This leads to delays to the users and/or costs associated with detours. This is

particularly important in the case of bridges. In a highway network, bridges are usually

capacity constraining, due to their high cost of construction relative to regular highway

lanes. Moreover, convenient detours may not be available. In pavement management,

the influence of the facility condition on the users is usually modeled by user costs. The

user costs represent vehicle wear and tear, fuel consumption due to rough roads, and a

translation in monetary values of the riding discomfort. In the case of bridges, users are
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assumed indifferent to the facility condition, as long as there is no failure. Bridges are

usually short compared to the total distance of a trip, and the roughness of their surface

does not influence significantly the total fuel consumption and the overall driving comfort.

Thus, user costs consist of delays, closures, and detours associated with the performance of

maintenance actions.

Measure of facility condition and modeling of bridges. The only bridge component

considered is the deck. The condition of a bridge deck is measured by its reliability index

β, which is linked to its probability p of failure by the following relationship:

p = Φ(−β)

where Φ is the cumulative standard normal distribution. The memoryless assumption made

in all current system-level models is relaxed; the deterioration model is continuous, stochas-

tic, and time dependent. The epistemic uncertainty in the deterioration model is not taken

into account.

Modeling of maintenance. Although the deterioration of the deck is a continuous pro-

cess and is modeled as a continuous process, maintenance decisions are made at discrete

points in time. Due to the presence of yearly budget constraints, the most logical time unit

for maintenance decisions is the year. This assumption is consistent with the typical rate of

deterioration of bridges. Within a year, the actual point in time at which the maintenance

action is performed is not important, and a maintenance action is said to be performed “in

year t.” Hence, the planning horizon is broken down into periods of one year. The planning

horizon is assumed to start at the beginning of year 0 and to end at the end of year T − 1,

where T is the length of the planning horizon.
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Knowledge of facility condition. It is assumed that inspections are error free and

provide perfect information about the condition of the inspected facility.

3.2 Problem Formulation

A bottom-up approach is used to take into account bridge-specific information and prevent

aggregation problems. Given the initial condition of the system, the objective of the agency

is to minimize the sum, over the planning horizon, of the expected cost of maintenance,

inspection, and failure. When maintenance is performed, user costs are incurred at the same

time as agency costs. Thus, the sum of user and agency costs is denoted as maintenance

costs.

Two formulations were tried:

• In the deterministic formulation, the set of decision variables is a set of binary variables.

Each binary variable represents the decision to perform a given action on a given facility

in a given year. The result of the optimization is a set of recommendations such that

the reliability and budget constraints are satisfied. From a practical point of view, this

means that the optimization is performed at the beginning of the planning horizon, and

the recommendations are applied regardless of the actual reliability index of the facilities.

This formulation is described in appendix A.

• The second formulation, based on the same assumptions, is motivated by the fact that the

information about the past and current condition of the facilities, provided by inspections,

is not used in the deterministic formulation. If this information is used, the maintenance

can be further optimized. The formulation, referred to as partially stochastic, is described

below.

The M&R actions considered in the partially stochastic model can be grouped into two gen-
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eral categories. The actions of the first category, which will be called maintenance actions,

are performed according to a schedule, regardless of the condition of the facilities. The fre-

quency of the performance of maintenance actions is a decision variable, for each bridge and

each type of maintenance action. The actions of the second category, which will be called

repair actions, are performed when the condition of a facility reaches a predetermined level.

The distinction between time-based and condition-based triggers of M&R actions was first

presented in Kong and Frangopol (2003). The level at which a repair action is performed

is a decision variable for each bridge and each type of repair action. In that case, the result

of the optimization is referred to as a policy: the recommendation of action depends on the

facility and the time, as well as on the realization of the condition of the facility.

The following notation is used:

• n: number of facilities in the system;

• T : number of years in the planning horizon;

• Mi: number of types of maintenance actions that can be applied on facility i;

• Ri: number of types of repair actions that can be applied on facility i.

The decision variables are:

• 1maintenance
i,t,m : binary variable equal to 1 if the maintenance action of type m is scheduled

on facility i in year t, 0 otherwise, i ∈ {1, . . . , n}, m ∈ {1, . . . ,Mi}.

• 1inspection
i,t : binary variable equal to 1 if an inspection is scheduled on facility i in year t,

0 otherwise, i ∈ {1, . . . , n}.

• βrepair
i,t,r : target reliability index used for the repair action of type r on facility i in year t,

i ∈ {1, . . . , n}, r ∈ {1, . . . , Ri}. For a given facility i in condition c at the beginning of

year t, the repair action to be performed in year t is of type r such that βrepair
i,t,r ≥ c and
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for any r′ 6= r in {1, . . . , Ri},
[
βrepair

i,t,r′ < c or βrepair
i,t,r′ > βrepair

i,t,r

]
. In other words, the type

of the repair action performed is r, such that βrepair
i,t,r is the lowest target reliability index

greater than the condition c of the facility.

• Ii,r,m: number of years after repair action r has been performed on facility i during

which maintenance action m is not performed, regardless of the value of 1maintenance
i,t,m . The

purpose of this variable is to prevent maintenance actions to be performed in a period of

a few years following a repair action. Let us consider some examples of the use of Ii,r,m,

assuming that repair action r has been performed on facility i in year t and that no other

repair action has been performed. If Ii,r,m = 1 and 1maintenance
i,t,m = 1, then maintenance

action m is not to be performed in year t, even though it was scheduled. If Ii,r,m = 1

and 1maintenance
i,t+1,m = 1, then maintenance action m is to be performed in year t + 1 as

scheduled. If Ii,r,m = 0, then maintenance actions of type m are performed as scheduled,

even in year t. In the general case, where several repair actions r1, r2, . . . , rk have been

performed on facility i in years t1, t2, . . . , tk, maintenance action m is to be performed

on facility i in year t if and only if
[
1maintenance

i,t,m = 1 and ti + Ii,rp,m ≤ t, p ∈ {1, . . . , k}
]
.

The formulation of the optimization problem is shown below. In the formulation, the

time variable is usually denoted by t in the discrete case (e.g., time at which maintenance

and replacement decisions are made), and by tcont in the continuous case (e.g., in the

deterioration).
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min
n∑

i=1

[
Fi (T ) Cfailure

i +
T−1∑
t=0

αt
[
1inspection

i,t C inspection
i + E

[
Cmaintenance+repair

i,t

]]]
(3.1)

subject to

Fi(t) ≤ P acceptable
i , i ∈ {1, . . . , n} , t ∈ {0, . . . , T − 1} (3.2)

βi (tcont) = fi

(
tcont, t

repl
i (tcont) ,

{
Ai,t, t ∈

{
trepl
i (tcont) , . . . , btcontc

}})
, (3.3)

i ∈ {1, . . . , n} , tcont ∈ [0, T )
n∑

i=1

[
1inspection

i,t C inspection
i + E

[
Cmaintenance+repair

i,t

]]
≤ Bt, (3.4)

t ∈ {0, . . . , T − 1}

In addition to the notation defined earlier, the following notation is used:

• Fi(t): probability of failure of facility i in year t

• Cfailure
i : cost of failure of facility i

• α: discount factor; α = 1/(1 + r), where r is the interest rate

• C inspection
i : cost of inspection for facility i

• E
[
Cmaintenance+repair

i,t

]
: expected cost of maintenance and repair of facility i in year t.

The expected value of the cost is used because of the probabilistic nature of the perfor-

mance of maintenance and repair actions. Namely, repair actions are performed based

on the deterioration, which is a probabilistic process; scheduled maintenance actions are

performed only after a given period of time following a repair action. As the closed form

of the expected cost is not available in the general case, it will be determined through

Monte Carlo simulations, which are described later.

• P acceptable
i : acceptable probability of failure for facility i



24

• βi(t): reliability index of facility i at time t. By definition of the reliability index, the

instantaneous probability of failure of facility i at time t (given it has not failed yet) is

Φ (−βi (t)).

• btcontc: largest integer less than or equal to tcont

• trepl
i (tcont): year of last replacement of facility i before time tcont. If the facility i has not

yet been replaced by time tcont, trepl
i (tcont) = 0

• Ai,t: set of maintenance and repair actions performed on facility i in year t. This set may

be empty. Due to the probabilistic nature of deterioration, this set is not deterministic.

However, given a set of actual deterioration parameters and a repair policy, this set can

be determined. This will be used in Monte Carlo simulations, which are described later.

• fi

(
tcont, t

repl
i (tcont) ,

{
Ai,t, t ∈

{
trepl
i (tcont) , . . . , btcontc

}})
: reliability index of facility i

at time tcont, depending on actions performed between year trepl
i (tcont) and year btcontc.

This continuous function of time is the basis for the modeling of deterioration and ensures

that the deterioration is time-dependent.

• Bt: budget made available to the agency at the beginning for year t, to be used in year t.

Constraint (3.2) is a reliability constraint. Constraint (3.3) determines the deterioration of

the facilities. Constraint (3.4) is the budget constraint and is based on expected costs. Due

to the large number of bridges in the system, the total cost for the system in a given year

has a very low variance. Thus, if the expected system cost satisfies the budget constraint,

the probability that the actual cost exceeds the budget constraint is very low.

Due to the probabilistic nature of the application of repair actions, it is not feasible to find

a closed-form of the deterioration and of the expected costs of maintenance and repair for

a reasonably long planning horizon. Thus, the expected costs, the deterioration profile,
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and the probability of failure will be estimated using Monte Carlo simulations. Simplifying

assumptions on the decision variables must be made in order to decrease the complexity

of the problem. For example, the maintenance actions may be assumed to be performed

at a certain frequency. For one facility and one type of maintenance action, the number of

decision variables decreases from T to two: one for the frequency and one for the starting

year. The number of types of maintenance and repair actions may also be small, as is the

case in Frangopol et al. (2001), where one type of maintenance action is considered and

replacement is the only type of repair.

3.3 Implementation of the Solution

For each bridge, the decision variables are:

• the threshold in reliability index for replacement. If an inspection shows that the relia-

bility index of the deck is under this threshold, the deck is replaced,

• the frequency of inspections,

• for each type of maintenance action, the frequency with which the action is scheduled,

• for each type of maintenance action, the number of years after a replacement during

which no maintenance action of this type is to be performed. For clarity, this period is

denoted as a period of blocked maintenance.

A quadruple with values of the decision variables for one bridge will be referred to as a

policy. Based on the problem formulation, the solution can be determined in two distinct

phases.



26

3.3.1 Facility Level

For each bridge, a list of possible policies is created. Using Monte Carlo simulation, the

cost of each possible policy for one bridge is determined, as well as the probability of failure

of the bridge under this policy. If the probability of failure under a certain policy is lower

than a predetermined threshold, this policy is kept for the second phase and is considered

feasible at the facility level. Otherwise, it is considered infeasible and is not kept for the

second phase.

3.3.2 System Level

At the beginning of this phase, a list of policies that are feasible at the facility level is

available for each bridge, along with the associated costs. One policy per bridge must be

selected in order to minimize the total cost, while satisfying the budget constraint for every

year of the planning horizon. The set containing one policy per bridge for all bridges will

be called a combination of policies. If the numbers of bridges and feasible policies per

bridge were small, the combinations of policies could be enumerated and the combination

leading to the minimum cost could be determined. However, 200 is a realistic order of

magnitude estimate for the number of policies per bridge, which yields 200n combinations

for n facilities. Even for a small system of n = 20 facilities, these combinations cannot be

enumerated in a reasonable amount of time.

Fortunately, bounds for the minimum cost can be found. A lower bound of the minimum

cost is achieved by the following combination Clower b of policies Pi:

Clower b =
(
P lower b

1 , P lower b
2 , . . . , P lower b

n

)
(3.5)
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where, for all i ∈ {1, . . . , n},

P lower b
i = argmin

p∈{policies of bridge i}

[
T−1∑
t=0

αtcosti+m+r
i,p,t + costf

i,p × Fi,p

]
(3.6)

In this formula, costi+m+r
i,p,t is the expected cost of inspection, maintenance and repair of

bridge i in year t under policy p, costf
i,p is the cost of failure of bridge i under policy p, and

Fi,p is the probability of failure of bridge i under policy p. These minima can be determined

in a reasonable amount of time. Moreover, if this combination of policies satisfies the budget

constraint for every year of the planning horizon, it is the optimal solution. If it is does not

satisfy the budget constraint, one needs to find a combination of policies that satisfies the

budget constraint to determine an upper bound of the minimum cost. A good candidate

combination to satisfy the budget constraint is

Cupper b =
(
Pupper b

1 , Pupper b
2 , . . . , Pupper b

n

)
(3.7)

where, for all i ∈ {1, . . . , n},

Pupper b
i = argmin

p∈{policies of bridge i}

[
max

t∈{0,...,T−1}
costi+m+r

i,p,t

]
(3.8)

Let us explain the choice of this candidate using a simple example with one bridge and

two policies over a planning horizon of three years. Let us assume that the first policy

costs 400 (monetary units) in the first year and 0 in the following years and that the

second policy costs 200 each year. If the budget made available each year is 200, the first

policy is not feasible and the second policy is feasible, although the total cost of the first

policy is lower than that of the second policy. This is due to the peaked cost of the first

policy. Intuitively, policies with lower peaks in their cost per year are more likely to lead

to a feasible combination. It will be shown on a realistic numerical example in section 3.4

that the yearly budget needed for this combination of policies is much smaller than that
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needed for the combination Clower b. If the combination Cupper b does not satisfy the budget

constraint, other combinations can be tried until one that satisfies the budget constraint is

found.

3.3.3 Computational Complexity

The problem complexity is polynomial in the length of the planning horizon, with an order

not exceeding 2. Thus, the length of the planning horizon can be large without unreasonably

increasing the computation time needed to solve the problem. The determination of the

lower bound and candidate upper bound described above is linear in the number of bridges.

However, depending on the budget, Cupper b may be infeasible, and there is no guarantee

that Cupper b is actually an upper bound. Moreover, there is no guarantee that Clower b is

feasible, thus optimal. Finding a meaningful upper bound (i.e., an upper bound that is

relatively close to the lower bound) in a systematic manner is not likely to be a polynomial-

time problem. Section 3.4 presents a realistic numerical example, for which the two bounds

are close to each other.

A computer program was created in the C language to solve the optimization problem.

With 20 bridges and approximately 200 policies per bridge, the computational time for the

facility level portion is approximately 30 minutes on a standard personal computer, and the

system level portion requires just a few seconds.

3.4 Case Study

3.4.1 Parameters

Deterioration model and influence of maintenance actions. Frangopol et al. (2001)

presents a deterioration model for bridge decks. The time evolution of the reliability index
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β is described, as well as the influence of a maintenance action on the reliability index.

Figure 3.1 shows the parameters that characterize the deterioration without maintenance

and the influence of a maintenance action.
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Figure 3.1: Deterioration without maintenance (A); influence of a maintenance action (B).

The reliability index of a new bridge is β0. Without maintenance, the reliability index is

constant for a time period tI and then decreases with slope δ. If a maintenance action is

performed, the reliability index immediately increases by γ, then decreases with slope θ for

a time period tPD. Beyond this period of influence of the maintenance action, the reliability

index decreases with slope δ. In Frangopol et al. (2001), the time at which a maintenance

action is performed is a random variable, whereas in this study, it is a decision variable. All

the other parameters are random variables. The distributions of these random variables are

summarized in table 3.1 (Frangopol et al., 2001).

Table 3.1: Distributions of random variables from Frangopol et al. (2001).

Random variable Distribution type Characteristics (failure mode: shear)
β0 Lognormal mean = 8.5, standard deviation = 1.5
tI (yr.) Lognormal mean = 15, standard deviation = 5
δ (1/yr.) Uniform minimum = 0.005, maximum = 0.20
tPD (yr.) Lognormal mean = 10, standard deviation = 2
θ (1/yr.) Uniform minimum = 0, maximum = 0.05
γ Lognormal mean = 0.2, standard deviation = 0.04
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In Frangopol et al. (2001), only one bridge and one type of maintenance action are consid-

ered, and the only repair action is replacement. However, the purpose of the present study

is to demonstrate the capabilities of an optimization model in a more complex situation,

both in terms of number of bridges and of types of maintenance actions. The costs for main-

tenance and replacement, including user costs, are provided in Kong and Frangopol (2003);

these values were used as a basis for the present study. Using the same distribution types,

the parameters (mean and standard deviation for lognormal; minimum and maximum for

uniform) can be changed to represent slightly different bridges. A system of 20 bridges was

created in this manner. One additional type of maintenance action was introduced, more

costly and with a greater influence than the first one. The objective of this case study is to

verify that the developed optimization model provides reasonable results.

Five groups of four bridges were created. Within each group, the four bridge decks have

the same deterioration parameters, but their unit costs of maintenance are different. All

decks are assumed to have the same area (1,000 m2).

Table 3.2 summarizes the parameters of the deterioration. The random variables β0 and θ

are not included in the table, as the values are the same as those presented in table 3.1.

The parameters for the first group of bridges (1–4) are the same as in Frangopol et al.

(2001), except for the maintenance of type 2 that was not included in the paper. The

other groups of bridges differ by their deterioration parameters. Bridges 5–8 have faster

deterioration than bridges 1–4, and bridges 9–12 have faster deterioration than bridges 5–8.

Bridges 13–16 have slower deterioration than bridges 1–4, and bridges 17–20 have slower

deterioration than bridges 13–16. The unit costs of maintenance and repair are summarized

in table 3.3. The unit costs of maintenance of type 1 and replacement for the first bridge

of each group are based on Kong and Frangopol (2003). A higher unit cost was chosen for
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Table 3.2: Deterioration parameters for the system of 20 facilities.

Bridge
Parameter 1–4 5–8 9–12 13–16 17–20
tI (yr.)

mean 10 6 3 12 14
standard deviation 2 1.5 1 2 2

δ (1/yr.)
minimum 0.01 0.1 0.1 0.01 0.01
maximum 0.3 0.4 0.5 0.2 0.1

Maintenance type 1
γ

mean 0.2 0.2 0.2 0.2 0.2
standard deviation 0.04 0.04 0.04 0.04 0.04

tPD (yr.)
mean 10 8 5 12 14
standard deviation 2 1.5 1 2 2

Maintenance type 2
γ

mean 0.6 0.6 0.6 0.6 0.6
standard deviation 0.04 0.04 0.04 0.04 0.04

tPD (yr.)
mean 10 8 5 12 14
standard deviation 2 1.5 1 2 2

Table 3.3: Unit cost of maintenance and repair for the system of 20 facilities.

Bridge
1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12,

Action 13, 17 14, 18 15, 19 16, 20
Maintenance type 1 ($/m2) 216 216 259 259
Maintenance type 2 ($/m2) 300 360 360 432
Replacement ($/m2) 2,818 2,818 2,818 2,818

the maintenance of type 2, which is more effective than the maintenance of type 1. For the

other alternatives, the unit costs of maintenance are different in order to change the ratio

between the unit costs of maintenance and replacement and the ratio between the unit costs

of the two types of maintenance.
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Other parameters. The planning horizon was chosen to be 75 years, and an interest

rate of two percent was assumed. The target probability of failure is 10−5 over the planning

horizon for each bridge. In absence of available data, several values were tried for the cost

of failure.

3.4.2 Results

Costs of failure up to five times the unit cost of replacement were tried and did not change

the results of the optimization. For each bridge, only one type of maintenance action is

allowed, for simplification.

Optimal Policies and Costs

The policies leading to the minimum cost per bridge are described in table 3.4.

The present value of the total cost associated with the combination Clower b of policies is

2.0 × 107 dollars over the planning horizon of 75 years. This combination is feasible for

any budget above 1,286,000 dollars per year. The present value of the total cost associated

with the combination Cupper b of policies is 2.3×107 dollars over the planning horizon of 75

years. The combination Cupper b is feasible for any budget above 646,000 dollars per year.

Figure 3.2 compares the expected yearly costs when applying the combination Clower b and

when applying the combination Cupper b. In this example, the total cost for the candidate

upper bound is only 15 percent higher than the total cost for the lower bound, while the

yearly budget required for the lower bound is twice as high as the budget for the candidate

upper bound. The candidate upper bound demonstrates that a relatively small premium

on the total cost allows for more evenly distributed yearly costs. Further analysis would be

required to extend these results to the general case.



33

Table 3.4: Optimal policies for each facility.
Interval Period
between Threshold β Interval between of blocked

inspections for maintenance (yr.) maintenance
Bridge (yr.) replacement Type 1 Type 2 (yr.)
1 5 4.5 10 — 10
2 5 4.5 10 — 10
3 5 4.5 10 — 10
4 5 4.5 10 — 10
5 3 4.5 — 10 4
6 3 4.5 7 — 6
7 3 4.5 — 10 4
8 3 4.5 7 — 6
9 3 4.5 5 — 2
10 3 4.5 5 — 2
11 3 4.5 5 — 2
12 3 4.5 5 — 2
13 5 4.5 13 — 10
14 5 4.5 13 — 10
15 5 4.5 15 — 10
16 5 4.5 15 — 10
17 1 4.0 20 — 10
18 5 4.5 24 — 10
19 3 4.5 — — —
20 3 4.5 — — —

Figure 3.2: Comparison of yearly costs resulting from the application of Clower b and
Cupper b.
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Discussion

In this example, the optimization model provides logical and intuitive results:

• The faster the deterioration of a bridge, the shorter the recommended interval between

maintenance actions is. This can be seen by examining the second bridge in each group.

The list of bridges in ascending order of interval between maintenance, and in descending

order of deterioration rate, is: 10, 6, 2, 14 and 18.

• The faster the deterioration of a bridge, the shorter the recommended period of blocked

maintenance is.

• The smaller the ratio of the unit cost of repair to the unit cost of maintenance, the

longer the recommended interval between maintenance is. This can be seen for bridges

13 through 16; maintenance is less costly for bridges 13 and 14 than for bridges 15 and 16

and is thus recommended at a higher frequency. Similarly, the high cost of maintenance

for bridges 19 and 20, associated with their slow deterioration, leads to the absence of

recommended maintenance, whereas maintenance is recommended for bridges 17 and 18,

since it is less costly.

• Maintenance of type 2 is more effective than maintenance of type 1. However, it is also

more costly. The smaller the ratio of the unit cost of maintenance of type 2 to the unit

cost of maintenance of type 1, the less likely maintenance of type 1 is recommended and

the more likely maintenance of type 2 is recommended. This can be seen for bridges 5

through 8. For bridges 5 and 7, the ratio of the cost of maintenance of type 2 to the cost

of maintenance of type 1 is 1.4, while for bridges 6 and 8, this ratio is 1.7. Maintenance of

type 2 is recommended for bridges 5 and 7, while maintenance of type 1 is recommended

for bridges 6 and 8.
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These results also contain one peculiarity: bridges 17 and 18 are similar in their deterioration

patterns, and their unit costs of maintenance of type 1 are similar. Maintenance of type

1 is recommended for both bridges, so it should be at the same frequency, and the other

recommendations (frequency of inspection, threshold for replacement) should be similar;

however, this is not the case. These discrepancies occured because the number of trials of

the Monte Carlo simulation was not sufficiently large and the costs to be estimated were

very close to each other. Namely, another simulation with 100,000 trials instead of 10,000

trials showed that the total costs were within one percent of each other. With fewer trials,

it may happen that the order of the estimates is switched.

Evaluation of the number of trials. A qualitative method to evaluate whether the

number of trials is sufficient to provide reliable results is as follows: for one bridge and one

policy, a simulation consists of ntrials trials and provides an average total cost X̄. If processes

were deterministic and the simulation for the same bridge and the same policy were run

twice, the two simulations would provide the same values for the total cost. However, in

presence of probabilistic processes, the results of the two simulations are different. A larger

number of trials produces a greater likelihood of similarity between the results. For one

bridge and one policy, the variance and the mean of the results of the simulation can be

estimated, which provides the coefficient of variation of the results. If this positive value

is much smaller than 1, it indicates qualitatively that the number of trials is sufficient to

provide reliable results.

Expected value as indicator of the cost. In this study, the Monte Carlo simulations

were performed using 10,000 trials, which is quite a large number. Nonetheless, in an earlier

paragraph, it was mentioned that this large number might not be sufficient to provide very
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accurate estimates of expected costs and probabilities of failure. This is likely due to the

large variance of the results between trials. This large variance is introduced by the presence

or absence of replacement over the planning horizon, because replacements are very costly

compared to maintenance. This also highlights a limitation in the approach that was used:

the expected value may not be the most relevant indicator of cost.

Let us consider a simple and extreme example, with one bridge over a planning horizon of

50 years without discount rate. The deterioration of the deck is as follows:

• its initial reliability index is 8,

• it starts deteriorating immediately,

• its deterioration rate is uniformly distributed between 0.1 and 0.2 units of reliability

index per year.

The policy is as follows:

• no maintenance is performed. In that case, the cost is zero;

• the deck is replaced when the reliability index reaches 4. In that case, the cost of

replacement is 1,000 (monetary units).

If the actual deterioration rate is between 0.1 and 0.125 (which happens with probability

0.25), the bridge will not need to be replaced, whereas if the actual deterioration rate is

between 0.125 and 0.2 (which happens with probability 0.75), the bridge will be replaced

once in the planning horizon. This means that the cost over the planning horizon is 0

with probability 0.25 and 1,000 with probability 0.75. Thus, the estimated cost varies

considerably between individual trials. Moreover, the average cost over several trials does

not describe completely the actual costs. Thus, considering only the expected value as an

indicator of costs leads to a significant loss of information.

The application of these remarks is not limited to the present example, or to the model



37

presented in this chapter. They also apply to the models developed in the literature, in

which expected costs are considered in the optimization.

3.5 Summary

In the present chapter, the problem of optimizing inspection, maintenance, and repair de-

cisions for a system of bridge decks was formulated, using a history-dependent, mechanistic

model of deterioration. A solution was implemented, leading to bounds on the optimal cost

and providing recommendations for actions that were shown to be close to optimal on a

numerical example.

The complexity of the optimization method, a direct consequence of the complexity of the

deterioration models used, is such that determining the optimal solution or even provably

close bounds on the optimal cost is unlikely to be a polynomial-time problem. This limita-

tion is a motivation for the Markovian approach presented in subsequent chapters.
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Chapter 4

Facility-Level Optimization:

Augmented-State Markov Decision

Process

The objective of this chapter is to develop a bridge-component maintenance and repair

(M&R) optimization approach that uses a Markovian deterioration model, while accounting

for aspects of the history of deterioration and maintenance. These aspects are: the initial

condition of the facility and the time since the performance of the latest maintenance action.

Such a model represents a compromise between simple deterioration models allowing the use

of standard optimization techniques, and realistic deterioration models whose complexity

prevents efficient optimization of maintenance and replacement decisions, as was shown in

the previous chapter.

Compared to Markovian models whose state is the current condition of the facility, the model

developed in the present chapter includes additional information. Numerical simulations

show that the benefits of including this additional information are significant.
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4.1 Formulation of a History-Dependent Markovian Deteri-

oration Model

The objective of the present section is to develop a model of the deterioration of a bridge

deck with the two following characteristics: the model is Markovian, and it takes into

account aspects of the history of deterioration and maintenance.

4.1.1 Definitions and Assumptions

The system considered is a single bridge deck managed by an agency such as a state Depart-

ment of Transportation. Maintenance and replacement decisions are made by the agency at

discrete points in time. Due to the presence of yearly budget constraints, the most logical

time unit for M&R decisions is the year. As a consequence, the model of deterioration is

also discretized in time intervals of one year. This assumption is consistent with the typical

rate of deterioration of bridges. Within a year, the actual point in time at which the action

(maintenance or replacement) is performed is not important, and an action is said to be

performed “in year n.”

The condition of the deck is represented by its reliability index β. By definition of the

reliability index, the instantaneous probability of failure of the deck (given it has not failed

yet) is Φ(−β), where Φ(.) is the standard normal cumulative distribution.

Several types of maintenance actions can be performed on the bridge deck. Maintenance

actions of different types have different influences on the condition of the deck, as well as

different costs. The deck can also be replaced, in which case it is then considered new.
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4.1.2 Definition of the State of the Markov Chain

In earlier Markovian deterioration models, the state is an integer representing the condition

of the deck. In the present model, the reliability index β of the deck is part of the state

space of the Markov chain; additional variables that are known to the decision maker, and

can provide an advantage in selecting the optimal actions, are also included as part of the

state space. This process is known as state augmentation (Bertsekas, 2001). The variables

added to the state space are:

• m: an integer indicating the type of the latest action (maintenance or replacement)

performed on the deck (or 0 if no action has been performed since the deck was new);

• τ : the time since the latest action (or the time since the deck was new, if no action has

been performed yet);

• β0: the reliability index of the deck when the latest action was performed, or when the

deck was new, if no action has been performed yet. This variable, causing numerical

issues in the implementation, is not included in the case study (sec. 4.3). The numerical

issues are discussed in section 4.3.5.

Note that, when the deck is replaced, the value of β0 before replacement and after replace-

ment may be different. The choice of these variables is based on the precision and ease of

their measurement, as well as on their contribution to the reduction of the uncertainty in

modeling the deterioration. The number of additional variables must also remain reasonably

low, so that the model can be implemented.

The state x = (β, β0,m, τ) consists of two real numbers in the general case (β and β0) and

two integers (m and τ), since there is a finite number of different types of maintenance

actions and the unit of time is the year. In practice, the set of possible values for each

variable can actually be restricted to small intervals while maintaining the full functionality
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of the model. For example, typical values of β are integers between 1 and 15.

4.1.3 Estimation of the Transition Probabilities

Transition probabilities represent the probability for a facility that is in state xt at time

period t to be in state xt+1 at the following time period, where

xt , (βt,mt, τt, β
0
t ), xt+1 , (βt+1,mt+1, τt+1, β

0
t+1) (4.1)

This transition probability is denoted as

P
(
βt+1,mt+1, τt+1, β

0
t+1

∣∣ βt,mt, τt, β
0
t

)
(4.2)

Note that xt and xt+1 can be any elements of the state space and may or may not be equal.

The original deterioration model of the facility, which is stochastic, is used to estimate

the transition probabilities for the resulting Markovian model. In order to accommodate

any original deterioration model, Monte Carlo simulation is used to estimate the transition

probabilities. Namely, a large number of deterioration profiles are generated using the

original deterioration model, and the counts shown on the right-hand side of equation (4.3)

are determined.

P
(
βt+1,mt+1, τt+1, β

0
t+1

∣∣ βt,mt, τt, β
0
t

)
=

N transitions
(βt,mt,τt,β0

t ),(βt+1,mt+1,τt+1,β0
t+1)

N total
(βt,mt,τt,β0

t )

(4.3)

where

• N total
(βt,mt,τt,β0

t )
is the number of occurrences of the following situation, among all time steps

of all Monte Carlo trials: “the deck is in state (βt,mt, τt, β
0
t );”

• N transitions
(βt,mt,τt,β0

t ),(βt+1,mt+1,τt+1,β0
t+1)

is the number of occurrences of the following situation,

among all time steps of all Monte Carlo trials: “the deck is in state (βt,mt, τt, β
0
t ) at a

time step and in state (βt+1,mt+1, τt+1, β
0
t+1) at the following time step.”



42

The pseudocode for the estimation of the transition probabilities using Monte Carlo simu-

lation is presented below.

Estimation of transition probabilities using Monte Carlo simulation

1 Define parameters: BETA (set of possible values for β and β0), M (set of possible
values for m), TAU (maximum value for τ), N (number of Monte Carlo trials)

2 Initialize Ntotal[beta,m,tau,betaIni] at 0 for all values of beta in BETA, m in
M, and tau in TAU, betaIni in BETA

3 Initialize Ntr[beta1,m1,tau1,betaIni1,beta2,m2,tau2,betaIni2] at 0 for all
values of beta1 and beta2 in BETA, m1 and m2 in M, and tau1 and tau2 in TAU,
betaIni1 and betaIni2 in BETA

4 Repeat N times:
5 Repeat for all values of m in M:
6 Repeat for all values of betaIni in BETA:
7 Draw an instance of a set of deterioration parameters

from their known distributions
8 Repeat for tau from 0 to TAU:
9 Determine the (continuous) condition betaCont[tau]
10 Determine the corresponding discretized condition beta[tau],

where beta[tau] is in the set BETA
11 End repeat
12 Repeat for tau from 1 to TAU−1:
13 Increment Ntotal[beta[tau],m,tau,betaIni] by 1
14 Increment Ntr[beta[tau],m,tau,betaIni,...

beta[tau+1],m,tau+1,betaIni] by 1
15 End repeat
16 End repeat
18 End repeat
19 End repeat
20 Ntr[beta1,m1,tau1,betaIni1,beta2,m2,tau2,betaIni2] divided by

Ntotal[beta1,m1,tau1,betaIni1] is an estimate of the probability
of transition from state (beta1,m1,tau1,betaIni1) to state
(beta2,m2,tau2,betaIni2)

Several simplifications are possible in order to decrease the computation time necessary to

estimate all transition probabilities. For example, P (βt+1, β
0
t+1,mt+1, τt+1|βt, β

0
t ,mt, τt) = 0

if mt+1 = mt and τt+1 6= τt +1, or if mt+1 6= mt and τt+1 6= 0, for any βt, βt+1, β0
t and β0

t+1.
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4.2 Augmented State Markov Decision Process

The model of deterioration of a bridge deck developed in the previous section can be used

in the optimization of maintenance and replacement decisions for that deck.

4.2.1 Definitions and Assumptions

System. As described earlier, the system considered is a bridge deck managed by an

agency. The agency incurs costs when maintenance actions are performed or when the deck

is replaced. User costs are also taken into account, in the same manner as described in the

previous chapter (sec. 3.1). User costs consist of delays, closures, and detours associated

with the performance of maintenance actions and deck replacement.

Planning horizon. The agency is responsible for the maintenance and replacement of

the bridge for the duration of the planning horizon (T years). The planning horizon is

assumed to start at year 0 and is broken down into periods of one year. The agency makes

maintenance and replacement decisions every year.

Knowledge of current condition. It is assumed that there is perfect information re-

garding the past and present reliability index of the bridge deck. From a practical point of

view, this means that inspections are carried out frequently, such as on a yearly basis, and

that the inspections are error free.

4.2.2 Problem Formulation

Given the deterioration model described earlier, the optimization problem can be formulated

as a finite-state discrete-time Markov decision process, with a finite horizon (Bertsekas,

2001). This formulation is also referred to as dynamic programming. The optimization
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problem consists of minimizing the expected cost of maintenance and replacement, subject

to the following reliability constraint: the reliability index of the facility must remain above

a user-defined threshold.

The following notation is used:

• X: state space of the Markov chain representing the deterioration of the deck. X is the

set of all possible values for (β, β0,m, τ), as defined in the previous section.

• U : set of all possible M&R actions, i.e., all types of maintenance actions, replacement,

or do-nothing.

• cu(x): cost of action u performed on bridge deck in condition β.

• α: discount factor, α = 1/(1 + r) where r is the discount rate.

• Vt(x): minimum cost-to-go for the agency to manage the bridge deck from year t to the

end of the planning horizon, starting from state x in year t.

• µ: set of optimal decisions. µt(x) is the optimal decision when the bridge deck is in state

x in year t.

The problem formulation is as follows:

∀x ∈ X, Vt(x) = min
u∈U

cu(x) + α
∑
y∈X

P (y|x)Vt+1(y)

 if t ∈ {0, . . . , T − 2}

= V s if t = T − 1

(4.4)

where V s captures the usefulness of the bridge deck past the planning horizon. For practical

purposes, the influence of the actual value of V s is limited if the discount rate r is strictly

positive.
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Reliability constraint. The cost cu(x) is used to implement the reliability constraint:

for each state x corresponding to an unacceptable reliability index, the cost of action u is

chosen to be infinite for each action u ∈ U .

4.2.3 Solution

The solution to the problem formulated above is composed of the set of Vt(x) and the set

of µt(x), for all time steps t and all states x, where µt(x) is the optimal action to be taken

at time step t if the facility is in state x. The function µ is referred to as a policy, and

is defined mathematically as a mapping from the set composed of the state space and the

time space (X × {0, . . . , T}) to the set U of actions.

The solution is obtained by recursion, starting from the final year of the horizon. This

algorithm, referred to as the backward recursion algorithm (Bertsekas, 2001), is described

by the pseudocode below.

Backward recursion algorithm

1 Define parameters (similar notations as defined in the problem formulation and
in the pseudocode for the Monte Carlo simulation used to estimate the transition
probabilities). In particular, define the threshold of reliability index, and the cost
of actions c[u,beta] accordingly.

2 Initialize V[T-1,x] to VS for all possible values of x=(beta,m,tau,betaIni)
3 Repeat for t from T-2 to 0 (step -1):
4 Repeat for all possible values of x=(beta,m,tau,betaIni):
5 Vtmp ← ∞
6 Repeat for all possible actions u:
7 If c[u,beta]+alpha*

∑
y∈XP(y|x,u)*V[t+1,y] < Vtmp

8 Vtmp ← c[u,beta]+alpha*
∑

y∈XP(y|x,u)*V[t+1,y]

9 muTmp ← u
10 End if
11 End repeat
12 V[t,x] ← Vtmp
13 mu[t,x] ← muTmp
14 End repeat
15 End repeat

The minimum discounted cost to manage the bridge deck over the whole planning horizon is
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V0(x0), where x0 is the initial state of the bridge deck. Using the notation of the pseudocode,

the minimum discounted cost is V[0,x0].

4.3 Case Study

The objective of this section is to compare the policies derived using the augmented state

Markovian model proposed in the present chapter and the policies derived using a simpler

Markovian model. The state of the simpler Markov chain is the condition of the facility in

the current year. This section also provides some insight regarding a numerical issue arising

in the implementation of the optimization method described in the previous section.

4.3.1 Definition of Alternative Optimization Methods

Terminology

Several Markovian optimization methods are considered in the present section. For sim-

plicity, the number of variables (or dimensions) of their state space is used to refer to each

method.

In the optimization method described in section 4.2, the state of the Markov chain is

composed of four variables:

• β: an integer representing the current discretized reliability index of the deck, and

• m: an integer indicating the type of the latest action (maintenance or replacement)

performed on the deck (or 0 if no action has been performed since the deck was new),

and

• τ : the time since the latest action (or the time since the deck was new, if no action has

been performed yet), and



47

• β0: the reliability index of the deck when the latest action was performed, or when the

deck was new if no action has been performed yet.

This method is referred to as 4d model.

Given the numerical issues discussed in section 4.3.5, the augmented-state model imple-

mented in the present section is a slightly modified version of the 4d model. Namely, β0

is not considered, and the state consists of three variables instead of four. This model is

referred to as the 3d model.

The state of the simple Markovian model used as a comparison is composed of one variable

only, the current condition of the deck. This model is referred to as the 1d model.

Definition of the 3d model

In the same manner as for the 4d model, transition probabilities are estimated in the

3d model, and optimal policies are determined using dynamic programming.

The estimation of the transition probabilities cannot be conducted as described in sec-

tion 4.1.3 for the 4d model, because the value of the reliability index at the time of the

previous action is not part of the state in the 3d model. The probabilities to be estimated

are of the following form:

P (βt+1,mt+1, τt+1|βt,mt, τt) (4.5)

where βt and βt+1 represent the reliability index of the facility at time t and t + 1, respec-

tively; mt and mt+1 represent the mode of deterioration at time t and t + 1, respectively;

and τt and τt+1 represent the time since the previous action (or the time since the facility

was new if no action has been performed yet) at time t and t + 1, respectively.

If an action is performed in year t (maintenance or replacement), then the probability (4.5)

can be estimated in the same manner as in the 4d model. However, if no action is performed
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in year t, i.e., if τt+1 > 0, then we have the following conditional probability:

P (βt+1,mt+1, τt+1|βt,mt, τt)︸ ︷︷ ︸
P3

=
∑

b0∈B0

P
(
βt+1,mt+1, τt+1|βt,mt, τt, b

0
)︸ ︷︷ ︸

P4

P (β0 = b0) (4.6)

where B0 is the set of all possible values for the condition β0 of the facility at the time of

the previous action. In this expression, P3 is a transition probability to be estimated in

the 3d model. We will show that P4 actually corresponds to a transition probability in the

4d model, i.e., we will show that, when τt+1,

P
(
βt+1,mt+1, τt+1|βt,mt, τt, b

0
)

= P
(
βt+1,mt+1, τt+1, b

0|βt,mt, τt, b
0
)

(4.7)

In general, we can write the following relation, for a given value b0:

P
(
βt+1,mt+1, τt+1|βt,mt, τt, b

0
)

=
∑

b′∈B0

P
(
βt+1,mt+1, τt+1, b

′|βt,mt, τt, b
0
)

(4.8)

We have seen earlier that, when τt+1 > 0 (i.e., when no action is performed in the current

year), the condition β0 of the facility at the time of the previous action cannot change from

year t to year t + 1. This means that, when τt+1 > 0, we have, for b′ 6= b0,

P
(
βt+1,mt+1, τt+1, b

′|βt,mt, τt, b
0
)

= 0 (4.9)

Equation (4.7) is justified by equations (4.8) and (4.9). Therefore, we have

P (βt+1,mt+1, τt+1|βt,mt, τt)︸ ︷︷ ︸
P3

=
∑

b0∈B0

P
(
βt+1,mt+1, τt+1, b

0|βt,mt, τt, b
0
)︸ ︷︷ ︸

P4

P (β0 = b0)

(4.10)

where P3 is the probability to be estimated in the 3d model, and P4 corresponds to a

transition probability in the 4d model, which can be estimated. However, the probability

P (β0 = b0) cannot be estimated acccurately, since it actually depends on the maintenance

and replacement policies.
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In the case of the present study, this issue is not very important, since the values of

P
(
βt+1,mt+1, τt+1, b

0|βt,mt, τt, b
0
)

are found not to vary by a large amount for different

values of b0, all other parameters being equal. Therefore, for the purpose of the estimation,

the condition β0 of the facility at the time of the previous action was assumed to be uni-

formly distributed over its set of possible values. The pseudocode for the estimation of the

transition probabilities in the 3d model is as follows:

Estimation of transition probabilities in the 3d model

1 Define parameters: BETA (set of possible values for β and β0), M (set of possible
values for m), TAU (maximum value of τ), N (number of Monte Carlo trials)

2 Initialize Ntotal[beta,m,tau] at 0 for all values of beta in BETA, m in M, and
tau in TAU

3 Initialize Ntr[beta1,m1,tau1,beta2,m2,tau2] at 0 for all values of beta1 and
beta2 in BETA, m1 and m2 in M, and tau1 and tau2 in TAU

4 Repeat N times:
5 Repeat for all values of m in M:
6 Repeat for all values of betaIni in BETA:
7 Draw an instance of a set of deterioration parameters

from their known distributions
8 Repeat for tau from 0 to TAU:
9 Determine the (continuous) condition betaCont[tau]
10 Determine the corresponding discretized condition beta[tau],

where beta[tau] is in the set BETA
11 End repeat
12 Repeat for tau from 0 to TAU−1:
13 Increment Ntotal[beta[tau],m,tau] by 1
14 Increment Ntr[beta[tau],m,tau,beta[tau+1],m,tau+1] by 1
15 End repeat
16 End repeat
17 End repeat
18 End repeat
19 Ntr[beta1,m1,tau1,beta2,m2,tau2] divided by Ntotal[beta1,m1,tau1] is

an estimate of the probability of transition from state (beta1,m1,tau1) to
state (beta2,m2,tau2)

Unlike for the transition probability estimation, the general structure of the backward recur-

sion algorithm determining optimal maintenance and replacement policies does not change

between the 4d and the 3d models. The algorithm described in section 4.2.3 can be applied,



50

provided the instances of betaIni are removed.

Definition of the 1d model

In the same manner as for the 4d model, transition probabilities are estimated in the

3d model, and optimal policies are determined, using dynamic programming.

The issue described earlier for the 3d model arises in the estimation of the transition prob-

abilities. Namely, it can be shown that, for a year t in which no action is performed,

P (βt+1|βt)︸ ︷︷ ︸
P1

=
∑
b0

∑
τ

∑
m

P
(
βt+1,m, τ + 1, b0|βt,mt, τ, b

0
)︸ ︷︷ ︸

P4

P (m, τ, b0) (4.11)

where the notation is the same as in the previous section, P1 is the transition probability

to be estimated in the 1d model, and P4 corresponds to a transition probability in the

4d model. The probability P (m, τ, b0) cannot be estimated accurately and actually de-

pends on the maintenance and replacement policies. The approach followed to estimate

P (m, τ, b0) consisted of simulating different realistic maintenance policies, such as perform-

ing maintenance every k years, where k is taken in a realistic set of values, and aggregating

the results, assuming all the considered maintenance policies were equally likely.

In the estimation for the 3d and the 4d models, one trial of the Monte Carlo simulation

consisted in drawing a set of deterioration parameters, and simulating the deterioration over

time of that particular facility, until the condition reached the lowest admissible condition.

If the estimation of the transition probabilities in the 1d model were a repetition of N such

trials, the resulting estimates would be biased, since the age (denoted by τ in the other

models) is not a parameter in the 1d model. Namely, the facilities with a higher rate of

deterioration reach the lower admissible condition faster and would be underrepresented

in the estimation. This issue is referred to as selection bias (Greene, 1993). One solution
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consists in dividing the estimates from each trial by the sampling rate, which is the number

of years of a trial in the present estimation problem. The pseudocode for the estimation of

the transition probabilities in the 1d model is as follows:

Estimation of transition probabilities in the 1d model

1 Define parameters: BETA (set of possible values for β and β0), N (number of
Monte Carlo trials), b lowest (lowest admissible reliability index)

2 Initialize Ntotal[beta] at 0 for all values of beta in BETA
3 Initialize Ntr[beta 1,beta 2] at 0 for all values of beta 1 and beta 2 in BETA
4 Repeat N times:
6 Draw an instance of a set of deterioration parameters

from their known distributions
7 t← 0
8 b cont[t]← beta0
9 While {b cont[t] > b lowest} Do:
10 t← t + 1
11 Determine the (continuous) condition b cont[t]
12 Determine the corresponding discretized condition beta[t],

where beta[tau] is in the set BETA
13 End while
14 T← t
15 Repeat for t from 0 to T:
16 Ntotal[beta[t]]←Ntotal[beta[t]] + 1/T
17 Ntr[beta[t],beta[t+1]]←Ntr[beta[t],beta[t+1]] + 1/T
18 End repeat
19 End repeat
20 Ntr[beta1,beta2] divided by Ntotal[beta1] is an estimate of the probability

of transition from state (beta1,m1,tau1) to state (beta2,m2,tau2)

The general structure of the backward recursion algorithm determining optimal maintenance

and replacement policies does not change between the 4d and the 1d models. The algorithm

described in section 4.2.3 can be applied, provided the instances of betaIni, m and tau are

removed.

4.3.2 Data

The implementation of the method described in the present chapter consists in determining

transition probabilities, and then using these transition probabilities to determine optimal
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Figure 4.1: Cost of a maintenance action as a function of the condition of the facility on
which it is performed.

maintenance and replacement policies. A deterioration model is required as input for the

determination of the transition probabilities, and cost data is needed for the derivation of

optimal policies. The deterioration parameters and replacement costs used for this case

study are the same as those presented in section 3.4, which are taken from Frangopol

et al. (2001) and Kong and Frangopol (2003). The values of the cost for maintenance are

taken from Kong and Frangopol (2003) but are modified to account for the increase in

the cost of a maintenance action of a given type as the condition of the facility on which

it is performed deteriorates. The cost profile, shown in figure 4.1, follows the framework

presented in Madanat (1988). The same parameters are used for all models (1d, 3d, and

4d).

4.3.3 Comparison of the 3d and 1d Models

The comparison of two optimization methods consists in applying policies determined using

each model to two bridge decks having the same deterioration parameters (fig. 4.2). In

the present section, the set of random variables mentioned in the box in the upper part of

figure 4.2 (box A) is the one presented in section 4.3.2. It is important to note the difference

between this set of random variables and the set of deterioration parameters in box B. The
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Figure 4.2: Comparison of two optimization methods (called model 1 and model 2)

set of random variables in box A remains the same throughout the present case study (for

a given value of the user-defined threshold of reliability), whereas different possibilities are

tried for the set of deterioration parameters in box B.

Moreover, in the simulation, the deterioration of the bridge deck is determined by a model

such as the one presented in Frangopol et al. (2001), and not using the transition proba-

bilities derived in section 4.1.3. Therefore, the comparison is made on the basis of a model

assumed to be an accurate representation of reality, and more importantly, independent

from the method used to determine the policies. Specifically, the comparison would be

much weaker if it were based on the values of the objective functions (predicted optimal

costs and not simulated costs).
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Comparison of the 3d and 1d Models for One Facility

The applications of the policies determined using the 3d and 1d models are first compared

for one facility. Figure 4.3 shows the evolution of the condition of a bridge deck if the policies

of the 1d model are applied (top graph), and if the policies of the 3d model are applied

(bottom graph). The figure also shows the sequence of actions performed in each case. The

Figure 4.3: Comparison of the application of the policies of the 1d model (A), and of the
3d model (B).

main objective of this comparison is to show the difference in the sequence of actions when
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applying the two sets of policies. Cost comparisons are presented in the probabilistic sense

in the next section.

The sequence of M&R actions obtained by application of the policies of the 1d model is

very different from the sequence obtained by application of the policies of the 3d model.

Namely, using policies of the 1d model, the deck is replaced twice, at years 32 and 64,

and maintenance is never performed. Using the policies of the 3d model, maintenance is

performed regularly, every three to four years. Maintenance is not performed at the end of

the planning horizon, since the final condition of the deck is indifferent, provided it is above

the user-defined threshold of reliability index. The deck is not replaced over the planning

horizon.

Using the policies of the 3d model, the performance of maintenance actions at almost regular

intervals is a result of the optimization and was not provided as an input to the model. A

possible intuitive explanation for this fact is as follows. By construction, the state space of

the 3d model captures more detail than the state space of the 1d model. In particular, the

combination of values for the condition of the facility and for the time since the previous

maintenance action is possible in the augmented-state model and not in the 1d model. This

combination allows for more selective recommendations using the 3d model. For example,

if the current condition is 5, the recommendation using the 3d model may be to perform

maintenance if the previous maintenance action was performed five years before or earlier,

and to do nothing if the previous maintenance action was performed less than five years

before. In the same situation, if the current condition is 5, the simple model provides

only one recommendation, regardless of the time since the previous action. Thus, the

performance of maintenance at regular intervals cannot be recommended by the 1d model.

This behavior is not limited to the example presented in this section. The application of the
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policies with many other deterioration parameters produced the same pattern of sequences

of actions. More precisely, a large number of deterioration parameters were drawn from

the distributions presented in Frangopol et al. (2001), thus creating a large number of test

bridge decks, and the pattern of the sequences of actions described in this section occurred

in the majority of the cases.

Comparison of the 3d and 1d Models in the Probabilistic Sense

In the previous paragraph, the comparison of the two models was mostly qualitative, in

terms of the general patterns of the sequence of actions. The purpose of the present com-

parison is to analyze the difference in costs resulting from the application of the policies of

the 3d and 1d models, based on trials on a large number of test bridge decks representing

a realistic range of deterioration parameters.

The input deterioration model, as described in figure 4.2, remains the same, which implies

that the policies remain the same as well, for each model (and for a value of the user-defined

threshold of reliability index). These two sets of policies are applied to a variety of different

bridge decks (box B). To create a realistic set of different facilities, the deterioration param-

eters for each bridge are drawn from the distributions provided in Frangopol et al. (2001).

The distributions used as input to determine the optimal policies and the distributions used

to draw the population of test facilities are the same. This is not a coincidence, but rather,

a consequence of the following assumption: the stochastic deterioration model is assumed

to be known and is assumed to be the same for each test bridge deck.

Comparison of average costs. The average total cost over the planning horizon when

applying the policies of the 3d model is determined for a large number of different test

bridge decks. This average is also determined in the case of the policies of the 1d model.
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Moreover, these simulations are done for several different values of the user-defined threshold

of reliability index. The pseudocode for the determination of the policies and the simulations

is presented below.

Determination of optimal policies and simulation of the application of
the policies to a population of bridges, for one model

1 Define distributions D of random variables modeling the deterioration (box A in
fig. 4.2)

2 Determine the transition probabilities (pseudocode provided earlier)
3 Define parameters: N (number of trials), B (set of user-defined thresholds of

reliability index)

4 Repeat for all values of b in B:
5 Determine the optimal policies P(b), with b as the user-defined threshold

of reliability index (pseudocode provided earlier)
6 End Repeat
7 Initialize totalcost[b,i] at 0 for all values of b in B and for i from 1 to N
8 Repeat for all values of b in B:
9 Repeat for i from 1 to N:
10 Draw an instance of a set of deterioration parameters (box B in fig. 4.2)

from the distributions D
11 Simulate the evolution of the condition of the facility, applying actions

according to policies P(b) (recording yearly costs)
12 Record simulated total cost in totalcost[b,i]
13 End repeat
14 End repeat

This simulation is done for the 3d and 1d models. As shown by the results in figure 4.4,

the average cost when using the policies of the 3d modelis approximately 30 percent lower

than the average cost when the policies of the 1d model, based on 100,000 trials.

Probability of lower cost. Using the simulation described earlier, it is possible to obtain

the empirical distribution of the simulated costs. This, in turn, allows for the determination

of the probability of a lower cost when applying the policies of the 3d model than when

applying the policies of the 1d model. The empirical distribution of the simulated costs

is shown in figure 4.5. It can be noted that, for a given model, the mean simulated cost

increases as the threshold of reliability index increases (i.e., as the facility becomes more
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Figure 4.4: Comparison of the mean simulated total costs, when applying the policies of 3d
and 1d models, for different values of threshold of reliability index.

reliable), which is intuitive. Using these joint distributions, it can be determined that the

Figure 4.5: Comparison of the distribution of simulated costs, when applying the policies
of the 3d model and when applying the policies of the 1d model.

probability of a lower cost when applying the policies of the 3d model than when applying

the policies of the 1d model is 0.75. Moreover, a Kolmogorov-Smirnov test run on the

sample costs allows to reject the following hypothesis: “the sample costs when applying the

policies of the 3d model and the sample costs when applying the policies of the 1d model

are drawn from the same distribution.” This formally proves that the difference in the
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distribution of the costs intuitively apparent in figure 4.5 is indeed statistically significant.

4.3.4 Computational Complexity

The computation times needed for the implementation of the 4d model are very short on

a computer with a 1.7GHz processor, 1GB RAM, running Unix. The computation time

for the estimation of the transition probabilities is approximately one minute, with 100,000

Monte Carlo trials. The computation time for the determination of optimal policies is of

the order of a few seconds, with a state space of size 11,760 and a time horizon of 75 years.

The computation times needed for the implementation of the 3d and 1d models are even

shorter. In the 4d model, the state space consists of 14 different values for the current

condition, two types of actions (maintenance and replacement), 30 different values for the

time since the previous action, and 14 different values for the condition after the previous

action. The limitation for the state space is actually not the computation time, but the

memory needed to implement the backward recursion algorithm.

4.3.5 Numerical Issues

The implementation of the 3d and 4d models exhibits a counterintuitive trend: in most

cases, the mean simulated cost is lower when applying the policies of the 3d model than

when applying the policies of the 4d model, as shown in figure 4.6. This is not intuitive, since

the 4d model is able to capture more detail than the 3d model, and therefore should provide

lower or similar costs. After a thorough investigation, it can be concluded that this issue

does not stem from a programming mistake, but from policies “correctly” recommended by

the 4d model, which actually lead to higher costs when applied to test facilities.

Another cause could be the size of the state space in the 4d model, which could prevent
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Figure 4.6: Comparison of the mean simulated total costs, when applying the policies of
the 4d, 3d, and 1d models.

correct estimation of the transition probabilities if the number of trials of the Monte Carlo is

not sufficiently large. However, the estimation was conducted several times with 1,000,000

Monte Carlo trials, and the estimates for the transition probabilities were found to be very

close to each other. The resulting policies determined by the 4d model were always identical.

Finally, examples with a smaller state space were created, in order to be able to explore the

mechanism leading to this issue by hand. However, the issue did not arise with small state

spaces, which seems to indicate that this is a numerical problem.

For these reasons, the augmented-state model used in the present case study is the 3d model

instead of the 4d model. The 3d model also takes into account aspects of the history of

deterioration and maintenance, which is the main feature studied in this chapter.

4.4 Summary

In this chapter, the derivation of a Markovian model of bridge deck deterioration is pre-

sented. The model takes into account aspects of the history of deterioration and mainte-
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nance, through the use of state augmentation. This model is used in the formulation of

the optimization of maintenance and replacement decisions for one facility as a finite-state,

discrete-time Markov decision process, with a finite horizon.

The optimal policies determined with the augmented-state model are compared to the

policies determined with a simpler Markovian model, and numerical results indicate that

the benefits of including additional information in the model are significant. Moreover, this

comparison is valid, since it is made on the basis of a model assumed to represent reality,

independently from the method used to determine the optimal policies.

An agency, such as a state Department of Transportation, is responsible for the management

of a system of a large number of bridges. The objective of the next chapter is to extend

the facility-level optimization method described in the present chapter to the system level.

This extension is likely to benefit from the short computation times needed to solve the

facility-level problem.
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Chapter 5

System-Level Optimization

This chapter uses the results of the optimization at the facility level, described in the

previous chapter, to provide optimal maintenance and replacement decisions for a system

of heterogeneous facilities. The computational results show that this method is applicable

to systems of realistic sizes.

5.1 Problem Definition

The objective of the previous chapter was to derive optimal maintenance and replacement

policies for one facility. The input to the optimization method was a threshold for the

reliability index (or equivalently, for the probability of failure). The results obtained were

the minimum expected cost for maintaining the facility over the planning horizon, as well

as a set of optimal policies, i.e., maintenance and replacement recommendations for each

year, depending on the realization of the state of the facility in the considered year. At the

system level, the result of the optimization is a set of optimal policies for each facility, i.e.,

maintenance and replacement recommendations for each facility and each year, depending

on the realization of the state of each facility in the considered year.
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5.1.1 Definitions and Assumptions

The system considered in the present chapter is a system of facilities managed by a single

agency, such as a state Department of Transportation. Although the condition of each

bridge in the system changes over time, the system remains constant over the planning

horizon: bridges are neither added to the system nor decommissioned. The system can be

composed of heterogeneous bridges.

The only bridge component considered in this study is the bridge deck. The assumptions

about the deterioration of each bridge deck are the same as those made in the facility-

level optimization: the deterioration is modeled using a Markov chain whose state includes

aspects of the history of deterioration and maintenance, and whose transition probabilities

are estimated using a mechanistic model of deterioration.

As in previous chapters, the planning horizon is broken down into periods of one year.

Maintenance and replacement decisions are made every year for every facility.

The condition of each facility is assumed to be known perfectly, which in practice means

that inspections are carried out frequently and are error free.

5.1.2 Formulation

In previous chapters, the reliability threshold was expressed in terms of reliability index β.

In the present chapter, it is expressed in terms of probability of failure and is denoted by p.

These two expressions are equivalent, since there is a one-to-one relationship between the

probability of failure p and the reliability index β:

p = Φ(−β)

where Φ is the cumulative standard normal distribution.
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At the facility level, the optimization consists of minimizing the cost of maintenance and

replacement, subject to a reliability constraint. A direct extension of this formulation at

the system level would consist of minimizing the cost of maintenance and replacement for

all facilities, subject to a reliability constraint for each facility. This would require the user

of the optimization method to provide a value for the threshold of the probability of failure

for each facility. An intuitive choice could be to take the same value of the threshold for all

facilities. With a slightly different formulation, it can be proven that this choice is actually

optimal in the context of reliability-based optimization.

Following an idea similar to that of duality, let us define the set of decision variables as

the set (p1, . . . , pn) of thresholds of probability of failure for each facility, where n is the

number of facilities. Let us formulate the optimization as a minimization of a quantity

J(p1,...,pn), expressing the performance in terms of probability of failure or risk, subject to

a cost constraint. In the context of reliability, it is relevant to choose J(p1,...,pn) to be the

highest probability of failure threshold among all facilities, denoted by

J(p1,...,pn) = max
i∈{1,...,n}

pi (5.1)

Another expression of the performance in terms of risk could be the average probability of

failure over all facilities. However, this expression is not suitable in the context of reliability-

based optimization, because the following unsafe situation would be possible: the majority

of the facilities with low probabilities of failure and a few facilities with probabilities of

failure close to 1.
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The formulation of the system-level optimization is as follows:

min(p1,...,pn)∈[0,1]n max {p1, . . . , pn}

subject to∑n
i=1 fi(pi) ≤ B

(5.2)

where B is the maximum total cost (budget), and fi(pi) is the optimal cost of maintenance

and replacement for facility i ∈ {1, . . . , n}, determined using the facility-level optimization

method described in the previous chapter.

It is assumed that fi(pi) is defined for a continuous interval of pi’s, i.e., [0, 1]. This as-

sumption cannot be achieved in practice, since it would require solving an infinite number

of facility-level problems; however, section 5.3 shows that the discrete case implementation

of this optimization problem can confidently be considered a good approximation of the

idealized continuous case. Moreover, the functions fi are assumed to be continuous. Even

if these functions are likely to be only piecewise continuous in practice, section 5.3 shows

that the sum of these functions is smooth enough so that approximating it by a continuous

function is unlikely to lead to large errors.

For each facility, the function fi is nonincreasing. Intuitively, if larger probabilities of failure

are allowed for a facility (i.e., larger values of pi), less actions are required on the facility,

thus leading to a lower cost fi(pi). More formally, if pi < p′i, then the set of feasible actions

with the threshold of probability of failure pi is included in the set of feasible actions with the

threshold of probability of failure p′i. Therefore, the formulation indicates that decreasing

the threshold pi of the probability of failure for each facility increases the total cost, and

that the objective of decreasing the pi’s is constrained by the budget.
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5.2 Continuous-Case Solution

The solution is first determined in the case where the facility-level optimal cost, fi(pi), is

defined for a continuous interval of pi’s, for each facility i ∈ {1, . . . , n}.

5.2.1 Optimal Solution

If the following two conditions are met:

(i) for all (i, j) ∈ {1, . . . , n}2 , pi = pj

(ii)
∑n

i=1 fi(pi) = B

(5.3)

then the set (p1, . . . , pn) of thresholds of probabilities of failure of n heterogeneous facilities

is an optimal solution of (5.2).

The optimal solution p∗ can be expressed as

p∗ = min
p∈[0,1]

{
p :

n∑
i=1

fi(p) = B

}
(5.4)

If the functions fi are strictly decreasing, the conditions (5.3) are also necessary. In that

case, the function F : p 7→ F (p) =
∑n

i=1 fi(p) can be inverted, and the optimal solution p∗

has a simple expression:

p∗ = F−1(B) (5.5)

where F−1 is the inverse function of F .

A corner solution also exists when the budget is very low, but it is very unlikely to happen

in practice. If the budget B is so low that it does not allow the threshold of probability of

failure of all n facilities to be strictly less than 1, then the optimal solution is to use the

entire budget. In that case, some facilities will have a threshold of probability of failure

strictly less than 1, while at least one facility will have this threshold at 1.
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Given the nature of the problem, it is impossible to maintain the threshold of probabilities

of failure of all facilities at 0 with a finite budget B. Therefore, there is no corner solution

corresponding to large values of the budget B.

5.2.2 Optimal Policies at the Facility Level

Once the optimal value p∗ for the threshold of probability of failure has been determined

at the system level, optimal maintenance and replacement policies can be devised for each

facility by solving the optimization problem described in the previous chapter for each

facility. The threshold of probability of failure, which is an input to that optimization

method, is chosen to be p∗ (or equivalently, the threshold of reliability index is chosen to

be −Φ−1(p∗)).

5.2.3 Intuition for the Proof of System-Level Results

The second condition in (5.3), which indicates that the entire budget is used at optimality, is

intuitive. In order to obtain an intuitive explanation for the first condition, which indicates

that all pi’s are equal at optimality, let us consider a system of two facilities, and the

following situation: the threshold of probability of failure of facility 1, p1, is strictly lower

than that of facility 2, p2, as shown in figure 5.1, and the combination of decision variables

(p1, p2) is feasible (i.e., f1(p1) + f2(p2) ≤ B).

It is easy to show that this combination cannot be optimal. Since f1(p1) decreases as p1 is

increased, and f2(p2) increases as p2 is decreased, it is possible to decrease p2 by a small

amount δ2 and to increase p1 by δ1 so as to keep f1(p1) + f2(p2) = f1(p1 + δ1) + f2(p2 −

δ2). Thus, the new combination (p1 + δ1, p2 − δ2) is feasible, and the objective function

is improved. This gives an intuitive explanation as to why p1 and p2 must be equal at
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Figure 5.1: System of two facilities with thresholds of probability of failure such that p1 < p2.

optimality.

5.2.4 Proof of the System-Level Results

This section provides the proof that conditions (5.3) are sufficient conditions of optimal-

ity for problem (5.2), as well as the proof of the existence of the solution to that prob-

lem. The expression of the solution is given by Equation (5.4) in the general case, and

by Equation (5.5) in the case where the function fi is strictly decreasing for each facility.

Clarifications about the notation used in these proofs can be found in appendix B. That

appendix also includes the proof that conditions (5.3) are necessary if the function fi is

strictly decreasing for each facility.

Proof of Sufficiency Conditions

We will prove that, if (p1, . . . , pn) ∈ (0, 1]n verifies the following conditions:

(i) for all (i, j) ∈ {1, . . . , n}2, pi = pj , and

(ii)
∑n

i=1 fi (pi) = B,

then (p1, . . . , pn) is an optimal solution of (5.2).
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We will consider (p1, . . . , pn) ∈ (0, 1]n such that

∀(i, j) ∈ {1, . . . , n}2 , pi = pj , and (5.6)
n∑

i=1

fi (pi) = B (5.7)

From assumption (5.7), (p1, . . . , pn) is a feasible solution of optimization problem (5.2).

Let us show that, if (q1, . . . , qn) ∈ (0, 1]n is a feasible solution of (5.2), then

max {q1, . . . , qn} ≥ max {p1, . . . , pn} (5.8)

Consider a feasible solution (q1, . . . , qn) ∈ (0, 1]n of optimization problem (5.2). Two cases

are possible:

(i) For all (i, j) ∈ {1, . . . , n}2, qi = qj . We define c such that, for all i ∈ {1, . . . , n}, qi = c.

(ii) There exists (i, j) ∈ {1, . . . , n}2 such that qi 6= qj . In this case, min {q1, . . . , qn} <

max {q1, . . . , qn}. We define (imin, imax) ∈ {1, . . . , n}2 such that qimin = min {q1, . . . , qn}

and qimax = max {q1, . . . , qn}. Note that imin and imax exist, but are not necessarily

unique. If they are not unique, the choice of a particular imin or imax does not matter.

Let g be the following function:

g : (0, 1] −→ R

x 7−→
n∑

i=1

fi(qi)−
n∑

i=1

fi(x)

For all i ∈ {1, . . . , n}, qi ≤ qimax ; thus, fi(qi) ≥ fi(qimax), because fi is a nonincreas-

ing function on (0, 1]. Therefore, g (qimax) =
∑n

i=1 (fi (qi)− fi (qimax)) ≥ 0. Similarly,

g (qimin) ≤ 0. We have:

(a) g is continuous on (0, 1],

(b) g (qimin) ≤ 0, and

(c) g (qimax) ≥ 0.
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By the intermediate value theorem, there exists c ∈ [qimin , qimax ] such that g(c) = 0.

In both cases, we have the following

c ≤ max {q1, . . . , qn} , and (5.9)
n∑

i=1

fi(c) =
n∑

i=1

fi(qi) (5.10)

Moreover, (q1, . . . , qn) is a feasible solution of optimization problem (5.2). Therefore,∑n
i=1 fi(qi) ≤ B, and

n∑
i=1

fi(c) ≤ B (5.11)

We define p ∈ (0, 1] such that, for all i ∈ {1, . . . , n}, pi = p. From assumption (5.7),

n∑
i=1

fi(p) = B (5.12)

Let h be the following function:

h : (0, 1] −→ R

x 7−→
n∑

i=1

fi(x)

Since fi is nonincreasing on (0, 1] for all i ∈ {1, . . . , n}, h is a nonincreasing function on (0, 1].

From (5.11) and (5.12), we have B = h(p) ≥ h(c), which means that p ≤ c. Using (5.9), we

have

max {p1, . . . , pn} = p ≤ c ≤ max {q1, . . . , qn} (5.13)

which proves the sufficiency conditions.

Proof of Existence of an Optimal Solution to Problem (5.2)

Let F be the following function:

F : (0, 1] −→ R

p 7−→
n∑

i=1

fi(p)
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Let G be the following function:

G : R+ −→ (0, 1]

b 7−→ min
p∈(0,1]

{p : F (p) = b}

We will show that G(B) is an optimal solution of (5.2).

Let us show first that G(b) is defined for all b ∈ R+. This is done in two steps:

• we first show that I(b) = {p s.t. F (p) = b} is not an empty set, which proves that

inf(I(b)) exists.

• we then show that inf(I(b)) ∈ I(b), i.e., that min(I(b)) exists.

Existence of an infimum of I(b). If a probability of failure of 1 is allowed for each facility,

then the cost of maintenance and repair is 0. Therefore, F (1) = 0. Since F is continuous,

and F (1) = 0 and F (p) → +∞ as p → 0, then for any b ∈ R+, there exists p ∈ (0, 1] such

that F (p) = b. Therefore, I(b) = {p s.t. F (p) = b} is not empty, and has an infimum.

Existence of a minimum of I(b). For a given b ∈ R+, the set I(b) is bounded below by

m(b) = inf(I(b)) > 0 because F (p) → +∞ as p → 0. The set I(b) is bounded above by

M(b) = sup(I(b)). We will show that inf(I(b)) ∈ I(b), which means that the infimum of

the set I(b) is actually a minimum. There are two cases:

(i) Case M(b) = m(b). Since I(b) is not empty, the condition inf(I(b)) = sup(I(b)) indicates

that the set I(b) is reduced to a single point, inf(I(b)) = m(b) = M(b) = sup(I(b)).

(ii) Case M(b) > m(b). Consider the sequence (uk)k∈N defined as follows. For a given b ∈ R+,

and for all k ∈ N,

uk = m(b) +
M(b)−m(b)

k + 1

This sequence converges to m(b). Moreover, M(b)−m(b) > 0, which means that for all
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k, uk ≤ m(b). For all k, we also have

M(b)− uk = M(b)−m(b)− M(b)−m(b)
k + 1

= (M(b)−m(b))
k

k + 1
> 0

Therefore, m(b) < uk < M(b). This means that uk ∈ I(b), and F (uk) = b. Since F is

continuous, we have

F (m(b)) = F

(
lim

k→∞
uk

)
= lim

k→∞
b = b (5.14)

By definition of I(b) = {p s.t. F (p) = b}, m(b) belongs to the set I(b).

In both cases, m(b) ∈ I(b), and m(b) = min I(b) = G(b), which means that G(b) is defined.

G(B) is an optimal solution. Since F (G(B)) = B, then p∗ = G(B) is an optimal solution

to problem (5.2), according to the sufficiency conditions (5.3).

If the functions fi are strictly decreasing, then the function F is strictly decreasing and

continuous, therefore invertible. In that case, I(b) consists of a single point, and we have

G(b) = F−1(b).

5.3 Discrete-Case Solution

5.3.1 Empirical Evidence of the Validity of the Discrete-Case Results

In practice, the values fi(pi) cannot be determined for a continuous interval of pi, because

this would require solving the facility-level optimization problem described in the previous

chapter an infinite number of times. The values fi(pi) can therefore be determined only for

a finite set of values of pi, for each facility. The present section aims to show empirically

that the results of the discrete case implementation represent a good approximation of the

continuous-case solution.
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The numerical application considers a system of 742 heterogenous bridges. The deterioration

of each bridge deck is modeled according to Frangopol et al. (2001), and maintenance

and replacement cost information is adapted from Kong and Frangopol (2003). A system

of heterogenous bridges is created by changing the parameters provided in these articles

within reasonable ranges. The facility-level optimization problem is solved for each facility,

for various values of the threshold of probability of failure. The condition of each facility,

measured by its reliability index β, is discretized, and various discretization step sizes are

tried.

Figure 5.2: Aggregation of results of facility-level optimization for 742 bridges.

The results for the system of 742 bridges is shown in figure 5.2. For each of the three dis-

cretization step sizes, the optimization problem is solved for different values of the threshold

p of probability of failure (two different values with step size 2, four different values with

step size 1, and seven different values with step size 0.5). For a given discretization step size,

it can be noted that the sum of the facility-level optimal costs decreases as the threshold p
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of probability of failure increases, which is intuitive, and was one of the assumptions made

in the continuous case. Moreover, the variation of the optimal cost with respect to p is rela-

tively smooth; therefore, it is relevant to interpolate between the results for different values

of p, and the continuity assumption made in the continuous case is likely to be verified.

The graph also shows that, for a given value of p, the sum of the facility-level optimal

costs decreases as the discretization step size decreases. This is intuitive, because the model

becomes finer, as the step size decreases, thus allowing for improvements in the optimization.

It can also be noted that, for any given value of p, the difference in cost between step size

1 and step size 0.5 is much smaller than the difference between step size 2 and step size 1,

which suggests that the results “converge” as the step size decreases to 0.

These arguments, derived on a system of significant size, provide empirical evidence that

the results found in the discrete-case implementation can confidently be considered valid

approximations of the results in the continuous case.

5.3.2 Implementation and Derivation of Facility-Level Policies

The facility-level optimization problem is first solved for each facility, for different values of

the threshold p of probability of failure (or equivalently, for different values of the reliability

index). This provides the optimal cost fi(p) for a discrete set of values of p, for each facility.

After summing these values over all facilities and interpolating, the function F , defined as

follows, is known.

F : (0, 1] −→ R

p 7−→
n∑

i=1

fi(p)
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Given a user-defined value B of the budget, the optimal value p∗ of the threshold of prob-

ability of failure can be expressed as:

p∗ = min {p : F (p) = B}

For each facility, solving the facility-level optimization with the threshold of probability

of failure taken as p∗ provides a set of maintenance and replacement policies. This set of

policies is optimal at the system level. Note that the optimization described in the previous

chapter utilizes a threshold of reliability index instead of a threshold of probability of failure.

The threshold of reliability index corresponding to the threshold p∗ of probability of failure

is as follows:

β∗ = −Φ−1(p∗)

where Φ is the cumulative standard normal distribution.

5.3.3 Computational Complexity

The solution is such that the computational complexity of the system-level problem is low.

Namely, the fact that the threshold of probability of failure is the same for all facilities at

system-level optimum reduces the optimization problem for n facilities to n independent

facility-level problems. Therefore, the complexity is proportional to the number of facilities

in the system, i.e., O(n). For each facility, the facility-level optimization problem is solved a

small number of times, as seen earlier. Since the time to solve one facility-level problem is of

the order of a few seconds on a personal computer, typical values of computation times for

the system-level problem are five hours per thousand facilities. These computation times

indicate that the present system-level optimization method can be applied to systems of

the size of that managed by a state Department of Transportation. For example, if applied

to the system managed by Caltrans, composed of 24,000 bridges (California Department of
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Transportation, 2006), the optimization would require a computation time of approximately

five days, which is very short compared with the time scale of maintenance and replacement

decisions.

5.4 Summary

In this chapter, we address the problem of optimization of maintenance and repair decisions

for a system of heterogeneous facilities. The facility-level results from chapter 4 are used in

this reliability-based formulation.

Exact solutions are determined in the continuous case, and we provide formal proofs of

optimality. A numerical study also shows that the results obtained in the discrete-case

implementation of the solution seem to be valid approximations of the continuous-case

results.

The computational complexity of the determination of the optimal solution is low, which

makes this approach suitable for systems of realistic sizes. Moreover, we designed an ap-

proach that provides recommendations of optimal maintenance and repair decisions for each

facility in the system. This characteristic was considered by maintenance engineers to be

very important for implementation purposes, rather than providing recommendations for

fractions of the bridge population, as is the case in Pontis for example.



77

Chapter 6

Conclusion

6.1 Contributions

This dissertation addresses the determination of optimal decisions for bridge maintenance

and repair both for one facility and for a system of heterogeneous facilities. Deterioration

models are used to predict the future condition of facilities, which is required in the op-

timization to evaluate maintenance and repair policies. Given the inherent stochasticity

associated with bridge deterioration, the purpose of deterioration models is to decrease or

capture the uncertainty regarding future condition. More precise deterioration models al-

low for more discriminating M&R decisions, yielding greater benefits (lower costs or higher

performance).

This dissertation concentrates on the use of deterioration models that take into account

aspects of the history of deterioration and maintenance. Such deterioration models have

not been widely used in optimization methods present in the literature, although their

benefits in reducing the uncertainty in the prediction of facility condition are substantial.
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In the first part of the dissertation, we formulate the problem of optimizing inspection, main-

tenance, and repair decisions for a system of heterogeneous facilities, using a non-Markovian

model of deterioration. A bottom-up approach is followed, which provides individual rec-

ommendations for each bridge. The deterioration model we consider has been used in an

optimization method present in the literature; however, the optimization in that article

had a very small set of decision variables and was limited to one facility or to a system

of homogeneous facilities. The computational complexity of the optimization problem we

propose is such that the determination of the exact solution is not likely to be achieved in

polynomial time. Therefore, we determine bounds on the optimal cost, which are shown to

be close to each other in a numerical example.

In the second part of the dissertation, we provide optimal maintenance and repair decisions

for a system of heterogeneous facilities. For each facility, the formulation of the optimization

is reliability based. We define a deterioration model that takes into account aspects of the

history of deterioration and maintenance, while allowing for the use of standard optimization

techniques. The policies determined by the proposed approach are compared to the policies

determined by a model comparable to those present in the literature. The application of

the policies of the model proposed in this dissertation provides significant benefits.

The results of the facility-level optimization are incorporated in a new reliability-based

formulation of the problem of optimizing M&R decisions for a system of heterogeneous

facilities, providing optimal decisions for each facility in the system. The computational

efficiency of the system-level solution makes the formulation suitable for systems of realistic

sizes.
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6.2 Future Work

The directions we identified for future research include the following:

1. In the system-level formulation presented in chapter 5, the budget is expressed as a

constraint over the entire planning horizon. This may be seen as a limitation if the

budget available to the agency is yearly and not cumulative, i.e., if the agency must

use the budget for a given year in that year only and cannot save part of it for future

use. However, the policies described in chapter 4 seem to lead to the performance of

maintenance actions at regular intervals. This is likely to lead to stable yearly costs,

especially if the number of facilities in the system is large. Moreover, maintenance actions

were shown to be performed on facilities in good condition, which means that they

could be delayed by a few years without increasing the risk of failure of the facilities

to unacceptable levels. These results could be investigated, to determine if the policies

found are robust to small changes in the timings of the actions. If it were the case,

policies could be defined in the form “n maintenance actions must be performed over

the next 75 years,” and the actual timing of the actions could be determined to meet

yearly budget constraints. Such results could be very beneficial to agencies in charge of

the maintenance of infrastructure systems.

2. The formulations presented in chapters 4 and 5 assume perfect information regarding

facility condition. In practice, this implies that inspections are carried out every year

and are error free. Inspection decisions have been included in the optimization in earlier

studies considering simpler Markovian models. Measurement uncertainties have also

been taken into account. Provided accurate data is available, these refinements would be

beneficial to the formulation presented in this dissertation, since it seems promising to

link the notions of inspection decisions and of history of deterioration and maintenance.
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3. The reliability-based formulation for a system of facilities presented in chapter 5 is likely

to be applicable to other systems: fleets of vehicles, other civil infrastructure systems,

supply chain of time-critical goods, assembly lines, etc.

4. Although the reliability-based approach presented in this dissertation seems to be pre-

ferred by maintenance engineers, rather than the serviceability-based approach followed

by existing bridge management systems such as Pontis, models considering the probabil-

ity of failure of bridge components are not widely available in the literature. Deterioration

models play a critical role in the optimization of maintenance and repair decisions. The

increasing interest in small and inexpensive measuring devices, such as Micro-Electro-

Mechanical Systems (MEMS), offers great potential to the development of improved

deterioration models. These sensors can provide precise and frequent measurements of

the moisture content, the temperature, as well as the concentration of chloride, sodium,

and potassium ions in concrete. This data can be used to estimate the structural health

of a bridge deck. Accelerometers can also provide information about modes of vibration

of structures, which are relevant in the analysis of structural health (Pakzad et al., 2005).

This data on probability of failure of bridge decks, associated with information on traf-

fic, environmental conditions, and physical characteristics of the bridge, can be used to

improve deterioration models.
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Appendix A

Bottom-Up Optimization:

Deterministic Formulation

In the deterministic formulation, the set of decision variables is a set of binary variables.

Each binary variable represents the decision to perform a given action on a given facility in

a given year. The mathematical formulation is as follows.

min
{1i,t,a,i∈{1,...,n},t∈{0,...,T−1},a∈{1,...,A}}

n∑
i=1

[
Fi (T ) Cfailure

i +
T−1∑
t=0

A∑
a=1

αtE [1i,t,aC
a (i, βi (t))]

]
(A.1)

subject to

Fi (t) ≤ P acceptable
i i ∈ {1, . . . , n} , t ∈ {0, . . . , T − 1} (A.2)

n∑
i=1

A∑
a=1

αtE [1i,t,aC
a (i, βi (t))] ≤ Bt, t ∈ {0, . . . , T − 1} (A.3)

βi (tcont) = fi

(
tcont, trepl

i (tcont),
n

1i,t,a, t∈
n

trepl
i (tcont),...,btcontc

o
, a∈{1,...,A}

o)
(A.4)

i ∈ {1, . . . , n} , tcont ∈ [0, T )

1i,t,a ∈ {0, 1}, i ∈ {1, . . . , n} , t ∈ {0, . . . , T − 1} , a ∈ {1, . . . , A} (A.5)

The following notation is used:
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• n: number of bridges in the system

• T : number of years in planning horizon

• A: number of possible maintenance actions

• 1i,t,a: binary variable taking value 1 if action a is performed on facility i in year t, 0

otherwise

• Cfailure
i : cost of failure of facility i

• Fi(t): probability of failure of facility i over t years

• α: discount factor, α = 1/(1 + r) where r is the interest rate

• βi(t): reliability index of facility i at time t. By definition of the reliability index, the

instantaneous probability of failure of facility i at time t (given it has not failed yet) is

Φ (−βi (t)).

• Ca (i, βi (t)): cost of action a performed on facility i when its reliability index is βi (t)

• btcontc: largest integer less than or equal to tcont

• trepl
i (tcont): year of last replacement of facility i before time tcont. If the facility i has not

yet been replaced by time tcont, trepl
i (tcont) = 0

• fi

(
tcont, trepl

i (tcont) ,
{

1i,t,a, t ∈
{

trepl
i (tcont) , . . . , btcont

}
, a ∈ {1, . . . , A}

})
: reliability

index of facility i at time tcont, depending on maintenance performed between year

trepl
i (tcont) and year btcontc. This continuous function of time is the basis for the modeling

of deterioration and ensures that the deterioration is time-dependent.

• P acceptable
i : acceptable probability of failure for facility i

• Bt: budget made available to the agency at the beginning for year t, to be used in year t.

Constraint (A.2) sets an upper bound to the probability of failure of each facility over the

planning horizon. Constraint (A.3) is the budget constraint. Constraint (A.4) represents
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the component deterioration and constraint (A.5) defines the decision variables as binary.

No discount rate is applied to the cost of failure, as failure is a very undesirable event.

The result of the optimization is a set of recommendations such that the reliability and

budget constraints are satisfied. From a practical point of view, this means that the opti-

mization is performed at the beginning of the planning horizon, and the recommendations

are applied regardless of the actual reliability index of the facilities.

The ideal case would be to consider an infinite planning horizon, in order to optimize the

life-cycle cost of the system. However, this would require an infinite computation time. Let

us justify in an informal manner the choice of the length of the planning horizon. Let us

compare two instances of the problem: one with an infinite planning horizon and one with a

finite planning horizon T . The difference between the two cases is the costs in years t > T ,

which are undefined in the finite case. If a positive interest rate is applied, the further in

the future a cost is incurred, the smaller its present value. In the cost minimization we are

considering, this can be expressed as: if a cost is incurred at year t + τ , the larger τ is, the

less this cost influences decisions made at year t. This can be extended as: if τ is sufficiently

large, the decision in year t is the same whether a (bounded) cost is to be incurred in year

t + τ or not. Intuitively, for any α strictly positive and any positive integer Tagency, there

exists a positive integer T0 such that the optimal maintenance decisions between year 0 and

year Tagency−1 are the same whether the problem has an infinite planning horizon or a finite

planning horizon of length greater than T0. This statement, which can be seen as a property

of convergence of the optimal values as the planning horizon tends to infinity, needs to be

proved formally, at least for simple cases. If it is true, it means that, after having chosen the

interest rate α and the length Tagency of the period for which the agency wants to determine

the recommended actions, the problem can be solved using a planning horizon of length T0.
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This also means that a constraint on the final condition of the system is not required, as the

final condition would not influence decisions at the beginning of the planning horizon. Due

to the inherently stochastic deterioration of bridges and the absence of reliable long-term

forecasts on budgets, agencies are not likely to be interested in decisions more than 10 years

in advance. Thus, a reasonable value of Tagency can be assumed to be 10 years.
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Appendix B

Notation and Additional Proofs for

System-Level Result

B.1 Notation

For any integer n, the notation {1, . . . , n} represents the set of integers between 1 and n,

1 and n being included. The set R+ is the set of nonnegative real numbers. For any set

E ⊂ R, En indicates the set of n-tuples of elements of E. For any (p1, . . . , pn) ∈ Rn, the

notation max{p1, . . . , pn} represents the largest element of the n-tuple (p1, . . . , pn). For any

real numbers a and b such that a ≤ b, the set of real numbers x such that a ≤ x ≤ b is

denoted by [a, b]; the set of real numbers x such that a < x < b is denoted by (a, b); the set

of real numbers x such that a ≤ x < b is denoted by [a, b).
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B.2 Proof of Necessary Conditions for Strictly Decreasing

fi’s

In this section, the functions fi are assumed to be strictly decreasing. We will prove that,

if (p1, . . . , pn) ∈ (0, 1]n is an optimal solution of (5.2), then

(i) for all (i, j) ∈ {1, . . . , n}2, pi = pj , and

(ii)
∑n

i=1 fi (pi) = B.

Let (p1, . . . , pn) ∈ (0, 1]n be an optimal solution of (5.2).

Let us prove that for all (i, j) ∈ {1, . . . , n}2, pi = pj . Suppose that

min {p1, . . . , pn} < max {p1, . . . , pn} (B.1)

We will show that assumption (B.1) leads to a contradiction.

The minimum of {p1, . . . , pn} is reached by at least one element. Let us denote by imin the

index of such an element, i.e., min {p1, . . . , pn} = pimin . Similarly, let us define imax such

that max {p1, . . . , pn} = pimax . Let g be the following function:

g : (0, 1] −→ R

x 7−→
n∑

i=1

fi(pi)−
n∑

i=1

fi(x)

For all i ∈ {1, . . . , n}, pi ≤ pimax ; thus, fi(pi) ≥ fi(pimax), because fi is a decreasing function

on (0, 1]. Therefore, g (pimax) =
∑n

i=1 (fi (pi)− fi (pimax)) ≥ 0. Similarly, g (pimin) ≤ 0.

We have:

(i) g is continuous on [pimin , pimax ],

(ii) g (pimin) ≤ 0, and

(iii) g (pimax) ≥ 0.

By the intermediate value theorem, there exists c ∈ [pimin , pimax ] such that g(c) = 0.

Moreover, since fi is strictly decreasing on (0, 1] for all i ∈ {1, . . . , n},
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(i) fimin (pimin) > fimin (pimax), and

(ii) for all i ∈ {1, . . . , n} such that i 6= imin, fi (pi) ≥ fi (pimax).

Therefore,

g (pimax) =
n∑

i = 1

i 6= imin

(fi (pi)− fi (pimax))︸ ︷︷ ︸
≥0

+ fimin (pimin)− fimin (pimax)︸ ︷︷ ︸
>0

> 0 (B.2)

Thus, c is necessarily in [pimin , pimax). Note that this interval is not empty, since pimin < pimax .

Let us define (q1, . . . , qn) ∈ (0, 1]n such that, for all i ∈ {1, . . . , n}, qi = c.

Since g(c) = 0, we have
∑n

i=1 fi(qi) =
∑n

i=1 fi (pi) ≤ B, so (q1, . . . , qn) is a feasible solution

of optimization problem (5.2). Moreover,

max {q1, . . . , qn} = c < pimax = max {p1, . . . , pn} (B.3)

which contradicts that (p1, . . . , pn) is an optimal solution of (5.2).

Therefore, assumption (B.1) leads to a constradiction, and

min {p1, . . . , pn} ≥ max {p1, . . . , pn} (B.4)

which means that p1 = p2 = . . . = pn.

We now prove that
∑n

i=1 fi (pi) = B. Suppose that

n∑
i=1

fi (pi) < B (B.5)

We will show that assumption (B.5) leads to a contradiction.

We have shown that p1 = . . . = pn. Let us define p ∈ (0, 1] such that, for all i ∈ {1, . . . , n},

pi = p, and ε ∈ R such that

ε = B −
n∑

i=1

fi (pi) > 0 (B.6)
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Let h be the following function:

h : (0, 1] −→ R

x 7−→
n∑

i=1

fi(x)

The function h is continuous on (0, 1]. By continuity of h at point p > 0, there exists δ > 0

such that p− δ > 0 and, for all x ∈ (p− δ, p + δ) , |h(x)− h(p)| < ε. Therefore,

h (p− δ/2) < ε + h (p) = B (B.7)

Let us define (r1, . . . , rn) ∈ (0, 1]n such that, for all i ∈ {1, . . . , n}, ri = p− δ/2.

n∑
i=1

fi (ri) = h (p− δ/2) <= B (B.8)

Therefore, (r1, . . . , rn) is a feasible solution of optimization problem (5.2). Moreover,

max {r1, . . . , rn} = p− δ/2 < p = max {p1, . . . , pn} (B.9)

which contradicts that (p1, . . . , pn) is an optimal solution of (5.2).

Therefore, assumption (B.5) leads to a contradiction, and we have
∑n

i=1 fi (pi) ≥ B. Since

(p1, . . . , pn) is a feasible solution of (5.2),
∑n

i=1 fi (pi) ≤ B. Therefore,
∑n

i=1 fi (pi) = B.




