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Abstract

We find that between 20 and 25 percent of the negative covariance between excess returns and

inflation is explained by shocks to monetary policy variables. The finding is robust to changes in

the monetary policy rule that have occured during the 1966-1998 period. The result contradicts

the theory that money supply shocks induce a positive correlation between inflation and returns.

Our findings also cast doubt on models that explain the negative correlation in a money-neutral

environment (Boudoukh, Richardson, and Whitelaw (1994)), and on models that account for this

correlation as being due solely to money demand shocks (Fama (1981), Marshall (1992)). We argue

that contractionary monetary policy lowers excess stock market returns through various channels.

Furthermore, if the Fed has some private information about future inflation, then a contractionary

monetary shock will be followed by an increase in inflation, in the short run. The combined effect is a

negative inflation/excess returns correlation. The results lend support to the argument that if asset

pricing models are to capture the observed negative correlation, they must incorprate monetary

policy effects.

JEL: G10, G12, E44, E51, E61, C32



1 Introduction

“Greenspan and the powerful Open Market Committee can raise short-term interest

rates to keep the economy from overheating. When they raise short-term rates, bonds

and money market mutual funds look more attractive relative to stocks. And companies

must pay higher rates on their borrowing, which reduces corporate earnings. Both of

which, in theory, should bring stock prices down,...”

–USA TODAY, March 27, 2000.

People outside of academia take it for granted that the actions of the Federal Reserve Board

(Fed) have a considerable impact on stock market returns, but a consensus amongst economists has

yet to emerge. However, most economists will agree that if monetary policy is to have an effect on

real returns, it must be either by influencing future net cash flows or by affecting the discount factor,

at which the cash flows are capitalized. In either case, monetary policy must be “non-neutral”, i.e.

it must have an influence on real quantities, such as real dividend growth, in order to affect real

returns. The focus of this paper is on the effect of monetary policy on excess stock returns, and on

the correlation between those returns and inflation. Ours is a very natural direction of research,

since the Federal Reserve System was founded by Congress precisely to promote price stability and

to stimulate long-run economic growth1. To the extent that Fed policy is successful in fulfilling

those goals, it must have an effect on excess returns and on the correlation between excess returns

and inflation.

The effect of monetary policy on stock returns is of clear interest, as demonstrated by the

constant analysis of Alan Greenspan’s comments and the actions of the Federal Open Market

Committee (FOMC) by economists, the media and Wall Street2. After the influential papers by

Lucas (1976) and Sims (1980, 1986), the impact of monetary policy on financial and real variables

has most often been evaluated using “weakly identified” vector autoregressions3 (VARs) — large

dynamic linear systems, allowing us to explore the statistical features of the data. If appropriate

restrictions are placed on a VAR, its results might be given a structural interpretation, providing

us with guidelines on what features asset pricing models should possess. Under the paradigm that

only unsystematic monetary policy should have an effect on real variables (Lucas (1972, 1996),

Sargent and Wallace (1975)), the emphasis has often been placed on analyzing the dynamic effects

1



of shocks on the estimated system. The analysis in Cornell (1983a,b) is in the same spirit, but uses

different assumptions and econometric techniques to identify monetary policy shocks and their

effect on stock prices. The VAR literature has recently produced results that conform to prior

belief and economic theory, but monetary policy shocks have only been able to explain no more

than 20% of the variation in real activity (Cochrane (1994), Bernanke et al.(1997)). Moreover,

since real variables account for no more than half of the variation in stock returns (Geske and Roll

(1983), Fama (1990)), it is not surprising that only a small percentage of the total variation of

equity returns are explained by unanticipated policy shocks, as shown by Patelis (1997), Thorbecke

(1997), and corroborated by our own results.

The negative correlation between excess returns and inflation has received independent interest,

since this finding was published by Fama and Schwert (1977). The result is surprising in a money-

neutral world, because if stocks are claims against real assets, the correlation must be zero. But

the result is even more surprising if we allow monetary policy to have an effect on real activities.

A successful contractionary monetary policy, implemented for instance by raising the short-term

interest rate, must be followed by decreasing inflation and excess returns, resulting in a positive

correlation between those two variables. Starting with Fama’s (1981) “proxy” hypothesis, many

people have tried to explain the observed negative correlation. Surprisingly, most explanations focus

either on money demand effects (Fama (1981), Marshall (1992)), or on money-neutral environments

(Boudoukh et al.(1994)). The effect of monetary policy on the relationship between returns and

inflation has been given much less attention. The papers by Geske and Roll (1983) and Kaul (1987,

1990) consider the effect of systematic money supply shifts through various channels, and we discuss

those papers below. The focus here is more in line with the current macroeconomics literature,

that only unanticipated monetary policy will have an effect on excess stock returns and inflation.

Moreover, the identification of monetary policy and its systematic effects on returns and inflation

is also different from those in Geske and Roll, and Kaul.

We make the following contributions. Using traditional VAR analysis, we show that unexpected

contractionary monetary policy results in a negative correlation between excess returns and infla-

tion. In fact, during the 1966-1998 period, between 20 and 25% of the covariance of inflation and

excess returns can be explained by monetary supply shocks. This finding suggests that monetary

policy variables are an important factor and must be included in any asset pricing model that
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aims to capture the negative returns/inflation covariance. To reach this conclusion, we assume

that monetary policy shocks are identified in a recursive system, where the Fed follows a simple

interest rate rule. More specifically, the policy instrument of the central bank is the federal funds

rate, which responds systematically to inflation, output growth, and is subject to exogenous pol-

icy shocks. Then, using covariance decomposition, we find the percentage of the inflation/excess

returns covariance that is explained by those shocks.

To understand why a monetary shock causes a negative returns/inflation correlation, we look

at the separate effect of such a shock on excess returns and inflation. Unexpected contractionary

policy leads to a decrease in excess returns, as is to be expected if monetary shocks have real effect

and as stocks are claims against real assets. We discuss several channels, commonly thought to

provide a transmission mechanism of monetary shocks onto real variates. We also observe that an

unexpected contractionary monetary policy leads to a temporary increase in inflation, a fact that

has been labeled the “price puzzle” by Sims (1992). Despite the usual precautions and variable

selection in our VARs (such as including the price of commodities), the price puzzle is always

present. In sum, the negative correlation caused by monetary supply shocks is inextricably linked

to the price puzzle. There might be several reasons for the price puzzle, mostly associated with

the asymmetric information between the Fed and the public. Under the assumption that the Fed

has more information about future inflation than other players in the economy, we discuss a simple

model that can account for the seemingly anomalous increase in prices following a contractionary

monetary policy. Our results are consistent with the findings of Romer and Romer (2000) who

provide a direct test of the Fed’s superior information in forecasting future inflation.

The above arguments are based on the assumptions that only unsystematic monetary policy

shocks can have real effects, that those shocks are correctly identified, and that the monetary

policy rule has remained unchanged during the entire sample period. All of those assumptions

have received some attention in recent years. However, some assumptions are more untenable than

others. For example, it is highly unlikely that monetary policy has remained unchanged for more

than 30 years. Changes in Fed chairmen, other Federal Open Market Committee (FOMC) members,

and knowledge of the economy must have resulted in different monetary policy rules over the years

(Clarida et al. (1999), Taylor (1998), Boivin (1999), and Friedman and Schwartz (1963a,b) for

a historical perspective). In order to take the changing monetary policy into consideration, we
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split the sample into two periods, 1966-1979 and 1983-1998, corresponding to tenures of FOMC

chairmen, known to have conducted monetary policy in different fashions4. Indeed, the estimated

monetary policy rule is very different in the two sub-samples. We re-estimate the VAR and analyze

the effects of monetary policy on excess returns and on the correlation between excess returns and

inflation during those two periods. This is a crude way of allowing the VAR policy parameters to

change, without taking a stance on the provenance of those changes. A monetary policy does have

an effect on the inflation/excess returns correlation in both periods, although the effects are less

pronounced during 1983-1998. The price puzzle is remarkably stable during both periods. It must

be noted that, given the changing monetary policy rule, it is highly unlikely that long-horizon VAR

identifying restrictions, proposed by Blanchard and Quah (1989) and recently used by Hess and Lee

(1999), can capture true monetary policy shocks5. The fact that excess returns do not respond to

monetary shocks with the same magnitude during both periods and the fact that monetary policy

influence on the covariance between returns and inflation changes in those periods prompts us to

look deeper into how changes in the systematic part of the Fed policy will have effects on returns

and inflation.

Changes in the Fed policy function may come from various sources. For instance, the central

bank might be learning how to optimally respond to evolving economic conditions (Clarida et al.

(1999)). Alternatively, the varying quality of Fed forecasts, due to changing economic conditions,

might induce time variation in the policy function. This line of reasoning has led authors to consider

monetary policy rules under uncertainly or imperfectly observed economic conditions. (Aoki (1999),

Giannoni (1999)). Ideally, one would want to estimate a VAR with time-varying parameters, since

as pointed out by Lucas (1976), a change in the monetary policy rule will result in changes of the

parameters in the rest of the reduced form equations. However, a general time-varying parameter

model is not easy to accommodate in the VAR framework, due to the sheer number of parameters

to be estimated.

We specify the VAR so that time variation comes only from the monetary policy rule, whereas

the rest of the system is time invariant. The coefficients in the VAR can easily be estimated by

maximum likelihood, implemented with Kalman filtering. Time variation even in one equation will

percolate throughout the entire system from the dynamics of the regressions. We estimate the

VAR allowing for a changing monetary policy rule and examine the effects of monetary shocks on
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the economy using time-varying response analysis. Comparing the responses of the system under

time-varying and time-invariant policies provides a measure of how significant, statistically and

economically, the variations in the Fed policy rule are. The impact of monetary disturbances on the

excess returns/inflation covariance varies dramatically over time and the fluctuations are strongest

during periods of economic instability, consistent with our account of the price puzzle. However,

despite such drastic monetary policy changes, the effect of a contractionary monetary policy on

excess returns is always negative, conforming to theory, and the effect on the returns/inflation

covariance is also negative, supporting our previous findings. Surprisingly, we find that the impact

of monetary shocks on the negative excess returns/inflation correlation has been steadily declining.

The paper is structured as follows. In section 2, we present the Fed policy function, discuss

its changing character, and elaborate on the effect of monetary disturbances on stock returns and

inflation. Section 3 lays out the methodology used in the empirical investigation. First, we discuss

the usual VAR toolbox and a useful extension; covariance decomposition. Then, we present the

estimation and dynamic response analysis of a VAR with time-varying interest rate equation. The

results are analyzed in section 4. Section 5 offers concluding remarks.

2 Fed policy, excess returns, and inflation

Monetary policy may affect both the cash flows of firms and the discount factor at which the cash

flows are discounted. A considerable fraction of the variation of annual stock returns is due to real

variables such as industrial production and investment, which are important determinants of the

cash flows of firms (Fama (1981), Geske and Roll (1983), Kaul (1987), and Fama (1990)). To the

extent that monetary policy affects real variables, it will also have an effect on firm cash flows and

returns. Monetary policy may also affect the discount factor at which cash flows are discounted, by

influencing the risk structure of the economy. For instance, Schwert (1989) documents that stock

market volatility is generally higher during recessions than during expansions and shows that the

spread between lower- and higher-grade corporate bond yields is directly related to subsequently

observed stock volatility. As discussed by Schwert, this result might be due to the increasing

operating and financial leverage of firms during recessions. Therefore, to the extent that monetary

policy shocks affect a firm’s financial health, they may also affect the expected risk premium

demanded by investors.

5



Using the framework of Campbell and Shiller (1988), Campbell (1991), and Patelis (1997), the

excess stock returns — the spread of nominal stock returns over nominal risk-free interest rate — may

well be decomposed into expected future sums of dividend growth, real interest rate, and excess

returns. In a money-neutral setting, these real variables are solely determined by real factors such

as productivity of capital, time preference, and risk aversion. However, if money is assumed to

have real effects, then monetary shocks will affect excess returns through the three expectations,

as demonstrated by Patelis (1997). Since the main focus of this paper is on demonstrating that

part of the negative covariance between excess returns and inflations is due to monetary shocks,

we are only interested in establishing that those shocks do have an effect on excess returns and in

providing an explanation for the results. The more daunting task of identifying the exact channels

through which unanticipated monetary policy affects the covariance of interest is left for further

research6.

The positive correlation between short interest rates and inflation7 is a well documented empir-

ical fact. This robust empiricism might be interpreted as evidence supporting the Fisher relation.

However, we think of the federal funds rate not as a state variable, but rather as being controlled

by the Fed. The FOMC uses the federal funds rate as its instrument of monetary policy8 in order

to promote price stability and economic growth. In this respect, an exogenous shock to the federal

funds rate (tighter monetary policy) must result in lower future, expected and realized, inflation.

However, as mentioned above, increases in the funds rate have historically been followed by increases

in the price level at the short horizon, followed by a decrease at longer horizons. Following Romer

and Romer (2000), we attribute this fact to the Fed’s superior information about future economic

conditions. The Fed possesses private information about future inflation that is not captured by a

VAR. To the extend that the Fed is unable to offset the inflationary impetus that led it to predict

higher (than the public) inflation, the unanticipated (by the public) increase in the federal funds

rate will be followed by (will forecast) a rise in inflation. The persistence in the inflation series,

due to the rigidity in wages and contracted prices, as well as the Fed’s desire to smooth interest

rates, results in a short-horizon positive correlation between monetary policy shocks and inflation.

Summing the effects of unanticipated monetary policy on returns and inflation, we have the

desired result. In the short run, a tighter monetary policy, implemented by a positive shock to the

federal funds rate, induces a decrease in excess rates of return and is followed by an increase in
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inflation. Hence, such a policy will deliver the observed negative correlation between excess returns

and inflation.

One might argue that our mechanism is one of the many that produce the negative correlation

between inflation and returns. However, the reasoning above implies that a big part of the nega-

tive correlation between inflation and excess returns must be explained by unexpected shocks to

monetary policy variables. This dimension of the correlation is not captured by any other model.

As discussed below, we find that between 20% and 25% of the covariance between excess returns

and inflation is due to monetary policy shocks. Therefore, models that imply that the negative

correlation is entirely due to money demand shocks (Fama (1981), Marshall (1992)) are not sup-

ported by the data, since we find that money supply shocks account for a significant fraction of

that variation. Moreover, our findings suggest that models that treat money as being completely

neutral in the short run also do not offer the complete explanation (Boudoukh et al.(1994)). Lastly,

under the assumption that time-variation in the VAR comes only from the policy function, we find

that contractionary monetary disturbances are followed by lower excess returns and a negative re-

turns/inflation covariance during any time period, which is consistent with the previous discussion.

The rest of the section is structured as follows. First, we discuss the Fed policy function (Taylor

rule) and lay out several channels through which monetary shocks can be transmitted to real

variables and stock returns. Next, we describe the asymmetric information problem between the

Fed and the public, within the framework of the Taylor rule. Finally, we discuss instabilities in the

policy function.

2.1 The Fed’s policy function

In recent years, a lot of attention has been devoted to the issue of how to conduct monetary

policy. This increased interest can be credited to the success of recent empirical papers showing

that monetary shocks do have an impact on the course of the real economy9. A virtual consensus

in this literature is that monetary policy can be characterized by looking at the federal funds rate

rather than at monetary aggregates, such as M0, M1, or M2. In other words, VAR’s that include

federal funds rate (or nonborrowed reserves) exhibit impulse response functions that conform to

our previous beliefs and economic intuition. Therefore, in this study, we take the federal funds

rate to be the main policy instrument of the central bank. In this respect, our analysis differs from
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the ones in Geske and Roll (1983) and Kaul (1987, 1990) who look at the growth of monetary

aggregates.

On the theoretical side, the monetary policy literature has enriched the dynamic general equi-

librium models, developed in the real business cycles field, by introducing frictions, such as nominal

price rigidities. A significant product of this literature is the development of specific rules of Fed

policy that are justified by general equilibrium considerations, and supported by the data. A pop-

ular class of rules are the simple linear interest rate functions, also known as “Taylor rules”, after

the article by John Taylor (1993). Taylor suggests that the Fed should try to set the short rate as:

rfft = α+ γ (πt − π∗) + ηxt + vt

where rfft is the federal funds rate, πt is the level of inflation, π∗ is the target inflation, xt is the log

deviations of GNP from its trend, and vt is a policy shock. In the same spirit, and using insights from

theoretical work by Rotemberg and Woodford (1997) and Woodford (1999), Clarida et al.(1999)

propose a “forward looking” version of the Taylor rule that also exhibits interest rate smoothing,

often observed in the Fed’s behavior. The feedback rule, proposed by Clarida et al.(1999) is (setting

π∗ = 0):

rfft = α+ φrfft−1 + (1− φ) [γE (πt+1|It) + ηxt] + vt (1)

The parameter φ captures the degree of interest rate smoothing. Expectations are taken with

respect to the information set It available to everyone in the economy: the public and the Fed. In

what follows, we assume that the Fed’s systematic policy is captured by a Taylor rule, as in (1). A

contractionary policy shock is captured by a positive innovation, vt.

2.2 The Fed’s impact on real variables and stock returns

We focus on two channels, through which the Fed’s actions can be transmitted onto real economic

variables and excess returns. The first one is a traditional IS-LM or a “money” channel, which relies

on price rigidities. The second channel, often called a lending or a credit channel, relies on capital

market imperfections. We do not try to differentiate between the two effects, since it has proven

to be a difficult task with even more disaggregated data. The presented evidence is consistent with

both channels.
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Traditional IS-LM channel: Brainard and Tobin (1963), and later Fama (1980), convinc-

ingly argue that the impact of monetary policy on the economy can be analyzed through its effect on

investor portfolios. Suppose that we are in a Fama (1980) banking world, where banks are merely

a medium of rebalancing portfolios. The analysis can be conducted with only two financial assets:

“outside” money, provided monopolistically by a central bank, that serves as the numeraire good

and as a medium of exchange, and “bonds”. We assume that money and bonds are not perfectly

substitutable, and that there is a non-zero demand for money. In an unexpected contractionary

move, the central bank decreases the quantity of money. Households must then hold more bonds

and less money in their portfolios. If there is price-rigidity in some sectors of the economy, prices

do not fully (or instantaneously) adjust to changes in money supply, and the fall in money holdings

represents a decline in real money balances. To restore equilibrium, the real return on bonds must

increase. Thus, fewer projects are available at higher required rates of returns—investment and

industrial production decrease.

The mechanism described above hinges on the central banks’s ability to control the supply

of outside money, and on prices being somewhat rigid. Since, both of those assumptions are

uncontroversial for the US, most researchers would agree that monetary policy is not neutral, at

least in the short run. However, the VAR literature has produced “protracted, hump-shaped and

large10” responses of real variables to unexpected monetary shocks that are difficult to believe.

Many recent papers have approached this problem in different fashions11. In the next section, we

discuss an already large literature that analyzes frictions in capital markets as possible channels

that amplify and propagate the effects of monetary policy.

Capital market-imperfections channels: The capital market-imperfection channels pro-

vide additional mechanisms of translating monetary policy actions into variations in real variables.

However, it is a mistake to think that the two views are anything else but complementing and

reinforcing each other. In this extensive literature12, monetary policy impacts the difference in

cost between external funds (issuing equity or debt) and internal funds (retained earnings), known

as the external finance premium. In order to analyze market imperfections, we need to introduce

three financial assets: money, bonds, and bank loans.

The banking literature has proposed two linkages between monetary policy actions and the
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external finance premium. The first one, known as the balance-sheet or net-worth channel, empha-

sizes that an increase in interest rates weakens the financial conditions of consumers and firms, by

directly impacting their cash flows, net worth, and assets. For example, higher rates of interest

will result in lower present discounted value of a firm’s assets (equipment, buildings, etc.), which

are often used as a collateral for loans. Therefore, such a monetary action will exacerbate any

existing agency and information costs of issuing credit and will result in the firm having a reduced

access to bank loans (Bernanke et al.(1994)). Balance sheet constraints also lead to lower invest-

ment and, ultimately, decreasing rates of return. The second channel, suggested by Bernanke and

Blinder (1988), and further analyzed by Kashyap et al. (1993), is the bank lending channel. The

main idea is that a reduction in bank reserves by the Fed also reduces bank deposits and, hence,

banks’ loanable funds. If bank loans are imperfect substitutes for other forms of financing (such as

commercial paper), a reduced supply of bank loans will lower economic activity by bank-dependent

borrowers. As an example, consider a company, whose primary source of short-term debt financing

are bank loans. A contractionary monetary policy, resulting in a reduction of loanable funds, will

compel this firm to look for credit in the commercial paper market. To the extent that bank loans

and commercial paper are not perfectly substitutable, and if the commercial paper market is not

sufficiently “deep”, then a contractionary monetary policy will result in an increase of commer-

cial paper rates13, and in the total cost of short-term debt financing of the firm. (Kashyap et al.

(1993)). Therefore, the cash flow of indebted firms will decrease, resulting in lower stock returns.

In sum, a tighter monetary policy, working through the two channels, has the effect of reducing

the excess rate of return in financial markets. It is also likely that the combination of those two

channels induces monetary shocks to have a more “protracted” effect on economic variables. As a

result of their similar effects on real variables, the channels and their nuances are difficult to identify

in aggregate data (Friedman and Kuttner (1993), Oliner and Rudebusch (1993), Cecchetti (1995),

Bernanke (1995)). However, in our study, we are not focusing on identifying those channels: our

aim is to establish that a tighter monetary policy ultimately results in a decrease of excess returns.

We include the default premium, the spread between yields on Aaa and Baa rated bonds, as a

simple proxy for capital market imperfections.
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2.3 The “Price Puzzle” and the Fed’s information set

In a VAR framework, if the weak restrictions that identify the structural shocks are inappropriate

or if there is crucial information missing from the vector of variables, then the system will exhibit

dynamics that are counter-intuitive to established beliefs. A well-known example is the puzzling

increase in the price level to a contractionary shock of monetary policy in a recursive system. This

result, first observed in U.S. and international data by Sims (1992), has been dubbed the “price-

puzzle”. Sims (1992), Sims and Zha (1995), and Christiano et al. (1996,1998) all suggest that this

anomalous result obtains because the Fed’s reaction function contains information about inflation

that is missing from the consumer price index (CPI). To remedy this problem, the authors include

commodity prices or the producer price index (PPI). Those measures alleviate the problem, but the

price-puzzle is still present in the short-horizon, for up to 6-12 months14. Romer and Romer (2000)

argue that the Fed has a considerable amount of private information beyond what is available to

commercial forecasters (and everybody else). This viewpoint is stronger than the one in the above

cited papers, because the information that needs to be included in the VARs is not only omitted

but also unavailable to forecasters (or the public).

These arguments can be incorporated in our discussion about the Taylor rule in the following

way. Suppose we denote by Ict the information set available to forecasters and the public, and

Ict ⊂ It, where It is the information set of the Fed. Then, using the fact that E (πt+1|It) =
E (πt+1|Ict ) +E (πt+1|It\Ict ), we can write the Taylor rule as:

rfft = α+ φrfft−1 + (1− φ) [γE (πt+1|Ict ) + γE (πt+1|It\Ict ) + ηxt] + vt (2)

where vt is a monetary policy shock. On the other side, the forecast of the public, denoted by r
p
t

is:

rpt = α+ φr
ff
t−1 + (1− φ) [γE (πt+1|Ict ) + ηxt] + εt (3)

where εt = γE (πt+1|It\Ict ) + vt is the monetary policy shock, identified in the literature. In our
information asymmetry hypothesis, εt is comprised on the following two components: (i) the Fed’s

policy endogenous adjustment to E (πt+1|It\Ict ), i.e. the Fed’s assessment of future inflation based
on its private information, and (ii) exogenous policy disturbances. For the public and econometri-

cians, both (i) and (ii) come as unanticipated policy shocks that have been found to affect real and
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financial variables. However, the unanticipated (to the public) shocks in fact contain (i), which is

merely a systematic adjustment of the Fed to its private information. Thus to the extent that εt

contains γE (πt+h|It\Ict ) , the unanticipated monetary policy shocks predict future inflation, and
thus the price puzzle obtains. To put this differently, the price puzzle can be attributed to the Fed’s

systematic reaction to private assessment of future inflation, and to the inability of the public to

disentangle between ”true” policy shocks, vt, and systematic policy reaction.

Our story is a middle ground between the arguments in Sims (1992) and Romer and Romer

(2000). We agree with Sims (1992) that the price puzzle is due to the Fed’s information about future

inflation that is missing from the econometrician’s information set. However, we espouse the views

in Romer and Romer (2000) that part of the Fed’s information is not available to the public and

cannot be proxied by available data. In other words, we argue that variables, such as commodity

prices, are part of Ict and cannot be used to proxy for E (πt+1|It\Ict ). There are several reasons why
the Fed might have information that is unavailable to other forecasters or to the public. Romer

and Romer (2000) show that if one were to form an expectation of future inflation using a weighted

average of internal Fed forecasts and private forecasters, all the weight should be placed on the

former. Moreover, the Fed has a large and competent staff of researchers in charge of forecasting

inflation, who often have an early access to relevant economic data.

Under the assumption that the available data cannot proxy for E (πt+1|It\Ict ) , it is difficult to
formulate a direct test of our asymmetric information hypothesis15. The VAR results, discussed

below, are consistent with our hypothesis, but cannot be taken as anything more than indirect

support. As a final note, we tried to keep the asymmetric information story as simple as possible.

There are several directions for future work. For example, instead of assuming that the public has

no information about variables in It\Ict , one might think of a setup, where some of the information
is known, and the public is attempting to forecast the forecast of the Fed. For such a model in a

different context, see Townsend (1983).

2.4 Changing policy function

It would be unreasonable to assume that the conduct of monetary policy has remained unchanged

during the 1966-1998 period, which encompasses 5 chairmen of the Board of Governors16, 6 business

cycles17, and countless academic articles on monetary policy. There are several excellent papers
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documenting the various monetary policy periods. Before 1966, the Fed relied on monetary aggre-

gates, such as M1 and M2 as strategic targets for monetary policy. The first three years of Volcker

are known as the “Volcker experiment”; the central bank adopted a pure non-borrowed reserve

targeting strategy. During the last 5 years of Volcker and during Greenspan, the Fed switched to

federal funds rate targeting as an operating procedure. An empirical study of the effect of mon-

etary policy on stock returns and inflation must take into account such changes in the monetary

policy rule. Such changes might induce rational agents to behave differently, thereby also changing

the rest of the parameters in the system, as argued in the Lucas (1976) critique. An easy way of

taking into account the time-varying Fed policy is to estimate the VAR for two different periods,

1966:1-1979:6 and 1983:1-1998:12. The “Volcker experiment” period is too short to be analyzed

with a VAR. Table 1 presents the results from estimating the Taylor rule (1) for the entire sample,

and for various sub-samples. The policy function during Volcker-Greenspan is very different from

the one in previous years, as documented by Clarida et al (1999). Moreover, the 1979:7—1982:12

period of the “Volcker experiment” seems to be particularly peculiar.

[Table 1 about here]

The above analysis would have been adequate if we were ready to argue that monetary policy

changes occur only because of changes in FOMC members. However, this is not the case and

changes in the reaction function need not be regime shifts. As discussed above, it might be that

the Fed is slowly learning how to optimally respond to changing economic conditions (Clarida et

al.(1999)). Alternatively, it might be the case that the Fed’s policy varies because, in different

states of the world, it has better (or worse) estimates of present and future economic conditions

(Aoki (1999), Giannoni (1999)). Changes in the monetary policy rule might also have an impact

on the correlation between returns and inflation. For instance, a less effective monetary policy, i.e.

a monetary policy that does not have real effects, will result in a zero correlation between excess

returns and inflation. Also, a more transparent monetary policy, where there is no information

asymmetry, should lead to the resolution of the price puzzle and in a positive correlation between

excess returns and inflation, if the price puzzle were really caused by such asymmetric information.
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A time varying monetary policy function is captured by:

rpt = αt + φtr
ff
t−1 + (1− φt) [γtE (πt+1|Ict ) + ηtxt] + εt

Figure 1 plots the estimated coefficients γt and ηt and compares them with their time invariant

analogues and with the case when the function is estimated for the sub-periods 1966:1—1979:6,

1979:7—1982:12, and 1983:1—1998:12. It is interesting to notice that the variation in the policy

function is substantial and not entirely captured by regime shifts. For simplicity, the estimation

is carried out by using πt, instead of πt+1 or E (πt+1) . Since inflation is a persistent process, πt is

a good proxy for expected inflation. Boivin and Watson (1999) use a more sophisticated method,

accounting for possible inconsistency, arising from using forecasts of future variables, which might

be correlated with the residual in the regression. Their results (figure 2) are similar to ours, despite

the fact that they use different variables at different frequency. To capture the forward looking

behavior in (1), we also include DEFP and TERM in the VAR, as discussed below.

[Figure 1 about here]

3 Data and Methodology

3.1 Data

We work with a system of eight variables, available at monthly frequency: industrial production

growth (IPG), consumer price inflation (INF), commodity price inflation (DPCOM), federal funds

rate (FF), growth of non-borrowed reserves (DNBRD), default premium (DEFP), term spread

(TERM), and excess market return (EP). The exact data description and sources can be found

in Appendix A. The use of IPG as a proxy for theoretical dividend growth has been motivated

by Fama (1981,1990), Geske and Roll (1983), and Boudoukh et al. (1994)18. As forward-looking

variables, DEFP, TERM, and EP enable the VAR to span larger information set than usually

considered in this literature. The power of these spreads to predict future economic activity and

inflation is well documented in the literature (e.g., Chen et al. (1986), Stock and Watson (1989),

Bernanke and Blinder (1992)).

The sample period runs from 1966:01 to 1998:12. The federal funds rate was not the main

instrument of monetary policy before 1966. We also divide the sample into two periods: (i) 1966:01
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to 1979:06 (pre-Volcker), and (ii) 1983:01 to 1998:12 (post-Volcker). The first three and a half years

of the chairmanship of Volcker (1979:07 — 1982:12) are omitted, because of substantial changes in

the Fed’s operating procedure (see Table 1 and Figure 1)19.

3.2 VAR Analysis

3.2.1 Isolating Monetary Policy Shocks using the VAR

The aim of this paper is not to write down a fully specified asset pricing model; doing so would

require making some restrictive assumptions. Given the apparent lack of fit of available general

equilibrium models with the time-series facts, our goal is to impose as little a priori assumptions

on the data as possible. In the spirit of recursive weakly-identified VARs, we only assume a

contemporaneous recursive relationship between the variables in order to isolate monetary policy

shocks. First, we fit an unrestricted VAR system to the data:

yt = φ+
mX
l=1

Φlyt−l + ut, E
¡
utu

0
t

¢
= V (4)

where the residuals ut are assumed to be serially uncorrelated with a covariance matrix V , φ is a

vector of constants, and m denotes the VAR lag order20. To give some structural interpretation

to the fitted VAR system, we decompose the VAR residuals ut into unobserved economic shocks,

wt, and assume that the economic shocks are mutually and serially uncorrelated. The relationship

between ut and wt can be written as ut = Gwt, where G is a square matrix that imposes the

identifying restrictions. In this paper, we assume a recursive contemporaneous (or Wold) ordering

(e.g. Sims (1986) and Christiano et al. (1996,1998), among others), or G is a unit diagonal lower

triangular matrix. Those restrictions imply that economic shocks have a contemporaneous effect

only on variables placed at the same level, or lower, in the system.

The ordering of the variables in the VAR is: IPG, INF, DPCOM, FF, DNBRD, DEFP, TERM,

and EP. In other words, we treat IPG, INF, and DPCOM as predetermined for monetary policy

shocks, as in Christiano et al. (1996, 1998) and Thorbecke (1997)21. The financial variables DEFP,

TERM, and EP are placed below the policy variables, implying that they respond to monetary

policy shocks within the same month22. In the VAR literature, monetary policy shocks have been

identified as innovations in federal funds rate or non-borrowed reserves23. We use both federal

funds rate and the growth of non-borrowed reserves as our policy variables, since they both may
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contain information about the stance of the Fed (Leeper and Gordon (1992), Bernanke and Mihov

(1998)).

The above assumptions are just enough to let us recover (or identify) the unobservable economic

shocks wt from the VAR residuals ut. Let E (wtw0t) = D, where D is a diagonal matrix with the

variances of the economic shocks on the principal diagonal. Then, we have the set of restrictions

V = GDG0

It is often convenient to let P = GD1/2 or V = PP 0, where P is the lower triangular Choleski

factor of V .

The results presented below are fairly robust to the choice and ordering of variables in the VAR.

We have experimented with several alternative identifying restrictions. In fact, the identification

imposed by P , although not very restrictive, can be relaxed even further. The variables in our

analysis can naturally be grouped into three sets: macro variables (IPG, INF, DPCOM), policy

variables (FF, DNBRD), and financial variables (DEFP, TERM, and EP). If there are only three

structural, uncorrelated shocks, then we can write V = eG eD eG0, where eG and eD are block lower

triangular, and block diagonal, respectively. Such restrictions provide a robustness check of the

results, since the ordering of variables within a given group would not have an impact on the

analysis. In the next section, we show that V , eD, and D are very similar, thus confirming our

robustness claims. We also tried several other specifications by omitting the variables DEFP,

TERM, DPCOM, in different combinations. Placing the financial variables DEFP, TERM, and EP

prior to the policy variables did not quantitatively change the results. In a VAR without DPCOM,

the price puzzle is much more persistent. Results from the alternative specifications are available

upon request.

Lee (1992) uses a VAR in a similar context and finds no causal relationship between real

stock returns and inflation. However, his analysis is limited to the lead-lag (causal) relationships

among variables, and hence does not explain what shocks account for the negative correlation.

This point has been taken up in Hess and Lee (1999) who use long-run identification assumptions

(Blanchard and Quah (1989)) to decompose stock returns and inflation into transitory demand

components and permanent supply components and argue that the money supply shocks lead

to positive correlation between real stock returns and inflation. Although Hess and Lee (1999)
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interpret the aggregate demand disturbances as money supply shocks, monetary shocks can affect

both the aggregate demand and the aggregate supply as argued by Bernanke (1995), and Bernanke

and Gertler (1995). Moreover, given the instability of the policy function, it is questionable whether

long-run restrictions can really identify monetary policy shocks.

3.2.2 Dynamic Response to Monetary Policy Shocks

In the VAR literature, impulse response functions are typically used to trace out the effects of

innovations in one of the variables on the system. Specifically, the impulse response of the j-th

variable, y(j)t+h (h > 0) to an innovation in k-th variable, w
(k)
t+1 is defined as

∂y
(j)
t+h

∂w
(k)
t+1

. (5)

Suppose we cast the VAR in (4) as yt+h =
Ph−1
s=0 Ψsut+h−s+ yt (h) , where yt (h) =

Ph
q=1Φqyt+h−q

(Φq = 0 for q > m) is the h-period VAR forecast of yt. Starting with Ψ0 = I, Ψs may be obtained

from the Φs using the recursion24

Ψs =
sX
r=1

Ψs−rΦr, s = 1, 2, . . . (6)

The impulse response matrices to recursively identified one-standard-deviation innovations, Θs

(s = 1, 2, ...) , are obtained by postmultiplying Ψs by the lower triangular Choleski factor, P , i.e.,

Θs ≡ ΨsP . Then the h-period impulse response of j-th variable to a one-standard deviation shock
in k-th innovation is given by the (j, k)-th element of Θh−1 (h = 1, 2, ...) .

The impulse responses provide a measure of correlation between economic variables and unsys-

tematic economic shocks. Following a rational expectations argument (e.g., Lucas (1972)) that

only unsystematic monetary policy shocks have real effects on the economy25, the VAR literature

has focused on the responses of the system to unsystematic policy shocks. In particular, the impulse

response analysis has been used to trace out the net effects of unanticipated policy shocks onto

other variables.

3.2.3 Dynamic Response of the Covariance between Inflation and Excess Returns

Finding the portion of the total variance of an observed variable that is due to the various structural

shocks is called variance decomposition.
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In order to analyze the effects of monetary policy shocks on the covariance between excess

stock returns and inflation, we examine the dynamic response of the covariance to orthogonalized

economic shocks. We focus on the causal relationship between the return/inflation correlation and

economic shocks identified in our system. Using the fact that wt are serially and contemporaneously

uncorrelated with the identity covariance matrix, the h-period ahead forecast error covariance

matrix26 is simply given by Σy (h) =
Ph−1
s=0 ΘsΘ

0
s. Then the h-period forecast error covariance

between i-th and j-th variables, Σ(i,j)y (h) is calculated as Σ(i,j)y (h) =
PK
k=1

Ph−1
s=0 θs (i, k) θs (j, k) ,

where K denotes the number of endogenous variables in the system (8 in our model), and θs (j, k)

denotes the (j, k)-th element of Θs. The covariance decomposition, i.e., the percentage that h-period

forecast error covariance between i-th variable and j-th variable accounted for by shocks in k-th

variable, is given by Ph−1
s=0 θs (i, k) θs (j, k)r³PK

k=1

Ph−1
s=0 θs (i, k)

2
´³PK

k=1

Ph−1
s=0 θs (j, k)

2
´ . (7)

The covariance decomposition, which nests the variance decomposition for i = j, is a rather obvious

extension to the existing VAR toolbox. However, to the best of our knowledge, it has never been

used in the literature27.

We can also trace out the net effect of monetary shocks on the return-inflation covariance by

examining the conditional moment profile28. The conditional forecast given a unit impulse in the

k-th economic shock is given by y(k)t (h) ≡ yt (h) + Θh−1²
(k)
t+1 for h = 1, 2, . . . , where ²(k)t+1 is an

impulse vector with 1 in the k-th position and 0 in the others. The conditional moment profile for

the forecast error covariance matrix, due to unit impulse in the k-th innovation, is

E

·³
yt+h − y(k)t (h)

´³
yt+h − y(k)t (h)

´0¸−Σy (h) = θh−1 (·, k) θh−1 (·, k)0 , h = 1, 2, . . . ,
where θh−1 (·, k) is the k-th column of Θh−1. Therefore, we obtain the dynamic responses of the
h-period forecast error covariance between i-th and j-th variables to the k-th identified innovation

by

θh−1 (i, k) θh−1 (j, k) , h = 1, 2, ... (8)

The covariance decomposition is nothing but a normalized cumulative sum of (8).
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3.2.4 Error Bands

The estimators for the impulse responses and the covariance decompositions are computed from

the estimated coefficients of the reduced-form VAR model (4) using the recursion (6). However,

the mapping from the VAR coefficients (Φ, V ) to the impulse response functions (Ψ, Θ) becomes

increasingly nonlinear as the forecast horizon increases. It has been shown that large bias and

skewness in the small-sample distribution of these estimators render traditional confidence intervals

based on asymptotic normal approximation or standard bootstrap methods extremely inaccurate

(Kilian (1998), Sims and Zha(1999)).

We adopt a Bayesian approach since it allows for a computationally and conceptually simple

way of constructing error bands for impulse responses and covariance decompositions29. In order

to construct Bayesian error bands, we simulate from the posterior distribution of coefficients of the

unrestricted VAR parameters (Φ’s) and the covariance matrix of the VAR residuals (V ). Assuming

Gaussian innovations, the posterior distribution can easily be simulated30. Specifically, assuming a

diffuse prior on the elements of Φ’s and a Jefferys prior on V , we run the Gibbs sampler for 1, 200

iterations and discard the first 200 draws, leaving 1, 000 posterior samples of each coefficient for

analysis. We calculate impulse responses and covariance decompositions for each posterior draw,

and extract the probability bands (see Sims and Zha (1999) for details31). Throughout this paper,

we report point estimates and intervals with coverage probability 0.68 (one standard error in the

Gaussian case) and 0.90.

3.3 Time-Varying VAR

3.3.1 Estimation

The traditional VAR analysis implicitly assumes that the system is invariant over the entire sample.

However, there are many reasons to believe that the Fed’s conduct of monetary policy has under-

gone systematic changes due to changes in chairmen and FOMC members, and in socio-economic

conditions, as well as due to the Fed’s evolutionary learning toward more optimal monetary policy.

To isolate monetary policy shocks, while allowing for a changing monetary policy function, we es-

timate a time-varying reaction function within the VAR framework. Similar approaches have been

pursued by Fuhrer (1996) and Boivin (1999).
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In general, we can write our reduced-form VAR model (4) in a structural form as

G−1yt = c+
mX
l=1

Alyt−l + δt, E
¡
δtδ

0
t

¢
= D (9)

where G is the unit diagonal unique lower triangular Choleski factor G such that V = GDG0 (or

P = GD
1
2 ) with a diagonal matrix D = diag

¡
σ21, . . . ,σ

2
K

¢
, Al ≡ G−1Φl, and c ≡ G−1φ. This

structural form (9) can be extended to a case where some or all coefficients are time-varying. Here

we consider a simple case

G−1t yt = ct +A1,tyt−1 + δt, E
¡
δtδ

0
t

¢
= D (10)

where m = 1 and A1,t, ct, and Gt are time-varying though the same methodology can be applied

to more general setting. Equation (9) can also be rewritten as

yt = ct +A0,tyt +A1,tyt−1 + δt, (11)

with A0,t ≡ I −G−1t . Denoting (i, j)-th element of Al,t by al,t (i, j) for l = 0 and 1, and since δt is
mutually uncorrelated, we can re-express (11) as the following K scalar equations:

y
(i)
t = c

(i)
t +

1X
l=0

KX
j=1

al,t (i, j) y
(i)
t−l + δ

(i)
t , i = 1, ...,K (12)

where a0,t (i, j) = 0 for i ≤ j (Kitagawa and Gersch (1996)). Due to the triangular nature of the
system, we do not have to consider the possibility of the regression being correlated with any ele-

ments of δt, and thus we can estimate each scalar equation successively without resorting to an IV

estimation32. Assuming that the time-varying coefficients follow random walk processes33, we cast

each equation into a state-space form for which the Kalman filtering and smoothing algorithm is ap-

plied. The hyperparameters — state (time-varying parameters) and measurement error covariances

— are chosen to maximize a likelihood function. In order to avoid the numerical problems associated

with estimating the MLE’s for the hyperparameters34, we apply the EM algorithm of Shumway

and Stoffer (1982) and Watson and Engle (1983) at the cost of somewhat slow convergence.

Once we estimate the time-varying regressions (12) successively, we can construct the reduced-

form time-varying VAR(1) system

yt = φt +Φtyt−1 + ut, E
¡
utu

0
t

¢
= Vt (13)
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by the linear algebraic transformations φt = Gtct, Φt = GtA1,t, and Vt = GtDG
0
t. The one-to-one

correspondences between (11) and (13) are shown by Kitagawa and Akaike (1978). Although the

structural shocks δt are homoskedastic, the VAR residuals ut may exhibit heteroskedasticity when

the a0,t (i, j)’s are time varying.

In this paper, we focus on the case where only policy reaction functions, i.e., equations for FF

and DNBRD in (11) are time-varying. The number of time-varying parameters to be estimated is 12

in the FF equation and 13 for the DNBRD equation. In addition, the number of hyperparameters

to be estimated (coefficients in the system and error covariances) is 79 for the FF equation and 92

for the DNBRD equation.

3.3.2 Time-varying Impulse Responses

In the context of time-varying VARs, the impulse response functions should be carefully defined

and analyzed. For example, given the reduced-form VAR (13), the historical h-period responses,

realized at t, given a shock at time t− h can be traced out as
hQh−1

l=0 Φt−l
i
Pt−h (Lutkepohl (1993,

Ch.12)), where Pt−h = Gt−hD
1
2 is the lower triangular Choleski factor of Vt−h. However, the

realized impulse response obtained in this way does not tell us about the potential net effects that

a given shock would have in the presence of parameter uncertainty. A more appropriate measure

of the dynamic effect of a shock would be the conditional moment profile (Gallant et al.(1993)).

The conditional mean profile is given by E
³
y
(k)
t (h)− yt (h)

´
where y(k)t (h) is the h-period VAR

forecast of yt given a unit impulse in k-th innovation. However, both yt (h) and y
(k)
t (h) are very

difficult to calculate since they are nonlinear functions of unknown parameters Φt+l and yt+l for

l = 1, 2, ..., h − 1 (Hamilton (1994), Ch.13). The accurate computation of the conditional mean

profile would require heavy simulation studies for different time period and for different forecasting

horizon.

In this paper, we take a somewhat simpler approach by assuming that the structural relationship,

given by (11), is contemporaneously invariant at each period. Fuhrer (1996) uses similar approach

by assuming that agents use current period’s reaction function parameters to forecast short-term

interest rates. Boivin (1999) computes the effect of a structural shock assuming no further change

in parameters. Given the random walk specifications of the parameters in the structural equation,

using the current parameter estimates to forecast the dynamic effects of policy shocks to other
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variables does not introduce large systematic errors in our analysis (Fuhrer (1996)). Thus we

compute the impulse response functions Θs,t, s = 1, 2, ..., based on the estimated (smoothed) time-

varying coefficients Φt and the time-varying lower Choleski factor Pt by

Θs,t = Φ
s−1
t Pt.

We do not report the error bands for the time-varying impulse responses since they are compu-

tationally involved. Note, however, that our Bayesian simulation procedure can be extended to

the computation of error bands for time-varying impulse responses by combining the simulation

smoothing algorithm of de Jong and Shephard (1995) with the method of Sims and Zha (1999).

4 Results

4.1 Monetary Policy Shocks to Return—Inflation Correlation

The main focus of this article is on the dynamic properties of the excess returns/inflation covariance

as a result of a Fed policy shock. Figure 2a presents the response of the covariance to all economic

shocks, as identified by a Choleski decomposition. In the full sample, a shock to the funds rate has

a significantly negative impact during the first 4 to 6 months. Shocks to non-borrowed reserves

contribute to the negative covariance mildly, but the effect seems to be more persistent. Interest-

ingly, most other shocks also have a negative impact on the covariance. However, the response to

the funds rate is the most significant, economically and statistically. A covariance decomposition,

Figure 3a, shows that approximately 20—25% of the negative correlation is explained by the shocks

in both federal funds rate and non-borrowed reserves. Those results are surprisingly robust to

different orderings in the VAR and also hold in the sub-samples of interest.

Figures 2b,c and 3b,c present the same analysis for the sub-samples 1966:01-1979:06 and 1979:07-

1998:12 as do figures 2a and 3a for the entire sample, and the results are very similar. However,

it must be noted that the effect of monetary policy shocks is more pronounced in the pre-Volcker

period: shocks to the funds rate explain about 25% of the negative covariance at horizons up to 1

year. Monetary policy shocks explain 15-20% of the covariance in the post-Volcker period. During

this period, only inflation innovations and shocks in federal funds rate explain the return/inflation

covariance.
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[Figures 2a,b,c, and 3a,b,c about here]

The presented results are robust to alternative system orderings. As a more formal analysis

of robustness, we compare the (unrestricted) covariance matrix V of the VAR residuals with the

covariance from the block diagonal restictions, D̃. Table 2 presents the estimate of V for different

periods. The elements on the principal diagonal are the standard deviations of the VAR residuals,

whereas the off-diagonal elements are the correlations. Interestingly, most correlations are very

small, indicating that the unrestricted residuals are close to being uncorrelated. Therefore, imposing

any orthogonality restrictions on the residuals will not significantly alter the results. Indeed, the

estimate of D̃ (imposing block-triangular restrictions), shown in Table 3, is only slightly different

from V . The bold off-diagonal terms in the diagonal blocks of Tables 2 and 3 are very similar and

close to zero35, indicating that the ordering of variables within the macro, monetary policy, and

financial groups would not alter the results substantively. The results of such specifications are

available upon request.

[Tables 2 and 3 about here]

The role of monetary policy shocks in explaining the negative return/inflation covariance can

be attributed to the their opposite effects on excess return and inflation. In the full-sample (Figure

4a), a 25 basis-points shock in federal funds rate leads to a 0.25% decline in the growth of industrial

production with 3 months lag. The negative effect lasts for more than a year. A decline in expected

output growth should lead to an immediate decline in excess returns. In fact, we find that a 25

basis-points contractionary shock in the federal funds rate reduces excess returns by about 2% in

the same month of the shock. Meanwhile, a 25 basis-points shock in the funds rate is followed

by a short-run increase in inflation by about the same amount. The commodity prices are more

responsive to contractionary policy shocks; after an initial increase, they decline a few months after

the shock.

[Figure 4a about here]
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Combining these effects, monetary policy shocks have a significant effect on the short-run neg-

ative return/inflation relationship. Our empirical evidence is consistent with the arguments laid

out in Section 2. We find that a contractionary policy shock brings about a short-run decline in

industrial production growth and short-run increase in inflation rate. Furthermore, we notice that

a contractionary shock leads to a significant increase in the default premium with a few months’ lag.

This result suggests that the credit channel is an important mechanism of Fed policy transmission.

Our finding contradicts Hess and Lee (1999), who argue that monetary shocks are associated with

positive correlation between inflation and real stock returns.

4.2 Dynamic Changes in the VAR System

4.2.1 Dynamic Effects of Monetary Policy Shocks

While we find that monetary policy shocks explain 20-25% of the negative return/inflation rela-

tionship in the full sample, we also find that the role of monetary policy has diminished in the

latter period. Indeed, there are significant differences in the private sector responses to monetary

policy shocks (Figures 4b, 4c). For example, while shocks in federal funds rate explain about 30%

of inflation variation and 5% of excess return variation in the pre-Volcker period, they explain less

than 10% of inflation variation and do not explain excess return variation in the post-Volcker period

(Figures 5a, 5b). Consequently, monetary policy shocks explain a smaller fraction of the negative

return/inflation covariance in the latter period than in the former. This result is consistent with

Patelis (1997), who finds that monetary policy shocks explain only 3% of excess return variation

between 1962 and 1994.

[Figures 4b, 4c, 5a, and 5b about here]

4.2.2 Inflation Variation

The variance decomposition of inflation, displayed in Figures 6a-b, exhibits striking differences

between the two sub-periods. In hindsight, this result had to be expected, given the documented

changes in the Fed policy function in Table 1. During the pre-Volcker period, significant fraction

of inflation variation can be explained by innovations in commodity prices and monetary shocks.

Inflation innovations explain only 50% of their own variation in the long run. However, both
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commodity price innovations and monetary shocks have lost their explanatory power in the post-

Volcker period. 80—90% of inflation variation is explained by its own innovations. Consequently,

more of the negative return/inflation relationship is attributable to inflation innovations in the

latter period.

[Figures 6a and 6b about here]

The decline in the indicative role of the commodity prices in explaining inflation variation

conforms with the finding of Blomberg and Harris (1995), who provide a few explanations for

this phenomenon: (i) diminished use of commodities as inflation hedges, (ii) sharp decline in the

commodity composition of final output reflecting the shift in of the U.S. economy from commodity-

intensive production, and (iii) recent exchange rate fluctuations account for a lot of the recent

commodity price fluctuations that may be unrelated to domestic inflation. Moreover, they point

out that (iv) the indicative role of the commodity prices may have been offset by more effective

countervailing monetary policy movements.

The fourth point in Blomberg and Harris (1995) deserves further attention. Usually commodity

prices give early signals of an inflationary surge in aggregate demand. This is because any inflation-

ary impetus is first observed in commodity prices which are continuously updated in thick markets,

while consumer price inflation is reported with a lag of a few weeks. If the Fed systematically reacts

to the inflationary surge observed in the commodity prices, in order to offset the early signal of

inflation in commodity prices, and to the extent that consumer prices do not adjust to the decline

in commodity prices quickly, we may not observe the indicative signal of the commodity prices

while the Fed in fact does. If this is correct, the Fed employs more effective policy rule in the latter

period to offset inflationary movements in the aggregate demand by reacting to commodity prices.

This may imply the importance of systematic policy rules in controlling inflation over the unan-

ticipated policy surprises (Cochrane (1998)). As long as the Fed offsets the inflationary impetus

systematically and quickly, the monetary policy shocks may not convey inflationary signal as they

did in the pre-Volcker period. This hypothesis, discussed below, gives another interpretation for

the diminishing role of monetary policy shocks in explaining the variation in inflation. Note that

this argument is different from the one made in section 2.3, where we argue that the Fed has private
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information about future inflation that is not available even in commodity prices.

4.2.3 Time-Varying Impulse Responses

Figures 7a,7b, and 7c display the effect of a one-standard-deviation shock of the federal funds rate

on the inflation/excess return covariance, based on the time-varying VAR model. Note that, in a

time-varying VAR, the impulse responses are also time varying, as discussed above. The results are

consistent with the findings from the two sub-samples. Monetary policy shocks account for more

of the negative return/inflation covariance in the earlier period of our sample, i.e. before the early

1980’s. Furthermore, the effect of monetary shocks on the return/inflation covariance exhibits

significant time variation, which is a direct result of the significant fluctuations in the Taylor rule

parameters (Figure 1).

[Figures 7a-7c about here]

Interestingly, the explanatory power of monetary policy shocks on the negative return/inflation

correlation has diminished steadily in recent years. This finding can be traced to: (i) the decreasing

price puzzle (top panels of Figures 8a-8c) and (ii) the dwindling negative effect on excess stock

returns (bottom panels of Figures 8a-8c). The diminishing price puzzle may be due to several

reasons. First, the public has become more capable to forecast inflation, and less prone to surprises

(through learning), resulting in the weaker forecasting relationship between identified policy shocks

and future inflation. Second, the Fed has learned to control inflation using more effective systematic

feedback policy rules. Third, Fed policy has become more transparent, especially in the last few

years, thus mitigating some of the information asymmetry effects. Supporting the above arguments

is the differing response of inflation and excess returns to monetary shocks during the pre- and post-

Volcker periods (Figures 7 and 8). In the former period, a shock to the funds rate produces a large

positive increase in prices and a large negative increase in excess returns, whereas in the latter, the

effects are not as pronounced.

[Figures 8a-8c about here]
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In figures 8a, 8b, and 8c we observe a striking correspondence between the rise in inflation

and the fall in excess returns following monetary policy shocks. We argue that this evidence is

consistent with the information asymmetry hypothesis of section 2.3. It is reasonable to suspect that

the private information of the Fed will be particularly valuable during periods of higher economic

instability36, coinciding with times when monetary policy shocks will have a great effect on future

cash flows (especially through the credit channel). Therefore, during periods when the price puzzle

is particularly pronounced, we will also see a big impact of monetary shocks on excess returns,

resulting in the pattern, observed in Figure 8.

The evidence presented above is not a direct test of information asymmetry; alternative inter-

pretations are also possible. One such interpretation would be that a higher expected inflation,

induced by contractionary monetary policy shocks, leads to a decline in excess returns. In this case,

the negative relation between excess return and expected inflation, predicted by the money demand

theory (Fama(1981), Marshall(1992)), would follow a contractionary shock when the shock in fact

conveys information about future inflation. A second interpretation is that an increase in economic

volatility would lead to an increase in monetary policy uncertainty. In the presence of information

asymmetry between the Fed and the public, the increased policy uncertainty raises expected real

interest rates, as in Stulz (1986), which in turn results in lower excess returns. Naturally, those

explanations are not mutually exclusive. Finding the most appropriate one would involve writing

down and testing a fully specified asset pricing model.

The empirical results, presented above, strongly suggest that monetary policy shocks must

play a role in a complete account of the negative returns/inflation covariance. The considerable

variation in the response of the covariance might suggest that there are several channels at play.

The importance of some of those channels might be difficult to disentangle, but this issue is left for

further research. The results clearly contradicts the argument that money supply shocks lead to

positive return/inflation correlation (Hess and Lee (1999)).

4.3 Beyond Unanticipated Shocks: Money Demand or Systematic Policy?

In the VAR analysis, we focused on the dynamic effects of unsystematic monetary shocks. Sur-

prisingly, we found that about a quarter of the negative excess return/inflation covariance can be

traced to unanticipated Fed policy. But, what about the remaining three quarters? Are they due
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to money demand effects, as suggested by Fama (1981) and modelled by Marshall (1992)? Or, is it

the case that systematic monetary policy might also have an effect on the covariance, as suggested

by Geske and Roll (1983), and Kaul (1987)? Unfortunately, the VAR analysis is uninformative

about the role played by systematic or endogenous response of monetary policy to the economy.

For example, if the Fed’s policy is completely characterized as a feedback rule, then the VAR anal-

ysis would conclude that monetary policy has no real effect. However, the response to non-policy

shocks may depend importantly on the way monetary policy adjusts endogenously (Walsh (1998)).

For example, as the opening quote suggests, higher-than-expected inflation might lead one to an-

ticipate contractionary monetary policy response which in turn would affect real output and real

stock returns. In recent articles, Bernanke et al. (1997) and Cochrane (1998) analyze the effects of

systematic policy effects as well as unsystematic policy shocks. Both studies conclude that more

attention must be devoted to systematic policy effects, though distinguishing systematic changes

from unsystematic shocks remain a difficult task.

According to the money demand theory put forth by Fama (1981) and Marshall (1992), posi-

tive innovations to inflation (unanticipatedly high inflation) implies lower demand for real balances,

which may be associated with lower output growth and lower excess return. In essence, the money

demand theory relies on the negative association between inflation and real activity. However, we

find less evidence of the negative relationship in post-Volcker sub-samples (Figures 9a, 9b). While

we observe that inflation innovations lead to a lower industrial production growth in the pre-Volcker

period, we do not find any negative association between inflation innovation and industrial pro-

duction growth in the post-Volcker period37. Nevertheless, negative return/inflation relationship

exists in both sub-samples. These findings cast doubt on the validity of the explanation of negative

return/inflation relationship solely based on money demand theory.

[Figures 9a-9b about here]

Here we provide an alternative interpretation, based on systematic effects of monetary policy. If

innovations in inflation lead us to anticipate endogenous response of the Fed toward contractionary

feedback to the economy, and if anticipated monetary policy in fact has real effects, we would observe

the contemporaneous negative correlation between innovations in excess stock returns and inflation.
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In other words, to the extent that the inflation innovations induces anticipated policy actions, and

to the extent that the anticipated policy actions are believed to affect the economy, a positive

inflation innovation may result in lower excess stock returns. If this interpretation is correct,

the negative return/inflation correlation may be proxying for a negative relation between excess

returns and anticipated contractionary policy, and may be induced by the positive relationship

between unanticipated inflation innovations and anticipated contractionary policy actions. To the

extent that the private sector cannot adjust their activity quickly to the anticipated money supply

change, the change in the anticipated money supply may have short-run effects on real economic

activity, and hence affect excess return. This interpretation emphasizes the role of the systematic

monetary policy on real economic activities and financial markets38.

However, using time-series evidence to uncover the effects of systematic monetary policy rules

remain a difficult task, as stressed by Bernanke et al. (1997) and Cochrane (1998). It is not possible

to infer the responses to anticipated policy actions from a VAR, since dynamic effects can be cleanly

traced out only in the case of unanticipated random shocks to the VAR system. Nevertheless, our

empirical findings are consistent with the hypothesis that the negative return/inflation correlation

proxies for the negative relation between systematic monetary policy movements and excess stock

returns. First, in the pre-Volcker period, a positive inflation innovation leads to an increase in federal

funds rate with a few months’ lag. In the post-Volcker period, a positive inflation innovation leads

to a concurrent rise in federal funds rate. Thus an unexpected increase in inflation in fact leads to

contractionary movements of the Fed. Second, the diminished relationship between inflation and

industrial production growth can also be explained by the systematic action of the Fed to offset

the effect of inflation innovations on industrial production.

5 Conclusion

The correlation between excess returns and inflation must be zero, if monetary policy is neutral,

or positive, if monetary policy has real effects. However, we find that about a quarter of the

negative correlation between excess returns and inflation is explained by shocks to the monetary

policy function. The results are robust to alternative VAR ordering schemes and also hold for

any time period in the 1966-1998 sample. We show that our finding, which contradicts simple

economic intuition, is linked to the price puzzle. In the short run, a contractionary Fed policy
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shock, implemented by an increase in the federal funds rate, induces lower excess rates of return

through its effect on real variables. Such a policy has also been followed by a seemingly anomalous

increase in consumer prices, thus producing the observed negative correlation between excess returns

and inflation.

A cynical view is that we have replaced one puzzle with another one. However, we present a

simple story, based on the Fed’s superior information, that might account for the ”price puzzle,”

and which is consistent with the previous findings in Romer and Romer (2000). As further support

of our information asymmetry hypothesis, we find that in periods of high economic instability, when

Fed shocks have a particularly large effect on excess returns, we also observe a more pronounced

”price puzzle.” During those periods, the private information of the central bank has a big impact

on future consumer prices. Despite the instability of the policy function and the variability of the

Fed impact on excess returns and inflation, monetary policy shocks have always been followed by

an increasingly negative correlation between those two variables.

Our paper leaves some unanswered questions: First, how can we account for the remaining 75%

of the negative covariance? Some of it is surely due to money demand shocks, some of it might be

caused by cross-sectional fluctuations in industry output ( Boudoukh et al. (1994)), and some of it

might even be traceable to effects of fiscal policy. Second, is the VAR framework able to test the

propositions of Geske and Roll (1983) and Kaul (1986) that some of this negative covariance might

also be caused by systematic and endogenous monetary policy actions? We are sympathetic to the

view, expressed by Bernanke et al. (1997) and Cochrane (1998), that the VAR literature needs to

find ways to incorporate and measure the systematic effects of monetary policy onto financial and

real variables. However, no matter what the answers to these questions are, the fact remains that

a significant fraction of the negative excess returns/inflation covariance is explained by Fed policy

shocks. Therefore, if an asset pricing model is to capture the entire negative correlation, it must

find ways to account for the policy of the Fed.
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Appendix A

The eight variables are obtained in monthly frequency from 1966 to 1998. The variables are listed
in the order of the Wold causal ordering employed in our VAR analysis.

Name Description Source Mnemonic
IPG The log difference of the Industrial production, CITIBASE IP

seasonally adjusted, 1987=100.

INF The inflation rate, defined by the log difference in the CITIBASE PUNEW
Consumer Price Index, all items, seasonally adjusted.

DPCOM The log difference of spot market index for all CITIBASE PSCCOM
commodities.

FF The federal funds rate, average of business day figures. CITIBASE FYFF

DNBRD Minus the log difference in non-borrowed reserves. CITIBASE FMRNBC
“Minus” is taken to facilitate comparisons with FF.

DEFP The spread of Baa-rated over Aaa-rated corporate CITIBASE FYAAAC,
bond yields. FYBAAC

TERM The spread between 1-year and 3-month Treasury CITIBASE FYGM3,
bill rates, converted to continuously compounding basis. FYGMYR

EP The excess return (the equity premium), obtained by CRSP VWRETD
subtracting the CRSP one-month T-bill rate from the
NYSE value-weighted stock return including dividends..
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Tables and Figures

Table 1: Taylor Rule

Period

1966:01-1998:12 1966:01-1979:06 1979:07-1998:12 1979:07-1982:12 1983:1-1998:12

γ 0.7657 0.1896 1.2255 1.0517 0.7438
0.0456 0.0516 0.0719 0.2793 0.0456

η 0.1557 0.0488 0.2635 1.4061 0.0612
0.0186 0.0183 0.0314 0.1841 0.0121

T 395 161 233 41 191

Notes: The estimated regression is: rfft = α + φrfft−1 + (1− φ) (γπt + ηxt) + εt, where rfft is
the federal funds rate, πt is the inflation rate, and xt is the growth rate of industrial production.
This is the Fed’s policy function, as suggested by Taylor (1993) and modified for interest smooth-
ing, as in Clarida et al.(1999). Some studies use the GDP gap for xt. Unfortunately, GDP is only
available at a quarterly frequency, whereas in our case, high frequency (monthly) data is important.
However, the obtained results are similar to those obtained from using the GDP gap and quarterly
data. The coefficient φ is set equal to 0.96, the estimate obtained from the entire sample. The
standard errors are given below the estimates. Using πt−1 or πt+1 in the regression does not change
the results qualitatively, because inflation is a fairly persistent variable.
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Table 2: Variance/Correlation Matrices of VAR Residuals

(a) VAR(3) from 1966.01 to 1998.12 (Full sample period)
IPG INF DPCOM FF DNBRD DEFP TERM EP

IPG 8.4567
INF 0.0959 2.4380
DPCOM -0.0473 0.1290 23.6925
FF 0.0187 0.0455 0.0796 0.5538
DNBRD 0.0370 0.1000 0.1454 0.3295 17.4317
DEFP -0.0882 -0.0450 -0.2011 -0.0122 -0.0412 0.1015
TERM -0.0219 -0.0166 0.1295 -0.2553 -0.0176 -0.0741 0.2059
EP -0.0511 -0.1252 -0.0483 -0.1313 -0.1561 0.1205 -0.1437 52.9881

(b) VAR(2) from 1966.01 to 1979.06 (Pre-Volcker period).
IPG INF DPCOM FF DNBRD DEFP TERM EP

IPG 9.6075
INF 0.0800 2.4475
DPCOM -0.0664 0.1289 27.3741
FF 0.0414 -0.0898 0.0695 0.3563
DNBRD 0.0705 0.1527 0.1695 0.2043 17.8208
DEFP -0.1587 -0.0136 -0.1302 -0.1341 0.1171 0.0834
TERM -0.0324 0.0197 -0.0273 0.2892 -0.0047 -0.0616 0.1801
EP -0.0680 -0.1734 0.0178 -0.1677 -0.1627 0.2752 -0.1373 54.3924

(c) VAR(2) from 1983.01 to 1998.12 (Post-Volcker period).
IPG INF DPCOM FF DNBRD DEFP TERM EP

IPG 7.5484
INF 0.0921 1.8560
DPCOM -0.0844 0.1313 19.4920
FF 0.0762 0.1415 0.2388 0.2362
DNBRD -0.0563 -0.0830 0.1537 -0.0411 13.4409
DEFP -0.0245 -0.0145 -0.1956 0.0330 -0.2522 0.0726
TERM -0.0031 -0.0049 0.1759 0.1302 0.1904 -0.1511 0.1352
EP -0.0915 -0.1384 -0.0464 -0.0687 -0.0078 0.0062 -0.2998 50.6572

Note: In each matrix, diagonal elements (italicized) are standard deviations of the unrestricted
VAR residuals, in annual percentage points. Off-diagonal elements are their correlations.
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Table 3: Variance/Correlation Matrices of Block-Orthogonalized VAR Residuals

(a) VAR(3) from 1966.01 to 1998.12 (Full sample period)
IPG INF DPCOM FF DNBRD DEFP TERM EP

IPG 8.4567
INF 0.0959 2.4380
DPCOM -0.0473 0.1290 23.6925
FF 0.0000 0.0000 0.0000 0.5516
DNBRD 0.0000 0.0000 0.0000 0.3203 17.1758
DEFP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0989
TERM 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0514 0.1963
EP 0.0000 0.0000 0.0000 0.0000 0.0000 0.1094 -0.1812 51.7876

(b) VAR(2) from 1966.01 to 1979.06 (Pre-Volcker period).
IPG INF DPCOM FF DNBRD DEFP TERM EP

IPG 9.6075
INF 0.0800 2.4475
DPCOM -0.0664 0.1289 27.3741
FF 0.0000 0.0000 0.0000 0.3531
DNBRD 0.0000 0.0000 0.0000 0.2090 17.3596
DEFP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0794
TERM 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0275 0.1712
EP 0.0000 0.0000 0.0000 0.0000 0.0000 0.2924 -0.0944 52.1736

(c) VAR(2) from 1983.01 to 1998.12 (Post-Volcker period).
IPG INF DPCOM FF DNBRD DEFP TERM EP

IPG 7.5484
INF 0.0921 1.8560
DPCOM -0.0844 0.1313 19.4920
FF 0.0000 0.0000 0.0000 0.2270
DNBRD 0.0000 0.0000 0.0000 -0.0672 13.2000
DEFP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0690
TERM 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0939 0.1304
EP 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0065 -0.3022 49.9297

Note: In each matrix, diagonal elements (italicized) are standard deviations of block-orthogonal
residuals, in annual percentage points. The blocks are: (IPG, INF, DPCOM), (FF, DNBRD), and
(DEFP, TERM, EP). Off-diagonal elements are their correlations.
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Figure 1

Each graph plots an estimated coefficient of a time-varying-parameter regression: rFFt =
αt+φtr

FF
t−1+(1− φt) (ηtxt + γtπt)+εt where rFFt−1 is the federal funds rate, xt is the growth rate of

industrial production, and πt is the inflation rate. In this regression, coefficients Ξt = [αt,φt, ηt, γt]
0

are assumed to follow a random walk process Ξt = I4 × Ξt−1 + ςt where εt, ςt are white noise
sequences with E (εtε0t) = R, E (ςtς

0
t) = Q, and E (εtς 0t) = 0. The ML estimators of R,Q are

used to obtain smoothed estimates of Ξt. Each graph plots smoothed estimates of ηt and γt,
respectively. Both estimates are divided by (1− 0.96) to facilitate comparison with the constant-
coefficient counterpart, given in Table 1. The dotted and dashed lines correspond to the full-sample
and subsample estimates from Table 1.
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Figure 2a

Response of the covariance between inflation and excess return for full sample period (1966:01—
1998:12). Each graph is the response of covariance between INF and EP to a one-standard-deviation
impulse in triangularly orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP,
TERM, and EP. All variables are in annual percentage points. Each response is plotted over a
24-month horizon following the month of the shock. The vertical axis scales represent deviation in
covariance (×104) due to shocks in each variable. Solid lines are point estimates, dotted lines are
68% error bands, and dashed lines are 90% error bands, estimated point by point. Responses of the
h-period forecast error covariance between i-th and j-th variables to the k-th identified innovation
by θh (i, k) θh (j, k) , h = 1, 2, ..., where θh (i, k) is the (i, k)-th element of the impulse response
matrix Θh after the recursive (triangular) identification assumptions have been imposed.
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Figure 2b

Response of the covariance between inflation and excess return for pre-Volcker period (1966:01—
1979:06). Each graph is the response of covariance between INF and EP to a one-standard-deviation
impulse in triangularly orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP,
TERM, and EP. All variables are in annual percentage points. Each response is plotted over a
24-month horizon following the month of the shock. The vertical axis scales represent deviation in
covariance (×104) due to shocks in each variable. Solid lines are point estimates, dotted lines are
68% error bands, and dashed lines are 90% error bands, estimated point by point. Responses of the
h-period forecast error covariance between i-th and j-th variables to the k-th identified innovation
by θh (i, k) θh (j, k) , h = 1, 2, ..., where θh (i, k) is the (i, k)-th element of the impulse response
matrix Θh after the recursive (triangular) identification assumptions have been imposed.
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Figure 2c

Response of the covariance between inflation and excess return for post-Volcker period (1983:01—
1998:12). Each graph is the response of covariance between INF and EP to one-standard-deviation
impulse in triangularly orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP,
TERM, and EP. All variables are in annual percentage points. Each response is plotted over a
24-month horizon following the month of the shock. The vertical axis scales represent deviation in
covariance (×104) due to shocks in each variable. Solid lines are point estimates, dotted lines are
68% error bands, and dashed lines are 90% error bands, estimated point by point. Responses of the
h-period forecast error covariance between i-th and j-th variables to the k-th identified innovation
by θh (i, k) θh (j, k) , h = 1, 2, ..., where θh (i, k) is the (i, k)-th element of the impulse response
matrix Θh after the recursive (triangular) identification assumptions have been imposed.
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Figure 3a

Decomposition of covariance between inflation and excess return for full sample period (1966:01—
1998:12). Each graph is the cumulative response of covariance between INF and EP to a one-
standard-deviation impulse in triangularly orthogonalized innovations in IPG, INF, DPCOM, FF,
DNBRD, DEFP, TERM, and EP. All variables are in annual percentage points. Each response is
plotted over a 24-month horizon following the month of shocks. The vertical axis scales represent
deviation in covariance (×104) due to shocks in each variable. Solid lines are point estimates,
dotted lines are 68% error bands, and dashed lines are 90% error bands, estimated point by
point. The covariance decomposition, i.e., the percentage that h-period forecast error covari-
ance between i-th variable and j-th variable accounted for by shocks in k-th variable, is given byPh

s=1 θs(i,k)θs(j,k)q
(
PK
k=1

Ph
s=1 θs(i,k)

2)(
PK
k=1

Ph
s=1 θs(j,k)

2)
for h = 1, 2, ..., 24, .where θh (i, k) is the (i, k)-th element of

the impulse response matrix Θh after the recursive (triangular) identification assumptions have
been imposed.
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Figure 3b

Decomposition of covariance between inflation and excess return for pre-Volcker period (1966:01—
1979:06). Each graph is the cumulative response of covariance between INF and EP to a one-
standard-deviation impulse in triangularly orthogonalized innovations in IPG, INF, DPCOM, FF,
DNBRD, DEFP, TERM, and EP. All variables are in annual percentage points. Each response is
plotted over a 24-month horizon following the month of shocks. The vertical axis scales represent
deviation in covariance (×104) due to shocks in each variable. Solid lines are point estimates,
dotted lines are 68% error bands, and dashed lines are 90% error bands, estimated point by
point. The covariance decomposition, i.e., the percentage that h-period forecast error covari-
ance between i-th variable and j-th variable accounted for by shocks in k-th variable, is given byPh

s=1 θs(i,k)θs(j,k)q
(
PK
k=1

Ph
s=1 θs(i,k)

2)(
PK
k=1

Ph
s=1 θs(j,k)

2)
for h = 1, 2, ..., 24, .where θh (i, k) is the (i, k)-th element of

the impulse response matrix Θh after the recursive (triangular) identification assumptions have
been imposed.
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Figure 3c

Decomposition of covariance between inflation and excess return for post-Volcker period (1983:01—
1998:12). Each graph is the cumulative response of covariance between INF and EP to a one-
standard-deviation impulse in triangularly orthogonalized innovations in IPG, INF, DPCOM, FF,
DNBRD, DEFP, TERM, and EP. All variables are in annual percentage points. Each response is
plotted over a 24-month horizon following the month of shocks. The vertical axis scales represent
deviation in covariance (×104) due to shocks in each variable. Solid lines are point estimates,
dotted lines are 68% error bands, and dashed lines are 90% error bands, estimated point by
point. The covariance decomposition, i.e., the percentage that h-period forecast error covari-
ance between i-th variable and j-th variable accounted for by shocks in k-th variable, is given byPh

s=1 θs(i,k)θs(j,k)q
(
PK
k=1

Ph
s=1 θs(i,k)

2)(
PK
k=1

Ph
s=1 θs(j,k)

2)
for h = 1, 2, ..., 24, .where θh (i, k) is the (i, k)-th element of

the impulse response matrix Θh after the recursive (triangular) identification assumptions have
been imposed.
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Figure 4a

Effects of monetary policy shocks on non-policy variables for full sample period (1966:01—
1998:12). Each graph shows 24-month response of variables to a one percent shock in monetary
policy variables. Top panel: effects of shocks in federal funds rate. Bottom panel: effects of shocks
in minus log difference nonborrowed reserves. Vertical axis scales represent percent deviation of
variables. Responses of DEFP, TERM, and EP are depicted first since these variables are assumed
to respond to policy shocks within the same month. IPG, INF, and DPCOM are assumed to
respond to policy shocks with one-month lag. Solid lines are point estimates, dotted lines are 68%
error bands, and dashed lines are 90% error bands, estimated point by point.

42



Figure 4b

Effects of monetary policy shocks on non-policy variables for pre-Volcker period (1966:01—
1979:06). Each graph shows 24-month response of variables to a 1 percent shock in monetary
policy variables. Top panel: effects of shocks in federal funds rate. Bottom panel: effects of shocks
in minus log difference nonborrowed reserves. Vertical axis scales represent percent deviation of
variables. Responses of DEFP, TERM, and EP are depicted first since these variables are assumed
to respond to policy shocks within the same month. IPG, INF, and DPCOM are assumed to
respond to policy shocks with one-month lag. Solid lines are point estimates, dotted lines are 68%
error bands, and dashed lines are 90% error bands, estimated point by point.
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Figure 4c

Effects of monetary policy shocks on non-policy variables for post-Volcker period (1983:01—
1998:12). Each graph shows 24-month response of variables to a 1 percent shock in monetary
policy variables. Top panel: effects of shocks in federal funds rate. Bottom panel: effects of shocks
in minus log difference nonborrowed reserves. Vertical axis scales represent percent deviation of
variables. Responses of DEFP, TERM, and EP are depicted first since these variables are assumed
to respond to policy shocks within the same month. IPG, INF, and DPCOM are assumed to
respond to policy shocks with one-month lag. Solid lines are point estimates, dotted lines are 68%
error bands, and dashed lines are 90% error bands, estimated point by point.
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Figure 5a

Variance decomposition of excess return for pre-Volcker period (1966:01—1979:06). Each graph
is the cumulative response of variance of EP to a one-standard-deviation impulse in triangularly
orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP, TERM, and EP. All
variables are in annual percentage points. Each response is plotted over a 24-month horizon
following the month of shocks. The vertical axis scales represent deviation in variance (×104) due
to shocks in each variable. Solid lines are point estimates, dotted lines are 68% error bands, and
dashed lines are 90% error bands, estimated point by point.
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Figure 5b

Variance decomposition of excess return for post-Volcker period (1983:01—1998:12). Each graph
is the cumulative response of variance of EP to a one-standard-deviation impulse in triangularly
orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP, TERM, and EP. All
variables are in annual percentage points. Each response is plotted over a 24-month horizon
following the month of shocks. The vertical axis scales represent deviation in variance (×104) due
to shocks in each variable. Solid lines are point estimates, dotted lines are 68% error bands, and
dashed lines are 90% error bands, estimated point by point.
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Figure 6a

Variance decomposition of inflation for pre-Volcker period (1966:01—1979:06). Each graph is
the cumulative response of variance of INF to a one-standard-deviation impulse in triangularly
orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP, TERM, and EP. All
variables are in annual percentage points. Each response is plotted over a 24-month horizon
following the month of shocks. The vertical axis scales represent deviation in variance (×104) due
to shocks in each variable. Solid lines are point estimates, dotted lines are 68% error bands, and
dashed lines are 90% error bands, estimated point by point.
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Figure 6b

Variance decomposition of inflation for post-Volcker period (1983:01—1998:12). Each graph
is the cumulative response of variance of INF to a one-standard-deviation impulse in triangularly
orthogonalized innovations in IPG, INF, DPCOM, FF, DNBRD, DEFP, TERM, and EP. All
variables are in annual percentage points. Each response is plotted over a 24-month horizon
following the month of shocks. The vertical axis scales represent deviation in variance (×104) due
to shocks in each variable. Solid lines are point estimates, dotted lines are 68% error bands, and
dashed lines are 90% error bands, estimated point by point.
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Figure 7a

Cumulative effects of a one-standard-deviation impulse in the federal funds rate on the covari-
ance between inflation and excess return. This graph depicts the time-varying cumulative effects
for a 1-month horizon following the month of the shock, across the sample period (1966-1998). Ver-
tical axis scales represent deviation in covariance

¡×104¢ due to shocks in FF. See section 3.3 for
the estimation of time-varying VAR and time-varying impulse responses. In our time-varying VAR,
all coefficients of the two policy equations — reaction functions for FF and DNBRD — are assumed
to be time-varying, while the coefficients of other equations are kept constant. Point estimates are
based on smoothed estimates in the time-varying VAR model. The cumulative effects on the co-
variance between inflation and excess return are computed as

P1
h=0 θh,t (INF,FF )×θh,t (EP,FF ),

where θh,t (INF, FF ) and θh,t (INF,FF ) denote the h-month responses of INF and EP to a one-
standard-deviation impulse in FF at period t.
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Figure 7b

Cumulative effects of a one-standard-deviation impulse in the federal funds rate on the covari-
ance between inflation and excess return. This graph depicts the time-varying cumulative effects
for a 3-month horizon following the month of the shock, across the sample period (1966-1998). Ver-
tical axis scales represent deviation in covariance

¡×104¢ due to shocks in FF. See section 3.3 for
the estimation of time-varying VAR and time-varying impulse responses. In our time-varying VAR,
all coefficients of the two policy equations — reaction functions for FF and DNBRD — are assumed
to be time-varying, while the coefficients of other equations are kept constant. Point estimates are
based on smoothed estimates in the time-varying VAR model. The cumulative effects on the co-
variance between inflation and excess return are computed as

P3
h=0 θh,t (INF,FF )×θh,t (EP,FF ),

where θh,t (INF, FF ) and θh,t (INF,FF ) denote the h-month responses of INF and EP to a one-
standard-deviation impulse in FF at period t.
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Figure 7c

Cumulative effects of a one-standard-deviation impulse in the federal funds rate on the covari-
ance between inflation and excess return. This graph depicts the time-varying cumulative effects
for a 6-month horizon following the month of the shock, across the sample period (1966-1998). Ver-
tical axis scales represent deviation in covariance

¡×104¢ due to shocks in FF. See section 3.3 for
the estimation of time-varying VAR and time-varying impulse responses. In our time-varying VAR,
all coefficients of the two policy equations — reaction functions for FF and DNBRD — are assumed
to be time-varying, while the coefficients of other equations are kept constant. Point estimates are
based on smoothed estimates in the time-varying VAR model. The cumulative effects on the co-
variance between inflation and excess return are computed as

P6
h=0 θh,t (INF,FF )×θh,t (EP,FF ),

where θh,t (INF, FF ) and θh,t (INF,FF ) denote the h-month responses of INF and EP to a one-
standard-deviation impulse in FF at period t.
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Figure 8a

Cumulative effects of a one-standard-deviation impulse in the federal funds rate on inflation
and excess return. Each graph depicts the cumulative response of inflation and excess returns for a
1-month horizon following the month of the shock. Cumulative time-varying impulse responses are
plotted across the sample period (1966-1998). Vertical axis scales represent percent deviation of
variables due to the shock in FF. See section 3.3 for the estimation of time-varying VAR and time-
varying impulse responses. In our time-varying VAR, all coefficients of the two policy equations
— reaction functions for FF and DNBRD — are assumed to be time-varying, while the coefficients
of other equations are kept constant. Point estimates are based on smoothed estimates in the
time-varying VAR model. The cumulative responses are computed as

P1
h=0 θh,t (INF,FF ), andP1

h=0 θh,t (EP,FF ) ,where θh,t (INF, FF ) and θh,t (INF, FF ) denote the h-month responses of
INF and EP to a one-standard-deviation impulse in FF at period t.
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Figure 8b

Cumulative effects of a one-standard-deviation impulse in the federal funds rate on inflation
and excess return. Each graph depicts the cumulative response of inflation and excess returns for a
3-month horizon following the month of the shock. Cumulative time-varying impulse responses are
plotted across the sample period (1966-1998). Vertical axis scales represent percent deviation of
variables due to the shock in FF. See section 3.3 for the estimation of time-varying VAR and time-
varying impulse responses. In our time-varying VAR, all coefficients of the two policy equations
— reaction functions for FF and DNBRD — are assumed to be time-varying, while the coefficients
of other equations are kept constant. Point estimates are based on smoothed estimates in the
time-varying VAR model. The cumulative responses are computed as

P3
h=0 θh,t (INF,FF ), andP3

h=0 θh,t (EP,FF ) ,where θh,t (INF, FF ) and θh,t (INF, FF ) denote the h-month responses of
INF and EP to a one-standard-deviation impulse in FF at period t.
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Figure 8c

Cumulative effects of a one-standard-deviation impulse in the federal funds rate on inflation
and excess return. Each graph depicts the cumulative response of inflation and excess returns for a
6-month horizon following the month of the shock. Cumulative time-varying impulse responses are
plotted across the sample period (1966-1998). Vertical axis scales represent percent deviation of
variables due to the shock in FF. See section 3.3 for the estimation of time-varying VAR and time-
varying impulse responses. In our time-varying VAR, all coefficients of the two policy equations
— reaction functions for FF and DNBRD — are assumed to be time-varying, while the coefficients
of other equations are kept constant. Point estimates are based on smoothed estimates in the
time-varying VAR model. The cumulative responses are computed as

P6
h=0 θh,t (INF,FF ), andP6

h=0 θh,t (EP,FF ) ,where θh,t (INF, FF ) and θh,t (INF, FF ) denote the h-month responses of
INF and EP to a one-standard-deviation impulse in FF at period t.
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Figure 9a

Effects of unanticipated inflation on economic variables: pre-Volcker period (1966:01—1979:06).
Each graph shows 12-month response of variables to a one-standard-deviation innovation in INF.
Vertical axis scales represent percent deviation of variables. Solid lines are point estimates, dotted
lines are 68% error bands, and dashed lines are 90% error bands, estimated point by point.
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Figure 9b

Effects of unanticipated inflation on economic variables: post-Volcker period (1983:01—1998:12).
Each graph shows 12-month response of variables to a one-standard-deviation innovation in INF.
Vertical axis scales represent percent deviation of variables. Solid lines are point estimates, dotted
lines are 68% error bands, and dashed lines are 90% error bands, estimated point by point.
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Notes

1The original Federal Reserve Act of 1913, signed by President Woodrow Wilson, was much narrower in scope.
However, the Banking Act of 1935, the Employment Act of 1946, the Full Employment and Balanced Growth Act
of 1978 (a.k.a the Humphrey-Hawkings Act) established the objectives of the Federal Reserve System to be price
stability, economic growth, a high level of employment, and moderate long-term interest rates.

2As additional evidence of how important a role the Fed plays in today’s stock market, some practicioners have
expressed a concern that Fed actions might be guided by the desire to stabilize or control asset prices. This spreading
belief has prompted the Chairman of the Federal Reserve Board to make the following comment:

“The persuasive evidence that the wealth effect is contributing to the risk of imbalances in our
economy, however, does not imply that the most straightforward way to restore balance in financial and
product markets is for monetary policy to target asset price levels, ...Leaving aside the deeper question
of whether asset-price targeting is an appropriate government function, there is little if any evidence
that monetary policy aimed at achieving that goal would be successful.”

–Alan Greenspan, as reported in the New York Times, April 06, 2000.

However, there is little, if any, evidence that the Fed might be setting its policy as a response to the stock market
valuation.

3Sims (1986), Bernanke (1986), Blanchard and Watson (1986), Bernanke and Blinder (1992), Lee (1992), Cochrane
(1994), Christiano et al.(1996,1998), Thorbecke (1997), Patelis (1997), etc.

4During the first three and a half years of Volcker, 1979-1983, also known as the “Volcker experiment”, the Fed
pursued a vastly different monetary policy. For more details, see the discussions in the paper.

5Moreover, as argued by Bernanke (1995) and Bernanke and Gertler (1995) monetary shocks can affect both the
aggregate demand and the aggregate supply. Therefore, identifying aggregate demand and aggregate supply shocks
and interpreting the former as money supply shocks might not be the best way to identify monetary policy.

6As explained below, we are decomposing the excess returns/inflation covariance into different unanticipated
shocks, one of which is a monetary policy shock. A considerably more involved exercise would be to first decompose the
covariance into excess returns, interest rate, and dividend growth components, and then decompose those components
into monetary supply shocks. Such an exercise, although interesting, will divert us conciderably from the main point
in this paper.

7Inflation is defined as the log difference in Consumer Price Index (CPI), following the convention in the literature.

8The VAR literature of the late 1980’s and 1990’s has established that it is better to focus on the federal funds rate
as a tool of monetary policy, rather than the other monetary aggregates, such as M0, M1, or M2. (Sims (1980, 1986),
Bernanke and Blinder (1992), Christiano et al.(1996), among others). Some papers advocate the use of non-borrowed
reserves (NBR), and we include it in our analysis.

9For example, Romer and Romer (1989), Bernanke and Blinder (1992), Gali (1992), Bernanke and Mihov (1998),
Christiano et al.(1996, 1998), and Leeper et al.(1996).

10Cochrane, 1998, p. 278

11For example, Bernanke et al. (1997), and Cochrane (1998) analyze the effect of anticipated (or endogenous)
policy effects as well as unanticipated monetary shocks. Both studies conlcude that more attention must be devoted
to systematic policy effects.

12Bernanke and Blinder (1992), Bernanke (1993), Cecchetti (1995), Friedman and Kuttner (1993), Hubbard (1995),
Kayshap et al. (1993), Bernanke and Gertler (1995), and are some of the good articles in this area.
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13This is one of the reasons why the commercial paper-Treasury bill spread is a good predictor of future economic
activity.

14Most studies that use commodity prices to alleviate the price-puzzle, still exhibit an increase, albeit insignificant,
of prices to contrationary monetary policy (Sims (1992), Christian et al.(1996), Cochrane (1998), and Bernanke et
al.(1997))

15Romer and Romer (2000) do conduct some simple tests of the private information in Fed forecasts, because they
have data of the actual Fed forecasts. Unfortunately, this data is not available to us.

16In chronological order, the chairmen are: McChesney, Burns, Miller, Volcker, and Greenspan.

17As defined by the NBER.

18Replacing the industrial production data with interpolated GNP/GDP data constructed as in Bernanke et al.
(1997), Bernanke and Mihov (1998) did not change our qualitative results.

19The Fed abandoned its interest rate smoothing effort, and adopted a pure targeting of nonborrowed reserves
from 1979:10 to 1982:10. Hamilton(1990), Ball and Torous(1995), and Gray(1996) show the excessive interest rate
volatility during this period using regime-switching models.

20We estimate unconstrained VAR using a constant and 2 lags for each subperiod and using a constant and 3
lags for the full sample period, as determined by AIC(Akaike information criterion). Eight variables — IPG, INF,
DPCOM, FF, DNBRD, DEFP, TERM, and EP — are included in this order.

21Leeper et al.(1996) cast doubt on treating commodity prices as predetermined for monetary policy shocks since
they may respond to monetary policy shocks quickly in their thick auction markets. This problem may be significant
in quarterly data. However, we did not find any qualitative changes in our results by placing DPCOM after monetary
policy variables. See Bernanke and Mihov (1998) for similar observation.

22In other words, monetary policy variables respond to innovations in financial variables only with a one-month
decision-lag. We do not consider this as restrictive since we use the federal funds rates are taken to be monthly
averages.

23Strongin (1995), Bernanke and Mihov (1998), Christiano et al.(1998), and Walsh (1998) provide institutional
details of the banking system to justify these approaches. For a review of identifying restrictions, see Leeper et
al.(1996) and Christiano et al.(1998).

24When the system is stable, the Ψs are the coefficient matrices of the moving average representation of yt by the
Wold theorem. However, impulse responses are defined for unstable systems as well.

25This implies that systematic policy rules have no real effects. We turn to this point later.

26If the VAR system is stable, the h-period forecast error covariance matrix converges to the unconditional covari-
ance matrix as h→∞, though we do not make any assumption on the stability of our system.
27The covariance decomposition is easily extended to the analysis of auto-covariances.

28Gallant et al.(1993) introduce conditional moment profile for computing impulse responses of nonlinear dynamic
models.

29For recent developments in classical approach, we refer readers to the bias-corrected bootstrap-after-bootstrap
method recently proposed by Kilian (1998).

30The RATS Bayesian Monte Carlo procedure has been widely used to compute first and second moments of the
simulated distributions of impulse responses.

31Although we do not impose any over-identifying restrictions on the VAR, we note that this procedure is only
approximately correct for over-identified models since the density of the restricted parameter space is not used.
Sims and Zha (1999) propose a procedure for constructing Bayesian error bands for over-identified models using the
Metropolis-Hastings algorithm.
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32Boivin (1999), and Boivin and Watson (1999) propose an IV framework for time-varying parameter models in a
more general setting.

33We allow for non-zero correlation among time-varying parameters.

34Standard numerical procedures tend to estimate the variances of time-varying parameters to be zero. See Boivin
(1999), Boivin and Watson (1999) for discussion.

35A Monte-Carlo experiment, available upon request, indicates that none of the differences in the unrestricted
terms of the two covariance matrices are significant at conventional levels.

36This assertion can be tested, for example, by looking at interest rate volatility as a proxy for economic instability.
However, this is a project for future research.

37Lee (1992) finds little variation in real activity, which responds negatively to inflation innovations from his analysis
of impulse responses. However, he does not construct error bands for his impulse responses. We find that the mildly
negative impulse response he finds is in fact insignificant.

38This interpretation is commonly found in media: For example,

Friday’s plunge came after the government said prices at the consumer level showed surprising strength
last month, triggering fears that the Federal Reserve may raise interest rates more aggressively. —
“Unnerved investors rapidly unload stocks amid inflationary fears” by Catherine Tymkiw, April 14,
2000, http://www.cnn.com/
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