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THE ROLE OF ADVANCED TRAVELLER INFORMATION SYSTEMS
IN INCIDENT MANAGEMENT

BY

Haitham Mohammed Al-Deek

ABSTRACT

Advanced traveller information systems (ATIS) have been proposed recently as a

promising technology for improving the efficiency of urban transportation networks and

reducing traffic congestion. This dissertation deals with an important application of ATIS

technology: the management of incidents.

An off-peak incident is analyzed using deterministic queueing methods in an

idealized corridor composed of two routes. A user equilibrium strategy is implemented to

disseminate real time traffic information to vehicles equipped with ATIS. The findings

show that a few cases of queue evolution result when ATIS is used under incident

conditions. Both the proportion of guided traffic and the incident duration play an

important role in determining which case results. When an incident occurs, ATIS will

divert all equipped vehicles to the alternate route until equilibrium is achieved. Equilibrium

is maintained by reducing the rate of diversion from one route to the other through pulsed

diversion of ATIS equipped vehicles. The implication is that during equilibrium some

ATIS equipped vehicles will be diverted to an alternate route while others will remain on

the route where the incident has occurred.

The user benefits follow similar characteristics for all the cases studied. Guided

traffic is better off than unguided traffic only during the diversion period that precedes

equilibrium, but this advantage is drastically reduced when a queue forms on the alternate

route or where equilibrium can be achieved. System benefits increase with the fraction of

guided traffic as long as it is below the critical value that causes a queue on the alternate

route, but system benefits saturate when this value is exceeded. Also, system benefits do

not increase with the proportion of guided traffic in cases where equilibrium can be



achieved The critical fraction does not depend on the incident parameters but does depend

on two corridor parameters: the capacity of the alternate route and the corridor demand.

The critical fraction equals zero when there is no alternate route and equals one in corridors

with several major arterials, usually parallel to the main facility, that can absorb the corridor

demand without being congested.

The study findings suggest that route guidance has a significant role in the

management of incidents during the off-peak period, when uncongested alternate routes are

likely to be available. During the peak period, however, the alternate routes are usually

congested, and consequently there is a need to spread traffic over time rather than space.

This can be achieved through departure time switching rather than route switching. Here,

the role of ATIS is thought to be more useful before starting a trip rather than en-route.

Pre-trip traffic information permits the most flexible decisions by trip makers. Travellers

can switch routes, departure times, and possibly modes. This area is yet to be investigated

and is an interesting subject for future research.

Adib Kanafani

Chairman of Committee
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1. INTRODUCTION

The objective of this research is to explore conditions under which route guidance

information is useful in incident management and to estimate its benefits.

Advanced traveller information systems (ATIS) have gained worldwide interest as a

promising technology for improving the efficiency of urban networks and reducing

congestion. It is generally anticipated that the provision of route guidance to travellers will

help them avoid congested links in the network, thereby reducing congestion by spreading

traffic over space, and possibly time. This proposition has been so well received that

technology for ATIS is being developed and tested in numerous locations around the

world. There remains, however, a paucity of analysis to demonstrate that the

implementation of ATIS will in fact have a significant impact on congested urban networks,

and to estimate the magnitude and distribution of its potential benefits. This research is

concerned with an important application of ATIS technology: the management of incidents.

Using an idealized traffic corridor and deterministic queuing methods, conditions under

which route guidance information is useful are identified. Benefits to traffic guided with

ATIS are estimated and system performance is evaluated in diverse environments of non-

recurring congestion.

This research provides a fundamental basis for understanding the benefits of ATIS,

with relevant implications for public and private sector implementation of ATIS as a mean

of reducing incident caused congestion.

1.1 Incidents and Incident Management

An incident is a random event that occurs on a section of roadway and affects its

capacity. These unexpected events can be traffic accidents, disabled vehicles, spills, and

other environmental problems. Congestion results whenever roadway capacity is reduced
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below the level of demand Some of the parameters that influence the impact of an incident

are: incident duration, reduction in roadway capacity, and travel demand level during the

incident.

Incidents are viewed as a major problem in urban travel because they cause

unexpected delays for motorists. Truck-related incidents usually have a larger impact than

other incidents. It was estimated that in 1987 an average of 19 truck incidents per weekday

occur on the u-i-county freeway system in Los Angeles, Ventura, and Orange Counties in

California. The majority of these incidents (15 per day) occur on the heavily traveled

freeways of Los Angeles County (Reeker, 1989). The duration of these incidents ranges

from forty minutes to about two and a half hours. A recent study of Los Angeles, San

Francisco, and San Diego has shown that 80% of all truck-related incidents occur during

daytime and about 50% of all incidents occur during midday off-peak period (Cambridge

Systematics, 1988; Reilly and Haven, 1989).

A nationwide study, Lindley (1987) estimated that incident congestion constitutes

more than one half of the total congestion on U.S urban freeways. Empirical work has

shown that lane-blocking incidents have a more than proportional impact on ,‘reeway

capacity. For example, the blockage of a single lane on a three lane freeway reduces

freeway capacity by 50% (Lindley, 1986).
A look into the future offers little hope that things will get better. A. D. May (1989,

p.4 1) concluded:

Congestion today in our urban areas is severe and over the next 15-20 years the
congestion will be so severe as to significantly limit growth in automobile
registration and usage. Non-recurring congestion will grow at even a faster rate
than recurring congestion, and motorists will encounter congestion at unexpected
locations and periods of time.

On the supply side, the picture is not encouraging either. The number of miles of

new highways being constructed each year is significantly lower than in past years. The
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cost of building or widening freeways has escalated during the past few years. Thus, the

major effort over the next decade will be given to improved use of the existing highway

system through congestion management.

The incident management process is shown in Figure 1.1. Once, an incident is

detected, incident management follows two parallel processes: restoration of normal

capacity through incident response and clearance, and demand management through

motorists information systems and other means such as freeway ramp closures. A detailed

description of research work on incident detection, response, and clearance can be found in

Mannering and Jones (1990). Despite the advancements in incident response and

clearance, fast removal policies are difficult to implement because of liability issues, and the

multitude of public and private agencies and groups involved. The issue of liability is

especially of concern when valuable commercial loads or hazardous materials are involved.

Also there may be other priorities at the incident scene such as injuries, fire, and accident

investigation, and managing traffic might not be at the top of the list. Thus, this research

focus is on incident management using advanced traveller information systems.

1.2 The Concept of ATIS

The concept of ATIS is to collect and analyze data on the current performance of the

highway system, and to derive information that can be disseminated to travellers on a real

time basis.

Information may be delivered to travellers before they start a trip or while en route.

Real time traffic information can be delivered to travellers en route via two means: 1)

outside the vehicle, or 2) inside the vehicle. Information delivered outside the vehicle is

visual, as in the case of changeable message signs (CMS). Information delivered inside the

vehicle may be visual, or it may be audio, or both, e.g Highway Advisory Radio (HAR)

and in-vehicle ATE. Although there are other uses of ATE such as emergency
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communication and parking availability information, the main focus of this study is on the

use of ATIS in route guidance.

There is a variety of in-vehicle ATIS models such as the Japanese AMTICS

(Advanced Mobile Traffic Information and Communication Systems) (Tsuzawa and

Okamoto, 1989), the German LISB (Driver Guidance and Information System)

(Sparmann, 1989), and the British AUTOGUIDE (Catling and Belcher, 1989). Some

other systems are also described in Garrison (1986) and Ygnace (1990). Despite this

worldwide interest and the expectation that route guidance systems will be in use by mid-

1990s (see, for example, Boyce, 1988, 1989; and Ben-Akiva and de Palma, 1989) the

most advanced of these systems are still in an experimental stage.

1.3 ATIS Versus Conventional Motorists Information Systems

One may question the need for ATIS especially if it is possible to disseminate traffic

information to drivers via cheaper means which already exists such as Changeable Message

Signs (CMS) and Highway Advisory Radio (HAR). Commuter surveys indicate that both

CMS and HAR have serious deficiencies and limitations, (see, for example, Shirazi, 1988,

and Haselkom and Bat-field, 1990). Incidents may occur at any location in the network and

it is not economically feasible to install changeable message signs at every possible junction

in the network. Furthermore there are a lot of complaints about changeable message signs

being vulnerable to weather conditions and need of frequent maintenance as often as every

two weeks (Haselkom and Barfield, 1990). More important than that are the complaints of

drivers that the message is often not up to date and comes too late for anyone to make a

decision. Also messages on CMS might be difficult for some people to read. The message

usually instructs drivers to use the next few exits of a freeway and divert to some alternate

routes which drivers may not know very well. When information is disseminated to all

drivers to divert to an alternate route this may cause congestion on the alternate route as
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well. Because of ‘this, drivers who divert may have their travel time increased and

eventually will end up distrusting the system

Highway Advisory Radio has the disadvantage of sending information that is often

irrelevant to drivers’ specific trips. Sometimes drivers have difficulty in retaining what

they have heard from HAR. Many incidents broadcast by radio are minor incidents that do

not take a long time to be cleared. Travellers listening to such broadcasts may choose an

alternate route that could take a longer time than the route where the incident has occurred.

Although such travellers might benefit others by not choosing the route where the incident

occurred, they may themselves incur a loss. It is no wonder then that only a very small

percentage of drivers care to listen to HAR (Haselkom and Barfield, 1990).

Another advantage of in-vehicle ATIS over conventional systems is that equipped

vehicles can function as traffic probes. On-board equipment stores records of average

travel times for the network by link and time of day. Once there is a sufficient number of

equipped vehicles, link travel times can be predicted over short time intervals and incidents

can be detected rapidly.

1.4 Urban Transportation Planning System and ATIS

The introduction of ATIS as part of a larger package of technologies, termed

“Intelligent Vehicle and Highway Systems (IVHS)“, is expected to have important

implications for the Urban Transportation Planning System (UTPS). Quoting Kanafani

(1991, p.1):

“The implementation of WI-IS technologies such as ATIS is likely to have
immediate short run effects on traffic behavior initially by altering route choice, and
eventually trip scheduling and possibly destination choice. However, the most
profound impacts of ATIS will occur in the longer term and are likely to impact
travel demand. The more profound effects of ATIS are likely to be in trip
generation, trip scheduling, trip chaining, and mode choice”.



7

Thus, the introduction of ATIS is likely to affect not only route choice, -but the entire

structure of the urban transportation planning system (UTPS). This initiates a need to

modify the classical UTPS framework and to come up with a revised planning analysis

package that is integrated with WI-IS technologies such as ATIS. The classical UTPS

framework is composed of a sequence of travel choices as shown in Figure 1.2. First, a

decision is made of whether to make a trip or not; second, a trip destination is chosen;

third, a trip mode is chosen where choice of the trip mode is conditional on the chosen

destination; and finally modal trips are assigned to routes that connect trip origins and

destinations. When ATIS is available, routes that are heavily congested are dropped out of

the route choice set. This is expected to influence the mode choice set by dropping out

modes which are committed to the routes that are dropped out. If all the routes leading to a

destination are congested (e.g during peak hour travel), then a traveller may think of

changing the trip destination or ultimately may choose to cancel the trip. The introduction

of ATIS suggests using an alternative approach to modeling travel demand in which the

modeling sequence in UTPS is reversed, as shown by the shaded arrows in Figure 1.2.

The reversed sequential approach to modeling travel demand has been explained in detail in

Kanafani (1983, pp. 98-105).

This research is a start of the UTPS revision process. Immediate short run effects

of ATIS which influence route choice under incident conditions are evaluated. Economic

analysis includes the evaluation of user and system benefits of ATIS and analysis of the

distribution of benefits for guided and unguided traffic. The benefits are measured as

reduction in delay and delay related costs such as vehicle operating costs. Economic

analysis is not limited to the evaluation of benefits and costs of implementing the ATIS

technology, but can also be extended to include demand analysis and marketing research of

ATIS. In order to perform economic analysis successfully, however, it is necessary to

understand how ATIS functions in diverse congestion environments.
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1.5 Previous Studies

There have been numerous efforts to evaluate the benefits of dynamic route

guidance information provided by ATIS. These efforts have been: field testing and

predictive modeling and computer simulation.

ATIS Experiments

The objective of the experiments is not only to evaluate the benefits of ATIS but

also to test the system under conditions close to reality, to prove its technical feasibility,

and to investigate driver acceptance. The fust experiment of route guidance systems was

the Japanese (CACS) system that began in 1979 (Yumoto et al., 1979). About 330 test

vehicles were used in the experiment. In about 1000 trials it was found that reduction in

mean travel time between seven selected origin-destination pairs in Tokyo was g-15%. The

second experiment was the LISB system which began in Berlin 1989 and is currently on-

going. The AUTOGUIDE system in the UK has reached the stage of field testing (Catling

and Belcher, 1989). Currently, three demonstration programs are being implemented or

are underway in the United States: the Pathfinder Project in the Los Angeles SMART

corridor, the Travtec project in Orlando, and the Illinois Dynamic Route Guidance

Experiment, (Boyce, 1990).

There are two main facts that apply to all of these experiments: first, they cost

several million dollars to implement (some have cost $40~$50  million); and second, the

fraction of vehicles equipped with ATIS is exceedingly small and typically is less than 1%

of the traffic flow. This suggests that in order to predict the full effect of larger scale ATIS

researchers will have to turn to predictive models.



10

Previous Research on Modeling the Benefits of ATIS

Almost every experiment mentioned above was preceded by some effort of

modeling. Kobayashi (1979) in the context of the CACS project developed a simulation

model to examine the effectiveness of alternative guidance methods and applied it using

data’from a pilot area in Tokyo. The results indicate that total travel time in Tokyo, with the

introduction of ATIS, could be reduced by 6% and fuel consumption by 5%.

Tsuji, et al. (1985) applied a mathematical model that they developed to a case study

in the area of Tokyo. They found that guided vehicles could save up to 11% of their travel

time. They assumed that the traffic flow of guided vehicles does not affect the remaining

traffic flow. This assumption can be valid only if the proportion of guided traffic is very

small.

After several years of research at the Transport and Road Research Laboratory

(TRRL), Jeffery et al. (1987a,b), combined the results of Tsuji, et al. (1985) and the earlier

results on the benefits of static route guidance information found in Jeffery (198 1 a,b), and

concluded that ATIS can achieve an average benefit of 10%.

Kanafani (1987) assessed the current level of highway navigation and route

guidance technology. He concluded that the state of the art in information technology

provides opportunities for application of advanced uaveller information systems, but little

is known about the potential gains that ATIS can offer for the relief of congestion.

Al-Deek, et al. (1988, 1989a,b) estimated the potential benefits of in-vehicle ATIS

in the context of the PATHFINDER project. They simulated existing and incident induced

traffic conditions along the Santa Monica freeway (SMART) corridor in I os Angeles.

They assumed that the fraction of vehicles equipped with ATIS is small such that travel

times on the city streets are not affected by diversion. Travel time savings for guided

traffic were found to be insignificant under recurring congestion conditions while savings
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were in the order of 10 minutes for a 40 minute trip (or 25%) under incident induced

conditions.

The results of the previous studies are site specific and cannot be generalized to

other geographical areas or other network conditions. The models used in these studies

cannot analyze the sensitivity of benefits to an important variable, the fraction of vehicles

equipped with ATIS. Furthermore, analysis of the distribution of benefits between guided

and unguided traffic has not been addressed. Apparently most of the previous studies were

concerned about figure estimates of benefits of ATIS without referring to conditions and

cases under which these benefits can be achieved.

Al-Deek and Kanafani (1989c),  and Kanafani and Al-Deek (1991), used a

continuum approach in an idealized corridor to study the benefits of ATIS. The benefits

were measured by comparing system optimal assignment, achieved by ATIS, with user

equilibrium, which was assumed to occur in the absence of ATIS. The study demonstrated

the potential benefits of ATIS under diverse environments of recurring congestion and

identified some cases where ATIS is of marginal benefit and other cases where it is of no

use.

1.6 Research Needs

The results to date suggest that, by and large, the benefits of route guidance are

marginal under conditions of recurring congestion. Experienced travellers, who make up

the major portion of traffic in congested urban networks, have sufficient information to

manage their route choice under conditions of recurring congestion. This has often been

reflected in the estimates of potential benefits from ATIS in the vicinity of 10% savings in

total travel time. These results suggest that ATIS is likely to be more useful under

conditions of non-recurring congestion, as may be caused by incidents. Under these

conditions the lack of information about the severity and duration of an incident and its
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location vis-a-v-is the rest of the network would leave the traveller insufficiently informed to

make appropriate route choice decisions. Furthermore, by extending ATIS information to

potential travellers long before they approach incident locations, it may be possible to

further reduce potential congestion by altering trip patterns, including departure times,

thereby spreading traffic over time as well as space.

Real time traffic information may also be used as a control variable to “direct”

travellers towards path choices closer to system optimal solution in which the total cost of

travel for all trips in the network is minimized. Several strategies can be used to

disseminate real time traffic information to guided travellers under incident conditions.

There is a need for developing a model which can evaluate system performance and

estimate the distribution of benefits (or disbenefits, if any) between guided and unguided

traffic when a strategy is applied.

1.7 Res’earch Objectives

The goal of this dissertation is to establish a fundamental basis for the evaluation of

the benefits of ATIS in generic environments of non-recurring congestion. For this

purpose, a deterministic queueing model is developed and applied to an idealized corridor.

The primary questions addressed by this research effort are:

1. Under what incident conditions is information useful to travellers and to the

system?

2. How are the benefits distributed between guided and unguided users?

3. How sensitive are the benefits to the fraction of vehicles equipped with ATIS,

to incident parameters, and to network parameters?

The research framework is addressed in the next chapter along with a model that

analyzes the benefits of ATIS route guidance under incident conditions. The model is

applied to an idealized corridor and cases of queue evolution are presented in Chapter 3.
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Analysis of the beqefits for this model when applied to the idealized corridor are presented

in Chapter 4. A discussion of the model enhancements and extensions is provided in

Chapter 5. The results are summarized and presented with recommendations for future

work in Chapter 6.
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2. RESEARCH FRAMEWORK

In order to assess the benefits of ATIS in incident management a suitable traffic

assignment technique that can capture the special features of ATIS is needed. Although

there is a vast literature that deals with traffic assignment techniques, little is known about

the impact of ATIS technology on route choice and traffic assignment under incident

conditions. The introduction of ATIS adds new requirements to modelling traffic

assignment. This chapter presents a brief review of pertinent requirements for modelling

traffic assignment in networks with ATIS. It also presents the research framework and

provides a description of some generic environments where the benefits from ATIS are

evaluated.

2.1 Requirements for Traffic Assignment Models with ATIS

The introduction of ATIS is expected to influence the traveller’s route choice. This

stimulates traffic demand for various types of the network links. Incidents cause

continuous changes in the capacities of the links. The continuous changes in demands and

capacities of the links lead to dynamic equilibrium between the alternative routes in the

network. Consequently, the traffic assignment technique for networks under incident

conditions, where ATIS is available, needs to model these dynamic equilibrium conditions.

The traditional practice of steady-state equilibrium analysis is to assume that demand and

capacity are constant over long periods of time such as the entire peak period. Even if

ATIS is not present, it is still unrealistic to use traditional analysis techniques to model

networks under incident conditions.

When demand exceeds capacity vehicles are stored in queues. The assignment

technique should consider queueing delays on network links.
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The assigriment technique needs to have the capability of handling a non-

homogeneous system with a mixture of vehicles equipped and unequipped with ATIS.

Under incident conditions, travellers equipped with ATIS will be better informed of

conditions of the alternate routes than unequipped travellers and will have the privilege of

choosing the shortest route. Unguided travellers do not have access to real time traffic

information, and therefore continue to choose routes on the basis of their non-incident

experience.

An approach has been suggested recently by Van Arde and Blum (1989) to handle

the problem of traffic assignment with route guidance. The approach utilizes microscopic

computer simulation to track every vehicle as it proceeds in the network and updates

routing of vehicles based on real time traffic conditions. Although this approach might be

more suitable for real life applications, it requires gathering data for a large number of

parameters and is therefore an extensive and expensive process.

2.2 Research Approach

The main objective of the dissertation is to explore conditions under which route

guidance information is useful in incident management and to evaluate its benefits. Figure

2.1 shows the research framework and the procedure to synthesize these benefits. The

research approach uses deterministic queueing methods to predict dynamic queue

evolutions and traffic flow diversion in an idealized corridor under incident conditions with

and without ATIS. The use of deterministic queueing methods in the analysis of traffic

engineering probleias is by no mean new (see, for example, Moskowitz and Newman,

1963; May and Keller, 1967; and Newell, 1982). However, these methods have never

been applied to the analysis of networks under incident conditions with ATIS. The

idealized corridor provides a generic environment where the occurrence of incidents

varying in location, duration, and severity are simulated. The advantage of using this
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approach is to keep’ the number of problem parameters at a minimum by considering only

relevant ones: the fraction of vehicles equipped with ATIS, incident parameters, link

parameters, and traffic demand level. In the following paragraphs we describe in detail

elements of the research framework

2.3 Idealized Corridor and Assumptions

We consider a simple corridor as shown in Figure 2.2. The corridor consists of

two routes connecting points A and B. The first route is a freeway which has a bottleneck

E with capacity ~1. A queue forms upstream of bottleneck E on this route whenever traffic

demand exceeds capacity, ~1. The capacity of the rest of Route 1 is equal to pLo, which is

higher than ~1.

~1~2 9 Tl<T2

CL1

FIGURE 2.2 TWO PARALLEL BOTTLENECKS

Route 2 is an alternate high speed road that is longer than Route 1 and has a

bottleneck F with capacity ~2, where /.Q < ~1. When there is no queue, travel time from A

to B is equal to TI on Route 1 and T2 on Route 2, where Tl c T2. It is assumed, following

Kuwahara and Newell (1987), that these times are independent of flow except under

queueing conditions. Also the empirical work by Hurdle and Solomon (1986) has shown
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that freeway travel speed is independent of traffic flow until the capacity of the freeway is

reached. Thus, in the absence of queues, Route 1 is always preferred to Route 2.

It is also possible to consider other configurations of Route 2 such as:

(1) Route 2 is a frontage mad or an arterial with limited capacity ~2 that does not

allow high speed, or

(2) Route 2 is a composite of city streets with very large capacity and high speed is

also not allowed.

In the real world major travel delays occur at bottlenecks. The corridor

configuration described above has two parallel bottlenecks, usually there are not many

bottlenecks in a real life network. Also, the number of alternate routes in a corridor that can

be operationally and institutionally feasible for the purpose of traffic diversion is limited,

and is in the range of one to five (IHK & Associates, 1990).

In simulating the application of ATIS technology, we assume that it is possible to

estimate the flow and the travel time on each link in the network using data collected on a

continuous basis via traffic surveillance. It is also possible to detect the occurrence of an

incident, to estimate its duration and the capacity reduction caused by it. It is assumed in

this analysis that vehicles with ATIS will always follow directions to divert to a shorter

route. This assumption is not necessary for the model used here and can be easily relaxed

and the consequences of relaxing it are discussed in Chapter 3.

2.4 Incident Scenarios

For the purpose of this research incidents are classified as either peak or off-peak

incidents. The difference between the two types is discussed below.

Peak and Off-Peak Incidents

Cumulative arrivals and cumulative departures by time “t” for a single bottleneck are
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h(t) = !!!!a
dt

FIGURE 2.3 CUMULATIVE ARRIVALS AND DEPARTUkES  FOR
A SiNGLE BO’ITLENECK



20

given by the curves’labeled A(t) and D(t) respectively in Figure 2.3 (May and Keller, 1967,

p. 118). Peak conditions are defined as conditions where demand exceeds capacity. The

peak period starts at time co and ends at time 9 The demand rate, h(t), is equal to capacity

~1 at times f,, and cl, it is larger than ~1 in time interval [fO ,tI 1, and it is less than ~.LI

outside this interval. During the off-peak period there is no queue and vehicles can be

served without delay. Incidents may occur at any time in the day during peak or off-peak

periods. An incident is classified as a peak period incident if it occurs during time interval

[rO ,t,], while an off-peak incident is one that occurs outside this interval. Thus, when a

peak period incident occurs two bottlenecks in series are created on Route 1.

Without loss of generality we consider only incidents on Route 1, because analysis

of incidents on Route 2 would be similar. An incident may occur upstream of E,

downstream of E, or at bottleneck E. Depending on the time of occurrence and location of

the incident, some possible incident scenarios are shown in Table 2.1. Each cell in this

table represents an incident scenario. Hybrid scenarios are also possible, as illustrated by

directions of the arrows, an incident may occur during the off-peak period and continues

UPSTREAM

OFF-PEAK PERIOD

PEAK PERIOD

TABLE 2.1 POSSIBLE INCIDENT SCENARIOS
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through the peak period or vice versa. This study considers only off-peak incidents, but it

will be illustrated in Chapter 5 how to apply the same approach to peak period incidents.

In all scenarios we consider the following: we assume that the location of the

incident is such that there is sufficient queueing space upstream of it so that the queue does

not back up into junction A. Once travellers pass point A, information from ATIS becomes

irrelevant since they would be already committed to one of the two routes. ATIS

information will therefore be directed at traffic as it approaches point A. The incident

occurs at point C and reduces the capacity of Route 1 from ~(0 to CL,*. The incident occurs at

time t: and lasts for a duration T as illustrated in Figure 2.4. Point C is z units of travel

time away from A along Route 1, and 0 < r<T1.

To analyze the occurrence of incidents we construct deterministic queuing diagrams

for this corridor. In the following paragraphs we illustrate the construction of the queueing

diagram for an off-peak incident scenario.

F
FIGURE 2.4 CORRIDOR AND INCIDENT PARAMETERS

Construction of Queueing Diagram for an Off-Peak Incident

During the off-peak period the arrival rate at A, h(t), is less than the bottleneck

capacity, ~1, on the freeway. This means that h(t) is equal to the flow rate during this

period. Furthermore, h(t) does not have sharp fluctuations as in the case of the peak
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period. Hence, for simplicity, h(t) may be treated as a constant, Q, over long time

intervals  during the off-peak period.

Figure 2.5 illustrates the queueing diagram for an off-peak incident scenario where

an incident occurs downstream of bottleneck E, and in which the incident queue starts and

vanishes during off-peak conditions.

In the absence of ATIS, or any other information about the incident or its impact on

travel times, travellers will continue to choose between routes 1 and 2 on the basis of their

non-incident experience. As mentioned above, this means all traffic at point A will choose

Route 1. As long as the back-up caused by the incident does not reach point A, the queue

will evolve as shown in Figure 2.5. Traffic arrives at point A according to the arrival curve

A(t), and z units of time later at the incident point C according to curve A,(t). Note that the

slope of both of these curves is Q, the traffic flow rate. D,(t) shows the departure from the

bottleneck. The departure flow rate is initially ~1, the reduced capacity of the bottleneck,

and then after the incident is cleared at time T+tI, it is the restored capacity pO. The

incident delay for a traveller who arrives at time tz is denoted as d(tI+T). Note that Figure

2.5 illustrates the evolution of the queue for one of a number of possible cases. The rest

of these cases will be described in Chapter 3.

2.5 Information Dissemination Strategy

Information about diversion to the shortest route is disseminated to travellers

equipped with ATIS as they approach point A. Assuming that guided traffic follows the

advice, then this leads to equilibrium between the two routes as defined by Wardrop

(1952). Therefore, this information dissemination strategy is referred to as the user

equilibrium or the user optimal strategy. When it is applied to the corridor with the incident

described earlier, several cases of queue evolution results. There is a host of factors which

can predict what case of queue evolution will result, most important among them is the
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fraction of vehicles equipped with ATIS. Atrival and departure curves are drawn and flow

diversion of vehicles equipped with ATIS is described in each case. Once queue evolutions

are determined, cases where ATIS is beneficial are identified, and benefits to guided and

unguided travellers are evaluated. Cases of queue evolution are discussed in detail in

Chaiter 3.

There are other optimization strategies for information dissemination which can be

used to influence route choice of guided traffic to achieve certain objectives. Examples of

these strategies are system optimal and group optimal. The focus of this dissertation is on

the application of the user optimal strategy. A brief discussion of the other strategies is

provided in Chapter 5.

2.6 Evaluation of ATIS benefits

In this analysis, benefits of ATIS are expressed as percent travel time savings.

Travel time savings are referenced to travel time of a base case in which there is an incident

in the absence of ATIS or any other type of inforrnation. Savings of other types of travel

costs such as vehicle operating costs (fuel cost, cost of wear and tear) are directly related to

savings in travel time.

When they are diverted to the shortest route, guided travellers suffer less or no

delay in their trips, As a result of diverting guided traffic approaching the incident location,

the incident queue vanishes faster and delay is also reduced for unguided traffic. Thus,

diversion is expected to result an overall reduction in queueing delay in the corridor. The

net reduction in queueing delay minus any increase in travel time on the a!temate route is

used as an indicator of system benefits from ATIS. The purpose of analyzing system

benefits is to draw main conclusions related to how effective ATIS is in relieving incident

congestion.
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Since both types of traffic (guided and unguided) receive benefits from ATIS, a

traveller may question the need to buy such equipment and/or to subscribe to an ATIS

service. The important questions in the analysis of user benefits under incident conditions

can be summarized as follows:

- When is guided traffic better off than unguided?

- How does the distribution of benefits between guided traffic and unguided traffic

vary for different market penetration levels (i.e, different proportions of guided

traffic)?

- How does travellers’ perception of the benefits of ATIS change with incremental

market penetration?

The purpose of analysis of the distribution of benefits is to draw conclusions and

fundamental insights that are useful for marketing research of ATIS.

Analysis of the benefits of ATIS is presented in Chapter 4 for an off-peak incident

scenario and a user optimal strategy. We also study the sensitivity of system benefits to the

relevant incident and network parameters.
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3. QUEUE EVOLUTIONS

The objective of this chapter is to analyze cases of the queue evolution for the off-

peak incidents with and without ATIS. We use the idealized corridor, with the

assumptions discussed in Chapter 2, as a test bed for simulation of the incidents. A user

optimal strategy is implemented to disseminate real time traffic information to travellers

equipped with ATIS. The impact of ATIS on the evolution of queues is summan‘zed at the

end of this chapter.

3.1 Off-Peak Incident Scenarios

In this section we look at the three off-peak incident scenarios which are shown in

the first row of Table 2.1. Possible queue evolutions of the off-peak incident scenarios are

illustrated in Figures 3.1 - 3.3 (in the same order as they appear in Table 2.1, from left to

right). In the first scenario, shown in Figure 3.1, incidents occur upstream of bottleneck E

creating two bottlenecks in series on the freeway. The cumulative curves A(t), AC(t), and

DC(t) are defined as in section 2.4. Curves AE(t) and DE(t) are the cumulative arrival and

departure curves of bottleneck E. In order to take into account all the vehicles that are

delayed by the incident, in this analysis the cumulative count arbitrarily starts z units of time

before the incident occurs.

Although the incident occurs during off-peak conditions, a queue still forms at E

(queueing delay is illustrated by the shaded area in Figure 3.1). This is because once the

incident is cleared and the capacity of the incident section C is restored, the queue

discharges at a rate, b, which is larger than ~1, the capacity at E. Note that the cumulative

departure curve from section C, DC(t), and the cumulative arrival curve at E, AE(t), have

the same shape, because we consider flow independent travel time. Similarly, if we shift

AE(t) and DE(t) to the left by a flow-independent travel time between bottlenecks C and E,6,
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FIGURE 3.1 OFF-PEAK INCIDENT SCENARIO1
(INCIDENTUPSTREAM  OF BOTTLENECK E)
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t*,=T t;+z t;+T

FIGURE 3.2 OFF-PEAK INCIDENT SCENARIO2
(INCIDENTIN-BOTTLENECK E)
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AC(t)*

I

I
f
I
I wL

0 t;==2 t;+z t;+T TIME, t

FIGURE 3.3 OFF-PEAK INCIDENT SCENARIO3
(INCIDENT DOWNSTREAM OF BOTTLENECK E)
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Figure 3.2 is obtained. Note that Figure 3.2 also shows the queue evolution for the second

incident scenario, where the incident location coincides with bottleneck section E. Also

note that Figures 3.2 and 3.3 are identical except that the queue discharge in one of them is

larger than it is in the other (j.f, > ~1). Thus, except for the magnitude of the queue

discharge, all three scenarios have identical queue evolution. Consequently, without loss

of generality, we consider only one of these scenarios for analysis. We therefore choose

the off-peak scenario illustrated in Figure 3.3 for the purpose of this analysis.

3.2 Evolution of Queues Without Information

The process for identifying cases of queue evolution without information under the

off-peak incident scenario is illustrated in Figure 3.4. This figure shows that there are five

possible cases. The expected incident duration, T, is an important factor in determining

each. If T is less than (~Q/P*~ ), then the queueing diagram would look as in Figure 3.5,

which represents incidents with relatively short durations. The bottleneck delay, d(b*+T),

for a traveller  who arrives at A at time to* (when the incident occurs) and uses the freeway

to go from A to B is referred to as the “initial delay”. In Figure 3.5 the initial delay is

denoted as dI, where dI can be derived from the geometry of Figure 3.5 as:

dl=T(l-$]+T($ 1) (3-l)

Note that dI > T-2.

If the incident duration is larger than (@/A* ), the queueing diagram would look as

in Figure 3.6, and the initial delay is denoted as dII. The expression for dn is derived from

the geometry of Figure 3.6 as:

(3-2)
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ElCASE-III

din
= Maximum Delay = T

E l
CASE-I

FIGURE 3.4 - CASES OF QUEUE EVOLUTION FOR AN OFF-PEAK
INCIDENT SCENARIO WITHOUT INFORMATION
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FIGURE 3.5 OFF-PEAK INCIDENT SCENARIO WITHOUT INFORMATION
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FIGURE 3.6 OFF-PEAK  INCIDENT SCENARIO WITHOUT INFORMATION

or d,cT-z
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Note that dII c T- r. Figure 3.6 represents queue evolution for incidents with relatively

large durations. A brief description of each of the five possible cases is given below.

Case I

This case is described by the following conditions

dI > T- 2,

and

dI > T*

The implication of the first condition is that a traveller who arrives at A when the incident

occurs is expected to depart from C after the incident is cleared. The second condition

implies that if information is available in this case, diversion can result in benefits to guided

ll-dfiic.

Case II‘

This case is described by the condition

T*<dn<T-7

This condition implies that a traveller who arrives at A when the incident occurs is expected

to depart from C while the incident is still not cleared. Note that it is also beneficial to have

information in this case.

Case III

This case is described by the following conditions

dn c T- 7,

da < T*,

and

d,>T*
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where dm is the maximum possible delay and can be derived from the geometry of Figure

3.6 as:

(3-3)

In this case, the delay increases to an extent that information about diversion becomes

beneficial.

Case IV

This case is described by the condition

T-z<dI<r*

It is obvious that guided travellers will not gain any benefits if they divert to the alternate

route in this case because the delay never exceeds T’.

Case V

This case is described by the conditions

dII < T- z,

da < T*,

and

din<T*

Since the delay never exceeds T*, information is also irrelevant in this case.

The conclusion is that information is relevant in three out of five possible cases:

Cases I, II, and III. These cases are referred to as base cases and are used in this study to

analyze the benefits from ATIS.
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3.3 Evolution of Queues with ATIS

Application of the user optimal strategy to disseminate real time traffic information

in the three base cases mentioned above results in a total of ten possible outcomes as shown

in Figure 3.7. Each outcome represents a new case of queue evolution. Discussion of this

application to the three base cases and description of the new outcomes are given below.

case I

If a user optimal strategy is applied to Case-I to instruct equipped traffic to divert,

then there will be two possible outcomes: either 1) the fraction of equipped vehicles is large

enough so that diverted traffic will cause a queue on the alternate route; or 2) there is not a

sufficient  number of ATIS vehicles to divert and cause a queue. Each of the two outcomes

is represented by a new case of queue evolution. The cases are entitled NQ-Case-I and Q-

Case-I. The prefix “NQ” is used to indicate that there is no queue on the alternate route,

while the letter Q is used to indicate that there is a queue.

NO-Case-I:

Arrivals and departures in this case are illustrated in Figure 3.8. A,(t) denotes the

arrivals at A at time t of traffic using Route 1 (the freeway), A*c(t) denotes the arrivals at

the incident bottleneck C when there is diversion to the alternate route, and AZ(t) denotes

the arrivals to the alternate route. All equipped vehicles are instructed to divert to the

alternate route for a period of time, K, after which the freeway reverts to being faster than

the alternate route. The length of diversion period, K, is a function of p, the fraction of

vehicles equipped with ATIS, with diversion expected to last longer for smaller values of
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(1-p) Q
\

A,(t)

t;+T nhaz,t

FIGURE 3.8 OFF-PEAK INCIDENT WITH ATIS (NQ-CASE-I)

p < (h/Q) , d1 >T* , and d, > T-2
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Arrivals and departures in this case are illustrated in Figure 3.9. All equipped

vehicles are diverted to the alternate route for a period of time K until equilibrium is

achieved. Equilibrium lasts for a time period of E after which the freeway becomes faster

and no more equipped vehicles are diverted. In order to maintain equilibrium, the diversion

rate has to be decreased. The fraction p’ that should be diverted to maintain equilibrium is

found by solving the following simultaneous equations:

d; = d; + T* (3-4)

T*+E=d;+(l-~‘)QE
k3

P’ Q E = p2 (E - d;)

(3-5)

(3-6)

(3-7)

(3-8)

where dl* and d2* are delays at the start of equilibrium on routes 1 and 2 respectively.

Equation (3-4) results from equilibrium conditions. Equations (3-5) and (3-6) are derived

from the geometry of the cumulative curves A*c(t) and DC(t) of Route 1. Similarly,

equations (3-7) and (3-8) are derived from the geometry of the arrival and departure curves

of Route 2.

Solving for p’, K, and E yields:

(3-9)



40

cl t;+x: t;+T =S

FIGURE 3.9 OFF-PEAK INCIDENT WITH ATIS (Q-CASE-I)

P’ WJQ>  3 dr > T-T , and d, >T*
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(3-10)

(3-l 1)

The expression for p’ in equation (3-9) has a simple interpretation; it says that during

equilibrium conditions, the demand is divided between the two routes proportional to their

capacities. In fact, it can be proved that this expression is general and that it also applies to

the problem when the demand on both routes is varying with timer.

Lemma 1: In order to maintain equilibrium when both the incident and the Route 2
bottlenecks are busy, the fraction of vehicles that must be diverted to Route 2 is
equal to the ratio of the capacity of Route 2 to the total available corridor

’ capac i ty .

PrOOF-*

Figure 3.10 illustrates the arrivals and departures for both the incident and the

Route 2 bottlenecks. The demand to be served by each bottleneck varies with time.

Equilibrium between the two routes starts at time rS and ends at time y, and all vehicles use

Route 1 outside time interval [ tS , ‘f] because it is faster.

It can be shown, from the geometry of the cumulative curves on Route 1, that at

anytimet,rE [ts,tf]:

A,(t) = 1; T + cI, [y(t) + t - T] (3-12)

where

wl(t): queueing delay on Route 1 at time t

Taking the first derivative with respect to t results in:

* This expression also applies for equilibrium under recurring congestion or non-incident conditions



42

/T*,.............. a..

4
6

4(

/

w,ct). . . . . . . . . . . . *.* . . . . . . . . . . . . . J‘I ; D,(t)
: I; :
: :i :
; :i :
; :i :

0 6 ts+T* T t t + w2(t)

; :
i i
: I: :: i
4

yi :
i :’ D,(t)
: ii i

+i ;: :/
’ f

; .

t + w,(t)
TIME,  t

FIGURE 3.10 DERIVATION OF p’



Similarly for Route 2:

and

where,

A2W = h (w2(t> + t - ts)

qt)dt =p*pp+l)

wZ(t): queueing delay on Route 2 at time c

At equilibrium,

w,(t) = w2(t) + T*

and by taking the first derivative of (3-16) with respect to t :

dw,o = dw2(0
dt dt

Thus, combining equations (3-13), (3-15), and (3-17) we obtain:

1 dqt) 1 dqt)--=--
P, dt ~2 dt

which can also be expressed as:

Since

A(t) = A,(t) + A20) (3-19)
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(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

(3-l 8-a)
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where,

A(t): total cumulative arrivals at point A before traffic is divided between

the two routes.

Taking the lirst derivative of (3-19) with respect to i results in

dA(t) _ q(t) + q(t)- -
dt dt dt

(3-20)

Substituting for (dAz(t)/dt) as given by equation (3-18-a) into equation (3-20) results in

fi(t)-
dt

Thus,
klc%(t) _

( 1
@4t)

dt P2 + II, dt

and by substituting (3-22) into (3-18-a) we find that

we
dt

(3-21)

(3-22)

(3-23)

Equations (3-22) and (3-23) say the following: under equilibrium conditions, the traffic

demand approaching point A is divided between the two routes such that the demand on

each route is proportional to its capacity. Therefore, p’, or the fraction of total demand

(dA(t)/dt) that must be diverted from Route 1 to Route 2 during equilibrium is equal to the

coefficient on the right side of equation (3-23), which is also given by equation (3-9).

Note that, p* , the fraction of vehicles that must be diverted to maintain equilibrium once it

is reached is not a function of p, the fraction of vehicles equipped with ATIS. However, if

equilibrium is to be achieved, then clearly p must equal or exceed it. This implies that some

equipped travellers will be selected to divert to the alternate route while others will be asked
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to remain on Route 1. This is a non trivial task and requires that communication is

established with individual ATIS vehicles as they route in the network*.

The total time interval during which there is diversion is found by adding equations

(3-10) and (3-l 1) and simplifying:

From which we can find the total number of vehicles diverted in this incident, Nd :

N, = CL2 k3 6% - T*)
cl,+/+Q

(3-24)

(3-25)

Note that this number is a function of the incident and the corridor parameters only and is

independent of p.

Case II

Application of the user optimal strategy to Case II results in a total of four cases of

queue evolution: NQl-Case-II, NQ2-Case-II,  Ql-Case-II, and Q2-Case-II.  These cases

are discussed below.

NO 1 -Case-II and N02-Case-II

NQl-Case-II and NQ2-Case-II are shown in Figures 3.11 and 3.12 respectively.

In both cases no queue forms on Route 2 because of the low proportion of guided traffic.

In NQl-Case-II, the fraction of vehicles equipped with ATIS is not large enough to initiate

equilibrium, therefore equilibrium will not be reached until the incident queue starts to

* A practical strategy for diversion is suggested in Chapter 5 where ATIS equipped vehicles are diverted in
pulses. Thus, the average rate of diversion over the equilibrium period is approximately p’ Q.
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discharge. In NQ2-Case-II, this fraction is larger than, z’, the minimum fraction of

vehicles needed to initiate equilibrium early before the incident queue starts to discharge.

The expression for z’ is derived from the geometry of the queueing diagram of NQl-Case-

II shown in Figure 3.11. The initial delay on Route 1, &, is larger than T*. If the incident

queue starts to discharge while equilibrium has not been reached, then the delay on Route 1

will be still larger than T* and we continue to divert ATIS equipped vehicles at the

maximum rate pQ. This means that:

where

y : delay on Route 1 as the incident queue begins to discharge.

A simplified expression for y can be found from the geometry of curves AC*(t) and DC(t)

as:

*( 1 TPY=T l-&j +l-p

Substituting for yin the inequality mentioned above results in:

P<
T-r-T*

(3-26)

(3-27)

The term on the right side of equation (3-27) is called z’. Thus, if p is larger than z’, then

NQ2-Case-II  results where equilibrium can be achieved earlier before the queue begins to

discharge.



01 -Case-II and 02-Case-II
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Ql-Case-II and Q2-Case-II are shown in Figures 3.13 and 3.14 respectively. In

both cases a queue forms on Route 2, with the result that both bottlenecks become busy.

The main difference between the two cases is in the magnitude of p, the fraction of vehicles

equipped with ATIS. In Ql-Case-II, equilibrium is not reached until the incident queue

starts to discharge. This is because the fraction p in this case is less than z, the minimum

fraction needed to initiate early equilibrium, i.e., before the incident queue starts to

discharge.

An expression for z is derived using Figure 3.13. Because of the insufficient

number of ATIS vehicles in Ql-Case-II, the incident queue begins to discharge while the

difference between the queueing delay of the two bottlenecks is larger than T*. This means

that:

y- p>T*

where

p: delay on Route 2 as the queue on Route 1 begins to discharge,

and y is given by equation (3-26). An expression for p is derived from the geometry of the

cumulative curves of routes 1 and 2. This expression is given by:

Substituting for y and fl and simplifying results:

(3-28)

(3-29)

By referring to Figure 3.4 we conclude that for Case II

T-z-T*>0
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and that

Thus, we can divide both sides of inequality (3-29) by the positive term

pZ(T+T*)+$T-~Q

to get

I.& )-2-T*
PC

[p2(~-r-~*)+pi~-T~]
(3-30)

Thus, z is equal to the term on the right side of this equation.

Case III

Application of the user optimal strategy to Case-III results a total of four cases:

NQ l-Case-III, NQ2-Case-III, Ql -Case-III, and Q2-Case-III. These cases are discussed

below. s

NO 1 -Case-III and NOZCase-III

NQl-Case-III and NQ2-Case-III  are shown respectively in Figures 3.15 and 3.16.

In both of these two cases a queue does not form on the alternate route and diversion does

not start until time ~*+a. Note that, in both cases, equilibrium is reached between the two

routes at this time. In NQl-Case-III, this equilibrium can not be maintained, however,

because of the insufficient number of ATIS vehicles. The minimum fraction, of vehicles

equipped with ATIS, needed to maintain equilibrium can easily be found from the geometry

of the cumulative curves of NQ2-Case-III.  Once equilibrium is reached while the incident

queue is not discharging, equilibrium can be maintained only if

(1-p) Q < clo*
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l

p>l-5

Therefore, the minimum fraction of ATIS vehicles needed is equal to l- b*/Q.

Ql-Case-III and OZCase-III

Ql-Case-III and QZCase-III are shown in Figures 3.17 and 3.18 respectively. In

both cases, the fraction p is large enough to cause a queue on Route 2. Diversion does not

start until time &,*+a. Note that delay on Route 1 keeps increasing from the start of the

incident until equilibrium is achieved momentarily at time tc*+cx. In Ql-Case-III,

equilibrium can not be maintained, while the incident queue is not discharging, because the

proportion of guided traffic is not sufficient to maintain it. The minimum fraction p”

necessary to maintain equilibrium can be determined using Lemma 1:

p" = p2

CL2 + P:

3.4 Summary of Cases of Queue Evolution with ATIS

In summary, the application of the user optimal strategy to all cases in Figure 3.4

results in a total of twelve cases of queue evolution. The process of identifying these cases

is illustrated by the flow chart shown in Figure 3.19. Information is relevant in all but two

of these cases. The large number of possible cases is a result of adding another input

parameter, p. In order to use this chart the following parameters need to lx known:

1) incident parameters: b*, T, and z

2) corridor parameters: b , ~(2, Q, and T*

3) the fraction of ATIS equipped vehicles, p.
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If the values of these eight parameters are known, then it is straightforward to figure out

which case of queue evolution will result; to determine whether ATIS is beneficial or not;

and to use the correct queue evolution for the evaluation of ATIS benefits.

, There is a simple procedure that describes the queue evolution in all cases:

Rule 1

When the initial delay d(b*+z) > T* , guided traffic will be diverted to Route 2 at

rate pQ until the difference in queueing delay between the two routes is equal to T*.

Eventually delay on Route 1 will decrease while delay on Route 2 will increase until at

some point in time the difference becomes equal to T*. This rule applies to NQ-Case-I,

NQl-Case-II,  NQ2-Case-II, Q-Case-I, Ql-Case-II, and Q2-Case-II.

Rule 2.

As long as d(t,*+r) < T* guided traffic will not be diverted to Route 2 until the

delay on Route 1 becomes equal to T*, if it ever does; it eventually does in NQl-Case-III,

NQ2-Case-III, Ql-Case-III, and Q2-Case-III;  it never does in the cases IV and V for which

information is irrelevant.

3Rule

This rule is a direct application of Lemma 1, and applies only when the two

bottlenecks are busy. If the difference in queueing delay on the two routes equals T* while

the incident queue is discharging, then guided traffic is diverted to Route 2 at a rate p’Q,

where p’ = ~2/(~2+~0), This applies to all cases with names that start with the letter Q,

i.e., Q-Case-I, Ql -Case-II, Ql -Case-III, Q2-Case-II, and Q2-Case-III. However, if the

difference in queueing delay on the two routes equals T* while the queue is still not

discharging, then equilibrium can be maintained only if there is a sufficient number of
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ATIS vehicles to be diverted. The diversion rate will be p”Q, where p” = ~L2/(~2+~Lo*).

This applies to Ql-Case-II and Q2-Case-III. If the number of ATIS vehicles is not

sufficient to maintain equilibrium, ATIS vehicles will be diverted at the maximum possible

rate, pQ. This continues until sometime after the incident queue starts to discharge, after

which the diversion rate is changed top’Q, where p’is given as above. This applies to Ql-

Case-II and Ql -Case-III.

4Rule

If a queue does not form on Route 2 and the queueing delay on Route 1 equals T*

while the incident queue is not discharging, then equilibrium can be maintained only if there

is a sufficient number of ATIS vehicles to be diverted. ATIS vehicles will be diverted at

rate Q- pO*. This applies to NQ2-Case-III. If the number of ATIS vehicles is not

sufficient to keep equilibrium, the rate of diversion is the maximum possible, pQ, until the

delay oh Route 1 equals T*. This applies to NQl-Case-II and NQl-Case-III

5Rule

Diversion to Route 2 will end only when the delay on Route 1 reaches T* and the

incident queue is discharging. This rule applies to all cases whenever information is

relevant

The implication of all this on the assessment of ATIS benefits is discussed in the

following chapter.
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4. ANALYSIS OF ATIS BENEFITS

In this chapter we analyze the benefits of ATIS to guided and unguided traffic as

well as to the system as a whole. The analysis of benefits is based on the queueing

analysis of Chapter 3. Using numerical examples, we study the sensitivity of benefits to

important variables including incident and corridor parameters and the level of market

penetration of ATIS vehicles.

4.1 Evaluation of User Benefits

Highway users, both guided and unguided with ATIS, are expected to receive

benefits from the diversion of ATIS vehicles under incident conditions. This section

demonstrates how the user benefits of ATIS are evaluated for a certain level of market

penetration, p. The benefits are expressed as a percent travel time savings. Travel time

from A to B under incident conditions and in the absence of ATIS is the basis for the

calculations of travel time savings. In Chapter 3, it was concluded that there are only three

base cases of queue evolution which can be considered for the evaluation of ATIS benefits:

Case I, Case II, and Case III.

The benefits are evaluated by comparing the queue evolution in each base case

where there is no ATIS with the queue evolution when ATIS is present. Since the user

benefits depend upon the arrival time to the link where the incident occurs, the user benefits

are evaluated as a function of the time of arrival at point A, the junction of the two routes.

Next, we illustrate the analytic procedure used to evaluate these benefits and the results of

the analysis.
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FIGURE 4.1 EVALUATION OF ATIS USER BENEFITS (Q-CASE-I)
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t($)+T(&) 3 tm < t < tf

Similarly, one can use the queueing  diagrams in Figures 3.8 and 3.11 through 3.18

to derive the queue@ delay formulas and the expanded forms of s&t) and sU(t) for the rest

of the cases of queue evolution with ATIS.

Numerical Examples

CASE I

We consider a three lane highway with a lane capacity of 30 vehicles per minute

(total capacity p0 is equal to 90 vehicles per minute). The alternate route has a total capacity

~2 of 40 vehicles per minute. Demand Q is equal to 80 vehicles per minute. Trip time

from A to B using the freeway, T1, is 15 minutes, while T2 is 25 minutes. An accident

occurs on the freeway at point C at time fi during off-peak conditions. It takes 10 minutes

to travel from A to C when there is no queue between A and C, z=lO minutes. The

accident blocks two out of three lanes and results in a 75% loss in capacity of the freeway.

Furthermore, it is estimated that it will take 30 minutes to clear the accident, T=30 minutes.

Since @ =800 veh.-min./min. and pzT=675  veh.-minimin., then ZQ > p:T . The initial
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delay d(rz+z) is calculated using Eqn. (3-l). The initial delay, d(rz+T) is 21.3 minutes.

Since d(ri+z)  > T-r, where T-z= 10 minutes, and d(rI+z) > T*, where T*=lO minutes,

then Case I applies. As mentioned in Chapter 3 if ATIS is used in this base case there are

two outcomes of queue evolution: NQ-Case-I and Q-Case-I.

NQ-CASE-I: NQ-Case-I applies when the fraction, p, of the vehicles equipped with

ATIS is not large enough to cause a queue on Route 2 even if all ATIS vehicles are diverted

to that route. This is true if p is less than J.L~ /Q, i.e., ifp is less than 0.5 in this case.

A dynamic profile of travel time savings for both guided and unguided traffic along

with the queueing diagram when p = 0.05 for this case is illustrated in Figure 4.2. All

equipped vehicles are diverted for a period of time K. Benefits to diverted (or guided)

traffic decline to a minimum at the end of the diversion period. This is because diverted

travellers are being shifted from the freeway, where the incident queue is diminishing, to

the alternate route where there is no queue. Benefits to undiverted (or unequipped) traffic

continue to increase till the end of the diversion period K. As the cumulative number of

vehicles that divert to the alternate route throughout the diversion period K increases, the

queue length and the delay on the freeway decreases. This is translated into higher time

savings to those who continue to use the freeway. Queueing delay at the incident

bottleneck is a function of the history of the arrival curve, Al(t). This explains why

benefits are not restricted only to travellers who arrive during diversion time K, but also to

those arriving after diversion ends, regardless of whether they are equipped with ATIS or

not. The queue discharges faster with ATIS than without it as shown in Figure 4.2, where

the queue vanishes at time r,+z  with ATIS and rft2  without it. As a result, delay on the

freeway decreases at a faster rate and the benefits to travellers arriving at A in time interval

(r,*+K,  rm ) increase to a maximum at time rm Since the queue would have diminished

completely at rp anyway, no benefits accrue to travellers arriving at A beyond time 9
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The sensitivity of benefits to p is illustrated in Figure 4.3. Since there is no queue

on the alternate route during diversion, benefits to an equipped vehicle are not affected by

how many equipped vehicles are diverted. On the other hand, benefits to undiverted

traffic, whether during diversion or after diversion ends, increase as the fraction of

equipped vehicles increases. The numerical example illustrates that the maximum benefits

are not necessarily gained by equipped travellers who divert to the alternate route; instead,

the maximum benefits are gained by travellers arriving after diversion ends.

Q-CASE-I: This case applies when p > 0.5 and is illustrated in Figure 4.4. There are two

time intervals during which there is diversion: before equilibrium is achieved between the

two routes, and during equilibrium. Diversion in the fust interval is similar to that of NQ-

CASE-I. Basically, all vehicles equipped with ATIS are diverted to the alternate route for a

period of time K. In this case, however, p is large enough to cause a queue on the alternate

route creating a configuration of two parallel bottlenecks. Since a queue is forming on the

alternate route, an increase in the fraction of diverted vehicles results in a decrease in the

benefits to guided traffic. Once equilibrium is reached, the benefits to guided and unguided

traffic become identical. It should be noted that in this case the total diversion time, (K+E),

is fixed and does not depend on the magnitude of the fraction of equipped vehicles, p.

Furthermore, the benefits to guided and unguided traffic during equilibrium and thereafter

are not affected by an increase inp. Benefits increase during equilibrium because the queue

on the alternate route discharges faster than the queue on the freeway. The dotted line in

Figure 4.4 shows that even if all vehicles are equipped and therefore diverted to the

alternate route during K, some benefit can still be gained by not diverting. However, this

benefit is not as large as the benefit of diversion. In a real life situation small amounts of

time savings may not be sufficient to induce travellers to follow instructions to divert, given

the possible inconvenience of diversion.
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In Q-Case-I the trend of the user benefits during the post-diversion period,

71

(I~+K+E , ‘f), is similar to that of NQ-Case-I. In both of these cases, a traveller  who

arrives during this period will receive the same benefits whether or not he has ATIS. Also,

because of the similarity of the queue evolution in all cases during this period (as illustrated

in’ Figures 3.8, 3.9, and 3.11 through 3.18), one can conclude that the post-diversion

benefits will always be identical for guided and unguided traffic and that the benefit curve

will have the same pattern as it does in the cases: NQ-Case-I and Q-Case-I. Hence, in the

rest of the cases, it is sufficient to study the benefit curves only for the periods during

which there is diversion.

CASE II

In Case II travellers arriving at point A after the incident occurs are expected to

depart the incident bottleneck while the incident queue is not discharging, i.e., &T> 7Q).

This occurs if the incident duration in NQ-Case-I is increased and/or if the incident severity

is decreased. Hence, Case II can be achieved by setting T = 60 minutes and keeping the

same values for all other parameters in the numerical example used in Case I. The four

outcomes that result from using ATIS in Case II are discussed below.

NQl-CASE-II: This case is similar to NQ-Case-I in the sense that equilibrium is never

reached because of the low proportion of ATIS guided traffic. This case also applies for

O<p<OS.  The benefits to diverted and undiverted traffic are shown in Figure 4.5.

Maximum delay, dm, occurs at time tz+o. Note that the benefits to an ATIS vehicle

increase to a maximum during the first o minutes of diversion, after which the benefits

decline, similar  to NQ-Case-I. The reason for the increase during cr is that ATIS vehicles

are being shifted from the freeway, where the queue is building up, to Route 2 where there

is no queue. The benefits to unguided traffic follow a trend similar to that of NQ-Case-I
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except for the time interval (t,*+~, rz+e). The change in the trend during this interval is

explained as follows: in the absence of ATIS, unguided traffic departs the incident

bottleneck while the queue is discharging, while if ATIS is present the queue will not be

discharging.

Ql-CASE-II: This case is illustrated in Figure 4.6. It applies when OS<p<z, where z is

calculated using Eqn. (3-30). In this instance z is 0.74. The proportion of guided traffic

is large enough to cause a queue on Route 2 but it is not large enough to initiate an early

equilibrium (before the incident queue begins to discharge). Before equilibrium is

established, the trend of benefits to diverted and undiverted traffic is similar to that of NQl-

Case-II. After equilibrium is established, the trend becomes similar to that of Q-Case-I.

Q2-CASE-II:  This case differs from Ql-Case-II in that the proportion of guided traffic is

large enough to cause an early equilibrium as shown in Figure 4.7. Therefore, this case

applies for 0.749~1.0.  The benefits to diverted traffic increase during the first cr minutes

of diversion because the incident queue (without ATIS) builds up faster than the queue on

the alternate route. The benefits to guided traffic decline after that because guided traffic is

shifted from Route 1 when its queue is discharging to Route 2 when its queue is building

up. This continues until equilibrium is reached at time ri+K. During the first equilibrium

interval (li+K, ?~+K+E), the queue on Route 2 is not discharging as fast as the queue on

Route 1. The picture is reversed, however, during the second equilibrium interval

(~;+K+E,  r;+K+&+h).

NQ2-CASE-II:  This case occurs when the fraction of vehicles equipped with ATIS is

large enough to cause equilibrium and when there is no queue on Route 2. Note that this

case does not apply for the numerical example given for Case II because z’=O.83.
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However, if the we set ~2 to be larger than z’Q, i.e if ~2 >67 vpm, then NQ2-Case-II  will

evolve. The benefits to diverted traffic follow a trend that is the same as that of NQl-Case-

II and can be explained using similar reasoning (see Figure 4.8). The benefits to unguided

tm.ffic continue to increase during time interval (li+cr , lz+K) because,of the quick reduction

in the queueing delay on Route 1. This reduction in the delay is a result of the high

diversion rate of ATIS vehicles to Route 2 to achieve equilibrium. Once equilibrium is

achieved at time (ri+K), the diversion rate is decreased to maintain equilibrium and the

benefits to unguided traffic begin to decrease.

CASE III

In Case III the incident is not severe enough to warrant immediate diversion.

Instead, diversion does not start until time i+a. This incident base case occurs if we set

T= 60 minutes, r”= 20 minutes, $=30 vpm, and keep the rest of the parameters’ values as

in Case I. The four outcomes of queue evolution that result when ATIS is used with this

base case are discussed below.

NQl-CASE-III: This case is shown in Figure 4.9. Note that equilibrium is established

momentarily when diversion starts at time li+a. It is not possible to keep this equilibrium,

however, because of the insufficient number of ATIS vehicles. The gap between the

benefits for diverted and undiverted traffic increases to a maximum after CJ minutes of

diversion. The trend of the benefits thereafter is similar to that of NQl-Case-II.

Ql-CASE-III: This case is shown in Figure 4.10. It is similar to NQl-Case-III except

that the number of diverted ATIS vehicles is large enough to cause a queue on Route 2.

Note that equilibrium is achieved momentarily at time rz+a, before the incident queue

begins to discharge. The proportion of ATIS guided traffic is insufficient to maintain



/0

A&t) j

. *
to t;+o t;+K t;+Kce t;+T

TIMEd

1 0.83 <p < 1.0

* Grey arrows indicate
I

direction of increase in p

Kp,=O.85  1 K+E :

I I I I I I I’ I
5 0 10 15 20 25 30 35 40

TIME SINCE START OF DIVERSION (MINUTES)

FIGURE 4.8 USER BENEFITS DURING DIVERSION (NQ2-CASE-II)



78

(l-P)2 /
I-

< tzfa t*o+K+a

i A*(t)

TIMES

40 1 ,

Kpp0.2 ‘i
I , 4,

0 10 20 30 40 50 60

TIME  SINCE START OF DIVERSION (MINUTES)

FIGURE 4.9 USER BENEFITS DURING DIVERSION (NQl-CASE-III)

70



79

A,(t) ,\II
A(t) A x’

\ /

+tr’ / 40 P/

FYl
/

. . . . . . ._I . . . . . . . . . . . .‘* h3

t, :
t,+a

t,+a+G l ’
t,+K+a

t,+K+&+a ’ TIME,t
t;+T

IO.38  < p < 0.50 1 fi I

0 10 20 30 40 K+E
TIME SINCE START OF DMRSION (MINUTES)

FIGURE 4.10 USER BENEFITS DURING DIVERSION (Ql-CASE-III)



80

equilibrium while the incident queue is not discharging. The trend of benefits in this case is

self explanatory.

Q2-CASE-III: This case will result if the conditions of Ql-Case-III are valid, with one

additional condition: that the proportion of guided traffic is large enough to maintain

equilibrium once it is achieved, as shown in Figure 4.11. Equilibrium continues for the

entire period of diversion in this case and the trend of the benefits can be explained using

reasoning similar to the previous cases.

NQ2-CASE-III:  This case is shown in Figure 4.12. The only difference between this

case and NQl-Case-III is that the fraction of guided traffic in this case is large enough to

keep equilibrium once it is established. Note that this case does not evolve in the numerical

example given in Case III mentioned earlier because the minimum fraction of vehicles

needed to initiate equilibrium (when there is no queue on Route 2) is equal to 0.63. This

case will evolve if we set ~2>50 vpm or if 0.63<p<l.O. Equilibrium starts at time ri+a

and continues until the incident queue begins to discharge and the ireeway reverts to being

faster again at time rI+o+&. Note that because of equilibrium, benefits to guided and

unguided traffic are identical and are not influenced by any increase in p, the fraction of

vehicles equipped with ATIS.

General Characteristics of ATIS User Benefits

Similarity of the trends of the user benefits among the different cases suggests the

general characteristics described by Figure 4.13. When the term “queue is discharging” is

used it means that the queue is discharging at the time when the travellers’ are departing

from the incident bottleneck. The general characteristics of ATIS user benefits are

summarized as follows:
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1. As long as the incident queue on Route 1 has not begun to discharge, ATIS benefits to

both guided and unguided traffic continue to increase with the axrival time at A.

2. When the incident queue on Route 1 begins to discharge, the benefits to guided traffic

start to decline until equilibrium is achieved, or until diversion ends, whichever comes

first. The reason for this decline is that diverted traffic is shifted to Route 2, where

either the queue is not discharging or it does not exist. The benefits to unguided traffic

either continue to increase, or fast decrease and then increase, until equilibrium is

achieved or until diversion ends, whichever comes first.

3. Once equilibrium is reached, the benefits to guided and unguided traffic become

identical. If there is no queue on Route 2, then the benefits continue to decrease until

equilibrium ends. If there is a queue on the alternate route, then the benefits start to

increase again until equilibrium ends. The reason for this is that the queue on Route 2

is discharging faster than the queue on Route 11.

4. As long as equilibrium is not reached, guided traffic is better off than unguided traffic.

But when there is a queue on the alternate route, and the fraction of vehicles equipped

with ATIS is increased, then guided traffic becomes less better off than unguided.

User Perception of ATIS Benefits

It is obvious that whenever travellers equipped with ATIS follow instructions and

divert, unequipped travellers also receive benefits. It was found that in some cases, for

considerable durations of time, the benefits to a non-guided traveller may be comparable (if

not equal) in magnitude to the benefits to a guided traveller. This is a major concern for the

l This rule is slightly different for Q2-Case-II, where equilibrium occurs during two time intervals.

Benefits decrease in the first equilibrium interval and then increase in the second until equilibrium is

over.
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marketing of A’I?S technology. The extent to which ATIS technology penetrates the

market mainly depends on how its potential users perceive its benefits. In this section we

discuss two issues that relate to the user perception of ATIS benefits: 1) when and how

much of the time being guided with ATIS makes it better off than being unguided?, and 2)

how the perception of ATIS benefits is influenced by incremental deployment of this

technology?

In the previous section it was found that guided traffic is better off than unguided

traffic as long as equilibrium has not been reached. This occurs during the frost diversion

period K. The maximum duration of period K, expressed as a percentage of the total time

period during which there are benefits, is used to represent the best chance for guided

traffic to be better off than unguided. Since K is inversely proportional to the fraction p,

maximum K occurs when p is smallest. In the numerical example of NQ-Case-I,

maximum K occurs when p is very small (p=O) and is equal to 103 minutes, while the total

time during which there are benefits (y-l:) is equal to 193 minutes. Thus, the numerical

example in NQ-Case-I illustrates that at best during 53% of the time guided travellers can

be better off than unguided travellers. In the numerical example of Q-Case-I, maximum K

occurs whenp=OS  and is equal to 21 minutes, while the total time during which there are

benefits (y-f:) is equal to 193 minutes. Therefore, in this case, at best during 11% of the

time guided travellers can be better off than unguided travellers. Compared to NQ-Case-I,

the best chance to be better off has decreased as much as five times. Not only that, but also

the margin by which guided traffic is better off than unguided is much less in this case than

it is in NQ-Case-I (see Figure 4.14).

The maximum length of diversion period K is compared among the cases, and the

results are shown in Figure 4.15. It is clear that increasing the proportion of guided traffic

reduces its chance of being better off than unguided by several fold if

1) a transition is made from a NQ-type case to a Q-type case, or if
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2) a transition is made from a case where equilibrium cannot be achieved to a case where it

can be achieved.

Note that the transition from a case with late equilibrium to a case with early equilibrium

also reduces this chance but to a much lesser extent.

The second issue of user perception is related to the diminishing returns of ATIS as

it incrementally penetrates the market. In the previous analysis, user benefits were

compared to the situation before ATIS is introduced, i.e., when p=O. It is reasonable to

use this as a reference to calculate the percent travel time savings accrued to the first

increment of ATIS users. However, after the first increment is introduced, potential users

perceive the benefits of ATIS differently. Since unequipped travellers already receive free

benefits, their incentive to buy the equipment is a function of the additional benefits that

they gain if they use ATIS. Therefore, calculation of the percent travel time savings to
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In this section we investigate system benefits, i.e, the total travel time savings in the

corridor that result from diversion of ATIS vehicles to the alternate route. System benefits

are calculated as the net reduction in total queueing delay minus the net increase in total free

flow travel time.

We illustrate the methodology of calculating system benefits using Q-Case-I with a

numerical example. Queue evolution for this case is reproduced in Figure 4.17. System

benefits are given by:

S=AR-ATT (4-8)

where,

S : total travel time savings (or system benefits)

AR : net reduction in total queueing delay

Al’T : net increase in total free flow travel time

The net reduction in total queueing delay is equal to the difference between the two shaded

areas shown in Figure 4.17, hence

AR=R,-D2 (4-9)

where,

RI : reduction in total queueing delay on Route 1

D2 : increase in total queueing delay on Route 2.

Net increase in total free flow travel time ATT is given by:

A’IT=‘I+~+‘I-I$TT, (4-10)

where,

ml : Total free flow travel time on Route 1 without ATIS

TTi : Total free flow travel time on Route 1 with ATIS

‘ITi : Total free flow travel time on Route 2 with ATIS
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Further, we find the expanded forms of AR and ATT. Reduction in delay on Route 1, RI,

is given by:

R, = a (EFX) - a (EFGH) - a (HGSU) - a (USM) (4-l 1)

where areas EFX, EFGH, HGSU, and USM can be found from the geometry of the

queueing diagram as

a (EFGH) = ; (l-p) Q K (d, + d;)

a (HGSU) = + (I-p’) Q E (d; + T*)

w h e r e  dl, dl*, p’, K, and E are given by (3-l), (3-4),  (3-9), (3-lo), and (3-ll),

respectively.

If there is a queue on Route 2, then delay D2 is given by:

D,=$d;Q(pK+pk)

where d2* is given by (3-7).

(4-12)

Each vehicle that diverts from Route 1 to Route 2 incurs an increase in its travel

time that equals T*. A total of pKQ ATIS vehicles are diverted to Route 2 before

equilibrium is reached and a total of p’Q&  ATIS vehicles are diverted during the period of

equilibrium. Since the total free flow travel time for unequipped vehicles does not change,

ATT is given by:
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A’IT=T*Q@K+~‘E) (4-13)

Substituting for RI, 02 and ATT into (4-8) and simplifying results in system benefits S

2 (II”’ Q )  (d:-T*2>- W+p’&)
0-

Evaluation of System benefits

System benefits are evaluated at a certain level of p. It was found in Chapter 3 that

incidents with identical parameters but different levels ofp could result in different cases of

queue evolution. These cases were identified by threshold values of p. The results of the

system benefits for the three base cases mentioned in Chapter 3 are discussed below.

Figure 4.18 depicts system benefits for Case-I as the fraction of vehicles equipped

with ATIS increases from 0 to 1. The base value for percent travel time savings is the total

travel time in the corridor from A to B when there is an incident but no ATIS. Fig. 4.18

illustrates that system benefits increase with p as long asp is less than some critical value,

pc, where pc = p2/Q. Note that pc equals 0.5 in this case. The system benefits become

independent of p and stay at a constant level when p is larger than 0.5, or when a queue

starts to form on the alternate route. This implies that system benefits are maximized when

p is equal to pc. Diversion of more than pc will only reduce the average benefits for ATIS

travellers and does not add any system gain.

The system benefits for Cases II and III were also investigated using various

numerical examples. The objective of this investigation is to analyze the sensitivity of

system benefits top, the fraction of vehicles equipped wrth ATIS,

- when there is a transition from a case where only the incident bottleneck is busy to

a case where bottlenecks on both routes are busy, i.e. a transition from a NQ-type

case to a Q-type case;
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2. When only the‘incident bottleneck is busy, system benefits increase with p as long as it

is less than z’, the threshold value at which equilibrium occurs. The system benefits

become independent of p and stay at a constant level once p exceeds z’. This result is

shown in Figure 4.19 when there is a transition from NQl-Case-II to NQ2-Case-II  and

‘in Figure 4.22 when there is a transition from NQl-Case-III to NQ2-Case-III.

3. If p is large enough such that diverted traffic is sufficient to initiate a queue on the

alternate route, equilibrium will be achieved sooner or later. Apparently it makes no

difference for system benefits whether equilibrium is achieved earlier or not. This

result applies to Q-type cases as shown in Figure 4.20 where there is a transition from

Ql-Case-II to Q2-Case-II  and in Figure 4.21 where there is a transition from Ql-Case-

III to Q2-Case-III.

The findings imply that if the system management has the choice, then there is no

need to equip more than pC of the vehicles with ATIS, where pC is the critical fraction of

vehicles which initiates a queue on the alternate route. Hence, a strategy can be applied

where no more than pc is diverted to the alternate route. Under this strategy, benefits to the

system and to the ATIS equipped travellers are maximized simultaneously. However, if

more thanp,  are equipped with ATIS, then this strategy might be inequitable for those who

are equipped but not diverted. In a sense this is a limitation of the ATIS technology!

4.3 Sensitivity Analysis of The system Benefits

In this section we present the results of sensitivity analysis of system benefits to

parameters other than p, using various numerical examples. Figure 4.23 illustrates that the

following parameters influence the system benefits :

- the fraction of vehicles equipped with ATIS

- incident parameters: duration, severity, and location

- travel demand in the corridor
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- corridor capacity: capacity of the freeway and capacity of the alternate

route

- difference between free flow travel times on the two routes

It is clear that system benefits increase with the incident duration T. However, the

increase is nonlinear and exhibits diminishing returns as shown in Figure 4.24. Since

NQ-Case-1 is valid for incidents with short durations, the benefits are more sensitive to Tin

this case than in NQl-Case-II. It is also clear that there are no benefits, i.e information is

irrelevant, when the incident duration is small (less than 15 minutes in this numerical

example).

System benefits increase nonlinearly with incident severity, expressed as the

reduction in the freeway capacity. ATIS becomes irrelevant for incidents with capacity

reduction below 40% as shown in Figure 4.25. The iso-benefit contours shown in Figure

4.26 illustrate the sensitivity of the maximum system benefits (i.e, p=pJ to the incident

duration and severity. When the severity is high (above 60%) and the duration is small

(less than one hour) the benefits are more sensitive to the duration than to the reduction in

capacity. Similarly, when the reduction in capacity is low (say, less than 40%) and the

duration is large (more than one and a half hours) the benefits are more sensitive to the

reduction in capacity than they are to the incident duration. Generally, the sensitivity of the

benefits to both parameters diminishes when both are very large.

As is to be expected, the further the incident location is from point A, the smaller

the benefits are. This is shown in Figure 4.27. In other words, the further point C is from

point A, the more traffic there is in between which cannot make use of information. The

isobenefit contours shown in Figure 4.28 illustrate the sensitivity of system benefits to the

capacities of the two routes normalized by demand. The value of ATIS declines as the

freeway capacity is improved. Incident management using ATIS is an alternative to

expensive capacity improvement projects for freeways. On the other hand, improving the
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capacity of the alternate route enhances the role of ATIS in incident management.

Therefore, it may be said that ATIS is an alternative to expensive capacity improvement

projects for freeways, but not to overall corridor capacity enhancement. The increase in

corridor demand means a larger incident queue on the freeway and therefore an increase in

potential savings from ATIS as shown in Figure 4.29. There is a certain level of demand

below which there is no system gain of ATIS.

Finally, we look at sensitivity of the benefits to the difference between free flow

travel times on the two routes, T*, as shown in Fig. 4.30. There is an upper limit of T*

which defines the relevance of ATIS information. When the alternate route is very long it

is as if it does not exist. When T* decreases, diversion continues for a longer period of

time and consequently diverted as well as undiverted traffic have a better chance to save

time. Therefore the system benefits are expected to increase as T* decreases and are

maximized when the two routes are identical.
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Using real life incident data we estimate the limits of system and user benefits of

ATIS. We consider a corridor scenario that is likely to result in the maximum benefits of

ATIS, herein after called the best corridor scenario. In this scenario, the corridor

parameters are set as follows: system benefits increase with the demand Q, therefore we set

Q to be close to but not exceeding the capacity of Route 1 (which is 90 vpm), say Q=89

vpm, thus the off-peak conditions still hold. Also since the benefits are maximized at pc,

we set pc =lOO%,  i.e a queue will not form on the alternate route even if all traffic is guided

with ATIS. This is possible if the capacity of the alternate route is large enough to absorb

all the corridor demand without having a queue, i.e if p2=Q. The benefits increase when

T* decreases, hence we set T* to be very small, say 0.01 minutes. Next, we consider

some real life data of combinations of incident duration and severity as shown in Table 4.1.

Reeker et. al (1988) analyzed data about truck-involved freeway accidents that occurred on

twenty-two freeway routes in Los Angeles, Ventura, and Orange Counties in California

over a period of two years (1983-1984). The accident database includes 9508 such

accidents involving trucks larger than pickups or panel trucks. A random sample of 332 of

these accidents was obtained from the larger database and accidents were categorized

according to the number of freeway lanes closed as shown in Table 4.1. The mean incident

duration as well as the percentage of all truck accidents for each category were evaluated.

Lindley (1986) presented empirical data that relates reduction in freeway capacity to the

number of freeway lanes closed. We use his empirical findings to estimate reduction in the

capacity of Route 1 (the freeway). System benefits are calculated for two extreme incident

locations on Route 1: near points A and B. Note that the benefits are almost insensitive to

the incident location for the given incident and corridor conditions. Although system

benefits can be as high as 82% this applies only for 4.8% of all truck accidents. Category I

(accidents with closure of one freeway lane) is the category with the most frequent
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accidents and system benefits are 50% for this category. System benefits weighed over all

categories are:

(0.35)(50%) + (0.148)(75%)  + (O-048)(82%) + (0.31)(32%) + (0.144)(49%) = 50%.

Thus, the expected upper limit of system benefits for truck-involved accidents is 50%.

Minimum and maximum values of user benefits are estimated depending on the time

of arrival to point A. The results are shown in Table 4.2. Category I results in user

benefits of 35%~64%. Similarly, user benefits are weighed over all categories and the

expected upper limit of user benefits for truck-related accidents is in the range of 36%-

63%.

So far we have looked only at truck-related accidents. The vast majority of all

incidents, however, are non-truck related, they are vehicle disablements (Giuliano 1989).

Truck-related accidents are expected to be less than 5% of all incidents. Giuliano (1989)

analyzed incident data for a 12 mile section of the Santa Monica freeway (I-10) in Los

Angeles. She found that 80% of the non-truck incidents do not result in any lane

blockages, see Table 4.3. This is obviously related to the availability of shoulders in the

case study area. Despite that no lane blockage occurs in these incidents, capacity is reduced

by the impact of gawkers block which is estimated to be on the order of 25% (Lari et. al,

1982; Goolsby and Smith, 1971). The expected upper limit of system benefits for non-

truck incidents weighed over all categories is estimated from Table 4.3 and is equal to 26%.

Using Table 4.4, the upper limit of user benefits for non-truck incidents is estimated to be

in the range of 17%-36%.

Hence, system benefits weighed over truck and non-truck incidents are:

(0.05) (50%) + (0.95) (26%) = 27%

and the range of user benefits weighed over truck and non-truck incidents is:

Minimum : (0.05) (36%) + (0.95) (17%) = 18%

Maximum : (0.05) (63%) + (0.95) (36%) = 37%







INCIDENT INCIDENT
CATEGORY DESCRIPTION

MEAN % OF ALL APPROXIMATE
INCIDENT NON-TRUCK % CAPACITY RANGE OF USER BENEFITS
DURATION INCIDENTS REDUCTION (Minimum - Maximum)

(Minutes)

I ONE LANE CLOSED 60 18% 50%* 35%- 64%

II TWO LANES CLOSED loo 2% 80%* 70% - 83%

m NO LANES CLOSED 30 80% 25%** 12% - 28%

* Estimation of the capacity reduction is based on the emperical  results reported by Lindley (1986).

** The average impact of gawkers block is 25% reduction in capacity, Lari et. al (1982)

TABLE 4.4 RANGE OF USER BENEFITS FOR NON-TRUCK INCIDENTS
Source of incident statistics: Giuliano (1989)
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Therefore, the m&e of user benefits is 18% - 37%.

The lower limit of ATIS user and system benefits is obviously zero, it occurs when

information is irrelevant because the initial delay is less than T. This applies to the best

corridor scenario mentioned earlier when:

1) ‘there is a very minor loss of capacity of the incident section such that demand will be

less than the remaining capacity. This is likely to occur in many of the shoulder

disablements where the capacity is reduced by only 1% (Lindley, 1986).

2) the incident duration is less than the time needed to reach its location from point A, i.e

when T < 7. Since OczcT~ by definition and Tl=15 minutes, then ATIS will be useful

for all incidents with durations larger than 15 minutes but ATIS may or may not be

useful for incidents with durations less than 15 minutes.

It is important to remember that the above estimates of the user and system benefits

apply for the best corridor scenario, i.e the capacity of the alternate route is sufficient to

absorb the corridor demand, the free flow travel times on Routes 1 and 2 are similar, and

all traffic is guided with ATIS. Furthermore, the estimates are based on several

assumptions: ATIS equipped travellers follow instructions to divert to the alternate routes

and ATIS system can predict the incident duration accurately and send it to guided traffic

without any lag of information. In the next chapter we look at the possible consequences

of the relaxation of these assumptions.

4.4 Summary of User and System Benefits

The results of user and system benefits of ATIS are represented by the three

dimensional Figure 4.31. The left side plane is a dynamic profile of the user benefits: it

tracks percent time savings on a real time basis. The different levels of market penetration

are represented by the parallel left side planes. If these planes are overlaid on top of each
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FIGURE 4.31 MODELLING USER AND SYSTEM BENEFITS OF ATIS UNDER INCIDENT CONDITIONS
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other, the three dimensional figure is reduced into a two dimensional figure where the

percent savings are plotted versus the time of arrival at point A.

System benefits for a certain level of market penetration (the fraction of vehicles

equipped with ATIS) are found by integrating travel time savings to guided and unguided

traffic over time. This integration reduces the three dimensional Figure 4.31 into a two

dimensional figure as shown by the front face which illustrates a sketch of system benefits

plotted against the level of market penetration of ATIS.

Finally, it is clear that increasing the proportion of guided traffic improves equity by

narrowing the gap in travel time savings between guided and unguided traffic and

consequently equalizing the distribution of travel time savings among all system users.

However, as the proportion of guided traffic increases, the advantage to guided traffic

having ATIS and the disadvantage to unguided traffic not having ATIS decreases. This has

a counter-effect on the incentive to have ATIS. Furthermore, system benefits saturate at a

certain level of market penetration, chosen arbitrarily as 50% in Figure 4.31. This

saturation reflects operational limitations of the highway facilities such as bottlenecks and

the limited number and capacities of feasible alternate routes, as well as the lack of incentive

for unequipped navellers  to have route guidance information.
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5. ‘MODEL ENHANCEMENTS AND EXTENSIONS

In this Chapter we analyze practical strategies for incident management and relax

some of the assumptions made in the preceding analysis. We also look into other

applications and extensions of the model.

5.1 Diversion Correction and Pulsed Diversion

So far we have assumed that vehicles with ATIS will follow directions to divert to a

shorter route whenever so instructed by the ATIS. This section explains consequences of

relaxing this assumption from two perspectives: 1) that only some but not all ATIS vehicles

divert when so instructed, or 2) that ATIS vehicles are provided with route travel time

information instead of instructions to divert

To analyze the first assumption, we use the queueing diagram of Q-Case-I shown

in Figure 3.9. A portion of this figure is reproduced in Figure 5.1. The dashed lines

represent the expected cumulative count using each route if all ATIS vehicles follow

instructions. In retiity, it is possible that some ATIS vehicles may not follow instructions

and would remain on Route 1 despite the fact that Route 2 is faster. If this is the case, then

the solid lines represent a more realistic queueing diagram, and the subscript r is used to

refer to this situation. Since the real diversion rate, pr Q, is less than the assumed one, pQ,

the time needed to reach equilibrium increases from K to K,. As mentioned earlier, once

equilibrium is reached, the diversion rate should be reduced to p’Q. Later on, at time tr,

however, it i; found that the actual diversion rate is less than p’Q. To correct this situation,

the diversion rate is increased to the maximum possible, pQ, so as to match the equilibrium

rate, p’Q. Once equilibrium is reached again at time f,, there is no need to divert more than

p’Q. However, if the rate p’Q is diverted, the picture repeats itself until Route 1 becomes

ultimately faster and diversion ends. It is noted that when some ATXS vehicles do not

follow instructions to divert, diversion takes longer because of fluctuation
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in the diversion rate with an average value that is less than p’Q. Of course, this will reduce

system efficiency.

If the response of guided traffic to diversion instructions is low, equilibrium may

never be achieved even with p=I. Thus, in the cases of queue evolution discussed earlier,

lower values of p insufficient to achieve equilibtium,  are equivalent to lower response from

the travellers  to route guidance.

An alternative to providing ATIS vehicles with instructions to divert is to give them

route travel time information. If the diversion criterion of ATIS travellers is to choose the

route with the minimum travel time, then the queue evolves as in Figure 5.2. All ATIS

vehicles divert for a time period of K starting from the moment the incident occurs, and

stop diverting when Route 2 becomes congested enough to deter them away. This occurs

at time b*+K+&l, after which all ATIS vehicles use Route 1. This will cause Route 1 to

become congested at time t,-,*+K+&l+&2 when ATIS vehicles shift back to Route 2 again.

The process of pulsed diversion continues until travel time on Route 1 revetts to being less

than that on Route 2, approximately at time te*+ K+ E, where

The average rate of diversion to Route 2 during this process is comparable to p’Q.

It is expected that there will be some time lag needed by ATIS to update

information. The influence of this time lag on diversion is of concern at times when the

diversion rate has to be changed (increased or decreased). This influence can easily be

analyzed using queueing diagrams that are similar to those shown in Figures 5.1 and 5.2.

Analysis of the pulsed diversion is necessary in real life situations where accuracy

is of concern. In Chapter 3 we approximated the pulsed diversion curves, shown in both

Figures 5.1 and 5.2, by a straight line with an average slope that is comparable to p’Q.
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This approximation is an alternative to analyzing queue evolutions in full detail.

Nonetheless, the main effects of ATIS on queue evolutions could still be realized.

5.2 Underestimation and Overestimation of the Incident Duration

The incident duration is one of the most important factors in determining which case

of queue evolution results. Models have been developed to estimate the duration of an

incident as a function of a few variables, such as the number of the freeway lanes blocked

by the incident (Reeker et. al, 1988). In real life, however, it is unlikely to fmd two

incidents with identical conditions. That makes it very difficult to predict accurately the

incident duration T. In this section we analyze possible consequences and remedies of the

misprediction (underestimation or overestimation) of T. To illustrate this, an example is

used where the initial estimate of T is such that NQ-Case-I results.

Underestimation of T

The initial estimate of T is referred to as flo). If

then NQ-Case-I results, as shown by the queueing curves with solid lines in Figures 5.3 -

5.5. The value of T is updated in the ATIS system through feedback from the progress of

the incident clearance process. The figures depict several updates of the incident duration

T: T(l), T(2), and T(3). Consequently the queue evolution and the diversion of ATIS

vehicles can be revised based on the updated values of T, as shown by the dashed lines in

Figures 5.3 - 5.5. In all of these figures, T has been underestimated.

The initial estimate of K, the duration of diversion, is based on T(o). If T is updated

before the initial diversion duration K(o) ends, then the decision will be to extend the
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diversion time by. K(l)-K(c), where K(l) is the first revised value of K. As long as T is

updated and K is revised before the diversion ends, the queue will evolve as in Figure 5.3.

But if the updated T is revised after a decision to stop diversion has been made, then the

queue will evolve as in Figure 5.4, which shows pulsed diversion. The ATIS equipped

travellers are deprived of the benefits of diversion and system efficiency decreases for time

durations: II, 12, and Z3. Note that in both Figures 5.3 and 5.4 a shift from NQ-Case-I to

NQl-Case-II occurs when T is updated for the third time, i.e., when T=Tf3), where

Note also that in both figures equilibrium is never achieved because the fraction of vehicles

equipped with ATIS is less than z’, the minimum fraction needed to initiate equilibrium. In

Figure 5.5 this fraction is larger than z’ and equilibrium is achieved for a period of time

E(*), equilibrium is interrupted for a period of time I+ K(2), and it is established again for a

period of time ~(~1. This figure shows a mixture of early and late revisions of diversion.

Finally, it is evident that if the diversion occurs when T is underestimated, any value of the

revised delay df), where i=1,2,3, will be larger than T* and travellers guided with ATIS

will always gain by being diverted to Route 2.

Overestimation of T

Figure 5.6 illustrates the queueing diagram for NQ-Case-I with T being

overestimated. There are two scenarios for the revised delay d”, either: (1) d$T*; or (2)

di’)<T*.  The first scenario is represented by the dashed lines in Figure 5.6 while the

second scenario is represented by the grey lines. In the second scenario, ATIS is irrelevant

and no equipped vehicles should be diverted to Route 2. Unfortunately there is some time

interval during which diversion will occur before T can be revised and a decision to stop
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diversion can be taken. During this time interval, ATIS equipped travellers will be

disadvantaged by travelling on the longer route. The same observation also occurs in the

first scenario (except when T is updated and K is revised during the time interval

[t,*,tO*+ Iw]. The only way to prevent ATIS equipped travellers from being

disadvantaged is not to overestimate T. On the other hand, underestimation of T will not

make equipped travellers worse off than if they have not been equipped with ATIS.

Therefore, to be on the safe side, it is better from the perspective of guided traffic to

underestimate the incident duration than to overestimate it. From a system perspective it is

better to minimize the magnitude of the prediction error in T regardless of whether this error

is positive or negative.

5.3 The Queue Spillback and the Queue Backup Problems

It was assumed in the idealized corridor that the queue on the alternate route does

not spill’back to the freeway. Also it was assumed that the incident queue does not reach

upstream of point A. This section deals with the consequences of the relaxation of these

two assumptions.

Queue Spillback

The queue of diverted vehicles may spill back to the freeway. Figure 5.7 illustrates

that the queue on Route 2 reaches point A on the freeway at time &. The queue spillback to

the freeway can be controlled by reducing the diversion rate from pQ to ~2, the capacity of

the alternate route. Note that equilibrium starts at time &l when there is no spillback, but is

delayed until QJ when there is. When no more than /.f2 is diverted, the queueing delay on

Route 2 is reduced (as shown by the light shaded area) and the queueing delay on the

freeway is increased (as shown by the dark shaded area). The net queueing delay is

usually positive except when the fraction of ATIS equipped vehicles is very large. The

disadvantage of this is a loss in system efficiency and in benefits to equipped travellers.



123

A(t) AC(t)
I / \/

.#I... ,.....  ..*...  ,.A A

te2 t;+te2+c t;+T

FIGURE 5.7 CONTROLOF THE QUEUE SPILLBACK USING ATIS
(Q-CASE-I)



124

The best solution ,for the spillback problem is not to let it occur. This may be achieved if

the ATIS equipped vehicles are diverted to several alternate routes.

Queue Backup

The incident queue may back on the freeway upstream of point A therefore causing

delay to guided uaffic which wishes to exit at that point. It is expected that with ATIS the

backup problem will be delayed and possibly eliminated. Figure 5.8 illustrates a case

where without ATIS the queue reaches point A at time ~~1  but at a later time r,2 with ATIS.

The backup problem can be eliminated if the initial delay warrants immediate diversion and

there is a sufficient number of ATIS vehicles to be diverted, i.e when:

dl>T*and(l-p)Q<p,*

Thus, after time t,2, the departure rate from point A to point C cannot exceed pO*

until the incident is cleared. One would expect that the maximum rate that can be diverted

becomes p b* instead of pQ. Because of this restriction on the diversion rate, equilibrium

may not be reached within time interval [to* , s2t 1. Failure to reach equilibrium causes a

loss in the system efficiency and in the benefits to ATIS equipped vehicles. These losses

can be avoided, however, if ATIS vehicles are diverted at several alternate routes rather

than only one route.

Hence, to avoid the problems of the queue spillback and the queue backup, ATIS

vehicles should be diverted to several alternate routes (provided that they exist).

5.4 Study E@ensions and Future Research

Network Extension

A contribution of this study is that it has established the nuclei of a large scale

simulation model. The idea is to develop the large scale model from a base of simple

queueing methods such as the one used in this research. The model extension is relevant
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for applications to real life networks with multiple origins and destinations. Under incident

conditions, traffic guided with ATIS is spread over a wider space through diversion to

several alternate routes. The effectiveness of ATIS in spreading incident congestion over

space is strongly correlated with the number and the excess capacity of the alternative

routes. The alternative routes can be either adjacent freeways or major arterials usually

parallel to the highway facility on which the incidents occur. When expanding the model it

is also important to consider dynamic network effects that result from diversion such as the

queue spillback to the freeway and the queue backup on the city streets.

The diversion of guided traffic to major arterials may increase the travel cost for

travellers originally using these arterials. In addition to this, diversion may cause

secondary queueing delay to the traffic moving on city streets perpendicular to the arterials.

Consequently, the implementation of the user optimal strategy under such conditions may

result serious equity problems to city street traffic. This stimulates the need to consider

alternative network-wide strategies for dissemination of real time traffic information.

Examples of these are the system optimal and the group optimal strategies which are

discussed briefly below.

The objective of the system optimal strategy is to optimize the total travel cost for all

trips in the network, whether made by ATIS equipped or unequipped vehicles. Real time

traffic information is disseminated to influence travellers’ decisions to use system optimal

routes. The outcome of this strategy is very much influenced by the overall capacity of the

alternative routes and also the types of cost included in the optimization. The travel cost

ma;’ include the social cost of diversion to city streets such as the potential safety hazards,

air and noise pollution, and the long term effects on land value...etc. The diverted traffic

can be easily spread over a wider space if the network has alternate routes with fairly large

capacities. In such a case, the increase in the social cost may not be significant. This is

also true if incidents result short durations of traffic diversion (perhaps in the range of 20-

30 minutes). Under such conditions, the optimization is likely to result more guided traffic
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being diverted to the city streets than in the case of the user optimaI strategy. In corridors

with low capacity alternate routes, the social cost of diversion is likely to be high.

Similarly, the social cost of diversion is relevant in extreme conditions where there is a high

frequency of severe incidents such as truck related incidents resulting long durations of

traffic diversion to city streets (perhaps in the order of hours). Under these conditions, the

optimization is expected to result in more guided traffic remaining on the freeway.

Obviously, this strategy is not in the best of interest to guided traffic. In fact, guided

travellers may fmd themselves using the longer travel time routes, thus sacrificing for the

sake of the public good.

The group optimal strategy is a special case of the system optimal strategy where

the environment of optimization is the group of ATIS equipped vehicles. For example, in

the corridor analyzed, instructions are transmitted to equipped travellers to use a route such

that the total travel time for equipped travellers going from A to B is minimized. This

strategy can be used to establish diversion priorities. For example, under incident

conditions, High Occupancy Vehicles (HOVs) equipped with ATIS can be given the

priority to divert to the shortest route (even if it doe: not have HOV lanes). This provides

an additional incentive for commuters to switch to HOVs and therefore enhances the role of

HOVs in reducing the overall network congestion. The group optimal strategy can also be

used by the private sector such as express delivery services, taxi cabs, and the trucking

industry. Those might be the early adopters of the ATIS technology. Under incident

conditions, the priority of diversion to the shortest routes is given to vehicles loaded with

valuable commodities or perishable goods.

The model network-wide extension is expected to be accomplished gradually.

Figure 5.9 illustrates a preliminary step for the model extension: a corridor composed of a

freeway and two parallel arterials. In the morning commute, trips are destined to the CBD,

i.e a many-to-one O-D table, while in the evening commute trips originate at the CBD and

are distributed to various destinations. Guided traffic can be diverted to the parallel arterials
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at several freeway exits. The next step will be to consider sample configurations or

skeletons of real life networks with multiple 0-Ds such as the Bay area and the Los

Angeles basin.

ARTERIAL 2

l-l## INCIDENT E2? DIVERSION POINT

FIGURE 5.9 CORRIDOR UNDER INCIDENT CONDITIONS WITH ATIS
(MULTI-DIVERSION POINTS)

Peak Period Incidents

Another extension of this research is to analyze the peak-period incidents. The peak

period is defined as the period during which the corridor demand exceeds the capacity of

the freeway and is shown as time interval [to, rqj in Figure 2.3.

In the absence of incidents, equilibrium is established in the corridor analyzed

during the peak period. Equilibrium is achieved by the commuters choosing the shortest

travel time routes on the basis of their daily experience. Queue evolution for the peak

period equilibrium is shown in Figure 5.10. The curve A(t) shows the arrivals at A before

traffic splits between the two routes. A,(t) and A,(t) represent respectively the arrivals to

bottlenecks E on Route 1 and F on Route 2. All travellers use Route 1 until equilibrium is

achieved at time re , that is





130

A&t) = A(t) for I < re

Equilibrium is maintained until time fd Given A(t), to, and T*, it is straightforward to

evaluate times te, t’, fi, fd, and tf from the queueing diagrams, where f0 and t’ are the times

when the queues start to form on Routes 1 and 2 respectively. This equilibrium will be

established even if some travellers choose to use the longer travel time route. To maintain

equilibrium, it is only necessary that a number of travellers  sufficient to keep the route

travel times equal behave in accordance with the assumptions of equilibrium assignment.

In Chapter 4 it was found that system benefits level off when both routes have busy

bottlenecks. This finding is illustrated again in Figure 5.11.

DIVERSION RATE pQ

FIGURE 5.11 SYSTEM BENEFITS VERSUS DIVERSION RATE UNDER
OFF-PEAK INCIDENT CONDITIONS

This figure shows that when the diversion rate exceeds ~2, the capacity of the alternate

route, then no more system gains can be achieved with higher diversion rates. One can

extrapolate this finding to the analysis of the, peak-period incidents. During the peak period
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equilibrium the alternate route already has a queue as shown in Figure 5.10. If an incident

occurs during the peak period equilibrium, then equilibrium will be interrupted. In order to

return to equilibrium, ATIS vehicles will be diverted at ratepQ to the alternate route, thus

joining the existing queue. It is expected that system benefits will not increase beyond that

which can be achieved under the off-peak conditions, i.e when the diversion rate equals or

exceeds the capacity of the alternate route as shown in Figure 5.11. Also system benefits

during the peak conditions are reduced further because of the disbenefits caused to

uavellers originally using the alternative routes where guided traffic is diverted. Hence,

system benefits under the off-peak conditions represent an upper limit for the benefits of

route guidance. This suggests that ATIS en-route guidance is more useful in the

management of off-peak incidents. In today’s urban networks, nearly half of the incidents

occur during the off-peak period. For the incidents that occur during the peak period, the

need is to spread traffic over time rather than space. This can be achieved through

departure time switching rather than route switching. Here, the role of ATIS is thought to

be more useful at home rather than en-route. This is yet to be investigated and is an

interesting area for future research.
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6. SUMMARY AND CONCLUSION

This study deals with incident management using ATIS. An off-peak incident is

analyzed using deterministic queueing models in an idealized corridor composed of two

routes. A user optimal strategy is implemented to disseminate real time traflic information

to vehicles equipped with ATIS. The findings show that a few cases of queue evolution

result when ATIS is used under incident conditions. Both the proportion of guided traffic

and the incident duration play an important role in determining which case results. When

the queue evolutions are determined, it is straightforward to find out whether ATIS is

useful or not.

When an incident occurs, ATIS will divert all equipped vehicles to the alternate

route until equilibrium is achieved. Once equilibrium is achieved, it is maintained by

reducing the rate of diversion from one route to the other through pulsed diversion of ATIS

vehicles. The implication is that during equilibrium some ATIS equipped uavellers will be

diverted to an alternate route while others will be asked to remain on the route where the

incident has occurred. The benefits of ATIS measured as travel time savings are evaluated

by comparing the queue evolutions with and without ATIS.

Synthesis of User Benefits

The benefits to guided and unguided traffic are described as a function of the time

of arrival at the junction upstream of the incident link. The results show that these benefits

follow similar characteristics for all the cases studied. As long as the incident queue has

not begun to discharge, the benefits to both guided and unguided traffic increase with the

arrival time. When the incident queue begins to discharge, the benefits to guided traffic

start to decrease while the benefits to unguided traffic continue to increase with the arrival

time until equilibrium is achieved. As expected, the benefits to guided and unguided uaffic

are identical during the equilibrium period.
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Guided traffic is better off than unguided traffic’only during the diversion period

that precedes equilibrium, but this advantage is drastically reduced when a queue does form

on the alternate route or where equilibrium can be achieved. From the perspective of

guided traffic, it is better to underestimate the incident duration rather than to overestimate

it. Ihis will guarantee that guided traffic will not be worse off with ATIS because of over-

diversion. However, the cost of achieving this convenience to ATIS travellers is loss in

system efficiency. From a system perspective it is better to minimize the magnitude of the

prediction error in the incident duration regardless of whether this error is positive or

negative. Clearly, there is a trade-off between convenience of ATIS travellers and system

efficiency.

The benefits to guided traffic are insensitive to the fraction of vehicles equipped

with ATIS as long as this fraction is below the critical value which causes a queue on the

alternate route. The critical fraction is equal to the ratio of the capacity of the alternate route

to the corridor demand. The critical fraction varies from zero to one. It equals zero when

there is no alternate route, e.g the main facility is a tunnel or a bridge. It equals one in

corridors with several major arterials, usually parallel to the main facility, that can absorb

the corridor demand without being congested. When the alternate route is congested, the

benefits to guided and unguided traffic become sensitive to the fraction of vehicles

equipped with ATIS. The benefits to guided traffic decrease while the benefits to unguided

traffic increase with this fraction. Thus, as the proportion of guided traffic increases, the

gap in the benefits between guided and unguided traffic narrows consequently decreasing

travellers’ incentive to have ATIS.

Synthesis of System Benefits

System benefits increase with the proportion of guided traffic as long as it is below

the critical value that causes a queue on the alternate route, but do not increase with this

proportion when a queue forms on the alternate route. As expected, system benefits also
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do not increase with the increase in the proportion of guided traffic in cases where

equilibrium can be achieved.

The results of sensitivity analysis indicate that system benefits increase nonlinearly

with incident duration and severity. This increase has diminishing returns with respect to

both parameters. As expected, the further the incident location is from the junction

upstream of the incident link, the smaller are the benefits. The value of ATIS information

declines as the capacity of the route with incident is improved. On the other hand,

improving the capacity of the alternate route increases the system benefits of ATIS. It may

be said that incident management using ATIS is an alternative to expensive capacity

improvement projects for freeways but not to overall corridor capacity enhancement.

Increase in the corridor demand means a larger incident queue on the freeway and therefore

an increase in the potential savings from ATIS. If the alternate route is very long, it is as if

it does not exist and ATIS becomes irrelevant. But when the difference in free flow travel

time betieen the two routes decreases, diversion continues for a longer period of time and

consequently diverted as well as undiverted traffic has a better chance to save time.

Therefore, system benefits are expected to increase as this difference decreases and are

maximized when the two routes have the same free flow travel time, e.g the two routes are

parallel bridges connecting between two cities.

Estimation of ATIS Benefits

Using the statistical results of two studies of real life incidents, the magnitudes of

system and user benefits are estimated based on a best corridor scenario. This scenario is

described as follows: the alternate route has ample capacity to absorb all the corridor

demand without being congested, its free flow travel time is close to that of the main route,

all traffic is guided with ATIS, all guided traffic follows instructions, and there is no loss

of system efficiency due to information lag or error in the prediction of the incident

duration...etc. Incidents are divided into truck related and non-truck related. For truck
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related incidents, the upper limit of system benefits is 50% while the upper limit of the

benefits to ATIS equipped vehicles varies between 36% and 63% depending on the time of

arrival to the junction upstream of the incident link. For non-truck incidents these figures

are reduced nearly to the half (26% for system benefits and 17%36% for user benefits).

The ‘lower limit of the benefits is zero which is the case when no one can save time by

being diverted to the alternate route. Under the best corridor conditions no benefit is

achieved if the capacity reduced by the incident is less than 1% or if the incident duration is

less than the time needed to reach the incident location.

Since truck-related incidents are rare (expected to be less than 5% of all incidents,

Giuliano, 1989). the upper limits of the benefits for all incidents are biased toward non-

truck incidents. About 80% of the non-truck incidents are vehicle disablements which

generally do not cause lane blockages due to the availability of shoulders that can be used

as emergency stopping areas. This explains why the benefits of ATIS for non-truck

incidents are much less than the benefits for truck-involved incidents. In response to the

growth in travel demand, however, the current practice in traffic management is to add

freeway lanes by eliminating shoulders. If this trend continues, then the proportion of

lane-blocking incidents is expected to increase in the future, which translates into greater

potential benefits of ATIS.

Conclusion

This research represents a modest fust step toward understanding the role of ATIS

in incident management. It provides a comprehensive analysis of the most rele:fant

parameters that influence the benefits of ATIS, the most important among these is the

fraction of vehicles equipped with ATIS (see equation 3-9). The critical value of this

fraction that causes queues on the alternate routes does not depend on the incident

parameters but it only depends on the corridor parameters: the capacities of the feasible

alternate routes and the travel demand. Consequently it should not be difficult to estimate
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this value in real life networks. The capacity that is used in calculating the critical fraction

should be the total unused or available capacity of all the feasible alternate routes. It is not

sufficient for an alternate route to be operationally feasible but it also needs to be

institutionally feasible. In testing a few real life networks for this purpose, one may find

that there are not many routes which qualify.

The benefits to guided traffic decrease when the proportion of guided traffic

exceeds the critical value and system benefits also level off once this value is exceeded.

Therefore, if the system management has the choice, there is no need to equip more than

the critical fraction of vehicles with ATIS. Hence, the benefits to the system and to the

ATIS equipped travellers will be maximized simultaneously. One expects that system

benefits will saturate as the market penetration of ATIS reaches a certain level. This

saturation reflects operational limitations of the highway facilities such as bottlenecks and

the limited number of feasible alternate routes, as well as the lack of incentives by

unequipped travellers to have route guidance.

In conclusion, route guidance has a significant role in the management of off-peak

incidents. The main reason for this is the availability of uncongested alternate routes during

the off-peak period. During the peak period, the alternate routes are usually congested. If

an incident occurs during the peak period and ATIS vehicles are diverted, they join the

existing queues on the alternate routes. Therefore, it is expected that system benefits for

the peak period incidents will not increase beyond that which can be achieved under the off-

peak conditions. Also system benefits during the peak conditions are reduced further

because of the disadvantage caused to travellers originally using the alternative routes

where guided traffic is diverted. Hence, system benefits under the off-peak conditions

represent an upper limit for the benefits of route guidance. This suggests that ATlS en-

route guidance is more useful in the management of off-peak incidents. In today’s urban

networks, nearly half of the incidents occur during the off-peak period. For the incidents

that occur during the peak period, the need is to spread traffic over time rather than space.
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This can be achieved through departure time switching rather than route switching. Here,

the role of ATIS is thought to be more useful at home or before starting a trip rather than

en-route. Pre-trip traffic information provides the most flexible decisions to trip makers.

Travellers can switch routes, departure times, and possibly modes. This area is yet to be

investigated and is an interesting subject for future research.
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